Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 139 kayıt bulundu.

Balıklarda biyolojik sistemlerin işleyişi

Balıklarda sindirim sisteminde büyük farklılıklar gözlenir Bütün balıklarda görülen karaciğer genel olarak büyüktür ve yumuşak bir dokudan oluşur. Kıkırdaklı balıkların dışında, pankreasın yerini ya mide ile barsağın birleştiği mide kapısının çevresinde bulunan özel bir dokudan oluşmuş körbarsaklar ya da barsağın başlangıcında bulunan bu dokunun kendisi alır. Ağzı donatan dişler de büyük ölçüde değişkenlik gösterir. Yalnızca birkaç türde hiç diş bulunmaz. Dişler, genellikle avı tutmaya ya da parçalamaya yarar. Balıkların çoğu hayvansal besinlerle beslenirler. Yırtıcı olanların büyük bir bölümü, kendi türlerinden olanları bile ayırt etmeksizin balıklara saldırarak beslenirler. Bazılarıysa kabukluları ve yumuşakçaları yer. Az sayıda balık türüyşe bitkicildir (bitkisel maddelerle beslenirler) ya da midelerini mikroskopik hayvancıklarla dolu suların çamuruyla doldururlar. Balıkların böbrekleri omurga boyunca uzanır; ama sidik torbası göden barsağınm üstündedir ve memeililerdekinin tersine, anüs ile üreme açıklığının arkasından dışarı açılır. Balıkların sinir sistemi Balıkların beyni, bedene oranla çok küçüktür ve beyni oluşturan çeşitli bölümler eşit olmayan biçimde gelişmiştir. Bununla birlikte, beyinden çıkan sinirlerin dağılımı, öbür omurgalılar ınkiyle tam bir benzerlik gösterir. Duyu organları arasında, genellikle büyük olan göz, geniş ve çok açık olan gözbebeğiyle dikkati çeker. Derin deniz balıklarının gözleri ya körelmiş ya da çok gelişmiştir. Kulağın yapısı yalındır: Yalnızca içkulaktan oluşur.Koku alma organı, tabanı kıvrımlı bir zarla çok düzenli biçimde döşenmiş kapalı bir uçla son bulan, iki boşluktan oluşur; balıklar kokulara karşı çok duyarlıdırlar (hiç akıntı olmasa bile uzaktan yemin bulunduğu yere doğru gelirler). Buna karşılık, tat alma pek gelişmemiştir. Balıkların dili kemiktendir ve yapısında çok az sinir yer alır; ayrıca, balıklar besinlerini ağızlarında tutmazlar. Dokunma duyusu son derece gelişmiştir; böylece balıklar, şaşırtıcı bir keskinlikle, suyun en küçük titreşimlerini hissedebilir ve geldikleri yeri belirleyebilirler. Dokunmanın başlıca merkezi, omurgaya koşut olarak gövde boyunca uzanan ve yan çizgi adı verilen bir oluk içindedir. Dokunma duyusuna dudaklar da yardımcı olabilir. Balıklarda üreme Balıklarda yumurtalar genellikle beden dışında döllenir (yani ovipardırlar). Son derece ince, suyu ve dölleyici sıvıyı geçiren bir zarla kaplı olan yumurtaların büyüklüğü değişkendir. Bazı türler bir milyondan çok yumurta yumurtlar. Bütün bu yumurtalar iki zarla sarılmış bir vitellüsten oluşurlar; bazı köpekbalıklarında bir eten vardır. Dişi,, yumurtlama dönemindeyken, yumurtalar çok büyük bir gelişme gösterirler ve aşağı yukarı bütün karın boşluğunu doldururlar. Erkekte balıksütü denen sperma için de aynı şey söz konusudur. Üreme sırasında dişi ve erkek balıklar, olağanüstü etkinlik gösterirler: Su bitkilerini hareket ettirir, kıyılara yaklaşırlar ve dişi, sığ yerlere yumurtalarını döker. Yumurtalar bırakılır bırakılmaz, erkek balıklar üstlerine spermalarını bırakarak onları döllerler. Sonra erkek ve dişi, yumurtaları bırakıp giderler. Ama, dikenbalıkları, horozbinalar, yayınbalıklan gibi bazı balıkların, yuva yapma içgüdüsüyle yumurtalarını koruma altına aldıkları bilinmektedir. Bazen yalnızca erkek balığın yuvanın başında beklediği ve yavrularını koruduğu görülür. Bazı türlerde de erkek ve dişi, yavruların çevresinde durur ve bir tehlike sezdikleri anda onları geniş ağızlarının içine alarak korurlar. Bazı balık türleriyse çiftleşirler ve yumurtalar ana karnında açılır (yani ovovivipardırlar); yavrular kısa bir kanalla dışarı çıkarlar. Yalnızca köpekbalıklarında, yumurtalıktan ayrı, çoğunlukla gerçek bir dölyatağıyla son bulan uzun yumurtalık kanalları vardır. Köpekbalıkları ya canlı yavrular ya da bağsı bir maddeyle sarılmış büyük yumurtalar üretirler.

http://www.biyologlar.com/baliklarda-biyolojik-sistemlerin-isleyisi

TESPİT EDİLMİŞ DOKULARI BOYAMADAKİ GENEL FAKTÖRLER

1-Fiksasyonun Boyama Üzerine Etkileri: Fiksasyon, dokularla boyaların etkileşimine yardım eder. Formaldehit ve civa klorür, bazik boyaları tercih ederken, trikloroasetik asit, pikrik asit ve krom bileşikleri asidik boyaların hareketini kolaylaştırır. Etil alkol veya asetik asitle fiksasyondan sonra hem asidik hem de bazik boyalar dokular tarafından kolaylıkla alınır.Çekirdek boyası olan carmalum, civa klorür fiksasyonundan sonra daha çok, formalinden sonra ise daha az boyar. Bazen tespit edici ajan, özel bir doku bileşeni ve boya arasında direkt olarak hareket eder. Bu durumda iken fiksatifin bir mordant olarak hareket ettiği söylenir. Örnek olarak, hematoksilenle miyelinin gösterilmesinde başlangıç basamağı olarak dokunun potasyum dikromatla muamelesi verilebilir. 2-Progressif ve Regressif Boyama: Progresif boyama tekniği, dokulardaki farklı elementlerin sıra ile renklendiği ve boyama solusyonunda uygun sürenin sonunda dokuların tatmin edici differensiyel renklenmesinin başardığı bir tekniktir.Regressif teknikte ise dokular önce fazla boyanırlar, hücresel ayrıntılar yok olur. Sonra dokunun istenmeyen kısımlarından fazla boyanın uzaklaştırılması ile boyanın alındığı veya differensiye edildiği bir tekniktir. Regressif boyama eski progressif yöntemlerden daha çok uygulanmaktadır. Çünkü diğer hücre yapılarının bir miktar boyanması olmaksızın bir hücrenin bir kısmının yeterli yoğun progressif boyanması olmaksızın hücre bölümlerini yeterli yoğun progressif boyanmasını elde etmek zordur. Regressif boyama ise ayrıntıları örten diffüz sonuç verir. Differansiyasyonla daha açık renkte boyanmış alanlardan boyaların uzaklaştırılması olasıdır. Differansiyasyondan sonra hala diğer yapılarda seçici ve açık biçimde ayrıntılı sonuçlar için yeterli miktarda boya kalmaktadır.3- Direkt ve İndirekt Boyama: Anilin boyaların bir çoğu ( metilen mavisi, eozin gibi) boyanın basit sulu veya alkolik solusyonlarına konursa dokuları mükemmel olarak boyar ve direkt boyama olarak bilinir (Şekil a). Hematoksilen gibi birçok boya ise dokularda tatmin edici bileşimin oluşması için mordant olarak bilinen ara bir maddeye gereksinim duyarlar. Bu olay indirekt boyama olarak bilinir.Boya ve mordant ünitesi renkli bir göl şekillendirmek için ve mordantlanmış boya, bir doku-mordant-boya kompleksini oluşturmak üzere doku ile birleşirerek sonraki zıt boyamanın ve dehidrasyonun kolaylıkla yapılmasına izin verir. Histolojik boyama yöntemlerinde boya ve mordant ya birlikte (örn/ Erlich hematoksileninde hematoksilen potasyum alum ile) veya mordant doku boya solusyonuna aktarılmadan önce ( örn; Heidenhein hematoksileninden önce iron alum banyosu) kullanılabilir. Demir, alimünyum ve krom bileşikleri boyalarla bazik boyalar oluşturmak üzere birleşen mordantlardır. Metalik mordant; kimyasal bağlarla kendini hem boyaya hem de dokuya bağlar.Accentuator-Vurgulayıcılar: Mordantlardan farklıdırlar ve kullanıldıkları boyanın boyama gücünü artırırlar. Boyalarla göller oluşturmazlar ve boyanın doku ile kimyasal birleşmesi için esasi değildirler. Loeffler' in metilen mavisindeki potasyum hidroksit ve karbol thionin ve karbol fuksindeki fenol; boyanın yoğunluğunu ve seçiciliğini artırarak accentuator olarak hareket ederler. Accentuatorlar sırası ile anyonik (asidik) ve katyonik (bazik) boyalara eklendiklerinde sıklıkla asit ve alkalidirler. Bir anyonik boyaya asidin eklenmesiyle; dokuların bazik gruplarının iyonlaşmasının artmasıyla boyama yoğunlaşır. Eğer bir katyonik boyaya alkali eklenirse, asidik gruplarının iyonizasyonu artar. Fenol, karbol thionin ve karbol fuksinde accentuator olarak kullanılır fakat hareket tarzı tam olarak anlaşılamamıştır. a- Direkt boyamab- Mordant ile indirekt boyamac- Accetuator ile indirekt boyama Sinir sistemi için metalik impregnasyon yöntemlerini de kullanılan Acceleratörlerin (hızlandırıcılar) (örn/ Cajal yöntemlerindeki chloral hidrat ve veronal) de aynı zamanda accentuatorlar gibi aynı yolla hareket ettikleri görülmektedir. Trapping(tuzağa düşüren ajanlar), boyaları dokularla ve bakterilerle birarada tutar; tannik asit ve iodin örnek olarak verilebilir. Metilen mavisi/ eozinle seçici olarak boyanan bir kan smeari, tannik asitle muamelesinden sonra krornatindeki metilen mavisini tutar. Gentian viyole ve iodin ile boyanan bakterilerin ve alkolik deklorizasyona dayanması da aynı zamanda bakteri-boya kompleksine iodinin trapping hareketi yüzündendir. İodinin boyanın bakteriler ile reaksiyona girme kapasitesini değiştirmediğine, fakat boyayı tutmaya meyilli olduğuna ve differansiyasyon sırasında dokudan kaçışına engel olduğuna inanılmaktadır.4-Differansiyasyon: Regressif bir teknikteki aşırı boyanmış dokunun differansiasyonu veya boyanın geri alınımı (de-staining), basit solusyonlarda yıkama ile veya asitler ve oksitleyici ajanların kullanımı ile sağlanabilir. Mordantlar ve bazı boyalar aynı zamanda differansiasyon ajanları gibi hareket edebilirler. Suda veya alkolde yıkama, differensiasyonun temelidir ve boyanın içinde çözünebileceği herhangi bir solvent de kullanılabilir; differensiasyon sıvısı basit çözünebilirlikle hareket eder. Dokularla sıkı kimyasal birleşme ile birleşen boyalar, bu yolla kolaylıkla differansiye olamazlar fakat onların doku-boya linkajları asitlerin hareketi ile parçalanabilir. Differansiasyon ajanı ya doku ve mordant arasındaki birleşimi ya da mordant ve boya arasındaki bağları koparır. Asitlerle hematoksilen boya göllerinin differansiasyonu; mordantla birleştiğinde kaybolan boyadaki hidroksil grubun yeniden oluşumu ile mordant-boya hattını kırar; asit aynı zamanda dokulardaki asidik grupların iyonizasyonunu baskılar. Doku-mordant bağı da kırılır. Oksitleme ajanları farklı olarak hareket ederek boyayı renksiz bir bileşiğe oksitlerler. Differensiasyon için kullanılan mordantlar; çözünmeyen boya mordant doku kompleksini, bir boya olarak dokuda boyanın sadece bir bölümünü bırakarak, boyanın kismi redistribution yolu ile differensiasyon sıvısında dağılan çözünebilir boya-mordant gölüne dağıtır. Boyalar, kullanılan boyalardan doku kompenentleri için daha kuvvetli bir affiniteleri olduğunda differentiatör olarak işlev görürler. Orange G gibi daha kuvvetli bir boya, diğer daha az hırslı boyayı yerinden çıkarır ve basit de-staining gibi aynı etkiyi yaratır.Boyama Solusyonlarının Olgunlaşması: Bazı boyama solusyonları sadece haftalarca veya aylarca havaya, ışığa ve (sıklıkla) ısıya maruz kaldıktan sonra etkilidir. Hematoksilen iyi bilinen bir örnektir. Taze hazırlandığında nukleus boyası için kullanışsızdır fakat stoklandıktan birkaç hafta sonra aktifleşir. Hematoksileni hemateine okside olur. Oksitleme ajanlarının (sodyum iodat, merküri oksit, potasyum permanganat gibi) eklenmesi ile hızlandırılabilir. Hematoksilenin bir kısmının boyama solusyonunda suni olarak fazla hematoksilenin ise doğal olarak olgunlaştırılmasının mümkün kılınması önerilmektedir. Bu, boyanın bir kerede kullanılmasına izin verir fakat devam eden oksidasyon boyanın aktivitesinin birkaç ay sürmesini sağlar; yoksa tamamen olgunlaşmış solusyon daha ileri oksidasyonla inaktif bileşiklere dönüşerek hızla etkisiz hale gelir. Boyaların hazırlandığı günün tarihini etiketle belirlemek akıllıca olacaktır.

http://www.biyologlar.com/tespit-edilmis-dokulari-boyamadaki-genel-faktorler-2

ASİDİK - BAZİK VE NÖTRAL BOYALAR

Asidik ve bazik boyalar, solusyon hazırlandığında iyonize olurlar.Tipik bir bazik boya, katyonik veya pozitif yüklü boya iyonları ve negatif yüklü, renksiz klorid iyonları oluştururlar. Halbuki asidik bir boya anyonik veya negatif yüklü renkli boya iyonları ve pozitif yüklü renksiz sodyum iyonları oluştururlar. Boyalara uygulanan bu ''asidik'' ve ''bazik'' terimleri pH ile ilgili değildir ve bazik boya için katyonik boya; asidik boya içinse anyonik boya terimlerini kullanmak daha iyi olacaktır. Uygulamada, katyonik bazik boyalar reaksiyonda klorid köklerinden dolayı kısmen asit olarak bulunurlar. Asit boyalar ise sodyum tuzlarıdır ve kısmen alkali olabilirler.Bazik fuksin , renkli rosanilin temele ve renksiz asidik Cl köküne sahip bir bazik boyadır (Şekil a).Boya molekülünün asidik kısmı renkli olan, temeli ise renksiz ve genellikle sodyum olan boya ise asidofilik ' tir. Asit fuksin; rosananilin bir asidik sulfonat türevinin sodyum tuzudur. a-Bazik fuksinb-Asit fuksinNötral bir boya; bir asidik ve bir bazik boyanın etkileşimi ile olur. Hem katyon hem de anyon chromophorik gruplar içerirler ve boya molekülünün her iki kısmında renkli bir boya vardır. Büyük moleküllerin kombinasyonundan dolayı, nötral boya solusyonları sıklıkla kolloidaldir. Nötral boyalar alkolde çözünürler, suda ise nadiren çözünürler. Halbuki asidik ve bazik boyalar genel1ikle her ikisinde de çözünürler. Nötral boyalara en iyi bilinen örnek Romanowsky boyalarıdır ve polychrom metilen blue ve eozinin etkileşimi ile şekillenirler; bu boyalar kan boyaması için çok kullanılırlar. Metilen mavisinin metilen azure oksidasyonu boyaya özel seçicilik özelliğini vermektedir. Bu oksidasyon hematoksilen gibi diğer boyaların olgunlaşmasına analogtur. Amfoterik bir boyama; belli bir pH'nın altında (izo-elektrik nokta) katyonik; bu pH'nın üstünde anyonik olan bir boyadan yapılır. Carminik asit izo-elektrik noktası pH-4.5' de olan bir amfoterik boyadır. Bazik boyalar; nukleuslar gibi asidik doku kompenentlerini renklendirirler. Asidik boyalar ise sitoplazma gibi bazik yapılarla birleşirler. Nötral boyalar ise hücredeki asidofilik ve bazofilik elementlere ilgi duyarlar ve bazı doku kompenentleri aynı zamanda üçlü boyama etkisi veren bileşik nötral boya ile reaksiyona girerler.RENKSİZ LEUCOBAZLARBazı boyalar kolaylıkla indirgenebilirler ve eğer bu süreçte kromofor haraplanırsa, boya rengini kaybeder. Böylesi leuco-boyalar (örnek: leuco-metilen blue), vital bir boya yönteminde oksidasyonla tekrar renklenirler. Buna karşılık eğer oksijen gerilimi düşerse metilen mavisi ile vital olarak boyanan hücre yapıları renksiz hale (leucobaza döner) gelir ve oksijene maruz bırakarak tekrar renklenebilir. Oksitleme ajanı için bir test olarak kullanılmadığından Schiff reaktifi ( bir leuco-fuksin) gerçek bir leucobaz değildir. Halbuki kromoforun tekrar yapımı ile renkli hale geldiğinden leucobazlara benzemektedir.METAKROMATİK BOYANMABazı doku kompenentleri boyalarla birleştiklerinde boyanın orijinal renginden ve dokunun diğer bölümünde oluşan renkten farklı bir renk oluştururlar. Bu olay metakromazi olarak adlandırılır. Bu şekilde hareket eden boyalar ise metakromatik olarak adlandırılmaktadır. Metakromatik boyanın rengini değiştirebilen madde ise 'Kromotrop'' olarak bilinir. Ortokromatik terimi ise metakromazi göstermeyen doku veya metakromatik olmayan bir boya için kullanılabilir. Metakromatik boyaların birden fazla absorbsiyon spektrumu vardır ve bunlar ortokromatik ve metakromatik doku-boya bileşikleri arasında göze çarpan kontrastı vermek için yeteri kadar farklı olmalıdır. En önemli metakromatik doku kompenentleri kıkırdak, bağ dokusu, epitelyal musin, mast ve bazofil hücre granülleri ve amyloid' tir. Metakromatik olan boyalar esas olarak toluidin blue, thionin gibi thiazinlerdir (Şekil ). Metil viyole de yaygın olarak kullanılmaktadır. Bu boyalarda kullanılan renk kontrastı mavi-kırmızıdır. Ortokromatik doku ile Toluidin blue nun absorbsiyon spektrumu yaklaşık 630 nm de maksimumdur ve ortaya çıkan renk mavidir; metakromatik madde ile ise maksimum absorbsiyon 480-540 nm dir ve renk kırmızıdır. Gamma metakromazi olarak bilinen kırmızı boyanmaya ek olarak, Toluidin blue dokuları menekşe veya mor renge boyar ve beta metakromazi olarak bilinir. Alfa................. mavi; negatifBeta................. menekşe veya mor; kısmen pozitifGamma ...........kırmızı ; kuvvetli pozitif Metakromazinin ortaya çıkması için, dokunun yüzeyinde serbest elektronegatif gruplar (genellikle sülfat veya karboksil ) bulunmalıdır. Bu gruplar bol sülfatlı asidik polisakkaritlerde mevcuttur. Asidik grupların sayısında bir düşüş veya protein bağlanması ile bunların kaybı metakromazide düşüşe yol açar.Metakromazinin ilginç bir özelliği ise, alkolün, boyanın polimerize (metakromatik) şeklini, monomerik (ortokromatik) forma dönüştürmesidir. Eğer kesit, boyamadan sonra alkolle dehidre edilirse metakromazi genelikle kaybolur. Hughesdon tekniğinde metakromazi kaybolmaz. Su, metakromatik boyaların büyük bölümü için gereklidir. FLORESANS BOYAMAFluorochromlar, asidik veya bazik boyalar olarak hareket eden kromoforlu ve auxokromlu quinonoid boyalardır. Bu boyalar dokularla birleştiklerinde ultraviyole ışığı, görünen ışığa çevirme kapasitesine sahiptirler. Ultraviyole ışığın kullanımı ile fluorokromla birleşmiş dokuları tanıyabilirken; dokuları gün ışığında oluşan renkle tanıyamayız. Flurokromlar, floresans olmayan boyalardan daha spesifik değildirler ancak çok hassastırlar. Floresans, bazı maddelerin belirli bir dalga boyunda aydınlatıldığında farklı ve daha uzun ışınları yayma özelliğidir. Floresans teknikler çok kullanılır. Flurokrom boya yöntemleri ise doku bileşenlerinin, bakterilerin, fungusların , ağır metallerin gösteriminde, eksfolyatif sitolojide malign hücrelerin tanınmasında rutin olarak kullanılmaktadır. Floresans mikroskopi, dokulardaki ve serumlardaki antijen ve antikorların gösteriminde kullanılan immüno floresan tekniklerin temelini oluşturmaktadır. İki tip floresan vardır:1-Primer Floresans (doğal-otofloresans): Vitamin A, riboflavin, porfirin, kloroplast gibi biyolojik materyelin kendi özelliğidir. Dokular, genel mavi floresansa sahip olabilirler ve bu elastik fibrillerde kuvvetlidir. Civa, demir ve iodine gibi bazı maddeler doğal floresansı ortadan kaldırır. 2-Sekonder Floresans (yapay-indüklenmiş): Doğal floresans olmayan maddelerin acridin orange, auramine, thioflavine-T vb bir flurokrom boya ile etkileşimden sonra ortaya çıkar. Yapay floresanla malign hücreler, acridine orange ile birleştiğinde çok hızlı gösterilebilir. Floresan mikroskopi tekniklerinde indüklenerek oluşturulan yapay floresansın birçok avantajı vardır. Çok az bir floresans materyel görülebilir floresans üretir. Çok düşük konsantrasyondaki doku bileşenlerinin çok az floresan boya ile gösterilebilir. Floresan boyalar toksik etki yaratmaksızın canlı hücrelere de verilebilir. Yöntem çok hassastır ve iyi kontrast verir. Yapay floresans da ağır metallerle haraplanır. Bazı tekniklerle başarılı sonuçlar için tamponlanmış flurokrom boya solusyonları gereklidir.

http://www.biyologlar.com/asidik-bazik-ve-notral-boyalar-1

Çıkmış biyoloji soruları

A. Doğru şıkkı işaretleyiniz. ( 12*3 puan= 36 ) 1. İnsanlarda besin ve enerji tüketimi fazla olan dokulardaki kılcal kan damarı oranı , diğerlerine göre daha fazladır. Buna göre aşağıdaki dokulardan hangisindeki kılcal damar oranı diğerlerinden daha fazladır? a- Epitel doku ve kas doku c- Yağ dokusu ve epitel doku c- Kas dokusu ve sinir doku d- Kıkırdak doku ve yağ doku 2. Kemiklerin sağlığını korumak için, I. Yeterli ve dengeli olarak beslenmek. II. Sportif hareketler yapmak. III. Aşırı ve ağır yük taşıma . Şeklindeki faaliyetlerden hangilerinin yapılması gereklidir? a. Yalnız 1 b. Yalnız 2 c. 1 ve 2 d. 1,2 ve 3 3. Bol miktarda köfte yiyen bir insanın kanına hangi besinden en fazla gider? a. Glikoz b. Vitamin c. Aminoasit d. Mineral 4. Kalın bağırsaktan hangisi kana geçemez? a. Su b. Vitamin c. Mineral d. Selüloz 5. Vücut ağırlığının artmasında aşağıdakilerden hangisi etkilidir? a- Normalden fazla solunum yapılması b- Şekerlerin yağa çevrilerek depolanması c- İskelet kasların fazla miktarda etkinlik göstermesi d- Vücuttaki artıkların dışarıya boşaltılması 6. Kandaki şeker miktarını hangi hormonlar ayarlar? a- Adrenalin ve insülin b- Tiroksin ve hipofiz c- Hipofiz ve glukagon d- İnsülin ve glukagon 7. Aşağıdakilerden hangisi sindirim sisteminin görevidir? a- Havadaki oksijenin vücuda alınıp kana karışmasını sağlar. b- Besinlerin parçalanıp kana karışmasını sağlar. c- Besinleri dişler ve kaslar yardımıyla parçalar. d- Sistemlerin çalışmasını denetler. 8. Aşağıdakilerden hangisi vücudun engellerindendir? a- Ter b-Deri c- Solunum yolları d- Hepsi 9. Aşağıdakilerden hangisinde oynar eklem vardır? a- Boyun b- Kalça c- Kafatası d- Bel 10. Aşağıdaki hangi olay beyin kabuğundaki merkezler tarafından kontrol edilmez? a. Hareket b. Görme c- Düşünme d- Denge 11. Aşağıdakilerden hangisinin görevi kanın pıhtılaşmasını sağlamaktır? a- Alyuvar b- akyuvar c- kan pulcukları d- kalp 12. Kandan zararlı ve atık maddeleri hangi organ ayırır? a- Böbrek b- Akciğer c- Karaciğer d- akyuvar B-Aşağıdaki boşlukları doldurunuz. (7*2 puan=14) 1- Eklemleri oluşturan kemiklerin ucu __________________kaplıdır. Kemiklerin sürtünmesini engeller. 2- Böbreğimizde kanı temizleyen 1.000.000 tane küçük filtre _____________vardır. 3- Boşaltım sistemi üzerine uzmanlaşmış doktorlara ___________ denir. 4- Kolumuzdaki kaslar ______ _______________ kaslardır. 5- Kemiklerin birleştiği yere ______________denir. Hareketi kolaylaştırırlar. 6- Nezle, kabakulak ve AIDS hastalığına _____________ neden olur. Kolera , difteri, verem hastalığına __________________neden olur. 7- Akciğerleri ________________, beyni ________________ dıştan korur. C-. Aşağıdaki soruları yanıtlayınız.(20*2.5 puan=50) 1- Kimyasal sindirim ve mekanik sindirimi anlatınız. 2- Sindirimin izlediği yolu yazınız. 3- Dolaşım sistemini oluşturan yapıları yazınız. 4- Kalbin görevi nedir? 5- Büyük ve küçük kan dolaşımını açıklayınız. 6- Kan hücrelerini yazınız.Görevlerini açıklayınız. 7- Kan grupları hakkında bilgi veriniz. 8- Lenf sistemini açıklayınız. Önemini belirtiniz. 9- Aşı ve serumun farkı nedir? 10- Nefes alıp- verme nasıl olur? Solunumla farkı nedir? 11- Alveollerin görevi nedir? 12- Eklem çeşitlerini birer örnek vererek açıklayınız. 13- Böbreğin görevi nedir? 14- Sinir sisteminin kısımlarını açıklayınız. 15- Beyin kabuğunda hangi merkezler yer alır? 16- Omurilik, beyin ve beyinciğin görevlerini yazınız. 17- Adrenalin hormonu nereden salgılanır? Görevi nedir? 18- Vücudumuzda şeker ayarlamasını hangi hormonlar yapar? 19- İskeletin görevi nedir? 20- Kalp kası , düz ve çizgili kası açıklayınız. A. Doğru şıkkı işaretleyiniz.(8*4 puan= 32) 1- Gözde göz yuvarlağının içine ulaşabilecek ışık miktarını aşağıdakilerden hangisi ayarlar? a. Retina b. Kornea c. İris d. Optik sinir 2-Gözde ışığa duyarlı hücreleri içeren en iç tabaka aşağıdakilerden hangisidir? a.Retina b. Kornea c. İris d. Optik sinir 3- İç kulakta denge duyusunu algılamamızı sağlayan hangi yapılardır? a. Kohlea b. Kulak kemikçileri c. Yarım daire kanalları d. Östaki borusu 4. Aşağıdakilerden hangisi kulak kemikçiklerinden değildir? a. Çekic b. Örs c. Östaki d. Üzengi 5.Retinanın ışığa en duyarlı bölgesine ne denir? a. kör nokta b. Sarı leke c. Ağ tabaka d. Kornea 6. Retinada oluşan görüntü nasıl bir şekilde olur? a. Başaşağı ve 3 boyutlu b. Başaşağı ve 2 boyutlu c. Yukarı doğru ve 2 boyutlu d. Yukarı doğru ve 3 boyutlu 7. Hipermetrop göz bozukluğunu düzeltmek için nasıl mercek kullanılır? a. İnce kenarlı b. Kalın kenarlı c. Dışbükey d. İnce lens 8. Miyop göz bozukluğunu düzeltmek için nasıl mercek kullanılır? a. İnce kenarlı b. Kalın kenarlı c. Boşbükey d. İnce lens B. Boşlukları doldurunuz. (4*2 puan=8) 1. Gözün farklı mesafelerdeki cisimleri odaklayabilmesine ________ __________ denir. 2. Ortamda az ışık varsa _________________ büyür. Ortamda çok ışık varsa gözbebeği küçülür. 3. _________ ___________ orta kulak ile dış ortam arasındaki basıncı dengeleyip kulak zarının zarar görmesini engeller. 4. Göz kapakları gözün dış kısmını ____________, göz yaşı gözün dış kısmını ______________. C -Aşağıdaki soruları yanıtlayınız.( 15*4 puan=60) 1- Duyu organları nelerdir? 2- Konjanktiva nerede bulunur? Görevi nedir? 3- Uzaktaki ve yakındaki cismi nasıl görebiliyoruz? 4- Hipermetrop göz ve miyop göz hakkında bilgi veriniz. 5- Derinin görevi nedir? 6- Dilde hangi tatları alırız? Şekil üzerinde gösteriniz. 7- Deride bulunan duyu alıcıları nelerdir? 8- Burunda sarı bölge nereye denir? Görevi nedir? 9- Pacini cissimciği nedir? 10- Kulak kaç bölümde incelenir, isimleri nelerdir? 11- İşitme olayını açıklayınız. 12- Görme olayını açıklayınız. 13- Renkli görmemizi sağlayan yapılar nelerdir? 14- Katarakt nedir? 15- Gözdeki kör nokta, optik sinir ve kirpiksi kasların özelliklerini yazınız.

http://www.biyologlar.com/cikmis-biyoloji-sorulari

TOHUMLU BİTKİLER SINAV SORULARI

1.Temel ilgi alanı taksonomi olan botanik dalı…………………………………..dir. 2.Bitki taksonomisibitkilerin………………..,………………………içeren bir bilim dalıdır 3.Bir kategoriye girecek şekilde diğerlerinden ayrılmış olan gruplar ………………..olarak tanımlanır. 4.Populasyon................................................................................................................. ...................................................................bireyler topluluğudur 5.Türün başlıca 3 özelliği bulunmaktadır 1)…. …………………………,2)…………… ………………………..3)………………………………….. 6.Cins isimleri, tekil bir ……………..veya……………… olarak kabul edilen kelimedir. 7.Bir tür 2 latince kelimeden oluşmuştur. İkince kelimeye……………… denir. Buda bir…………….veya………….. olabilir 8.Bitki türlerinin ……..latince kelime ile adlandılmasına…………………isimlendirme denir. 9.Latince ismin arkasına yazar isminin eklenmesi bitki isminde ……………. sağlamak içindir. 10. Hiçbir taksonun………….yoktur. Ancak isimlerin ………. vardır. Bu isimde bitkinin ………......örneğidir. 11. Tür epitetleri ………….,…………….,ve…………… takılar içerir. 12. Vicia caesarea Boiss et Ball altı çizili kısım a) Bitkiyi ilk bulanlar b) Bitkiyi ilk toplayanlar c) Bitkiyi ilk isimlendirenlerdir. 13. Taksonomik olarak farklı ve coğrafik olarak sınıflandırılmış populasyonların oluşturduğu kategori;…………………dür. 14. Sınıflandırma kuramları diye bilinen görüşler 5 ayrılır. Bunlar………………..,…………….,…………………,………………..ve ……………………………………dır 15- Tohumlu bitkilere……………………,……………………,………………..,………….. adları da verilir 16- Polen taneleri Gymnospermlerde………… Andiospermlerde……………… üzerine taşınırlar. 17- ……………dan zamanımıza değin Angiospermler in çağıdır 18- YurdumuzdakiPINACEAE familyasına ait cinsler a)................................b)...................... c)...................................... d)..................................................dir. 19- Türkiyedeki pinus türleri a-………………b…………….c……………..d……………e….. 20-Ülkemizde Abies in..................alt türü vardır. A.........................ssp.......................................... .köknarı endemik olup Kazdağında 1200-1300 m’ler de yayılış gösterir. 21-Angiosperm çiçeğinde …………….ve……………. büyük oranda güvence altındadır 22- Ülkemizde yaşayan ….. juniperus türü vardır. Bunlardan yaprakları iğnemsi olanlara 3 örnek J……………………, J………………..J…………………………dir 23- Kuzey Anadolu’nun en geniş yayılışlı çam türü………………………………………’dır 24- Aşağıda Türkçe isimleri verilmiş bitkilerin Latincelerini yazınız: Doğu Ladini:…………………………… Lübnan Sediri…………………… Uludağ Köknarı:……………………….. Karaçam………………………….. Adi Ardıç (Cüce Ardıç)………………… Mazı…………………………. 25- Angiosperm çiçeğinde …………………ve…………….. büyük oranda güvence altındadır 26- Yaprak sapının dibindeki yaprakçığa………………, çiçek sapının dibindekine……………… denir. 27- ………… taslağının…………. gelişmesi sonucu oluşan yapıya……………….denir. Döllenmeden sonra ………………. gelişimi sonucu oluşan yapıya……………..adı verilir 28- Tipik bir meyve başlıca 3 kısımdan oluşmuştur. Dışta………………,ortada……………….. .ve içte………… 29- Apokarp ovaryum dan meydana gelmiş meyveler…………………… meyvelardır. 30- Tohum başlıca 3 kısımdan meydana gelmişti.Dışta………………,içte………………… ve ………… 31- Ülkemizde park ve bahçelerde yetişen manolya …………………………………dır. 32-……………………. un meyveları …………………….. kurutulursa karabiber elde edilir. 33-……………………………..(haşhaş)’ın kültürü yapılır ve ……………….adı verilen çeşitli…………………………….oluşan bir drog içerir. 34- Hamamelidaceae familyasından…………………………………..türünde yapraklar derin loplu meyveleri…………adettir. 35- (Girit ladeni)………………………özellikle Batı ve Güney Anadolu’da maki ve friganada yaygındır. 36- Ficus …………….da meyve oluşumu…………………… arısı ile oluşur. 37- Bougainvillea spectabiliste mor, kırmızı, pembe renkte olan ……………çok gösterişlidir 38- Aşağıdaki familyaların hangisinde ovaryum apokarptır? Papaveraceae b-Cruciferae c- Caryophyllaceae d- Ranunculaceae e.Berberidaceae 39-Ülkemizde………Quercus türü vardır. Makinin baskın türünü oluşturan meşe türü;……………………………………..’dir. 40- Consalida da foliküller…….adet Delphinium da ise………. adettir. 41- …………………(kardikeni)dağların yükseklerinde yastıkçıklar oluştururlar. 42- Halk arasında…………………..(ıhlamurun)………...ve…………..kulanılmaktadır 43- ………………(kebere) in………………. ları turşu yapılarak yiyeceklere lezzet verir 44- ………… …………….(koca yemiş) in meyveleri etli bir……….. olup yenebilir. 45-……………………. ………………….(abtesbozan) alçak boylu dikenli çalılardır. 46- Çiçek enine kesiti çizin kısımlarını belirtiniz 47- 10 tane maki elementi yazınız 48- 5 tane sanayi de kullanılan bitki ismi (latince –türkçe) yazınız 49- 5 tane sebze bitkisi (Latince-türkçe) yazınız 50- 5 tane süs bitkisi (Latince-türkçe) yazınız 51- Sistematik botanik ………..kuralları içinde …… ……….. …….. …………kadar tüm bitkileri …………. ile ……………….sınıfları içinde gruplamaktır. 52- Ficus carica bir ……………dur. …………. ……….. ………. … grubunu ifade etmektedir. 53- Türün başlıca 3 özelliği bulunmaktadır 1)…. …………………………,2)…………… ………………………..3)………………………………….. 54- ......................................... ve…………………………..tür altı kategorileridir. 55- Aile adı,isim gibi kullanılan………………….tır ve sonuna………….ekinin eklenmesi ile yapılır. 56- Pinus nigra da pinus…………..ismidir nigra ise ……. ……………….dir 57- Medicago polymorpha L. Buradaki L. …………………........................................dir 58- Bir yazarın bir……… tanıtırken ..…. olarak seçtiği bitki örneğine……………….denir. 59- Bitkilerin isimlerini bilmek istemenin 3 tanesini yazınız a- b- c- 60- Tohumlu bitkilerdeki aşağıda belirtilenlerin tohumsuz bitkilerdeki karşılıkları stamen……………………….. anterler………………karpeller……………….. polen ana hücresi……………….. polen tanesi……………………. 61- Koniferler……………. bitkilere verilen isimdir. 62- Pinaceae nin yurdumuzda bulunan cinsleri a- b- c d- 63- Abies in 2 endemik taksonu a- b- 64- Boyları 100m. çapları 25 m olan k Amerika da yaşayan taxodiaceae türü… ……………………………………….dir 65- Epigin çiçekte ovaryum……. hipogin çiçekte…….perigin çiçekte……...durumludur 66- …………………………. döllenip gelişmesi sonucu oluşan yapıya…………….. adı verilir . ……kısımdan meydana gelmiştir. Bunlar: 66- Sarı nilüfer (……………………….) ve beyaz nilüfer(…………………………)ara sındaki ayırt edici fark …………………………….. 67- Ranunculus larda meyve ……………..dir. 68- …………………………….. dan afyon adı verilen drog elde edilir. 69- Doğu çınarı (……………………………..) de meyvelar…….. adet Sığlada (……………………………………..) meyvelar………adettir. 70- Binomial isimlendirme bir …………………….ve bir…………………..den ibarettir …………………………………, belirli bir yerde bulunan ve aralarında…………………… olan bireyler topluluğudur 71- Mezozoik’te ……………………………………..günümüze kadar gelen tek örnektir 72-Holotipin benzeri veya eşi olan etiketinde holotipin kayıtlarını taşıyan örneği………………..denir 73- Taksonomik olarak farklı ve coğrafik olarak sınıflandırılmış populasyonların oluşturduğu kategori;…………………………………………..dür. 74- Gymnospermlerde çiçekler .......................... ve ...................... dişi kozalaklarda toplanmasına karşın, Angiosperm’lerde çiçekler ................................ çeşitliliğe sahiptir. 75- Juniperus............................................nun yaprakları iğnemsi. J....................................................................... nun ise pulsudur 76- Bitki tek eşeyli çiçeklere sahip ise……………………………………’dir. 77- Embriyonun çeneklerine…………………………………ilk vejetasyon noktasına …………………………….kökçüke…………………………’de adı verilir 78- Siliqua tipi meyveda………………………………………………………..’dır. 79- Stoma bantları Abies’te…………………………., Picea’da ………………….adettir 80- Makinin baskın türünü oluşturan meşe türü;……………………………………..’dir. 81- Brakte …………………….yaprakcığıdır. 82- Aşağıda verilen latince bitki isimlerinin türkçelerini yazınız Laurus nobilis………………………… Nuphar lutea………………………. Anemone blanda……………………….Papaver roheas …………………. Cannabis sativa……………………….. 83- Aşağıda Türkçe isimleri verilen türlerin Latincelerini yazınız Kızıl ağaç………………. ……….. Demir ağacı…………………………… Gürgen…………………………….Kayın…………………………………. Kara ağaç …………………………………………………………………… 84- 2 şer tane yaprakları tüysüz ve tüylü meşeleri yazınız. 85- Angiospermlerde döllenmeyi anlatınız? 86- Bitki taksonomosibitkilerin ....................................................... ..........................................................................içeren bir bilimdir. Yunanca taxis............ ............................nomos............................................................................kelimelerinden oluşmuştur. 87- Herbaryum en kısa ve açık tanımı ile ............................................................................... ............................................bitki örnekleri............................................dur. Ancak belirli....... .....................................ve..........................................göre toplanmış olması gerekmektedir. 88- Pinus un ülkemizde ............türü bulunmaktadır. Bunlar P....................................................... ...................................................................................................................................................... 89- Angiosperm’lerde içinde.........................yanında çok sayıda................................... üyelerde bulunmaktadır. Gymnosperm’lerin yaşıyan tüm üyeleri ...................................bitkilerdir. 90- Yeni bir bitkiyi verecek olan embriyo 4 Farklı kısımdan meydana gelmiştir. a)........................................ b).............................................. c)................................................ ..............................d).................................................................................................................... 91- Meyvelar 3 grup halinde toplanır. 1.................................. 2............................................... ....................... meyvelar 92- Tozlaşma şekilleri diye bilinen taşınma şekilleri 1................................................................ 2.......................................................................... 3...................................................................... 93- Gymnosperm ....................................... tohumlar Angiospermler ise ................................... ................... tohumlular demektir. 94- Aşağıdakilerin latincelerini yazınız Manolya .............................................. Doğu ladini ........................................ Lübnan Sediri ...................................... Sekoya ................................................. Mazı ..................................................... Adi Servi .............................................. Karabiber .............................................. Defne .................................................... Dağ lalesi .............................................. Haşhaş ................................................... 95- Aşağıda verilen latince bitki isimlerinin türkçelerini yazınız Platanus orientalis ............................................... Liguidumbar orientalis ........................................ Morus alba ........................................................... Ficus carica .......................................................... Papaver rhoeas ..................................................... Nuphar lutea ......................................................... Araucaria excelsa .................................................. Taxus baccata ........................................................ Ulmus .................................................................... Ficus elastica .......................................................... 96- K ( 5 ) K5 A 4+2 C ( 2 ) formülü ne demektir diyagramını çiziniz. 97- Bir çiçeğin dış halkadan içe doğru isimlerini yazınız ve kısımlarını yazınız? 98- Pinus nigra Arn. Altı çizili kısım; a-Tür b-Tür epitepi c- Otör d-Angram 99- Aile adı, cins isminin sonuna……………………………..ekinin eklenmesi ile yapılır 100-Aile (Familya) adı nasıl oluşturulur? Binomial veriniz……………………………………… 101- Doğada sadece bireylerin varlığını, türün insanoğlunun buluşundan başka bir şey olmadığını savunan………………………………………………..tür kavramıdır. 102-…………………………………, belirli bir yerde bulunan ve aralarında……………………olan bireyler topluluğudur. 103-Bir yazarın türü tanıtırken………………….olarak seçtiği bitki örneğine…………………… 104- Binomial isimlendirme bir …………………….ve bir…………………..den ibarettir. 105- Binomial isimlendirme;…………………………………………………………………… …………………………………………………………………………………..denir. 106- Bir herbaryum etiketinde ……………………………………......................................... ………………………………………………………………………………………………. ………………………………………………………………………………………………………………………………………………………………………bilgileri bulunmalıdır 107-Abies cilicia’nın Batı Toroslarda yayılış gösteren alt türü (ssp.)……………………………………………..’dır. 108- ………………………..larda yapraklar uzun sürgünler üzerinde …………………… ………………………………….kısa sürgünler üzerinde ise………………….halinde bulunur 109-Yurdumuzda doğal yayılış gösteren tek Cupressaceae türü……………………………’dır. denir. 110- Herhangi bir basamaktaki taksonomik gruplara ve birimlere ………………………….adı verilmektedir. 111- Yurdumuzda yayılış gösteren Juniperus türlerinin ikisini yazınız:………………………, ………………………………. 112- Angiospermlerde tipik bir çiçek iç içe şu halkalardan meydana gelmiştir; ……………….., …………………, …………………, ………………….. 113- Bitki tek eşeyli çiçeklere sahip ise……………………………………’dir. Bir çiçek dıştan içe doğru…………………………………halkadan meydana gelmiştir 114- Angiospermlerde ……………….olayına karşılık Gynospermlerde …………… …………….olayı gerçekleşmektedir 115- Anter………tekadan ibarettir. Bunların her biri……………………içerir. 116- Perigin bir çiçekle ovaryum…………………………………………….’dır. 117- Park ve bahçelerde kullanılan menekşe…………………………………………’dır. …………………………………….ve………………………..dere içlerinde görülen türlerdir. 118- Yol kenarlarında meyvesi basınçla patlayan ve tohumlarını fırlatan tür……………………...............................dır. 119- Turnagagası (………………) ile dönbaba (………………) arasındaki fark a –çiçeklerinden b-meyveden c-gövdeden d- yapraklarındaki özelliklerinden ayırt edilir 120-Apiaceae familyasında ……………...,bazen rasemus,korimboz dur. 121-Nicotianum,Capsicum,Atropa ,………..……………… familyası üyeleridir. 122-Boya elde edilen 3 bitki……………………………………………………………….. 123-Tomurcukları yiyeceklere lezzet veren bitki………………………………(dikenli kebere)dir 124-Brassicaceae familyasından……………………….(çobançantası)da meyveler üç köşelidir. 125-……………………………….(ormangülü)de zehirli bir alkoloid olduğundan balda deli bal oluşur. 126- ………………………(dam koruğu) sukkulent otsudur. 127- Rosaceaden böğürtlen diye bilinen tür……………………………..dir. 128- Isparta ve Budur’da Rosaceae den………………………………….nın kültürü yapılır Oleum Rosal gül yağı elde edilir. 129- Aşağıda Türkçe isimleri verilen türlerin Latincelerini yazınız. Ayva……………………………………. Söğüt…………………………….. Çilek……………………………………..Kavak……………………………. Funda…………………………………….Kocayemiş………………………. Kebere……………………………………Çay………………………………. Binbirdelikotu…………………………….Pamuk 130- Aşağıda Latinceleri verilen türlerin Türkçe isimlerini yazınız. Hypericum………………………………… Vitis vinifera …………………. Juglands regia…………………………….Astragalus …………………………. Pimpinella ……………………….. Pistacia lentiscus …………………….. Prunus domestica…………………………Quercus cocifera………………….. Solanum melongena…………………Papaver roheas……………………………… 131- Genista,Spartium,Lupinus, Colutea ……………………….. familyası üyeleridir 132- ……………………………..nın hem liflerinden hem de uyuşturucu drogundan faydalanılır. 133-Cinnamomum zeylanicum,………………………………………………familyasına aittir. 134-Havuzlardasüs bitkileri olarak kullanılan sucul türler;…………………………………….. ………………………………………………………………’dır. 135- Ranunculaceae’nin ülkemizde…………………….cins………………….. türü yayılış gösterir. 136- Ranunculus kozmopolit olup, ülkemizde ……………..tür içerir. R…………………………R………………………………..R……………………örneklerdir. 137- Ginkoales ordosunu günümüzde yaşayan tek türü,………………………………….’dır. 138- Taxaceae familyasının ………………………cins ve yaklaşık………………..türü vardır. 139- Angiospermlerle Gymnospermler arasındaki farklar dan 3 ünü yazınız. 140- Aşağıdaki familyaların hangisinde ovaryum apokarptır? Papaveraceae b-Cruciferae c- caryophyllaceae d- Ranunculaceae e.Berberidaceae 141- Üyelerinin yumrularından salep elde edilen aile; …………………………………’dir. 142- Fabaceae üyelerinde meyve;……………………………………………………….’dir. 143- Türkiye’de yayılış gösteren ladinin Latince tür ismi,………………………………’dir. 144- Üyelerin çoğunu uçucu (eterik) yağ içermesi ile önemli familya hangisidir? Capparaceae b-Lamiaceae c-Cruciferae d-Boraginaceae e-Dipsacaceae 145- Tetradinamus durumlu stamenleri, bilateral simetrili ve 4 petalli çiçekleri, silikua veya silikula meyvesı ile kolayca ayrılan aile……………………………………………..’dir. 146- Citrullus lanatus, a-kabak b-kavun c-salatalık d-karpuz’dur. 147- Ovaryum içindeki tohum taslaklarının düzenlenişine………………………denir. 148-Rosaceaefamilyasına ait iki bitki türü yazınız……………………………………………... 149- Yaprakları vertisillat dairesel çıkışı ile tanınan …………………..familyasıdır. 150-Monodelfus ……………………diadelfus……………….andrekeum demektir 151- Euphorbiaceae’nin çiçekleri spika, panikula veya………………………..durumlarında toplanmıştır. 152- Boraginacea familyasında stilus çoğunlukla……………………tir. 153- Lamiaceae’de stilus……………………………………………..özelliktedir. 154-Liliaceae’de ekonomik olarak kullanılan iki bitki……………………………………….dır. 155- Gymnospermler…………………………………….embriyo taşımaktadır. 156- Poaceae’de yaprak ayasının kın ile birleştiği yerde çoğunlukla küçük, zarsı dik bir ………………………….bulunur. 157- Aşağıdaki bitkilerin Türkçe isimlerini yazınız: Brassica oleracea:………………………… Capsicum annuum:………………………. Fragaria vesca……………………… Helianthus annus:……………………….. Coffea arabica:…………………………… 158- Papaveraceae familyasının iki önemli özelliğini yazınız. a-…………………………………………………………………… b- …………………………………………………………………… 159- Yurdumuzda Cupressaceae familyasına ait…………………………………ve …………………………………….cinsleri yayılış gösterir. 160- Paris quadrifolia botanik isminde epitet, bitkinin; a- Paris’te bulunduğunu b-Dört yapraklı oluşunu c-Dört çiçekli oluşunu d- Hem Paris’te bulunduğunu hem de dört yapraklı oluşunu belirtmektedir. 170-Yurdumuzda en çok tür içeren Gymnosperm cinsi, 8 türü bulunan…………………………’dir. 171- Rosaceae familyasına ait bir çok ağaçsı türün a. Meyveları b. Tohumları c. Çiçekleri d. Tomurcukları gıda maddesi olarak çok önemlidir. 172- Aşağıdakilerden hangisi Pinaceae familyası üyesi değildir? A. Cedrus b.Picea c.Abies d. Sequoia 173- Abies nordmanniana subsp bormülleriana……………………..’de yayılış gösterir. 174- Aşağıdaki bitkilerin Latince isimlerini yazınız: Buğday:……………………… Çiğdem:………………………. Arpa:………………………… Hindistan Cevizi:……………. Papatya:……………………… 175- Cocos nucifera:………………………………………………..familyasının bir üyesidir. 176- Liquidambar orientalis……………………………..familyasına dahil olup, tıpta kullanılan…………………………yağı elde edilir. 177- Monokatil ve dikotil arasındaki farkları (3) yazınız. 178- ………………familya üyeleri uçucu ve aromatik yağ içermelerinden dolayı parfümeri sanayinde önemlidir. 179- Aktinomorf simetri………………………………..demektir. 180- Bilabiat, korollanın kaliksin ……………………………bölünmüş olması demektir. 181- Caryophyllaceae familyasının en belirgin özelliği……………………………..olmasıdır. 182- Ginobazik, stilusun ……………………………..çıkmasıdır. 183- Kapitulum çiçek durumunu………………….familyasınının ayırt edici özelliğidir. 184- Monoik bitki……………………………. ……………………demektir. 185- …………………………………..(hurma) da yapraklar……………….dir. 186- Irıdacea üyelerinde stamenler …. tane, Colchicumlar da ise………..tanedir. 187- Orchis …………………familyası üyesidir ve yumrularından…………elde edilir. 188- ………………… familyası çok tüylü ve korolalarındaki ……………….......dan ayırt edilir. 189- Lamiacea familyasında gövde……….. …,çiçek ……………….tır 190- Monocotyledon larda yaprak damarlanması………………. Kök………………….tır. 191 a-Luzula b-Schoenoplectus,c- Carex, d-Tradescantia Juncaceae familyasındandır. 192-Genellikle bataklık yerlerde yaşıyan a-Panicum b- Phragmites c- Cyperus d-Urginia 193- a- Crocus b-Pancartium c- Narcissus d-Cynodon Liliacea familyasındandırlar 194- a-Allium b- Fritillaria c- Muscari d-Scilla süs bitkisi olarak yetiştirilir. 195- Arecacea familyasından……………….. nun meyvesından Hindistan cevizi yağı elde edilen tür 196- Boya bitkisi olarak bildiğiniz 3 bitki ismi yazınız 197- Cichona,Asperula ……………………..familyasındandır 198- Aslan ağzı olarak bilinen…………………………., ve sığırkuyruğu Scrophulariaceae üyesidir. 199- Kalp kuvvetlendirici glikositler taşıyan bitki a- Scrophularia b- Veronica c- Digitalis d Euphasia dır 200- Oleaceae familyasının 3 üyesini yazınız. 201- Coridothymus, Stachys, Marrubium…………………… familyası üyeleridir. 202- Yapraklarını çay baharat olarak kullandığımız 3 tane bitki ismi yazınız 203- Alkollü içki yapımında kullanılan Apiaceae üyesi…………………….dir 204- Havuç……………………….. kültürü yapılan bir bitkidir. 205-İzmir Çeşmede gövdesi yaralanılarak sakız elde edilen bitki türü………………………..dır. 206-Fabalesin3 familyası 1-…………………..2……………………..3……………………..dır 207- Gövdeleri dikenli çalı olan böğürtlen (………………………………….) dir 208- Spata yı ……………….. familyasında görebiliriz. 209- Yucca ……………………..familyasındandır. 210- Taksonomik olarak farklı ve coğrafik olarak sınıflandırılmış populasyonların oluşturduğu kategori;…………………………………………..dür. 211- Aşağıda Türkçe isimleri verilmiş bitkilerin Latincelerini yazınız: Doğu Ladini:…………………………… Lübnan Sediri…………………….. Uludağ Köknarı:……………………….. Karaçam………………………….. Ardıç (Cüce ardıç)……………………… 212- Türkiye’de………meşe türü vardır bunlardan 3 ü aşağıdakilerdir …………………….. …………………… 212- Hypericum perforatum………………. …..familyasındandır 213- Ihlamur (……………….) nın………………. ve ………………. den çay yapılır. 214- Dere içlerinde yayılış gösteren 3 bitki yazınız 215- 5 tane maki 5 tane orman bitkilerimize örnek veriniz 216- Bir fabaceae çiçeğini çiziniz? 5 tane bu familyaya ait örnek veriniz 217- Boraginaceae familyası tanıtan 2 özelliğini yazınız a…………………………………………… b…………………………. 218- Lamiacea üyelerini tanıtıcı 2 özelliği belirtiniz a…………………. b…………………………………… 219- Aşağıdaki bitkilerin Latince isimlerini yazınız Buğday…………………….Papatya…………….Nohut………….. Portakal……………………Ebegümeci………………….Hardal…………….. Ihlamur…………………….Funda ……………Karabaş……………Karanfil 220- Aşağıda Latinceleri verilen türlerin Türkçe isimlerini yazınız. Hypericum…………………………………Verbascum …………………. Juglands regia…………………………….Astragalus …………………………. Pimpinella ……………………….. Pistacia lentiscus …………………….. Prunus domestica…………………………Quercus cocifera………………….. Solanum melongena………………… Papaver roheas 221- Salvialarda anterlerin özelliği nedir? (Şekil le de anlatabilirsiniz) 222- Yüksük otu (…………………….) familyasın dandır 223- Arum larda …………….. ….in altında dişi üst kısmında erkek çiçekler bulunur 224- ……………. lerin yumrularından sahlep elde edilir. 225- Bir gramineae çiçeği çiziniz ve kısımlarını belirtiniz? 226- Angiosperm lerle Gymnosperm ler arasındaki 3 farkı yazınız?

http://www.biyologlar.com/tohumlu-bitkiler-sinav-sorulari

Köpek Hastalıkları

Tüm hayvanlar yaşamları boyunca çeşitli enfeksiyonlara maruz kalırlar.Anneden alınan antikorların etkisi sona erdiğinde enfeksiyonlara karşı zayıf hale gelirler.Enfeksiyona yakalanmadan önce,kendi bağışıklıklarını geliştirmeleri için gerekli olan yeterli miktarda antikoru üretecek B hücrelerine sahip olmaları gerekir.Özellikle köpek üretim merkezleri,barınaklar,pansiyonlar,pet shop ve dog showlar gibi kalabalık çevrelerde bulunan yavrular yüksek risk altındadır.Bu nedenle,viral ve bakteriyel aşıları tamamlanmış olan yavru köpeklerin,dog show gibi etkinliklere katılması doğru değildir. VİRAL HASTALIKLAR Gençlik Hastalığı : (Canine Distemper) Köpeklerin gençlik hastalığı bulaşıcı viral bir hastalıktır.Kolostrum (anneden ilk emzirme sırasındaalınan süt,ağız sütü,yüksek miktarda antikor içerir.)almış yavrularda.maternal(anneden alınan) antikorlar yavruyu % 12 hafta korur.Kolostrum almamış olanlarda ise bu süre 1-4 haftadır.Bu nedenle hastalık genelikle 3-12 aylık köpeklerde yaygındır.Fakat daha yaşlı köpeklerde de rastlanabilmektedir.Yüksek ateş (40-41C) ile başlayan hastalık,iştahsızlık,depresyon,burun ve göz akıntıları,kusma ve ishal ile devam eder.Hastalığa yakalanan köpeklerin büyük kısmı (%60-80) ölür.Hastalığın en çok görülen tipi solunum tipi olmak üzere sindirim sistemi ile ilgili ve sinirsel belirtilerin gözlendiği hastalık formları daha sık görülür.Hastalığın sinirsel formunda sara tipi nöbetler,tikler ve felçler gözlenir.Distemper virüsü T ve B hücreleri ile makrofajları etkiler.Köpek iyileşse bile virüsün bağışıklık sisteminde yaptığı bozukluk kalıcı olur.Distemper virusünün hastalık yapma yeteneği köpek makrofajları üzerindeki bu replikasyon yeteneğinden ileri gelmektedir. Kanlı İshal :(Canine Coronavirüs) Kanlı ishale neden olan parvovirüsler nisbeten yeni virüslerdendir ve kedilerin gençlik hastalığı virüsleri ile yakkınlıkları vardır.İlk olarak 1978 yılında ortaya çıkan ve yüzbinlerce köpeğin ölümüne neden olan bu hastalık köpeklerin afeti olarak tanımlanmaktadır.İlk olarak Kuzey Amerika'da tanımlanan hastalık bundan sonra Avustralya,Yeni Zelanda,Asya,Merkez Amerika ve Güney Afrika'da görülmüştür.1983'lü yıllarda itibaren 50'yi aşkın ülkede gözlendiği bildirilmiştir.Hastalık her yaştaki köpekte gastrointestinal belirtilere,yavru köpeklerde kalp kasının iltihabına(miyokarditis) neden olur.Özellikle yavru köpekler için tehlikeli olan parvoviral enteritise,3 yaşın altındaki köpeklerde rastlanmaktadır.Yeni zelanda'da yapılan bir araştırmaya göre 0-7 haftalık köpeklerde hastalığın insidansı %63, 8-12 haftalık köpeklerde %29, 3-6 aylık köpeklerde %23, 6-12 aylık köpeklerde %14, 1-2 yaşındakilerde ise %9, bir yaşından sonra da %11 olarak tespit edilmiştir.Bu virüs özellikle hızlı olarak bölünen hücreleri hedef alır.Bu hücrelerde organizmada barsakta bulunan ve alınan besinlerin değerlendirilmesi ile ilgili olan hücrelerdir. Parvoviral hastalığın ilk belirtisi şiddetli kusmadır.Kusmuk gri-beyaz renkte ve suludur.Kusmayı sulu,kötü kokulu,sarıdan kahverengiye kadar değişen renkte ishal izler.İshal halinde çıkarılan dışkıda taze ya da pıhtılaşmış halde kan bulunur.Ateş 41.C kadar yükselir.Kusma ve ishal nedeni ile oluşan sıvı kayıpları sonucu çoğu yavru köpekler ilk 24 saat içerisinde ölür.Kalbin etkilendiği durumlarda ise çoğu zaman yavru köpekler ölü bulunurlar.Bu hastalıkta ölüm oranı %50'nin üzerindedir. Parvovirüslerin bağışıklık sistemini baskıladıkları bilinmektedir.Ancak bunun mekanizması ve lenfosit fonksiyonlarını nasıl etkiledikleri henüz açıklığa kavuşmamıştır.Virüslerin bağışııklık sistemini nasıl baskıladıklarına ilgli 4 ana mekanizma vardır.Bu mekanizma lar sayesinde virüsler,vücudun bağışıklık sisteminin zayıf taraflarını araştırarak kendi varlıklarını garentiye alırlar.Virüsler: 1)T ve B hücrelerinin fonksiyonlarını bozar veya onları yok ederler. 2)Bağışıklık sisteminin düzeninde dengesizliğe yol açarak,baskılayıcı T hücrelerinin aşırı aktif hale gelmesine neden olurlar. 3)Makrofajlar bu virüsleri yutarken,makrofajlara zarar verebilir vemakrofajları enfekte edebilirler. 4)Hedef hücrelerin genetik kodlarını çalabilirler. Virüsler özellikle belirli bir hücreyi etkileyen kimyasal habercilerin reseptörlerine kendi genetom proteinlerini yerleştirirler.Bu şekilde virüs, habercinin gönderdiği kamutları bozar veya ortadan kaldırır.Modifiye canlı parvovirüs aşıları,köpeklerde 2-5 haftalık bir süre için bağışıklık sistemini baskılayıcı etki gösterir. Bulaçıcı Karaciğer Hastalığı : (Infectıous Canine Hepatitis, CAV-1) Bu hastalığın etkeni adenovirüslerdir (CAV-1) ve bulaşma hasta köpeklerin idrarı ile olur.Hastalığın en şiddetli formları yavru köprklerde görülmektedir.Aşılı anneden doğan yavru köpekleri kolostrum 5-7 haftaya kadar koruyabilir.Bulaşıcı karaciğer hastalığının 13 yaşındaki köpeklerde bile ölüme yol açtığı bilinmektedir.Adenovirüsler tüm dokuları enfekte edebilme yeteneğindedir.Fakat daha çok karaciğer hücreleri ile ilgilidirler ve bu organda şiddetli yangıya neden olur.Hastalığın ilerleyen dönemlerinde gözlerde kornoval opasite (kornoal bulanıklık) şekillenir.Mavi göz olarak daadlandırılan bu bozukluğun nedeni gözlerin pigmentli tabakasının yangısıdır ve aşılamayı takibende gözlemlenir. Adenovirüs Tip-2 Enfeksiyonu : (Canine Adenovirüs Type-2 CAV-2) Bu virüs daha çok solunum sisteminde hastalık yapmaktadır."Trache obronşitis veya Kennel Cough" olarak adlandırılan köpek öksürüğü hastalığının etkenlerinden biridir.Özellikle kalabalık ortamlarda barınan köpekler arasında yaygındır.CAV-2 aşısı aynı zamanda CAV-1 aşı virüsü nedeniyle oluşabilecek korneal reaksiyonlarıda önler. Köpek Nezlesi : (Canine Parainfluenza) Bu viral enfeksiyon solunum sisteminde orta dereceli bir yangıya neden olur.Ancak CAV-2 virüsü ve Bordetalla bronchiseptica bakterisi ile kombine halde çok şiddetli ve ölümcül enfeksiyonlara neden olurlar. Koronavirüs İshali : (Canine Coronavirüs) Koronaviaral enfeksiyon genellikle subklinik olarak seyreder.Klinik belirtileri ateşle ve hafif bir inestial akıntı ile başlar,sonraları kusma ve ishal gözlenir.Koronaviral hastalık tek başına şiddetli enfeksiyonlara neden olmamakla birlikte,özellikle parvoviral enfeksiyonlarla birleştiği zaman,hem klinik belirtilerin şiddeti hem de ölüm oranında artış görülür. Kuduz :(Rabies) Kuduz sıcak kanlı hayvanların merkezi sinir sistemini etkileyen viral bir hastalıktır.Bu eski ve korkunç hastalığın etkeni olan Rhabdovirüsler beyinde yangı(iltihap) meydana getirirler.Bu virüs enfekte hayvanların salyası ile taşınır.İnkubasyon periyodu(Etkeni aldıktan hsatalığın başlamasına kadar geçen zaman periyodu.) 10 gün ile birkaç ay arasında değişir.Kuduz ölümcül bir hastalıktır.Klinik belirtiler ortaya çıktıktan sonra tedavinin faydası yoktur.Birçok vahşi hayvan(ratlar,racoonlar,yarasalar,tilkiler) kuduzun rezarvuarı durumundadır.Aristotlr "Hayvanın Tarihçesi" adlı kitabında kuduzu éköpek Deliliği" şeklinde tanımlamıştır.Kuduzdan korunma için modifiye canlı ve ölü aşılar bulunmaktadır.Son yıllarda ölü aşıların daha etkili bulunması,modifiye canlı aşıların vazgeçilmelerine neden olmuştur. BAKTERİYEL HASTALIKLAR Bordetelloz: Bu hastalığın etkeni olan Bordetella bronchiseptica bakterisi Adenovirüs Tip-2 ve Parainfluenza ile birleşerek Köpek Öksürüğü diye adlandırılan hastalığı meydana getirir.Köpek bordetellozisi şiddetli öksürüğe neden olur.Aşı özellikle intranazal (burun içi) olarak uygulandığı zaman çok etkili koruma sağlar.Toplam 13 antijenlik tip bu hastalığa neden olabilmektedir.Fakat sadece 3 tanesine karşı aşı geliştirilmiştir.Ancak bu üçü %90 nın üzeindeki vakadan sorumlu olan antijenlerdir. Leptospiroz: Klinik tablosu oldukça değişik olan bu enfeksşyonda ateş ile başlayan hastalık tablosu böbrek yetmezliği ile sonuçlanır.Böbrek fonksiyonlarının bozulması üremiye neden olur.Başlıca belirtileri halsizlik,uyuşukluk,deprosyon,iştahsızlık,ishal,kusma,ağız ve göz mukozalarının yangısı,anormal sinirsel belirtiler ve ölüme neden olan kan pıhtılaşması bozukluklarıdır.Bulaşma enfekte köpek ve ratların idrarları ile olur.Bu hstalığın en önemli özelliği insanlarada bulaşabilmesidir. AŞISI BULUNMAYAN ÖNEMLİ KÖPEK HASTALIKLARI Herpesvirüs : Bu viral enfeksiyon özellikle yavru köpekler için öldürücü bir hastalıktır.Süt emme çağındaki yavru köpeklerde hafif derecede solunum yolu enfeksiyonuna neden olur.Kalıcı enfeksiyonlar olgun dişilerde meydana gelebilir.Herpesvirüsler sinir hücrelerine yerleşerek bağışıklık sisteminden korunabilme yeteneğindedirler.Brusellosizin aksine,herpesvirüsle enfekte olan gebeler doğum yaparlar.Ancak matarnal antikor geçişini sağlayamazlar.Bu annelerden doğan yavrular herpesvirüslere karşı duyarlıdırlar. Bruselloz: Bu bakteriye hastalığın ne aşısı nede tedavisi vardır.Hasta köpekler devamlı taşıyıcı durumundadırlar.spontan yavru atmalar brusellosizin ilk göstergesidir.Bulaşma oral ve mukoz membranlar yoluyla olmaktadır.erkek köpekler enfeksiyonu çiftleşme yoluyla enfekte dişi köpeklerden alırlar.Ayrıca hasta dişilerin vulvalarının yalanması ve idrarlarnın alınması yolu ilede bulaşmalar olmaktadır.Dişiler de yine çiftleşme ve hastalığın etkeni olan bakterilerin ağız yolu ile alınması neticesinde hastalığa yakalanırlar.Bu nedenle dişi köpekler üreme öncesinde brusellosiz yönünden kontrol edilmelidir.

http://www.biyologlar.com/kopek-hastaliklari

Artropodların Genel Morfolojik Özellikleri

Artropodların Genel Morfolojik Özellikleri

Artropodlann yapısı halkalardan oluşmuştur. Vücutları bilateral simetriktir. Vücutlarını oluşturan halkalar bazı özellikler kazanarak vücudun bölümlerini meydana getirirler. Artropodların vücudunun dış kısmı genellikle kitin tabakası ile kaplıdır.

http://www.biyologlar.com/artropodlarin-genel-morfolojik-ozellikleri

Sürüngen preparasyonu nasıl yapılır

SÜRÜNGENLER Sürüngenler (Reptilia), amfibilerle kuşlar arasında yer alan bir omurgalı grubudur. Kara hayatına uyum sağlamışlardır. Derileri kuru ve derilerinde salgı bezi yok denecek kadar azdır. Derilerinin üzeri keratin tabakası ile örtülüdür. Keratin tabaka vücudun değişik yerlerinde pul ve plaklar halinde yapılar oluşturur. Bu tabaka zaman zaman atılarak yenilenir. Sürüngenlerin bir kısmı 4 bacaklı, bir kısmı da bacaksızdır. Bacaklı olanlarda bile vücut yere değecek kadar alçaktır. Sürüngenlerin büyük bir kısmı karada, bazıları da suda yaşarlar. Ancak suda yaşayanlar da akciğerleri ile solunum yaparlar. Sürüngenlerde genellikle çiftleşme organı bulunur. (Tuatara hariç) Bu nedenle de döllenme içte gerçekleşir. Çoğu yumurta bırakır. Yumurtalar dayanıklı elastiki kabuklu yahut kuş yumurtası gibi kolayca kırılabılir tiptedir. Bazı sürüngen türleri canli doğurur, (ancak memelilerde olduğu gibi yavru anasına bir bağ ile bağlı değildir) gelişmelerinde de bir larva devresi bulunmaz. Yumurtadan çıkan yavrular minyatür erginlere benzerler. Sürüngenler genellikle diğer hayvanları avlayarak beslenirlerse de, bazı kara kaplumbağaları ile bazı kertenkele türlerinin esas besinlerini bitkisel maddeler teşkil eder. Derileri kuru olup,keratin pullar ve plakalarla örtülüdür.Derilerinde kuşlarda olduğu gibi çok az salgı bezi bulunur.Bunlarda kurbağalarda olduğu gibi dış kulak bulunmaz.beş parmaklı iki çift ekstremiteye sahiptirler.Bununla beraber,bazı kertenkele ve yılanlarda ön ve arka ekstremiteler kaybolmuştur.Bu yüzden bu hayvanlar yerde sürünerek hareket ederler.Sürüngenler iç organları kaburgalar tarafından korunan ilk omurgalılardır.Bunların akciğerleri ve kalpleri kurbağalardan daha gelişmiş olarak bulunur.Sürüngenlerin en önemli özelliği,kurbağalardan farklı olarak iç döllenme yapmaları ve buna uygun üreme organlarının gelişmesidir.   Sürüngenlerin yumurtası,kuşların yumurtası gibi vitellus bakımından çok zengin ve derimsi kabukludur.Yumurta içerisinde gelişen embriyoda amnion,karion,allantois ve vitellus yapıları bulunur.Bu yapılar memelilerin embriyo gelişiminde de görülür. Sürüngenler de kurbağa ve balıklarda olduğu gibi değişken sıcaklı hayvanlardır. Pental Sodyum (20 kat sulandırılmış) enjekte edilerek bayıltıldıkdan sonra dissekte edilmiş, önce göğüs ve karın boşluğundaki organlar stereomikroskop altında yüzeysel olarak incelenmiştir. Daha sonra akciğer, karaciğer ve diğer iç organlarla birlikte ince ve kalın bağırsak içinde fizyolojik su bulunan mumlu petri kutularında açılarak stereomikroskopta kontrol edilmiş, . ag – anterior genials alias perisai dagu depan f – perisai frontal in – perisai internasal l – perisai loreal la – perisai supralabial atau labial atas la' – perisai infralabial atau labial bawah m – perisai mental n – perisai nasal p – perisai parietal pf – perisai prefrontal pg – posterior genials atau perisai dagu belakang pro – perisai preokular pso – perisai presubokular pto – perisai post-okular r – perisai rostral so – perisai supraokular t – perisai temporal anterior dan posterior v – perisai ventral yang pertama (terdepan) REPTİLLER İLE AMFİBİALAR ARASINDA ÇOK FAZLA PREPARASYON FARKI YOKTUR. Bu laboratuvar çalışmamıza kadar incelediğimiz hayvan örnekleri omurgasız hayvanlar grubuna aittiler. Bu çalışmamızda ise Omurgalı hayvanlardan bir örnek inceleyeceğiz. Vertebrata'nın (omurgalılar) Amphibia (kurbağalar) klasisinin Anura (kuyruksuz kurbağalar) takımına mensup Rana ridibunda (su kurbağası) su içinde, su kenarlarında nemli yerlerde yaşar. Amfıbiler, suda yaşayan balıklar ile kara omurgalıları arasında orta bir yer işgal ederler. Tamamen karada ya da tamamen suda yaşayan formları olduğu gibi, hem karada hem de suda yaşayanları vardır. Bu ara durum ve kara hayatına geçiş ile ilgili organ sistemlerindeki değişiklikler kurbağada açıkça görülür. Kurbağanın vücudu baş ve gövde olmak üzere iki kısımdan meydana gelir. Başla gövde arasında bir sınır, farklılaşmış bir boyun bölgesi yoktur. Vücut pulsuz olup, çıplak, yumuşak ve kaygan bir deri ile örtülüdür. Deride mukus salan çok sayıda bez bulunur. Ergin hayvanda kuyruk tamamen kaybolmuştur. Gövdede iki çift ekstremite vardır. Başın önünde geniş bir ağız bulunur. Üst çenenin hemen ön tarafında bir çift dış burun deliği ve onların arkasında iki büyük göz vardır. Hareketli göz kapaklan üst, alt ve alt göz kapağının devamı gibi duran gözü yan yanya örten yan göz kapağından ibarettir. Ancak bu üçüncü göz kapağının kendi başına hareket yeteneği yoktur. Gözlerin arkasında orta kulağı örten 3-4 mm çapında yuvarlak iki kulak zan bulunur. Kurbağalarda dış kulak yoktur. Erkek kurbağalarda kulak zarının gerisinde ince bir zardan yapılmış bir çift dış ses kesesi bulunur. Erkek kurbağaların gövdeleri dişilere göre biraz daha ince uzundur. Dişilerde ise gelişmiş ovaryumlar nedeniyle gövdenin eni boyuna göre daha gelişmiştir. Bütün tetrapodlarda karada yürümeye elverişli (balıkların pektoral ve pelvik yüzgeçlerine karşılık) dört ekstremite vardır. Kurbağaların ön ekstremiteleri kısa olup, dört parmaklıdır. Birinci parmak körelmiştir. Erkek bireylerde ön ekstremitede çiftleşme mevsiminde ikinci parmağın yan tarafında büyük siyah bir şişkinlik (nasır) ortaya çıkar. Uzun olan arka ekstremiteler beş parmaklıdır. Birinci parmak en kısa, dördüncü ise en uzundur. Parmaklar arasında yüzme derisi gerilidir. Vücudun son ucunda iki arka ekstremite arasında kloak açıklığı vardır (Şekil 1). Şekil 1. Bir erkek kurbağanın dış görünüşü 1. dış burun deli ği 2. ağız 3. ön ayak 4. nasır (a) 5. yüzme perdesi 6. arka ayak 7. dış ses kesesi (a) 8. orta kulak zarı 9. göz Ağız içinde üst çenede oldukça küçük, sivri ve çok sayıda diş bulunur. Ayrıca damakta vomer dişleri vardır. Ön tarafta bulunan oval iki açıklık iç burun delikleridir. Alt çenede göze ilk çarpan yapı dildir. Dil çeneye ön taraftan tespit edilmiş olup, serbest kalan ucu çatallıdır. Dilin uzama ve kasılma yeteneği çok fazladır. Alt çenede diş yoktur. Yutağa (farinks) östaki borusu açılır. Burada bulunan glottis (küçük dil), besinlerin akciğerlere girmesine engelolur (Şekil 2). Şekil 2. Kurbağada ağızın iç yapısı ı. vomer dişleri 2. iç burun deliği 3. üst çene dişleri 4. göz çukurları 5. östaki borusu açıklıgı 6. farinks açıklıgı 7. ses kesesi açıklıgı (erkekte) 8. glottis (küçük dil) 9. dil 10. dil bağlantısı Kurbağada pleuroperitonal ( göğüs-kann ) boşlukları içinde ilk göze çarpan organ, kahve renkli ve yaprak şeklindeki loplardan yapılmış olan karaciğerlerdir. Karaciğer sağ, orta ve sol lop olmak üzere üç parçadan oluşmuştur. Orta lop sağ ve sol loptan birbirine bağlayan küçük bir parçadır ve bu yan loplar tarafından örtülmüştür. Orta lobun sol lop ile birleştiği yerde yeşil renkli yuvarlak bir safra kesesi vardır. Sol lobun altında da büyükçe bir mide yer alır. Midenin ön ucu çok kısa bir yemek borusu ile birleşir. Midenin sivri olan arka ucu ise bağırsağa açılır. Bu kısım midenin pilor bölgesidir. incebağırsak uzun ve kıvrıntılı bir boru halindedir. Mideden sonra gelen ilk kısım on iki parmak bağırsağı (duedenum) dır. İnce bağırsağın son kısmı sonbağırsak (rektum) dır. İncebağırsaktan daha geniş ve çok daha kısa olan bu kısım kloaka (dışkılık) açılır. Mide ile duedenum arasında pankreas yer alır. Kalp tam göğüs kemiğinin altındadır. Perikard boşluğu içine yerleşmiş durumdadır. Perikard boşluğu perikard zarı ile sınırlanır. Kalp iki kulakçık ve bir karıncıktan meydana gelir. Sağ kulakçığa anteriör ve posteriör vena cava (ön ve arka toplardamarlar)ların açıldığı sinüs venosus bağlanmıştır. Ventrikulustan ise truncus arteriosus 'tan ayrılan aort yaylan çıkar. Balıklara göre bu yaylarda bir azalma görülür. Yalnızca III. IV. ve VI. yaylar kalmış olup, III. den başa giden carotid 'ler, IV. den systemik yaylar (sağ ve sol aorta), VI.dan ise pulmonar arterler (akciğer atardamarları) meydana gelmiştir. Kirlenen kan pulmonar arterler ile temizlenmek üzere akciğerlere gider ve burada temizlendikten sonra tekrar kalbe döner. Böylece esas vücut dolaşımından başka bir de kalp ile akciğerler arasında küçük dolaşım meydana gelmiştir. Kurbağaların solunum organları gayet kısa bir soluk borusu ile bir çift akciğerden meydana gelir. Akciğerler gevşek bir dokudan yapılmıştır. Kirli kahve renkli iki kese şeklindedir. Sönük oldukları zaman ancak bir santimetre boyunda ve üçgen şeklindedirler. Kurbağalarda ayrıca kuvvetli bir deri solunumu vardır. Kurbağaların boşaltım organları böbrekleridir. Vücudun dorsal duvarına yakın, bir çift olarak bulunurlar. Koyu kırmızı renkli, uzunca oval yapılı, 1.5-2 cm uzunluğunda ve mezonefroz tipindedirIer. Bunların ventral yüzlerinde altın sarısı renginde ve şerit şeklinde böbrek üstü bezleri bulunur. Karın boşluğunun kuyruk ucunda ise beyaz renkli, ince duvarlı, büyük bir kese şeklinde idrar kesesi vardır. Bu kese kısa bir boyun bölgesi ile kloakın ventral duvarına açılır. Erkek kurbağalarda boşaltım organı ile üreme organları arasında sıkı bir ilişki vardır. Spermler ile boşaltım maddeleri müşterek bir kanaldan (üreter ya da wolf kanalı) dışarı atılırlar. Testisler san-beyaz renkli, yuvarlağımsı ve bir çift olarak böbreklere yakın bulunurlar. Dişilerde de bir çift ovaryum bulunur. Yumurta hücreleri ayrı bir kanalla (ovidukt) dışarı atılırlar. Bu yumurta kanalının kloaka açılan son kısım kısa bir şekilde genişlemiştir. Üreme mevsiminde içinde yumurta birikmiş durumdadır (Şekil 3). Şekil 3. Diseksiyonu yapılmış bir kurbağada içorganların görünüşü 1. alt çene 2. dil sağ atrium 4. ventrikulus 5. testis 6. böbreküstü bezi 7. böbrek 8. idrar torbası 9. sonbağırsak 10. yüzme perdesi 11. mezenter 12. incebağırsak 13. pankreas 14. mide 15. dalak 16. karaciğer 17. safra kesesi 18. akciğer 19. glottis 20. yutak 21. üst çene Kurbağaların sinir sistemleri, merkezi sinir sistemi beyin ve omurilik ile çevre sinir sistemi sinirlerden meydana gelir. Kurbağada beyin, ön, orta ve arka olmak üzere üç kısımdan meydana gelir. Ön beyinde koku alma siniri (olfaktorius sinirler)nin çıktığı iki bulbus olfaktorius lobu, iki beyin yarım küresi (cerebrum) ile diencephalon bulunur. Diensefalonun üzerinde epifiz bezi yer alır. orta beyinde ise görme sinirlerinin çıktığı optik loplar yer alır. Arka beyinde de cerebellum ve medulla oblangata yer alır, bundan sonra da omurilik uzanır (Şekil 4). Şekil 4 . Kurbağada beyin yapısı ı. olfaktorius siniri 2. olfaktorius lobu 3. cerebrum 4. göz sİniri 5. optik lop 6. kranial sinirler 7. Cerebelluın 8. krania! sinirler 9. Medulla oblangata 10. omurilik İzlenecek Yol Ø Kurbağanın iç organlarını incelemeye geçmeden önce, içinde kloroform ya da etere batırılmış pamuk bulunan bayıltma kabında kurbağayı bayıltırız. Bayılmış ve hareketsiz duruma gelmiş kurbağayı küvet üzerine alarak dıştan inceleyiniz. Dıştan görünen organ ve yapıları çizerek gösteriniz. Ø Üst çenenin alt çene ile birleştiği yerden kasları hafifçe keserek ağzı açarız. İç burun deliklerinden bir iğne sokarak dış burun deliklerine kadar uzandıklarını tespit ediniz. Dili bir pensle kaldırarak tespit edildiği yeri görünüz. Dişler, göz şişkinlikleri, farinks, glottis ve östaki borusu açıklıklarını görerek ağzın içten görünüşünün şeklini çiziniz. Ø Beyin ve omurilik hariç, kurbağanın tüm sistemleri ventral taraftan disseke edilebilir. Bu sistemleri ortaya çıkarabilmek için kurbağanın vücut boşluğunun açılması gerekir. Deri ile vücut çeperi arasında geniş lenf boşlukları olduğundan bu açılış iki safhada yapılmalıdır. Birincisi derinin kesilmesi, ikincisi ise vücut çeperinin kesilmesidir. * Bu işlemi yapmak için kurbağayı küvet üzerine sırt üstü yatırınız. Dört bacağından da toplu iğne ile küvete tespit ediniz. Bu sırada kurbağada ayılma belirtileri görürseniz, kloroformlu ya da eterli pamuğu başının üzerine koyarak iyice bayılmasını sağlayınız. Ø Arka üyelerin birleştiği yerden başlayarak göğüs kemiği hizasına kadar sadece deriyi düz bir çizgi şeklinde kesiniz. Göğüs kemiği hizasında kesitinizi iki yan tarafa doğru uzatınız. Açtığınız deriyi iki yan tarafa yatırıp iğneleyiniz. Bu durumda ventral vücut duvarını yapan kaslar ortaya çıkar. Göğüs kemiği hizasından aşağıya kadar tam orta istikamette uzanan büyük bir kan daman ile bu damarın iki yan tarafında göğüs kemiği karşısından başlayarak aşağıya giden ve tekrar yukarıya dönerek deriye yayılan bir çift kan damarı göze çarpar. Ortadaki damar vena abdominalis (karın bölgesi toplardamarı), iki yan taraftakiler vena cutenea magna dır. Ø Vena abdominalisin sağ tarafından kas tabakasını göğüs kemiği hizasına kadar kesiniz. Bundan sonra göğüs kemiği kaidesinden sağ ve sol tarafa doğru vena cutenea magnaya kadar küçük birer kesim yapınız. Bu şekilde ayırdığınız kas tabakasını sağa ve sola yatırıp iğneleyiniz. Ø Bu şekilde açılan pleuroperitonal boşluk içinde ilk göze çarpan organ karaciğerdir. Karaciğerin loplarını ayırt ediniz. Orta lobu görmek için sağ ve sol lopları yukarı kaldırarak bu parçayı ortaya çıkarınız. Bunun sol lop ile birleştiği yerde yeşil renkli, yuvarlak safra kesesi vardır. Sol lobun ön dış parçasını da kaldırarak büyükçe olan mideyi ortaya çıkarınız. Yemek borusunu ancak bütün iç organların incelenmesi bittikten sonra görebilirsiniz. Sindirim sistemine ait diğer parçaları on iki parmak bağırsağı. İncebağırsak, pankreas ve rektumu bulup inceleyiniz. Ø Kalbi iyi görebilmek için göğüs kemiğini kesiniz. Kurbağa henüz ölmemişse kalbin hareketini görebilirsiniz. Kalp tam göğüs kemiğinin altındadır. Perikard zarını sıyırarak kalbi açığa çıkarınız. Alt tarafta üçgen şeklinde ve daha açık renkte görünen kısım ventrikulustur. Daha koyu renkli iki siyah çıkıntı ise sağ ve sol atriumdur. Ventrikulus ile sağ atriumun dış taraftan sınırladığı bölgede toplu iğne başı kadar bir şişkinlik vardır. Bullıus cordİs adını alan bu bölgeden kalın bir kan damarı truncus arterİosus çıkar. Yüreği küt uçlu bir pensle yukarı doğru kaldırıp ventral tarafına bakınız. Üçgen şeklinde, ince çeperli bir bölge sinüs venosus tur. Buraya ön taraftan büyük bir damar girer. Ø Akciğerler ilk bakışta karaciğer loplarının altında olduklarından görülmezler. Karaciğer loplarını kaldırıp akciğerleri meydana çıkararak sünger görünümündeki bu yapıları inceleyiniz. Ø İç organları vücut duvarına bağlayan mezenterleri inceleyiniz. Sindirim sistemi organlarını ortaya çıkararak görebildiğiniz tüm iç organları gösteren bir şekil çizip isimlendiriniz. Ø Sindirim sistemine ait organları karın boşluğunun dışına çıkarınız. Kurbağa dişi ise bağırsakları çıkarmadan önce onların yan taraflarına taşmış ovaryumlar böbrekleri görmeyi engeller. Bunun için bir tarafın ovaryum ve yumurta kanalını kesip çıkarınız. Yedinci ile sekizinci omur hizasından arkaya doğru uzanan böbrekler birbirine çok yakın olarak dururlar. Üzerlerinde böbreküstü bezleri görülür. Böbreklerden geniş, beyaz iki kanal (üreter) kloaka doğru uzanır. Bu kanallar boşaltım maddelerini, erkeklerde ise aynı zamanda spermleri taşırlar. Ø İdrar kesesini bulunuz. Bunun üreterden ayrı olarak kloaka açıldığını görünüz. İdrar kesesi bacakların birleştiği yerde, kloakın hemen önündedir. Eğer patlamamışsa kolayca farkedilir. Patlamış durumda ise aynı bölgede bir zar halinde görebilirsiniz. Ø İçorgan1arın incelenmesi bitince beyinin diseksiyonu için hayvanın başının dorsali size dönük olacak şekilde çeviriniz. Ø Başın dorsalini kaplayan deriyi bistüri ile yüzünüz. Bunun için hayvanın kafasını sol elin baş ve işaret parmakları arasında tutunuz. Sağ elin 3.4.5. parmaklarını kurbağanın sırtına yaslayıp, bistüri bıçağı hayvanın kafatasına teğet tutmaya çalışarak dikkatli bir şekilde kesim yapınız. Bu şekilde gevşettiğiniz cranİuın (kafatası)'un tavanını yukarı doğru kaldırınız. Kurbağada taze beyin dokusu çok yumuşaktır. Bu nedenle beyini zedelememek için bistürinin kesim sırasında devamlı olarak kafatasına teğet tutulması gerekir. Kranium açıldıktan sonra ilk göze çarpan kısım optik loplardır. Diseksiyon makasının bir ucunu kraniumun bir kenanndan içeri doğru sokarak makası her defasında çok az ileri iterek bir seri küçük kesimler yapınız. Bu şekilde kafatasının yan kenarlarını keserek kafatası tavanının geri kalan kısmını temizleyiniz. Bistüri yardımıyla bu açıklığı genişleterek beyinin dorsalinin tamamının ortaya çıkmasını sağlayınız. Beyinin son kısmı meddulla oblangatayı görebilmek için kafatasının hemen arkasındaki ilk bir kaç omuru her iki yandan neural yaylannı kesip, omurların dorsal kısımlarını uzaklaştırınız. Bu durumda beyinin tamamı ve omuriliğin başlangıcı ortaya çıkmış olur. Dorsalden beynin görüntüsünü kısımlarını belirterek çiziniz. Ø Omurilikten çıkan sinirleri incelemek için tüm iç organları çıkarılmış, alt çene ve ağzın ventral kısmı kesilmiş ve iyice temizlenmiş hayvanda, omurilikten çıkan parlak beyaz renkli 10 çift sinirin ventral uzantılarının omurlar arasından çıkışını görmek mümkündür. Kaynak: biyoloji.ogu.edu.tr/gbII/rana.mht

http://www.biyologlar.com/surungen-preparasyonu-nasil-yapilir

Su Ekosistemleri

Denizlerin (tuzlu suların) ve tatlı suların oluşturduğu ekosistemlerdir. Göller, sulak alanlar (bataklık, gölet, sazlık), yeraltı suları ve akarsular tatlı su ekosistemini, denizler ise tuzlu su ekosistemini oluşturur. 1- Tatlı Su Ekosistemleri : • Nehir Ekosistemleri : Suyun akış hızı, su derinliği, bulunduğu yer burada yaşayan canlı çeşitliliğini belirler. • Göl Ekosistemleri : Göl ekosistemlerinde mikroskobik canlılar, kurbağalar, sazlıklar, sinekler, balıklar, çeşitli kuşlar, balıkçıl kuşlar, çeşitli böcekler, ördek, yılan, çekirge gibi canlılar ile nilüfer, eğrelti otu, atkuyruğu ve nergis türü bitkiler bulunur. Göl ekosisteminin büyüklüğü, bulunduğu yer, derinliği, sıcaklık, tuz miktarı, ışık miktarı ve suyun özelliği burada yaşayan canlı çeşitliliğini değiştirebilir. • Sulak Alan Ekosistemleri : Kara ve su ekosistemlerinin birleştiği yerlerdir. 2- Tuzlu Su (Deniz) Ekosistemleri : Yeryüzünün en büyük ekosistemlerinden biri deniz ekosistemleridir. Deniz ekosistemlerinde mikroskobik canlılardan çok büyük memeli hayvanlara kadar çok sayıda canlı çeşidi bulunur. Denizdeki tuz oranı, suyun derinliği, sıcaklık ve ışık miktarı buralarda yaşayan hayvan çeşitliliğini belirler ve denizlerde farklı ekosistemlerin oluşmasını sağlar. Denizlerde fotosentez yapan üretici canlılar ile bu canlıları yiyerek beslenen küçük canlılar (planktonlar ve hayvansal planktonlar), onlarla beslenen küçük balıklarla birlikte besinlerini diğer canlılardan karşılayan daha büyük balıklar (yunus, balina) bulunur. (Büyük balıklar genelde daha derin yerlerde yaşarlar). Hemen hemen bütün deniz canlıları güneş ışığının ulaştığı ilk 100 metrelik derinlikte yaşarlar. Deniz ekosistemlerinden en büyüğü Hazar Denizi ekosistemidir. Canlılarla (hayvanlar,bitkiler,mikroorganizmalar) içinde bulundukları maddi ortamı birleştiren fonksiyonel (işlevsel) bütün Yeryüzünde Canlı yaratıkların tümü, biyosfer denilen ince bir kabukta yaşar. Biyosferin belirgin özelliği onu oluşturan hayvan ve Bitki türlerinin çok çeşitliliği ve yapısındaki düzensizliktir. Bu düzensizlik, canlı yaratıklarla fizik ortam öğelerinin eşitsizlik eşitsiz dağılımında açıkça görülür Ama bu çeşitliliğe karşın, Canlıların biyosferdeki yerleşimi bir kargaşa şeklinde değildir. 1935 yılında ingiliz botanikçisi Arthur C. Tansley’in Ekosistem adına verdiği birimler halindedir. Belirli bir ortamda yaşayan canlıların tümüne biyosenoz, bunların barındıkları ortama da biyotop denir. Ekosistem bu ikisinin ilişkisi ortak tanımlanabilir Biyotop + Biyosentez = Ekosistem  

http://www.biyologlar.com/su-ekosistemleri

AKILLI TASARIM-EVRİMSEL TASARIM

“En büyük tehlike akılsızlığı, akıllılık olarak gördüğünüzde başlar ”Prof. Dr. Ali Demirsoy, Hacettepe Üniversitesi Bazı bireylerde kalıtsal bir nedenle ortaya çıkan sorunlar “Anomali” ya da “Hastalık” olarak adlandırılır. İyi bir tasarımda bu anomalilerin hiç olmaması ya da çok seyrek olması beklenir. Hâlbuki bugün tıbben her insanda doğuştan en az 10 anomalinin olduğu söylenir. Bu normal tasarlanmış bir arabanın beklenilmeyen bir arıza göstermesi gibi bir şeydir. Kâğıt üzerinde böyle bir hata beklenmez; imalat sırasında ortaya çıkar. Dolayısıyla buna üretim hatası denir ve suç tasarlayıcısına yüklenmez. Akıllı tasarıma göre bir canlının tasarlanmasından ölümüne kadar geçen süreçler doğaüstü güç tarafından denetlenmektedir ve dolayısıyla hem tasarım aşamasında hem de üretim süreci içerisinde –biz fani varlıkların kusuru olmadan- ortaya çıkabilecek tüm aksaklıklardan doğaüstü güç sorumludur. Ancak hem yetkili ve her şeye kadir ol hem de hata yap ikilemini çözemeyen dogmatikler, çıkarı “Takdiri İlahi”, yani doğaüstü gücün isteği ya da takdiri olarak sunarak hem kendilerini hem de karşılarındakileri kandırmanın yolunu bulmuşlardır. Elimizde olan ya da olmayan gelebilecek her olumsuzluğun faili ya da sorumlusu bulunmuştur: Bir türlü hesap soramayacağımız, ulaşamayacağımız, ne eder ne yaparsa iyidir diye inandığımız Doğaüstü Güç; çoğumuza göre Tanrı. Böylece insanlık tarihi boyunca kusurumuz olsun ya da olmasın uğradığımız her zararı büyük bir tevekkül (kabul) ile benimseyeceğimiz bir felsefeye saplanmış olduk. Ancak herkeste her zaman görülen, yani bir anomali olarak değil de, genel bir tasarım hatası olarak herkesin gözlediği yapı ve işleyişlere ne diyeceğiz; bu sefer “Taktiri ilahi” demeyle atlatamayız. Çünkü takdir, birçok seçeneğin arasında birisine layık görülen bir şeyi ifade eder. Yani başımıza bir bela gelmişse, yüce Tanrı o iş için beni seçmiş demektir. Dogmaya inanıyorsanız yapacağınız bir şey olamaz, kabul edeceksiniz. Eğer inanmıyorsanız nedenini araştıracaksınız, gerekirse er ya da geç çaresini bulacaksınız. Ancak, bir kusur sadece bir toplumun birisinde değil de herkeste bulunuyorsa, o takdiri ilahi olmaktan çıkmış, genel bir tasarım kusuru olmuştur. Bu tasarım kusurları eğer her şeyi bilen ve her şeye kadir bir varlık tarafından yapılmışsa, o zaman bu varlığın, kulları olan bizler için iyi niyetinden kuşku duyabiliriz. Çünkü hiç kimse durup dururken kitle halinde eziyet etmeyi amaçlamaz. Bunun tanımı psikolojide ya da sosyolojide hoş olmayan çok ağır bir tanımdır… Gelin görün ki, ortalığı akıllı tasarım velvelesine veren birçok insan (bunların arasında ne yazık ki bilim adamı; hatta bilimlerin bilimi diyebileceğimiz biyoloji alanında çalışanlar), aşağıda yüzlercesinin arasından verilmiş sadece birkaç genel kusurun neden doğaüstü güç tarafından reva görüldüğünü bir türlü açıklayamıyor. Moleküler ya da hücre düzeyine indiğimizde hatalı tasarımla ilgili onlarca örnek verebiliriz. Ancak bu örnekler çok akademik kalacağından, bu konuda yeterince bilgisi olmayanlar anlamakta zorlanabilir diye verilmemiştir. Doğuştan yüksek tansiyon, şeker hastası, çeşit çeşit yetmezlikler, kas ve kemik bozuklukları ve benzer onlarcasını kişiye özgü olduğu genel bir durumu yansıtmadığı için –genel bir tasarım hatası olarak- gündeme getirmeyeceğiz. Bu nedenle vereceğimiz tasarım hatalarına ilişkin örnekler özellikle hemen herkesin her zaman tanık olduğu çocuklardaki bazı kusurlardan –yani genel tasarım hatalarından- seçilmiştir. Bunun nedeni, akıllı tasarımcıların, ortaya çıkmış kusuru, ergin kişinin suçlarına –günahlarına- bağlamasından kurtulmak içindir. 1. Çocuk büyüten ve gecelerini uykusuz geçiren herkes şunun farkındadır. Çocuklar doğduklarının ilk birkaç ayında bazen çok daha uzun süre gaz sorunu yaşayarak ailelerini ve kendilerini perişan ederler. Bu gaz ya anadan geçer ya da çocuğun sindirim sistemindeki tasarım hatasından kaynaklanır. Ancak bir evrimsel biyoloji uzmanına sorarsanız, ağaçtan ağaca atlarken anasının sırtına yapışarak, her sıçrayışta sürekli gazını çıkaran bir canlının böyle bir sorunu olmamıştır. Bu nedenle primat yavruları gaz sancıları çekmez. Ne zamanki doğal yaşamdan ve doğal evrim sürecinden ayrıldık, bu sorun karşımıza çıktı. Ancak evrimsel yapısal değişim, sosyal evrime ayak uyduramadığı için, zamanında gerekli önlemler oluşamadı. 2. Çocukların iç kulak ile ağız arasındaki östaki borusu, normalden kısa olduğu için ağızdaki mikroplar sık sık orta kulağa geçer ve bir sürü soruna neden olur. Primatlarda bu sorun var mı; büyük bir olasılıkla yok.Ancak bir evrimsel biyoloji uzmanına sorarsanız, sosyal gelişmeleri öğrenebilmek için, kafası beklenilenden çok daha büyük olarak dünyaya gelmeye zorlanmış bir çocukta bu sorunun ortaya çıkması kaçınılmazdır. Acaba doğaüstü güç insanın sosyal yaşama geçişini bilemiyor muydu? Yoksa böyle bir ödüle karşı ceza mı uygulamaya kalkıştı? 3. Çocukların, özellikle kız çocuklarının idrar kesesini dışarıya bağlayan kanal erişkinlere göre kısa olması nedeniyle sık sık idrar yolları hastalıklarına tutulmaktadır. Ne olurdu bu boruyu biraz daha uzun olarak yaparak yaratsaydı?Ancak bir evrimsel biyoloji uzmanına sorarsanız, dört ayağının üstünde gezen bir canlı için bu kısalığın büyük bir sakıncası yoktu; ne zaman ki, yere inip de ilk olarak otura otura sonra iki ayağımız üzerinde gezmeye başladık; oturduğumuz yerdeki mikroplar çok daha kolay içlere kadar girebildiği için bu sorunlar ortaya çıktı. O zaman sormazlar mı, beni iki ayağım üzerine kaldırırken, bu boruyu niye bir iki santim uzatmadın?4. Penisteki sünnet derisi çoğunluk herhangi bir soruna neden olmadan doğum olmasına karşın, bir kısmında idrar yapamayacak derecede kapalı olduğu için önemli sorunlara neden olmaktadır. Bu derinin erişkin olmadan kesilmesi ise Musevi ve İslam inancına göre tanrının isteğidir. Bu derinin atılması sırasında, yine bu iki dinin de ortak olarak birleştiği inanca, yani çocukların suçsuz olarak doğduğu inancına karşın, milyonlarca çocuğun sünnet işlemi sırasında mikrop kapmasından dolayı ölmesini nasıl açıklayacaksınız? Günahsızların ceza çekmesi hiçbir öğretide hoş karşılanamaz. Ancak bir evrimsel biyoloji uzmanına sorarsanız, bu deri kapalı durarak idrar yollarının ve penis başının olası enfeksiyonları önlemek için meydana gelmiştir. Doğal ortamda er ya da geç normal işlevini görmeye başlar; ancak bezlere sarılmış kapalı ortamda yetiştirilen bir bireyde bu aksaklığın giderilmesi zor olur.5. Bugün hangi çocuk doktoruna giderseniz gidin, çocuğa bakmadan D vitamini de içeren bir ilaç yazıyor. Bunu muhakkak almalısınız diyor. Burada birisi yanılıyor, ya doktor ya da doğaüstü güç. Çünkü akıllı tasarım olsaydı, ana sütü ile birlikte bu maddeler de verilmiş olacaktı. Ancak bir evrimsel biyoloji uzmanına sorarsanız, insan, güneş ışığının çok yoğun olduğu Doğu Afrika’da evrimleştiğinden D vitamininin oluşması için ek bir kaynağa ihtiyaç duyulmamıştı. Ne zaman ki kuzeye yayıldı, eksiklik ortaya çıktı. Düzeltilebilir miydi? Çok basit birkaç önlemle bu eksiklik giderilebilirdi. Zaten canlıların hemen hepsi (bizden başka yer değiştiren iki memeli hariç) bulundukları yerde kaldıkları için gerekli D vitaminini sentezlemektedirler. Bunu yer değiştiren insan yapamadığı için, gittiği yerde özellikle güneş ışınlarının eksikliğinden dolayı bozukluk ortaya çıkmaktadır. Eğer akıllı tasarımcıların inandığı gibi insanoğlu orta kuşakta bulunan bir yerde dünyaya inmiş olsalardı, böyle bir eksikliği yaşamayacaklardı. Demek ki bir enlemden öbür enleme geçince akıllı tasarım akılsız tasarım haline dönüşmüş. Niye düzeltilmemiş? Doğa aklıyla değil, seçenekleri rastlantıyla seçtiği için her zaman doğru yolu bulamaz; bu nedenle de bu güne kadar jeolojik dönemlerde bağrında barındırdığı yaklaşık 20 milyon (belki 100 milyon) canlı türünü bu akılsız tasarıma kurban etmiştir. 6. Hemen hemen hiçbir işleve sahip olmayan 20 yaş dişlerimiz çoğumuzun korkulu rüyası olmuş; birçoğumuza kötü günler yaşatmıştır. Dogmatikler bunun için kem küm bir şeyler söyleseler de hiç kimse inandırıcı bir açıklamasını yapamamaktadır. İnançlara göre insan aynen yaratılmışsa, evrimleşmemişse, 20 yaş dişleri de insanın başına bela olarak verilmiştir. Ancak bir evrimsel biyoloji uzmanına sorarsanız, bu dişler otçul (daha çok ot yediğimiz) dönemde öğütme işinde kullanılıyordu; daha sonra omnivor (yani her şeyi yer hale geçince), özellikle de yiyeceklerimizi pişirerek daha yumuşak hale getirince gerek kalmadığı için doğal seçilim ile ortadan kaldırma sürecine sokulmuştur. Evrim, sabırlı ve sürekli bir işleyişin adı olduğu için de, hemen ortadan kaldırılamamış, zamana bırakılmıştır. 7. Osteoporaz (kemik erimesi). Bugün kırk yaşını geçmiş herkesin korkulu rüyasıdır ve geçici de olsa tedavisi için önemli harcamalar yapılmaktadır. Her şeyi bilen doğaüstü güç, ömrümüzün ortalarında neden bizi oluşturan iskeletin içini boşaltsın ve kırıklarla uğraştırsın. Bunların içine her besinimizde bolca bulabileceğimiz kalsiyumu yerleştirme güç mü olacaktı? Yoksa bu da mı takdiri ilahi hanesine yazılacak? Ancak bir evrimsel biyoloji uzmanına sorarsanız, kemikler işlev gördüğü sürece ve doğada güç kullandığı sürece sağlıklı kalır; sürekli kitap okuyan ve dua eden birinin, kemikler (bu bağlamda kaslar) üzerindeki tonus (basınç etkisi) azalacağı için içini boşaltması kaçınılmazdır. Evrim, gerçekler üzerinden işlev yapar, acımasızdır, tarafsızdır; duygular ve sevgiler üzerinden değil…8. Elli yaşını geçmiş her erkeğin aklı prostatındadır. Çoğunluk doğru dürüst işeyemez, olur olmaz yerde işemeye kalkışır; bu nedenle kana kana bir şey hatta su bile içemez. Tuvaletin başında dakikalarca bekler. Daha sonra eşeysel işlevleri aksadığı için karısından azar işitir; aşağılanır; semavi dinlerin üstün varlık olarak tanımladığı o erkek süklüm püklüm bir kediye (kedi bile denmez olsa olsa pisik demek gerekir) dönüşür ve daha da vahimi er ya da geç kanserleşmeye başlar. Doksan yaşına gelmiş bir insanın %90 prostat kanseri olma olasılığı vardır. Dogmatikler akıllarını kutsal kitaptaki bilgilerle bozdukları ve prostat da bu kitapların bulunduğu dönemde bilinmediği için birkaç yakın ayet ve hadisle belki geçiştirebilirler; ancak en iyisi bu konuya hiç değinmemektir… Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, prostat bezi, sahneye çıkarken ozmos, yani su geçişlerini düzenleme gibi bir görevi üstlenmek için ortaya çıkmıştı; ancak zamanla başka işlevleri de yüklenince, olması gerekenden fazla bir görevi daha üstlendi ve başarılı da olamadı. Eğer bir varlığı korkularından arındırmak için tasarım yapmış olsaydınız, iki paralık bir sifinkter (kapak) ile bu sorunu çözerdiniz. Ancak, evrim gelecek için plan kurmaz, o anda gereksinme duyulan şeyleri en iyi şekilde seçmeye kalkışır. Bu nedenle de evrim her zaman mükemmeli bulamaz.10. Menopoza girmiş her kadının rahim kanseri ve meme kanseri korkulu rüyasıdır. Çocuk yapma yetisini yitirmiş ve başka bir görevi kalmamış bir organın vücuttan kaldırılması çok zor biyolojik işlem değildir. Böyle bir korkuyu insanlara yaşatmanın ne anlamı var? Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, doğa bir canlının üreme gücünü yitirmiş bir bireyi barındırmak gibi bir lüksü olmadığı için uygun yöntemi geliştirme denemesine girişmemiştir. 11. Neredeyse her üç kişiden biri omurga rahatsızlığı çekmektedir. Diğer canlılara bakıyorsunuz beli kayan canlı yok gibi. Bu insana eziyet niye? Akıllı tasarımcılar “Tanrının verdiği organı korumak gerekir” diye bir yaklaşımla konuyu savsaklamaya kalkışırlar. Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, bir zamanlar dört ayak üzerine yürüyen atalarımız, ağırlığı tüm omurgaya dağıttığı ve onu da dört noktadan toprağa verdiği için böyle bir sorunla karşılaşmadı. Ancak iki ayağı üzerine kalkınca, ağırlık merkezi 4-5. omurların arasına yoğunlaştı, burası da yeterince kasla desteklenemediği için ve evrim mekanizması deneme-yanılma yöntemi ile çalıştığı yani çok ağır işlediği için de bu kadar kısa süre içinde gerekli önlemi geliştiremedi. Böylece öne uzattığımız iki elimizle tutacağımız bir kiloluk bir yük, kaldıraç misali 4-5. omurlara 20 kiloluk bir baskı oluşturdu. 12. Hemen hiçbir hayvanda görülmeyen fıtık ve özellikle kasık fıtığı niye insanlarda görülüyor diye düşünebilirsiniz. Akıllı tasarımcılar ancak bir önceki yanıtı verebilirler. Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, bir zamanlar dört ayak üzerine gezdiğimiz için iç organlar özellikle testislerin vücut dışına çıktığı kanala (ingunial kanala) basınç yapmıyordu; ne zaman ki iki ayak üzerine kalktık, iç organlar basınç yapınca, özellikle belirli bir yaştan sonra bağırsaklar bu kanaldan dışarıya sarkmaya başlar. Evrimsel gelişme bu aksaklığı niye düzeltmedi? Ya bir çıkar yol bulamadı ya da geliştirmek için yeterince zaman bulamadı. Akıllı bir tasarım olsaydı hem bu sorunu hem de yukarıdaki sorunu bir çırpıda çözecek çareyi yürürlüğe koyardı.13. Eskiye ait insan fosillerine bakıyoruz; çürük diş hemen hemen yok (biraz da erken öldüklerinden dolayı); ancak ne zaman ki besinlerini öğütüp, pişirmeye ve özellikle de tahılla beslenmeye başlıyorlar, o zaman diş çürükleri ortaya çıkıyor. Doğaüstü güç insanı vahşi bir hayvan gibi doğada dolaşsın diye mi tasarladı? Uygarlığa geçeceği ve geçişte yaşanacak sorunlar tahmin edilemez miydi? Akıllı tasarımcılara sormanıza gerek yok; çünkü onlar bulunan bunca insana ait fosili zaten insan neslinin atası olarak kabul etmiyorlar. İnsanın zembille gökten indiğine inanıyorlar. Ancak bir evrimsel biyoloji uzmanına sorarsanız, “diş çürümeleri neden oluyor?” diye, o size der ki, tahılla beslenme, mayalanmaya bağlı olarak ağızda asidik tepkimelerin ve aşınmaların meydana gelmesini tetiklediği için olmuştur diyecektir. Bu tasarım hatasını giderebilmek için de akşam-sabah macunlarla fırçalama yoluna gideriz. 14. Akşam sabah hamdolsun verdiğin nimetlere diye dua ediyoruz. Bu kadar çeşitli yiyecek verdiği için. Pekâlâ, yaklaşık 400.000 bitki olmasına karşın niye daha çok çeşitli meyve ve sebze sunmadığını bir türlü aklımıza getirmiyoruz. Çünkü olandan başkasını düşünemiyoruz. Düşünebilmeniz için evrim mantığına sahip olmanız gerekir; o da bizde yok. İnsan oluştuktan çok daha sonraki devirlere bakacak olursak, bugün nimet olarak tanımladığımız sebze ve meyvelerin ve keza hayvanların hiç birini göremeyiz. Doğa, elmayı, armudu, kirazı, kayısıyı, portakalı, şeftaliyi, mısırı, domatesi, salatalığı, kabağı, nohudu, şeker pancarını, karnabaharı, lahanayı, kıvırcığı, marulu, Çin marulunu, kırmızılâhanayı, Montofon ineğini, Holstein ineğini, Legorn tavuğunu ve bugün kullandığımız daha onlarca ürünü bugünkü haliyle evrimleştirmemiştir. Ama her devirde evrim mantığına sahip insanlar olduğu için “akıllı tasarım ürünü olarak belirtilen” verimsiz varlıkları insani tasarımla çok daha kullanılabilir ve verimli hale getirdiler. Siz, domatesi, şeftaliyi, elmayı, portakalı ve yukarıda yazılan bitki ve meyveleri doğaya bırakın belirli bir süre sonra asıllarına döneceklerdir, yani evrimsel tasarıma. Montofon ineğinin, Holstein ineğinin ve Legorn tavuğunun zaten doğada üreme şansı olmayacaktı. Kıvırcığı, marulu, karnabaharı, lahanayı, Çin marulunu, aysbergi, süs lahanalarını, brokoliyi, kırmızılâhanayı doğaya bırakın yıllar sonra yumruları sadece bir fındık bilemedin ceviz kadar kalmış Bürüksel lahanasına döndüğünü göreceksiniz. İnsan olmasaydı mısır bitkisi ise hiçbir zaman olmayacaktı. Doğa insanı düşünerek bunları evrimleştirmediği için, bizim amacımıza en uygun şekli vermedi. Akıllı bir tasarımda eşrefi mahlûka neden en iyisinin sunulmadığını merak etmiş olmalısınız. Nede olsa insan olmanın en önemli özelliği merak etmektir. Daha iyi bir tasarımın yapılma zevki insana mı bırakılmış dersiniz (böylece akıllı tasarımcılara zor zamanlarda kullanabilecekleri bir açıklama da vermiş oluyorum). Bütün bu değerli yiyeceklerimiz doğada bugünkü haliyle bulunmuyor. Doğal işletiminin hatalarla dolu olmasından dolayı, anormallikler, örneğin poliployidi dediğimiz kromozom çoğalmaları nedeniyle bugünkü sulu ve iri meyveler oluşuyor ya da doğaüstü gücün bizim için esirgediği kalıtsal kombinasyonları insanlar ıslah yoluyla kendisi yapıyor.15. Doğada birbiri için zararlı çok sayıda canlı vardır. Ancak bir canlıya zarar veren bir tür başka bir canlı için yararlı işler yapara; ya da tersi. Örneğin çoğumuzun irkildiği yılan, doğanın dengesinin sağlanması için en önemle canlı gruplarından biridir. Yılanlar olması kemiriciler doğadaki bütün dengeleri allak bullak eder. Dolayısıyla kimin yararlı kimin yararsız olduğuna doğanın işletim sistemi karar verir. Ancak bazı canlı türleri örneğin çiçek, veba, humma, sıtma ve benzer onlarcası, doğada başka hiçbir canlıya şu ya da bu şekilde yarar sağlamıyor. Biyolojik döngülerinin varsa ara kademelerinde de sağlamıyorlar. Bu canlılar sadece insanları hasta etmek için evrimleşmiştir (akıllı tasarımcılara göre yaratılmışlar). Bir doğaüstü güç bu kadar canlı türü içinde en çok değer verdiği ve eşrefi mahlûkat olarak kitaplarında tanımladığı bu türe bu kadar eziyeti, korkuyu ve ıstırabı neden reva görmüştür dersiniz? İnsanlık tarihinden bu yana milyarlarca insan (bunların içinde günahsız olarak bildiğimiz çocuklar) ömrünün baharını bile görmeden bu canlılarca öldürüldüler. Sizce böyle bir tasarım akıllı tasarım mıdır? Sus sus öyle söyleme –Tanrının işine karışılmaz- günahkâr olursun demeyle ne zamana kadar yorumlama yetinizi bastıracaksınız? Dünya tamamlanmamış bir tasarımdır-Van Gogh Bir anlamda dünya tamamlanmamış bir tasarım olduğu için evrim sürmektedir. Eğer her şey mükemmel tasarlanmış olsaydı, evrimleşmeye gerek duyulmayacaktı. Halbuki canlı daha iyi daha etkili daha uyumlu yapıyı kazanabilmek için 3.8 milyar yıldır daha yetkin olmayı aramaktadır, yani evrimleşme çabası içerisindedir. Bir zamanlar denizanalarının daha sonra balıkları daha sonra kurbağagillerin daha sonra sürüngenlerin daha sonra kuş ve memelilerin ortaya çıkışı bu tasarımı daha başarılı hale getirmedir. Tanrısal bir tasarımda ilk olarak basitini yapma, daha sonra kullana kullana daha etkilisini geliştirme gibi bir mantık olamaz. Bir taraftan Tanrının her şeye kadir olduğuna ve deneme yanılma yöntemiyle doğruyu bulma gibi bir savurganlığa gerek duymayacağına inanma, diğer taraftan da zaman içinde organizasyon bakımından gittikçe daha gelişmiş canlıların dünyada sırasıyla yer aldığını, organizasyon bakımından ilkel olanların zamanla ortadan kalkıp yerini daha gelişmiş organizmalar bıraktığını gözleyip de evrim fikrine inanmama, ancak akıllı tasarımcılara yakışır. Hemşerim ve yakın dostum olan ressam Prof. Dr. Zafer Gençaydın, bir gün bana biliyor musun Ali, Ortaçağda doğması ve Ortaçağ mantığında yaşaması gereken birçok insan, herhalde yanlış bir planlamadan dolayı ne yazık ki zamanımızda doğmuştur; doğmakla da kalmamış bir kısmı üniversitelerde hoca olmuşlar, dedi. Ah, Tanrı dünyayı yeniden yarataydı,Yaratırken de beni yanında tutaydı;Derdim: “Ya benim adımı sil defterinden,Ya da benim dilediğimce yarat dünyayı.” Ömer Hayyam Daha önce değindiğimiz gibi, evrim gelecek için plan kurmaz, tasarım yapmaz; o anda elde bulunan nesneleri ya da özellikleri yine o anda gereksinme duyulan şekilde seçmeye kalkışır. Bu nedenle de evrim her zaman mükemmeli bulamaz. İşte bu nedenle dünyada bu güne kadar yaşamış canlıların %96’sı yeni değişimlere çözüm yolu bulamadığı ya da daha önce başarılı bir şekilde geliştirdiği özellikleri ile devam edemediği için yaşam sahnesinden silinmiş, yerlerini daha başarılı olanlara bırakmışlardır. Burada dogmatikler ile evrimciler arasında düşünce bakımından çok derin bir fark vardır. Dogmatikler, bu cümleden dinciler, akıllı tasarımcılar ve benzerleri görüşte olanlar başarılının (güçlünün) tanımını farklı anlarlar. Bu nedenle de doğanın işletim sistemini bir türlü anlayamazlar. Hatta bir televizyon tartışmasında, bir biyoloji profesörü (o günlerde Biyologlar Derneğinin de başkanıydı), bana dönerek hoca hoca, ne diyorsun, bir bakteri bir filden daha güçlü mü ki daha başarılı diyorsun. Dogmatiklerin güçten kastı, kas gücü ile sınırlıdır. Esasında bu görüşleri sonlarını da hazırlamaktadır. Çünkü gücü, sosyal yaşamda silah, anarşi, terörizm, para ve kaba kuvvet olarak bilirler. Hâlbuki bir evrimci, kas ve kemik gücüne dayanmayan bilgi ve becerinin daha üstün olduğunu gözlemleri ile öğrenmiştir. Bir virüsün bir fili yok edeceğini bilir. Çünkü evrimsel seçilimde kaba güç değil (bu güç ancak aynı türün bireyleri arasında daha sağlıklıyı –erkek kavgaları gibi- seçme için kullanılan evrimsel bir yöntemdir), çevrenin koşullarını en iyi kullanan, kalıtsal materyalini gelecek kuşaklara en hızlı ve en çok aktaran (çoğalan) ve başka bir türü kullandığı ince yöntemlerle alt edenler ayakta kalır; yapamayanlar elenir. Akılsız tasarımın en akıllıca yönü, akılsız olmasıdır. Hiçbir zaman tasarlayarak bir şey oluşturmaz. Tek amacı vardır: Olabildiğince çok çeşit üretmek. Bunun için israftan kaçmaz, daha doğrusu onu israf olarak görmez. Bu nedenle bir balık özelliği birbirinden farklı bir milyon yumurta bırakır. Bir tanesinin ortama uyum yapması başarıdır. O seçmeyi doğaya bırakır; bu nedenle doğal seçilim diyoruz. Üç beş bireyin yaşayabileceği bir ortama milyonlarca yumurtanın bırakılmasının başka ne anlamı olabilirdi? Bu nedenle kural olarak doğada yavrularını eksiksiz ya da kayıpsız büyüten hiçbir canlı yoktur diyebiliriz. O zaman bugünkü koşullarda neredeyse insanların doğurdukları çocukların hepsi yaşıyor diyebilirsiniz. Tam bir Akıllı Tasarımcı mantığı. İyi de o çocukları yaşatmak için doğada hiç olmayan ilaçları ve aletleri kullanarak onları başarabiliyorsunuz. Yani Akıllı Tasarımcıların mantığıyla Tanrı tasarımına karşı gelerek, o tasarımın hatalarını ilaçlarla aletlerle düzelterek… Tasarım hatasına yer yoktur. Doğa mükemmel bir mühendis değildir; varsayılan bir doğaüstü güç gibi her şeyi bilen, planlayabilen ve geleceği gören bir işletim sistemi de değildir. Var olanı kullanarak o günkü koşullara en iyi uyumu yapacakları seçen bir sistemdir. Bu nedenle doğanın işletim sisteminde keşke şöyle olsaydı özlemini dile getiremeyiz. Çünkü istek, ancak akıllı bir varlık tarafından yerine getirilir; akılsız olan bir yapı tarafından değil. Doğanın aklı yoktur; onun aklı evrimin işleyiş tarzı ve yöntemidir. Bu nedenle, ancak doğaüstü güçlere dua ederiz. Geçmişte doğal güçlere de (güneşe, aya, yıldıza, fırtınaya, ateşe ve yüzlercesine) dua ettik; yararını görmediğimiz için hemen hemen büyük bir kısmımız bu yakarmayı bıraktık; bu sefer sekiz cihetten münezzeh (yani önde, arkada, sağda, solda, altta, üste, içte ve dışta bulunmayan) varlıklara yöneldik; dilerim bu sefer başarırız… Sesimizi ve yakarışlarımızı duyan olur… Doğadaki bazı mekanizmaları anlayabilmek için evrim kavramı ve bilgisi kaçınılmazdır (dogmatiklerin böyle bir bilgiye ihtiyaçları yoktur, olmayacaktır da) . Örneğin kendi kendinize sorabilirsiniz, niye bir balık bir milyon yumurta meydana getiriyor da ancak 3-5 tanesi erginliğe ulaşabiliyor. Bir insan doğal ortamda 10 çocuk doğuruyor da ancak 1-2 tanesi erginliğe ulaşabiliyor. Bu bir savurganlık, materyal, zaman ve imkân yitirilmesi değil midir? Akıllı tasarım en az malzeme ile en çok üretim yapmanın adıdır. Hâlbuki doğa bu bakımdan inanılmaz derecede savurgandır. İşte bunun neden böyle olması gerektiğini ancak evrim bilimi bize veriyor. Çünkü akıllı bir tasarımda, her şey önceden planlanır ve tasarlanır. Eğer Ay’a gidecekseniz ona göre bir uzay gemisi, Mars’a gidecekseniz ona göre “bir” uzay gemisi tasarlarsınız. Ne bir eksiği ne bir fazlası vardır ve bu yapılar akıllı tasarımlardır. Doğa bizim bildiğimiz akla sahip olmadığı için, sorunun altından kalkabilmek için (böyle bir ifade de doğru değildir; çünkü bu da bir aklı ifade eder; esasında öyle olduğu için bize akıllı gibi görünüyor) çeşit yaratma peşine düşmüştür. Bu nedenle bir canlı birbirinden özellikleri bakımından kademe kademe farklı olan çok sayıda döl üretme stratejisini geliştirmiştir. Bir milyon tohumdan biri ya da bir milyon yumurtadan sadece biri, daha önce hiç karşılaşılamayan bir ortamda başarılı özellikleri kombine etmiş ise, o ayakta kalır diğerleri elenir. Sadece insan için örnek verelim: Her çiftleşme sırasında 300 milyon sperm üretilir, kural olarak sadece biri döllenme işlevini yapar. Ancak bu spermlerin ve yumurtaların sayıca çokluğu aynı bir dişiden ve aynı bir erkekten özellikleri bakımından farklı 70 trilyon çocuğun meydana gelmesini sağlar. Bu incirde de böyledir, narda da böyledir, balıkta da öyledir. Bir önceki paragrafta verdiğimiz uzay gemisi örneğini buraya taşırsak, önceden amaçladığımız inilecek gök cismine göre gemi planlanmadığını, binlerce, milyonlarca gemi yapılıp uzaya gönderildiğini, bunlardan birinin ya da birkaçının bir rastlantı olarak bir gök cismine inmesi ve taşıdığı özellikleri açısından orada gelişebilecek durumda olması halinde, yeni bir uygarlığın, biyoloji açıdan yeni bir türün doğuşu gerçekleşir. Böyle bir çeşitlilik zorunluluktur; çünkü gelecekte neyle karşılaşacağını bilmeyen bir sistem, çıkış yolunu olasılıkları ve çeşidi artırma ile bulabilirdi. İşte doğanın bu savurganca görülen işletim sistemi, böyle bir nedenle korunmuştur. Ne kadar akıllı bir sistem olursa olsun, gelecekte ne olacağını tam kestiremez ve bu da yok olmayla sonlanabilir. Evrimcilerin düzensizlikler içindeki düzen dediği sistem; rastgele seçilim bu nedenle başarılı olmuştur. Bu, düşünemeyen bir sistem için mükemmel bir stratejidir. Akıllı tasarım olsaydı her ortama göre kalıtsal bir birleşim imal edilirdi. O zaman da niye bundan 600 milyon yıl önce balık, 500 milyon yıl önce sürüngen, 300 milyon yıl önce memeli, 50 milyon yıl önce insan dünyada bulunmuyordu diye sorarlar? Çünkü doğa rastgele, deneme-yanılma ile ancak bu kadarını başarabildi. Akıllı bir tasarım olmuş olsaydı, bu kadar zahmetli bir yolu aşmaya gerek olmayacaktı. Aksini doğada kanıtlayan tek bir örnek yoktur. En çok sevilen ya da değerli şey özene bezene tasarlanır ve dikkatle imal edilir. İnsan Tanrı gözünde en değerli varlık olmasına karşın en çok defekti (bozukluğu) olan tür gibi görünüyor. Şimdilik insan soyunda adı konmuş 9.000 çeşit kalıtsal hastalığın olduğu bilinmektedir. Bir fabrika düşünün ki, herkesi kapsayacak bir tasarım hatasından değil (onu daha sonra ele alacağız), sadece kişilere özgü tasarım ve imalat hatasından dolayı 9.000 çeşit bozukluğu olan ürün imal ediyorsunuz ve buna da akıllı tasarım diyorsunuz. Ya akıllılığı bilmiyorsunuz ya da tasarım ne demektir onu bilmiyorsunuz. Sıkıştığınızda takdiri ilahi diyorsunuz. Bunlara kullanıldığı zaman ortaya çıkan “yaşlanmaya bağlı hastalıklar” dâhil değildir. Bu hastalıkların sayısı büyük bir olasılıkla yeni tanımlarla birlikte on binlerin üzerindedir. En ilginç olanı da hekimlerin büyük bir kısmının akıllı tasarıma sıcak bakmalarıdır. Bu, kendi mesleklerini bile tanımıyorlar anlamına gelir. Doktorluk, kalıtsal ya da sonradan ortaya çıkan bir eksikliğin giderildiği meslektir. Çoğunluk da tasarım hatalarının düzeltilmeye çalışıldığı bir meslektir. Akıllı bir tasarımı, oransal olarak bir anlamda çok daha zayıf akıllı sayılabilecek birileri düzeltiyor. Ancak bütün bunları görebilmek belirli bir sezinlemeyi, bilgiyi ve en önemlisi sadece insana özgü olan yargılamayı gerektirir. İnsan doğası gereği ben merkezli (antroposentrik) olduğu için, her şeyi kendi çıkarı açısından değerlendirir. Ben yaşıyorsam ve özellikle de iyi yaşıyorsam, bu çok iyi kurulmuş tanrısal bir düzenin sonucunda olmaktadır. Ancak, henüz erginliğe ulaşmadan ölen kardeşlerim için böyle bir yargı geçerli değildir. Benim çocuklarımın eli yüzü düzgün ise, bu tanrısal akıllı bir tasarımın sonucudur; ancak komşunun bütün aileyi ömür boyu sıkıntıya sokan sakat doğmuş çocuğu “Tanrının benim halimden şükretmem için yapmış olduğu bir düzenlemedir”. Tanrısal tasarımda acaba bencillik ve narsistlik bir ön koşul mudur? Pekâlâ, bu kadar insan neden doğanın mükemmel bir düzen içinde işlediğine inanıyor ve her şeyin mükemmel olduğuna inanıyor? İlk olarak insanı insan yapan empati yoksunluğundan. Çünkü başkasının kusuru, eksikliği ve derdi onu ilgilendirmiyor. Bu kadar kusuru görmemezlikten geliyor. Ancak en önemlisi, normalin ve anormalin ne olduğunu tam bilmiyor, tanımlayamıyor. Örneğin diyor ki bak ne güzel yiyecekler verilmiş yememiz için. Şimdi ben soruyorum, ne verilseydi aynı şeyi söyleyecektiniz. Başkasını bilmiyorsun ki. Ne güzel renkleri görüyoruz diyorsunuz? Başka renkleri tanımıyorsunuz ki bu yargıya sarılıyorsunuz. Gördüğümüz renkler ışık bandının yüzde biri bile değil; akıllı bir tasarım olsaydı biz çok daha zengin renkleri görecektik. Ancak bir evrimci bizim sadece 3 rengi neden görebildiğimizi biliyor; bu nedenle daha fazlasını da talep etmiyor. Tanrısal bir tasarımda daha fazlasını talep edebilirdik. Ancak bir evrimci görme pigmentlerinin oluştuğu dönemde, güneş ışınlarının en yoğun mavi, yeşil, kırmızı bantlarda yeryüzüne ulaştığını bu nedenle böyle bir tasarımla yetindiğini biliyor. Eğer bu dönemde X, alfa, beta ışınlarıyla da karşılaşmış olsaydık, onları da tanıyacak sistemi geliştirebilirdik ve bugün çoğu ortamda ortaya çıkan radyasyonu önceden görebilirdik ya da onlara dayanıklı bir kalıtsal molekül geliştirebilirdik. Bu cümleden bir şeyi özellikle vurgulamak istiyorum: Her şeyi büyük bir tasarım olarak görenlerin, “bu da beklenen bir şeydir, şaşılacak nesi var ki” diyebilecekleri bir tasarımları var mıdır? Önünü ve arkasını, nedenini bilmediğiniz, nasıl oluştuğunu bilmediğiniz her şey, yani basitten karmaşıklığa doğru giden yolu yani evrimsel süreci tanımadığınız sürece, uca ulaşmış her şey sizin için mucizenin bir ürünü olarak görülecektir. Bu basit bir hesap makinesini bile anlayamayan birinin bilgisayarı anlamaya kalkışması kadar sığ bir yaklaşımdır. Akıllı tasarımcılar! Evrimde basitten karmaşıklığa giden yolu öğrenmediğiniz sürece sizin hiçbir şeyi anlama ve görme şansınız olamayacaktır. Ya öğrenin ya da yoldan çekilin. Eğer akıllı tasarımla yetinmeye kalkışsaydık ne uzaya gidebilirdik ne denizlerin dibine inebilirdik. Bizim tasarımımız, ancak dünyanın yüzeyinde ince bir katmanda yaşamaya izin veriyor. İnsanı değerli bir varlık olarak niteleyen yüce bir yaratıcı bizi evrensel bir karantinaya niye sokmuş dersiniz? Bütün bu ortamlarda yaşayabilecek bir donanım verebilirdi. Ancak insan bu dünyanın çocuğu olduğu için, evrimleşerek oluştuğu için ne bulduysa onunla yetinmiştir. Evrim geleceği tahmin edemez, göremez; ancak çeşidini artırarak olası bir uyumun gerçekleşmesini sağlayabilir. Bunu da her zaman başaramaz. Bazen de belirli bir dönem için başarır; ancak kazandırdığı özellikler değişen koşullar yüzünden o canlıyı çıkmaz sokağa sokarak ortadan kalkmasına neden olur. Ancak, en önemli yargı ve yanılgı, yine akıllı tasarımcılardan elde edilebilir. Çünkü akıllı tasarımcıların hemen hepsi bütün bu sistemin mükemmel olduğunu savunur ve dayandıkları inançlar ise insanı evrenin efendisi olarak kabul eder ve onları “Eşrefi Mahlûk”, yani mahlûkların efendisi olarak görür. Bu demektir ki, insan yapılabilinecek ve elde edilebilinecek her güzelliğe layıktır. Bu güzellikleri insandan esirgemek, eşrefi mahlûk dediğimiz varlığa kötülüktür. O zaman gelin sizinle bir biyolojik oyun oynayalım. İnsanı yeniden tasarlayalım. Sürekli kendini onarmayla ölümsüzlük olabilirdi; ancak o zaman dinsel öğretideki öbür dünya sorgulamasından kaçmak anlamına gelirdi ki, bu dinsel öğretilerin belini kırar. Çünkü dayandıkları en önemli dayanak öbür dünyadaki görülecek hesabın cezası ve ödülüdür. Bu güzel tasarımı tutucuların hiçbiri kabul etmeyeceği için rafa kaldıralım. Öyle bir tasarım yapalım ki, hem dini öğretiler zarar görmesin hem de herkesin işine yarasın. Bilindiği gibi zaman insan için en önemli değer olmuştur. Yapacağımız işi ne kadar hızlı ve doğru yaparsak o kadar başarılı olur, rahat ederiz. O zaman vücudumuza –bize inanılmaz katkılarda bulunacak- hiçbir zararı olmayacak yeni bir tasarım ekleyelim derim. Örneğin, doğada, en az 500 canlı türünde çok az enerji kullanarak (kullanılan enerjinin %99’u ışığa çevrilerek) ışık çıkarma mekanizması eşrefi mahlûk biz insanlara sorunsuz monte edilebilirdi. Keza doğada, örtülerle açılıp kapanabilen çok sayıda göz yapısı da bilinmektedir. O zaman bir insanın bir parmağının ucuna, açılıp kapanabilen, aynı zamanda bir ışık sistemiyle desteklenmiş, hatta büyültme ve küçültme yeteneği olan bir göz sistemi yerleştirilebilirdi. Bunun biyolojik olarak olmaması için hiçbir neden yoktur. Bugün sistemi yeniden tasarlama görevi en basit bilgisi olan bir biyologa verilse bile bunu rahatlıkla başarabilir. Böyle bir ek yapının insanoğluna kazandıracağı olanakları ve zamanı düşünebiliyor musunuz? Bir makineyi sökmeye gerek kalmadan inceleyebilirsiniz; bir doktor bu parmakla vücudun herhangi bir deliğinden girerek ışıklı ortamda dokuları ve yapıları inceleyebilir; bir mekâna girmeden anahtar deliğinden içeriyi inceleyebilirdiniz. Sayısız olanak kazandırır. İnsanoğlu bugünkünden çok daha rahat yaşardı, çok daha ilerlemiş olurdu. Nasıl oluyor da basit bir adam bu denli yararlı bir sistemi düşünebiliyor da, her şeyi bilen bir varlık, bu imkânları bizden esirgemiş oluyor? İnsan üzerinde buna benzer onlarca –yaşamı kolaylaştıran- düzeltme yapılabilir ve yeni tasarım monte edilebilir. Bence akıllı tasarımı savunanlar –onu bilgisiz, beceriksiz ve egoist duruma düşürerek- inandıkları Tanrıya hakaret etmiş oluyorlar. Kaş yapayım derken göz çıkarıyorlar. Eşrefi mahlûk ile sefil mahlûk arasındaki ince çizgiyi anlayamıyorlar. Bazen bu kadar kanıta karşın birilerinin hala akıllı tasarıma tutunmuş olmasını, doğrusu “yine de Tanrısal bir tasarım” olarak kabul etmeye mecbur kalıyorum; çünkü doğa bu kadar hasarlı düşünce sistemi olanları bu kadar uzun süre sahnede tutmazdı; tutamazdı; ancak doğaüstü bir gücün yardımı ile böyle bozuk bir sistem borusunu öttürmeye devam edebilirdi. ABD'de yaratılış düşüncesinin, 1987 yılında (Edwards-Aguillard davasında) Anayasa Mahkemesinin aldığı kararla devlet okullarında okutulması Anayasaya aykırı olduğu gerekçesiyle yasaklanmıştır. Bu dava sürecinde Nobel Ödülü kazanmış 72 bilim adamı, 17 eyalet bilim akademisi ve 7 bilimsel organizasyon yaratılışın dini dogmalardan ve inançlardan oluştuğunu ve bilimsel olmadığını belirten bir yazı yayınladılar. Yaratılış ve akıllı tasarım konusunda diretme özellikle Amerika’nın gericileri ve sömürge zihniyetinde olanlarca sürdürülüyor. Bizimkiler farkında mı dersiniz? Mütedein (kendi halinde inanç sahipleri) olanlar ilk bakışta “Yaratılış ve Akıllı Tasarım Yaklaşımları”na geleneksel görüşlerine ters düşmediği için karşı çıkmıyorlar. Ancak, Amerika’nın bu kirli amaçlı zihniyeti, bizim gibi ülkelerde, özellikle satılmış kişilerce organize ediliyor ve yaygınlaştırılıyor. Bu konuda Türkiye’de yapılan ve karşılıksız dağıtılan yayınların bedelinin 21 milyon TL (21 trilyon YTL) olduğu belirtiliyor. Kaynağı? Bilinmiyor… Emniyet araştırıyor mu? Haşaaa… Akıllı tasarım akımı, tarihin en cani ve kanlı katililerinden biri olarak tanımlayabileceğimiz Amerika Başkanı Bush’un müntesip olduğu (bağlı olduğu) Kalvinist Kilisenin öncülüğünde başlatılmıştır ve akıllı tasarım zırvası bizzat Bush tarafından defalarca telaffuz edilmiştir. Kilise, akıllı tasarımın ve yaratılışın okullarda okutulması için defalarca yüksek mahkemeye başvurmuştur. Diyelim ki böyle bir yaklaşımı kendi inançlarını güçlendirmek açısından bir amaç olarak görmüş olabilirler. Ancak aynı kilise (kiliseler birliği) Amerika Irak’a saldırırken şöyle bir karar aldı. İsa, hem Tanrıdır hem Tanrının oğludur ve hem de Mesih’tir. Bunu kabul etmeyenler, buna iman etmeyenler biidraktir (idrak ya da anlama yeteneği yoktur); biidrakler insani sayılmazlar ve biidraklar üzerinde operasyon (burada öldürme ya da belki tıbbi deney yapma bile olabilir) yapma insanlık suçu sayılmaz. Böylece Irak’taki katliam da meşru bir zemine oturtulmuş oluyordu. Ancak, bu yaklaşımdan “Akıllı-Akılsız Tasarım”la ilgili önemli bir sonuç da çıkarılabilir. Demek ki “Akıllı Tasarım”a inanmış Kalvinist Kilise, Tanrının kendi inançlarının dışındakileri (Müslümanlar, Budistler, Ateistler vd. hatta Hıristiyan olup da başka mezheplere mensup olanları bile) yani dünya nüfusunun yaklaşık beşte dördünün bozuk mal olarak çıkarıldığını kabul ediyor. Bir anlamda akılsız tasarımı, üretim bozukluğunu tescil ediyor. Böyle bir kabul, onların İsrail’deki, Gazze’deki, Irak’taki, Afganistan’daki, Vietnam’daki, Somali’deki katliamlara duyarsız kalmasını sağlıyor. Zaman zaman Müslüman ya da diğer bir dinden olup da bu Kalvinistlerin bu fikrine dört elle sarılanları gördüğümde, Kalvinist Kilisesinin “Biidrak” tespitine inanacağım geliyor… Akıllı tasarımın görünürde çok sinsi bir siyasi boyutu da var. Amerika’da ortaya çıkan bu eğilimin zaten tarihten gelen çok geçerli bir temeli vardı: Kadercilik. Kadercilik, geçici olarak insanları rahatlatmış; ancak uzun vadede çıkmaza sokmuş; ancak en önemlisi sömürü düzenine karşı çıkamayacak kadar gözlerini kör etmişti. Batının vahşi kapitalizminin sömürü düzeni kurabilmesi için, bu kadar köklü ve kapsamlı bir öğreti biçimi bulunamazdı. Son birkaç on yıl içerisinde sinsi organizatörler harekete geçti; ülkesindeki akıllı tasarımcılar “kurulu düzene karşı çıkmayan munis vatandaşlar olacak” sömürülecek ülkelerin vatandaşları da hem meşgul edilecek hem de kolayca güdülebilecekti. İşbirlikçiler dünden hazırdı. Bu ülkelerde dini inançları bugüne kadar sömürü aracı olarak kullanan sayısız insan vardı. Bunların, oynanan oyunu fark etmesi de mümkün değildi; çünkü kul kültürü ile yetişmişlerdi; söylenene tartışmadan iman etmeleri başından beri inandırılmıştı. Böylece dünyada ne olup bitiyordan haberi olmayan, aklını öbür dünya ile bozmuş, bilimsel gelişmeleri zındıklık olarak tanımlayan, lidere körü körüne bağlı bir kesim yaratıldı. Daha doğrusu böyle bir kesim vardı, sayıları artırıldı. Sömürü düzeni tarihtekinin aksine bu sefer kansız olarak kuruldu. Dönün bir dünyaya bakın, öbür dünya işlerine daha çok zaman ayıran ülkelerin hepsi açık ya da kapalı sömürgedir. Bir toplumun hepsinin aydın olması arzulanır; ancak bu şimdilik hayal gibi görünüyor. O zaman bilimi rehber yapmış, yaratıcı, kurulu düzeni tenkit edebilen, yeni seçenekler sunabilen, toplumu geleceği hazırlayabilen insanların öne geçirilmesi yavaş da olsa yine de bir gelişmenin lokomotifi olabilir. İşte bu lokomotiflerin de önünün kesilmesi hem ülke içerisinde inançları sömüren zümre için hem de ülke dışında yağmalamaya, sömürmeye ant içmiş ülkelerin geleceği için gerekir. Işığını ve yol göstericisini yitirmiş bir toplumun sindirilmesi, sömürülmesi ve yönlendirilmesi zor olmayacaktır. İşte bu nedenle Türkiye ve Türkiye gibi ülkelerde, evrim kavramını özümsemiş ve onu, topluma yolunu bulması için ışık gibi tutacak insanları saf dışına atmak gerekirdi; onu da yeni kuşak gericiler, yani Akıllı Tasarımcılar yapıyor. “Eğer Akıllı Tasarım” olsaydı, “Akıllı Tasarımcılar” olmayacaktı. Prof. Dr. Ali Demirsoy Hacettepe Üniversitesi Kaynak: www.biyologlar.org.tr

http://www.biyologlar.com/akilli-tasarim-evrimsel-tasarim

Kurbağa Diseksiyonu

Bu laboratuvar çalışmamıza kadar incelediğimiz hayvan örnekleri omurgasız hayvanlar grubuna aittiler. Bu çalışmamızda ise Omurgalı hayvanlardan bir örnek inceleyeceğiz. Vertebrata'nın (omurgalılar) Amphibia (kurbağalar) klasisinin Anura (kuyruksuz kurbağalar) takımına mensup Rana ridibunda (su kurbağası) su içinde, su kenarlarında nemli yerlerde yaşar. Amfıbiler, suda yaşayan balıklar ile kara omurgalıları arasında orta bir yer işgal ederler. Tamamen karada ya da tamamen suda yaşayan formları olduğu gibi, hem karada hem de suda yaşayanları vardır. Bu ara durum ve kara hayatına geçiş ile ilgili organ sistemlerindeki değişiklikler kurbağada açıkça görülür. Kurbağanın vücudu baş ve gövde olmak üzere iki kısımdan meydana gelir. Başla gövde arasında bir sınır, farklılaşmış bir boyun bölgesi yoktur. Vücut pulsuz olup, çıplak, yumuşak ve kaygan bir deri ile örtülüdür. Deride mukus salan çok sayıda bez bulunur. Ergin hayvanda kuyruk tamamen kaybolmuştur. Gövdede iki çift ekstremite vardır. Başın önünde geniş bir ağız bulunur. Üst çenenin hemen ön tarafında bir çift dış burun deliği ve onların arkasında iki büyük göz vardır. Hareketli göz kapaklan üst, alt ve alt göz kapağının devamı gibi duran gözü yan yanya örten yan göz kapağından ibarettir. Ancak bu üçüncü göz kapağının kendi başına hareket yeteneği yoktur. Gözlerin arkasında orta kulağı örten 3-4 mm çapında yuvarlak iki kulak zan bulunur. Kurbağalarda dış kulak yoktur. Erkek kurbağalarda kulak zarının gerisinde ince bir zardan yapılmış bir çift dış ses kesesi bulunur. Erkek kurbağaların gövdeleri dişilere göre biraz daha ince uzundur. Dişilerde ise gelişmiş ovaryumlar nedeniyle gövdenin eni boyuna göre daha gelişmiştir. Bütün tetrapodlarda karada yürümeye elverişli (balıkların pektoral ve pelvik yüzgeçlerine karşılık) dört ekstremite vardır. Kurbağaların ön ekstremiteleri kısa olup, dört parmaklıdır. Birinci parmak körelmiştir. Erkek bireylerde ön ekstremitede çiftleşme mevsiminde ikinci parmağın yan tarafında büyük siyah bir şişkinlik (nasır) ortaya çıkar. Uzun olan arka ekstremiteler beş parmaklıdır. Birinci parmak en kısa, dördüncü ise en uzundur. Parmaklar arasında yüzme derisi gerilidir. Vücudun son ucunda iki arka ekstremite arasında kloak açıklığı vardır . Şekil 1. Bir erkek kurbağanın dış görünüşü 1. dış burun deli ği 2. ağız 3. ön ayak 4. nasır (a) 5. yüzme perdesi 6. arka ayak 7. dış ses kesesi (a) 8. orta kulak zarı 9. göz Ağız içinde üst çenede oldukça küçük, sivri ve çok sayıda diş bulunur. Ayrıca damakta vomer dişleri vardır. Ön tarafta bulunan oval iki açıklık iç burun delikleridir. Alt çenede göze ilk çarpan yapı dildir. Dil çeneye ön taraftan tespit edilmiş olup, serbest kalan ucu çatallıdır. Dilin uzama ve kasılma yeteneği çok fazladır. Alt çenede diş yoktur.Yutağa (farinks) östaki borusu açılır. Burada bulunan glottis (küçük dil), besinlerin akciğerlere girmesine engelolur (Şekil 2).  Şekil 2. Kurbağada ağızın iç yapısı ı. vomer dişleri 2. iç burun deliği 3. üst çene dişleri 4. göz çukurları 5. östaki borusu açıklıgı 6. farinks açıklıgı 7. ses kesesi açıklıgı (erkekte) 8. glottis (küçük dil) 9. dil 10. dil bağlantısı Kurbağada pleuroperitonal ( göğüs-kann ) boşlukları içinde ilk göze çarpan organ, kahve renkli ve yaprak şeklindeki loplardan yapılmış olan karaciğerlerdir. Karaciğer sağ, orta ve sol lop olmak üzere üç parçadan oluşmuştur. Orta lop sağ ve sol loptan birbirine bağlayan küçük bir parçadır ve bu yan loplar tarafından örtülmüştür. Orta lobun sol lop ile birleştiği yerde yeşil renkli yuvarlak bir safra kesesi vardır. Sol lobun altında da büyükçe bir mide yer alır. Midenin ön ucu çok kısa bir yemek borusu ile birleşir. Midenin sivri olan arka ucu ise bağırsağa açılır. Bu kısım midenin pilor bölgesidir. incebağırsak uzun ve kıvrıntılı bir boru halindedir. Mideden sonra gelen ilk kısım on iki parmak bağırsağı (duedenum) dır. İnce bağırsağın son kısmı sonbağırsak (rektum) dır. İncebağırsaktan daha geniş ve çok daha kısa olan bu kısım kloaka (dışkılık) açılır. Mide ile duedenum arasında pankreas yer alır. Kalp tam göğüs kemiğinin altındadır. Perikard boşluğu içine yerleşmiş durumdadır. Perikard boşluğu perikard zarı ile sınırlanır. Kalp iki kulakçık ve bir karıncıktan meydana gelir. Sağ kulakçığa anteriör ve posteriör vena cava (ön ve arka toplardamarlar)ların açıldığı sinüs venosus bağlanmıştır. Ventrikulustan ise truncus arteriosus 'tan ayrılan aort yaylan çıkar. Balıklara göre bu yaylarda bir azalma görülür. Yalnızca III. IV. ve VI. yaylar kalmış olup, III. den başa giden carotid 'ler, IV. den systemik yaylar (sağ ve sol aorta), VI.dan ise pulmonar arterler (akciğer atardamarları) meydana gelmiştir. Kirlenen kan pulmonar arterler ile temizlenmek üzere akciğerlere gider ve burada temizlendikten sonra tekrar kalbe döner. Böylece esas vücut dolaşımından başka bir de kalp ile akciğerler arasında küçük dolaşım meydana gelmiştir. Kurbağaların solunum organları gayet kısa bir soluk borusu ile bir çift akciğerden meydana gelir. Akciğerler gevşek bir dokudan yapılmıştır. Kirli kahve renkli iki kese şeklindedir. Sönük oldukları zaman ancak bir santimetre boyunda ve üçgen şeklindedirler. Kurbağalarda ayrıca kuvvetli bir deri solunumu vardır. Kurbağaların boşaltım organları böbrekleridir. Vücudun dorsal duvarına yakın, bir çift olarak bulunurlar. Koyu kırmızı renkli, uzunca oval yapılı, 1.5-2 cm uzunluğunda ve mezonefroz tipindedirIer. Bunların ventral yüzlerinde altın sarısı renginde ve şerit şeklinde böbrek üstü bezleri bulunur. Karın boşluğunun kuyruk ucunda ise beyaz renkli, ince duvarlı, büyük bir kese şeklinde idrar kesesi vardır. Bu kese kısa bir boyun bölgesi ile kloakın ventral duvarına açılır. Erkek kurbağalarda boşaltım organı ile üreme organları arasında sıkı bir ilişki vardır. Spermler ile boşaltım maddeleri müşterek bir kanaldan (üreter ya da wolf kanalı) dışarı atılırlar. Testisler san-beyaz renkli, yuvarlağımsı ve bir çift olarak böbreklere yakın bulunurlar. Dişilerde de bir çift ovaryum bulunur. Yumurta hücreleri ayrı bir kanalla (ovidukt) dışarı atılırlar. Bu yumurta kanalının kloaka açılan son kısım kısa bir şekilde genişlemiştir. Üreme mevsiminde içinde yumurta birikmiş durumdadır (Şekil 3).  Şekil 3. Diseksiyonu yapılmış bir kurbağada içorganların görünüşü 1. alt çene 2. dil sağ atrium 4. ventrikulus 5. testis 6. böbreküstü bezi 7. böbrek 8. idrar torbası 9. sonbağırsak 10. yüzme perdesi 11. mezenter 12. incebağırsak 13. pankreas 14. mide 15. dalak 16. karaciğer 17. safra kesesi 18. akciğer 19. glottis 20. yutak 21. üst çene Kurbağaların sinir sistemleri, merkezi sinir sistemi beyin ve omurilik ile çevre sinir sistemi sinirlerden meydana gelir. Kurbağada beyin, ön, orta ve arka olmak üzere üç kısımdan meydana gelir. Ön beyinde koku alma siniri (olfaktorius sinirler)nin çıktığı iki bulbus olfaktorius lobu, iki beyin yarım küresi (cerebrum) ile diencephalon bulunur. Diensefalonun üzerinde epifiz bezi yer alır. orta beyinde ise görme sinirlerinin çıktığı optik loplar yer alır. Arka beyinde de cerebellum ve medulla oblangata yer alır, bundan sonra da omurilik uzanır (Şekil 4).Şekil 4 . Kurbağada beyin yapısı ı. olfaktorius siniri 2. olfaktorius lobu 3. cerebrum 4. göz sİniri 5. optik lop 6. kranial sinirler 7. Cerebelluın 8. krania! sinirler 9. Medulla oblangata 10. omurilik İzlenecek Yol Ø Kurbağanın iç organlarını incelemeye geçmeden önce, içinde kloroform ya da etere batırılmış pamuk bulunan bayıltma kabında kurbağayı bayıltırız. Bayılmış ve hareketsiz duruma gelmiş kurbağayı küvet üzerine alarak dıştan inceleyiniz. Dıştan görünen organ ve yapıları çizerek gösteriniz. Ø Üst çenenin alt çene ile birleştiği yerden kasları hafifçe keserek ağzı açarız. İç burun deliklerinden bir iğne sokarak dış burun deliklerine kadar uzandıklarını tespit ediniz. Dili bir pensle kaldırarak tespit edildiği yeri görünüz. Dişler, göz şişkinlikleri, farinks, glottis ve östaki borusu açıklıklarını görerek ağzın içten görünüşünün şeklini çiziniz. Ø Beyin ve omurilik hariç, kurbağanın tüm sistemleri ventral taraftan disseke edilebilir. Bu sistemleri ortaya çıkarabilmek için kurbağanın vücut boşluğunun açılması gerekir. Deri ile vücut çeperi arasında geniş lenf boşlukları olduğundan bu açılış iki safhada yapılmalıdır. Birincisi derinin kesilmesi, ikincisi ise vücut çeperinin kesilmesidir. * Bu işlemi yapmak için kurbağayı küvet üzerine sırt üstü yatırınız. Dört bacağından da toplu iğne ile küvete tespit ediniz. Bu sırada kurbağada ayılma belirtileri görürseniz, kloroformlu ya da eterli pamuğu başının üzerine koyarak iyice bayılmasını sağlayınız. Ø Arka üyelerin birleştiği yerden başlayarak göğüs kemiği hizasına kadar sadece deriyi düz bir çizgi şeklinde kesiniz. Göğüs kemiği hizasında kesitinizi iki yan tarafa doğru uzatınız. Açtığınız deriyi iki yan tarafa yatırıp iğneleyiniz. Bu durumda ventral vücut duvarını yapan kaslar ortaya çıkar. Göğüs kemiği hizasından aşağıya kadar tam orta istikamette uzanan büyük bir kan daman ile bu damarın iki yan tarafında göğüs kemiği karşısından başlayarak aşağıya giden ve tekrar yukarıya dönerek deriye yayılan bir çift kan damarı göze çarpar. Ortadaki damar vena abdominalis (karın bölgesi toplardamarı), iki yan taraftakiler vena cutenea magna dır. Ø Vena abdominalisin sağ tarafından kas tabakasını göğüs kemiği hizasına kadar kesiniz. Bundan sonra göğüs kemiği kaidesinden sağ ve sol tarafa doğru vena cutenea magnaya kadar küçük birer kesim yapınız. Bu şekilde ayırdığınız kas tabakasını sağa ve sola yatırıp iğneleyiniz. Ø Bu şekilde açılan pleuroperitonal boşluk içinde ilk göze çarpan organ karaciğerdir. Karaciğerin loplarını ayırt ediniz. Orta lobu görmek için sağ ve sol lopları yukarı kaldırarak bu parçayı ortaya çıkarınız. Bunun sol lop ile birleştiği yerde yeşil renkli, yuvarlak safra kesesi vardır. Sol lobun ön dış parçasını da kaldırarak büyükçe olan mideyi ortaya çıkarınız. Yemek borusunu ancak bütün iç organların incelenmesi bittikten sonra görebilirsiniz. Sindirim sistemine ait diğer parçaları on iki parmak bağırsağı. İncebağırsak, pankreas ve rektumu bulup inceleyiniz. Ø Kalbi iyi görebilmek için göğüs kemiğini kesiniz. Kurbağa henüz ölmemişse kalbin hareketini görebilirsiniz. Kalp tam göğüs kemiğinin altındadır. Perikard zarını sıyırarak kalbi açığa çıkarınız. Alt tarafta üçgen şeklinde ve daha açık renkte görünen kısım ventrikulustur. Daha koyu renkli iki siyah çıkıntı ise sağ ve sol atriumdur. Ventrikulus ile sağ atriumun dış taraftan sınırladığı bölgede toplu iğne başı kadar bir şişkinlik vardır. Bullıus cordİs adını alan bu bölgeden kalın bir kan damarı truncus arterİosus çıkar. Yüreği küt uçlu bir pensle yukarı doğru kaldırıp ventral tarafına bakınız. Üçgen şeklinde, ince çeperli bir bölge sinüs venosus tur. Buraya ön taraftan büyük bir damar girer. Ø Akciğerler ilk bakışta karaciğer loplarının altında olduklarından görülmezler. Karaciğer loplarını kaldırıp akciğerleri meydana çıkararak sünger görünümündeki bu yapıları inceleyiniz. Ø İç organları vücut duvarına bağlayan mezenterleri inceleyiniz. Sindirim sistemi organlarını ortaya çıkararak görebildiğiniz tüm iç organları gösteren bir şekil çizip isimlendiriniz. Ø Sindirim sistemine ait organları karın boşluğunun dışına çıkarınız. Kurbağa dişi ise bağırsakları çıkarmadan önce onların yan taraflarına taşmış ovaryumlar böbrekleri görmeyi engeller. Bunun için bir tarafın ovaryum ve yumurta kanalını kesip çıkarınız. Yedinci ile sekizinci omur hizasından arkaya doğru uzanan böbrekler birbirine çok yakın olarak dururlar. Üzerlerinde böbreküstü bezleri görülür. Böbreklerden geniş, beyaz iki kanal (üreter) kloaka doğru uzanır. Bu kanallar boşaltım maddelerini, erkeklerde ise aynı zamanda spermleri taşırlar. Ø İdrar kesesini bulunuz. Bunun üreterden ayrı olarak kloaka açıldığını görünüz. İdrar kesesi bacakların birleştiği yerde, kloakın hemen önündedir. Eğer patlamamışsa kolayca farkedilir. Patlamış durumda ise aynı bölgede bir zar halinde görebilirsiniz. Ø İçorgan1arın incelenmesi bitince beyinin diseksiyonu için hayvanın başının dorsali size dönük olacak şekilde çeviriniz. Ø Başın dorsalini kaplayan deriyi bistüri ile yüzünüz. Bunun için hayvanın kafasını sol elin baş ve işaret parmakları arasında tutunuz. Sağ elin 3.4.5. parmaklarını kurbağanın sırtına yaslayıp, bistüri bıçağı hayvanın kafatasına teğet tutmaya çalışarak dikkatli bir şekilde kesim yapınız. Bu şekilde gevşettiğiniz cranİuın (kafatası)'un tavanını yukarı doğru kaldırınız. Kurbağada taze beyin dokusu çok yumuşaktır. Bu nedenle beyini zedelememek için bistürinin kesim sırasında devamlı olarak kafatasına teğet tutulması gerekir. Kranium açıldıktan sonra ilk göze çarpan kısım optik loplardır. Diseksiyon makasının bir ucunu kraniumun bir kenanndan içeri doğru sokarak makası her defasında çok az ileri iterek bir seri küçük kesimler yapınız. Bu şekilde kafatasının yan kenarlarını keserek kafatası tavanının geri kalan kısmını temizleyiniz. Bistüri yardımıyla bu açıklığı genişleterek beyinin dorsalinin tamamının ortaya çıkmasını sağlayınız. Beyinin son kısmı meddulla oblangatayı görebilmek için kafatasının hemen arkasındaki ilk bir kaç omuru her iki yandan neural yaylannı kesip, omurların dorsal kısımlarını uzaklaştırınız. Bu durumda beyinin tamamı ve omuriliğin başlangıcı ortaya çıkmış olur. Dorsalden beynin görüntüsünü kısımlarını belirterek çiziniz. Ø Omurilikten çıkan sinirleri incelemek için tüm iç organları çıkarılmış, alt çene ve ağzın ventral kısmı kesilmiş ve iyice temizlenmiş hayvanda, omurilikten çıkan parlak beyaz renkli 10 çift sinirin ventral uzantılarının omurlar arasından çıkışını görmek mümkündür.

http://www.biyologlar.com/kurbaga-diseksiyonu-2


YAZAR İSMİNİN PARANTEZ İÇİNDE GÖSTERİLMESİ

Bazı tür isimlerinin sonunda yer alan yazar isimlerinin parantez içinde yazıldığı, bazılarının da parantezsiz olarak yazıldığı görülür. Bu durum, cins isminde belli bir değişmenin olduğunu gösteren bir simgedir. Bir türün ismi, ait bulunduğu esas cinsten bir diğer cinse aktarıldığında veya tür isminin orjinal cinsi, başka bir cins ismiyle birleştiğinde yazar adı parantez içine alınır. Örneğin Linne, Aslan’ı Felis leo L., 1758 olarak isimlendirmiş ve bilim dünyasına tanıtmıştır. Ancak aradan geçen uzun zaman sonra, bu türün Felis cinsine değil de Panthera cinsine bağlı olduğu anlaşılmış ve Aslan’ın bilimsel ismi Panthera leo (L., 1758) olmuştur. Dikkat edilecek olursa cins ismi değişmiş ve yazar ismi de paranteze alınmıştır. Başka bir örnek: • Cimex norvegicus Gmelin, 1788 • Calocoris norvegicus (Gmelin, 1788) Taksonomide bir epitet isminin başka bir cinse aktarılması durumu mutlaka bir yayınla bilim dünyasına duyurulmalıdır. Bu işleme Combinatio Nova adı verilir ve Comb.Nov. şeklinde kısaltılır. Eğer yeni durumu oluşturan araştırıcının ismi de gösterilmek isteniyorsa, düzeltmeyi yapan yazar ismi orjinal yazardan sonra ve parantez dışında gösterilir. Örnek : Limnatis nilotica (Savigny, 1820) Moquintandon, 1826

http://www.biyologlar.com/yazar-isminin-parantez-icinde-gosterilmesi

Böceklede sindirim sistemi

Sindirim sistemi, sindirim kanali ve buna dogrudan yada dolayli olarak baglanan çesitli bezlerden meydana gelir. Bu bezler yardimci bezler tükrük bezleri, kör barsak (çekumlar, Caecum: pl caeca) ve malpigi tüpleridir. Sindirim kanali: Sindirim kanali önde agiz ve arkada anüs açikligi olan, vücudu bastan sona kateden bir boru seklindedir. Ön, orta ve art olmak üzere üç kisma ayrilir. Genel olarak bu bölgeler sirasiyla stomadeum, mesenteron, proctodeum ismini alir. Çogunlukla stomadeum ile mesenteron arasinda stomadeal veya cardiac kapakcik, mesenteron ile proctodeum arasinda proctodeal veya pyloric kapakçik (valv) yer alir. Yapi olarak stomadeum ile proctodeum ektodermden, mesenteron ise endodermden gelismistir. Birkaç ilkel böcekte sindirim kanali basit ve boru seklindeyken bir çogunda bu kisimlarin herbiri fonksiyonlarina göre bir takim alt bölümlere ayrilir. STOMADEUM: Ön barsak. Epiteli intima olarak bilinen kutikula içerir; basta bulunan agiz açikligi ile baslar. Bu kisim genellikle 3 esas bölüme ayrilir. 1. Azçok boru seklinde bir ön bölüm özefagus (oesophagus= yemek borusu): Halka kaslarin zayif gelismesi ve boyuna kaslarin kaybolmasiyla özellik kazanmistir. 2. Genis bir kursak (crop): Çok zayif halka ve boyuna kaslarla donatilmistir. Çok fazla genisleme yetenegine sahip olan kursak, çogunlukla besin yada havayla doludur. 3. Proventriculus (ön veya çigneyici mide): Halka ve boyuna kaslar çok iyi gelismistir. Iç tarafta intimanin diken, dis ve çesitli sekillerdeki birçok çikintisi, kaslarin etkisiyle birbirine sürtülür ve bu arada besin parçalari ögütülür. özefagus ile kursak arasindaki sinirda kesin olmayip özefagusun agiza açilan kisminda kas yapisi ile kesinlikle ayirt edilmeyen bir farinks (pharynx=yutak) vardir. 4. Valvula Cardica (mide giris kapagi) ise: Ortabarsaga açilan ve besinin geri dönmesini engelleyen, bir epitel kivrimdir. MESENTERON: Sindirimin büyük bir kismi sindirim kanalinin orta kisminda yapilir. Bu bölgeye ventriculus veya mide denir. Endodermden meydana geldigi için intimayla astarlanmamistir. Genellikle tüp seklinde olmakla beraber belli kisimlar halinde alt bölümlere de ayrilir. Örnegin Hemiptera'da 3 veya 4 bölüm ayrilmistir. Mesenteron disa dogru parmak seklinde tipik dis çikintilar çekumlar verir. Bunlar genellikle midenin önbölgesinde bulunmakla beraber çok daha posterior konumda olabilir. Çekum denen tüpcükler orta barsak yapisindadir ve barsak yüzeyini artirirlar. Böceklerin orta barsak epiteli kaba besin parçalarinin yaralayici etkilerini engelleyen mukoz hücrelerine sahip degillerdir; bunun yerine özellikle kati besinle beslenen böceklerde genelde orta barsak epiteli tarafindan salgilanan koruyucu bir yapi peritrofik membran (besin zari) vardir. Bu zar kitin fibrillerden yapilmistir ve ana maddesi proteindir. Zamanla sindirimin ileri evrelerinde bu zar yikilir ve yeniden yapilir. Bazi türlerde bu zar ön ve orta barsak etrafinda bulunan özel epitel hücrelerinden sürekli salinan maddelerden olusur. Besinin etrafini çeviren bu zar son barsaga dogru bir torba gibi uzayip gider. Sindirilen besin ve sindirim enzimleri bu zardan geçerler. Her besin aliminda bu zar yeniden olusur. Dolayisiyla barsak epiteli zararli etkilerden korunmus olur. Bitki özsuyu emenlerde bu zar yoktur. Kan emenlerde ise çok ince olarak gelisebilir. Peritrofik membranin bir diger görevide besindeki mikroorganizmalarin vücuda girisine engel olmasidir; yani enfeksiyonu engeller. Ventrikulus alinan besine göre bazi böceklerde degisiklige ugramistir. Heteroptera'da orta barsak dört bölgeye ayrilmistir ve içinde bakteri bulunan bir çok sekum yeralir. Heteropterler bitki özsuyu ile beslenirler; karbonhidrat disinda diger gerekli besinleri alabilmek için büyük miktarda bitki özsuyu emmek durumundadir. Fazla miktarda alinan sividaki asiri su hizli bir sekilde atilmak zorundadir, bu nedenle orta barsakta degisiklikler meydana gelmistir. Fazla suyun atilmasi Hemolenfin yogunlugunun korunmasi ve enzim aktivitesini kolaylastirmak için gereklidir. Lepidoptera, Hymenoptera ve Diptera takimina ait türler yalnizca ergin dönemde bitki özsuyu ile beslenirler; bu gruplar gelisimini tamamladigi için az miktardaki besine (özsu) sadece yasamlarini devam ettirebilmek için ihtiyaç duyarlar. Larva döneminde depo edilen besinler genelde yumurta gelisimi için yeterli olur. Ergin dönemde alinan bu besinler kütikula ile kapli depo görevi yapan Kursakta saklanir ve gerekli oldugunda az miktarda orta barsaga gönderilir. Heteroptera ve benzeri böceklerde depo görevi yapan bir kursagin bulunmamasi nedeniyle besindeki fazla suyun olabildigince hizli atilmasi gerekmektedir. Bunun için bu böceklerde suyu kolay geçiren genis rektum yapisi gelismistir, ayrica orta barsagin 3. ve 4. bölgeleri arasinda suyun rektuma akisini saglayan bir daralma vardir ve 4. bölgenin hemolenfedeki suyu aktif olarak uzaklastirdigina inanilir. Proctodeum: Bu bölge farkli böcek gruplarinda büyük ölçüde degisiklik göstermekle beraber genel olarak önden arkaya dogru su kisimlara ayrilmistir. 1- Pylorus: Atik madde ve malpigi tübüllerinden gelen maddelerin toplandigi kisim. 2- Valvula pylorica: Besin zarinin (peritrofik membran) mekanik parçalanmasini saglar. 3- Ileum (ince barsak): Son barsagin orta kismini olusturur. 4- Kolon (kalin barsak): 5- Valvula rektalis: Kuvvetli bir daralma yapar, besin zarinin ortadan kalkmasini saglar. 6- Rektum (art barsak): En önemli görevi suyun rektal papiller'ce emilimini ve diskinin kuvvetli kaslarla sikistirilmasini saglamaktir. Burasi dogrudan anüsle birlesir. Çok defa kasli bir kese seklinde büyümüstür. Sineklerde peritrofik zarin parçalanmasina da katkilari olur. Metamorfoz sirasinda sindirim kanalinda gerek sekil gerekse histolojik bakimdan belirgin degisiklikler olmaktadir. Bu degismeler ayni türün bireylerinin beslenme seklinin genç ve erginlerde ayni olmamasindan ileri gelmekte olup bir çesit adaptasyondur. Protein miktari fazla besinlerle beslenen böceklerde sindirim kanalinin digerlerine göre daha kisa oldugu genel bir kanidir. Imms'e göre en uzun sindirim sistemi sivilar ile beslenen böceklerde görülmektedir. Bunlarin sindirim kanalinin uzunlugu bitki ve hayvanlarin kati dokulariyla beslenen böceklerinkinden daha fazladir. Ancak vücut sivilari beslenen Hymenopter larvalari Imms'in yaptigi genellemenin disinda kalmaktadir. Çünkü bunlarda sindirim kanali kisadir. Malpigi tüpleri: Pek az istisna ile böceklerin sindirim kanalinda mesenteron ile proctodeum'un birlestigi yere yakin bir yerde ince tüp grubu yer alir. Bunlar bosaltim ile görevli olan malpigi tüpleridir. Sayilari 1-150 arasinda degisir. Aphidlerde oldugu gibi bazi grublarda bulunmaz. Labial bezler veya tükrük bezleri: Böceklerin çogunda mesenteronun altinda labiumla baglantili 1 çift bez yer alir. Bu bezlerden herbiri öne dogru uzanan bir kanala sahiptir ve bunlar basta tek bir kanal halinde birleserek labium ve hypopharynx arasinda kalan preoral (agiz boslugu) bosluguna açilir. Görevleri farkli olup hamamböcegi gibi gruplarda genellikle tükrük salgilarlar. Tükrük salgisi, agiz parçalarinin nemlendirir, besin ve diger maddeler için çözücü etki gösterir veya Apis mellifera 'da oldugu gibi sindirim enzimlerini kapsar. Lepidoptera ve Hymenoptera larvalarinda ise larva veya pup muhafazasi için ipek salgilarlar. Kan emen böceklerde kanin emilmesi sirasinda pihtilasmayi önlemek için antikoagulin maddesi salgilar. Sindirim: Agiz boslugu ile yutak, kuvvetli kaslara sahiptir. Agiz ve agiz boslugunun sindirim bakimindan önemi Mandibular, Faringial ve Labial bezler gibi isim alan tükrük bezlerinin varligindan ileri gelmektedir. Ayrica Bu bölgede yer alan faringial sislik özellikle Hymenoptera ve Lepidoptera gibi emici agiz yapisina sahip böceklerde çok iyi gelismistir ve sivilarin tanzim edilmesinde kullanilir. Bu yapi sokucu ve çigneyici agiz yapisina sahip böceklerde de vardir fakat besinlerin agizdan özefagusa geçisinde rol oynarlar. Yemek borusunun (Özefagus) içi ince bir deri ile örtülmüstür. Kursak, alinan besinin saklanarak çigneyici mideye kisim kisim geçirilmesine yarar. Iç yüzeyi bir takim kitinsel, dis gibi çikintilarla kapli olan ön veya çigneyici mide, besinin ufalanmasini saglar; fakat yüzeyi kitinsel oldugundan besin absorbsiyonu olmaz. Kursagin islevlerinden biri de yenen besini sindirilene kadar bekletmektir. Çesitli ergin sivrisinekler ve kan emen Diptera türleri, normal kosullarda kan ve protein içerigi fazla olan diger besinleri, dogrudan dogruya ortabarsaga gönderdikleri halde özellikle seker kapsayan besinler bir süre kursakta bekletmektedir. Bu bölge içerdigi kitinize dis ve çikintilar nedeniyle ilk sindirimin yapildigi yer olarak bilinir. Proventriculus, kursak ile ventrikulus arasinda yar alir; besinleri parçalama ve karistirma ile görevlidir. Ayrica kati besinlerin geriye dogru hareketini engelleyen bir kapak gibi görev yapar fakat sivi besinlerin geriye dogru hareketini engelleyemez. Buradan orta barsak veya diger adi ile Ventriculus (Mide)'a geçen besin maddesi, sindirim için gerekli sivilarla karsilasir ve yavas yavas absorbsiyona ugrayarak sindirilir. Ventriculus sindirim kanalinin baslica salgi bölgesidir. Sindirim sistemi epitelinin çogunlukla silindir seklinde hücrelerden olusan tek tabakali bir epitel olusu böcekler için karakteristiktir. Bu epitel, kivrimlar ve katlar meydana getirmek suretiyle salgi ve absorbsiyon yüzeyini artirmaktadirlar. Bu dokudaki büyük hücreler genellikle sindirim yapma yetenegindedir. Sindirimle ilgili baslica iki hücre tipi vardir. Biri "silli silindirik" hücreler, digeri ise "goblet" hücreleridir. Goblet hücrelerinin görevi sindirim salgilarini biriktirip salgilamaktir. Silli silindirik hücreler ise sindirim enzimlerini meydana getirmekte ve emilme olayinda rol oynamaktadir. Salgilanan enzimler genel olarak lipaz, maltaz, ve tripsin olup ayrica bazi özel maddelerin sindirimini yapacak özel enzimlerde salgilanir örnegin elbise güvesi larvalari kil benzeri maddelerin sindirilmesini saglayan keratinaz enzimine sahiptir. Besin sindirildikten, yani büyük bir kismi absorbsiyona ugradiktan sonra art barsaga geçer. Burada (ön kisimda) az miktarda absorbsiyon olur; özellikle besin artiklarindan kalmis olan su bu bölümde alinir. Diski maddeleri rectumda rektal papillerce suyu tekrar alindiktan sonra buradaki kuvvetli kaslarla sikistirilir ve kuru halde anüsten disari atilir. Bazi böcekler aldiklari selülozlu besinleri sindirecek enzime yeterince sahip degildirler; bu sebep ile bunlarin art barsaklarinda bulunan mikroorganizmalar sindirim isini yapar. Örnegin Termitler (Isoptera)'de durum böyledir. Bazi böcek gruplari örnegin yaprak bitleri (Aphididae) aldiklari fazla miktardaki sekerli sivilari art barsaktaki özel bir kisimda toplayip Cornicle araciliyla disari atarlar. Böceklerin Kolesteral ve B grubu vitaminlere ihtiyaçlari biliniyor ise de, bu konudaki bilgiler henüz yetersizdir. Ancak bazi gruplarda gerekli vitaminlerin simbiyotik mikroorganizmalar tarafindan saglandigi biliniyor.

http://www.biyologlar.com/boceklede-sindirim-sistemi

Bilimin doğuşunu ve fizik kimya biyoloji matematik olarak temel biirmler haline dönüşmesini tarihsel boyutta açıklayınız

Ortaçağ sonlarında özellikle İtalya'da, zamanın siyasal istemleri teknolojiye yeni bir önem kazandırdı. Böylece askeri ve sivil mühendislik mesleği doğdu. Leonardo da Vinci bu mühendislerin en ünlüsüydü. Dahi bir ressam olarak insan anatomisini yakından inceledi ve resimlerine gerçeğe çok benzeyen biçimler aktardı. Bir heykelci olarak, zor metal döküm tekniklerini başardı. Sahne yapıtlarının yapımcı ve yönetmeni olarak, özel efektler sağlamak amacıyla karmaşık makineler geliştirdi. Askeri mühendis olarak bir kentin surlarından aşırılan havan topu mermisinin yörüngesini gözleyerek bu yörüngenin Aristoteles'in öne sürdüğü gibi iki doğrudan (eğimli bir çıkış ve ardından düşey düşüş) oluşmadığını belirledi. Leonardo ve arkadaşları doğayı gerçekten bilmek istiyorlardı. Gerçek deneyimin yerini hiçbir kitap tutamazdı ve hiçbir kitap olgular üzerinde egemenlik kuramazdı. Gerçi antik felsefenin nüfuzu kolayca kırılamayacak kadar sağlamdı, ama sağlıklı bir kuşkuculuk da gelişmeye başlamıştı. Eski otoritelerin gördüğü geleneksel kabule inen ilk önemli darbe, 15. yüzyıl sonunda Yenidünya'nın bulunuşu oldu. Büyük astronom ve coğrafyacı Ptolemaios, Avrupa, Afrika ve Asya olarak yalnızca üç kıtanın var olduğunu öne sürmüştü. Aziz Augusti-nus ve Hıristiyan bilginleri de bu görüşü benimsemişlerdi. Yoksa dünyanın öteki tarafındaki insanların baş aşağı yürümeleri gerekirdi. Yenidünya'nın bulunuşu, matematik çalışmalarını da hızlandırdı. Zenginlik ve ün arayışı denizciliğin gerçek bir bilime dönüşmesine yol açtı. Rönesans'ta canlanan düşünsel etkinlikler, antik bilgilerin tümüyle gözden geçirilmesine olanak sağladı. Ortaçağ düşüncesinin temelini oluşturan Aristoteles'in yapıtlarına Platon'un ve Galenos'un yapıtlarının çevirileri ve daha da önemlisi Arkhimedes'in, kuramsal fiziğin geleneksel felsefenin dışında nasıl oluşturulabileceğini gösteren yapıtları eklendi. Rönesans biliminin yönünü belirleyen antik yapıtların başında, Musa'nın çağdaşı olduğu kabul edilen efsanevi rahip, peygamber ve bilge Hermes Trismegistos'a dayandırılan Hermetika gelir. Hermetika yaratılış konusunda insana geleneksel metinlere göre çok daha önemli bir rol veriyordu. Tann insanı kendi suretinde yaratmıştı. Bir yaratıcı olarak ve yaratma sürecinde insan Tann'yı taklit ediyordu. Bunun için de doğanın gizlerini bilmek zorundaydı. Yakma, damıtma ve öbür simya işlemleriyle doğa işkenceden geçirilerek gizleri elde ediliyordu. Başarının ödülü, sıkıntı ve hastalıklardan kurtuluşun yanı sıra sonsuz yaşam ve gençlik olacaktı. Bu düşünce, insanın bilim ve teknoloji aracılığıyla doğaya boyun eğdirebileceği görüşüne yol açtı. Modern bilime temel oluşturan bu görüşün yalnızca Batı'da egemen olduğunu vurgulamak yerinde olur. Doğadan yararlanma konusunda yüzyıllarca geride bulunan Batı'nın Doğu'yu geçmesinde bu yaklaşımın önemli rolü olsa gerektir. Hermetika, aydınlanma ve ışık kaynağı olan Güneş üzerine coşkulu bölümler içerir. Hem Platon'un, hem de Hermetika'mn çevirmeni Floransalı Marsilio Ficino, 15. yüzyılda Güneş üzerine yazdığı incelemede adeta putperestçe hayranlığa varan bir üslup kullanmıştı. 16. yüzyılın başlarında bir Polonyalı öğrenci, İtalya'daki gezisi sırasında bu düşüncelerden etkilendi. Ülkesine döndükten sonra Ptolemaios'un astronomi sistemi üzerinde çalışmaya başladı. Görevli bulunduğu kilisenin yardımıyla, kilisenin gereksinim duyduğu Paskalya ve öteki yortuların tam günlerinin saptanması gibi önemli hesapların yapılmasında kullanılan astronomi gözlem aygıtlarını geliştirmeye koyuldu. Bu genç öğrencinin adı Mikoiaj Kopernik'tir. Fiziğin doğuşu: Yaklaşık yarım milyon yıl önce ilk insanlar, elde yapılmış yalın araçlar kullanıyor ve ateşi biliyorlardı. Bundan 20 000 yıl önce yaşayan Taş devri insanı, mağara duvarlarına resimler yapabiliyor, ok ve yay kullanabiliyordu (günümüzde bile, hâlâ Taş devri teknolojisiyle yaşamını sürdüren topluluklara Taşlanmaktadır). Günümüzden 10 000 yıl önce insanlar, toprağı işlemeye başlamışlardı. Bilimin ilk temel işaretleri ise, bundan 5 000 yıl Önce Babil'de ortaya çıkmaya başladı. Ancak Ortaçağ teknolojisi. Roma teknolojisinden pek farklı değildi; hattâ Romalıların su sistemleri daha iyiydi. Günümüzdeki anlamıyla bilim, XVII. yüzyılda ortaya çıktı. XVIII. ve XIX. yüzyıllarda endüstri devrimi gerçekleştirildi. XX. yüzyılda ise fizik, günlük yaşamda büyük bir yer tutmaya başladı. Günümüzde, bu bilim dalına dayanmayan bir yaşam düşünülemez. Klasik fiziğin temelleri, XVII. yüzyılda, GALİLEİ, KEPLER, BÖYLE, NEWTON, HOOKE, HUYGENS, GUERİCKE, TORRİCELLİ gibi bilginler tarafından atıldı. Günümüzdeki uygarlık düzeyi varlığını, bu temellere borçludur. XVII. yüzyılda, aynı zamanda, felsefe ile fiziğin birbirinden ayrılması da gerçekleşti. XVIII. yüzyıldan önce fiziğe, «doğal felsefe Bilimsel yöntem: Bilimsel yöntem, gerçeğin ortaya çıkarılmasını sağlayan «yanılmaz Neden-sonuç ilişkisi, çağımızda çok açık görünmesine karşılık, her zaman kabul edilmemiştir. Eskiden doğal olayların açıklanması, tanrıya bağlanmaktaydı. Günümüzde fizik, anlayış düzeyimizi biraz daha derine götürmeye ve olayların altında yatan gerçek nedenleri ortaya çıkarmaya çalışmaktadır. Çevrelerindeki olayları kaydeden ilk insanlar İ.Ö. 3000 yıllarında yaşayan Babillilerdi (Mezopotamya). Yazıyı bilen bu insanlar, gökcisimlerinin hareketlerini kataloglara geçirdiler. Aynı dönemde Kuzeybatı Avrupa'da yaşayanlar ise, yazıyı bilmemelerine karşılık, taşları kullanarak, gökcisimlerinin hareketlerini toprak üstünde belirtmeye çalıştılar. Babillilerin ve eski Mısırlıların tuttuğu kayıtlar, Yunanlıların eline geçti. Yunanlılar bunları yeniden düzenleme çabalarına girişti. Mekanik ve statikte bazı ilkol kavramlar (ARKHİMEDES'in banyo deneyi ve kaldıraç yasaları gibi) ortaya kondu. Yunanlıların en büyük katkısı, fiziğin gelişmesinde önemli payı bulunan bazı MATEMATİK ilkelerini bulmalarıdır. İ.S. III. yüzyılda Diophantos bazı fizik temellerini ortaya koymuştur, ama fiziğin bugünkü dayanağını oluşturan cebir daha sonra geliştirilmiştir. Bilimin geliştirilmesi, Yunanlılardan sonra Araplar tarafından yürütüldü. Bazı yeni buluşlar, sözgelimi İbni Heysem'in OPTİK konusuna ve matematik simgelere ilişkin düşünceleri, önceleri İtalya, daha sonra da Kuzey Avrupa'da ortaya çıkan bilimsel anlayışın ilk kıvılcımı oldu. Matematiğin Tarihi Gelişimi Ortaçağ İslâm Dünyası'nda başta aritmetik olmak üzere, matematiğin geometri, cebir ve trigonometri gibi dallarına önemli katkılarda bulunan matematikçiler yetişmiştir. Ancak bu dönemde gerçekleşen gelişmelerden en önemlisi, geleneksel Ebced Rakamları'nın yerine Hintlilerden öğrenilen Hint Rakamları'nın kullanılmaya başlanmasıdır. Konumsal Hint rakamları, 8. yüzyılda İslâm Dünyası'na girmiş ve hesaplama işlemini kolaylaştırdığı için matematik alanında büyük bir atılımın gerçekleştirilmesine neden olmuştur. Daha önce Arap alfabesinin harflerinden oluşan harf rakam sistemi kullanılıyordu ve bu sistemde sayılar, sabit değerler alan harflerle gösteriliyordu. Örneğin için a harfi, 10 için y harfi ve 100 içinse k harfi kullanılıyordu ve dolayısıyla sistem konumsal değildi. Böyle bir rakam sistemi ile işlem yapmak son derece güçtü. Erken tarihlerden itibaren ticaretle uğraşanların ve aritmetikçilerin kullanmaya başladıkları Hint Rakamları'nın üstünlüğü derhal farkedilmiş ve yaygın biçimde kabul görmüştü. Bu rakamlar daha sonra Batı'ya geçerek Roma Rakamları'nın yerini alacaktır. Cebir bilimi İslâm Dünyası matematikçilerinin elinde bağımsız bir disiplin kimliği kazanmış ve özellikle Hârizmî, Ebu Kâmil, Kerecî ve Ömer el-Hayyâm gibi matematikçilerin yazmış oldukları yapıtlar, Batı'yı büyük ölçüde etkilemiştir. İslâm Dünyası'nda büyük ilgi gören ve geliştirilen bilimlerden birisi olan astronomi alanındaki araştırmalara yardımcı olmak üzere trigonometri alanında da seçkin çalışmalar yapılmıştır. Bu konudaki en önemli katkı, açı hesaplarında kirişler yerine sinüs, kosinüs, tanjant ve kotanjant gibi trigonometrik fonksiyonların kullanılmış olmasıdır. Yeniçağ Bu dönem diğer alanlarda olduğu gibi matematik alanında da yeniden bir uyanışın gerçekleştiği ve özellikle trigonometri ve cebir alanlarında önemli çalışmaların yapıldığı bir dönemdir. Trigonometri, Regiomontanus, daha sonra da Rhaeticus ve Bartholomaeus Pitiscus`un çabalarıyla ve cebir ise Scipione del Ferro, Nicola Tartaglia, Geronimo Cardano ve Lodovice Ferrari tarafından yeniden hayata döndürülmüştür. Yapılan çalışmalar sonucunda geliştirilen işlem simgeleri, şu anda bizim kullandıklarımıza benzer denklemlerin ortaya çıkmasına olanak vermiş ve böylelikle, denklem kuramı biçimlenmeye başlamıştır. Rönesans matematiği özellikle Raffaello Bombelli, François Viète ve Simon Stevin ile doruk noktasına ulaşmıştır. 1585 yılında, Stevin, aşağı yukarı Takîyüddîn ile aynı anda ondalık kesirleri kullanmıştır. Bu dönemde çağdaş matematiğin temelleri atılmış ve Pierre de Fermat sayılar kuramını, Pascal olasılık kuramını, Leibniz ve Newton ise diferansiyel ve integral hesabı kurmuşlardır. Yakınçağ Bu dönemde Euler ve Lagrange, integral ve diferansiyel hesabına ilişkin 17. yüzyılda başlayan çalışmaları sürdürmüş ve bu çalışmaların gök mekaniğine uygulanması sonucunda fizik ve astronomi alanlarında büyük bir atılım gerçekleştirilmiştir. Mesela Lagrange, Üç Cisim Problemi'nin ilk özel çözümlerini vermiştir. Bu dönemde matematiğe daha sağlam bir temel oluşturmaya yönelik felsefi ağırlıklı çalışmalar genişleyerek devam etmiştir. Russell, Poincaré, Hilbert ve Brouwer gibi matematikçiler, bu konudaki görüşleriyle katkıda bulunmuşlardır. Russell, matematik ile mantığın özdeş olduğunu kanıtlamaya çalışmıştır. Matematiğin, sayı gibi kavramlarını, toplama ve çıkarma gibi işlemlerini, küme, değilleme, veya, ise gibi mantık terimleriyle ve matematiği ise "p ise q" biçimindeki önermeler kümesiyle tanımlamıştır. Hilbert'e göre ise, matematik soyut nesneleri konu alan simgesel bir sistemdir; mantığa indirgenerek değil, simgesel aksiyomatik bir yapıya dönüştürülerek temellendirilmelidir. Sezgici olan Brouwer de matematiğin temeline, kavramlara somut içerik sağlayan sezgiyi koyar; çünkü matematik bir teori olmaktan çok zihinsel bir faaliyettir. Poincaré'ye göre de matematiğin temelinde sezgi vardır ve matematik kavramlarının tanımlanmaya elverişli olması gerekir. Yine bu dönemin en orijinal matematikçileri olarak Dedekind ve Cantor sayılabilir. Dedekind, erken tarihlerden itibaren irrasyonel sayılarla ilgilenmeye başlamış, rasyonel sayılar alanının sürekli reel sayılar biçimine genişletilebileceğini görmüştür. Cantor ise, bugünkü kümeler kuramının kurucusudur. Kimya'nın Tarihsel Gelişimi Kimya sözcüğünün ( Eski Mısır dilinde "kara" ya da "Kara Ülke" ) sözcüğünden türediği sanılmaktadır Bir başka sav da khemeia (Eski Yunanca khyma: "¤¤¤¤l dökümü) sözcüğünden türediğidir Kimyanın kökenleri felsefe, simya, ¤¤¤¤lürji ve tıp gibi çok çeşitli alanlara dayanır Ama kimya ancak 17 yüzyılda mekanikçi felsefenin kurulmasıyla ayrı bir bilim olarak ortaya çıkmıştır Mezopotamyalılar, Çinliler, Mısırlılar ve Yunanlılar çok eski çağlardan beri bitkilerden boyarmadde elde etmeyi, dokumaları boyamayı, deri sepilemeyi, üzümden şarap, arpadan bira hazırlamayı, sabun üretimini, cam kaplar yapmayı biliyorlardı Eski çağlarda kimya sanatsal bir üretimdi Daha sonra Antik Çağın deneyciliği, Yunan doğa felsefesi, Rönesans simyası, tıp kimyası gelişti 18 yüzyılda kuramsal ve uygulamalı kimya, 19 yüzyılda organoteknik ve fizikokimya, 20 yüzyılda ise radyokimya, biyokimya ve kuvantum kimyası gibi yeni dallar ortaya çıktı Ünlü kimya tarihçisi Hermann Kopp, İS 300- 1600 arasını, soy (asal) olmayan ¤¤¤¤lleri soy ¤¤¤¤llere dönüştürecek filozof taşının ve insan ömrünü sonsuzlaştıracak yaşam iksirinin arandığı simya çağı; 1600- 1700 arasını ilaçların hazırlandığı iyatrokimya (tıp kimyası) çağı; 1700- 1800 arasını, yanma sürecinin araştırıldığı filojiston kimyası çağı; bundan sonraki dönemi ise nicel kimya çağı olarak adlandırmıştır 16- 18 yüzyıllar arasındaki dönem yeniçağ kimyası olarak da tanımlanır Kimyanın kökeninin, yaklaşık olarak Hıristiyanlık çağının başlarında Mısır'ın İskenderiye kentinde biçimlenmeye başladığı kabul edilir Eski Mısır'ın ¤¤¤¤lürji, boya ve cam yapımı gibi üretim zanaatları ile eski Yunan felsefesi İskenderiye'de bir araya gelerek kaynaşmış ve İS 400'lerde uygulamalı kimya bilgisi gelişmeye başlamıştır Justus von Liebig'e göre simyacılar önemli aygıt ve yöntemler bulmuşlar, sülfürik asit, hidroklorik asit, nitrik asit, amonyak, alkaliler, sayısız ¤¤¤¤l bileşikleri, şarap ruhu (alkol), eter, fosfor ve Berlin mavisi gibi çok çeşitli maddeleri kullanmışlardır Hıristiyanlığın ilk yüzyılında Yahudi Maria olarak bilinen bir kadın simyacı çeşitli türde fırınlar, ısıtma ve damıtma düzenekleri geliştirmiş, simyacı Kleopatra ise altın yapımı konusunda bir kitap yazmıştır Maria'nın buluşu olan su banyosu günümüzde de "benmari" adı altında kullanılmaktadır 350- 420 arasında İskenderiye'de yaşayan Zosimos, simya öğretisinin en önemli temsilcisidir ve 28 ciltlik bir simya ansiklopedisi yazmıştır Roma İmparatorluğu ve Bizans İmparatorluğu'nda, daha sonra da İslam ülkelerinde kimya tekniğinde büyük ilerlemeler olmuş ve Aristoteles'in bütün maddelerin sonuçta dört öğeden (toprak, su, hava, ateş) oluştuğu ve bunların birbirine dönüştüğü biçimindeki kuramı İskenderiyeli ve daha sonra da Cabir, İbn Hayyan, Ebubekir el-Razi ve İbn Sina gibi Arap simyacılar tarafından geliştirilmiştir İbn Sina özellikle dönüşümle ilgilenmiş ve el-Fennü'l-Harmis nün Tabiiyat adlı kitabının mineralojiyle ilgili bölümünde mineralleri taşlar, ateşte eriyen maddeler, kükürtler ve tuzlar olarak dört gruba ayırmıştır İbn Sina madde ve biçimin bir birlik olduğunu, doğa olaylarının açıklanmasında doğaüstü ve maddesel olmayan güçlerin etkisinin olmadığını söylemiş, kuramsal düşünceyi ve kavram üretmeyi öne çıkarmıştır Rönesans döneminde geçmiş yılların getirdiği kimya bilgisinin birikimiyle, tıp ve kimyasal üretim alanlarında uygulamalı kimya ortaya çıktı Bu dönemde eczacılıkta inorganik tedavi maddelerinin kimyasal yöntemlerle elde edilmesine "kemiatri" (kimyasal tedavi) adı verildi Kemiatrinin kimya temeline dayalı ilaç üretimi biçimindeki pratik amacının yanı sıra, hastalıklar ve madde alışverişi olaylarının kimyasal yorumu gibi kuramsal bir amacı da vardı Bu kuramsal amaçla ilgili yönelime iyatrokimya denir Günümüzde kemiatrinin karşılığı farmasötik kimya ve kuramsal biyokimyadır İyatrokimyanın öncüsü olan İsviçreli hekim Paracelsus'a ( 1493- 1541) göre tuz, kükürt ve cıva, var olan bütün cisimlerin temel yapıtaşı olan beden, can ve ruhun karşılığıydı Bu üçlü arasında denge bozulduğunda hastalık başlıyordu Paracelsus midenin bir kimya laboratuvan olduğunu, özsuların yoğunlaşmasıyla hastalıkların ortaya çıktığını ve bu durumun ilaçla giderilebileceğini savundu ve farmakolojide kimyasal maddelerden yararlanılması yolunda çaba harcadı Johann Baptist van Helmontx(1580-1644) ve Johann Rudolph Glauber (1604-68), Rönesans kimyasının temsilcileridir Suyun temel element olduğuna inanan van Helmont'un en önemli çalışmaları çeşitli süreçlerle gaz üretimini ilk kez açıkça gerçekleştirmesi ve deneylerinde teraziyi kullanarak kimyasal çalışmalara nicel özellik kazandırmasıdır Glauber'in en büyük başarısı ise, yemeklik tuzu sülfürik asitle parçalayarak tuz asidi (hidroklorik asit) ve sodyum sülfat elde etmesidir Sodyum sülfat dekahidrat günümüzde de onun adıyla Glauber tuzu olarak bilinir Glauber ayrıca ilk kez ¤¤¤¤llerin tuz asidi içinde çözünmesiyle ¤¤¤¤l klorürlerin oluşacağını gösterdi Simya 16 ve 17 yüzyıllarda Avrupa'da derebeyi saraylarında giderek yayıldı ve bu durum, bilimsel kimya gelişene ve elementlerin birbirine dönüştüğü inancının sarsılmaya başlamasına değin sürdü 17 yüzyılda kimyanın sanat ya da bilim olup olmadığı çok tartışıldı Bu yüzyılda, çağdaş anlatımla, uygulamalı ve kuramsal kimya ayırımı vardı Kemiatri, ¤¤¤¤lürji kimyası, madencilik ve demircilik kimyası uygulamalı kimyanın içinde yer alıyordu Kuramsal kimya ise betimlenebilen "tüm doğa bilimleri" anlamına gelen physica'nın içindeydi Yeniçağdaki oluşum deneyimden (experientia) deneye {experimentum) doğru oldu ve deneyin doğa araştırmasındaki bilimsel önemi kabul edildi Kimya zamanla simyadan ayrıldı ve eski çağların gizemli görüşlerinden uygulamalı kimyaya geçildi Eski kimyada madde ve bileşikler yalnızca beklenen son ürün açısından önemliydi Çeşitli reçeteler ise beklenen sonuca götüren bir araçtı Eski düşünce ve bilgilerin doğruluk ya da yanlışlıklarının denetlenmesi ancak kimyasal tepkimelerin gözlenmesi ve tepkime sürecinin incelenmesiyle olanaklıydı Mekanikçi felsefe ile kimyanın etkileşimine en iyi örnek Robert Boyle'un çalışması oldu İngiliz bilim adamı Robert Boyle 1661'de yayımladığı The Sceptical Chymist (Kuşkucu Kimyacı) adlı yapıtıyla Aristotelesçi görüşleri çürüttü Böyle, kimyasal elementleri maddenin parçalanmayan yapıtaşları olarak açıkça tanımladı, ilk kez kimyasal bileşikler ile basit karışımlar arasında ayrım yaptı, kimyasal birleşmelerde özelliklerin tümüyle değiştiğini, basit karışımlarda ise böyle değişimlerin olmadığını söyledi; gazlar üzerinde yürüttüğü deneylerde gazların basıncı ile hacimleri arasındaki bağıntıyı belirleyen yasayı buldu ve ilk kez elementlerin ve bileşiklerin doğru tanımını yaptı Böyle ayrıca havanın yanma olaylarındaki rolünü keşfetti ve havanın tartılabilir bir madde olduğunu söyledi 18 yüzyılda kimyanın temel sorunu yanma olayının (ateş ruhlarının işlevlerinin) açığa kavuşturulması oldu 17 yüzyıl ortalarına doğru maddedeki elementlerden birinin yanmaya neden olduğu ileri sürülmüş ama bu sav, ateşin maddesel bir cisim olamayacağı gerekçesiyle ünlü simyacı van Helmont tarafından reddedilmişti Alman simyacı Johann Joachim Becher (1635-82) bu öneriyi daha sonra 1669'da yeniden gözden geçirdi ve terra pinguis olarak adlandırılan ateş elementinin yanma sırasında kaçıp giden bir nesne olduğunu varsaydı Becher'in öğrencisi ve Berlinli bir hekim olan Georg Ernst Stahl ( 1660- 1734) bu nesneye "flojiston" adını verdi Yanma olayına yanlış da olsa ilk kez bir bilimsel açıklama getiren flojiston kuramına göre yanıcı maddeler, yanıcı olmayan bir kısım ile flojistondan oluşur Buna göre ¤¤¤¤l oksitler birer element, ¤¤¤¤ller ise kil (¤¤¤¤l oksit) ile flojistondan oluşan birer bileşik maddedir ¤¤¤¤l yandığında eksi kütleli "plan flojiston bir ruh gibi ayrılır ve elementin külü (¤¤¤¤l oksit) açığa çıkar Küle yeniden flojiston verildiğinde de yeniden ¤¤¤¤l oluşur Örneğin çinko oksit flojistonca zengin olan kömürle ya da hidrojen gazıyla ısıtıldığında yeniden çinko oluşur ve hafifler Bir yüzyıl boyunca kimyaya egemen olan bu kuram element kavramına uygun olmamakla birlikte kimyanın bilimsel gelişmesinde çok büyük rol oynadı Cavendish, Priestley ve Scheele ise çalışmalarında karbon dioksit, oksijen, klor, ¤¤¤¤n (bataklık gazı) ve hidrojen gazlarını ayrı gazlar olarak tanımladılar Cavendish ayrıca gazları yoğunluklarına göre ayırdı İlk kez suyun bir element olmayıp oksijen ile hidrojenin bir bileşiği olduğunu kanıtladı Bu çalışmaların da yardımıyla flojiston kuramı yıkıldı Aynı zamanda bir fizikçi olan Antoine-Laurent Lavoisier ( 1743-94) kimyanın babası sayılır Lavoisier ¤¤¤¤l oksitlerinin daha önce Priestley ve Scheele'nin keşfettiği oksijen ile ¤¤¤¤llerin yaptığı bileşikler olduğunu kanıtladı, yanma ve oksitlenme olaylarının günümüzde de geçerli olan açıklamasını yaparak kimyada yeni bir çığır açtı Kapalı kaplarda yaptığı deneylerde, kimyasal tepkimeler sırasında kütlenin değişmediğini saptayarak 1787'de kütlenin korunumu yasasını ortaya koydu Kimya'daki devrim yalnızca kavramlarda değil yöntemlerde de gerçekleşti Ağırlıksal yöntemler duyarlı çözümler yapmayı olanaklı kıldı ve kütlenin korunumu yasasıyla nicel kimya dönemi başladı Lavoisier'den sonra 1798'de Alman kimyacı Richter birleşme ağırlıkları yasasını, 1799'da gene Alman kimyacı Proust sabit oranlar yasasını ve 1803'te ingiltere'den John Dalton katlı oranlar yasasını geliştirdi Gay-Lussac da Alexander von Humboldt'un yardımıyla öbür gazlarla tepkimeye giren bir gazın her zaman belirli hacim oranlarıyla birleştiğini buldu İtalyan fizikçi Amedeo Avogadro 1811'de, gaz halindeki pek çok elementin birer atomlu değil, ikişer atomlu oldukları ve aynı koşullar altında bulunan gazların eşit hacimlerinde eşit sayıda molekül bulunacağı varsayımını geliştirdi Avogadro'nun bu varsayımını 50 yıl sonra, 1860'ta Stanislao Cannizzaro yasa düzeyine çıkardı 19 yüzyılın başlarında ingiliz kimyacı Humphry Davy ve öteki bilim adamları, volta pillerinden sağladıkları güçlü elektrik akımlarını bileşiklerin çözümlenmesi ve yeni elementlerin bulunması çalışmalarına uyguladılar Bunun sonucunda kimyasal kuvvetlerin elektriksel olduğu ve örneğin aynı elektrik yüklü iki hidrojen atomunun birbirini iteceği ve Avogadro varsayımına göre birleşerek çok atomlu molekülü oluşturmayacağı ortaya çıktı 1859'da Alman fizikçi Gustav Kirchhoff ve kimyacı Robert Bunsen'in bulduğu tayf çözümleme tekniğinin yardımıyla da o güne değin bilinen elementlerin sayısı 63'ü buldu Elementlerin atom ağırlıkları ile fiziksel ve kimyasal özellikleri arasındaki bağıntıyı bulan Rus kimyacı Dimitriy İvanoviç Mende-leyev 1871'de ilk kez kimyasal elementlerin periyodik yasasını açıkladı Mendeleyev'e göre hidrojenin dışındaki elementler artan atom ağırlıklarına göre bir sırayla düzenlendiğinde, bunlann fiziksel ve kimyasal özellikleri de bu sıraya göre düzgün bir değişim gösteriyordu Ama bu düzgün gidiş kesintilerle birkaç sıra halindeydi ve bu sıralara periyot adı verildi Mendeleyev'in tablosunda atom ağırlığı daha büyük olan bazı elementlerin ön sıralarda yer alması atom ağırlıklarının ölçüt alınamayacağını gösterdi İngiliz fizikçi HG Moseley 1913'te X ışınımı yardımıyla elementlerin atom numaralarını saptadığında bu sıralamada atom numaralarının temel alınması gerçeği ortaya çıktı Bundan sonra Mendeleyev'in tablosundaki boş olan yerler yeni keşfedilen elementlerle dolmaya başladı Wilhelm Röntgen'in 1895'te X ışınımını bulmasından hemen sonra Henri Becquerel 1896'da, uranyumdaki doğal radyoaktifliği keşfetti ve 1900'de fizikçi Max Planck kuvantum kuramını ortaya attı Rutherford 19J9'da havadaki azotu, radyum preparat-lanndan salınan alfa taneciklerinin yardımıyla oksijene ve hidrojene dönüştürerek ilk yapay element dönüşümünü gerçekleştirdi August Kekule'nin 1865'te kurduğu yapı kuramının genişletilmesi sonucunda, bire-şimleme (sentez) ve ayrıştırma yoluyla pek çok yeni madde elde edilebildi Bu kurama göre atomlar değerliklerine karşılık gelecek biçimde bileşikler halinde birleşirler ve her atomun belirli bir değerliği vardır Kekule' nin bu açıklamalarından sonra kimyasal bileşikler yeni bir biçimde değerlendirilmeye başladı Örneğin su (H2O) H-O-H, karbon dioksit (CO2) O-C-O, biçiminde gösterildi Bu gösterimden bireşimleme kimyası çok yararlandı Kekule ayrıca moleküllerin farklı özelliklerinin atomların birbiriyle yaptığı farklı bağlarla belirlendiğini kanıtladı ve kapalı formülü C6Ü6 olan benzenin halka biçiminde birleşmiş bir yapısı olduğunu çözdü Yapı kuramına dayanarak varlığı düşünülen bileşiklerin bireşimsel olarak üretilebilmesine yönelik özel yöntemler geliştirildi; yapısı bilinmeyen doğal ya da yapay bileşiklerin iç yapılarını çözmek amacıyla da tam tersi bir yol izlenerek bunların yapılan sistemli bir biçimde ve aşamalı olarak parçalanarak bulundu Kekule'nin buluşu aromatik karbon kimyasının hızla gelişmesini olanaklı kıldı F Wöhler, siyanür bileşikleriyle çalışırken üreyle formülü aynı olan amonyum siyanatı bireşimledi Biri mineral, öbürü hayvansal kökenli olan her iki ürün de aynı elementlerin aynı sayıdaki atomlarından oluşuyordu Bu buluşla izomerleşme olgusu ortaya çıktı ve inorganik kimya ile organik kimya arasındaki farklılık ortadan kalktı Kimya alanındaki çalışmalar sonraları maddelerin tepkime biçimleri, ısı etkisi, çözeltiler, kristallenme ve elektrolizle ilgili konulara yöneldi ve galvanizleme konularındaki gelişmelerden fiziksel kimya (fizikokimya) doğdu Bu arada M Berthelot termokimyanın temellerini attı Raoult, W Ostwald, van't Hoff, J W Gibbs, Le Chatelier ve S Arrhenius fiziksel kimyanın gelişmesinde önemli rol oynadılar İtalyan bilim adamı Alessandro Volta'nın 1800'de iki ¤¤¤¤l levha arasına nemli bez ya da tuz çözeltisi koyarak elektrik akımı elde etmesi kimyada önemli gelişmelere neden oldu Humphry Davy 1807'de özel olarak geliştirdiği Volta pilini kullanarak erimiş külden elektrik akımı geçirdi ve bu yolla önce potasyum adını verdiği elementi, sonra da sodadan sodyum elementini ayırmayı başardı Bu da elektrokimya dalında önemli adımlar atılmasını olanaklı kıldı Çağdaş bilimin gelişmesiyle Sanayi Devrimi arasında yakın bir ilgi olduğu düşünülmekle birlikte, Sanayi Devrimi'nin anayurdu olan İngiltere'de bile bilimsel buluşların dokuma ve ¤¤¤¤lürji sanayisini doğrudan etkilediğini göstermek zordur, 18 yüzyılda bilim dikkatli bir gözlem ve deneyciliğin sanayide üretimi önemli ölçüde iyileştirebileceğini gösterdi Ama ancak 19 yüzyılın ikinci yansından başlayarak bilim sanayiye önemli katkıda bulunmaya başladı; kimya bilimi anilin boyalar gibi yeni maddelerin üretilmesini olanaklı kıldı ve boyarmadde ile ilaç sanayisi hızla gelişen ilk kimya sanayisi oldu 20 yüzyılda madencilik, ¤¤¤¤lürji, petrol, dokuma, lastik, inşaat, gübre ve gıda maddeleriyle doğrudan ilişkisi olan kimya sanayisi elektrikten sonra bilimin uygulamaya geçirildiği sanayiler arasında ikinci sırayı aldı Yalnızca kimyanın değil, fiziğin de kimya sanayisine girmesiyle laboratuvarda elde edilen sonuçlann doğrudan uygulamaya sokulduğu kimya fabrikaları kurulmaya başladı Bu süreçlerin denetlenmesinde çeşitli aygıtlara gerek duyulduğundan fiziksel kimyacılar ve fizikçiler kimya sanayisinde etkin olmaya başladı ve böylece kimya mühendisliği mesleği doğdu. Biyolojinin Tarihsel Gelişimi Biyoloji bilimi, insanın kendini ve çevresindeki canlıları tanıma merakından doğmuştur İlk insanlar çevrelerinde yaşayan sığır , geyik ve mamut gibi hayvanların resimlerini mağara duvarlarına çizerek bunları incelemeye başlamışlardır. Antik çağdan günümüze kadar biyoloji bilimindeki gelişmeleri, ilgili bilim adamlarıyla aşağıdaki gibi özetleyebiliriz: Thales (Tales) (M.Ö. VII. yy .) İlk biyolojik yorumları yapmıştır. Aristo (M.Ö. 384-322) Canlılar dünyasını inceleyen ve ‘’bilimsel doğa tarihi’nin kurucusu olan ilk bilim adamıdır. Aristo, bir bilim adamında bulunması gereken iki önemli özelliğe, yani iyi gözlem yapabilme ve bunlardan doğru sonuçlar çıkarabilme yeteneğine sahiptir .Çalışmalarını ‘’Hayvanların Tarihi, Hayvan nesli üzerine'’ ve ‘’Hayvan Vücutlarının Kısımları Üzerine'’ adlı kitaplarında toplamıştır. Aristo, canlıların oluşumlarını ‘’kendiliğinden oluş (abiyogenez)'’ hipotezi ile açıklamış, ayrıca ilk sınıflandırmayı da yapmıştır. Galen (M.Ö. 131-201) Canlı organlarını inceleyerek fizyoloji biliminin doğmasını sağlamıştır . Galileo (Galile) 1610 yılında ilk mikroskobu bulduğu samlmaktadır. Mikroskobun keşfi biyolojik çalışmalara büyük ivme kazandırmıştır . Robert Hooke (Rabırt Huk) 1665 yılında mikroskop ile mantar kesitini inceleyerek ilk hücre ( cellula )yi tanımlamıştır. Leeuwenhoek (Lövenhuk) 1675 yılında geliştirdiği mikroskop ile ilk bir hücrelileri (bakterileri) göstermiştir. Carolus Linnaeus (Karl Linne) 1707-1778 yıllarında ilk sınıflandırmayı yapmıştır. Schleiden (Şlayden) 1838′de bitki hücreleri üzerinde çalışmalar yapmıştır. Schwann (Şivan) 1839′da hayvan hücresini bitki hücresiyle karşılaştırdı.Schleiden ve Schwann’ın hücre teorisinin ortaya konulmasında katkıları olmuştur. Charles Darwin (Çarls Darvin) 1859 yılında ‘’Türlerin Kökeni'’ adlı yayınlayarak ‘’doğal seleksiyon’ yoluyla türlerin evrimini ortaya koymuştur. Pasteur (Pastör) (1882-1895) Biyogenez hipotezini kanıtladı. Mikroskobik canlıların fermantasyona (mayalanma) neden olduğunu tespit etti. Aynca kuduz aşısının bulunmasını sağladı . Gregor Mendel (1822-1884): Kilisesinin bahçesinde yetiştirdiği bezelyelerde yaptığı deneyler sonucunda kalıtsal özelliklerin dölden döle geçişi ile ilgili önemli sonuçlar elde etmiştir. Mendel bu çalışmalarıyla genetik bilimin kurucusu olmuştur . Miescher (Mişer) 1868′de nükleik asitleri bulmuştur. Beijrinck (Bayerink) 1899′da tütün yapraklarında görülen tütün mozaik hastalığını incelemiştir. Virüslerin keşfine katkıda bulunmuştur . Wilhelm Röntgen (Vilhem Röntgen) 1895 yılında tıpta kullanılan röntgen ışınlarını bulmuştur . Sutton (Sattın) 1903 yılında kalıtımın kromozom kuramını yani genlerin kromozomlar üzerinde bulunduğunu açıklamıştır . Wilhelm Roux (Vilhem Ru) (1850-1924) Embriyolojinin kurucusu olmuştur. Otto Mayerhof (Otto Mayerhof) 1922′de kastaki enerji dönüşümlerini inceleyerek Nobel tıp ödülünü almıştır. Sir Alexender Fleming (Sör Aleksendır Fleming) 1927′de penisilini bularak bakteriyal enfeksiyonlara karşı etkin mücadeleyi sağlamıştır . E.A.F Ruska 1931 yı1ında elektron mikroskobunu bulmuştur. James Watson (Ceyms Vatsın), Francis Crick (Fransis Krik) 1953 yı1ında DNA molekül modelini ortaya koymuşlardır .İkili sarmal modeli günümüzde de geçerliliğini korumaktadır. Steven Howel (Stivın Havıl) 1986 yı1ında ateş böceklerinin ışık saçmasını sağlayan geni ayırarak tütün bitkisine aktarmış, tütün bitkisinin de ışık saçmasını sağlamıştır. İşte bu olay gen naklinin başlangıcı olmuştur. Wilmut (Vilmut) 1997 yı1ında bir koyundan alınan vücut hücresinin çekirdeğini, başka bir koyuna ait çekirdeği çıkarılan yumurta hücresine aktararak genetik ikiz elde etmiştir . Tüm bu çalışmalar biyolojiyi 21. yüzyılın en önemli bilim dallarından biri yapmıştır Biyoloji ile ilgili bazı bilgilerin tarih öncesinde ortaya çıkmış olduğunu arkeolojik veriler ortaya koymuştur. Cilalı Taş Devri'nde, çeşitli insan toplulukları tarımı ve bitkilerin tıp alanında kullanımını geliştirmişler, sözgelimi eski Mısırlılar, bazı otları ilaç olarak ve ölülerin mumyalanmasında kullanmışlardır. Bununla birlikte bir bilim dalı olarak biyolojinin gelişimi, eski Yunan döneminde ortaya çıkmıştır. Tıbbın kurucusu sayılan Hipokrates, insan biyolojisinin ayrı bir bölüm olarak gelişmesine büyük katkıda bulunmuştur. Biyolojinin temel gereçleri olan gözlem yapma ve problem belirleyerek çözüme ulaştırmayı kurumlaştıran Aristoteles'tir. Aristoteles'in özellikle üremeye ilişkin gözlemleri ve canlıların sınıflandırılması sistemiyle ilgili görüşleri önemlidir. Biyoloji incelemelerinde öncülük daha sonra Roma'ya ve İskenderiye'ye geçmiş, M.Ö. II. yy. ile M.S. II. yy'a kadar incelemeler özelikle tarım ve tıp çevresinde odaklanmıştır. Ortaçağ'da ise, biyoloji incelemesinde islâm bilginleri öne geçmişler ve eski Yunan metinlerinden öğrendikleri bilgileri geliştirerek, özellikle tıp bilimine büyük katkıda bulunmuşlardır. Rönesans'la birlikte Avrupa'da, özellikle de İtalya, Fransa ve İspanya'da biyoloji araştırmaları hızla gelişmiş, XV. ve XVI. yy'larda Leonardo da Vinci ve Micheangelo, güzel sanatlarda kusursuzluğa erişme çabaları içinde, son derece usta birer anatomi bilgini haline gelmişlerdir. Bu arada Andreas Vesalius, öğretim gereci olarak ölülerin kesilip incelenmesinden yararlanma uygulamasını başlatmış, ölüler üstünde kesip biçmelere dayalı ilk anatomi kitabıyla anatomi ve tıp araştırmalarında bir devrim gerçekleştirmiştir. XVII. yy'da William Harvey insanda dolaşım sistemine ilişkin çalışmaları başlatmıştır. XVIII. ve XIX. yüzyıllarda ise biyoloji bilimi önemli bir ilerleme kaydetmiştir.Bu dönemde yapılan çalışmalar aşağıdaki gibi özetlenebilir: Jean-Baptiste Lamarck omurgasız canlıların sınıflandırılmasının detaylı çalışmasına başladı. 1802 Modern anlamda "Biyoloji" terimi, birbirlerinden bağımsız olarak Gottfried Reinhold Treviranus ve Lamarck tarafından kullanıldı. 1817 Pierre-Joseph Pelletier ile Joseph-Bienaime Caventou klorofili elde ettiler. 1828 Friedrich Woehler, organik bir bileşiğin ilk sentezi olan ürenin sentezini gerçekleştirdi. 1838 Matthias Schleiden tüm bitki dokularının hücrelerden oluştuğunu keşfetti. 1839 Theodor Schwann tüm hayvan dokularının hücrelerden oluştuğunu keşfetti. 1856 Louis Pasteur mikroorganizmaların fermentasyonda etkili olduklarını vurguladı. 1869 Friedrich Miescher hücrelerin çekirdeğinde bulunan nükleik asitleri keşfetti. 1902 Walter S. Sutton ve Theodor Boveri mayoz bölünme sırasında kromozomların hareketlerinin Mendel'in kalıtım birimleriyle paralellik gösterdiğini saptayıp, bu birimlerin kromozomlarda bulunduğunu ileri sürdü. 1906 Mikhail Tsvett organik bileşiklerin ayrıştırılması için kromatografi tekniğini keşfetti. 1907 Ivan Pavlov sindirim fizyolojisi ve eğitim psikolojisi bakımından büyük önem taşıyan salya akıtan köpeklerle klasik koşullanma deneyini tamamladı. 1907 Emil Fischer yapay olarak peptid amino asit zincirlerinin sentezini gerçekleştirdi ve bu şekilde proteinlerde bulunan amino asitlerin birbirleriyle amino grubu - asit grubu bağlarla bağlandıklarını gösterdi. 1909 Wilhelm Ludwig Johannsen kalıtsal birimler için ilk kez "gen" terimini kullandı. 1926 James Sumner üreaz enziminin bir protein olduğunu gösterdi. 1929 Phoebus Levene nükleik asitlerdeki deoksiriboz şekerini keşfetti. 1929 Edward Doisy and Adolf Butenandt birbirlerinden bağımsız olarak östrojen hormonunu keşfettiler. 1930 John Northrop pepsin enziminin bir protein olduğunu gösterdi. 1931 Adolf Butenandt androsteronu keşfetti. 1932 Hans Krebs üre siklusunu keşfetti. 1932 Tadeus Reichstein yapay olarak gerçekleştirilen ilk vitamin sentezi olan Vitamin C'nin sentezini başardı. 1935 Wendell Stanley tütün mozaik virüsünü kristalize etti. 1944 Oswald Avery pnömokok bakterilerde DNA'nın genetik şifreyi taşıdığını gösterdi. 1944 Robert Woodward ve William von Eggers Doering kinini sentezlemeyi başardı 1948 Erwin Chargaff DNA'daki guanin birimlerinin sayısının sitozin birimlerine ve adenin birimlerinin sayısının timin birimlerine eşit olduğunu gösterdi. 1951 Robert Woodward kolesterol ve kortizonun sentezini gerçekleştirdi. 1951 Fred Sanger, Hans Tuppy, ve Ted Thompson insulin amino asit diziliminin kromatografik analizini tamamladı. 1953 James Watson ve Francis Crick DNA'nın çift sarmal yapıda olduğunu ortaya koydu. 1953 Max Perutz ve John Kendrew X-ray kırınım çalışmalarıyla hemoglobinin yapısını belirledi. 1955 Severo Ochoa RNA polimeraz enzimlerini keşfetti. 1955 Arthur Kornberg DNA polimeraz enzimlerini keşfetti. 1960 Robert Woodward klorofil sentezini gerçekleştirmeyi başardı. 1967 John Gurden nükleer transplantasyonu kullanarak bir kurbağayı klonlamayı başarıp, bir omurgalı canlıyı klonlayan ilk bilim adamı olarak tarihe geçti. 1970 Hamilton Smith ve Daniel Nathans DNA restriksiyon enzimlerini keşfetti. 1970 Howard Temin ve David Baltimore birbirinden bağımsız olarak revers transkriptaz enzimlerini keşfetti. 1972 Robert Woodward B-12 vitamininin sentezini gerçekleştirdi. 1977 Fred Sanger ve Alan Coulson dideoksinükleotidleri ve jel elektroforezini kullanımını içeren hızlı bir gen dizisi belirleme tekniğini bilimin hizmetine sundu. 1978 Fred Sanger PhiX174 virüsüne ait 5,386 bazlık dizilimi ortaya koydu ki bu tüm genom dizilimi gerçekleştirilen ilk canlıydı. 1983 Kary Mullis polimeraz zincir reaksiyonunu keşfetti. 1984 Alex Jeffreys bir genetik parmak izi metodu geliştirdi. 1985 Harry Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl ve Richard Smalley Karbon-60 Buckminster-fulleren molekülünün olağanüstü stabilitesini keşfettiler ve yapısını açığa çıkardılar. 1985 Wolfgang Kratschmer, Lowell Lamb, Konstantinos Fostiropoulos ve Donald Huffman Buckminster-fulleren'in benzende çözülebilirliğinden dolayı isten ayrılabildiğini keşfettiler. 1990 ve 2000’li yıllarda yapılan biyolojik çalışmaların çoğu genetik kopyalamalar üzerine oldu.Bu durum da XXI.yüzyılın genetik bilimi üzerine kurulacağı işaretlerini veriyor.

http://www.biyologlar.com/bilimin-dogusunu-ve-fizik-kimya-biyoloji-matematik-olarak-temel-biirmler-haline-donusmesini-tarihsel-boyutta-aciklayiniz

ASİDİK- BAZİK VE NÖTRAL BOYALAR NELERDİR

Asidik ve bazik boyalar, solusyon hazırlandığında iyonize olurlar.Tipik bir bazik boya, katyonik veya pozitif yüklü boya iyonları ve negatif yüklü, renksiz klorid iyonları oluştururlar. Halbuki asidik bir boya anyonik veya negatif yüklü renkli boya iyonları ve pozitif yüklü renksiz sodyum iyonları oluştururlar. Boyalara uygulanan bu ''asidik'' ve ''bazik'' terimleri pH ile ilgili değildir ve bazik boya için katyonik boya; asidik boya içinse anyonik boya terimlerini kullanmak daha iyi olacaktır. Uygulamada, katyonik bazik boyalar reaksiyonda klorid köklerinden dolayı kısmen asit olarak bulunurlar. Asit boyalar ise sodyum tuzlarıdır ve kısmen alkali olabilirler. Bazik fuksin , renkli rosanilin temele ve renksiz asidik Cl köküne sahip bir bazik boyadır (Şekil a). Boya molekülünün asidik kısmı renkli olan, temeli ise renksiz ve genellikle sodyum olan boya ise asidofilik ' tir. Asit fuksin; rosananilin bir asidik sulfonat türevinin sodyum tuzudur. a-Bazik fuksin b-Asit fuksin Nötral bir boya; bir asidik ve bir bazik boyanın etkileşimi ile olur. Hem katyon hem de anyon chromophorik gruplar içerirler ve boya molekülünün her iki kısmında renkli bir boya vardır. Büyük moleküllerin kombinasyonundan dolayı, nötral boya solusyonları sıklıkla kolloidaldir. Nötral boyalar alkolde çözünürler, suda ise nadiren çözünürler. Halbuki asidik ve bazik boyalar genel1ikle her ikisinde de çözünürler. Nötral boyalara en iyi bilinen örnek Romanowsky boyalarıdır ve polychrom metilen blue ve eozinin etkileşimi ile şekillenirler; bu boyalar kan boyaması için çok kullanılırlar. Metilen mavisinin metilen azure oksidasyonu boyaya özel seçicilik özelliğini vermektedir. Bu oksidasyon hematoksilen gibi diğer boyaların olgunlaşmasına analogtur. Amfoterik bir boyama; belli bir pH'nın altında (izo-elektrik nokta) katyonik; bu pH'nın üstünde anyonik olan bir boyadan yapılır. Carminik asit izo-elektrik noktası pH-4.5' de olan bir amfoterik boyadır. Bazik boyalar; nukleuslar gibi asidik doku kompenentlerini renklendirirler. Asidik boyalar ise sitoplazma gibi bazik yapılarla birleşirler. Nötral boyalar ise hücredeki asidofilik ve bazofilik elementlere ilgi duyarlar ve bazı doku kompenentleri aynı zamanda üçlü boyama etkisi veren bileşik nötral boya ile reaksiyona girerler. RENKSİZ LEUCOBAZLAR Bazı boyalar kolaylıkla indirgenebilirler ve eğer bu süreçte kromofor haraplanırsa, boya rengini kaybeder. Böylesi leuco-boyalar (örnek: leuco-metilen blue), vital bir boya yönteminde oksidasyonla tekrar renklenirler. Buna karşılık eğer oksijen gerilimi düşerse metilen mavisi ile vital olarak boyanan hücre yapıları renksiz hale (leucobaza döner) gelir ve oksijene maruz bırakarak tekrar renklenebilir. Oksitleme ajanı için bir test olarak kullanılmadığından Schiff reaktifi ( bir leuco-fuksin) gerçek bir leucobaz değildir. Halbuki kromoforun tekrar yapımı ile renkli hale geldiğinden leucobazlara benzemektedir. METAKROMATİK BOYANMA Bazı doku kompenentleri boyalarla birleştiklerinde boyanın orijinal renginden ve dokunun diğer bölümünde oluşan renkten farklı bir renk oluştururlar. Bu olay metakromazi olarak adlandırılır. Bu şekilde hareket eden boyalar ise metakromatik olarak adlandırılmaktadır. Metakromatik boyanın rengini değiştirebilen madde ise 'Kromotrop'' olarak bilinir. Ortokromatik terimi ise metakromazi göstermeyen doku veya metakromatik olmayan bir boya için kullanılabilir. Metakromatik boyaların birden fazla absorbsiyon spektrumu vardır ve bunlar ortokromatik ve metakromatik doku-boya bileşikleri arasında göze çarpan kontrastı vermek için yeteri kadar farklı olmalıdır. En önemli metakromatik doku kompenentleri kıkırdak, bağ dokusu, epitelyal musin, mast ve bazofil hücre granülleri ve amyloid' tir. Metakromatik olan boyalar esas olarak toluidin blue, thionin gibi thiazinlerdir (Şekil ). Metil viyole de yaygın olarak kullanılmaktadır. Bu boyalarda kullanılan renk kontrastı mavi-kırmızıdır. Ortokromatik doku ile Toluidin blue nun absorbsiyon spektrumu yaklaşık 630 nm de maksimumdur ve ortaya çıkan renk mavidir; metakromatik madde ile ise maksimum absorbsiyon 480-540 nm dir ve renk kırmızıdır. Gamma metakromazi olarak bilinen kırmızı boyanmaya ek olarak, Toluidin blue dokuları menekşe veya mor renge boyar ve beta metakromazi olarak bilinir. Alfa................. mavi; negatif Beta................. menekşe veya mor; kısmen pozitif Gamma ...........kırmızı ; kuvvetli pozitif Metakromazinin ortaya çıkması için, dokunun yüzeyinde serbest elektronegatif gruplar (genellikle sülfat veya karboksil ) bulunmalıdır. Bu gruplar bol sülfatlı asidik polisakkaritlerde mevcuttur. Asidik grupların sayısında bir düşüş veya protein bağlanması ile bunların kaybı metakromazide düşüşe yol açar. Metakromazinin ilginç bir özelliği ise, alkolün, boyanın polimerize (metakromatik) şeklini, monomerik (ortokromatik) forma dönüştürmesidir. Eğer kesit, boyamadan sonra alkolle dehidre edilirse metakromazi genelikle kaybolur. Hughesdon tekniğinde metakromazi kaybolmaz. Su, metakromatik boyaların büyük bölümü için gereklidir. FLORESANS BOYAMA Fluorochromlar, asidik veya bazik boyalar olarak hareket eden kromoforlu ve auxokromlu quinonoid boyalardır. Bu boyalar dokularla birleştiklerinde ultraviyole ışığı, görünen ışığa çevirme kapasitesine sahiptirler. Ultraviyole ışığın kullanımı ile fluorokromla birleşmiş dokuları tanıyabilirken; dokuları gün ışığında oluşan renkle tanıyamayız. Flurokromlar, floresans olmayan boyalardan daha spesifik değildirler ancak çok hassastırlar. Floresans, bazı maddelerin belirli bir dalga boyunda aydınlatıldığında farklı ve daha uzun ışınları yayma özelliğidir. Floresans teknikler çok kullanılır. Flurokrom boya yöntemleri ise doku bileşenlerinin, bakterilerin, fungusların , ağır metallerin gösteriminde, eksfolyatif sitolojide malign hücrelerin tanınmasında rutin olarak kullanılmaktadır. Floresans mikroskopi, dokulardaki ve serumlardaki antijen ve antikorların gösteriminde kullanılan immüno floresan tekniklerin temelini oluşturmaktadır. İki tip floresan vardır: 1-Primer Floresans (doğal-otofloresans): Vitamin A, riboflavin, porfirin, kloroplast gibi biyolojik materyelin kendi özelliğidir. Dokular, genel mavi floresansa sahip olabilirler ve bu elastik fibrillerde kuvvetlidir. Civa, demir ve iodine gibi bazı maddeler doğal floresansı ortadan kaldırır. 2-Sekonder Floresans (yapay-indüklenmiş): Doğal floresans olmayan maddelerin acridin orange, auramine, thioflavine-T vb bir flurokrom boya ile etkileşimden sonra ortaya çıkar. Yapay floresanla malign hücreler, acridine orange ile birleştiğinde çok hızlı gösterilebilir. Floresan mikroskopi tekniklerinde indüklenerek oluşturulan yapay floresansın birçok avantajı vardır. Çok az bir floresans materyel görülebilir floresans üretir. Çok düşük konsantrasyondaki doku bileşenlerinin çok az floresan boya ile gösterilebilir. Floresan boyalar toksik etki yaratmaksızın canlı hücrelere de verilebilir. Yöntem çok hassastır ve iyi kontrast verir. Yapay floresans da ağır metallerle haraplanır. Bazı tekniklerle başarılı sonuçlar için tamponlanmış flurokrom boya solusyonları gereklidir.

http://www.biyologlar.com/asidik-bazik-ve-notral-boyalar-nelerdir

TESPİT EDİLMİŞ DOKULARI BOYAMADAKİ GENEL FAKTÖRLER

1-Fiksasyonun Boyama Üzerine Etkileri: Fiksasyon, dokularla boyaların etkileşimine yardım eder. Formaldehit ve civa klorür, bazik boyaları tercih ederken, trikloroasetik asit, pikrik asit ve krom bileşikleri asidik boyaların hareketini kolaylaştırır. Etil alkol veya asetik asitle fiksasyondan sonra hem asidik hem de bazik boyalar dokular tarafından kolaylıkla alınır. Çekirdek boyası olan carmalum, civa klorür fiksasyonundan sonra daha çok, formalinden sonra ise daha az boyar. Bazen tespit edici ajan, özel bir doku bileşeni ve boya arasında direkt olarak hareket eder. Bu durumda iken fiksatifin bir mordant olarak hareket ettiği söylenir. Örnek olarak, hematoksilenle miyelinin gösterilmesinde başlangıç basamağı olarak dokunun potasyum dikromatla muamelesi verilebilir. 2-Progressif ve Regressif Boyama: Progresif boyama tekniği, dokulardaki farklı elementlerin sıra ile renklendiği ve boyama solusyonunda uygun sürenin sonunda dokuların tatmin edici differensiyel renklenmesinin başardığı bir tekniktir. Regressif teknikte ise dokular önce fazla boyanırlar, hücresel ayrıntılar yok olur. Sonra dokunun istenmeyen kısımlarından fazla boyanın uzaklaştırılması ile boyanın alındığı veya differensiye edildiği bir tekniktir. Regressif boyama eski progressif yöntemlerden daha çok uygulanmaktadır. Çünkü diğer hücre yapılarının bir miktar boyanması olmaksızın bir hücrenin bir kısmının yeterli yoğun progressif boyanması olmaksızın hücre bölümlerini yeterli yoğun progressif boyanmasını elde etmek zordur. Regressif boyama ise ayrıntıları örten diffüz sonuç verir. Differansiyasyonla daha açık renkte boyanmış alanlardan boyaların uzaklaştırılması olasıdır. Differansiyasyondan sonra hala diğer yapılarda seçici ve açık biçimde ayrıntılı sonuçlar için yeterli miktarda boya kalmaktadır. 3- Direkt ve İndirekt Boyama: Anilin boyaların bir çoğu ( metilen mavisi, eozin gibi) boyanın basit sulu veya alkolik solusyonlarına konursa dokuları mükemmel olarak boyar ve direkt boyama olarak bilinir (Şekil a). Hematoksilen gibi birçok boya ise dokularda tatmin edici bileşimin oluşması için mordant olarak bilinen ara bir maddeye gereksinim duyarlar. Bu olay indirekt boyama olarak bilinir. Boya ve mordant ünitesi renkli bir göl şekillendirmek için ve mordantlanmış boya, bir doku-mordant-boya kompleksini oluşturmak üzere doku ile birleşirerek sonraki zıt boyamanın ve dehidrasyonun kolaylıkla yapılmasına izin verir. Histolojik boyama yöntemlerinde boya ve mordant ya birlikte (örn/ Erlich hematoksileninde hematoksilen potasyum alum ile) veya mordant doku boya solusyonuna aktarılmadan önce ( örn; Heidenhein hematoksileninden önce iron alum banyosu) kullanılabilir. Demir, alimünyum ve krom bileşikleri boyalarla bazik boyalar oluşturmak üzere birleşen mordantlardır. Metalik mordant; kimyasal bağlarla kendini hem boyaya hem de dokuya bağlar. Accentuator-Vurgulayıcılar: Mordantlardan farklıdırlar ve kullanıldıkları boyanın boyama gücünü artırırlar. Boyalarla göller oluşturmazlar ve boyanın doku ile kimyasal birleşmesi için esasi değildirler. Loeffler' in metilen mavisindeki potasyum hidroksit ve karbol thionin ve karbol fuksindeki fenol; boyanın yoğunluğunu ve seçiciliğini artırarak accentuator olarak hareket ederler. Accentuatorlar sırası ile anyonik (asidik) ve katyonik (bazik) boyalara eklendiklerinde sıklıkla asit ve alkalidirler. Bir anyonik boyaya asidin eklenmesiyle; dokuların bazik gruplarının iyonlaşmasının artmasıyla boyama yoğunlaşır. Eğer bir katyonik boyaya alkali eklenirse, asidik gruplarının iyonizasyonu artar. Fenol, karbol thionin ve karbol fuksinde accentuator olarak kullanılır fakat hareket tarzı tam olarak anlaşılamamıştır. a- Direkt boyama b- Mordant ile indirekt boyama c- Accetuator ile indirekt boyama Sinir sistemi için metalik impregnasyon yöntemlerini de kullanılan Acceleratörlerin (hızlandırıcılar) (örn/ Cajal yöntemlerindeki chloral hidrat ve veronal) de aynı zamanda accentuatorlar gibi aynı yolla hareket ettikleri görülmektedir. Trapping(tuzağa düşüren ajanlar), boyaları dokularla ve bakterilerle birarada tutar; tannik asit ve iodin örnek olarak verilebilir. Metilen mavisi/ eozinle seçici olarak boyanan bir kan smeari, tannik asitle muamelesinden sonra krornatindeki metilen mavisini tutar. Gentian viyole ve iodin ile boyanan bakterilerin ve alkolik deklorizasyona dayanması da aynı zamanda bakteri-boya kompleksine iodinin trapping hareketi yüzündendir. İodinin boyanın bakteriler ile reaksiyona girme kapasitesini değiştirmediğine, fakat boyayı tutmaya meyilli olduğuna ve differansiyasyon sırasında dokudan kaçışına engel olduğuna inanılmaktadır. 4-Differansiyasyon: Regressif bir teknikteki aşırı boyanmış dokunun differansiasyonu veya boyanın geri alınımı (de-staining), basit solusyonlarda yıkama ile veya asitler ve oksitleyici ajanların kullanımı ile sağlanabilir. Mordantlar ve bazı boyalar aynı zamanda differansiasyon ajanları gibi hareket edebilirler. Suda veya alkolde yıkama, differensiasyonun temelidir ve boyanın içinde çözünebileceği herhangi bir solvent de kullanılabilir; differensiasyon sıvısı basit çözünebilirlikle hareket eder. Dokularla sıkı kimyasal birleşme ile birleşen boyalar, bu yolla kolaylıkla differansiye olamazlar fakat onların doku-boya linkajları asitlerin hareketi ile parçalanabilir. Differansiasyon ajanı ya doku ve mordant arasındaki birleşimi ya da mordant ve boya arasındaki bağları koparır. Asitlerle hematoksilen boya göllerinin differansiasyonu; mordantla birleştiğinde kaybolan boyadaki hidroksil grubun yeniden oluşumu ile mordant-boya hattını kırar; asit aynı zamanda dokulardaki asidik grupların iyonizasyonunu baskılar. Doku-mordant bağı da kırılır. Oksitleme ajanları farklı olarak hareket ederek boyayı renksiz bir bileşiğe oksitlerler. Differensiasyon için kullanılan mordantlar; çözünmeyen boya mordant doku kompleksini, bir boya olarak dokuda boyanın sadece bir bölümünü bırakarak, boyanın kismi redistribution yolu ile differensiasyon sıvısında dağılan çözünebilir boya-mordant gölüne dağıtır. Boyalar, kullanılan boyalardan doku kompenentleri için daha kuvvetli bir affiniteleri olduğunda differentiatör olarak işlev görürler. Orange G gibi daha kuvvetli bir boya, diğer daha az hırslı boyayı yerinden çıkarır ve basit de-staining gibi aynı etkiyi yaratır. Boyama Solusyonlarının Olgunlaşması: Bazı boyama solusyonları sadece haftalarca veya aylarca havaya, ışığa ve (sıklıkla) ısıya maruz kaldıktan sonra etkilidir. Hematoksilen iyi bilinen bir örnektir. Taze hazırlandığında nukleus boyası için kullanışsızdır fakat stoklandıktan birkaç hafta sonra aktifleşir. Hematoksileni hemateine okside olur. Oksitleme ajanlarının (sodyum iodat, merküri oksit, potasyum permanganat gibi) eklenmesi ile hızlandırılabilir. Hematoksilenin bir kısmının boyama solusyonunda suni olarak fazla hematoksilenin ise doğal olarak olgunlaştırılmasının mümkün kılınması önerilmektedir. Bu, boyanın bir kerede kullanılmasına izin verir fakat devam eden oksidasyon boyanın aktivitesinin birkaç ay sürmesini sağlar; yoksa tamamen olgunlaşmış solusyon daha ileri oksidasyonla inaktif bileşiklere dönüşerek hızla etkisiz hale gelir. Boyaların hazırlandığı günün tarihini etiketle belirlemek akıllıca olacaktır.

http://www.biyologlar.com/tespit-edilmis-dokulari-boyamadaki-genel-faktorler

Çocuklarda Tırnak Yeme Alışkanlığı Nedir?

Çocuklarda Tırnak Yeme Alışkanlığı Nedir?

Çocuğunuz tırnaklarını yiyor, ya da parmağını emiyorsa, hemen endişeye kapılmayın; çünkü bu alışkanlıkların 5 ila 18 yaş grubunda görülme olasılığı yüzde 45'lere varıyor.

http://www.biyologlar.com/cocuklarda-tirnak-yeme-aliskanligi-nedir

Leopar - Panthera pardus - Anadolu Parsı

Leoparların orijinal dağılımları çok geniş alanlardır.Ancak günümüzde yaşam alanları çok daralmış kimi yerde de yok olmuştur. Sina yarımadası, Arabistan, Filistin, Türkiye, Transkafkasya, Kafkaslardan güney Türkmenistana kadar, güneydoğu Özbekistan, güneybatı Tacikistan, İran’dan Belucistan’a Sind ve Keşmir, Nepal, Assam, Sri Lanka, güneybatı Burma(Myanmar) Malezya yarımadası, Java ve Taylant, Hindiçini, Çin,Tibet, Mançurya’dan Kore’ye, doğu Sibirya’nın 50° kuzey enlemine kadar olan alanlarda bulunmaktaydı . Ancak bazı bölgelerde ya nesli tükenmiş yada tükenmek üzeredir. Sumatra ve Borneo adasında ise bulunmazlar.Afrika’da da durum pek farklı sayılmaz.İnsan nüfusunun yoğunlaşması bir çok türde olduğu gibi leopar popülasyonunda da dramatik etkiler yapmıştır.Zanzibar leoparının (Tanzanya adası) nesli tükenmiştir. Serengeti’de de aslan popülasyonu da leoparlar üzerinde olumsuz etki yapmaktadır. Leoparlar bulundukları bölgeye çok iyi uyum sağlarlar.Bu nedenle her çeşit ormanda, çalılık alanlarda çayırlık alanda, bozkırda, kayalık ve yarı çöl ortamda yaşayabilirler. Bataklık tropikal ormanlarda, engebeli kayalık dağlarda Kenya’nın karla kaplı dağlarında, hatta Klimanjaro’nun 5638 metre yüksekliklerinde görülmüştür.Himalaya’larda ise 3000 metreden yukarda ise pek sık bulunmaz. Fiziksel özellikleri : Leoparlar aslan, kaplan ve jaguar gibi büyük kedilerin içinde en küçük cüsseli olanıdır. Erkek leoparın boyu yaşadığı bölgeye değişmekle birlikte ortalama 90 santim olan kuyruk dahil 2,40 metreye kadar olabilir.Ağırlığı 48 kiloya erişebilir.Dişiler erkeklerden %20-%40 kadar daha büyük olabilir.Diğer büyük kedilere göre uzun gövdesine göre daha kısa bacaklara sahiptir. Büyük kedilerin içinde en iyi ağaca tırmanabilen türdür.Geniş pençelerinde sivri ve keskin tırnakları, kısa ve toparlak kulakları, göz alıcı parlaklıkta kısa tüylü postu vardır.Post rengi ve tüy uzunluğu yaşam alanına göre değişmekle beraber, parlak sarımsı kahverengiden koyu sarımsı pas rengine kadar farklılık gösterebilir.Üstünde siyah benekler bulunur.Bir çok kişi leoparla jaguarı karıştırırlar.Jaguardan farlı olarak beneklerinin içlerinde siyahlık bulunmaz.Çene ve kafa yapılarıda jaguara göre daha küçüktür.Boğazlarının altında siyah noktalardan oluşan kolye benzeri çizgi vardır.Alt kısımları beyazdır.Gövdesisin üçte ikisi kadarda kuyrukları vardır.Postlarının üstündeki siyah benekleri, yapraklar arasında daha kolay kamufle olarak sezdirmeden avına yak laşmasını sağlar.Postunun üstündeki benekler, insanların parmak izi gibi her bireyde farklılık gösterir. Leoparlarda melanistik siyah renkli olanlara da rastlanır.Siyah renkli olanlarına panter dendiğide olur.Bilim adamlarıda önceleri farklı bir tür olarak zannedilmelerine rağmen sonradan farklı bir tür olmadığı anlaşılmıştır.Siyah renkli olan bireylerin postlarına bakıldığında belirsiz de olsa benekler görülebilir.Kardeş yavrulardan biri normal renkte olurken diğeri siyah olabilir.Siyah bireylere Afrika’da rastlanmazken Hindistan ve uzak doğunun orman alanlarında yaşayan popülasyonlarda rastlanabilir. Çekingen ve ihtiyatlıdır.Duyuları çok kuvvetlidir.Gizlenmekteki mahareti yüzünden leoparı bulmak aslan veya çitayı bulmaktan daha zordur.Leopar, bulundukları yere çok iyi uyum sağlarlar.Bu nedenle Afrikanın sıcak bozkırlarından Hindistan ve Malezya yarım adasının yağmur ormanları ve Çinin karla kaplı soğuk dağlıklarına kadar olan ormanlarda, çalılıklarda, fundalıklarda, yarı çöl ortamda yada kayalık dağ yamaçlarında yaşayabilirler.Gündüz tehlike sezdiğinde gece avlanmayı tercih eder.Gündüz öğle sıcağında sık otların veya bir ağacın dalında uyumayı tercih ederler.Bu nedenle sabahın erken veya akşam saatlerinde aktif olurlar.İnsanlara görünmemeyi tercih eder.Ağaca çıkmada çok ustadırlar.Cüssesine göre çok güçlü olduğu için yakaldığı geyik, domuz gibi avları bile ağaca çıkarabilir.Sesi güçlü bir homurtuya, gıcırtılı bir kükremeye benzer. Kaplan postu Jaguar postu Kaplan ve jaguarların ayırt adici özelliklerinden biri postlarıdır.Kaplan postu üzerindeki lekelerin ortasında leke bulunmazken Jaguarların beneklerinin ortasında siyah lekeler bulunur.Ayrıca jaguarların kafa yapıları daha iri yapılıdır. Avlanma ve yiyecekleri : Leoparlar fırsatçı avcılardır.Avını gördüğünde her pençesini itinayla atar ve yere sinerek ilerler.Avı şüphelendinde tekrar hareketsiz kalır.Uygun anı bulduğunda süratle sıçrayarak avının boğazından yakalar ve boğar.Bazan ağaçta bekleyerek avının üzerine atladığıda olur. Çok güçlü ayak kasları vardır.Büyük kedilerin içinde ağaca en iyi tırmanan leoparlardır.Avını yakaladığında aslan ve benekli sırtlan gibi diğer yırtıcılardan korumak için ağaca çıkartarak ağaçta yer.Afrika’da yaşayan leoparlarda gözlemlenen olay şöyle gelişmiştir;Leopar, yakaladığı avını yiyen çitayı korkutarak avını ondan çalar ancak tam o sırada bir aslan, leşi almak için leoparı kovalamaya başlar.Leoparda leşi kaptığı gibi derhal ağaca çıkartır.Aslanda peşinden ağaca çıkar.Fakat leopar hafifliğinin de avantajını kullanarak leşi ağacın daha uç kısmına taşır.Aslan ise çaresiz leşi leopara bırakarak ağaçtan iner. Zengin av menülerinin arasına gübre böceğinden tutunda yaşam bölgesinde bulabileceği yaban domuzları, yaban keçileri, ceylanlar, antiloplar, geyikler, yaban koyunları, kemirgenler, çakallar, sürüngenler, ikiyaşamlılar, kuşlar, hatta balıklar bile girer. Bazı leoparların tek bir avdan hoşlandığı farkedilmiştir.Bunlardan biri ceylanla besleniyor, bir diğeri domuz avlamak için her gece 3 kilometre öteye gidiyor ve yattığı yerin yakınındaki av hayvanlarına dokunmuyordu.Bazı Uzakdoğu leoparları ise özellikle balıktan hoşlandığı biliniyor.Balıklar su yüzüne çıkıncaya kadar bekliyor, sonrada onları yakalıyordu.Başka bir leoparın ise kurbağa yakaladığı söylenmiştir. Bazı leoparların çiftlik yakınlarında yaşamalarına rağmen çiftlik hayvanlarına saldırmadığı da bilinmektedir.Ancak bazan çiftlik hayvanlarına saldırdığıda olur.İnsanlara ise nadiren saldırır.Genellikle insandan uzak durmayı tercih eder. Üreme ve sosyal davranışlar : Leoparlar, tek başlarına yaşar ve avlanırlar. Erkekler yaklaşık 6-63 kilometrekarelik bir alanı dişilerde 6-13 kilometrelik bir alanı hakimiyeti altına alabilirler.Leoparlar hakimiyetindeki toprakları belirtmek için ıdrarları ile çalı ve ağaçlara koku bırakırlar. Bu koku aynı zamanda dişi leoparların üreme durumunuda belli eder.Kızışmış olan dişinin kokusunu alan erkek leopar dişiyi takip eder.Erkekler toprak hakimiyeti veya çiftleşme sezonunda rakipleri ile zaman zaman ölümcül kavgalar yapabilirler. Belirli bir çiftleşme sezonu yoktur.Ancak tropikal iklime sahip bölgelerde yılboyunca, kurak ve karasal iklime sahip bozkır alanlarda mevsimsel olabilir.Gebelik 90-112 gün sürer.Dişi, bir defada 1-6 arası değişmekle birlikte genellikle 2-3 yavru doğurur. Yavrular doğduklarında 400- 700 gr ağırlığındadır.Yavrular doğduklarında gözleri kapalıdır ve 7-10 günlük iken gözleri açılır.Anne leopar,yavrularını yalayarak hem aile bağları güçlendirir hem de yavrunun kan dolaşımını düzenler.Bunun başka bir yararı daha vardır.Annenin tükürüğü güneş ışınları ile birleştiğinde D vitaminine dönüşür ve deri tarafından emilir.Yavrular erginliğine ulaşana kadar yaklaşık 18-24 ay boyunca anneleri ile beraber kalırlar.Ancak yavrulardan bazıları aslan ve sırtlan gibi diğer yırtıcıların saldırısı veya değişik nedenlerden öldüklerinden bu şansı bulamazlar.İki yıl sonra annelerinin yanından ayrılarak kendilerine avlanabilecekleri yeni hakimiyet alanları belirlerler.Dişiler 33 aylıkken erkeklerde 24-36 aylıkken üremem olgunluğuna ulaşır.Esaret altında 23 yıl yaşadıkları bilinmektedir. Tür üzerindeki tehlikeler: Çok güzel bir posta sahip olması avlanmasındaki en büyük etkendir.Yaşam alanlarının daraltılması, avlayacağı türlerin azalması tür üzerindeki en büyük baskılardır.Ayrıca popülasyonun az sayıda olduğu yerlerde gen değişiminin olmaması tür için olumsuz şarlar oluşturmaktadır. Alttürleri : Farklı alanlarda yaşayan alttürler birbirlerinden bazı farklılıklar gösterir.Anadolu leoparı (P. p. tulliana) avlanmış örneklerine bakıldığında en iri alttürlerden biri sayılabilir.Somali leoparı (P. p. nanopardus) Somali ve Etyopya’da yaşar ve en küçük alttürdür.Ortalama olarak 25-30 kg kadar olur.Arap leoparı ise ikinci küçük leopardır.Amur ve Java leoparları (Panthera p. orientalis) ise koyu renkli, uzun kürklü ve daha geniş siyah benekleri ile en sıradışı olan alttürlerdir. Leoparların alttürleri geniş alanlarda dağılım gösterirler.

http://www.biyologlar.com/leopar-panthera-pardus-anadolu-parsi

Dünya’da Organik Yaşamın Başlangıcı

Unlu bilim dergisi SCIENCE, 25 Haziran 1999 tarihli sayisini, “Evrim Kuramina ve Evrim Kuraminin Gercekligine” ayirdi (1). Bu sayi icin giris yazisi yazan unlu evrimci Stephen Jay Gould soyle demekte: “Evrim bir gercektir ve ancak gercek bizi bagimsizliga kavusturabilir!” ve Gould eklemekte, “Darwin’in ilk teorileri aciklandigi zaman, aristokrat bir soylu ‘Darwin’in soylediklerinin dogru olmadigini umalim; ama tutun ki dogru, o zaman tum dunyaya yayilmamasi icin dua edelim!’ demisti; ne yazik ki, 21. Yuzyila girerken, bu sahisin soyledikleri cikti: Evrim Kurami dogru, ama dunyanin cogunlugu, en azindan ABD ulusunun buyuk kismi tarafindan bilinmiyor ” (2). Gercekten de, 21. Yuzyila girerken, Evrim Kuraminin gercekligi hakkinda onca yayin yapilmasina, onca kanit bulunmasina karsin, bilim insanlari ile halk arasinda Evrim Kuramini degerlendiris acisindan ucurumlar mevcut. Bu konudaki en buyuk zorluk, oncelikle, Evrim Kurami ile ilgili bazi biyolojik, kimyasal, fizyolojik, paleontolojik bilgilerin anlasilabilmesi icin yogun bir bilim egitimine, detayli anlasilmis bazi kavramlara gereksinim duyulmasi. Ikinci onemli zorluk ise, Evrim Kuramini aciklarken ifade edilen bazi kavramlarin (ornegin milyon yillarda gelisen evrim, dogal seleksiyon, biyokimyasal protobiogenesis vb) gunluk hayatin mantigi ve yasantisi acisindan pek de kolay anlasilamamasi. Bu konuda Amerikan Ulusal Bilimler Akademisinin (National Academy of Sciences) son yayinladigi halk kitabi “Science and Creationism” (Bilim ve Yaratiliscilik), bu konudaki en yetkili agiz tarafindan son noktayi koyuyor ve Evrim Kuraminin bir gercek oldugunu savunuyor (3, 4). Turkiye’de de “Islamci Bilimsel Yaratiliscilarin aktivitelerine ” karsi TUBA ve bir grup bilim insani da bazi aciklamalar yapmisti (5, 6, 7). ABD’de ve diger Hristiyan ulkelerde oldugu gibi, Turkiye’de de ortaya cikan “Bilimsel Yaratiliscilik” akimlari, bilim ile yaratilisciligi birbirine bagdastirmaya calisiyordu (8); ustelik Evrim Kuramini savunan bilim insanlarina karsi dev bir karalama kampanyasina giriserek, bilim insanlarini sindirmeyi amacliyordu. Bu konuda yazdigim yazilar nedeniyle ben de, diger bilim insanlari gibi buyuk saldirilara maruz kaldim (4, 9, 10). Turk bilim insanlari olarak, gerek halki gerekse diger bilim insanlarini ve aydinlari bu konuda bilgilendirmek konusunda cok ciddi sorumluluklar tasidigimiza inaniyorum. Bu sorumluluklardan birisi, “kendini bilimsel elit zumreolarak gorup, bilimsel yaratiliscilari yanit verilmeyecek kadar kucumsemek yerine”, onlari iddia ettikleri her hipotezde curutmek ve yapmakta olduklari carpitmalari ve bilimsel sahtekarliklari, halkin onunde anlasilir bir dille ve bilimsel kaynaklarla yuzlerine vurmak! Dunya’da yasamin baslamasi ile ilgili en onemli sorulardan ve problemlerden birisi, primordial (ilk) kosullarda canlilarin ana yapi taslari olan organik molekullerin nasil meydana gelebilecekleri konusuydu. Bilimsel yaratiliscilarin hipotezlerine gore, tum organik madde ve biyolojik yasam bir anda, dogaustu bir gucun “OL!” demesiyle belirli bir hedefe ve cok akilli bir dizayna gore yaratildi. Bilim ise bu konuda farkli bir goruse sahip, ozellikle son yillarda yapilan calismalar dunya’da ilk organik maddenin olusumu konusunda yeni bir bakis acisi getirdi (11, 12, 13, 14, 15). STANLEY MILLER DENEYINDEN GUNUMUZE Dunya’da yasamin baslamasi icin, yasamin temel taslari olan organik maddelerin, amino asitlerin ve DNA ile RNA’nin yapisinda var olan nukleik asitlerin bir sekilde dunya ortaminda (okyanuslarda, gollerde, sicak su kaynaklarinin aktigi yerlerde) bol miktarda var olmasi gerekmekteydi. Bu konuda dogru fikir yurutebilmek icin, 4.5 milyar yil once soguyarak, var olan dunya gezegeninin atmosferi ve icerdigi elementler konusunda dogru tahmin yapmak gerekliydi. Bu konudaki ilk tahminleri Oparin (16 ), Haldane (17), Urey (18) yapmislardi. Onlara gore ilk dunya atmosferi metan (CH4 ), amonyak (NH3), su buhari (H2O) ve molekuler hidrojenden (H2) olusmaktaydi. Ilk atmosferde oksijen (O2) bulunmadigi pek cok arastirici tarafindan fikir birligi ile kabul edilmistir. Ama en onemli sorun dunyanin genclik gunlerine ait bilgi alinamamasidir. Bilinen en yasli kayalar olan Gronland’daki Isua kayalari bile 3.8 milyar yil yasindadir. Yaklasik 700 milyon yil- 1 milyar yillik doneme ait hic bir iz, kanit ve bilgi yoktur; bu da ilk atmosfer veya ortam konusunda tahmin yapmayi cok guclestirmektedir. Tahminler, olasi modellere gore yapilmaktadirlar ve spekulasyonlardan ibarettirler. William Rubey (19 ), Holland (20 ), Walker (24) ve Kasting’e (25) gore ise, baslangicta cok az miktarda amonyak mevcuttu; atmosferde baslica karbon dioksit (CO2), nitrojen (N2), su buhari (H2O), biraz da karbon monoksit (CO) ve hidrojen gazi (H2) vardi. Son yillarda bu gorusun bilim ortamlarina hakim olmasina ragmen, kimse 4 milyar yil oncesine gidip, ortamda amonyak olup, olmadigini gozlemlememistir. Ayrica, uzaydan her yil 40 000 ton toz yeryuzune dusmektedir, gerek bu tozda, gerekse uzaydan gelen meteoritlerde HCN (hidrojen siyanit), CO2, Formaldehid, CO (karbon monoksit), amino asitler ve organik maddeler bulunmustur; gunde uzaydan dunyaya 1999 verilerine gore dokulen tozla birlikte 30 ton organik madde dusmektedir (13, 21, 22, 23). Dunya kosullarinda amonyakin ve organik madde sentezinin cok az olmasi durumunda bile organik maddeleri olusturan bilesenlerin ve bizzat organik maddelerin uzaydan yeterli miktarda gelme olasiliklari her zaman vardir. Ilk atmosfer kosullarinda hemen hemen hic oksijen olmadigi hesaba katilirsa, organik maddenin”yaratilmadan” dunya ortaminda ilk gazlar ve cozunmus iyonlardan sentezlenmesi de mumkundur. Oksijensiz donem 2-2.5 milyar yil kadar surmus, siyanobakterilerin atmosfere verdikleri oksijen sayesinde atmosferde ilk dunya canlilari icin bir zehir olan oksijen miktari mavi gezegende artmistir (9). Chicago Universitesinde, Harold Urey’in ogrencisi Stanley Miller 1953′te dunyayi yerinden sarsan unlu deneyini gerceklestirdi 26. Urey’in varsayimina uyan (metan, amonyak, hidrojen ve su) gaz kosullarinda, 150-200 bin voltluk akimi gazlarin bulundugu ozel aparattaki karisimdan gecirdi, sonuc cok sasirticiydi pek cok temel organik madde bu enerjinin verdigi etki sonucunda gazlari bir reaksiyonla birlestirmis, Glisin, Alanin, Aspartik asit, Glutamik asit (bu dordu temel amino asitler), Formik asit, Asetik asit, Propionik asit, Ure, laktik asit, ve diger yag asitlerini olusturmustu (26, 27). Deney Pavlovskaia ve Peynskii tarafindan Rusya’da; Heyns, Walter, Meyer tarafindan Almanya’da; Abelson tarafindan ABD’de, cok farkli bilesikler ve gaz ortamlarinda tekrarlandi; oksidasyonun engellendigi ve metan, amonyak ve su buharinin oldugu kosullarda hep amino asitler ve organik maddeler olustu (28); Gabel ve Ponnamperuma, cok farkli enerji ortamlarinda (isi, radyasyon, lineer akseleratorden cikan parcaciklar, mikrodalgalar vb) benzer sonuclar buldular, ayrica bazi seker molekullerini de primordial ortamda sentezlemeyi basardilar (28). Genetik materyeli tasiyan DNA ve RNA’nin temel taslari olan nukleik asitlerin bazilari da ilk atmosfer sartlarinin farkli bicimlerde ele alindigi kosullarda kimyasal olarak sentezlendi ve nukleik asitlerin temel yapi taslarinin primordial ortamda yeterli temel madde ve enerji sonucunda kendiliginden olusabilecegi gosterildi (9, 11, 12, 13, 14, 28, 29, 30). Yaratiliscilar, ilk dunya kosullarinda amonyak olmadigini, Miller’in ise soguk tuzak denilen bir yontemle amino asitleri elde ettigini, Miller’in kosullarinin bilincli olarak cok yapay hazirlandigini ve sonuclarin bilimsel bir sahtekarlik oldugunu soylemektedirler. Oncelikle Miller’in duzenegi tabii ki yapaydir; ama biyokimya’da yapay olmayan kosullarda kontrollu deney yapilamaz ki; soguk tuzak denilen ve reaksiyon urunlerini sogutan bir duzenek kullanilmis olabilir; ama doga’da bunun bir benzerinin var olmadigini soylemek, ustelik de 3.5-4.5 milyar yil oncesinde gelisen olaylardan cok emin ifadelerle bahsetmek ancak, Yaratiliscilar gibi bilimi ayaklar altina alan, cikaracaklari sonuclara onceden fikse olmus insanlarda gorulebilen bir dusunce hatasidir. Ornegin okyanuslarin tabanlarindaki sicak su kaynaklarinin birden soguyarak okyanusa karismasi bahsedilen “soguk tuzagi” dogal kosullarda olusturabilir; dogadaki bugun tahmin edilemeyen pek cok yapi bunu meydana getirebilir. Nitekim, sadece sicak su kaynaklarinda mevcut bu isinin bile sig okyanus sahillerinde suda cozunmus amonyum (NH4), metan (CH4), karbon dioksiti (CO2) (veya su yuzeyindeki atmosferdeki gazlari da katarak) reaksiyona sokabilecegini gosterir. Organik maddelerin ve ilk yasamin denizlerdeki, gollerdeki, volkanik ortamlardaki sicak su kaynaklarinin bulundugu yerde olustugu konusunda pek cok fikir de ortaya surulmustur (12, 21, 30 ). Ortamda amonyakin cok az olmasi kosullarini Miller tekrar irdelemistir (21). Primordial kosullarda, atmosferin redukleyici (elektron kazandirma) ozellikte oldugu dusunulmektedir, ama kesinlesmis bir bulgu yoktur. Atmosferde varolan amonyak’in bir kisminin amonyum (NH4 ) iyonu olarak okyanuslarda cozunecegi bilinmektedir (29); atmosferde cok az miktarda amonyak olmasi kosullarinda bile, su ortamlarinda ya da sicak su kaynaklarinin oldugu, okyanusun sig ve atmosferle bulustugu sahillerde amonyum iyonu, atmosferde cok az miktarda bulunan amonyak, metan gazi ve karbon dioksitle reaksiyona girecek ve organik bilesikleri olusturacaktir (21) . Miller, eser miktarda amonyakin bulundugu ortamlarda yaptigi deneylerde bile organik maddelerin ve amino asitlerin sentezlenebildigini gormustur (21). Yaratiliscilarin baska bir iddiasi, Miller deneyinde sag elli (D-dextro izomeri) ve sol elli (L-levo izomeri) amino asitlerin esit miktarlarda sentezlendigi, halbuki yasamda gorulen 20 cesit amino asitin tumunun sol elli oldugu, oyleyse organik maddenin ve canli yasamin belli bir amacla ve dizaynla yaratilmis olmasi gerektigidir. Oncelikle, 1993′te Arizona State Universitesinden John R. Cronin uzaydan gelen meteoritlerde ve donmus tozda daha fazla L-aminoasitlerine rastlandigini ispatlamistir 13; bu, dunyada varolan ve amino asitlerle reaksiyona giren maddelerin zamanla sol elli amino asitleri tercih etmesini saglayabilir (13). Ikincisi, molekuler yapilardaki zayif kuvvet(weak force) birbirinin ayna goruntusu olan molekullerde (yani izomerlerde) farklidir. Bu bir molekul icin cok ufak bir farktir, ama molekuller bir araya gelince etki buyur. Yani bir molekulun reaksiyona girerken veya suda cozunmus bulunurken icinde bulunan molekuler bag yapma yetenekleri ve belli bir konfigurasyonda dururken gereksimleri olan enerji onlarin doga tarafindan secilmelerini saglamaktadir. Doga tasarruf etmekten yanadir ve genelde en az enerji formunu tercih eder; L ve D formlari arasindaki enerji farki cok az da olsa, yapilan hesaplara gore en az enerji ile durabilen izomer, yaklasik 100 bin yilda dogada % 98 olasilikla baskin bulunan izomer formunu olusturacaktir (31). Ucuncu ve guclu bir olasilik, primordial kosullarda, su anda bilmedigimiz ve ilk dunya kosullarinda var olan ve sol elli amino asitlere baglanamayan bir X maddesinin ozellikle D-(sag elli) amino asitlerle birleserek kelat (cozunmeyen bilesik) olusturmasi ve onlari gol veya okyanus dibine cokertmesidir. Bu ise sol elli amino asitlerin bir anda dogal seleksiyonla artmasini ve dogada daha fazla kullanilabilir hale gelmesini cok kolay saglayabilir. Fakat kimse 4 milyar yil onceye gitmemistir; o gunden bu gune de tek iz kalmamistir; bilimsel yaratiliscilar ne soylerlerse soylesinler, 4 milyar yil onceye ait kesin kanitlarla Evrimcilerin karsisina gelmeden Evrimcilerin hic bir soyledigini curutmus sayilamazlar; ustelik, bilimsel yaratiliscilarin buyuk bir cogunlugu, binlerce kanita ragmen, dunyanin 4.5 milyar yasinda degil, cok daha genc olduguna inanmaktadir (10 bin yil gibi)… Son bulgular, pek cok organik maddenin uzaydan gelen tozda, meteorlarda bulundugunu ispatlamistir. Dunya’da okyanuslarda ve atmosferde amonyum, metan, karbon dioksit, amonyak’tan sentezlenebilen organik maddenin, uzaydan da gelebilecegi NASA’nin arastirmalarinin kesin bir sonucudur (13). Eger gunde 30 ton organik madde uzaydan dusen tozla dunyaya karismaktaysa (kuyruklu yildizlarla, meteorlarla gelenleri saymiyoruz) yilda, (10 4) ton (10000 ton) cesitli organik madde dunyada okyanuslara karisir. Bu ilk bir milyar yil icin 10 9 x 10 4= 1013 ton (10′un yaninda 13 sifir) ya da 10 000 000 000 000 ton organik madde eder. Bu miktarda organik madde, dunyada girdikleri reaksiyonlar da isin icine katilirsa, kesinlikle ilk yasamin tohumlarini atabilir. Halley, Hale-Bopp, Hyakutake isimli kuyruklu yildizlarda pek cok organik madde oldugu kanitlanmistir (13). Bir kuyruklu yildiz, gunes sisteminin sicak bolgelerinden gecerken, bir kismi erir, gaz ve toz olarak dunyanin (veya basak gezegenlerin) cekimine kapilip, zamanla dunyaya duser. NASA’daki bilim adamlari, ER2 tipi ucakla, yaklasik 62 000 feet yukseklikte bu tozlari toplayabilmektedirler. Scott Sandford, bu partikulleri analiz ettiginde % 50′den fazla organik kokenli karbona rastlamistir (13). Meteoritlerde ise, ketonlara, nukleobazlara, quinonlara (klorofil benzeri yapilarda yer alir), karboksilik asitlere, ve 70 farkli cesit amino asite rastlanmistir. Dunya’daki yasantida kullanilan amino asit sayisi ise sadece 20′dir, yani uzay bize ihtiyacimiz olandan cok daha fazlasini hediye etmektedir ! (13) DUNYADA ORGANIK YASAMIN BASLAMASI / UZAYDAN GELEN ORGANIK MADDE Son bulgular, pek cok organik maddenin uzaydan gelen tozda, meteorlarda bulundugunu ispatlamistir. Dunya’da okyanuslarda ve atmosferde amonyum, metan, karbon dioksit, amonyak’tan sentezlenebilen organik maddenin, uzaydan da gelebilecegi NASA’nin arastirmalarinin kesin bir sonucudur (13). Eger gunde 30 ton organik madde uzaydan dusen tozla dunyaya karismaktaysa (kuyruklu yildizlarla, meteorlarla gelenleri saymiyoruz) yilda, (10 4) ton (10000 ton) cesitli organik madde dunyada okyanuslara karisir. Bu ilk bir milyar yil icin 10 9 x 10 4= 10 13 ton (10′un yaninda 13 sifir) ya da 10 000 000 000 000 ton organik madde eder. Bu miktarda organik madde, dunyada girdikleri reaksiyonlar da isin icine katilirsa, kesinlikle ilk yasamin tohumlarini atabilir. Halley, Hale-Bopp, Hyakutake isimli kuyruklu yildizlarda pek cok organik madde oldugu kanitlanmistir 13. Bir kuyruklu yildiz, gunes sisteminin sicak bolgelerinden gecerken, bir kismi erir, gaz ve toz olarak dunyanin (veya basak gezegenlerin) cekimine kapilip, zamanla dunyaya duser. NASA’daki bilim adamlari, ER2 tipi ucakla, yaklasik 62 000 feet yukseklikte bu tozlari toplayabilmektedirler. Scott Sandford, bu partikulleri analiz ettiginde % 50′den fazla organik kokenli karbona rastlamistir (13). Meteoritlerde ise, ketonlara, nukleobazlara, quinonlara (klorofil benzeri yapilarda yer alir), karboksilik asitlere, ve 70 farkli cesit amino asite rastlanmistir. Dunya’daki yasantida kullanilan amino asit sayisi ise sadece 20′dir, yani uzay bize ihtiyacimiz olandan cok daha fazlasini hediye etmektedir ! (13) Daha ilginc bir bulgu ise Louis Allomandola’nin uzay kosullarinin simulasyonunu yaptigi deneylerden gelmistir (13, Bununla ilgili Scientific American’daki Temmuz 1999, resimleri kullanabilirsiniz). Bu deneyler cok dusuk isilarda ve sicakliklarda, ultraviyole radyasyonunun kimyasal baglari yikabilecegini; hatta icinde donmus metanol ve amonyak (uzayda bulundugu oranda) bulunan buzlasmis toz kitlelerinde, ultraviyole isinlarinin ketonlari, nitrilleri, eterleri, alkolleri, hatta heksametilentetramini (HMT) olusturabilecegini gostermistir. HMT asidik ve ilik ortamda amino asitleri olusturur. Bu deneyler son yillarda gerek NASA, gerekse universitelerdeki bilim insanlari tarafindan tekrarlanmis benzer sonuclar bulunmustur (13). Bu su demektir: uzayda donmus buz kitleleri olarak seyahat eden molekuller statik degillerdir; uzaydaki farkli isinlarin ve ultraviyole enerjisinin etkisiyle surekli iclerindeki kimyasal yapi degisime ugramaktadir, bu degisim, ozellikle daha yuksek isili, isinli ve enerjili gunes sistemi bolgelerine girince artmaktadir. Yani gerek uzaya dagilan tozlar, gerek meteorlar, iclerinde dunya gibi uygun kosullara sahip gezegene ulasinca yasamin temel taslarini olusturacak tum bilesenleri, organik maddeleri fazlasiyla tasimaktadirlar. Ustelik 4.5 milyar yillik dunya tarihini, kolay anlayabilmek icin, 1 saatlik bir zaman dilimi olarak alirsaniz, doga ilk 55 dakikayi, bu temel yapi taslarini ve tek hucreli yasami olusturmak icin harcamis, geri kalan bes dakikada da diger tum bitkileri, cok hucreli organizmalari meydana getirmistir. SONUC: Dunya’da organik yasamin baslamasi icin, buyuk olasilikla temel yapi taslari hem uzaydan gelmis hem de milyarlarca yilda, uzaydan gelenlerin de etkisiyle dunyada okyanuslarda, sicak su kaynaklarinin okyanusa karistigi yerlerde, batakliklarda, volkanik yapilarin okyanusla birlestigi yerlerde vb. ortamdaki serbest enerji sayesinde sentezlenmislerdir. Amino asitler, nukleik asitlerin yogunlastigi ortamlarda thermal proteinler ve RNA, oto-katalitik RNA buyuk olasilikla ilk genetik bilginin sekillenmesinde rol oynamislardir (11, 12, 14, 30) . Burada su temel unsurlar unutulmamalidir: 1. Bahsedilen sureler insan zekasinin kavrayabilecegi surelerin cok otesindedir. Bahsedilen sureler, milyon degil, milyar yillardir. Dort milyar yil, 50 yillik bir insan jenerasyonu goz onune alinirsa yaklasik 80-100 milyon jenerasyon demektir. Homo sapiensinortaya cikisindan beri ise sadece yaklasik 500 jenerasyon gecmisti. 2. Dogada kararli yapilarin olusmasi cok zordur. Belki bir tek kararli yapinin olusmasina karsi, binlerce katrilyon kararsiz yapi bozunup gitmektedir; biz bilgiyi bu gune kadar gelebilen kararli yapidan alabilmekteyiz; kararli yapilarin gelismesini saglayan reaksiyon ve biyolojik olay sayisi ise neredeyse sonsuzdur . Dr. Umit Sayın Cumhuriyet Bilim ve Teknik Dergisi Kaynakça: 1) Science, 25 Haziran, 1999, 284 (5423):2045-2220. 2) Ibid., pp: 2087. 3) NAS, “Science and Creationism: A view from the National Academy of Sciences”, 1999, National Academy Press. 4) Umit Sayin, “ABD’de Bilimsel Yaratiliscilibgin Coküsü”, Bilim ve Ütopya, Aralik 1998. 5) TUBA bülteni, 10:2, 1998. Ayrica TUBA’nin web sayfasina (www.tuba.org.tr) bakabilirsiniz. 6) “Kamoyuna Duyuru” (Birinci Bildiri), Cumhuriyet Bilim ve Teknik, 7 Kasim 1998. 7) “Bilime Gerici Saldiri” (Ikinci Bildiri), Cumhuriyet Bilim ve Teknik, 30 Ocak 1999. 8 ) Harun Yahya, “Evrim Aldatmacasi”, Vural Yayincilik, 1997. 9) Ümit Sayin, “Yaratilmayis: Yasam Nasil Basladi”, Bilim ve Ütopya, Ekim 1998. 10) Ümit Sayin, “Uctu Uctu Dinozor Uctu”, Bilim ve Utopya Kasim 1998. 11) Albert Eschenmoser, “Chemical Ethiology of Nucleic Acid Structure”, Science, 25 Haziran, 1999, 284 (5423):2118-2123. 12) Andre Brack, editor, “The Molecular Origins of Life”, Cambridge University Press, 1998. 13) Max P. Berstein, Scott A. Sandford, Louis J. Allamandola, ” Life’s Far-Flung Raw Materials”Scientific American, Temmuz 1999, 281:42-49. 14) Leslie E. Orgel, “The Origin of Life on Earth”, Scientific American, Ekim 1994, 271:76-83. 15) Gerald F. Joyce, “Directed Molecular Evolution” Scientific American, Aralik 1992, 267:90-97. 16) A.I. Oparin, “Origin of Life”, Mc Millen, New York.1938 17) J.B.S. Haldane. “Origin of life”, Rationalist Annual, 1929 18) H.C. Urey. “On the early chemical history of the earth and the origin of life”, Proc. Natl. Acad. Sci., 1952. 19) W.W. Rubey, “Development of the hydrosphere and atmosphere, with specail reference to probable composition of the early atmosphere”. In Crust of the Earth, ed. A. Poldervaart HDpp:631-650,1955. 20) H.D. Holland, “The chemical evolution of the atmosphere and oceans”. Princeton University Press, 1984. 21) Stanley Miller, ” The Endogenous Synthesis of Organic Compounds”, [ Andre Brack, editor, "The Molecular Origins of Life", Cambridge University Press, 1998.] isimli kitapta. sayfa: 59-85 22) C.F. Cyba, C. Sagan, ” Endogenous production , exogenous delivery and impact-shock synthesis of organic molecules: an inventry for the origins of life”, Nature, 355:125-132, 1992. 23) C.F. Cyba, P.J. Thomas, L., L. Brookshaw, and C. Sagan. ” Cometary delivery of organic molecules to the early Earth”, Science, 249:366-373, 1990 24) J.C.G. Walker , “Evolution of atmosphere”, Macmillen: New york, 1977 25) J.F. Kasting. ” Earth early atmosphere” Science, 259:920-926, 1993.. 26) S.L. Miller, “Production of amino acids under possible primitive Earth conditions” Science, 117:528-529, 1953. 27) S.L. Miller, and H. C. Urey, “Organic compound synthesis on the primitive Earth”, Science, 130:245-251, 1959. 28) Cyril Ponnamperuma, “The Origins of Life”, Thames and Hudson, 1972. 29) J.L. Bada and S.L. Miller, “Ammonium ion concentration in the primitive ocean” Science, 159:423-425, 1968. 30) Richard Montanesky, “The Rise of Life on Earth”, National Geographic, Mart 1998. S: 54-81. 31) Ian Stewart, “Nature’s Numbers”, Basic Books, New York, 1995. www.uzelgi.com

http://www.biyologlar.com/dunyada-organik-yasamin-baslangici

HÜCRE ZARINDAN MADDE GEÇİŞİ

Hücre zarı,seçici geçirgen bir yapıya sahiptir.Molekülün büyüklüğüne,yağda veya suda çözünmesine,polaritesine, ortamdaki yoğunluğuna veya türüne göre zar üzerinden madde taşınmasını dört farklı şekilde gerçekleştirir. Hücre zarından madde geçişi • Pasif Taşıma • Difüzyon • Kolaylaştırılmış Difüzyon • Osmoz • Plazmoliz • Deplazmoliz • Diyaliz • Aktif taşıma • Endositoz • Fagositoz • Pinositoz • Ekzositoz Pasif taşıma Maddelerin enerji harcanmadan,yoğunluk farkından dolayı hücre zarındaki porlardan veya fosfolipid tabakadan doğrudan geçmesidir.Hücrelerde pasif taşıma üç şekilde görülür. Difüzyon Difüzyon,bir maddenin konsantrasyonunun yüksek olduğu yerden düşük olduğu yere doğru hareketine denir.Örnek olarak bir kokunun bütün odaya yayılması veya bir damla mürekkebin bir bardak suya atılınca bütün bardağı boyaması gibi.Aynı kural hücre için de geçerlidir.Örneğin sitoplazmada glikoz sürekli olarak tüketilmekte ve artık maddelerin yoğunluğu artmaktadır.Dış ortamda glikoz arttığında,iç ve dış ortam arasındaki yoğunluk farkı glikozun enerji harcamaksızın çok olduğu yerden az olduğu yere doğru hareketine sebep olur.Bu hareket her iki taraftaki glikoz yoğunluğu dengeleninceye kadar devam eder.Bir tarafta artı veya eksi yöndekibir değişiklik difüzyonu yeniden başlatır. Por içinden difüzyonla taşınacak maddenin porlardan geçecek kadar küçük olması ve suda çözünebilir olması gerekir.Büyük moleküller pordan geçemezler.Örneğin glikoz difüzyonla taşınırken,nişasta taşınamaz.Por sayısının fazla olması difüzyon hızını artırır.Yağda çözülen maddelerin difüzyonla taşınması için büyüklük sınırı veya por kullanma gereği yoktur.Hücre zarı lipid (yağ) yapısında olduğundan,bu maddeler zarın herhangi bir yerinden geçebilirler. Kolaylaştırılmış Difüzyon Su ve yağda erimeyen maddelerin (klor iyonları) ve glikoz,galaktoz,fruktoz gibi şekerlerin zardan geçişi,kolaylaştırılmış difüzyon denilen bir yolla olur. Taşınacak madde zarda bulunan taşıyıcı proteinle birleşir.Madde,birleştiği taşıyıcı proteinle “substrat-enzim” gibi yüzey uygunluğu gösterir (taşıyıcı protein taşınacak maddelerin yapısına göre şeklini değiştirir).Madde geçişi gerçekleştikten sonra taşıyıcı protein tekrar önceki orijinal şeklini alır.Geçişme yüksek konsantrasyonlu ortamdan düşük konsantrasyonlu ortama doğru olur.Por sayısındaki artış kolaylaştırılmış difüzyonu hızlandırır. Kolaylaşırılmış difüzyon,taşıyıcı sistemden ötürü aktif taşımaya benzerse de ikisi arasındaki en büyük fark;difüzyonda enerji kullanılmaması ve yüksek konsantrasyondan düşük konsantrasyona doğru olmasıdır. Osmoz Osmozu tanımlamadan önce yoğunluk kavramını iyi bilmek gerekir. Bir maddenin yoğunluğu, birim hacimde bulunan çözücü içindeki madde miktarıdır. Çözünenin çok olması durumunda ortam çok yoğun, az olması durumunda ise az yoğun olur. Ortamın yoğunluğu çözücünün miktarı ile ters orantılıdır. Yani çok yoğun ortamdaki çözücünün oranı,az yoğun ortamdaki çözücü oranından daha düşüktür. Örneğin, yarı geçirgen bir zarla ayrılmış iki ortamdaki nişasta çözeltilerini ele alalım. A kolunda, nişasta çok yoğun ise, birim hacimdeki su miktarı daha azdır. B kolunda, birim hacimdeki nişasta daha az, su ise daha fazladır. Doğal olarak bu konsantrasyon farkının dengelenmesi gerekir. Nişasta porlardan geçemeyecek kadar büyük olduğundan, su molekülleri nişastanın çok, suyun az olduğu ortama doğru geçer. A kolundaki toplam hacim koluna göre daha fazladır. Buna göre suyun, yarı geçirgen bir zar üzerinde çok olduğu ortamdan, az olduğu ortama doğru geçişine osmoz denir. Bu olayı canlılarda görmek de mümkündür.canlılarda,kapalı ortam,hücre zarıyla sınırlandırılmış olan sitoplazmadır.Sitoplazma içerisinde organik asitler, şekerler,organik ve inorganik tuzlar gibi maddeler bulunur(bu maddelerin potansiyel değerine osmotik değer denmektedir).Sitoplazma ve dış ortamın yoğunluğuna göre her iki ortam arasında su geçişi olur. Osmoz sonucu iki değişik olay gözlenir: • Plazmoliz:Hücre kendisinden yoğun (hipertonik) bir ortama konduğunda, yoğun ortama su vererek zarın her iki tarafındaki yoğunluğu dengelemek ister.Dolayısıyla su kaybederek büzülür.hücrenin daha yoğun bir ortama konulduğunda büzülmesine plazmoliz denir.bitki hücreleri hücre çeperleri bulunduğu için hayvan hücrelerine göre daha yavaş su kaybederler.deniz suyu içildiğinde dokular su kaybederek ölür.bunun nedeni deniz suyunun tuz oranının dokulardakine oranla çok daha fazla olmasıdır. • Deplazmoliz:Hücre kendisinden daha az yoğun (hipotonik) bir ortama konulursa ortamdan hücreye su girişi olur.dolayısıyla su alarak şişer.hücrenin ortamdan su alarak şişmesine deplazmoliz denir. Osmotik kuvvetler:plazmoliz ve deplazmoliz esnasında osmotik basınç ve turgor basıncı ortaya çıkar: • Osmotik Basınç:hücre içindeki maddelerin yoğunluğundan dolayı sıvıların hücreye girerken zara dıştan yaptıkları basınç şeklinde tanımlanır.Osmotik basıncı oluşturan maddeler çeşitli şekerler, organik asitler, organik ve inorganik tuzlardır.Dolayısıyla hücre içinde bu maddelerin yoğunluğuyla hücrenin osmotik basıncı doğru orantılıdır. Örneğin bitkinin köklerindeki emici tüylerde osmotik basınç yüksek olduğundan su topraktan kök hücrelerine geçer. Osmotik basınç atmosfer birimi ile ifade edilir.Osmotik basınç, plazmoliz halindeki hücrelerde yüksek deplazmoliz halindeki hücrelerde düşüktür.Hücrenin kendisi ile aynı yoğunlukta (izotonik) ortama konulduğunda osmotik basınç, iç basınçla denge halinde olur. • Turgor basıncı:Deplazmoliz esnasında sitoplazma sıvısının zara yaptığı basınçtır (iç basınç) . Hayvan hücreleri bu yüksek basınca dayanamaz, parçalanır. Mesela alyuvarlar kendilerinde daha az yoğun bir ortama konulursa, ortamdan alyuvar hücrelerine su girişi olur:daha sonra zarları parçalanır, hücre ölür (hemoliz). Bitki hücrelerinde selüloz çeper olduğundan turgor basıncından hayvan hücrelerine göre daha az etkilenirler.Ayrıca turgor basıncının bitkilere sağladığı bazı avantajlar da vardır.Bu avantajları; • Otsu bitkilerde destekliği, • Stomaların açılıp kapanması, • Küstüm otu gibi bitkilerde hareketi sağlaması şeklinde sıralayabiliriz. Emme Basıncı, Turgor Basıncı ve Osmotik Basınç Arasındaki İlişki Emme basıncı hücrenin osmotik basıncının oluşturduğu bir çekici kuvvettir.Diğer bir deyişle emme basıncı osmotik basıncın iç basınca üstün olduğu sürece hücreye su girişini sağlayan bir kuvvettir.Osmotik değer, osmotik basıncı meydana getiren eriyiğin çekim gücüne denir.Böyle bir değer her hücrenin kofulunda gizli olarak bulunur. Genel olarak emme basıncı (EB) bir hücre için, hücrenin osmotik değeri (OD) ile iç (turgor) basıncın (TB)arasıdaki farka eşittir. EB=OD-TB Diyaliz Diyaliz, çözünmüş maddelerin seçici geçirgen zardan difüzyonudur. Örneğin içi glikoz molekülleri ile dolu bir bağırsak saf su içerisine konursa glikoz molekülleri, zardan su içerisine iki tarafta da yoğunluk eşit oluncaya kadar geçer. * Bu prensip, suni böbrek aletinde (diyaliz kullanılır.Hastanın her seferinde 500ml kadar kanı bir diyaliz tüpünden geçirilir.Diyaliz tüpünün dışında, kanda bulunan ve difüzyon olabilen aynı yoğunlukta maddeleri taşıyan bir sıvı bulunur. Bu sıvı sadece uzaklaştırılacak maddeyi taşımamaktadır. Böylece kana gerekli olan maddeler dıştaki sıvıya geçmez.Uzaklaştırılması istenen madde (üre gibi) dış sıvıda bulunmadığı için,bu madde kandan dış sıvıya difüzyonla geçer ve kan bu maddeden temizlenmiş olur. Moleküllerin Pasif Olarak Taşınmasını Etkileyen Faktörler: Canlı hücrelerde hücre zarının her iki yönünde devamlı bir molekül hareketi gözlenir.Bu moleküller hücre zarından doğrudan veya porlar yardımıyla geçerler.Geçiş türü veya hızı aşağıdaki faktörlere göre değişmektedir. • Moleküllerin Büyüklüğü:Oksijen, su, iyot, karbondioksit gibi küçük moleküller hücre zarından rahatlıkla geçebilir.Mesela 6 karbonlu glikoz;oksijen, su ve karbondioksitten daha zor geçer. • Moleküllerin elektrik yükü:Hücre zarının iyonik yapısından dolayı, nötr moleküller iyonlardan daha kolay geçer. • Yağda çözünen maddeler:Hücre zarının yapısında yağ olduğu için yağda çözünen maddeler hücre zarından rahatlıkla geçebilir. • Yağı eriten maddeler:Yağı eriten maddeler de hücre zarından rahatlıkla geçebilir. • Zardaki por sayısı:hücre zarında por sayısı ne kadar fazla olursa madde girişi o kadar hızlı olur. • Konsantrasyon farkı:Yüksek konsantrasyonlu ortamdaki moleküllerin birbirine çarpma hızı, düşük konsantrasyonlu ortamlara göre daha hızlıdır.Bu ortamdaki potansiyel enerji, yüksek konsantrasyonlu ortamdan düşük konsantrasyonlu ortama madde geçişini hızlandırır. • Sıcaklık:Moleküller sıcak ortamda daha hızlı hareket ederler. Dolayısıyla yüksek sıcaklıkta difüzyon hızlıdır. • Hücre zarının deformasyonu:Hücre zarı alkol, eter, çeşitli zehirler ve kloroform gibi maddelere karşı aşırı duyarlıdır.Bu maddeler hücre zarına girerken veya çıkarken hücre zarını tahrip ederler. AKTİF TAŞIMA Bir maddenin konsantrasyonun düşük olduğu yerden yüksek olduğu yere doğru, enerji (ATP) harcanarak taşınmasına aktif taşıma denir.Bir başka ifade ile;aktif taşıma maddelerin yokuş yukarı hareketidir. Aktif taşıma, canlı zarlar üzerinde enzim ve taşıyıcı proteinlerle gerçekleştirilir. Aktif taşımada mutlaka enerji harcanır.Enerji yetersizliğinde aktif taşıma durur, pasif taşıma devam eder.Bu durumda bazı maddelerin hücre içi ve hücre dışı yoğunluk farkları ortadan kalkar ve bunun sonucu hücrede hayatsal faaliyetler durur,yani hücre ölür.Örneğin; büyüme ve protein sentezi için mutlaka gerekli olan potasyum hücre içinde hücre dışına göre 40 misli daha fazla bulunmak zorundadır.Eğer bu miktar azalacak olursa, hücre yeterli şekilde fonksiyonlarını gerçekleştiremez. Aktif taşımaya en güzel örnek,çeşitli hücrelerde görülen ”Sodyum-Potasyum Pompası”dır. Normal şartlarda sodyum hücre dışında,potasyum da hücre içinde yoğundur.Sodyum-potasyum pompası ile yoğunluk farkından dolayı hücre dışına çıkan potasyum hücre içine, hücre içine sızan sodyum da hücre dışına ATP enerjisi kullanılarak pompalanır. ENDOSİTOZ Pasif taşıma ve aktif taşıma ile taşınan moleküller doğrudan hücre zarından veya porlardan geçerken, büyük moleküllerden olan yağ,, nişasta, glikojen, protein vs geçemezler.Bu moleküller zarın değişikliğe uğraması ile enerji harcanarak hücre içine alınırlar.Bu olaya “endositoz” denir. Endositozla hücre içme alınan besinler, sitoplazmada besin kofulu şeklinde bulunurlar. Hücrelerde endositozla besin alınımı fagositoz ve pinositozla sağlanır. Fagositoz Endositozla katı yapıların hücre içine besin kofulu şeklinde alınmasıdır. Katı madde yalancı ayak yardımıyla oluşturulan cep içerisine alınır. Daha sonra içeri çekilen besin kofulu lizozomla birleşerek sindirilir. Akyuvarların mikropları yemesi, amiplerin beslenmesi buna örnektir. Pinositoz Sıvı maddelerin besin kofulu şeklinde hücreye alınmasına denir. Pinositoz olayında, sıvı maddelerin hücre zarına değmeleri sonucunda, sitoplazma içine doğru cep ya da kanal şeklinde yapılar oluşur.bu yapılardan pinositoz keseleri meydana gelir.Bu şekilde hücre içine alınan sıvı maddeler lizozomla birleşerek sindirilir. Fagositoz ve pinositoz genellikle hayvan hücrelerinde görülür. EKZOSİTOZ Daha önce de açıklandığı gibi hücrelere endositozla alınan maddeler lizozom enzimleri ile küçük moleküllere parçalanır (hücre içi sindirim). Kesecik içerisinde sindirim sonucu oluşan artık maddeler ve dışarı salgılanması gereken bazı metabolik ürünler hücreden dışarıya atılır.Bu olaya “ekzositoz” denir. Ekzositozda kesecik hücre zarına tutunur ve tutunan kısımları içeriğini dışarı boşaltır. Endositozda olduğu gibi ekzositozda da enerji harcanır. HÜCRE YÜZEYİNDE FARKLILAŞMALAR Hücrenin Serbest Yüzeyindeki Farklılaşmalar:Bu tür farklılaşmalara örnek olarak mikrovillus, oyuklar, silleri örnek verebiliriz. Mikrovillus Özellikle emme görevi fazla olan hücrelerde, örneğin bağırsak epitelinde, hücre dış yüzeyini artırmak için, hücre zarının bir miktar sitoplazma ile beraber dışarıya doğru meydana getirdiği, parmak şeklinde 0.6-0.8 mikron uzunluğunda 0.08-0.1 mikron kalınlığındaki çıkıntılardır, ince bağırsakta her bir hücrede aşağı yukarı 3000-4000 mikrovillus bulunmaktadır. Bu mikrovilluslar (çoğulu mikrovilli) makromolekülleri parçalayan ve hücre içine taşıyan enzimleri taşır. Sıvı geçirimine (alışverişine) kuvvetlice özelleşmiş (ozmoregülasyon yapan) hücrelerin taban kısımları (böbrek Malpiki tüplerinin epitel hücreleri) kaide labirenti denen birçok kıvrım ve girinti taşır. Epitel hücrelerinin alt kısmındaki "Kaide Zarı" hücre dışı bir yapı ve salgıdır; epitel hücrelerini alttaki bağ dokudan ayırmaya yarar. Oyuklar Oyuklar,mikrovilluslar arasında hücre zarının, hücre içine doğru torba şeklinde mağaramsı girintiler yapmasıyla oluşur.Bu oyuklar, hücre yüzeyini artırarak hücre içerisine büyük miktarda sıvı girişini sağlar (pinositoz); daha büyük oyuklara fagositik hücreler (makrofajlar) ve bazı salgı yapan hücrelerde rastlanabilir. Siller Bazı hücrelerin yüzeyinde sil (kirpik) ve kamçı olarak isimlendirilen yapılar vardır. Hareketli olanlara "Kinetosilia", hareketsiz olanlara "Stereosilia" denir. Stereosiller, kinetositlerden uzundur ve kinetozom (dip taneciği) taşımazlar. Sillerin uzunluğu 5-10, kalınlıkları 0.2-0.25 mikrondur. Bulundukları hücrede sayıları çok fazladır. Flagellumlar (kamçılar) bulundukları hücrede ya bir ya da birkaç tanedir; uzunluğu 150 mikrona ulaşır, insandaki spermanın kuyruğu kamçı yapısındadır; uzunluğu 40-50 mikrondur. Çok sayılı kamçıya ependym (omurgalı hayvanların merkezi sinir sistemini örten epitel) hücrelerinde rastlanır. Bütün titrek siller ve kamçılar hemen hemen aynı yapıya sahiptir. Enine kesitte 11 adet boyuna uzanan mikrotubulustan meydana geldiği görülmüştür. Bunlardan iki tanesi ortada yer alır (Diplomikrotobulus Sentralis), diğer 9 tanesi 2'li mikrotubuluslar halinde çevreye sıralanmıştır (Diplomikrotubulus Periferiki). Ayrıca bir üçüncü mikrotubulusa ait olduğu sanılan ve belirli yönde yer almış çıkıntılar vardır. Kamçı ve Şiilerin enine kesitinde, ortadaki filamentum aksiyaleyi oluşturan kısım bu fibrillerdir. Bunun etrafında bir matriks kısmı ve en dışta da plazmalemma bulunur. Gerek siller gerekse kamçılar hücre dışında (Pars Ekstrasellularis) ve hücre içinde (Pars interselularis = Korpuskulum Bazale) kalan iki kısıma ayrılmıştır. Hepsi bir taban taneciğinden çıkmıştır (Bazal Granula). Bu taneciğe sinilerde Kinetozoma, kamçılılarda Blefaroplast ve çok hücrelilerin spermasında (kuyruk taneciğinde) Proksimal Sentriyol denir. Sillerin ve kamçıların bu taban taneciği ile bağlantıları kesilirse, hareket yeteneklerinin yitirildiği görülür. Siller arasındaki eşgüdüm ilginçtir. Bir sildeki impuls diğer bütün Sillere, hatta komşu hücrelerdekine kadar geçerek, hepsinin belirli bir düzen içerisinde hareket etmesini sağlar. Kendi başlarına (otonom) hareket etme yetenekleri vardır, örneğin, ölen bir insanın, burun mukozasındaki ve böbrek kanallarındaki siller öldükten 2-3 gün sonra dahi hareketlidir. Kurbağaların, memelilerin ve yumuşakçaların ışığa karşı duyarlı hücreleri (çomakçılar ve koniler), sölenterlerdeki knidositler değişikliğe uğramış bir sildir. Hücreler Arası Bağlantılar (Juncturae Cellularum) İki hücrenin birbirine bağlanmasını ve haberleşmesini sağlayan özel bölgeler olarak tanımlanır. Bu bağlanma çeşitli dokularda çeşitli şekillerde bulunur. Sinir, duyu ve bazı kas hücrelerinde sinapsis adım alır. Hücreler arasındaki bağlanmayı şu gruplara ayırabiliriz Sıkı Bağlantı: Dış etkilerden vücudu koruyan hücrelerde bulunur. Epitel hücreleri arasındaki kuvvetli bağlantı bu tiptir. Hücreler arasında aralık yok gibidir. Yalıtma özelliği genellikle fazladır. Desmozomlar: Aynı işlevi yürüten hücrelerin ortak hareket etmelerini ve birbirine yapışmalarını sağlayan sitoplazmik uzantılardır. Çoğunluk simetriktirler. Bu uzantılar küçük bölgeler halinde olabilir (düğme desmozom) ya da hücrenin etrafını çepeçevre sarar (kemer desmozom). Mekanik etki altında kalan hücrelerde düğme desmozom daha fazladır. Esasında hücre bağlantıları, hücrelerin serbest yüzünden derinlere doğru farklı bölgeler gösterir. Geçit Bölgeleri: Bir zigotun (çok hücrelide) gelişerek, aralarında düzenleme ve işbölümü oluşmuş, yapısal olarak farklılaşmış hücreleri meydana getirmesi, hücreler arasındaki bilgi iletimi ile mümkün olmaktadır. Bu iletişim madde ve elektrik iletimi şeklinde olabilir. Nitekim 1000 dalton büyüklüğündeki moleküllerin, hücreler arasında bulunan 10-20 A° çapındaki geçit bölgelerinden iletildikleri saptanmıştır. Bu geçitler iki hücrenin birbirine yaklaştıkları bölgelerde oluşan borucuklardır. Boruculardan, iyonların, şekerlerin, amino asitlerin, nükleotitlerin, vitaminlerin, steroyit hormonların ve siklik adenozin mono fosfatın geçtiği saptanmıştır. Keza elektriksel uyarımlar da diğer hücrelere bu geçit bölgelerinden iletilir, iyonların geçiş sırasında dış ortama sızmaması için geçiş borucuklarının geçirgenliği normal hücre zarına göre 1000-10.000 defa azaltılmıştır, iki canlı hücre yapay bir ortamda yan yana getirilirse, çok kısa bir sürede (saniyeler içinde) hücreler arası ulaşım bölgelerini oluştururlar. Hücre zarının üzerindeki özel almaçlar, aynı kökenden gelen diğer hücrelerin tanınmasını sağlarlar, örneğin embriyonik evrede karmakarışık edilen hücreler, geldikleri doku çeşidine göre birbirlerini tanıyarak bir araya gelebilirler. Hücreler arası ulaşım bölgelerinin oluşumunun ve geçirgenliğinin miktarı Ca + + iyonlarının hücre içindeki azlığına (normal olarak hücre içindeki derişimi düşüktür) ve hücre yüzeyindeki glikoproteinlerin fazlalığına bağlıdır. Hücreler arası bölgede Ca + + ve Mg + + derişiminin fazla olması, geçit tüpcüklerinin yalıtılmasına, bu da hücreler arası geçirgenliğin artmasına neden olur. Ca + + iyonları hücre zarına tutunarak belirli iyonların taşınımını önler, iki hücre arasında bağ meydana gelince, borucuğun açıldığı yerdeki Ca + + iyonları (borucuk içinde kalan ) hücre zarından aynlarak sitoplazma içine girer ve çoğunlukla da aktif pompalanma ile dışarıya atılır (ATP kullanılarak). ATP sentezi önlendiğinde, hücreler arasındaki bağ yerlerine tutunmuş Ca4' + iyonları atılmadığı için hücreler arasındaki geçirgenlik (bağ yapma gücü) azalacak ve hücreler birbirinden ayrılacaktır. Hücre arası geçitlerin en önemli görevi, embriyonik gelişim sırasında, bazı maddelerin hücreden hücreye bu yolla geçerek, doku ve hücre farklılaşmasını sağlamasıdır. Hücre çoğalmasının da bu yolla sınırlandığına ilişkin gözlemler vardır. Kanser hücresinde bu bilgi iletimi olmadığı için (büyük bir olasılıkla hücreler arası bağlantılar yok edildiği ya da oluşmadığı için), komşu hücrelerin durdurucu etkisini alamamakta ve sınırsız çoğalma sürecine girerek kötü huylu tümörleri yapmaktadır. Nitekim kanser hücreleri birbirine ya da normal hücrelere temas etse dahi bölünmesine devam eder; buna karşın normal hücreler komşu hücrelere ya da kanserli hücrelere temas ederse, bölünmesini durdurur ya da sınırlar. Hücrelerin Taban Yüzeylerindeki Farklılaşmalar Bazı hücrelerin tabanında plazma zarı birçok katlanmalar meydana getirerek yüzey genişletirler.Bu oluşumlar, kan damarı olmayan çok katlı hücre tabakalarının beslenmesini sağlar. SİTOPLAZMA Sitoplazma; hücre zarı ile çekirdek zarı arasıda bulunan, hücre iskeleti, organeller ve sitozol adı verilen sıvıdan oluşan kısımdır.Sitoplazmadaki canlı yapıyı organeller, cansız yapıyı ise organik ve inorganik bileşikler oluşturur.Cansız yapı;katı sıvı arası yarı akışkan bir özellik gösterir. Sitoplazma,Ektoplazma ve endoplazmadan oluşur.Hücre zarının hemen altındaki yoğun kısma ektoplazma, ektoplazmayla çekirdek arasındaki daha az yoğun kısma endoplazma denir.Hücre organellerinin çoğu endoplazmada yer alır. HÜCRE İSKELETİ Bütün yüksek yapılı organizmalarda olduğu gibi hücrenin de bir iskeleti vardır.Bu iskelet hücrenin belirli bir şekle sahip olmasını ve hücre organellerinin gerekli olduğu bölümlerde bulunmasını sağlar.Aynı zamanda hücrenin değişik şekillerdeki hareketini, iğ iplikçiklerinin oluşturulmasını ve sitoplazma hareketini hücre iskeleti sağlar. Hücre sitoplazması , mikrotübül ve mikrofilamentlerden meydana gelmiş ağsı bir yapıyla doludur.Bu ağsı yapı hücrenin iskeletini meydana getirir. Aktin, miyozin ve tropomiyzinden meydana gelen mikrofilamentler, kasılıp gevşeyerek hücre hareketini sağlarlar. Hücre iskeletinin arası sitoplazma sıvısı (sitozol) ile doludur.Bu kısım özellikle glikoz enzimlerini taşır ve protein sentezinin basamakları bu kısımda gerçekleşir. Sitoplazma Hareketleri Sitoplazma durgun bir yapı göstermeyip canlı hücrelerde hareket halinde bulunur.Bu hareketleri iki şekilde ortaya çıkar: Rotasyon Hareketi:Rotasyon hareketi genellikle su bitkilerinde görülür.Örnek, elodea, nitella bitkilerindeki sitoplazma hareketleri.Bu harekette sitoplazma, hücre çeperine paralel olarak hareket eder.Sitoplazma ile birlikte çekirdek ve kloroplastlar da hareket edebilir. Sirkülasyon Hareketi:Genellikle kara bitkilerinde, özellikle tüy hücrelerinde kolaylıkla görülebilir.Sitoplazma hareketi çeşitli yönlerde olur. Hücre çeperine paralel olduğu gibi,düzensiz olarak çeşitli yönlere doğru da olabilir. Bu hareketler sitoplazmadaki yüzey gerilimi veya yoğunluğundaki değişiklikler sonucu ortaya çıkar sitoplazma hareketlerinde mikrotübül ve mikrofilamentlerin de rol oynadığı belirtilmiştir.sitoplazma hareketleri sonucu hücrenin belli bölgelerinde meydana gelen metabolik ürün ve artıklar hücrenin her tarafına dağılır.Böylece hücrenin belli bir bölgesinde oluşan artık maddelerden zarar görmesi engellenir. SİTOZOL (SİTOPLAZMA SIVISI) Sitozolun büyük kısmını (%90) su oluşturur.Bu oran bazı canlılarda %98’e kadar yükselebileceği gibi, sporlarda ve tohumlarda %5-15’e kadar düşebilir.Sitozolda organik ve inorganik (kuru madde) maddelerin oranı %10-40 arasında değişir.Kuru maddelerin %90’ını organik,%10’unu da inorganik maddeler oluşturur.Sitozolda en çok bulunan kuru madde protein molekülleridir.Bitki hücrelerinde ise karbonhidratlar daha çok bulunur.Ayrıca sitozolda; yağ, vitamin, hormon, organik ve inorganik asitler bulunur. Sitozolda bulunan önemli inorganik maddeler Na, Ca, K, P, Mg Fe’dir.Bu elementlerin hücredeki fonksiyonlarını şöyle özetleyebiliriz: • Bazı moleküllerin yapısına girerler.Örneğin Mg klorofilin, Fe hemoglobinin yapısına katılır. • Osmotik basıncın oluşmasını yani hücrede belli bir yoğunluk oluşturarak, suyun hücreye girmesini sağlar. • Düzenleyici olarak görev yaparlar. Sitoplazma yukarıda söylendiği gibi yarı akışkan,yoğun bir maddedir. Hücre sudan yoğun olup suyun içine atıldığında dibe çöker.

http://www.biyologlar.com/hucre-zarindan-madde-gecisi

Karından Ayaklılar Salyangoz, Sümüklü böcekler

Salyangoz, sümüklüböcek, deniz salyangozu, ve sarmal sedef kabuklu, yumuşakçaların karından ayaklılar sınıfında yer alır. Bu hayvanlarda da öteki yumuşakçalarda olduğu gibi bir ayak ve bir manto boşluğu bulunur. Baş gölgeleri çoğunlukla iyi gelişmiştir ve tek parçadan oluşan sarmal biçimli bir kabukları vardır. • Salyangoz Salyangozlar dünyanın her yerinde bulunur. Bazıları okyanuslarda, bazıları ise ırmak, göl ve benzeri tatlı sularda yaşarlar. Karada yaşayan sayısız salyangoz türü tropikal ormanlardan ılıman iklim kuşağının nemli bölgelerine dek uzanan geniş bir alanda bulunur. Salyangozun başında bir ağız ve bir ya da iki çift dokunaç bulunur. Gözleri bu dokunaçların üstünde yada altında yer alır. Yassı gövdesi üzerinde sürünerek ilerler. Ayağında bulunan bazı salgı hücreleri, salyangoz süründükçe yeri yağlayarak ilerlemesini kolaylaştıran bir sümüksü madde de salgılar. Düzgünce bir zeminde ilerleyen salyangozun arkasından parlak bir iz bırakmasının nedeni budur. Hem ayağını hem de başını kabuğunun içine çekebilir. Tatlı su salyangozlarının ve kara salyangozlarının tarih öncesi zamanlarda da insanlarca yenildiği sanılmaktadır. Günümüzde pek çok ülkede lezzetli bir yemek olarak kabul edilir. Piyasada çoğunlukla üretim çiftliklerinde yetiştirilen salyangozlar bulunur. En büyük üretim çiftlikleri Fransa, İtalya ve İspanya’dadır. 8 ile 9 m²’lik bir bölmede yaklaşık 10.000 salyangoz yetiştirilebilir. Salyangozlar et, sebze ve kepek ile beslenir. Hayvanbilimde Buccinum undatum ve Littorina adı verilen deniz salyangozu türleri, Avrupa’da besin maddesi olarak tüketilir. Buccinum undatum çağunlukla Atlas okyanusunun kuzey kıyılarında bulunur. Besin maddesi ve morina avcılığında yem olarak kullanılır. Ilıman bölgelerde ve soğuk denizlerde de yaşar. Kayaların ve yosunların üzerine tutunur ve yosunla beslenir. Dişli dil adı da verilen uzun dili önemli bir özelliğidir. Bu dilde bir dizi keskin kavisli diş bulunur. İstiridye matkabı adıyla bilinen salyangozun dişli dili çok gelişmiştir. Uzunluğu 2,5 cm’den az olan bu küçük canlı, istiridyenin kabuğunun birleştiği yere bir delik açar ve buradan avının yumuşak gövdesini emer. İstiridye yetiştiriciliğinin başlıca düşmanlarından biri, bu istiridye matkabı adı verilen salyangozdur. • Sümüklüböcek Sümüklüböcekler, salyangozların akrabalarından, 2-10 cm uzunluğunda, dış kabuksuz canlılardır. Kara sümüklüböcekleri nemli yerlerde yaşar. Taş altlarında, toprakta, deliklerde sıklıkla bulunur. Kimi zaman sebze bahçelerini sararlar. Deniz sümüklüböcekleri Kuzey Amerika, Avrupa ve Asya’da kıyı boyunca sığ sularda, kayalıklarda, yosunlar arasında yaşayan otçul hayvanlardır. • Koni Kabuklu Salyangoz Koni kabuklu salyangoz adı verilen karından-ayaklılar, sönmüş yanardağı andıran koni biçimli bir kabuğa sahiptir. Sığ sulardaki kayalara emici aykları ile öylesine sıkı sıkıya yapışırlar ki, dalgaların etkisi ile bile yerlerinden ayrılmazlar. Deniz yükseldiğinde, başlıca besin maddeleri olan yosunların peşine düşerler. Beslenmeleri bittikten sonra tekrar kayalara yapışırlar. Dünyanın pek çok yerinde bulunurlar. • Denizkulağı Kabuğu, insan kulağına çok benzediğinden bu adı almıştır. Bunların büyük kabukları, özellikle pürüzlü dış yüzeylerinin cilalanmasından sonra süs eşyası olarak kullanılır. Uzakdoğu’da ve Amerika’nın Atlas Okyanusu ve Büyük Okyanus kıyılarında bulunur. Kıyıya yakın kayalar üzerinde yaşar ve yosunlar ile beslenirler. Rahatsız edildiklerinde şaşırtıcı bir kuvvetle kayaya yapışırlar. Etleri çoğunlukla güveç ve balıklı sebze çorbalarında kullanılır. Kimi zaman biftek şeklinde de pişirilirler. Uzakdoğu’da çoğunlukla kurutularak ya da tütsülenerek tüketilir. • Sarmal Sedef Kabuklular Sarmal sedef kabuklu salyangozlar, özellikle ABD’nin güney kıyılarında ve Batı Hint Adaları’nda çok bulunan bir karından-bacaklılar türüdür. Kabuklarının uzunluğu kimi zaman 25 cm’e ve ağırlıkları da 2,5 kg’a varabilir. Ayaklarında pençe benzeri uzantılar bulunur. Sıçrayarak hareket eder ve yakalanmamak için kimi zaman hızla dönebilirler. Kabukları nefesli saz, kabartma ve düğme yapımında kullanılır. Bahama Adaları’nda ve Florida açıklarındaki mercan adalarında besin maddesi olarak tüketilir

http://www.biyologlar.com/karindan-ayaklilar-salyangoz-sumuklu-bocekler

ATRİUMUN BÖLMELENMESİ

4. hafta sonunda orak biçimli membranöz bir yapı, atriumun tavanından lümene doğru büyümeye başlar. Bu yapı septum primumun ilk parçasıdır. Bu septumun 2 kolu atrioventriküler kanaldaki endokardiyal yastıkçıklara doğru büyür. Septum primumun alt ağzı ile endokardiyal yastıkçıklar arasındaki açıklık ostium primumdur. Gelişimin ilerlemesi ile, superior ve inferior endokardiyal yastıkçıklar septum primum kenarları boyunca büyürler ve yavaş yavaş ostium primumu kapatırlar. Kapanma tamamlanmadan önce septum primumda perforasyonlar görülür. Bu perforasyonlar birleştiğinde, osteum secundum şekillenerek sağ atriumdan sol primitif atriuma kanın serbestçe akmasını sağlar. Sinus boynuzunun katılımı ile sağ atrium lümeni genişlediğinde yeni bir orak biçimli kıvrım görülür. Bu yeni kıvrım atrial boşluğu tam olarak bölmeyen septum secundumdur. Anterior kolu aşağıya atrioventriküler kanaldaki septuma doğru uzar Sol venöz valfi ve septum spurium, septum secundumun sağ tarafı ile birleşir. Septum secundumun serbest kenarı ostium secundumun üstünden aşmaya başlar. Septum secundumdan geri kalan açıklık foramen ovale olarak adlandırılır. Septum primumun üst kısmı giderek kaybolduğundan geri kalan parça foramen ovalenin flap biçimli valfını oluşturur. İki atrial boşluk arasındaki geçiş, oblik olarak uzamış bu açıklıktan gerçekleşir ve sağ atriumdan kan, sol atriuma bu açıklık içinden akar. Doğumdan önce foramen ovale, vena cava inferiordan gelerek sol atriuma geçmek için sağ atriuma giren kanın büyük kısmının geçişine izin verir (zıt yöne olmaz). Doğumdan sonra akciğer dolaşımı başladığında sol atriumdaki basınç artar ve foramen ovale septum secunduma doğru itilir ve açıklık fizyolojik olarak kapanır, atrium sağ ve sol olarak ayrılır. % 20 vakada septum primum ve septum secundum kaynaşması tamamlanmaz ve atriumlar arasında dar bir yarık kalır. Bu durum prob patent foramen ovale olarak bilinir. Endotelyal ve fibröz dokuların çoğalması ile 3. ayda anatomik kapanış gerçekleşir. Atrial septal defektler, interatrial septum gelişim anomalileridir. En sık görülen ASD, persistent foramen ovaledir ve sağ ve sol atrium arasında geniş bir açıklık vardır. Bu defekt, septum primumun aşırı absorbsiyonu, septum secundumun gelişim geriliği veya bu anomalilerin bileşimi ile ortaya çıkar. Hemodinamik önemi yoktur. Pulmoner stenoz, atrezi gibi başka defektler varsa foramen ovale'den kan sol atriuma geçer ve kanın yetersiz oksijenlenmesinden dolayı mukoz membranlar ve derinin koyu mavimsi - mor renk almasına-siyanoz- yol açar.

http://www.biyologlar.com/atriumun-bolmelenmesi

Balıklarda Sindirim sistemi

Diğer omurgalılarda olduğu gibi, balıklarda da sindirim ağızda, başlar, farinks (yutak), özofagus (yemek burusu), mide ve bağırsaklarda devam ederek anüste son bulur. Aşağı yukarı bütün tatlısu balıklarında esas yapıda pek büyük farklılıklar yoktur. Fakat beslenme tarzının değişik olmasına göre (herbivor veya karnivor) özellikle barsak uzunluğunda önemli farklar göze çarpmaktadır. Ağız ve Dişler Morfoloji bahsinde anlatıldığı gibi, balıklarda ağız tipleri beslenme tarzına göre çok değişik şekillerde olabilmektedir. Ağız boşluğu içersinde, glossum'un üzerini bir derinin örtmesiyle meydana gelmiş ve kaslı kısımları fazla gelişmemiş bir dil mevcuttur. Diğer omurgalılardan farklı olarak ağız cidarında veya ağız boşluğuna açılan sindirim bezleri bulunmaz. Buna karşın ağızda çeşitli şekillerde olabilen dişler yer almaktadır. Sindirimle ilgili olan bu dişler genellikle bulundukları yere bağlı olarak başlıca 3 grupta incelenebilirler. • Çeneler üzerinde bulunan dişler : Bunlar üst çenenin premaxil ve maxil kemikleri ile alt çenenin dental kemiği üzerinde yer alan genellikle zayıf köklü ve içleri boş olan dış iskelet elementleridir. Fonksiyonlarına göre çeşitli şekillerde olabilen kesici, köpek ve azı dişleri olarak isimlendirilmektedirler. • Ağız boşluğunda bulunan dişler : Genellikle ağız boşluğunu çevreleyen Vomer, Palatin ve Ektopterigoid kemikleri ile dil üzerinde bulunurlar. Eğer ağzın arka tarafında olurlarsa Vomer, damakta olurlarsa Palatin, dil üzerinde bulunurlarsa Lingual dişler adını alırlar. Dil üzerinde bulunan dişler Esox lucius, Salmo trutta, Lampetra fluviatilis'de; Palatin üzerinde bulunan dişler Esox lucius, Salmo trutta, Perca fluviatilis ve Cottus gobio'da; Vomer üzerinde bulunan dişler Salmo salar, Perca fluviatilis, Salmo trutta ve Lota lota'da.; solungaç yayları üzerinde bulunan dişler Esox lucius ile Perca fluviatilis'de; Farinksin iç cidarında bulunan dişler ise Cyprinidae familyası üyelerinde görülmektedir. Bunlar arasında özellikle Cyprinidler'e has olan Farinks dişleri ile Salmonid'lerde karakteristik olan vomer dişleri türlerin ayrılmasında taksonomistler için büyük önem arzeden ayırıcı özelliklerdir. Farinks ve özofagus Bazı balıklarda (özellikle Cobitid ve Cyprinid'lerde), üzerinde farinks dişlerinin yer aldığı iki kemik yaydan ibaret çok kısa bir yutak kısmı bulunur. Yutak bölgesinde yer alan, sayıları ve diziliş tarzları türlere göre büyük değişiklikler gösteren farinks dişlerinin şekilleri ve fonksiyonları da türlere göre değişir. Örneğin, Cyprinus carpio ve Carassius auratus'da, besinleri öğütmek için tıpkı bir değirmen taşına benzer; Nemacheiliis cinsinde çamuru filtre etmek için bir kalbur vazifesi görür; Scardinius erythrophthalmus''da böcek larvalarını parçalamak için bir testere gibi iş görür, nihayet Leuciscus cephalus'da ise, böceklerin kabuğunu çıkarmak için bir seri kancalar gibi vazife görür.. Farinksten sonra gayet kısa ve dışarıdan bakıldığında mideden pek ayırt edilemeyen bir özofogus (yemek borusu) gelir. Burada, ağıza alınan suyun mideye girmesini önleyici ve büzücü karakterde olan bir kas mevcut olup, bu kas solunum esnasında yemek borusunu kapatmaktadır. Mide Özofagusun devamında pek iyi bir gelişme göstermemiş olan mide kısmı bulunur. Mide genellikle iki kısımdan ibaret olup birinci kısım genellikle besinlerin sindirilmemiş halde toplandığı Kardiyak bölgesi, ikinci kısım ise sayısı türlere göre değişik olan ve parmaksı görünüşte bulunan divertikulumların (plorik çekum = kör barsak) açıldığı Pilor bölgesi'dir. Mide genel olarak kuvvetli kaslardan meydana. gelmiş olup, özellikle Mugilidae familyası mensuplarında çok kalın çeperlidir ve tıpkı kuşların katı midesine benzer şekilde fonksiyon görmektedir. Yırtıcı balıklarda (örneğin, Esox lucius'da.} mide çok şiddetli etki yapan sindirim enzimleri içerdiğinden bütün halinde yutulan balıklar kısa zamanda ve kolayca sindirilebilirler. Midenin şekli balıklarda çok değişik olabilmektedir. Örneğin, Coregonus'da. (U) harfi sekilinde, Cottus gobio'da. düz bir kese şeklinde, Esox lucius'da ise, bir torba şeklindedir. Bazı balıklarda; Örneğin, Cyprinidac familyasında gerçek mide yoktur, onun için özofagus iyi gelişmiş olup, doğrudan doğruya bağırsağa bağlanır. Genel olarak denilebilir ki, balıklarda karnivorluk derecesi arttıkça mide gelişimi de artar. Bağırsaklar Mideden sonra gelen ve anüse kadar devam eden en uzun sindirim cihazı bağırskklardır. Bağırsak gelişimi balıkların beslenme rejimleri ile ilgili olup, genellikle karnivor formlarda (Esox lucitis) çok kısa; buna karşın, otla beslenen herbivor formlarda (Cyprinns carpio) çok uzundur. Sindirimin son bulduğu açıklık ise, Anüs olarak isimlendirilir. Anüsün konumu çeşitli balık, türlerinde değişik durumlar gösterdiği halde, kemikli balıklarda genellikle Anal yüzgecin hemen önündedir. Anüsün şekli bazı türlerde (örneğin, Cyprintts carpio'da.} sexleri ayırıcı karakter olarak kullanılabilir, örneğin, dişi sazanda anüs konvex veya kabarık durumda olduğu halde, erkekte konkav yani çukur görünüştedir. Buraya kadar açıklanan ve sindirim borusunun esasını teşkil eden organlardan başka yardımcı sindirim bezleri de mevcuttur. Bunların başlıcaları Karaciğer ve Pankreas olup, özsularını mide ile bağırsağın birleştiği bölgeye akıtırlar. Genel olarak çok hacimli yapıya sahip karaciğer iki büyük loptan meydana gelmiştir. Yüksek dozda A ve D vitaminleri içerir. Pankreas ise, balıklarda iyi gelişmemiştir. Birçoklarında dışardan farkedilmeyecek derecede küçülmüş olup, dağınık bir durum arz etmektedir.  

http://www.biyologlar.com/baliklarda-sindirim-sistemi

Balıkların Örtü Organları ve Pul Tipleri

Deri Balıklarda deri, diğer omurgalılarda da olduğu gibi, vücudu dış ortam etkilerinden koruyan ve oldukça dayanıklı bulunan bir örtü tabakasıdır. Deri, herşeyden önce koruyan bir tabaka ise de, ayrıca çeşitli fonksiyonları da mevcuttur. Örneğin, bir taraftan içerdiği pigment maddeleriyle balığa renk verirken solunum ve boşaltım olaylarına da yardımcı olmaktadır. Bunların dışında bazı balık türlerine özgü olan korunma, avını yakalama veyahutta hemcinsini bulmada rol oynayan elektrik organları ve zehir bezleri gibi yapılarda deri üzerinde yer almaktadır. Diğer omurgalılarda olduğu gibi, balıkların da derisi derma ve epiderma denilen iki tabakadan yapılmıştır. Epidermis : Derinin fazla kalın olması ve dış etkenlerle temas halinde bulunması nedeniyle hücreleri devamlı olarak yenilenmeye maruz kalan üst tabakası, bilhassa salgı bezleriyle donatılmış durumdadır. Bunların çoğu mukus bezleri olup, genellikle basit bir tüp şeklindedirler. Salgı mahsulleri olan mukusu, kısa bir kanal vasıtası ile pulların arasından vücut yüzeyine salgı salarlar. Dolayısıyla vücudun devamlı olarak yumuşak ve kaygan kalması, bu bezlerin faaliyetine bağlıdır. Ayrıca kayganlık sağlamaları sebebiyle de balığın ortamı içerisinde kolayca hareket etmesini ve yaralanmalardan kolayca korunmasını sağlamış olurlar. Dermis : Alt tabakayı teşkil eden dermis, daha karışık yapılı olup, bağ dokusu, kas fibrilleri, kan damarları ve sinirlerin yer aldığı kısımdır. Pullar ve pigment maddeleri de dermis tarafından hasıl edilirler. Çoğu kez balıkların vücudu exoiskelet olarak nitelendirilen ve kemik orijinli olan pullarla örtülüdür. Deri şayet pullarla örtülü ise, yapısı gayet narin ve incedir, buna karşın pul içermiyorsa, dış etkenlere karşı mukavemeti sağlayabilmek için çok kalın ve dayanıklı olur. Örneğin, Kedi balığında pullar olmadığı için deri adeta kösele gibi kalın ve sağlamdır. Pigment hücreleri özellikle dermis tabakasına ve dolayısıyla balığın vücuduna renk vermektedirler. Bunların vücuttaki yerleri ve şekilleri değiştiği gibi içlerinde bulunan pigment maddeleri sinir refleksleri ve ışığın etkisiyle kontraksiyon yaparak hareket ederler. Dolayısıyla pigmentlerin hücre merkezinde toplanması veya hücre sathına yayılması esnasında balığın vücudunda açılma veya koyulaşma gibi kısmi bir renk değişimine sebep olmaktadırlar. Kromotofor hücrelerinin içerdiği pigment maddesinin türüne göre, bu mekanizma sayesinde bazı balıklar ortama adaptasyon gösterebilmektedirler. Balıklarda görülen yumurta bırakma veya üreme zamanlarındaki renk değişmesi ile albinizm veya eritrisin hallerinin aynı orijinli olduğu söylenmektedir. Pullar ve Pul Tipleri Derinin dermis tabakasında oluşan ve balığın vücudunu her türlü dış etkilerden koruyan pullar, kemikli balıkların çoğunda bulunmaktadır. Sıra ve sayıları ile diziliş tarzları türlere göre özellikler arzettiğinden tür tayininde önemli diagnostik karakterler olarak da dikkate alınmaktadırlar. Buna karşın, balıklara nazaran daha iptidai bir grup olan Cyclostomat' larda vücut pulsuzdur ve deri üzerinde Corneum tabakası bile yoktur. Anguilla gibi bazı formlarda pullar iyice küçülmüş ve deri içine gömülmüş olup, çıplak gözle bakıldığında adeta pulsuzrnuş gibi bir intiba uyandırırlar. Balık yavruları yeni yumurtadan çıktıklarında veya doğduklarında pul içermezler, ancak gelişimin belirli bir safhasında evvela vücudun belli bölgesinden başlamak üzere pullar teşekkül eder ve bu pullar kısa zamanda vücudu örter. Örneğin, Alabalık yavruları 3-4 cm. boya erişince vücutlarının anterior bölgesinden başlamak üzere pullar teşekkül ederken aynı olay Sudak balığında vücudun posterior bölgesinde görülür. Pulların orijini dermis olup, anterior uçlarıyla bu tabaka içine gömülmüşlerdir, posterior uçları ise, serbesttir. Dizilişleri önden arkaya doğru olduğundan balığın öne doğru yüzmesini kolaylaştırırlar. Pullar şekilleri itibari ile 4 grup altında mütalâa edilebilirler. Placoid Pullar En basit pul tipi olan placoid pullar çeşitli şekiller gösterirlerse de kaideleri daima yassıdır ve bu kaide üzerinde vücudun dışına doğru uzanan sivri bir diken bulunur. Bu pulların orijini hem dermis, hem de epidermis olduğundan diğer pul tiplerinden ayrılmaktadır. Dermis tarafından oluşturulan ve diş kemiği denilen bir çeşit kemikten yapılmış olan placoid pulların üzeri, orijini epidermis olan bir mine tabakası ile örtülüdür. Bu nedenle, placoid pullarla dişler arasındaki yapısal benzeyiş, adı geçen pulların gelişmesi esnasında dişe değiştiklcvnii iloii süren teorinin en kuvvetli delilidir. Bu tip pullar Köpek balıkları ve Vatozlar için karakteristik yapilardii. Ganoid (Rombik) Pullar Eşkenar dörtgen şeklinde olan bu pulların orijini tamamen derinin dermiş tabakasına aittir. Diş kemiğinden yapılmış olan ganoid pulların üzeri mineye benzeyen ve Ganoin adı verilen parlak bir madde ile örtülüdür. Mine ile ganoin birbirinden farklı orijinli yapılar olup, minenin epidermisten ganoinin ise, dermişten oluştuğu bir gerçektir. Lepidosteus ve Polypterus gibi bazı balıklarda vücut genellikle yan yana sıralanmış rombik pullarla örtülüdür. Acipen-seridae familyası üyelerinde daha büyük cesametli olan bu pullar vücudun sadece sırt, karın ve yan taraflarında mevcut olup, muayyen sıralar halinde uzanırlar. Bütün Ganoid balıkların başları rombik pullardan yapılmış birer zırh ile örtülüdür. Ganoid balıkların başlarını örten bu pullar yüksek omurgalılardaki Frontal, Parietal, Maxilla, Squamosa, Lacrimal, ve diğer bazı kafa kemiklerini oluştururlar. Cycloid Pullar Bugün yaşayan Kemikli balıkların ekseriyetinin vücudu gayet ince yapılı, kolayca eğilip bükülebilen ve genellikle yuvarlağımsı şekilli Cycloid pullarla örtülüdür. Teleosllar'da bulunan Cycloid pullar orijin bakımından Ganoid pullara benzeseler de şekil ve sıralanışları başka türlü olup, kaide kısımları (anterior bölgesi) dermis içindeki bir cebe yerleşmiştir. Posterior uçları serbest olmak üzere adeta bir çatının kiremitleri gibi (imbrikat tarzda) dizilmişlerdir. Yani bir sıradaki herbir pul, bir evvelki sıranın iki pulunun altında ve arasındadır. Mekanik bir önem arzeden pulların bu imbrikat dizilişi şöyle açıklanabilir: Dermik kaslar, pullar üzerinde eşit olmayan ilerlemeler meydana getirmekte, dolayısıyla büyüme anterior kısımda daha fazla cereyan etmektedir. Bunun neticesi olarak da pulların şekli kendiliğinden oval bir hal almakta ve dış kenarı (posterior ucu) derinin dışına doğru bir çıkıntı meydana getirmektedir. Daha sonra derinin dışına çıkan serbest kenarın üzeri epidermik orijinli bir zar ile örtülmektedir. Cyprinid' lerin. çoğunda vücut, mekanik etkenlere karşı dayanıklı olan ve kolayca eğilip bükülebilen ve muazzam bir zırh oluşturan cycloid pullarla örtülüdür. Ctenoid Pullar Ctenoid tip pullar yapı bakımından tamamen cycloid pullara benzerlerse de serbest uçlarının adeta testere şeklinde dişlenmiş olmasıyla kolayca ayrılırlar. Bu nedenle bir sazan balığı (Cyprinus carpio) ile bir Tatlı su levreğini (Perca fluviatilis) elimize alıp parmağımızı arkadan öne doğru sürtecek olursak tatlısu levreğindeki pulların küçük dişçikler içerdiğini kolaylıkla anlayabiliriz. Balıklarda his organları Balıklardaki başlıca his organlarını baştaki his porları ve vücudun yanal çizgisini teşkil eden his papillaları şeklinde mütalâa edebiliriz. Baştaki his organları, genellikle küçük ve yuvarlak çukurlar şeklinde olup, bunlar başın her tarafına dağılmış vaziyettedirler. Özellikle alt çenenin altında bulunurlar, çıplak gözle bile kolaylıkla müşahade edilebilirler. Örneğin, Turna balığında gayet bariz olarak görülebilen bu porların sayısının 37 civarında olduğu ve her bir porun balığın yanak bölgesindeki sinirlere bağlı bulunduğu tespit edilmiştir. Yanal çizgi, genellikle balığın vücudu boyunca ve çoğukez böğürlerinin tam ortasında uzanan tespih dizisi şeklindeki noktalardan meydana gelmiştir. Bu noktaların herbiri küçük birer kanalın dışarıya açılan uçlarını teşkil ederler. Bu küçük kanalların birleşmesiyle balığın vücudunun iki yanında, başın arkasından kuyruk yüzgeci başlangıcına kadai medio-lateral hat boyunca uzanan bir çizgi hasıl edilir ki buna yanal çizgi (Ligne lateral) adı verilmektedir. Bu çizgi birbirlerine bağlanmış ve içleri mukus maddesi ile doldurulmuş olan küçük kanalların birleşmesiyle teşekkül etmiştir. Sistem tamamen derinin altında gizlenmiş olup, pulların üzerinde bulunan küçük delikler sayesinde dış ortamdaki uyartıları hissedebilirler. Balıkların yüzme esnasında su içersinde başka canlılar tarafından meydana getirilen basınç dalgalarıyla devamlı surette irtibat halindedirler. Şayet ortam su içerisinde bulunan objeler tarafından basınç dalgalarıyla bulandırılırsa lateral çizgi sistemi derhal bu dalgaları algılayarak gerekli cevabı verir. Yani balığın dalgalara karşı gerekli davranışta bulunmasını sağlar. Şöyleki; lateral çizginin açık tüpleri içinde meydana getirilen hafif basınç değişimleri sinirler tarafından tespit edilirler ve gerekli mesajı beyne gönderirler. Böylece su içerisinde dalgalanmaya sebep olan objenin yönü ve mesafesi otomatik olarak tayin edilmiş olur. Dolayısıyla balıklar Ligne lateralleri sayesinde adeta bir radar merkezi gibi objeyi görmeksizin onun yerini ve mesafesini tayin edebilirler. Bu organlarının yardımıyla hem düşmanlarından kaçıp kurtulabilirler hem de özellikle predatör balıklar için, avlarını kolayca bulur ve yakalarlar. Yapılan tecrübeler kör edilen balıkların bile yanal çizgilerini kullanarak avlarını yakalayabildiklerini göstermiştir. Yanal çizginin profili genellikle türlere göre büyük farklılıklar arzetmektedir. Örneğin, Barbus'ta. düz bir hat şeklinde olduğu halde, Rutilus’ta karına doğru yaklaşmış vaziyette (Konkav), Percafluviatilis'te bunun aksine olarak sırta daha yaklaşmış şekilde (Konveks), Mystus halepensis'te ve Plecus cultratus'ta. sinuzoidal şekilde kıvrımlı, Dere pisisi denilen Pleuronectes flesus'ta ise, başa yakın ucu çatallı olarak görülmektedir. Ligne lateral kemikli balıkların çoğunda mevcut olmakla beraber, bazılarında hiç bulunmaz (Atherinidae, Cyprinodontidae, Clupeidae familyaları gibi) bazılarında da tam olmayıp vücudun belirli bir yerine kadar uzanmaktadır (Phoxinus ve Rhodeus cinslerinde olduğu gibi). Yanal çizgi konstant karakterlerden olduğu için, bilhassa Cyprinidae familyası üyelerinin tayininde önemli birer diagnostik karakter olarak yanal çizgi pullarının sayısı kullanılmaktadır. Balıklarda dokunma hislerini alan organlar olarak bıyıklar mevcuttur. Bıyıklar, balıkların ağızları etrafında çeşitli şekillerde bulunurlar. Konumları muhtelif türlere göre değişmektedir. Örneğin, Lota loto'da alt çenenin altında, Cyprinus rarpio'da. üst çenenin üstünde, Gobio gobio'da. alt ve üst çenelerinin birleştiği köşede ve Mystus kalepensis'te olduğu gibi her iki çene üzerinde bulunmaktadır. Bıyıklar genellikle dokunma, bazen da tad alma işlerini yaparlar. Bazen Gobius cinsinde olduğu gibi damak mukozasındaki tomurcuklarla, Yılan balığı (Anguilla anguilla} ve Mersin balığı (Acipenser sturio) gibi formların dilleri üzerindeki papilla aynı işi gören his organları olarak bilinirler. Bıyıkların sayıları da türlere göre çok büyük değişmeler gösterir. Örneğin, Cyprinus carpio, Acipenser sturio ve Barbus türlerinde iki çift; Tınca tınca, Gobio gobio ve birçok Capoeta türünde bir çift; Cobilis ve Nemaclieilus cinslerinde üç çift ve Misgurnus fossilis türünde 5 çift bıyık bulunurken, Lota lota türünde sadece alt çenenin altında tek bir bıyık bulunur. Bıyıklar da constant (sabit) karakterlerden olup, .sayı ve uzunlukları türlere göre değiştiğinden, önemli taksonomik karakterler olarak tür tayininde kullanılmaktadır.

http://www.biyologlar.com/baliklarin-ortu-organlari-ve-pul-tipleri

Isı değişikliklerinin kalp hareketlerine etkisi

İki küçük kaba fizyolojik su konur. Bunlardan biri buzdolabına diğeri 35-40° etüve konarak amaçlanan ısıya gelmeleri beklenir. Bundan sonra şu deneyler yapılır; Önce soğuk fizyolojik sudan pipet ile alınarak kimografa bağlı kalp üzerine damlatılır. Kalp hareketlerinde bir yavaşlama görülür. Kalp hareketleri yavaşladıktan sonra sıcak sudan pipetle alınarak tekrar kalp üzerine damlatılır. Bu sefer kalp hareketlerinin hızlandığı görülür. Sıcak ve soğuk fizyolojik su tatbikinden sonra kimografta çizdirilen kalp hareketlerini, birim zamanda olacak şekilde sayarak yorumlayınız. Tipik olarak bir omurgalı kalbinde farklı 3 tip kas hücresi bulunmaktadır; i) Kalbin kasılmasını sağlayan esas kalp kası hücreleri, ii) Sinoatrial (SA) düğüm hücreleri ve iii) Atrioventriküler (AV) düğüm hücreleri. SA ve AV düğümlerı oluşturan hücreler değişikliğe uğramış kas hücreleri olup kalpte, kalbin kasılması için gerekli impulsu yaratan ve bu impulsu tüm kalp içine (atrium ve ventriküllere) ileten hücrelerdir. Bu hücrelerin en önemli özellikleri dışarıdan her hangi bir impuls almaksızın kendiliğinden ve ritmik olarak bir sinir impulsu meydana getirebilmeleridir. Kalbin kasılması için gerekli ilk sinir impulsunu meydana getiren ve kasılma/gevşeme evrelerinin hızını belirleyen bölge sağ atriumun posterior duvarında bulunan ve pacemaker olarak da isimlendirilen SA düğümdür (Şekil 1). Bu yüzden kalbin normal ritmi SA düğüm hücreleri tarafından belirlenir. SA düğümde kasılmanın kendiliğinden başlaması Na+ iyonları ile olmaktadır. Hücre dışında bol miktarda bulunan + yüklü Na iyonları kas hücresinin gevşeme devresinde, membranın Na+’a karşı geçirgen olması nedeniyle hücre içine sızarlar. Böylece zarın elektrik potansiyeli değişir ve depolarize olan kas hücresi kasılmaya başlar. Na+ iyonları dışarı pompalandığında ise kas hücresi membran dinlenme potansiyeline geri döner ve aynı olay yeniden meydana gelir. SA düğüm hücreleri dakikada yaklaşık olarak 70-80 aksiyon potansiyeli meydana getirirler. Bu intrinsik ritim, otonom sinirler tarafından kontrol edilmektedir. SA düğümde oluşan bir impuls 0.3 m/sn’lik bir hız ile tüm atrium kaslarına yayılır ve atriumların kasılmasına neden olur. Bu esnada atrium içinde bulunan kan atrioventriküler kapaklardan geçerek ventriküller içerisine dolar. Atriumların kasılmasına neden olan depolarizasyon dalgasının ventriküllere geçmesi AV düğüm hücreleri ile olur. AV düğüm (Şekil 1), atriumlar ile ventriküllerin birleştiği yerde bulunur. SA düğümde oluşturulup AV düğüme ulaşan impuls, özelleşmiş iletim yolları olan his demeti (Şekil 2) ve Purkinje lifleri (Şekil 2) aracılığı ile ventriküller içine yayılır ve ventriküllerin kasılmaları sağlanır. Ancak, AV düğümün impuls iletme hızı yavaştır (0,1 m/s). His demetinin impuls iletimi ise oldukça hızlıdır (1,5 / 2,5 m/s). Bu hızlı iletim ile depolarizasyon dalgası hızla ventrikül kaslarına yayılarak iki ventrikülün de aynı anda kasılmasını sağlar. AV düğümde impuls iletiminin yavaş oluşu, atriumların ventriküllerden önce kasılmalarını tamamlamaları ve kanın atriumlardan ventriküllere geçmesi için gerekli gereken zamanı sağlar. Kurbağa kalbi 3 odacıklı olup iki atrium ve bir ventrikülden ibarettir (Şekil 3). Bu kısımlardan karın tarafta ventrikülden çıkan ve sonra ikiye ayrılan Bulbus (=Truncus) arteriosus görülür. Sırt tarafta ise sağ atriuma açılan sinus venosus bulunur. Kalbin kendi sinir impulslarını oluşturup ilettiğini, yani otomatik bir organ olduğunu İlk kez Stannius adlı bilim adamı kurbağa kalbi ile yaptığı çalışma ile göstermiştir. Stannius, göğsü açılarak kalbi açığa çıkartılmış bir kurbağanın sinus venosus bölgesinden bir ip geçirerek bu bölge ile sağ atriumu birbirinden ayıracak şekilde buraya bir düğüm atmıştır (I. Stannius bağı). Bu düğüm atıldıktan sonra atriumlar ve ventrikülün kasılmayı durdurduğu gözlenmiştir. Ancak bu esnada sinus venosus bölgesi eski ritmik çalışmasını sürdürmüştür. Bu deney SA düğümde oluşturulan nomotop uyaranın sinus venosus bölgesinde bloke edildiğini göstermektedir. Stannius, aynı kurbağanın atrioventriküler bölgesine ikinci bir düğüm daha atmış ve bu kez (ikinci düğüm atıldıktan sonra) ventrikülün yeniden kasılmaya başladığını gözlemiştir. Bu esnada atriumlar yine kasılmadan durmaktadırlar. İkinci bağ atıldıktan sonra daha önce durmuş olan ventrikülün yeniden çalışmaya başlaması atrioventriküler düğümde, sinus venosusdaki nomotop emir merkezinden başka, bir heterotop merkezin varlığını göstermektedir. Diğer bir ifadeyle, atrioventriküler düğüme dışarıdan herhangi bir uyaran verilirse bu bölgede oluşacak bir aksiyon potansiyeli ventirükülün çalışmasına sebep olacaktır.

http://www.biyologlar.com/isi-degisikliklerinin-kalp-hareketlerine-etkisi

Stannius Bağları

Stannius Bağları

Medulla spinalis’i tahrip edilmiş bir kurbağa mantar bir levha üzerine sırt üstü olacak şekilde yatırılarak ayaklarından iğnelenir.

http://www.biyologlar.com/stannius-baglari

DNA, Nükleotit, Kromozom, Gen, Canlılık, Cansızlık - Nedir, Ne Değildir?

Nükleotitlere bu özel önemi verme ve en önde anlatma sebebimiz, canlılığın sürerliğinin sağlanabilmesi için var olması gereken DNA yapısının temel yapı birimi olmalarıdır. İleride ayrıntısıyla değineceğimiz gibi canlılık en nihayetinde belirli biyokimyasal fonksiyonların DNA tarafından saklandığı ve gelecek nesillere aktarıldığı bir varlık formundan ibarettir. Dolayısıyla DNA'nın oluşabilmesi, canlılığın büyük oranda oluşabilmesini sağlayacaktır. Kavramların gerçek anlamlarını öğrenebilmemiz gerçekten çok önemli, çünkü ne yazık ki eğitim sistemimiz terimleri doğru bir şekilde öğretebilmekten çok çok uzak. Pek çok kavram, eğitim hayatımız boyunca yanlış ve "sınava yönelik" öğretiliyor. Ne var ki bilim, eğitim sistemimizin sandığından çok ileride. Bu sebeple bazı düzeltmeler yapmamız ve akıllarda oluşturulan bazı anlamsız tabuları kırmamız gerekiyor. Belki de, bu kavramların en başında "canlılık" ile "cansızlık" ayrımı geliyor. Buna Evrim Mekanizmaları ile ilgili yazılarımızda tekrar değineceğiz; orası için ayırdığımız bir açıklamayı, burada, en başından yapmak istiyoruz; çünkü "canlı" ve "cansız" ayrımını anlamak, belki de Biyoloji'yi anlayabilmenin ve Evrimsel Biyoloji'yi kavrayabilmenin başında geliyor. Öyleyse lafı daha fazla uzatmadan başlayalım: İlk olarak, bilimsel olarak hiçbir şey, esasında, ne "canlı"dır, ne de "cansız". Bu sadece, literatür açısından işleri kolaylaştırmak, Biyoloji'nin sahasını belirlemek ve anlaşma kolaylığı sağlamak amacıyla uydurulmuş ve pek bir dayanağı olmayan bir olgudur. İnsanoğlu, etrafına bakıp varlıkları sınıflandırmak istemiş ve belli başlı özellikler taşıdığı için bazı varlıklara "canlı" demiş, bu özellikleri taşımayan varlıklara ise "cansız" demiştir. Bu belli başlı özellikler şöyle sıralanabilir: 1.Uyarana tepki gösterme 2.Üreme 3.Büyüme ve Gelişme 4.İç Dengeyi Koruma 5.Belli bir organizasyona sahip olma 6.Metabolik faaliyetleri gerçekleştirme ve enerji üretme 7.Adapte olabilme Kimi kaynak bunlardan sadece ilk 4'ünü saymakta, diğerlerini elemektedir. Aslında bunları moleküler boyutta düşünürseniz göreceksiniz ki her biri basit kimyasal olaylar sayesinde olabilmektedir ve büyütülecek ya da "canlılığa özel" bir şey olabilecek durumda değildir. Daha çok, sonradan uydurulmuş bir kılıf olarak görülmektedir. Ve temel olarak, bu 7 özelliğe bir arada sahip olabilen varlıklara "canlı" denmektedir, bir ya da birkaçı "cansız" varlıklarda da görülebilir (Tepki örneği: www.vidivodo.com/325487/instant-hot-ice). Aslında temel olarak, binlerce yıl öncesinden beri, yukarıda belirttiğimiz taşıyan varlıklarda bir "can" (insan için "ruh", diğerleri için "can") olması gerektiğini düşünmüştür insanlar. Bu kavramlar o kadar uzun yıllardır insanları etkilemektedir ki, insanlık tarihine göre, göreceli olarak çok yeni olan bilim de bu kavramları olduğu gibi kullanmaktadır; gerek kullanım kolaylığı, gerekse de aramıza yerleşmiş memlerin yıkılmasının güçlüğünden ötürü. Halbuki, Biyoloji'nin derinliklerine inen bilim insanları, önce organlarımızı, sonra dokularımızı, sonra hücrelerimizi keşfetmiştir. Daha da derinlere indiğimizde, hücrelerin içerisindeki neredeyse her olayı gözlemleyebilir hale gelmişizdir. Ve bu boyutta, baktığımız zaman, bir canlı ile cansızı ayırmak olanaksızdır. Çünkü ikisi de belli başlı kimyasal tepkimeler bütünüdür. Bir demir, oksijenin bulunduğu ortamda sürekli tepkimeye girerek paslanmaktadır. Aynı oksijen, hücrelerimiz içerisinde bulunan bir diğer kimyasal olan şekerler ile tepkimeye girerek hücrenin "canlılığını" sürdürmektedir. Peki, demiri "cansız", hücreyi "canlı" yapan nedir öyleyse? Hiçbir şey. İkisi de, sıradan atomlar ve moleküller yığınıdır. Tek fark, bu kimyasal tepkimelerin ("canlılar" içerisinde gerçekleşiyorsa "biyokimyasal" tepkimelerin) toplamı, eğer içerisinde bulunduğu ya da totalde oluşturduğu varlığa yukarıda sayılan belli başlı özellikleri veriyorsa, o varlık "canlı" olmaktadır. Bu, insanın kendince uydurduğu asılsız bir sınıflandırmadır. Bu noktada, daha fazla ilerlemeden anlam bütünlüğü açısından atom ve molekülün yazımız kapsamında ne anlamda kullanıldığını açıklayalım: Atom, bir maddeyi meydana getiren nano-boyuttaki temel parçacıkların adıdır. Temel olarak, periyodik cetvelde element olarak gösterilen bağımsız madde parçacıkları olarak düşünülebilir. Her bir atomun, kendine has fiziksel ve kimyasal özellikleri vardır. Bu özellikler doğrultusunda normalde Kimya dahilinde aynı elementlere ait atomların bir araya gelerek oluşturdukları daha büyük parçalaramolekül denmektedir. Eğer farklı elementlere ait atomlar bir araya gelerek daha büyük bir yapı oluşturuyorlarsa buna Kimya'da bileşik denir. Ne var ki biz bu detaylara girmemek adına, "bileşik" ile "molekül" sözcüklerini eş anlamlı olarak kullanacağız ve hepsine birden "molekül" diyeceğiz. Canlılık/cansızlık olayına dönecek olursak; aşağıdaki yazımızda bunu biraz daha irdelemekteyiz: www.facebook.com/note.php?note_id=164247643633319 Yukarıdaki yazımızda da okuyabileceğiniz gibi, "canlılığın" "cansızlıktan" başlaması oldukça anlaşılır ve mantıklıdır, çünkü aralarında bir fark zaten yoktur. Başlangıçta meydana gelen farklı kimyasal evrimler bazı varlıkların yukarıdaki özelliklere hep birden sahip olmasını, bazılarının da başka türlü özelliklere sahip olmasını sağlamıştır. Örneğin karbon, yüksek basınç altında Dünya'nın en sert malzemesi olan elmasa dönüşür. Bunu hangi canlı yapabilir? Hangisinin daha "önemli" olduğuna nasıl karar vereceğiz? İşte, aslında hiçbiri önemli değildir. Önem sırası, insanlar tarafından rastgele belirlenir ve esasında doğa açısından geçersizdir. İşte canlılık ile cansızlık arasında bir fark olmadığını anlayabilen biri, geri kalan pek çok şeyi kolaylıkla kavrayabilecektir. Bunların başında da, canlıları "canlı" yapan moleküller, bunların yapıları ve görevleri gelmektedir. Canlıları ayırt eden belki de en önemli özellik, çoğalabilmeleri ve kendilerindeki bilgiyi yavrularına aktarabilmeleridir. Bu olay, insanı var olduğundan beri etkilemektedir ve birikerek günümüze gelen bu "büyüleyicilik", günümüz insanlarının genetik materyallere ve genel olarak hücreleri meydana getiren kimyasal moleküllere olduğundan fazla anlam yüklemesine sebep olmaktadır. Kişiler DNA'nın "mükemmel" bir molekül olduğunu sanmakta, enzimlerin "ulaşılamaz" bir iş yaptıklarını düşünmekte, hücrenin içinin "gerçek olamayacak kadar karmaşık" olduğunu iddia etmektedirler. Bunlar, bir yere kadar doğru olsa da, bilimsel olarak açıklanamayacak kadar "mükemmel", "ulaşılamaz" ya da "karmaşık" olan hiçbir yapıya doğada rastlanmaz. Zaten bilim, doğayı anlama sanatıdır ve doğada izah edilemeyecek bir şey bulmayı beklemek anlamsızdır. Şimdi, başlıkta da belirttiğimiz molekülleri tanıtmaya ve incelemeye başlayalım, böylece ne demek istediğimizi kolaylıkla anlayacaksınız: DNA dediğimiz moleküller zincirinin uzun adı; Deoksiribo Nükleik Asit’tir. Kimya konusunda bilgisiz olan biri ilk bakışta anlayamayabilecek olsa da, DNA son derece sıradan, kimyasal bir moleküldür. Kimya bilimi dahilinde bütün moleküller bu şekilde uzun, tanımlayıcı ve bir miktar da "artistik" sayılabilecek isimler alırlar. Örneğin sıradan bir kimyasal olan bir diğer maddenin adını verelim: Trifluoromethanesulfonate. Hele ki eğer DNA'nın adını karmaşık buluyorsanız, bir de her gün yudumladığınız kahvenizin içerisinde bulunan "kafein"in kimyasal adını deneyin: 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione! Yani DNA, ne özel bir isimdir, ne de özel bir artısı vardır. DNA’yı belki de "özel" kılan tek şey, her kimyasal maddenin kendine ait bir özelliği olduğu gibi, DNA’nın da kendine ait bir özelliği olması ve bu özelliğin, bizim ilgimizi çeken bir şekilde, kalıtıml alanında görev almasıdır. Yani örneğin gözlerinizin ıslak kalmasını sağlayan gözyaşınızın da kimyasal bir formülü bulunur. Tek fark, gözyaşınızın gözlerinizi korumak ve duygularınızı belli etmek gibi görevleri varken, DNA’nın bir sonraki kuşağa aktaracağınız bilgileri taşıma görevi olmasıdır. DNA’yı spot ışıklarının karşısına koyan bu kalıtımsal özelliğidir; ne daha azı, ne daha fazlası. Aslında düşünüldüğünde, bunun da "özel" olmadığı görülecektir. Çünkü zaten "kalıtım" dediğimiz olay da, biyokimyasal bir tepkime sonucunda, bir molekülün kendisini eşlemesi ve çoğalması demektir. Bunun da herhangi bir özel yanı bulunmamaktadır. Aşağıda, temsili ve en sık karşılaşabileceğiniz DNA çizimini görüyoruz. Gördüğünüz gibi DNA, ikili bir sarmaldan oluşur. Yani iki farklı doğru, birbiri etrafında kıvrılarak heliks bir yapıya bürünür: Bu çizim her ne kadar genel yapı hakkında bilgi verse de ve bu şekilde çizilmesi çizerler için oldukça kolay olsa da, molekülleri sanki özel ya da başka varlıklardan farklıymış gibi göstermesinden ötürü, biz bu "kapalı çizim" yöntemini tercih etmiyoruz. Bir aşağıdaki resmi incelerseniz, farkı anlayacaksınız. Aşağıdaki çizimde, DNA’nın gerçek yapısı görülmektedir. DNA da, evren içerisindeki diğer bütün varlıklar gibi, yalnızca ve yalnızca sıradan atomlardan ve bunların farklı kombinasyonları olan moleküllerden oluşur. Bu atomlar temel olarak Karbon (C), Hidrojen (H), Azot (N), Fosfat (P), Oksijen (O) ve benzeridir: Görüyorsunuz… DNA, sadece arka arkaya, birbirlerine zayıf veya kuvvetli kimyasal bağlar ile bağlanmış atomlardan ibarettir. Peki DNA, en küçük kalıtsal yapıtaşımız mıdır? Elbette hayır, DNA zinciri de daha küçük parçalara bölünebilir. Bu daha küçük parçalara “nükleotit” denir ve DNA sarmalını bir merdivene benzetecek olursak, merdivenin basamaklarını oluşturur. Nükleotitler, kalıtım bilimi için oldukça önemlidirler. Çünkü temel olarak, bilgiyi taşıyan parçalar nükleotitlerdir. Nükleotitlerin farklı dizilimi, farklı anlamlar ifade eder. Dolayısıyla nükleotitleri, eğitim hayatımızda da ezberlettikleri gibi "harfler" olarak düşünebiliriz. Bu harfler, farklı şekillerde dizilerek, farklı kelimeler, farklı anlamlar ifade ederler. Tıpkı bizim günümüzde kullandığımız son derece kompleks bilgisayar yazılım dilleri gibi, genetik olarak hücrelerimiz de bir şifreleme kullanırlar. Bu şifreleme dilindeki harf sayısı, günümüz modern dillerine göre çok çok az olmakla birlikte, bu az sayıda harfin kodlayabileceği komut sayısı sınırsızdır. Bunu bilgisayar üzerinden örnek vererek anlatabiliriz: Bilgisayar programcıları, bilgisayarları programlamak için C, C++, Basic, vb. diller kullanırlar. Bu diller, İngilizce’ye oldukça benzerler, çünkü bu programlama dillerini yazan programcılar tarafından, günlük konuşma diline oldukça yakın olacak şekilde ayarlanmışlardır. İlk bilgisayar yazılımları, kesinlikle böyle basit bir dil kullanmamaktaydı ve mühendisler tek tek "1" ve "0"ları kullanarak programlama yapmaktaydılar. Sonrasında, "bilgisayarların evrimi" sırasında yeni programlar yazıldı. Bu programlar, "programı programlamaya" yarıyordu. Temel olarak yaptıkları şuydu: İngilizceye benzer kelimeleri kullanabileceğiniz bir arayüz sağlamak. Programcı, bu arayüze kolay kelimeleri yazmaktadır; arka planda ise program bunu yine "1"ler ve "0"lara çevirip işlemciye gönderir. Örneğin klavyede yazdığınız bir kelimenin ekranda çıkabilmesinin tek nedeni, bastığınız her bir tuşun bilgisayara elektriksel sinyal olarak bir “komut” göndermesi ve bilgisayarın monitörde bulunan küçük, ışık saçan LED’lerden birini, uygun renkte yakmasından ibarettir. Bilgisayar ekranını güçlü bir büyüteçle incelerseniz, ne demek istediğimi anlayabilirsiniz. İşte nükleotitlerin farklı dizilimleri sonucu oluşan "anlamlı bütünler" ise (bunlara "gen" diyeceğiz), farklı işlemleri yapmak için özelleşmiş kodlar gibidir. Buna az sonra geleceğiz, öncelikle bir noktayı aydınlatalım: Tabii ki bilgisayarlar, insanlar tarafından "tasarlanan" makinalar olduğu için, canlılığı betimlemekte kullanmak çok da doğru değildir. Zira canlılık, insan zekası tarafından son 50-60 yılda var edilen bilgisayarın aksine, yaklaşık 600 milyon yıl boyunca, akıl almaz sayıda denemeler sonucunda, adım adım evrimleşerek, elenerek, seçilerek oluşmuştur. "Hurdalıktaki Boeing" benzetmesine ya da "İşte, bilgisayarın da bir yaratıcısı var, canlılığın da olmalı!" iddiasına bir diğer yazımızda zaten değineceğiz, o yüzden aklınızdan geçiyorsa bir miktar sabretmenizi rica edeceğiz. Bu yazımızda bunlara az sonra, kısaca değineceğiz. Bilgisayarda olduğuna benzer bir şekilde, canlılar da da 4 harften oluşan bir dil kullanır ve her bir harf, bir nükleotit tipini temsil eder. Bu harfler, “A” (Adenin), “T” (Timin), “C” (Sitozin) ve “G” (Guanin)'dir. Elbette ki aslında gerçekte bu harflerin hiçbiri ile iletişim olmamaktadır. Bu isimleri onlara biz, sonradan verdik. Zira bu bahsedilen harfler, yalnızca kimyasal bazı yapılardır. Bilgisayar benzetmesinin kötü bir benzetme olmasının bir nedeni de şudur: Canlılara "bilgisayar" olarak baktığınızda, bir grup mühendisin oturup tasarladıkları bir makina olarak düşünürsünüz ve bu sizi yanlış düşüncelere iter. Çünkü bilgisayarlar biyolojik bir evrim geçirmemişler, mühendisler tarafından tasarlanmışlardır. Bu bile tam olarak doğru değildir, çünkü Evrim aslında her yerdedir: Aslında "teknolojinin evrimi" olarak düşünüldüğünde, binlerce yıllık bir geçmiş sonucunda, minik adımlarla bugün "bilgisayar" dediğimiz makinalara ulaştığımızı görürsünüz. Hiçbir ürün, basit adımlar atmadan, olduğu son şekliyle var olamaz. Canlılık da bu şekildedir. Canlılar, bu yazı dizimizde anlatacağımız başlangıçtan, milyarlarca yıllık seçilim ve değişim sonucunda günümüzdeki halini almışlardır. Düşüncelerinize kulak verelim: "Şimdi telleri, dirençleri, transistörleri koysak, milyarlarca yılda bir bilgisayar oluşabilir mi?" diye soracaksınız. Dediğimiz gibi, bunu diğer yazılarımızda ayrıntısıyla inceleyeceğiz. Ancak unutmayınız ki, direnç, transistör vb. varlıklar bizim "canlı" dediğimiz organizmaların oluşmasını sağlayan kimyasal yapıya sahip değillerdir. Dolayısıyla "üreyemezler" ve kendilerindeki bilgiyi yavrularına "aktaramazlar". Bu sebeple daha sonra açıklayacağımız Evrim Mekanizmaları'nın hiçbiri işleyemez. İşte tam olarak bu sebeple, Evrim geçirmezler ve asla bir bilgisayar oluşturmazlar. Ancak eğer ki bu şartları sağlayabilecek kimyasal yapıları olsaydı, üzerlerinde seçilim işleyecekti ve belki de, şu anda düşününce komik gelse de, hiç beklemediğiniz mekanizmalar üretebileceklerdi. Ancak cansızları kullanarak, canlılığı betimlemek, cansızların tanımsal olarak "canlılık" özelliklerini taşımadıkları için doğru değildir. Eğer yukarıdaki açıklamalarımız doğrultusunda canlılık ve cansızlık doğru tanımlanırsa, düzgün betimlemelere ulaşmak daha mümkün olacaktır. Buradan anlaşılması gereken şudur: Evrim'i ve canlılığın başlangıcını anlayabilmemiz için, belli bir grup kimyasal ve fiziksel özelliklere sahip molekül gruplarından bahsetmemiz gerekir. Aklımıza gelen her atom, molekül ya da yapı, canlılık ile paralellik göstermeyecektir. Yoksa tek tip değil, binlerce farklı tipte canlı olurdu, her birinin "canlılık" özellikleri farklı olurdu. Ancak var olmuş, var olan ve var olacak her canlının ortak bir atası vardır ve o ata, var olan Evren'imizin kuralları dahilinde, var olan Dünya'mızın şartları çerçevesinde bizlerin yukarıda saydığımız "canlılık" özelliklerini kazanabilmiş ve aktarabilmişlerdir. Her canlının DNA'sı benzer yapıdadır, her canlının hücreleri üç aşağı beş yukarı birbirini andıracaktır (hatta her canlının genomu, belli bir miktar diğer herhangi bir canlıyla ortaktır, bu da ortak bir atadan geldiğimizi gösterir). Ancak bizi ilgilendiren "canlılık molekülleri", yani canlılığı değerlendirmemiz için kullanabileceğimiz bileşikleri oluşturan moleküller; Karbon (C), Oksijen (O), Hidrojen (H), Nitrojen (N), Fosfor (P), Kükürt (S) ve birkaç diğer atomun farklı bileşimleriyle oluşan sayısız moleküldür. Periyodik cetvelde önünüze gelen her atomla, canlılıktan bahsedemezsiniz. Yani aklımızda şunu tutmamız gerekiyor: Dünya üzerindeki canlılık ve cansızlık, aynı noktadan, 4.5 milyar yıl önce Dünya'nın oluşumuyla başlamıştır. Günümüzdeki canlıların da, cansızların da yapısındaki her şey ama her şey, bu ilk başlangıçta Dünya üzerine yerleşmiştir, bir kısmı da sonradan canlılara ya da cansızlara ait tepkimeler aracılığıyla üretilmiştir. Bu varlıklardan bir grup, aşağıda açıklayacağımız kimyasal bütünlüğünden oluştukları için, daha doğrusu maddeler bu şekilde birleştiği için bugün "canlılık" olarak tanımladığımız varlık grubuna evrimleşeceklerdir. Bir kısmı ise, daha farklı yapıda oldukları için bugün bizim "canlılar" dediğimiz varlıkların özelliklerine sahip olamayacaklardır. Burada bir "üstünlük"ten bahsetmek anlamsızdır. Sadece iki farklı varlık grubundan bahsetmek gerekir. İki grup da tamamen benzer atom ve moleküllerden oluşmaktadır. Sadece bu atom ve moleküllerin dizilimi, içerikleri ve son 4 milyar yılda geçirdikleri kimyasal evrim birbirinden farklıdır. Peki, DNA'daki bilgileri taşıyan yapıtaşları, daha doğrusu "harfler" dediğimiz yapı taşları nelerdir? Bu harfler, nükleotit denen DNA’nın küçük parçalarının, bildiğimiz, kimyasal bir madde olan “baz” kısmında bulunan bir dizilimdir. Bu dizilimde karbon, hidrojen, vb. atomlar bulunur. Bu atomlar belirli bir şekilde dizilirse, ona Adenin (A) deriz. Başka bir şekilde dizilirse Timin (T) deriz. Başka bir şekilde dizilime Guanin (G), bir diğerine ise Sitozin (C, İng: Cytosine) deriz. Ancak biz onlara ne dersek diyelim, aslında bunlar sadece sıradan birer baz grubudur. Birer kimyasaldır. Ancak bu kimyasallar, bizim genetik yapımıza sahiptirler. Aşağıda, bu kodlayıcı “harflerin” ya da kimyasal moleküllerin yapısını görebilirsiniz. Görebileceğiniz üzere sadece sıradan atomların farklı dizilimleri sonucu bu moleküller oluşmaktadır: Ne kadar da birbirlerine benziyorlar değil mi? Tek değişen, atomlarının dizilimi. Ancak bu dizilimlerin farklı farklı olması, bu moleküllerin farklı kısımlarının aktif hale gelmesine ve farklı moleküllerle, farklı tepkimelere girebilmelerine sebep oluyor. bu farklı tepkimelerin toplamı da, bir varlığı "canlı" ya da "cansız" kılıyor. İşte fark burada! Ve anlaşılması gereken nokta da bu! Devam edelim. Nükleotitler, işte bu bazlarına göre isimlendirilirler. Peki bir nükleotitin yapısı nedir? Elbette ki, tıpkı evrendeki diğer tüm maddeler ve varlıklar gibi; atomlardan oluşan sıradan dizilimler. İşte bir nükleotit dizilimi: Gördüğünüz gibi, nükleotit denen ve çocuğunuzun neye benzeyeceğine karar veren moleküller, son derece sıradan atom dizilimlerinden fazlası değil! Bir fosfat (phosphate) grubu, bir şeker (sugar) grubu ve bir baz (base) grubu! Daha fazlası yok. Nükleotit dediğimiz molekül tipleri, sadece genetik materyalimiz ile sınırlı değil. Örneğin size bir diğer nükleotit örneği verelim: ADP. Yani Adenozin Difosfat. Bu da bir nükleotittir; ancak kimyasal evrim sırasındaki ardı arkası kesilmeyen seçilim sırasında, genetik materyali kodlayacak şekilde özelleşmemiştir. Yani cansızlıktan, canlılığı evrimleştirecek olan yapılar içerisinde görevi bu olmamıştır. Dolayısıyla günümüzde de bu yapı, herhangi bir genetik bilgi kodlamaz, enerji ile ilgili işlerde görev alır. Ancak yapısal olarak oldukça benzerlerdir: Buradan anlaşılması gereken şudur: Canlılık, bir "cansızlık çorbası" içerisinde, kimyasalların farklı şekillerde birbirlerine bağlanması, kırılması, birleşmesi, ayrılması sonucunda, 600 milyon yıl süren bir deneme-yanılma ve seçilim süreci sonucunda oluşmuştur. Bu süre zarfında pek çok çeşit "canlı-benzeri bileşim" oluşmuş olabilir. Ancak bunlardan sadece birkaçı dayanıklı olmuş ve seçilmiştir. İşte günümüzdeki her canlının atası olan bu canlıların yapısındaki kimyasal özellikler, günümüzdeki her canlının hücrelerindeki kimyasal özellikleri temsil etmektedir. Eğer onlar farklı şekilde hayatta kalabilseydi, günümüz canlı formlarının hücreleri de farklı yapıda olabilecekti. Bunlara gelecek yazılarımızda zaten döneceğiz. Bir diğer görselle devam edelim. Nükleotitlerin kimyasal yapılarının basit çizimle gösterimi şu şekildedir: İşte nükleotitler, kimyasal özelliklerinden dolayı bağ kurmak zorunda oldukları diğer nükleotitler ile birleşirler ve bu birleşimin tümü, DNA'yı oluşturur. DNA sarmal (heliks) yapısının, bu nükleotitlerin de gösterilerek çizilen hali şu şekildedir: Bu DNA sarmalının en altında dikdörtgene alınmış kısımda, fosfat-şeker-baz üçlüsünü ve dolayısıyla nükleotitleri görebilirsiniz. İşte bu DNA sarmalı, ökaryotlarda (zarla çevrili organelleri ve çekirdeği bulunan hücrelerde), upuzun bir şekilde hücrenin içerisindeki çekirdekte bulunur . Prokaryot (zarla çevrili organelleri bulunmayan ve çekirdeksiz) hücrelerde ise hücrenin içerisinde, genellikle ortada, ancak çekirdek bulunmadığı için daha dağınık bir vaziyette bulunmaktadır. Bu upuzun ve karmakarışık DNA sarmalı yapısına “kromatin ipliği” ya da “kromatin ağı” denir. Bunu da görelim: Yukarıdaki görsel son derece faydalıdır. En solda görülen spagetti tabağına benzeyen yapı, elbette ki bir tabak değildir, içindeki sarı yapı da spagetti değildir. Bu sarı yapı, upuzun olan bir DNA ağıdır. Burada, milyarlarca DNA bulunmaktadır. Karmakarışık bir ağ şeklinde. Mor renkli kap da, hücre çekirdeğidir. Gösterilmemiş olsa da, hücre çekirdeği de, hücre sıvısının içerisinde bulunur. Çıkarılan mavi oku takip ederseniz, DNA Heliks yapısına kadar geçişi görebilirsiniz. Ancak en nihayetinde, hatırlatmak gerekirse, olan tek şey, atomların dizilimidir. Aslında, bu karmaşık ağın içerisinde belirli bir düzen vardır. Bu düzen çok önemlidir, çünkü hücre bölünmesi sırasında genetik bilginin aktarımında bu özel birimler görev alırlar. Bu özel birimlerin adı “kromozom”dur. Kromozomlar, DNA’nın histon proteinleri tarafından sarılarak yoğunlaşması sonucu oluşan genetik birimlerdir. Kromozomlar da şu şekilde görülürler: Bu görsel de son derece açıklayıcıdır. Görebileceğiniz üzere hücre çekirdeğinin içerisinde özelleşmiş olarak bulunan bu DNA yapıları, kromozomlardır. Kromozomlardan yola çıkarak bazlara kadar yapılan açılımı, yukarıdaki görseli takip ederek bulabilirsiniz. Kısaca nükleotitlerin depolanması işlemi içerisindeki farklı genetik birimlere, farklı isimler verilmektedir. Bunlar, şimdilik bizim için çok da önem arz etmiyor; ancak Biyoloji'yi anlamak için elbette kritik öneme sahiptirler. Peki, genler bu adım adım karmaşıklaşan yapının neresindedirler? Genler, nükleotit dizilimlerinin anlam kazandığı bölgelerdir. Burada anlam kazanmaktan kasıt, yine bilim-dışı ya da doğaüstü bir "anlam" değildir. Canlıların, "canlılık özelliklerini" sürdürebilmeleri için üretmek zorunda oldukları çeşitli kimyasallar vardır (aslında dediğimiz gibi, bu kimyasalların varlığının toplamına "canlılık" denir). Genler, bu kimyasalların salgılanma sırasını, biçimini, vb. özelliklerini etkiler ve bu bilgileri depolar. Bu da son derece mantıklıdır: ilk canlılar evrimleşmeye başladıktan sonra, bu canlılığı sürdürebilecek kimyasal sentez işlemlerini saklayan bir diğer molekül biriminin, yani genlerin bulunması, canlılara avantaj sağlayacaktır. Kısaca bir kere genler oluştuktan sonra, canlılık kolayca sürdürülebilecetir. “Gen” denen yapı, aslında DNA’nın sadece belirli bir bölgesidir: Görebileceğiniz üzere genler, DNA sarmalının belirli kısımlardırı. Bu kısımlar, anlamlı ifadeler halindedirler ve hücre tarafından gerektiğinde algılanır ve kullanılırlar. Bilgisayar benzetimimize dönecek olursak, bilgisayarların da 1′ler ve 0′lar ile “konuştuğunu” söylemiştik. Ancak bu 1′ler ve 0′lar tek başlarına hiçbir anlam ifade etmezler. Hatta çoğu zaman, bunların uzun dizilimleri de anlam ifade etmeyebilir. Ancak bunların belirli uzunluktaki dizilimleri, anlamlı bir hal alırlar. Örnek verecek olursak, bir bilgisayar için 1110101001 gibi bir dizilim anlam ifade etmeyebilir. Ancak aynı dizilimin biraz daha uzun bir hali, 11101010010001110 dizilimi, anlamlı olabilecektir, örneğin bu bilgi, klavyeden gelen bir komut sonucu ekranda “A” harfinin çıkmasını sağlayabilir. Bunu bilgisayalarda, 8-bitlik sistem, 16-bitlik sistem, 32-bitlik sistem, 64-bitlik sistem, vs. şeklinde isimlendiririz. Yani anlam bütünleri, 8'er, 16'şar, 32'şer ya da 64'er kümeler halinde okunmaktadır. Aynı şekilde, tek başlarına ATGTTC şeklindeki bir dizilim anlamsız olabilecekken, ATGTTCGTAACGTAC gibi bir dizilim, belirli bir işleve sahip olabilir ve bu “kelime”, hücre için “bölünmeye başla” komutu anlamına gelebilecektir. Elbette bu anlamları şu anda uyduruyorum, ancak temel olarak konunun özünü vereceğini düşünüyorum. Genetikte, "3-bitlik sistem" vardır ve her 3 nükleotit (örneğin GCA) bir aminoasidi kodlar. Bu 3'lü kod sonucunda bir aminoasit üretilir ve bunların birleşimi proteinleri, bunlar enzimleri, enzimler de bizi "canlı" yapan reaksiyonları üretirler veya üretilmesini sağlarlar. Tek bir aminosit, tek başına belli bir anlam taşımayabilir. Ancak aminoasitlerin farklı bileşimleri sayesinde, pek çok işi yapan, sonsuz sayıda protein üretilebilir. İşte bu işi sağlayan, genetik açıdan anlamlı ifadelere de “gen” diyoruz. Genler, sizin boyunuzdan saç renginize, vücudunuzun kıllılığından göz renginize, geçirebileceğiniz hastalıklardan kalıtsal olarak taşıyacağınız hastalıklara kadar her şeyi kod olarak saklarlar. Bu kodlar, anlattığımız gibi A, T, C ve G harflerinin belirli dizilimleriyle saklanırlar. Bu dizilimlerin "nasıl" olacakları ise, milyarlarca yıldır süren evrimle belirlenmekte ve değişmektedir. Yani canlılık, bir başlangıçtan başladıktan sonra, farklı yönlere doğru bizim Evrim Ağacı olarak isimlendirdiğimiz yapıda türleşirken, her canlının barındırdığı genetik dizilim, çevre şartlarının etkisi altında adım adım değişmiştir. Bu değişimler, hücreler içerisinde salgılanan kimyasalların yapısında, miktarında ve çeşidinde farklılıklara sebep olmuştur. Bu farklılıklar da, hücrelerin kendilerinin farklı özellikler edinmesine sebep olmaktadır. İşte bu farklı özelliklere sahip olanlar arasında, çevreye en uygun olanlar varlıklarını sürdürmeye devam edebilirler; böylece kendilerine bu farklı özellikleri veren genleri ürerken yavrularına aktarabilirler. İşte bu şekilde, adım adım bir genetik birikimle türler farklılaşır ve değişirler. Ki biz de buna Evrim diyoruz. Şimdilik konuya burada bir nokta koyacağız, bunlar temel konseptlerdi. Umarız bu temel bilgiler tüm okuyucularımıza faydalı olmuştur. Saygılarımızla. ÇMB (Evrim Ağacı) www.evrimagaci.org

http://www.biyologlar.com/dna-nukleotit-kromozom-gen-canlilik-cansizlik-nedir-ne-degildir

“Hayat Molekülleri”nin Nasıl Doğru Dizildikleri, İşlevleri ve Çalışma Prensipleri

“Bu moleküller bu doğru dizilimi nereden biliyorlardı da bu şekilde birleştiler ve sizin ‘Hayat Molekülü’ dediğiniz molekülleri oluşturdular?” Çok yerinde de bir soru olur, eğer henüz konuyu tam olarak kavrayamadıysanız. Hemen cevaplayalım: Bilmiyorlar, bilmiyorlardı, bilmeyecekler. Eğer ki -örneğin- aminoasitlerin bir seferde doğru şekilde birleşerek, birdenbire karmaşık bir proteini oluşturduğunu sanıyorsanız, Biyoloji'nin ABC'sinden bile habersizsiniz demektir. Bu dediğiniz, gerçekten de gülünç olurdu. Büyük ve karmaşık bir yapının birdenbire ortaya çıkabilmesi ihtimalini ancak ve ancak bilim-dışı kaynaklar ileri sürebilir, çünkü bilimden bihaber bu kaynakların şahsi görüşlerine göre canlılık bu şekilde başlamıştır: Dışarıdan, ne olduğunu bilmediğimiz bilim-dışı bir güç, bilimsel olarak bilmediğimiz ve bilemeyeceğimiz yöntemlerle her şeyin başlamasını "emretmiştir" ve her şey bir anda, kompleks bir şekilde, hiçbir ara basamaktan geçmeden, kendiliğinden oluvermiştir. Bu son derece bilim-dışı bir iddiadır ve iddianın hiçbir tarafı bilimsel ve tarafsız bilgiyle bağdaştırılamaz. Zaten günümüz bilimi, işlerin bu şekilde yürümediğini açık bir şekilde ortaya koymuştur ve bu iddiaları değerlendirmeyi bile bir kenara bırakmıştır. Bunca molekülün nasıl "doğru" bir şekilde bir araya gelebildiğini anlamak için şunları anlamak çok önemlidir: Tıpkı canlıların var olduktan sonraki evrimlerinin hızı gibi, cansızlıktan canlılığın oluşumu da çok yavaş bir evrimdir ve daha önce de açıkladığımız gibi en az 600 milyon yıl (günümüzden 4.5 ila 3.9 milyar yıl önce arası) sürmüştür. Dolayısıyla bu süreçte, defalarca farklı, yanlış, hatalı, eksik, fazla, vb. moleküller oluşmuştur. Bunlar kimi günümüze kadar gelmiştir, kimi parçalanıp başka moleküllere dönüşmüştür, kimi başka moleküllerin yapısına katılmıştır ve kimi oluşmaya ve bozunmaya devam etmektedir ve benzeri… Bu çok doğaldır, çünkü fiziksel yasalar belirli bir “mentaliteye” göre çalışmazlar. Evrenimizin "bu" şekilde var olmuş olmasından ötürü oradadırlar ve uygun olan her durumda çalışırlar. Bu kadar basit. Dolayısıyla “Aaa dur ya, ben şimdi seninle bağ kurarsam proteinlerden birini oluşturamam, en iyisi boşver, bağ kurmayalım.” diyemez bir atom ya da molekül, bağ kurma imkanı varken. Çünkü böyle bir “düşüncesi” ya da "bilinci" yoktur. İşte bu sebeple, moleküllerin ve atomların belirli bir “bilinç” doğrultusunda hareket ettiğini düşünmek, oldukça yersiz ve gülünç bir iddiadır. Tüm bunlar, yalnızca ve yalnızca fiziksel ve kimyasal yasalar doğrultusunda olmaktadır. Şimdi, eğer bu büyük moleküllerin (proteinler, lipitler, vs.) hatalı kimyasal birleşimler arasından seçilen, doğru moleküler birleşimler olduğunu anladıysak, temel olarak niteliklerine bakalım bunların. Ancak buna geçmeden önce, hemen aklınıza gelebilecek bir diğer soruyu ortaya çıkarayım: “Peki, 600 milyon yıl boyunca pek çok ‘doğru’ ve ‘yanlış’ birleşim oldu. İyi de, bunlar günümüzde nasıl hemen hemen her defa ‘doğru’ kimyasal birleşimle birleşiyorlar ve vücudumuzdaki işlevlerini sürdürüyorlar?” Sizi biraz heyecanlandırmak adına, bu sorunun cevabını bir sonraki yazımıza saklıyoruz, çünkü ayrı bir açıklamayı hak ediyor. Şimdi, “Hayat Molekülleri”nin yapısına bakalım. Kafası karışanlar için, bir önceki yazıda verdiklerimiz, bizim “Hayat Molekülleri”ni oluşturan daha küçük yapılardı. Hatırlarsanız büyük bir kısmı basit birkaç element atomunun farklı şekillerde bir araya gelmesinden oluşuyordu. Hayat Molekülleri'nin geçen yazımızda verdiğimiz yapıtaşları inanılmaz küçük yapılardır! Çoğu 30-40 atomdan oluşur ve nanometrelerle (metrenin milyarda biri) ölçülecek boyutlardadır. Fakat çoğumuzun problemi olan “göbek yağlarının” ne kadar da “büyük” olduğunu hepimiz biliyoruz. İşte bu yağlar, aslında nano-büyüklükteki yapıtaşlarının bir araya gelmesiyle oluşan büyük Hayat Molekülleri gruplarıdır ve milyarlarca küçük molekülün uç uca, yan yana, alt alta ve üst üste birleşmesiyle oluşmaktadır. Gelin, bunlara hep birlikte bakalım: Yukarıda bir “polisakkarit” (polysaccharide, çoklu şeker) olan ve bitki hücrelerinin duvarlarında bulunan selülozun yapısının küçük bir kısmını görüyoruz. Burada, sadece 8 tane şeker molekülünün birleşimi gösterilmiş yer açısından ama sağda ve solda nokta nokta bırakılan yerleri görüyorsunuz. İşte bu noktalar da tamamlanırsa, milyonlarcasının birleştiği bir yapıya ulaşırsınız. Bu devasa molekülü oluşturan tek şeyse, kimyasal bağlardır. Bir önceki yazıda bir şeker molekülünün kimyasal yapısını görmüştük. Bu kimyasal yapıda bulunan elektron açıkları ve fazlaları, bir şeker molekülünün birden fazlasıyla bağ kurmasına izin verir ve büyük şeker molekülleri meydana gelir. Bu işleme -sadece şekerler için sınırlı olmamakla birlikte-polimerizasyon denir. Aşağıda, iki şeker molekülü arasındaki Beta Asetal Bağları’nı görüyorsunuz: Aslında burada selüloz için “özel” olarak belirtilen bir bağı görüyoruz, bunun da adı Beta Asetal Bağı’dır. Ancak genel olarak, şekerleri birbirine bağlayan bağlara “glikozit bağı” (glycosidic bonds) denir. Tamamen kimyasal bir işlem olan bağlanmanın, son derece normal ve doğal bir olay olduğunu hatırlatıyoruz. Ancak bu bağı belki “mükemmel” kılan, bu büyük moleküllerin oluşmasını sağlamaktır. Yine de unutmayın ki, en nihayetinde olan, elektronların çekimi ve yer değişimidir. Şimdi de yağların yapısına bakalım. Bir önceki yazıda verdiğim gliseroller ve yağ asitlerinin birbirlerine bağlanması sonucu oluşan trigliseritler birbirine eklendiğinde, şu şekilde kompleks bir yapıya kavuşurlar: Bu kompleks yapı da, tıpkı büyük karbonhidrat, yani şeker molekülleri gibi, sadece ve sadece kimyasal bağlarla oluşur. Ve yine tıpkı bu büyük molekülü yapan küçük “molekülcükler”, yani yapıtaşları gibi. Ancak bu molekül yapımızda bulunmasaydı, örneğin vücut sıcaklığımızı asla bu şekilde kolay koruyamazdık. Ya da vücudumuz karbonhidrat alamadığında doğrudan kaslarımızı yakmamız gerekirdi. Bu ufak yağ moleküllerini birbirine bağlayarak büyük yağların oluşumunu sağlayan bağlara ester bağları diyoruz. Elbette diğer bağlardan farklı bir özelliği yok. Bu bağların adlarının değişmesinin tek sebebi, etkileşime giren atomların değişmesi. Aynı şekilde, bu yazı dizimzin ilk yazısında verdiğimiz gibi, nükleik asitlerin uç uca eklenmesi, komplekskromatin ağının yapılmasını sağlar. Bu makarnaya benzer yapı da, tamamen kimyasal bağlar sonucu oluşuturulur. Hiçbir özel ya da ekstra yanı yoktur. Tekrar görelim kromatin ağını: Tahminen artık küçük yapı birimleri nükleotitleri görebiliyorsunuzdur (basamakların her biri). "Canlılık" ile "cansızlık" arasındaki fark nedir? Gördüğünüz gibi olağanüstü ya da muhteşem hiçbir şey yok. Sadece milyonlarca yıl deneme-yanılma sonucu "doğru" atomların, "doğru" noktalara yerleşmesi sonucu oluşmuş yapılar. Aslında bu işte, “doğru” diye bir şey de yok. Bizim var olabilmemiz, sadece bizim var oluşumuz için “doğru” olan yapılardan bahsedebilmemiz demektir. Yani farklı birleşimler, farklı sonuçlar da doğurabilirdi ve hala da doğurabilir. Etrafımızda gördüğümüz cansız katrilyonlarca obje, atomlar ve moleküllerin “yanlış” dizilimleri sonucu oluşmuştur. Bu şekilde söylediğimizde farkı hemen ayırt edebilmeniz lazım: Aslında onlar “yanlış” dizilimde değiller. Bir çeşit dizilim canlılığı oluşturmuş, bir çeşit dizilim de cansızlığı. Sonra bizim gibi canlılar, kalkıp her şeyi kendilerine göre yorumlamışlar; kendilerine benzeyenlere “canlı”, kendilerine benzemeyenlere “cansız” demişlerdir. Halbuki her şey ama her şey atomlardan oluşmaktadır. Canlılık ile cansızlık arasındaki ince çizgi, atomların dizilimindedir. Sizi temin ederiz, elimizde güçlü bir silah olsaydı ve kolaylıkla atomlarınızın yerlerini değiştirebilseydik, vücudunuzdan tek bir atomu almadan ya da tek bir atom eklemeden sizi öldürebilir ve cansız hale getirebilirdik. Çünkü dediğimiz gibi, sizi cansızdan ayıran tek şey, bütün hücreleriniz içerisindeki bir Hidrojen ya da Fosfor atomunuzun farklı yere konuşlanması olabilir (tabii bunu tek atoma indirgemek doğru değil, ancak doğru atomların yerlerinin değiştirilmesi sizi kolaylıkla öldürebilir, cansızlaştırabilir). Son olarak, vücudumuzda -bize göre- genetik materyalden sonra en önemli “canlılık kaynağı”, ya da diğer bir deyişle “Hayat Molekülü”, olan proteinlere bakalım. Proteinler de, bir önceki yazımızda değindiğim aminoasitlerin farklı dizilimlerinden oluşurlar. Dizilimlerin tek olayı yine kimyasal bağlanmalardır. Bu kimyasal bağlanmaların bir kısmı, bizim vücudumuza bugünlerde “canlılık” dediğimiz özellikleri katmıştır. Bilim düşmanları ve Evrim Karşıtları'nın en sevdiği sözde iddia, bunca aminoasidin “doğru” dizilime gelmesinin imkansız olduğudur. Halbuki bu sadece proteinler için geçerli değildir. Bunca şeker molekülü de bir araya gelerek devasa şeker moleküllerini oluşturamayabilirdi. Oluşturmadığı zamanlar da oldu, oluyor ve olacak. Tabii bilim dışı kitleler bunu düşünmezler ve doğrudan, sanki tek bir hamlede her şey oluşmuş gibi düşünürler. Bu çok doğaldır, çünkü onlara öğretilen budur. Proteinlerimize dönelim: Size hep benzer fotoğraflar verdiğimizi fark etmiş olabilirsiniz. Aslında elbette hiçbiri birbirinin aynısı değil, dikkatli bir göz ve bilgili bir beyin bunu fark edebilir (ya da basitçe internet üzerinden bu fotoğrafların kaynaklarına ulaşabilirsiniz). Ancak eğitimsiz gözler, "Aman, hepsi aynı işte." diyerek işin içerisinden çıkmaktadılar. İşte bu aynı kimseler, araştırmayı bilmedikleri ve bilimden korktukları için, televizyon programlarına ellerinde fosillerle çıkarak "Bakın, aynısı işte!" diyebilecek kadar alçalmaktadırlar. Kendileri eğitimsiz oldukları gibi, bu konuda uzman olmayan beyinleri de algıda seçiciliği kullanarak kandırmaktadırlar. Ancak zaten güzel olan da budur: Aslında bu bahsettiğimiz moleküllerin hepsi birbirine az çok benzemektedir, benzemek zorundadırlar da. Çünkü hepsi aynı yapıtaşına sahiptirler: Hidrojen (H), Oksijen (O), Karbon (C), vs. Proteinlerimizin yapıtaşları olan aminoasitleri birbirine bağlayan kimyasal bağlara ise “peptit bağları” diyoruz. Peki şimdi orjinal sorumuza geri dönelim: Bu moleküller nasıl “doğru” dizilime kavuşmuşlar? Bu sorunun cevabı oldukça açıktır: Onlar “doğru” dizilime falan kavuşmadılar! Zaten “doğru” dizilim diye bir şey de yok! Onlar sadece bu evrenin fiziksel ve kimyasal yasaları çerçevesinde, olması gerektiği gibi davrandılar. Elektronlar protonları çekti, artı yüklü uçlar eksi yüklü uçları çekti… Aynı kutuplar birbirini itti, 3 boyutlu yapılar birbirine fiziksel olarak oturdu ya da oturmadı. Bebeklere şekilleri öğretmek için kullanılan “uygun şekli bulma” oyunlarında, bir küpün, bir kare kesitli yerden kolaylıkla geçebilmesini anlamakta güçlük çekip bilim-dışı güçlere bağlayabilirsiniz. Ya da basitçe, bu küp ile o karenin şekillerinin uymasından ötürü o delikten geçtiğini düşünebilirsiniz. Bu bir tercihtir. Moleküllerin oluşumunda da aynı mantık geçerlidir. İster işin bilimini kabul edersiniz, isterseniz kendi asılsız iddialarınızı yaratır ya da bilim-dışı kaynakların iddialarını kabul edersiniz. Tercih sizindir. Ancak bu moleküller, "bu" şekilde dizilebildikleri için, 4 milyar yıllık evrim sonucunda biz dönüyoruz, bakıyoruz ve değerlendiriyoruz. Eğer bu fizik ve kimya yasalarından ötürü bu dizilimler asla gerçekleşemeyecek olsaydı, zaten belki de bizim gibi algısal güce sahip bir tür evrimleşemeyecekti, canlılık hiç başlamayacaktı ve kimse bunları sorgulayamayacaktı. İşte bu ayrım, bizim "Neden-Sonuç İlişkisi Yanılgısı" dediğimiz bir yanılgıdır ve bir diğer yazıda buna değineceğiz. Tek bir cümle ile özetlememiz gerekirse: Bu atomların ve moleküllerin hiçbiri bizim oluşabilmemiz için bu şekillerde birleşmemişlerdir; tam tersine, onlar bu şekilde birleştikleri için bizler var olabilmişizdir. İnsanoğlu kendini her şeyin merkezine koymaktan vazgeçtiği gün, bilimi ve Evren'in sırlarını çok daha kolay anlayabilecektir. Evren'deki hiçbir şey bizim için var değildir! Her şey bu şekilde olduğu için bizler var olabilmişizdir. İnsan türü bu Evren'de bir amaç değil, sıradan bir araçtır! Bunu anladığımız gün, insan kendi benliğini çözmek konusunda dev bir adım atmış olacaktır. İnsan, kendini değerli görme ihtiyacından kurtulduğu gün, insanlığın çok daha ileri gidebileceğini düşünüyoruz. Umarız faydalı olmuştur. Saygılarımızla. ÇMB (Evrim Ağacı) www.evrimagaci.org

http://www.biyologlar.com/hayat-molekullerinin-nasil-dogru-dizildikleri-islevleri-ve-calisma-prensipleri

BÖBREK ÜSTÜ BEZLERİ VE HORMONLARI

BÖBREK ÜSTÜ BEZLERİ VE HORMONLARI

Böbreküstü Bezinin Görevleri Böbreküstü bezleri nelerdir, nerede bulunur? Böbreküstü bezlerinin salgıladığı hormonlar nelerdir, ne işe yarar, görevleri. Böbreküstü bezleri, adından anlaşılacağı gibi böbreklerin üstünde yer alır. Kabuk ve öz diye iki bölümde incelenirler. Kabuk bölgesinden “kortizol” hormonu salgılanır. Bu hormon aminoasitlerden glikoz sentezini uyarır. Kana yeterli kortizol salgılanmazsa deride renk maddelerinin sayısı artar ve garip bir kahverengileşme görülür. Buna “Addison” hastalığı denir. Bu hastalarda iştahsızlık, halsizlik ve kaslarda zayıflama görülür. Böbreküstü bezlerinin öz bölgesinden “adrenalin” hormonu salgılanır. Adrenalin; kan damarlarını daraltır, yürek atışını hızlandırır, karaciğerde glikojenin glikoza hidrolizini hızlandırır. Adrenalinin karaciğerde glikojenin glikoza parçalanmasını hızlandırması, kanda glikoz miktarının sabit tutulmasında önemli rol oynar. BÖBREK ÜSTÜ BEZLERİ ...Böbreklerin üst kısımlarına yapışmış olarak bulunan sarımtrak renkli olan iki bezdir.Diğer endokrin bezlerde olduğu gibi kan damarı bakımından zengin olan bu bezlerin böbreklerle doğrudan bir ilişkisi yoktur. ...Adrenal bezler(böbrek üstü bezleri) ,yapısı ve salgıladığı hormonları farklı olan 2 tabakadan meydana gelir. ...Adrenal bezlerin pembemsi görünümündeki dış kısmına kabuk(adrenal korteks) iç kısmına ise öz bölgesi(adrenal medulla) denir. ...Korteks hormonlarının az salgılanması durumunda kandaki ACTH miktarı artar.Bu durumda deri tunç rengini alır,kan basıncı azalır,iştahsızlık artar,kaslarda zayıflama ve genel halsizlik görülür.Sodyum ve klorun dışarı atılması artarken vücut sıvısında potasyum miktarı artar.(Addison hastalığı) ...Bu bezlerin kabuk kısmından hormon salgılanması hipofizin ön lobundan salgılanan ACTH hormonu ile düzenlenir. ...Böbrek üstü bezinin kabuk bölgesinden salgılanan hormonlar şunlardır: a.)Kortizol: ...Organizmada karbonhidrat ve protein metabolizmasını düzenler. ...Protein ve yağların glikozlara dönüşümünü hızlandırır. ...Bu sayede kandaki şeker oranının yükselmesini sağlar. ...Tedavi amaçlı olarak iltihaplanmalarda,alerji ve romatizma hastalıklarında kullanılır. ...Karaciğerde glikojen sentezini hızlandırır. b.)Aldosteron: ...Bu hormon böbrekteki idrar tüpçüklerinden ,sodyum ve klor iyonlarının geri emilmesini sağlar. ...Bu yolla kan ve hücre dışı sıvıların iyon derişimini düzenlemeye yardımcı olur. ...Fazla salgılanırsa kan basıncı yükselir ve doku sıvısının miktarı artar.Hormonun üretilememesi ölüme neden olur. Deniz suyu yutmuş bir insanda aldosteron miktarı azalır. c.)Adrenal eşey hormonları: ...Hem erkek hem de dişilerde böbrek üstü bezlerinin kabuk kısmından az miktarda eşeysel hormon salgılanır. ...Erkek çocuklarda ergenlikten önce fazla salgılanırsa çocuk normal zamanından önce ergenliğe girer. ...Dişilerde fazla çalışırsa sakal çıkar,ses kalınlaşır ve erkeğe ait özellikler oluşabilir. ...Adrenal eşey hormonlarının fazla salgılanması durumunda erkek çocuklarda ses kalınlaşması ve kas gelişmesi ile kıllanma görülür. ...Böbrek üstü bezinin öz bölgesinden salgılanan hormonlar şunlardır: ...Buradan salgılanan hormonlar metabolizmanın hızlanmasını sağlayan sempatik sinirlerin öz bölgesini uyarmasıyla salgılanırlar: Adrenalin (epinefrin): ...Heyecanlanma,korkma,öfkelenme,üzüntü hallerinde ve bazı ilaçların alınması durumunda kandaki miktarı artar. ...Bu durumda adrenalin etkisiyle kandaki şeker miktarı ve kan basıncı ve kan dolaşımı yükselir,hücrelerde enerji üretimi artar,sindirim yavaşlar. ...Kalp atışı hızlanır,damarlar genişler ve göz bebekleri büyür. ...Beyne daha fazla kan gider ve kanın pıhtılaşma zamanı kısalır.Yorgunluğa karşı direnç artar. ...Adrenalin hormonu, duran kalbin yeniden çalışmasında ve kan basıncının yükselmesinde kullanılır. ...Adrenalin hormonu etkisiyle derideki kılcal damarlar ise daralır.Korkunca derimizin sararmasının nedeni budur. ...Heyecan ve korku sırasında öncelikle hipotalamus uyarılır.Hipotalamus ürettiği düzenleyici faktörlerle (RF) hipofizi kontrol eder.Hipofiz geri besleme mekanizmasıyla ACTH üretir ve adrenal (böbrek üstü bezini ) kontrol eder.Bu hormon adrenal korteksten adrenalin salgılanmasına yol açar. ...Böbrek üstü bezlerinden salgılanan adrenalin glikojenin glikoza dönüştürülerek kandaki glikoz miktarının artmasına neden olur.Pankreas ise salgıladığı insülin ve glukagon hormonlarıyla kandaki glikoz seviyesini ayarlar.Karaciğer kanda fazla bulunan glikozun glikojene dönüştürerek depolar.Eğer kanda az miktarda glikoz varsa glikojen glikoza dönüştürülür.Sonuç olarak karaciğer,pankreas ve böbrek üstü bezleri kandaki glikoz seviyesini düzenlemede görev alırlar. b.)Noradrenalin (norepinefrin): ...Kılcal damarların kasılmalarını düzenleyerek kan basıncının yükselmesine neden olur.   Memelilerde, böbrek üstü bezleri (adrenal, suprarenal bezler olarak da bilinir) üçgen biçimini andıran iç salgı (endokrin) bezleridir. Anatomik olarak böbreklerin hemen üstlerinde bulunduklarından bu adı almışlardır. Kabuk (korteks) ve öz (medulla) olarak anılan iki ayrı katmandan oluşan bezlerin temel işlevi fizyolojik gerilim (stres) karşısında kortikosteroid (kabuk katmanı) ve katekolamin (öz katman) bireşimleyip kana salgılamaktır. Anatomik olarak, böbrek üstü bezleri, karnın karın zarı arkası (retroperitonal) bölgesinde bulunup, böbreklere göre ön-üst (anterosüperior) konumdadırlar. Bütünüyle yağ dokusuyla çevrelenmişlerdir, ve bu yağ dokusu da böbrek zarı (renal fasiya) ile çevrelenir. Bezlere giden ve bezlerden ayrılan atar ve toplar damar öbekleri her ne kadar kişiden kişiye değişkenlik gösterse de atar damarlar genellikle üçe ayrılır: Üst böbrek üstü atar damarı, (alt diyafram atardamarından ayrılır.) Orta böbrek üstü atar damarı, (karın bölgesi aorttan ayrılır.) Alt böbrek üstü atar damarı (böbrek atardamarından ayrılır.). Bezlerden gelen kanı toplayan damarlar ise birleştiği damar bakımından sağda ve soldaki bezlerde değişiklik gösterir: Sağ böbrek üstü toplar damarı alt ana toplar damara, Sol böbrek üstü toplar damarı ise alt diyafram toplar damarına ya da böbrek toplardamarına bağlanır. Tiroid bezi gibi böbrek üstü bezleri de gram başına en çok kan alan bölgelerdir. Bu da evrimleşmenin doğal bir sonucudur, çünkü bu tür endokrin organlar, bir canlının fizyolojik gerilim karşısında vücut dengesinin (homeostaz) bozulmadan işlevini sürdürebilmesi için çok önemlidir. Tıpkı öbür endokrin bezlerde olduğu gibi, bu bezlerin toplardamarlarında hormonlar çok derişiktir. Tıpta bu durumdan yararlanılarak, bu hormon düzeylerinin dengesizliklerinden kuşkulanıldığı durumlarda böbrek toplardamarındaki hormonların derişimi ölçülüp, bu incelemeler tanı konulmasında yardımcı nitelikte olabilir. İki ayrı katmana ayrılan böbrek üstü bezlerinin bu katmalarında da altkatmanlar söz konusudur: Kabuk bölgesi üç katmandan oluşur. Bunlar dıştan içe sırasıyla: Zona glomerulosa: Latince'de "yumakçık bölgesi" anlamına gelir, ve çoğunlukla aldosteron salgılar. Zona fasciculata: Latince'de "demet bölgesi" anlamına gelir, ve çoğunlukla kortizol salgılar. Zona reticularis: Latince'de "ağ bölgesi" anlamına gelir, ve çoğunlukla seks hormonlarını (dihidroepiandrosteron (DHEA) ve androstenedion) salgılar. Bu hormonlar öbeğine androjen denilmektedir. Öz bölge ise, kabuk bölgesinin aksine, tek bölgeden oluşmaktadır, ve burdaki gözelere Kromafin gözeleri denir. Kromafin, Yunanca'da "renke ilgi" anlamına gelir. Böyle adlandırılmasının nedeni, Krom tuzlarıyla boyandığında, bu gözelerin içindeki katekolaminlerin yükseltgenip, çoklu bileşik (polimer) haline dönüşmesi, ve elde edilen bileşiğin kahverengi olmasıdır. Kabuk katmanı ve hormonları Kabuk bölgesi, bezin yaşamsal önem taşıyan katmanıdır. Bu yapıdan hipofiz bezinden salgılanan adenokortikotropik hormon (ACTH) hormonunun etkisiyle başta kortizol olmak üzere çok sayıda hormon salgılanır. Kortizol salgılanma düzeni gün içinde gösterdiği değişiklikler açısından ilginç bir özellik taşır. Gün boyunca değişen derişimlerle kana salgılanan kortizol, akşam sıralarında ve uykuya dalıştan hemen sonraki saatlerde en az düzeydeyken, sabah kalkmadan önceki saatlerde ise en yüksek düzeydedir. Böbreküstü bezlerinden salgılanan öteki kabuk hormonları da kortizole benzer değişiklikler gösterir. Bu değişkenliğin nedeni, hipotalamustaki CRH salgılanmasına bağlı olan ACTH salgılanımının, aydınlık/karanlık döngüsüne ilişkin bilginin retinadan hipotalamusta bulunan çifte çekirdeklere (suprachiasmatic nuclei) iletilmesine bağlı olmasıdır. Ön görülebileceği gibi, koma, körlük ya da sürekli ışığa ya da karanlığa maruz kalma durumlarında bu değişkenlik de ortadan kalkar. Glukokortikoidler   Kortizol Zona Fasciculata bölgesinden salgılanan kortizolun (ana glukokortikoid) çok yönlü etkileri vardır. Tıpkı öbür steroid bileşikleri gibi, kortizol, etkisini erek gözenin çekirdeğine girerek, DNA'nın kalıt yazımından mesajcı RNA'yı bireşimleyerek, ve bundan da yeni protein bireşimleterek gösterir. Yukarıda da açıklandığı gibi Glukokortikoidler yaşamsal önem taşır. Glukokortikoidler etkilerini, şeker üretimi (glukoneojenez), damarların katekolaminlere yanıt vermeleri, yangının ve bağışıklık sisteminin baskılanması ve merkezi sinir sisteminin düzenlenmesi biçiminde gösterir. Glukoneojenezin uyarımı: Kortizolun en önemli etkinliklerinden ikisi glikojen depolanması ve glukoneojenezdir. Genel olarak, kortizol etkileri yıkıma (katabolizma) ağırlık verir. Kortizol, protein, yağ ve karbonhidrat yapım-yıkımını eş güdümlü bir biçimde şeker üretimini arttıracak şekilde düzenler: kaslardaki protein yıkımını arttırıp, yeni protein bireşimlenmesini baskılar, ve böylece karaciğerin şekere dönüştürmesi için serumda amino asit sağlamış olur. Benzer bir biçimde yağ yıkımını da arttırıp, karaciğerin şekere dönüştürmesi için serumda gliserol bileşiğini de sağlar. Son olarak, kortizol, şekerin dokularca kullanımını ve yakılmasını da engelleyip, yağ gözelerinin (adipoz) insüline olan duyarlılığını da azaltır. Tüm bunlardan dolayı, açlık sırasında yaşamda kalabilmek için glukokortikoidler çok önemlidir; beyin kandaki şekerden dolayı işlevini sürdürebilir. Kortizolun olağan düzeyinden düşük olduğu durumlarda kan şekeri düşer (hipoglisemi), ve yüksek olduğu durumlarda da kan şekeri artar (hiperglisemi). Yangıyı baskılayıcı etkileri: Kortizol bunu üç yolla gerçekleştirir: Lipokortinin bireşimlenmesini uyarır. Fosfolipaz A2 enzimini baskılayan lipokortin, bundan dolayı arachidonic asitin zar fosfoyağlardan serbest bırakılmasını önler. Arachidonic asit, yangıyı tetikleyen etmenlerin bireşimlenmesinde kullanılan önemli bir bileşiktir. Bu dolaylı yol ile kortizol, yangıyı baskılar. Kortizol, interlükin 2 (IL-2)'nin üretilmesini ve T lenfositlerinin çoğalmasını engeller. Kortizol mastositlerden histaminin, pıhtı gözelerinden (trombosit) serotonin salgılanmasını baskılar. Bağışıklık sisteminin baskılanması: yukarıda da açıklandığı gibi, kortizol interlükin 2 (IL-2)'nin üretilmesini ve T lenfositlerinin çoğalmasını engeller. Organ nakli gerçekleşmiş olan hastalarda organ reddini önlemek için glukokortikoidler ilaç olarak verilir. Damarların katekolaminlere yanıtını olanaklı kılar: Kortizol kan basıncının olağan değerlerde izlemesi için gereklidir, bunu damarcıklardaki (arteriyol) alfa-1 katekolamin alıcılarının etkinliğini arttırarak yapar. Böylece, kortizol damarcıkların büzülmesinde ve kan basıncının artmasında önemli rol oynar. Kortizol düzeyi olağanın altında olduğunda, hipotansiyon, olağan düzeyinin üstünde seyrettiğinde ise hipertansiyon gerçekleşir. Kemik oluşumunu baskılar: Bunu kemiklerde bulunan 1. tip kollajenin (bağ dokunun yapı maddesi) bireşimlemesini engelleyerek, kemik gözelerinin (osteoblast) çoğalmalarını engelleyerek, ve bağırsaktan kalsiyum emilimini azalatarak gerçekleştirir. Glomerüler süzme hızını (GFR) azaltmak : Kortizol, nefronlardaki getirici damarcıkları genişleterek böbreğe giden kan akışını, ve GFR'yi arttırır. Merkezi sinir sistemine etkisi: Özellikle limbik sistemde olmak üzere, merkezi sinir sisteminde glukokortikoid alıcıları bulunmaktadır. Glukokortikoidler, REM uykusununu azaltır, yavaş-dalgalı uyku evresini arttırır, ve genel olarak uyku zamanını azaltır. Mineralokortikoidler  Aldosteron İnsanlarda en çok bireşimlenen mineralokortikoid Aldosteron'dur. Yalnızca Zona Glomerulosa bölgesinden salgılanan hormon, tıpkı Zona Fasciculata'dan salgılanan kortizol gibi kolesterol molekülünden bireşimlenir, ve bu tepkimeler dizisindeki enzimler aynıdır. Zona Glomerulosa'da ek olarak Aldosteron sentaz adlı enzim bulunduğundan Aldosteron yalnızca bu bölgede bireşimlenir. Ancak, Zona Glomerulosa kortizol üretmez. Bunun nedeni, Zona Glomerulosa'da progesterondan kortizol bireşimlemesini sağlayan 17-alfa-hidroksilaz enziminin bulunmamasıdır. Aldosteron mineralokortikoid özelliği gösteren tek steroid değildir; 11-deoksikortikosteron (DOC) ve kortikosteron bileşikleri de mineralokortikoid kimyasal davranışlarını sergilerler. Bundan dolayı, mineralokortikoid bireşimlenmesindeki tepkiler dizisinde DOC'den sonraki bir aşamada eksiklik olursa (11-beta-hidroksilaz ya da aldosteron sentetaz enzimlerinde eksiklik), mineralokortikoid etkinliğinde bir azalma olmaz. Ancak tepkiler dizinde DOC'den önceki bir aşamada bir aksaklık çıkarsa (21-beta-hidroksilaz eksikliği), o zaman mineralokortikoid etkinliğinde azalma gerçekleşir. Mineralokortikoidler, etkilerini böbreklerin nefron yapısındaki uç borucuklarda (distal tubül) ve toplayıcı kanallarda gösterir: Na+ (sodyum) geri emilimini arttırıp, K+ (potasyum) atılımını ve H+ (proton) atılımını arttırır. Na+ geri emilimini ve K+ atılımını prinsipal gözelerde, H+ atılımını ise alfa-aracık gözelerinde gerçekleştirir. Bu sodyum geri emilimi, ve potasyum ve proton atılımı sonucu göze-dışı (ekstraselüler)hacim artıp, hipertansiyon, potasyum düzeyi düşüklüğü (hipokalemi) ve metabolik alkaloz gerçekleşir. Aldosteron düzeyi düştüğünde ise (örneğin böbreküstü yetmezliğinde) Na+ geri emilimi azalıp, K+ ve H+ atılımı da azalır. Bu durumda ise göze-dışı hacim azalıp, potasyum düzeyi yükselir (hiperkalemi) ve metabolik asidoz oluşur. Her ne kadar kortizolun da mineralokortkoid etkinliği olsa da (kortizol mineralokortikoid alıcılarına aldosteron'la aynı düzeyde ilgiyle bağlanabilir), böbrekte Aldosteron'un etki ettiği erek gözeler (prinsipal gözeler ve alfa-aracık gözeleri), kansıvındaki (plazma) kortizole "aldanmazlar." Bunun nedeni, bu gözelerde 11-beta-hidroksisteroid dihidrojenaz enzimi bulunmasıdır: bu enzim, kortizol'u kortizon'a dönüştürmekte, ve kortizol'un aksine, kortizon'un mineralokortikoid etkinliği yoktur. Bundan dolayı, kortizolun yüksek izlediği durumlarda bile, mineralokortikoid alıcıları bundan etkilenmez. Eşeysel hormonlar (androjenler) Yukarıda da belirtildiği gibi, kabuk bölgesi DHEA ve androstenedion bireşimlemektedir. Erkeklerde, bu bileşikler testiste testesterona dönüştürülmektedir. Erkeklerde, böbreküstü bezlerinin salgıladığı bu androjenlerin önemi azdır, çünkü testesteron testislerde kolesterolden bireşimlenir. Bunun aksine, kadınlarda böbreküstü bezlerinin ürettiği androjenler önemlidir, ve ergenlik çağında koltukaltı ve pubik bölgelerde kılların çıkmasından sorumludur. Öz katman Böbreküstü bezlerinin öz katmanı, özerk sinir sisteminin sempatik bölümünün bir sinir düğümüdür (ganglion). Sinir düğümü öncesi nöronların gövdeleri omuriliğin göğüs bölgesinde bulunmaktadır. Bu nöronların aksonları büyük splanknik sinirden geçerek böbreküstü bezinin öz bölgesine ulaşıp ve kromafin gözelerle sinir bağlanımı yapıp, asetilkolin salgılarlar. Asetilkolin, sinir düğümü sonrasındaki nöronların nikotinik alıcılarını etkinleştirir. Kromafin gözeler bunun üzerine dolaşıma adrenalin (epinefrin) ve noradrenalin (norepinefrin) salgılar. Sinir düğümü sonrasındaki nöronların genellikle noradrenalin salgılamalarına karşın, böbreküstü bezlerinin öz bölgesi çoğunlukla (%80) adrenalin, ve ancak %20 oranında noradrenalin salgılar. Bunun nedeni, öz bölgede feniletanolamin-N-metiltransferaz (PNMT) enziminin bulunması, ve bu enzimin sempatik sinir düğümü sonrası nöronlarda bulunmamasıdır (bu enzim noradrenalini adrenaline dönüştüren kimyasal tepkimeyi tetikler). Noradrenalinden adrenalin bireşimlenmesini olanaklı kılan kortizoldur. Kabuk bölgesinde bireşimlenen kortizol bu bölgeden ayrılan toplardamar ile öz bölgeye ulaşır ve bu tepkimeyi tetikler. Hastalıklar Böbreküstü bezlerinin kabuk bölgesinden kaynaklanan düzensizliklerin çoğu belirli bir katmandaki hormonun gereğinden az ya da çok bireşimlenmesinden kaynaklanır (kortizol, aldosteron ya da eşeysel hormonları). Bir hormonun olağan derişiminin altında ya da üstünde üretilip salgılanması kişide belirtilere neden olur, ve aynı zamanda o hormonun kansıvındaki ve idrardaki derişiminin de değişmesine yol açar. Ayrıca bir hormonun derişiminin az ya da çok olması o hormonun geri beslemesini de etkiler, ve yalnız bundan yararlanılarak incelemeler yapılabilir. Cushing Sendromu Cushing Sendromu, glukokortikoidlerin (kortizol hormonunun) olağanın üstünde bir düzeyde olduğu durumlarda ortaya çıkan belirtiler bütünüdür. Cushing Sendromunun alışılmış nitelikleri kilo artması, obezite, kan basıncının artması (hipertansiyon), ve derinin zayıflaması sonucu oluşan çizgilerdir. Conn Sendromu Conn sendromu, daha çok Mineralokortikoid fazlalığı olarak da bilinir. Belirtilerinin çoğu hipokalemiden (potasyum düzeyinin düşük olması) kaynaklanıp yorgunluk, kas güçsüzlüğü, ve kasınçlar olarak ortaya çıkar. Çoğu zaman, erken yaşta çıkan yüksek tansiyon ve bununla birlikte kendiliğinden ortaya çıkan düşük potasyum düzeylerinde bu düzensizlikten kuşkulanılır. Mineralokortikoid fazlalığı, Aldosteron'un (ya da başka bir mineralokortikoidin) özerk bir biçimde üretildiği (renin bu durumda düşük düzeydedir) birincil böbreküstü bezi hastalığından ya da renin düzeyinin yükselmesi (aldosteron salgılanımı arttırır) gibi böbreküstü bezleri dışında bir nedenden de kaynaklanabilir. Bu son duruma örnek olarak, kandolumlu kalp yetmezliği, karında sıvı birikimli siroz, böbrek atar damarı akımında azalma, renin üreten ur örnek verilebilir. Addison Hastalığı Böbreküstü bezlerinin kabuk bölümünün, özbağışıklık (bağışıklık sisteminin vücuttaki dokulara saldırması), verem ya da mantar bulaşımı nedeniyle zarar görmesine bağlıdır. Güçsüzlük, kansızlık, kilo yitimi, mide-bağırsak rahatsızlıkları, kan basıncı düşüklüğü, deride kararma, bazı hastalarda da aşırı sinirlilik ve aşırı duyarlılıkla gelişir. Eskiden ölümle sonuçlanabilirken, günümüzde yapay hormonlarla kesin olarak sağaltılmaktadır. Feokromositom Böbreküstü bezlerinin katekolamin salgılayan öz bölgesindeki Kromafin gözelerinde çıkan urlara feokromositom, ve sempatik sinir sistemi sinir düğümlerinde katekolamin salgılayan gözelerde çıkan urlara ise Paragangliom denilmektedir. Bu urların bulguları ve belirtileri birbirlerine benzedikleri için, çoğu tıbbi yetke bu iki uru birden feokromositom çatısı altında toplar. Buna karşın, bu iki urun ayırt edilmeleri önemlidir, çünkü beklenen gidişleri (prognoz), kötücül olma olasılıkları ve kimi zaman kalıtsal özellikleri ayrı olabilir.

http://www.biyologlar.com/bobrek-ustu-bezleri-ve-hormonlari

İnfeksiyonun Mekanizması

Doğada çok yaygın olarak bulunan mikroorganizmalardan ancak çok az bir bölümü insan ve hayvanlar için hastalık yapıcı niteliktedirler (patojenik mikroorganizmalar). Geri kalan büyük bir bölümü ise infeksiyon veya hastalık oluşturamamaktadırlar (apatojenik mikroorganizmalar). Ancak, genellikle hastalık oluşturmadığı bilinen bazı etkenler de, fazla stres nedeniyle konakçının direncinin kırıldığı hallerde veya bazı özel durumlarda, (immun yetmezlik hastalıklarında, immun supresif bireylerde, gizli infeksiyona sahip olanlarda, vs) vücutta ürüyerek ve yayılarak infeksiyonlara ve hastalıklara yol açabilmektedirler (fakültatif patojenler veya oportünist mikroplar). Bunları, yutak, larinks, sindirim, solunum ve ürogenital sistem de, deri ve mukozalarda bulunan mikroorganizmalar örnek olarak gösterilebilir. Bu etkenler, aynı zamanda, bu sistemlerin ve bölgelerin mikroflorasını da oluşturmaktadırlar. Bunların aksine, bazı mikropların patojenitesi (hastalık yapma yeteneği) pasajlarla, mutasyonlarla, doğal seleksiyonlarla veya özel işlemlerle (biyoteknolojik yöntemlerle) azaltılabilmekte ve değiştirilebilmektedir (attenüasyon). İnfeksiyonlar, genellikle, konakçı ile patojenik mikroorganizmaların (patojenler) karşılıklı interaksiyonu sonu ortaya çıkarlar. Eğer bir vücuda patojenik bir mikroorganizma girmiş, lokalize olmuş ve üremişse, o bireyde infeksiyon var demektir. Ancak, bu canlıda her zaman, genel veya özel klinik belirtiler gözlemlenmeyebilir. Eğer, klinik semptomlar ortaya çıkmışsa, o zaman infeksiyona bağlı hastalık meydana gelmiş olur (infeksiyon hastalığı). Mikroorganizmalardan ileri gelen hastalıklara, aynı zamanda, infeksiyöz hastalıklar adı da verilmektedir. Vücudun dış veya iç yüzeyleriyle temasa gelen patojenik etkenler, kendilerinde bulunan çeşitli adhesyon molekülleri ile konakçı hücre yüzeylerinde ki özel reseptörlere (glikoprotein, lipoprotein, glikolipid, vs.) bağlanırlar. Mikroplar, ya sadece yüzeylerde yerleşerek bozukluklar meydana getirebilecekleri gibi (lokalize infeksiyonlar), yüzeylerden daha derinlere, buralardan da kan veya lenf yolu ile bütün vücuda (veya afinitesi olan doku veya organlara) yayılabilir ve tehlikeli infeksiyonlara yol açabilirler (sistemik veya generalize infeksiyonlar). Bazen infeksiyon bir organa (barsak, akciğer, beyin, vs) yerleşmiş de olabilir. Patojenik bir ajan vücuda girdikten hastalık belirtilerinin ortaya çıkıncaya kadar geçen süre (inkubasyon periodu, kuluçka süresi), bazen, çok kısa (birkaç gün), bazen de 1-2 hafta veya daha uzun (aylar, yıllar) olabilir. Bu durum, giren mikroorganizmanın virulensi, miktarı, giriş yolu, yayılış tarzı, konacının duyarlılığı ile çevre koşulları yakından ilişkilidir. Mikroorganizma çok virulent ve yeterli miktarda da vücuda girerse, duyarlı konakcıda inkubasyon süresi kısa olabilir ve hastalık belirtileri (özellikle, genel belirtiler) bir kaç gün içinde ortaya çıkabilir. Böyle hastalıklar, aynı zamanda, kısa seyirli olur (3-6 gün) ve canlının hayatını tehlikeye koyabilir (perakut infeksiyonlar). Perakut seyirli olgulara, genellikle, septisemik infeksiyonlar hallerinde, mikroorganizmaların kana geçmesi, kanda üremesi ve kan yolu ile bütün vücuda yayılması sonunda rastlanılır. Mikroorganizmaların zayıf virulensli ve aynı zamanda az sayıda ve vücudun direnci de orta derecede olduğu durumlarda inkubasyon periodu uzun olduğu gibi, meydana gelen infeksiyon da kronik bir seyir izleyebilir (kronik infeksiyonlar). Perakut ve kronik seyirli infeksiyonlar arasında akut ve subakut seyirli olgulara da rastlanabilir. Perakut seyirli infeksiyonlar, çok kısa süre içinde geliştiklerinden ve aynı zamanda yine kısa sürede sonlandığından, spesifik klinik belirtilerin ortaya çıkması için yeterli bir zamana sahip değildirler. Ancak, genel (belirtiler) arazlar (durgunluk, iştahsızlık, ateş, baş ağrısı, titreme, terleme, bazen ishal vs) görülebilir. Bunlar da hastalığı çoğu zaman tam belirleyemediği için teşhis koymak da oldukça zordur. Bu dönem, aynı zamanda, immun sistemin uyarılması için de yetersiz olduğundan spesifik antikorlar da ya hiç sen¤¤¤lenemez veya oluşsalar da, çoğu zaman, kullanılan serolojik tekniklerle ortaya konulamazlar. Vücutta bir infeksiyonun oluşabilmesinde, mikroorganizmaların virulensleri yanı sıra, belli bir miktardan aşağı olmayan dozda girmesi de gereklidir (minimal infektif doz, MİD). Bu doz, aynı zamanda, %100 infeksiyon oluşturabilecek en az miktarı da ifade eder. Eğer ölümler oluşuyorsa, minimal letal doz (MLD) olarak tanımlanır. Mikroorganizmalar minimal infektif veya minimal letal dozun altında girerlerse infeksiyonlar veya ölümler %100 olarak gerçekleşemez. Bazen, bir hastalık ajanı tarafından başlatılan infeksiyona, sonradan diğer mikroorganizma (lar) da katılabilirler. Böyle durumlarda, hastalığın klinik seyri, semptomlar, prognoz, teşhis ve sağaltımı da değişebilir (sekonder infeksiyonlar). Böyle durumlarda, ikinci etken (sekonder ajan) hakim duruma gelebilir, esas infeksiyonu başlatan primer etken baskılanabilir ve izolasyonu çok zor veya imkansız bir hal alır. Eğer, infeksiyon ilerlemeye devam ederse hayatı tehlikeye sokacak bir sona ulaşabilir. Kesin teşhis de yapılamadığı için, uygun bir sağaltım kürü uygulanamaz. Bazen de infeksiyonun başlaması için bir tür mikroorganizma yeterli olamamakta, birden fazla diğer etkenlerin işbirliği ve sinerjik etkisiyle infeksiyon oluşturulabilmektedir (koinfeksiyon, ortak infeksiyon). İnfeksiyonun bu iki türü, miks infeksiyonlar olarak tanımlanırlar. Koinfeksiyonlar da, aynen sekonder infeksiyonlarda olduğu gibi, bir çok yönü ile teşhiste zorluklar yaratırlar. İnfeksiyonların hepsi, mikroorganizmaların bizzat kendileri tarafından meydana getirilmezler. Toksijenik özellikte olanların salgıladıkları ekzotoksinler ve Gram negatiflerinin endotoksinleri de toksemik infeksiyonlara (toksemi, intoksikasyonlar) yol açarlar ve hatta ölümlere de neden olurlar. Potent ekzotoksinler, ya sporlu bakteriler (C. botulinum, C. tetani, B. anthracis, vs) veya sporsuz bakteriler (C. diphtheriae, stafilokok, vs) ile bazı mantarlar (A. flavus, vs) tarafından sen¤¤¤lenirler. bakteri toksinleri çok iyi antijeniteye sahip olmalarına karşın mikotoksinlerin antikor sen¤¤¤ini uyarma etkinlikleri zayıftır. Bazı infeksiyonlarda, klinik belirtiler ve ortaya çıkan hastalıklar tespit edilemeyebilir görülmeyebilir (subklinik infeksiyonlar, gizli infeksiyonlar). Bazı viral infeksiyonlarda, virus hücrelerde üremelerine ve dışarı çıkmalarına karşın, hücrelerde dejenerasyonlar (CPE, cytopathic effect) oluşturmazlar. Hücreler hem virus üretmelerine ve hücreler de üremelerine devam ederler (persistent infeksiyonlar). Böyle durumlarda klinik belirtiler çok zayıf veya belli-belirsizdir. Bazı durumlarda da virus hücrenin çekirdeği ile birleşir ve onun bir devamı haline gelir, onunla birlikte replike olarak kardeş hücrelere transfer edilir (latent infeksiyon). Böyle infeksiyonlarda da semptomlar meydana gelmez. Bir çok, bakteriyel ve viral kronik infeksiyonlarda da klinik arazlar gözle görülemez ve çoğu zaman da gözden kaçabilir. Bunlarda da klinik belirtiler hastalığı tanımlayacak derecede değildir. İnfeksiyon ajanlarının bir kısmı, vücutta, bazı doku ve/veya organlara karşı özel bir afinitesi bulunmaktadır. Beyin, akciğer, karaciğer, barsaklar, deri, kan dokusu, vs. en fazla hedef teşkil eden organları oluşturmaktadırlar. Örn, kuduz ve menenjitte beyin;kolera ve stafilokokkal enterotoksinlerde barsaklar; S. pneumonia ve K. pneumonia da akciğerler ve N. gonorrhoeae ve bazı mycoplasmalar da da ürogenital sistem hedef organlar arasındadır. İnfeksiyonların ve/veya hastalıkların meydana gelebilmesi için başlıca 3 önemli faktörün işbirliğine gereksinim bulunmaktadır. 1) Mikroorganizmalara ait faktörler 2) Konakçıya ait faktörler 3) Çevresel faktörler 2. Mikroorganizmalara Ait Faktörler İnfeksiyonların oluşmasında mikroorganizmalara ait olan faktörler oldukça önemlidirler. Bu faktörlerden bir veya birkaçı bir arada etkilediklerinde infeksiyonun ilk adımı atılmış veya başlangıcı hazırlanmış olur. Bunlar hakkında aşağıda kısa ve özlü bilgiler verilmektedir. 2.01. Virulens Faktörleri Patojenik mikroorganizmaların (infeksiyon veya hastalık yapma yeteneğine sahip ajanlar, patojenler), insan ve hayvanlarda hastalık yapma şiddetleri, dereceleri veya güçleri oldukça değişiklik göstermektedir (virulens). Duyarlı bireylerde, aynı patojenik etken, bazılarında zayıf ve diğerlerinde de orta veya tehlikeli infeksiyonlara yol açabilir. Bu durum konakçının kondisyon ve konstitüsyonuna bağlı olduğu kadar, mikroorganizmaların virulensi ile de yakından ilişkilidir. Virulens, bakterilerde bir çok faktör tarafından tayin edilmekte ve desteklenmektedir (infektivite+invaziflik+patojenite). Bazı mikroorganizmalar, gerek in vitro ve gerekse in vivo olarak üretildiklerinde birçok türde toksin ve toksik maddeler sen¤¤¤ler. Bunların konakçıyı hastalandırmada etkinlikleri oldukça fazladır. Bu substansların büyük bir bölümü ekstrasellüler bir karakter gösterir. Diğer bir ifade ile, bunlar bakteri hücresinden dışarı çıkarlar (ekzotoksinler). Diğer bir bölümü de yapısal bir özellik taşır ve ancak hücreler eridiklerinde ortama geçerler (endotoksinler). Toksin sen¤¤¤leme yeteneği toksijenite olarak tanımlanmaktadır. Bunlar, hep birlikte etkenlerin patojenik potansiyelini (mikropların hastalık yapma kabiliyetlerini, patojenite) oluştururlar. Etkenlerin vücuda girdikten sonra bir hastalık odağı oluşturabilme yeteneği de infektivitelerini ortaya koyar. Eğer, etken bitişik dokulara veya vücuda yayılma özelliği de (invazyon kabiliyeti) gösteriyorsa infeksiyonlar daha kısa sürede gelişir ve ortaya çıkarlar. 1) Ekzotoksinler: Bu tür toksinler, protein karakterinde, genellikle, ısıya duyarlı ve eriyebilir substanslar olup toksijenik mikroorganizmalar tarafından sen¤¤¤lenirler. Ekzotoksinler, in vivo ve in vitro koşullarda salgılanabilirler. Ekzotoksin sen¤¤¤leyebilen bir çok aerobik, anaerobik, sporlu veya sporsuz bakteriler ve mantarlar bulunmaktadır. B. anthracis, E. coli, C. diphtheriae, S. dysenteriae, S. aureus, V. cholerae, C. botulinum, C. tetani, C. perfringens, A. flavus vs. bunlardan bazılarıdır. Ekzotoksinler ve endotoksinler canlılarda toksemik infeksiyonlara (intoksikasyon, toksemi) neden olurlar. Toksinler, miktarlarına ve etkinliklerine göre canlılarda sadece infeksiyonlara değil aynı zamanda ölümlere de yol açabilirler. Şimdiye dek en etkili bakteriyel toksinler arasında C. botulinum ’un ekzotoksini bildirilmiştir. C. botulinum A ’nın fare için 1 MLD’u (minimum letal doz) 2. 5x10-5 mcg (pürifiye toksin); C. tetani ’nin toksini fare için 1 MLD’u 4x10-5 mcg; difteri toksini kobay için 1 MLD’u 6x10-2 mcg ve S. aureus ’un alfa toksininin tavşan için 1 MLD’u 5 mcg kadar olduğu belirtilmiştir. Ekzotoksinlerin bazı özellikleri kısaca şöyledir: a) Ekzotoksinler, bazı mikroorganizmalarda (B. anthracis, C. tetani) plasmidler; C. diphtheriae ve C. botulinum ’da bakteriyofaj (profaj) ve bazılarında da genomik DNA (kromozom) tarafından spesifiye edilirler. Eğer plasmid veya fajlar bakterilerden çıkarlarsa veya çıkarılırsa, mikroorganizmalar atoksijenik veya apatojenik hale dönüşürler. b) Ekzotoksinler, protein karakterinde olup genellikle ısıya (60-80°C) duyarlıdırlar (termolabil, TL). Buna karşın, S. aureus ’un ve E. coli ‘nin enterotoksinleri, bu derecelerin üstündeki ısıya (100° C) direnç gösterirler (termostabil, TS). c) Ekzotoksinlerin çok az miktarları bile, duyarlı konakcıda hastalık yapıcı güce sahiptirler. Belli bir inkubasyon süresinden sonra, duyarlı deneme hayvanlarında, toksinin etki mekanizmasına göre, spesifik hastalık belirtileri ile karakterize olan intoksikasyonlar meydana gelir. d) Ekzotosinler, aynı zamanda, immunojeniktirler. Vücutta spesifik antikor sen¤¤¤ini uyarırlar (antitoksik antikorlar, antitoksinler). Bu antikorlar in vivo veya in vitro koşullarda toksini nötralize ederek hastalık yapma kabiliyetini giderirler. e) Bazı fiziksel (ısı) ve kimyasal maddeler (formaldehit, iodine, vs) toksini inaktive ederek hastalık oluşturma yeteneğini ortadan kaldırırlar ve toksoid hale gelmesine neden olurlar. Toksoidlerin, hastalık oluşturma güçleri olmamasına karşın, canlılara verildiklerinde antikor sen¤¤¤ini uyarabilirler. Bu nedenle de immunojeniteleri bulunmaktadır ve aşı olarak kullanılırlar. Ekzotoksinler, vücutta etkiledikleri doku ve/veya organlara göre de birkaç kategoriye ayrılmaktadırlar. Nörotoksinler (C. botulinum, C. tetani, S. aureus), Enterotoksinler (S.aureus, E. coli, V. cholerae, S. dysenteriae, C. perfringens, Klebsiella sp, vs) ve Sitotoksinler (bir çok mikroorganizma tarafından sen¤¤¤lenen, hemolizin, leukosidin, dermonekrotoksin, hepatotoksin, vs) gibi. Ancak, bir mikroorganizma birden fazla türde toksin sen¤¤¤lediği gibi, bir toksin birkaç doku veya organa da etkileyebilmektedir. Bu nedenle, bu temel sınıflama zamanla ve gerekli durumlarda değişebilmektedir. Ekzotoksinler birbirlerinden ayrı karakterde ve etkinlikte olmasına karşın bazıları yapı bakımından benzerlik gösterirler. Bu benzerlik, genellikle, “A-B modeli“ olarak tanımlanmaktadır. Bu model aynı zamanda strüktürel dimerik model olarak ta bilinmektedir. Buna göre, bazı toksinler iki alt üniteden oluşmaktadırlar. Bunlardan biri, enzimatik bir özelliğe sahip ve konakçı hücrelerinde toksik etki meydana getiren A fragmenti ve diğeri de, toksinin konakçı hücre yüzeyindeki spesifik reseptörlere bağlanmasını sağlayan B fragmentidir. İzole edilen A alt ünitenin toksik etkisi olmasına karşın hücrelere bağlanma yeteneği bulunmamaktadır. B alt ünitesi ise, hücrelere bağlanabilir, ancak nontoksiktir ve biyolojik olarak inaktiftir. Toksin molekülünün hücre içine girmesinde başlıca iki mekanizma önerilmektedir. Bunlardan biri, toksinin B alt ünitesi, hücre yüzeyindeki spesifik reseptörlere bağlanır. Hücre yüzeyinde bir erime meydana gelerek oluşan spesifik kanallardan, A fragmenti içeri girerek sitoplasmaya ulaşır. B fragmenti ise dışarıda kalır. Diğer görüş ise, toksinin B alt ünitesi hücreye bağlandıktan sonra tüm molekül (A ve B fragmentleri) endositozis ile internalize edilir. Bu tarz giriş bir bakıma pinositozise de benzemektedir. Bu ikinci mekanizmada, tüm molekül vesiküller içinde toplanır ve sonra, B alt ünitesi, A’dan ayrılarak, hücre yüzeyine çıkarılır. A alt ünitesi ise sitoplasmaya girer ve buradan hedef bölgeye giderek etkinliğini gösterir. Her iki mekanizma ile de olsa, önemli olan A fraksiyonunun sitoplasmaya ulaşmasıdır. Burada toksinler moleküler düzeyde başlıca 3 tür etki gösterirler. 1) Hücrelerde protein sen¤¤¤inin inhibisyonu, 2) Sinir snaps fonksiyonunun bozulması, 3) Sitoplasmik membranın parçalanması ve membran transport sisteminin bozulması. Aşağıda bazı önemli A-B modeli, ekzotoksinler ve etki mekanizmaları hakkında kısa özlü bilgiler verilmektedir. Difteri toksini: Bu potent ekzotoksin (MA:62000 A ve 38000 B ), C. diphtheriae ’de bulunan profaj (beta fajı) tarafından spesifiye edilir. Toksin (A-B modeli), hücre içine girdikten sonra A fragmenti hedef bölge olan ribosomlara ve özellikle, zincir uzamasında önemli fonksiyona sahip olan EF2 (elongation factor 2) ile bağlanarak polipeptid zincirinin uzamasını önler ve böylece protein sen¤¤¤ine mani olur. Difteri toksinine karşı oluşan antitoksinler toksini nötralize ederek etkinliğini ortadan kaldırabilir. Eğer hücrelere bağlanma meydana gelmişse nötralizasyon meydana gelememektedir. Toksinin B fraksiyonu hücre yüzeyindeki gangliosid Gml’e bağlanmadan önce antitoksin verilirse, bu alt ünite nötralize edilebilir ve böylece toksinin bağlanması önlenir. Sağaltımda da bu durum dikkate alınarak, mümkün olduğunca erken antitoksik serum verilmesine gayret edilir. Botulinum toksini: C. botulinum tipleri tarafından 7 ayrı tarzda etkinliğe sahip ve hepsinin de konakçı spesifitesi olan ekzotoksinler sen¤¤¤lenir. Bunlardan A, B, E ve F toksinlerine insanlar, C ve D’ye de sığırlar duyarlıdırlar. Bunlardan, C. botulinum C toksini, bakteriyofaj (profaj) tarafından spesifiye edilir. Bu toksinlerin hepsi değişik şiddette paraliz oluştururlar. Toksin, sinirlerle kasların birleştiği bölgelerde, sinirlerden gelen sinyallerin kaslara ulaştıran, kasların kontraksiyonlarında çok önemli rolleri bulunan ve sinir hücrelerince sen¤¤¤lenen asetil kolinin üretimini engellerler. Böylece, sinyaller kaslara ulaşamayınca gerekli reaksiyonları ve kontraksiyonları yapamazlar ve paraliz meydana gelir. Toksin daha ziyade, nöromuskuler bölgeye yakın olan aksonlara bağlanarak bu bölgedeki hücrelerde asetil kolin sen¤¤¤ini önler. Oluşan paraliz göğüs kasları ve diyaframa kadar uzanırsa solunum yetersizliği sonu ölümler meydana gelir. Botulinum ekzotoksini A ve B modeline uyar. Tetanoz toksini: Vücut yüzeyinde bulunan derin kontamine ve içinde yabancı cisim bulunan yaralarda anaerobik koşullarda üreyen C. tetani tarafından sen¤¤¤lenen ekzotoksin bir plasmid tarafından spesifiye edilir. Toksinin başlıca iki etkili komponenti bulunmaktadır. Bunlardan biri sinirlere tesir ederek spasm meydana getirir (tetanospasmin). Diğeri ise alyuvarları parçalayan tetanolizindir. Yaralarda üreyen C. tetani ’nin sen¤¤¤lediği ekzotoksin beyne ulaşınca, hücrelerde, bir amino asit olan glycine sen¤¤¤ine mani olur. Bu durum, vücutta birbirlerine zıt fonksiyonda olan kasların aynı anda kontraksiyonlarına yol açar. Böylece tetanoz spazmları meydana gelir. Bu kasılmalar o kadar şiddetli olur ki kaslar yırtılabilir ve bazen de kemikler kırılabilir. Kas kontraksiyonlarının kontrol edilememesi solunum bozukluklarına da yol açar. Sinire etkileyen toksin, tek bir polipeptid molekül olup 150000 molekül ağırlığına sahiptir. İlk sen¤¤¤lendiğinde inaktif olan molekül, proteolitik enzimlerle iki fraksiyona ayrılır (biri, H zinciri, MA; 100000, ve diğeri L zinciri, MA 50000). Bu iki fraksiyon bir veya iki disulfid bağla birleşmişlerdir. Toksin A-B modeline uyar. Kolera toksini: V. cholerae tarafından sen¤¤¤lenen bu enterotoksinin A fraksiyonu tek molekül olmasına karşın, B fraksiyonu ise 5 molekül halindedir. Toksinin B komponenti barsak epitel hücrelerinin yüzeyindeki gangliosid Gml ile bağlandıktan sonra, A alt bölümü sitoplasmaya girer ve burada ayrışarak A1 formuna dönüşür. Bu fraksiyon hücrelerde adenylate cyclase enzimini aktivitesini kontrol eden regulatör proteinin fonksiyonunu bozarak etkisiz hale getirir ve adenylate cyclase devamlı aktivite gösterir. Fazla sen¤¤¤lenen bu madde, ATP’nin fazla miktarda cyclic AMP (c AMP) haline dönüşmesine neden olur. Bu madde (cAMP) de, barsak epitel hücrelerinden fazla miktarda sıvı ve elektrolitin lumene geçmesine yol açar. Sıvının önemli bir bölümü kandan geldiği için, sıvı ile birlikte bikarbonatın kandan dışarı çıkmasına ve kanın pH’sının düşmesine ve buna bağlı olarak ta asidozun şekillenmesine yol açar. Bu durum ölümlere neden olabilir. Ayrıca, kanın yoğunluğu artar ve dolaşım bozukluğu meydana gelir. Hipovolemik şok ve dolaşım bozukluğu nedeniyle hastanın hayatı tehlikeye girer. Toksin A-B modeline uyar. Anthraks toksini: İnsan ve hayvanlarda hastalık oluşturan ve B. anthracis tarafından sen¤¤¤lenen ekzotoksin, plasmid orijinlidir. Toksin protein karakterinde ve zayıf antijenik olup başlıca 3 kısımdan oluşmaktadır (protektif antijen (PA), ödem faktörü (EF) ve letal faktör (LF). Bu üç toksin geni, pX01 plasmidi tarafından kodlanır. Bunlardan, PA 735 amino asit, LF 776 aa ve EF ise 767 aa 'ten oluşmaktadır. Toksin, kan damarlarının permeabilitesini bozarak hemorajilere neden olur. Bu 3 fraksiyon tek başına tam etkili olmayıp en azından iki tanesi (PA + LF) birlikte letal etki gösterir. Toksin, A ve B modeline uyar. B.anthracis 'te bulunan ikinci bir plasmid, (pX02, 60 MDa) kapsül formasyonunun kodlarına sahiptir. 2) Süperantijenler: Süperantijenler, şimdiye kadar tanımlanan immunojenlerden çok daha az yoğunlukta bile (pikomolar düzeyde) T hücrelerini uyarabilme yeteneğine sahip T hücre mitojenleridir. Stafilokok, streptokok, P. aeruginosa ve M. arthritis tarafından sen¤¤¤lenen bazı ekzotoksinler bu grup substanslar içinde kabul edilmektedirler. Bu antijenlerin (süper antijenler), diğer antijenlerden olan önemli farkları, APC (antijen sunan hücreler) tarafından işlenmeden, MHC II molekülü ile birlikte APC 'lerin yüzeylerine çıkarılır ve buradan T hücrelerine (T4 veya T8) sunulur. T hücrelerinin yüzeylerinde bulunan TCR (T hücre reseptörünün beta zincirinin variable bölgesi (VB ) ile direkt bağlantı kurarak birleşirler. Böylece, T4 hücreleri çok kuvvetli olarak uyarılır ve aynı zamanda çeşitli sitokin sen¤¤¤lemeye başlarlar. Süperantijenler orijinlerine göre başlıca 4 kategoriye ayrılmaktadırlar. Bunlar hakkında gerekli bilgiler “Mikrobial antijenler" bölümünde verilmiştir. 3) Endotoksinler: Endotoksinler, Gram negatif bakterilerinin hücre duvarının (dış membranının) Lipopolisakkarid (LPS) karakterindeki yapısal bir komponentidir. LPS, başlıca 3 kısımdan oluşmaktadır.Bunlardan biri, lipid porsiyonu (lipid A) toksik bir karakter taşır. Buna, merkez polisakkaridleri ile O spesifik karbonhidratlar (0 antijeni) bağlanmıştır. LPS, yapısal bir özellik taşıdığından ekzotoksinler gibi dışarı salgılanamazlar. Ancak, bunlar bakteriler lize oldukları zaman ortama geçerler. LPS'ler endotoksin olarak ta bilinirler. Lipid A'nın aktivitesinde, komplementin alternatif yoldan aktivasyonunun ve sitokin sen¤¤¤inin uyarılmasının rolü oldukça fazladır. Endotoksinlerin bazı özellikleri aşağıda kısaca belirtilmiştir. a) Deneme hayvanlarında toksik etki (letal etki) meydana getirebilmeleri için yüksek dozlarda (ekzotoksinlere oranla) verilmesi gerekir. b) Termostabil bir özelliktedirler ve antijeniteleri de zayıftır. c) Vücuda fazla miktarda verildiğinde, nonspesifik klinik belirtiler meydana getirirler (ateş, septik şok, zafiyet, diare, kan koagulasyonu, intestinal hemorajiler, yangısal reaksiyonlar ve fibrinolizis). d) Endotoksinlerin hücre veya dokulara karşı spesifik afiniteleri zayıftır. e) Toksoid hale dönüştürülemezler. f) Endotoksinler, lipopolisakkarid karakterindedirler. g) Vücuda girdiklerinde belli bir inkubasyon süresine sahip değildirler. Gram negatif mikroorganizmaların hepsi aynı kimyasal yapıda LPS oluşturamazlar. Aralarında farklar bulunmaktadır. Örn, bazılarında 0 spesifik karbonhidratlar kısa ve aynı zamanda değişik yapıda bulunur. Bazılarında da (spriroketalarda) dış membranında, LPS yanı sıra lipoproteinde vardır. Endotoksinlerin vücutta oluşturdukları bazı önemli bozukluklar şöyledir. Ateş (pirojenite): Vücutta, endotoksinlerin etkisi ile kan leukositlerinden (özellikle, makrofajlardan) sen¤¤¤lenen ve salgılanan endojenik pirojenler (Örn, İL-1, İL-6, TNF, vs), vücut ısısını kontrol eden beyin hipotalamusuna etkilemesi ve uyarması sonu ateş yükselmesi meydana gelir. Septik şok: Septik şok, vücutta organlarda meydana gelen fonksiyonel bozukluklarla karakterize olan kompleks bir olgudur. Eğer, Gram negatif bakteriler fazla miktarda kanda bulunursa veya damar içi endotoksinler şırınga edilirse tehlikeli septik şok oluşabilir (kan basıncı düşer, nabız zayıflar, solunumda azalma, yüksek dozlar kan dolaşımında bozukluklar, kollaps ve ölümlere yol açar). Kanda değişiklikler: Endotoksinler deneme hayvanlarına verilince, geçici bir süre için kan leukositlerinde azalma (leukopenia) ve sonra artmalar meydana gelir. Endotoksinler trombositleri zedeleyerek intravasküler kan pıhtılaşmasına yol açarlar. Ayrıca, endotoksinler damar permeabilitesini de artırarak hemorajilere sebep olurlar. Endotoksinler, kanda inaktif bir durumda bulunan Hageman faktörü-XII (kan pıhtılaşma faktörü-XII)nü de stimule ederler. LPS'ler leukositleri ve makrofajları uyararak İL-1, İL-6, İL-8, TNF-alfa, İFN, vs gibi sitokinlerin sen¤¤¤lerine de yol açarlar. 2.02. Diğer Virulens Faktörleri Bu başlık altında toplanan virulens faktörleri de, genellikle, ekstrasellüler niteliktedirler. Bunlar mikroorganizmaların yayılma kabiliyetlerine (invazif özellik) ve hastalık oluşturmalarına yardımcı olurlar. Ekzotoksinler kadar potent olmamakla beraber bazıları oldukça önemli ve ekindirler. Çoğu, enzim niteliğindedir. Bu faktörlerden önemli bazıları aşağıda bildirilmiştir. Hemolizinler: Bir çok Gram pozitif ve negatif mikroorganizma tarafından sen¤¤¤lenen bu toksik substansların alyuvarları parçalama özelliği bulunmaktadır. Hemolizinler alyuvarların membranında zedelenmeler yaparak hemoglobinin dışarı çıkmasına yol açarlar. Protein karakterinde, termolabil ve antijenik bir özellik gösteren ekstrasellüler streptokokkal hemolizinler oksijene olan duyarlılıklarına göre iki kısma ayrılmaktadırlar. Bunlardan Streptolizin O (SLO), oksijene karşı duyarlıdır ve okside olarak tahrip olur. Bu nedenle de anaerobik koşullarda üretilen S. pyogenes suşlarında koloni etrafında beta-hemoliz oluştururlar. Diğeri ise, Streptolizin S (SLS), oksijenden etkilenmez ve aerobik koşullarda üreyen S. pyogenes kolonilerinin etrafında beta-hemoliz alanı görülebilir. SLS, aynı zamanda hücrelere bağımlı durumdadır ve lökosidin etkisine de sahiptir. Eğer mikroorganizma fagosite edilirse, makrofajları veya PNL'leri öldürebilir. Hemolizin oluşturma yeteneği pasajlarla azalır ve kaybolabilir. Hemolizinler protein karakterinde olduklarından da antijeniktirler. S. pyogenes dışında bir çok Gram pozitif streptokok, stafilokok, klostridium ve Gram negatif (E. coli, P. aeruginosa, vs) bakteriler, kanlı agar üzerinde koloni etrafında alfa veya beta hemoliz alanları oluşturan koloniler meydana getirirler. Mikroorganizmaların hemolitik aktiviteleri, kullanılan kan türüne, agarın kalınlığına, ve aynı zamanda kültür koşullarına göre değişebilir. Bazıları, alfa hemoliz (koloni etrafında tam açılma yok, yeşilimsi görünüm) bir kısmı ise tam hemoliz (beta hemoliz) oluşturabilirler. Hyaluronidase (yayılma faktörü): Bazı mikroorganizmalar (streptokok, stafilokok, C. perfringens, vs) tarafından sen¤¤¤lenen bu enzim, bağdokuda bulunan ve sement vazifesi gören hyaluronik asidi hidrolize ederek ayrıştırır ve mikroorganizmaların dokularda kolayca yayılmasını sağlar. Bu enzim, indüklenebilen bir özellik taşıdığından, ancak ortamda hyaluronik asit varsa sen¤¤¤lenir. Streptokoklarda bulunan kapsülün bileşiminde de hyaluronik asit bulunmaktadır. Hyaluronik asit mukopolisakkarid yapısında olup antijenik bir özelliğe sahiptir. Streptokinase (fibrinolizin): Bu substans daha ziyade grup A, C ve G streptokoklar ile stafilokoklar (stafilokinase) tarafından sen¤¤¤lenir. Streptokinase, kan plasminogenini plasmine çevirir. Bu ürün de (plasmin) bir protease olup kan pıhtısı fibrini eritir. Kan pıhtısı eriyince, mikroorganizmalar daha kolay yayılma olanağı bulurlar. Koagulase: S. aureus, koagulase olarak adlandırılan enzim sen¤¤¤ler ve bu enzim plazmadaki aktivatöre etkileyerek koagulasyon meydana getirir. Reaksiyonda, kanda bulunan fibrinogeni, erimez (insoluble) fibrin haline dönüştürür (koagulasyon). Fibrin, aynı zamanda, mikroorganizmaların etrafını sararak fagositozdan ve diğer zararlı etkilerden korur. Koagulase enzimi termostabil ve antijeniktir. S. aureus 'ların patojenite kriterlerinin belirlenmesinde dikkate alınmaktadır. Ancak, koagulase sen¤¤¤lemeyen mutant patojenik S. aureus 'ların bulunması, patojenite tayininde bu faktörün tek olarak kriter alınamayacağını da ortaya koymaktadır. Leukosidinler: Bu substanslar, genellikle, streptokok, stafilokok ve pnömokoklar tarafından sen¤¤¤lenmektedir. Etkinlikleri daha ziyade fagositik hücrelerden olan makrofajlar ve polimorfnukleer lökositler üzerine olmaktadır. Mikroorganizmalar fagosite olduktan sonra, bunlara ait leukosidinler, hücre sitoplasmasında, içlerinde değişik karakterde hidrolizan enzimler bulunan granülleri parçalayarak internal degranülasyona yol açarlar. Bu substansların sitosola geçmesi fagositik hücrelerin çeşitli ve önemli fonksiyonlarını bozar ve aynı zamanda ölümlerine de neden olur. Bu durum, bir bakıma fagositik hücrelerin infeksiyonu niteliğini taşır. Leukosidinler antijeniktirler ve kendilerine karşı antikor sen¤¤¤ini uyarırlar. Deoksiribonuklease (DNase): Bu enzim, S. aureus, S. pyogenes, C. perfringens ve diğer bazı etkenler tarafından sen¤¤¤lenir. Zedelenmiş dokularda bulunan hücrelerin DNA (deoksiribonukleik asit) 'sını eriterek tahrip eder. Böylece, patojenler daha kolaylıkla yayılma olanağı bulurlar. Yaralarda bulunan ve yapısının büyük bir bölümünü ölmüş fagositik hücreler oluşturan irindeki hücre DNA'ları eridiğinden içlerinde bulunan mikroorganizmalar daha kolayca ve serbest hareket edebilmektedirler. Lesitinase: Daha ziyade, Clostridium spp'ler tarafından sen¤¤¤lenen bu enzim, hücre plazma membranında bulunan lesitini ayrıştırarak membranın bütünlüğünü ve fonksiyonunu bozar. Böylece hücreler tahrip olur ve patojenlerin etkinliği de artar. Kollagenase: Bazı Clostridium spp'ler tarafından sen¤¤¤lenen bu enzim de kas, kıkırdak ve kemiklerde bulunan kollageni ayrıştırma yeteneğine sahiptir. Patojenlerin invazyon kabiliyetini arttırır. Mikrobial demir kelatörleri: Demir bir çok aerobik ve aerotolerant mikroorganizmaların yaşamaları ve çoğalmaları için çok gerekli bir elementtir. Ayrıca, demir içeren bazı enzimlerin (sitokrom, katalase) sen¤¤¤leri için de demire gereksinim vardır. E. coli 'de de demir bağlayan protein (enterochelin) bulunmaktadır. Bu protein polimerize ferrik demiri solubulize ederek hücre içine girmesine yardımcı olur. Demir bağlayan proteinlere bakterilerde siderofor adı da verilmektedir. Konakçı serumunda bulunan transferrin, süt, sıvı ve mukozalarda bulunan laktoferrin demir içeren birer protein olarak bilinmektedir. Ayrıca, kanda da hemin bulunmaktadır. Ortamlarda demirin bulunması bakterilerin üremesi ve toksin sen¤¤¤leri üzerine olumlu etkide bulunur. Difteri, tetanoz, C. perfringens, vs etkenlerin toksini için demir gereklidir. Hidrojen peroksit (H2O2): Bazı mikoplasmalar ve ureaplasmalar, genellikle, ürogenital sistem mukozalarına yerleşme eğilimi gösterirler. Çoğaldıktan sonra burada hidrojen peroksit ve amonyak (NH3) oluştururlar. Bu maddelerin böbrek ve ürogenital sistem epitel hücrelerinde birikmesi zararlı ve zedeleyici etkiye sahiptir. 2.03. Membran Parçalanmasına Neden Olan Toksinler Listeriolizin: İnsan ve hayvanlarda hastalık oluşturan L. monocytogenes, uygun ortamlarda üretildiklerinde, hücrelerin sitoplasmik membranlarında porlar açan ve böylece hücrelerin permeabilitesini bozarak parçalanmasına neden olan listeriolizin adı verilen toksik maddeyi sen¤¤¤ler. Bu substans, aynı zamanda pore forming cytotoxin (delik açan sitotoksin) olarak ta bilinmektedir. Fosfolipase: C. perfringens tarafından sen¤¤¤lenen ve alfa-toksin olarak ta tanımlanan bu sitotoksin, fosfolipase karakterinde olup hücre membranındaki lesitini hidrolize ederek erimesine ve hücrelerin parçalanmasına neden olmaktadır. 2.04. Antifagositik Faktörler Kapsül: Bazı Gram negatif ve pozitif mikroorganizmaların etrafında hem virulensin artmasında, bakterinin korunmasında ve hem de fagositozun önlenmesinde etkili olan kapsül bulunmaktadır. Örn. B. anthracis 'in etrafında protein (D-glutamik asit polimeri) karakterinde ve plasmid tarafından spesifiye edilen zayıf antijeniteye sahip bir kapsül bulunur. C. perfringens, P. multocidae, S. pneumoniae, K. pneumoniae, H. influenzae, N. meningitidis, vs. etrafında polisakkarid yapısında kapsül bulunur. Kapsül, aynı zamanda, bakteriyi, fajların lizisinden de korur. B. anthracis 'in kapsülü in vivo koşullarda meydana gelir. Kültür ortamlarında pasajı yapıldığında kapsül kaybolabilir. Ancak, serumlu ve CO2 'li besi yerlerinde kapsül formasyonu tekrar meydana gelebilir. Kapsülsüz etkenin hastalık yapma yeteneği de kaybolur. Kapsül aynı zamanda komplementin aktivitesini azaltır ve fagositoza de mani olur. Bazı mikroorganizmaların etrafında bulunan mukoid tabakasının aynı zamanda üredikleri ortama da yayılabilen mukoid maddesinin de antifagositik etkisi bulunmaktadır. Hücre duvarı antijenleri: Hidrofobik yüzeye sahip olan Gram negatif bakteriler, hidrofiliklerden daha fazla, fagositoza dirençlidirler. Streptokoklarda bulunan M proteininin antifagositik aktivitesi (aynı zamanda adherens faktörüdür) vardır. S. aureus 'ların Protein A fraksiyonu, immunglobulinlerin Fc porsiyonu ile bağlanır. Eğer böyle bir antikor, fagositik hücrelerin yüzeylerindeki Fc reseptörleriyle birleşince antifagositik etki meydana getirir. Teikoik asitinin de antifagositik aktivitesi olduğu açıklanmıştır. Böylece mikroorganizmalar fagositozdan korunurlar. 2.05. Adherens Faktörleri Mikrobial infeksiyonların çoğu, genellikle, konakçının solunum, sindirim ve ürogenital sistemlerine ait mukozal membranlarının yüzeylerinden başlar. Bu yüzeylerde oluşan makroskobik veya mikroskobik porantreler patojenik mikroorganizmaların kolayca girmesine, yerleşmesine, üremesine ve vücuda yayılarak infeksiyonlar oluşturmalarına yardımcı olurlar. Ancak, yüzeylerinde böyle hazır giriş kapıları bulunmayan, sağlam hücrelere de etkenler girebilirler. Mikroorganizmalar kendilerinde bulunan adhezyon molekülleri yardımı ile hücrelerin yüzeylerindeki spesifik reseptörlere bağlanarak tutunur ve kolonize olabilirler, daha derinlere ulaşabilir ve vücuda yayılabilirler. Bu adhezyon faktörlerinden bazıları aşağıda bildirilmiştir. Hemaglutinin: Daha ziyade virusların yüzeyinde bulunan hücrelere tutunmada yardımcı olan ve aynı zamanda, eritrositlere de bağlanarak aglütinasyon (hemaglutinasyon) meydana getiren glikoprotein karakterinde moleküllerdir (peplomer). Fimbrial ve afimbrial adhezinler: Bazı bakterilerde bulunan fimbriaların (Tip-I pilus) distal uçlarında bulunan özel adhezyon proteinleri (adhezinler, fimbrial adhezinler) veya bakterilerin hücre duvarlarında lokalize olmuş spesifik adhezyon molekülleri (afimbrial adhezinler), konakçı hücre yüzeyindeki spesifik reseptörlerle (adhezin/reseptör) interaksiyona girebilir ve bunun sonunda mikroorganizmalar hücre yüzeyine bağlanabilir ve kolonize olabilirler. Bazı bakterilerde bulunan çeşitli adhezinler başlıca iki grup içinde toplanabilirler. 1- Gram negatif mikroorganizmalarda adhezinler a- Fimbrial adhezinler: E. coli (FimH, PapG, SfaS, PrsG), H. influenzae (HifE), K. pneumoniae (MrkD). Bu fimbrial adhezinler, hücre yüzeyinde bulunan, glikolipid, galaktoz, mannoz, sialogangliosid-GMI ve tip V kollagan reseptörleriyle interaksiyona girerler. b- Afimbrial adhezinler: B. pertussis (PHA, Pertactin), H. influenzae (HMV 1/HMV 2, Hia), H. pylori (Leb-bağlayan adhezin). Bu tür adhezinler de, S'li oligosakkarid, integrin, insan epitel hücreleri, fucosile Leb-histokan grubu) reseptörleriyle ilişki kurarlar. 2- Gram pozitif mikroorganizmalarda adhezinler Bunlar daha ziyade afimbrial özellikte olup bağlandıkları reseptörlerin karakterlerine göre gruplara ayrılırlar. a- Antijen I-II grubu: S. mutans (SpaP, Pl, PAc), S. gordonii (SspA, SspB ), S. sobrinus (SpaA, PAg). Bunlar, genellikle, salivar glikoproteinlere ve actinomyces reseptörlerine bağlanırlar. b- Lral grubu: S. parasanguis (FimA), S. pneumoniae (PsaA), S. gordonii (ScaA), S. sanguis (SsaB ), E. faecalis (EfaA). Bu gruptaki adhezinler (S. pneumoniae ve E. faecalis hariç), salivar glikoproteinlerine, fibrin ve actinomyces reseptörlerine bağlanırlar. c- S.gordonii (CshA, CshB ), S. aureus (FnbA, FnbB ), S. pyogenes (SfbI, protein F). Bu adhezinler de hücre yüzeyindeki fibronectin ve actinomyces reseptörleri ile ilişki kurarlar. d- S.pneumoniae (CbpA, SpsA, PbcA, PspC). Bu etkene ait çeşitli adhezinler de, sitokinle aktive olmuş epitelyal ve endotelyal hücreler ve İgA ile ilişki kurarlar. Yukarıda da görüldüğü gibi, bir tür mikroorganizma üzerinde hem fimbrial ve hem de afimbrial adhezinler bulunabiliyor. Ayrıca, farklı mikroorganizmalar farklı karakterdeki reseptörle bağlanabiliyor (veya tersi de olabilmektedir). Mikroorganizmaların sağ tarafındaki parantez içindeki kodlar, adhezin moleküllerini ifade etmektedir. Adhezinlerin bağlandıkları reseptörler de farklı karakter (genellikle) taşımakta ve hiç bir zaman bütün adhezinlerin, yukarıda belirtilen reseptörlerin hepsine bağlanabilir özellikleri yoktur. Diğer bir ifade ile adhezinlerle reseptörler arasında spesifik bir ilişki bulunur. Bakterilerin hücrelere kolonize olmalarını önlemek için, adhezinler ile reseptörler arasındaki ilişkiyi kesmek gerekir. Bu amaçla, adhezinlerle hazırlanan aşıların vücuda verilmesi halinde gerek kanda ve gerekse mukozal yüzeylerde spesifik antikorların varlığı ortaya konulmuş ve bunların, adhezinlerle birleşerek, reseptörlerle interaksiyona girmesinin önlendiği açıklanmıştır. Örn. uropatojenik E. coli 'ye ait FimH adhezinine karşı elde edilen anti adhezin antikorların, farelerde, çok olumlu sonuçlar verdiği bildirilmiştir. Mukoid salgı: Bazı mikroorganizmaların etrafında bulunan amorf bir özellik gösteren mukoid salgı antijenik bir maddedir. Fagositoza mani olur. Glikoprotein veya mukopolisakkarid yapısındadır. S katmanı: Bazı mikroorganizmalarda bulunan ve yüzeylere bakterilerin bağlanmasını kolaylaştıran maddelerdir. Teikoik asit ve lipoteikoik asit: Gram pozitif mikroorganizmaların hücre duvarında bulunan bu maddeler de, yüzeyde yerleştikleri için, adhesyon molekülleri gibi görev yapmaktadırlar. M proteini: S. pyogenes 'lerin hücre duvarındaki M proteini aynı zaman adherens faktörü olarak ta etkindir. 2.06. Mikroorganizmaların Vücuda Adaptasyonları Patojenik etkenler, çeşitli yollardan vücuda girdikten sonra, kendilerini çok değişik olarak buldukları bu yeni ortam koşullarına (ısı, pH, osmotik basınç, oksijen, gıda maddeleri, humoral, sellüler, fiziksel, kimyasal ve biyolojik anti mikrobial, diğer faktörler, vs) adapte etmeye çalışırlar. Bu faktörlerin büyük bir kısmı mikroorganizmaların yerleşme, kolonizasyon ve yayılmasına uygun olmamasına karşın, bazıları da destekleyici bir özellik taşımaktadır. Mikroorganizmaların bu kadar çok ve farklı olumsuz koşullara karşı kendini koruyabilmesi, savunabilmesi ve vücutta yerleşebilmesi için, bu yaşam savaşından galip çıkması (diğer bir ifade ile bu yeni ortama adaptasyon için mücadele vermesi ve bundan da başarılı olması) gerekmektedir. Eğer canlı kalabilirse, o zaman mikroorganizma, kendisinin, konakçının ve diğer faktörlerin etkinlik derecesine göre, yerleşebilir, ürer ve vücuda yayılarak infeksiyonlara ve hastalıklara yol açabilir. İşte, bu süreç, bir adaptasyon dönemidir ve infeksiyon için de ilk adımı oluşturur. Mikroorganizmaların, adaptasyon periodunu aşabilmesinde, genlerinde meydana gelebilecek reorganizasyonların önemli bir rolü bulunmaktadır. Bu genetik düzenleme için bazı mikroorganizmalar yeterli bir zamana sahip olmamasına karşın, bir kısmı da bu süreyi elde edebilir. Bu nedenle de hastalık ajanların bir çoğu vücutta yerleşme fırsatı bulamadan, başta, humoral ve sellüler faktörler olmak üzere diğer savunma faktörlerinin etkisi altında üremeleri sınırlandırılır ve öldürülürler. Bu adaptasyon periodunda, mikroorganizmalarda bulunan virulens faktörlerini kodlayan genlerin önemi oldukça fazladır. Bu period içinde genlerde bir reorganizasyonun meydana gelmesi gerekir ve bu sayede adaptasyon çok daha kolaylaşır ve canlı kalma süreleri de artar. Bu sürenin uzun veya kısa olmasında, bulunduğu ortamın sağladığı olanaklar (çevresel sinyaller, fiziksel ve kimyasal faktörler-Ca, Fe, vs) oldukça fazla etkilidirler. Bu ajanların indükleyici etkileri ile, virulens faktörlerinin kısa bir süre içinde ekspresyonuna yardımcı olurlar. Ancak, bu çevresel sinyaller ve bunların etkinlik dereceleri, mikroorganizmalara göre değişebilmektedir. Besi yerlerinde yavaş üreme gösteren mikroorganizmalar (veya generasyon süresi uzun olanlar) uzun bir adaptasyon dönemi geçirmiş olanlardır. Bu süre de kendini iyi reorganize edenler, üremenin latent periodunu geçerek üreme dönemine ve böylece daha hızlı çoğalmaya başlarlar. Eğer, mikroorganizmaların latent dönemi (adaptasyon dönemi) çok kısa sürmüşse, o zaman, etkenler çok daha hızlı çoğalabilir ve kısa bir sürede üreme dönemine geçerler. Latent periodun uzun veya kısalığı, mikroorganizmaların yeni girdikleri ortamının koşulları ile çok yakından ilgili olduğu kadar mikropların reorganizasyonu ile de alakadardır. Vücuda giren mikroorganizmaların genetik düzeydeki reorganizasyon ve regulasyon mekanizmaları oldukça önemlidir ve bunlar birkaç tarzda gerçekleştirebilmektedir. 1) gen reorganizasyonları (gen amplifikasyonu, genlerin yer değiştirmeleri, rekombinasyonlar, ve bunun gibi genetik düzeydeki değişiklikler). 2) Bazı özel genlerden yapılan transkript (mRNA) sayısının arttırılması, 3) Her transkriptten elde edilecek özel ürün (protein) miktarının artırılması, 4) Bazı silent genlerin indüklenerek stimule edilmesi ve böylece aktif gen haline getirilmesi, 5) Virulens faktörlerini kodlayan genlerin ve diğer önemli genlerin aktive edilmesi, Genetik yönden reorganizasyonda, çevresel faktörlerin uyarıcı etkileri yanı sıra, bakterilerde bulunan plasmidlerin, fajların, profajların İS-elementleri, Transposonların aktivitelerinin de rolleri oldukça fazladır. Bunların yanı sıra, kromozomun replikasyonu sırasında, yan yana gelen iki DNA iplikçiğinde homolog bölgeler arasında çok azda olsa, homolog rekombinasyonların meydana gelebileceğini belirten araştırıcılar bulunmaktadır. Yukarıdaki ekstrakromozomal genetik elementler, hem kendi aralarında ve hem de bakteri kromozomu ile çeşitli tarzda rekombinasyonlar meydana getirerek kromozoma integre olabilirler. Bazı bakterilerde virulens faktörlerinin bir kısmı plasmidler tarafından kodlanmasına karşın (Örn, B. anthracis ve C. tetani 'nin toksin sen¤¤¤i), bir kısım bakteride de faj tarafından spesifiye edilir (C. diphtheriae ve C. botulinum toksin geni). E. coli başta olmak üzere, bir çok Gram pozitif ve Gram negatif mikroorganizmalarda virulens faktörlerinin en önemlilerinden birisi olan pilusların ve diğer virulens faktörlerinin bazıları yine plasmid, Transposon, ve fajlar tarafından kodlanmaktadırlar. Promotorların kuvvetinin artırılması transkript ve gen ürününün de artmasına yol açar. Bu nedenle kuvvetli promotorlardan rekombinant DNA teknolojisinde fazla yararlanılır. RNA veya DNA polimerase genlerindeki mutasyonlar da replikasyona ve genlerin ekspresyonlarına olumsuz yönde etkilerler. Ayrıca, virulens genlerinin ekspresyonuna, promotor bölgesinde oluşan mutasyonlar da tesir ederler. 2.07. Mikroorganizmaların Giriş Yolları ve Miktarı 1) Mikropların vücuda girmesi: Mikroorganizmaların hastalık yapabilmesindeki ilk basamak, vücuda girmekle başlar. Bunun için bazı giriş kapılarına (porantre) ihtiyaç vardır. Vücutta bulunan en önemli giriş kapıları ağız, yutak ve sindirim sistemi, burun, larinks ve trachea ve akciğerler, genital organlar, göz konjunktivası ve deridir. Salmonella, shigella, vibriolar, brusella ve tüberküloz etkenleri sindirim sisteminden girerek; Corynebacterium diphtheriae insanlarda boğazda yerleşerek toksin meydana getirir ve bu zehir vücuda yayılarak hastalık yapar. Hayvanlarda septisemik hemorajik karakterde seyreden pastörellozisin etkeni ekseriya yutak ve larinkste yerleşmiştir. Bünyede bir zayıflamanın olduğu hallerde hastalık meydana getirirler. Tüberküloz ve anthraks etkenleri solunum yolu ile bulaştıkları gibi deriden de geçebilir. Deriden, ayrıca, leptospira, brusella, anaeroblar, anthraks mikroorganizmaları da girebilirler. Çiftleşme ile, genital yolla, sifilis, N. gonorrhoea, brusella ve C. fetus bulaşabilir. Göz yolu ile leptospiralar, listerialar ve diğer mikroorganizmalar girerek hastalık yapabilirler. Yukarıda yapılan ayrım kesin bir durum göstermez. Yani bir mikrop birçok yollardan vücuda girerek hastalık yapabilir. Örn, brusella sindirim, deri ve çiftleşme ile; tüberküloz, deri, sindirim ve solunum; antraks basilleri deri, sindirim ve solunum yolu ile bulaşabilir. Çeşitli yollardan infeksiyon meydana getirebilen mikroorganizmaların yaptığı hastalığın klinik tablosu girdiği yere göre değişebilir. Örn, B. anthracis sporları solunum yolu ile alınmışsa, akciğer antraksı, deriden alınmışsa girdiği yerde püstül ve ödem (kasap çıbanı), tüberküloz mikrobu deriden girerse deri tüberkülozu, barsaktan girerse barsak ve solunum yolu ile alınırsa akciğer tüberkülozunu meydana getirir. C. tetani, deride bulunan derin ve kirli yaralarda yerleşerek ürer ve toksin meydana getirir. Bu toksin kana karışarak hastalık yapar. Botulismde ise, toksin ihtiva eden gıdaların alınması sonu barsak yolu ile zehirlenme olur. Mantarların çoğu da, deri, solunum ve sindirim sisteminden girerek mikozeslere neden olurlar. Mikroorganizmaların hastalık yapabilmeleri için, bunların uygun yolla girmeleri de gereklidir. Örn, S. typhi sindirim yolu ile alınırsa vücudu istila edebilir ve hastalık meydana getirebilir. Deriden girerse çok nadiren vücuda yayılabilir. Buna karşın grup A hemolitik streptokoklar deriden girerek yayılma kabiliyetine sahiptirler: F. tularensis, derideki yaralardan girerse lenf yumrularında lokalize olur. Kana geçip istila edemez. Bu durumda ölüm oranı %5 kadardır. Halbuki, aynı etken sokucu sinek veya keneler aracılığı ile dokulara kadar iletilirse septisemi meydana getirir ve %95 ölüme sebep olabilir. Aynı şekilde, tetanoz toksinleri sindirim sisteminden girerse hastalandıramaz. Neisseria gonorrhoea ağızdan bulaşamaz. Beyin, damar ve periton içine verilen mikroorganizmalar, diğer yollardan, daha çabuk hastalık meydana getirirler. Vücudu mikroplardan koruyan sistemlerden biri de deri ve mukozaların mikroplar üzerine olan inhibitör ve öldürücü etkileri çok önemlidir. Deri dokusu salgılarıyla birçok mikroorganizmaların ölmesine sebep olmasına rağmen, derideki kıl ve yağ folliküllerinden ve çok küçük yaralardan mikroplar girerek infeksiyonlar yapabilirler (S. aureus, streptokoklar ve korinebakteriler, leptospiralar, vs.). Solunum ve genital organlarda bulunan mukus salgılayan hücreler de mikropların mukoza hücrelerine yerleşmesine mani olur. Bazı mikroplar lizozim enziminin etkisiyle öldürebilirler. Fakat, buna rağmen yine buralardan mikroplar girebilirler. Göz yaşının da aynı şekilde, mikroplar üzerine olumsuz etkisi vardır. Fakat, göz konjonktivası yolu ile de mikroplar hastalık yapabilirler. Mide asiditesi bazı salmonellaları inhibe eder. Fakat, bu asiditenin bozulduğu zamanlarda mikroplar mideyi kolayca geçebilirler. Bazı mikroplar normal deri ve mukozadan geçemezler. Ancak, deride ve mukozada meydana gelecek çok ufak mikroskobik yaralar mikropların giriş kapısı vazifesini görürler. Deri üzerinde sokucu insektlerin açtığı yaralardan mikroplar kolayca girebilirler. Su ile fazla yumuşamış deriden leptospiralar ve brucellalar kolaylıkla geçebilirler. 2- Mikrobun dozu (miktarı): Vücuda porantrelerden giren mikroorganizmalar, bir infeksiyonu başlatabilecek miktarda, olmalıdırlar (MİD minimum infektif doz). Bu limitin altında girenler, vücudun hücresel ve humoral savunma sistemleri ile kolayca yok edilirler. Mikrop sayısı ne kadar fazla olursa, konakçının hastalanma şansı o derece artar. Hastalık yapma veya başlatma limiti mikropların virulensine ve konakçının duyarlılığına göre de değişir. Virulensi fazla olan mikroorganizmalar çok hassas konakçıya az sayıda girseler bile, bir infeksiyonu başlatabilirler. Pasteurella multocidae için güvercinler, antraks basilleri için fareler örnek verilebilir. Mikroplar girdiği yerde yerleşmesine, üremesine ve buradan çeşitli yollarla (kan, lenf ve sinir sistemi) dokulara yayılmasına invazyon kabiliyeti adı verilir. Enterobakterilerin invazyon kabiliyeti, fazladır. Buna karşılık, deride yerleşen streptokok veya stafilokoklar, genellikle, burada lokalize olurlar. Bazen bitişik dokulara yayılırlar. 3. Konakçıya Ait Faktörler 3.01. Bağışıklık Mikroorganizmalar ne kadar virulent olurlarsa olsunlar konakçı duyarlı değilse ve savunma mekanizmaları tarafından önleniyorsa infeksiyon meydana gelemez. Konakçının direncine etkileyen bir çok faktörler vardır. Bunlar yerine göre işbirliği içinde, konakçıyı korumaya çalışırlar. Ancak, bu savunma mekanizmaları bazen yetersiz kalmakta ve canlılar hastalanmaktadırlar. Bir hastalıktan iyileşen şahsın, aynı infeksiyona, genellikle, ikinci kez yakalanmadığı veya en azından, uzun bir süre direnç gösterdiği eskiden beri bilinmektedir. On birinci asırda Çinliler, çiçek hastalığı geçirenlerin hayat boyu bu infeksiyona tutulmadıklarını bilmekteydiler. Bu nedenle, iyileşmiş kişilerin, hastalarla ilgilenmelerinin ve onlara yardım etmelerinin bir sakınca yaratmayacağını belirtmektedirler. Bu görüşler hastalıkların nedeni üzerinde durulmaksızın ve bilinmeksizin, Edward Jenner’e kadar muhafaza edilmiştir. Bağışıklığın kurucusu olarak kabul edilen bu bilim adamı, sığır çiçeği alan bir şahsın, insan çiçeğine karşı bağışık olacağını ve hastalanmayacağını deneysel olarak göstermiş ve böylece aşılama ile immunitenin elde edilebileceğini kanıtlamıştır (1798). Bağışıklık genel anlamda, vücuda giren veya verilen yabancı substanslara (mikroorganizma, toksin, toksoid, protein, polisakkarid, kompleks yapıdaki moleküller, vs.) karşı vücudun bütün genel ve özel savunma mekanizmaları ile karşı koyması, direnç göstermesi, kendini koruması ve zararlı maddeyi elimine etmesi olarak tanımlanabilir. Bağışıklık, bu genel tarifi içinde vücutta, birbirlerini tamamlayan ve çok yakın ilişkide bulunan başlıca iki temel korunma mekanizması tarafından sağlanmaktadır. DoğaI Bağışıklık 1)Genetik faktörler 2)Fizyolojik faktörler 3)Primer savunma mekanizması 4)Sekonder savunma mekanizması Edinsel Bağışıklık 1)Aktif bağışıklık a)Doğal aktif bağışıklık b) Suni aktif bağışıklık 2) Pasif bağışıklık a)Doğal pasif bağışıklık b) Suni pasif bağışıklık 3) Adoptif bağışıklık 3.02. Doğal Direnç (Yapısal direnç, Kalıtsal direnç, Nonspesifik direnç, Doğal Bağışıklık) Canlıların yapısal (anatomik, fizyolojik, fiziksel, kimyasal, vs) ve kalıtsal karakterleri ile ilişkili olarak, dışardan giren patojenik, apatojenik etkenlere ve diğer substanslara yönelik olarak genel savunma mekanizması yardımı ile karşı koyması ve kendini koruması doğal direnç (doğal bağışıklık) kapsamı içinde bulunmaktadır. Genetik olarak kontrol edilen ve kalıtımla nesillere aktarılabilen bu tür direnci, ayrıca, destekleyen ve yardımcı olan bir çok sekonder faktörler de vardır. Doğal dirençte etkinliği olan başlıca faktörler aşağıda gösterilmiştir. Genetik Faktörler Doğal direnci oluşturan faktörlerin başında genetik nitelikte olanları bulunmaktadır. Yavrulara kalıtsal olarak aktarılan bu karakter türler, ırklar ve bireyler arasında bazı değişiklikler göstermektedir. 1) Türlere ait direnç: İnsanlarda rastlanılan kızıl, kızamık, boğmaca, kolera, kabakulak, tifo, gibi bir kısım hastalığa ait bakteriyel ve viral etkenler hayvanlarda hastalık oluşturmazlar. Kanatlıların bir çok viral hastalığı da (AE, LL, Marek, IB, ILT, EDS, gibi) insan ve diğer memeli hayvanlarda bozukluklar meydana getirmezler. Hayvan türleri arasında da türlere özgü hastalıklar vardır. Şöyle ki, At vebası hastalığı tek tırnaklılarda, sığır vebası hastalığı da çift tırnaklılarda görülür. 2) Irklara (soy) ait direnç: Aynı tür içinde bazı ırklar (soylar), türün, genelde duyarlı bulunduğu infeksiyonlara, değişik derecede hassasiyet gösterirler. Örn, koyunlar, genel olarak, B. anthracis ’e duyarlıdırlar. Ancak, Cezayir koyunları, bu infeksiyona daha fazla doğal bir direnç gösterir ve hastalığı almazlar. Merinos koyunları, Piroplasmosis ve deri hastalıklarına daha fazla yakalanırlar. İnsanlar arasında, Negrolar Tüberkulozis ve mantar hastalıklarına, Anglosaksonlar solunum sistemi infeksiyonlarına daha duyarlıdırlar. Tavuk yumurta lizozimi, strain B10 farelerinde supresyon oluşturmasına karşın, B10 A ırklarında ise antikor sen¤¤¤ini uyarmaktadır. Poli-L-lizin, strain 2 kobaylarda hücresel bir yanıt meydana getirmesine karşın, strain 13’lerde hiç bir immunolojik cevap oluşturmamaktadır. Leghorn ırkı yumurtacı tavuklar, S. gallinarum infeksiyonlarına dirençli oldukları halde, Newhampshireler ise çok duyarlıdırlar. 3) Bireylere ait direnç: Bireyler arasında da hastalıklara yakalanma yönünden bazı farklar vardır. Ancak, bu durum genetik faktörler kadar, diğer nedenlerin etkisi (şahısların konstitüsyonel özellikleri yanı sıra, kondisyonel durumları, beslenme, kendini koruma ve diğer faktörler) altında da oluşmaktadır. İnsanlar arasında bir hastalığa (Örn, Grip), erken veya geç yakalananlar, hiç hastalanmayanlar, çok hafif veya çok şiddetli geçirenler bulunmaktadır. Hayvanlar için de benzer durumlar vardır. 4)Hücrelere ait direnç: Canlılar arasında türlere ve ırklara ait dirençte, hücrelerin yüzeyindeki özel reseptörlerin rolleri fazladır. Eğer, hastalık, ajanları, hücrelere kendinin bağlanmasına yardımcı olan reseptörleri bulamazsa tutunamaz, kolonize olamaz ve üreyemezler. Bunun sonunda da hastalık oluşturamazlar. Bir vücutta bazı doku ve organlar, mikroorganizmalarını yerleşmesine çok daha fazla duyarlı olabilmektedir. Fizyolojik Faktörler Doğal direnci destekleyen yan faktörler arasında bazı fizyolojik özellikler de bulunmaktadır. Bunlar da, 1) Vücut ısısı: Normal koşullarda, ısısı yüksek (41-42°C) olan kanatlıların hastalıkları (bakteriyel veya viral), ısısı 37-38°C arası olan memelilerde görülmemektedir. Bunun tersi de mümkündür. Ancak, kanatlılar normal koşullarda B. anthracis ’ten ileri gelen infeksiyonlara yakalanmamalarına karşın, bu hayvanların tüyleri yolunduktan sonra belli bir süre 37°C de tutulurlarsa deneysel olarak infekte olabilirler. Soğuk kanlılardan olan balıkların ve diğer hayvanların hastalıkları da, sıcak kanlılara bulaşmamaktadır. 2) Yaş durumu: Yeni doğanlar ile çok yaşlılar, immun sistem fonksiyonlarının yeterince aktif olmamaları ve hücresel aktivite noksanlığı nedenleriyle, gençlere veya erginlere oranla, bir çok infeksiyonlara daha duyarlıdırlar. Ancak, maternal antikorlar yeni doğanlarda önemli koruyucu etkiye sahiptir. Bazı hastalıklar da gençler arasında, erginlerden daha fazladır. 3) Hormonlar: Hormonları normal çalışan bireyler, hastalıklara daha dirençli olmasına karşın, hormonal bozukluk hallerinde vücut duyarlı hale gelmektedir. Ayrıca, hormon tedavileri de, doz ve süre iyi ayarlanmazsa, vücut direncinde azalmalara yol açmaktadırlar. 4) Beslenme: Yeni doğanlar için çok gerekli olan kolostrum ve spesifik antikorlar yanı sıra vitamin, karbonhidrat, yağ, protein, mineraller ve bazı sitokinler (TNF-a, TGF-b, IL-1b, vs) yönünden oldukça zengindir. Bu nedenle, neonatallar için çok gerekli bir besini oluşturur ve hayatın ilk günlerinde çeşitli bakteriyel, viral ve mantar infeksiyonlarına karşı koruma sağladığı gibi direnci de arttırır. Dengeli beslenmenin çeşitli infeksiyonlara karşı korumada çok önemli rolü vardır. Yetersiz gıda ve iyi beslenememe vücudun direncini zayıflattığı gibi antikor yapımına da olumsuz yönde etkiler. 5) Diğer fizyolojik faktörler: Öksürük, tıksırık, barsak peristaltiği, urinasyon, defekasyon, burun akıntısı, deskuamasyon, solunum sistemindeki siliar aktivite vs. gibi fizyolojik olgular mikroorganizmaların dışarı atılmasında önemli rollere sahiptirler. Primer Savunma Mekanizması Bir çok önemli ve nonspesifik komponentin işbirliği ile gerçekleştirilen bu savunma sisteminin, dışardan girebilecek her türlü hastalık yapıcı ajanlara karşı vücudu korumada önemli rolü vardır. Konakçı duyarlı, çevresel koşullar uygun ve mikroorganizmalar da virulent olsalar bile, yine bu sistem bütün elementleri ile direnç göstererek etkenlerin girmesine, kolonize olmasına ve yayılmasına mani olmaya çalışır. Primer savunma mekanizması, genelde, vücut yüzeyinde ve mukoz membranlarda aktivite gösterdiğinden, buna aynı zamanda tam karşılığı olmasa bile, dış savunma sistemi de denilmektedir. Bu savunmada rolleri olan başlıca faktörler aşağıda bildirilmiştir. 1) Tüyler: Hayvanların derisi üzerinde bulunan yapağı, tüy, yün veya kıl örtüsü bir çok tehlikeli mikroorganizmanın vücuda girmesine mani olduğu gibi, derinin yaralanmasına ve bütünlüğünün bozulmasına da karşı koymaktadır. Bu örtü, ayrıca, deri ve vücudu, aşırı soğuk ve sıcaktan, mekanik, fiziksel, kimyasal diğer faktörlerin zararlı etkisinde de korumaktadır. 2) Deri: Sağlam derinin epitel örtüsü mikroorganizmaların girişini önleyen önemli ve iyi bir bariyerdir. Bu epitel katmanının yaralanmaması ve bütünlüğünün bozulmaması gereklidir. Birçok patojenik mikroorganizma sağlam deriden geçememektedir. Ancak, bazıları (leptospiralar, brucellalar, vs) su ile yumuşamış sağlam deriden girerek infeksiyon meydana getirebilmektedir. Deride oluşan her türlü mikroskobik veya makroskobik lezyonlar mikroplar için uygun birer porantredirler. Fakat, her mikroorganizmanın infeksiyon oluşturabilmesi için virulensi yanı sıra, vücuda uygun bir yoldan ve yeterli miktarda da girmesi gerekmektedir. Örn, Mycobacterium tuberculosis ve B. anthracis insanlara deriden girerse, burada lokalize olabilir ve generalizasyon meydana gelmeyebilir. Stafilokok ve streptokoklar için de benzer durum söz konusudur. Deride bulunan ter ve yağ bezlerinin salgıları, bir çok patojenik mikroorganizmanın deride lokalize olmasına ve deriden içeri girmesine mani olurlar. Bu salgılar, mikroorganizmalar üzerine inhibitör veya öldürücü etkiye sahiptirler.Yağ bezi salgısının içinde bulunan doymamış uzun zincirli yağ asitleri (oleik asit gibi) hem deri yüzey pH’sını (3.5-5.5) düşürür ve hem de mikroplar üzerine antibakteriyel bir etki yapar. Sebumda bulunan kaproik ve kaprilik asitler bakterisidal bir etkiye sahiptirler. Terdeki laktik asit ve lizozim de benzer tarzda etkide bulunurlar. Terin içinde bulunan tuz konsantrasyonu da yüzeyde yüksek bir ozmotik basınç meydana getirir. Deri üzerindeki yerleşik mikrofloranın antagonist etkisi birçok patojenik etkenin kolonize olmasını önler. Deride komensal olarak bulunan C. acnea ’nin, özellikle S. aureus ve S. pyogenes gibi mikroorganizmalar üzerine bakteriostatik etkisi vardır. Deskuamasyon da deri üzerinde yerleşik mikroorganizmanın bir kısmının atılmasında büyük bir etkinlik gösterir. Derinin yıkanması veya dezenfekte edilmesi, folliküllere ve yağ bezlerine kadar girmiş olan etkenleri tam olarak elimine edemez. Derinin yukarıda belirtilen koruyucu etkinliği yanı sıra, immunolojik yönden de savunmaya katkısı olmaktadır. Özellikle, antijen işleyen ve sunan dendritik karakterdeki makrofajların (Langerhans hücreleri), T-hücrelerine (Th-lenfositleri) antijen sunmada ve salgıladıkları İL-1 ile de B- ve T- hücrelerini uyarmada önemli rolleri bulunmaktadır. 3) Mukoz membranlar ve salgıları: Sağlam mukozal yüzeyler, genellikle, bazı mikroorganizmalar için uygun giriş kapıları olarak düşünülmemektedir. Mikroorganizmaların içeri girmeleri için, önce mukus bariyerini geçmesi ve sonra da epitel hücrelere temas ederek onlara tutunması gerekmektedir. Eğer mukozal yüzeylerde, çeşitli nedenlerden ileri gelen porantreler varsa, mikropların girişi çok daha kolay olur. Vücutta bazı bölgelerdeki mukoz membranlar (ağız, yemek borusu, mide) çok katlı epitel hücrelerden oluştuğundan hastalık ajanlarına girişlerine karşı daha fazla direnç gösterirler. Solunum, sindirim ve ürogenital sistemlerin mukozaları üzerinde mukoid salgı daha fazla bulunmaktadır. Bunların koruyucu etkisi oldukça fazladır. Mukoz membranların yüzeyini örten mukoid tabaka (Mukus, MA: 530000) ve bunun devamlı hareket halinde olması mikropların hücrelerle direk temasını zorlaştırır. Birbirlerine disülfid bağlarla birleşmiş bir glikoprotein yapısında olan mukus, ayrıca, siliar aktivite nedeniyle de bir hareket hali gösterir. Ancak, piluslara sahip olan etkenler ile hareketli patojenik mikroorganizmalar bu mukoid tabakayı bazı noktalardan kolayca geçerek epitel hücrelerine ulaşabilirler. Ayrıca, mukoid katmanın zayıf olduğu yerler de bulunduğundan, buralardan hareketli veya hareketsiz bir çok mikroorganizma epitel hücrelerine tutunabilirler. Bu salgı tabakasının içinde bulunan bazı antibakteriyel substanslar (lizozim, sİgA, enzimler, mikrobial flora, fibronektin, vs) birçok etkenin kolonize olmasını önleyecek bir karakter gösterir. Bu aktivitede sİgA’ların özel bir yeri ve önemi vardır. Bazı mikroorganizmalar (N. meningitidis, N. gonorrhoea, H. influenzae, S. pneumonia, vs) salgıladıkları bazı maddelerle (sİgA protease), özellikle, sİgAl’in yapısını bozarak etkisiz hale getirir. Bu enzim, immunglobulini Fab- ve Fc-porsiyonlarına ayırır. Bazı bakteriler de (Bacterioides asaccharolyticus, B. melaninogeniscus) sİgAl, sİgA2 ve İgG yi ayrıştıracak enzim sen¤¤¤lerler. Barsaklarda yerleşik bulunan anaerobik mikroorganizmalardan kaynaklanan yağ asitleri, bazı salmonella ve shigella türlerinin üremelerini inhibe ettiği belirtilmiştir. Glisin ve taurin bileşikleri halinde sen¤¤¤lenen safra tuzlarının, barsakta anaerobik mikroorganizmalar tarafından kompleks safra kompozitlerine dönüştürülmesi, Bacteroides fragilis ve C. perfringens, laktobasil ve enterobakterilerin üzerine inhibitör etkisi bulunmaktadır. 4) Mikrofloranın etkinliği: Vücutta mukozal yüzeylerden (solunum sistemi, sindirim sistemi, ürogenital sistemlerin mukozaları ve göz konjunktivası yerleşik olarak bulunan ve bu yüzeylere daimi mikroflorasını oluşturan çeşitli tür ve sayıda mikroorganizmalar bulunmaktadır. Bunlar birbirleriyle kompetasyon (rekabet) halinde yaşayarak bir denge kurmuşlardır. Bu duyarlı denge, mikroorganizmaların salgıladıkları çeşitli türden antimikrobial substanslarla (bakteriyolisinler, lizozim, diğer enzimler, sIgA'lar, yağ asitleri, safra tuzları, vs) birbirlerinin üremelerinin belli limitler içinde kalmasını sağlarlar. Ayrıca dışardan gelen patojenik ve apatojenik etkenlerin de yerleşmesine mani olurlar. Bu dengenin bozulduğu durumlarda bazıları üreyerek konakçısını hastalandırabilirler.

http://www.biyologlar.com/infeksiyonun-mekanizmasi

Virusların Morfolojik ve Kimyasal Özellikleri

İnsan ve hayvanlarda infeksiyon ve/veya hastalık oluşturan viruslar (genel bir terim olarak, hayvan virusları) morfolojik özellikleri yönünden fazla çeşitlilik göstermemekle beraber, elektron mikroskopik muayenelerde olgun viruslarda bazı farklı formlar gözlemlenmiştir. Normal ışık mikroskopları ile görülebilen (1000 x veya 1500 x büyütmeli) Poxviridae familyası virusları hariç tutulursa, diğer virusların morfolojik karakterleri (olgun virus partiküllerinin genel görünümü ve yapıları) hakkında ayrıntılı bilgiler ve görüntüler, ancak, elektron mikroskopların keşfinden ve viroloji alanında kullanılmaya başlamasından sonra elde edilebilmiştir. Negatif boyama, X- ışınları difraksiyon, krioelektron mikroskopi, elektron mikroskop (TEM, SEM) ve diğer tekniklerin uygulanması, virusların daha net, ayrıntılı ve açık görüntülenmesine çok büyük katkısı olmuştur. Yapılan çalışmalarla virusların başlıca 4 morfolojik form gösterdikleri belirlenmiştir. 1) Yuvarlak (sferik) formlar: İkosahedral simetriye sahip bazı DNA (Adenoviridae, Herpesviridae, Papovaviridae, Iridoviridae, Hepadnaviridae) ve RNA virus familyaları (Birnaviridae, Caliciviridae, Picornaviridae, Reoviridae ve diğer bazı familyalar) ile helikal simetriye sahip olanlar (Arenaviridae, Bunyaviridae, Coronaviridae, Orthoymxoviridae, vs) bu grup içinde yer almaktadırlar. 2) Flamentöz formlar: Filoviridae virusları (Ebola ve Marburg virusları) flamentöz morfolojik bir özellik gösterirler. 3) Mermi benzeri formlar: Rhabdoviridae virusları (kuduz virusu) mermi benzeri formlara sahiptirler. 4) Briket (tuğla) benzeri formlar: Poxviridae virusları (variola, vaccinia, Cowpox, Orf, BPS, Molluscum contagiosum, vs) bu gruba dahildirler. Her ne kadar hayvan virusları başlıca 4 temel form gösteriyorlarsa da sferik olanlar daha fazla familya ile temsil edilmekte ve diğer 3 grup ise birer familyada bulunmaktadırlar. Bakteri viruslarında (bakteriyofajlar): Bradley klasifikasyonunda, A,B, ve C grupları) rastlanan kuyruklu formlar, hayvan viruslarında görülmemektedir. Yuvarlak DNA viruslarının boyutları 18-300 nm (nanometre) arasında değişmektedir (parvoviruslar, 18-26 nm ve iridoviruslar, 125-300 nm); RNA virusları, 25-300 nm (picornaviruslar, 25-30 nm ve paramyxoviruslar, 150-300 nm); Filoviruslar, 80 x 79-970 nm; rhabdoviruslar, 75 x 180 nm ve poxviruslar, 140-170 x 230-350 nm arası ölçülere sahiptirler. Aynı familya içinde bulunan cinslere ait virusların boyutları arasında farklar bulunmaktadır. Her ne kadar virusların bireysel formlarını ışık mikroskopları ile görüntülemek olası değilse de (poxvirusları hariç), ancak, bunların hücre içinde ürerlerken veya üredikten sonra oluşturdukları intrasitoplasmik veya intranukleer inklusiyon cisimciklerini görmek mümkündür. Işık mikroskopları ile kolayca gözlemlenen bu cisimcikler, ya sadece intrasitoplasmik (çiçek virusu, kuduz virusu, vs) veya sadece intranukleer (adenoviruslar, herpesviruslar, papovaviruslar, vs) oluşabilecekleri gibi her iki bölgede de aynı anda lokalizasyon gösterebilirler (CMV, kızamık virusu). Hayvan virusları, elektron mikroskopla saptanabilen başlıca 3 temel yapısal karakter göstermektedirler. 1) Kapsomerler ve kapsid 2) Zarf 3) Nukleik asitler (viral genom, DNA ve RNA) 01.01. Kapsomerler ve Kapsid Hayvan viruslarının genetik materyallerinin (DNA ve RNA) etraflarında belli sayıda ve birbirleri ile non kovalent bağlarla birleşmiş protein alt üniteleri (kapsomerler) bulunmaktadır. Kapsomerler, ikosahedral simetriye sahip viruslarda, belli bir düzen içinde yanana gelerek birleşir ve böylece genomun etrafında proteinden bir muhafaza oluşturur ki buna kapsid adı verilir. Helikal simetrili viruslarda ise, kapsomerler, viral nukleik asitin üzerinde yan yana gelmiş ve genoma bağlanmış durumdadırlar. Viruslar, kapsid simetrilerine göre başlıca iki kısma ayrılmaktadırlar. Ancak, bu iki temel gruba uymayan poxvirusları 3. bir bölüm içinde toplanmış ve böylece hayvan virusları 3 kısımda incelenmektedirler. 1) İkosahedral (kübik) simetri 2) Helikal (sarmal) simetri 3) Kompleks yapı 1)İkosahedral (kübik) simetri: Kapsomerlerin yan yana gelerek oluşturdukları düzenli formlar arasında kübik simetrinin özel bir önemi bulunmaktadır. İkosahedral simetri gösteren bir kapsid (isometrik kapsid), 12 köşe, 20 eşkenar üçgen yüzey ve 30 kenardan oluşmaktadır. Kapsidin köşelerinde yer alan her bir kapsomer 5 tane komşu kapsomerle (pentamer, penton), kenar ile yüzeylerde bulunan her bir kapsomerde 6 tane komşu kapsomerle (hekzamer, hekzon) çevrilmiştir. Bunlar bazı viruslarda aynı ve bir kısımlarında ise farklı yapıda polipeptidlerden oluşmaktadır. Adenoviruslarında da köşelerden çıkan, kısa ve uçları şişkince (tokmak benzeri) uzantılar (fiber) bulunmaktadır. Protein karakterinde olan fiberler, virusun hücrelere tutunmasında görev alırlar. Viruslara şekil veren, koruyan, viral genomun hücre içine girmesine yardımcı olan kapsid, protein yapısında olması nedeniyle de çok iyi bir antijeniteye sahiptir. Kapsidlerin eşkenar üçgenlerinin kenarlarında eşit sayıda kapsomer bulunur. Üçgenlerin her biri de kendi içinde daha küçük üçgenlere ayrılabilir üçgenleşme (triangulasyon). Eşkenar üçgenlerin bir kenarındaki kapsomer sayısı (n) bilinirse, kapsiddeki toplam kapsomer sayısı (N) hesaplanabilir. Örn, adenoviruslarında her bir kenarda 6 kapsomer bulunur. Buna göre kapsidin toplam kapsomer sayısı aşağıdaki formül yardımı ile saptanabilir. N = 10 (n-1)2 + 2 N = 10 (6-1)2 + 2 = 252 Kübik simetrili viruslarda nukleik asitler, kapsidin orta kısmında lokalize olmuştur. Genom ile kapsidin oluşturduğu birliğe, genellikle, nukleokapsid adı verilmektedir. İkosahedral simetrili viruslara, hem DNA ve hem de RNA virus familyalarının bazılarında rastlanmaktadır. DNA viruslarından herpes ve hepadnavirusları, ile RNA viruslarından togavirus ve flaviviruslarının etrafında (kapsidin dışında) diğer bir muhafaza daha bulur(zarf). Virusların protein yapısındaki kapsidlerinde, farklı familyalara ait olanlarınki ile kros reaksiyon vermeyen ve vücutta spesifik immunolojik yanıtı stimule eden tip spesifik protein molekülleri vardır. Bunlar, SDS-PAGE'de (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) molekül ağırlıklarına göre yapılan separasyonlarda jel üzerinde farklı aralıklarla oluşan bant düzenleri virus familya ve cinslerini belirlemede önemli rol oynarlar. Ayrıca, penton ve hekzonlarda veya aynı kapsid üzerinde değişik yerlerinde lokalize olmuş spesifik antijenik protein molekülleri bulunabilir ve bunlar teşhiste önemli fonksiyonlara sahiptirler. Adenoviruslarının fiberleri de aynı şekilde spesifik antijenik uyarım yapabilecek güçtedirler. Reovirusların kapsidin etrafında iki adet konsantrik ve proteinden yapılmış muhafaza bulunmaktadır. İki muhafazalı olan virion infeksiyöz bir özellik taşır. 2) Helikal (sarmal) simetri: Helikal simetrili viruslara RNA virus familyalarında rastlanmaktadır. DNA viruslarında bu form bulunmamaktadır. Sarmal simetrili viruslarda spiral formda bulunan genetik materyalin üzerinde, bir tür polipeptidden oluşan, oval veya yuvarlak şekilli kapsomerler yan yana gelerek genomla birleşmişlerdir. Böylece, nukleik asit (RNA) kapsomerlerle birlikte helikal (spiral) bir form alır (helikal simetri). Kapsomerler, RNA genomla birlikte olduklarından da helikal nukleokapsid özelliği taşır. Helikal simetri gösteren hayvan viruslarının nukleokapsidlerinin etraflarında ayrıca sellüler lipidlerden zengin bir zarf bulunur (zarflı viruslar). Nukleokapsid bazı viruslarda bu zarf içinde ikincil kıvrımlar (yumak gibi) yapabilir. Hayvan viruslarının aksine, bitki viruslarından olan, tütün mozaik virusu (TMV) zarf taşımaz (zarfsızdır). TMV, sert ve nukleokapsid uzun (çomak gibi), düz ve RNA etrafında, her biri tek bir polipeptidden oluşan, yaklaşık 2130 oval kapsomer bulunur. 3) Kompleks yapı formu: Yukarda açıklanan temel iki kapsid simetrisine uymayan Poxviridae familyası virusları kompleks yapı formu grubu içinde incelenmektedirler. Böyle yapıya sahip viruslarının yüzeylerinde tübüler elementler bulunur. Çiçek viruslarında, DNA karakterindeki viral genom ortada ve bikonkav bir lokalizasyon gösterir. Ayrıca, orta kısımlarda da lateral cisimcikler yer almışlardır (orthopoxvirusları). Parapoxviruslarının yüzeylerinde çapraz strüktürler bulunur. Poxviruslarının etraflarında lipidden zengin zarf vardır. Virusların başlıca yapısal formları yandaki şekilde gösterilmektedir. 01.02. Zarf Bazı DNA (herpesvirusları, hepadnaviruslar, poxvirusları) ve RNA virusları (arenavirusları, bunyavirusları ve diğerleri) nukleokapsidlerinin etraflarında, viruslar hücrelerden tomurcuklanarak olgunlaştıkları sırada hücreye ait membranlara sarılarak dışarı salınırlar. Bu nedenle de zarfın yapısı, hücre membranlarının (sitoplasmik membran, nükleer membran, endoplasmik retikulum) kimyasal yapısı ile çok büyük benzerlik gösterir. İki katmanlı (bilayer) olan zarf, hücreler tarafından kodlanmasına karşın, zarfta bulunan peplomerler (glikoprotein yapısında, spike) ise viruslar tarafından spesifiye edilirler. Tomurcuklanarak hücrelerden çıkan zarflı viruslar hücrelere zarar vermezler ve hücreler normal yaşamlarını sürdürürler. Diğer bir ifade ile, hücrelerde morfolojik değişiklikler (sitopatik efektler, CPE) yapmazlar. Ayrıca, böyle viruslar, persistent infeksiyonlara yol açabilirler. Buna karşın hücre içinde olgunlaşan bazı viruslar da hücrelerde parçalanma (sitolizis) yaparak dışarı çıkarlar. Bilayer zarfın yüzeyinde lokalize olan ve viruslarca kodlanan peplomerler (spike; hemaglutinin, neuraminidaz, F-proteini), protein ve glikoprotein yapısında olduklarından da iyi bir antijeniteye sahiptirler. Vücutta, spesifik immunolojik bir yanıt oluştururlar. Peplomerler, elektron mikrografide çıkıntılar halinde görülürler. Bunlardan ayrı olarak ta bazı virusların (rhabdoviruslar, reoviruslar, orthomyxoviruslar, vs) zarflarının iç yüzeylerinde ve zarfın sağlamlığını destekleyen nonglikozile matriks proteini (M proteini) yer almaktadır. Viruslarda kapsid ve zarfın çok önemli fonksiyonları bulunmaktadır. Bunlardan bazıları aşağıda belirtilmiştir, a) Kapsidler ve zarflar, virusları, hem hücre içi (nukleazlardan) ve vücut içi antiviral maddelerden ve hem de vücut dışı fiziksel, kimyasal ve diğer virusidal faktörlerin zararlı etkilerinden de korurlar, b) Kapsidler ve zarflar (peplomerler), protein ve glikoprotein yapısında olduklarından ve virus grupları arasında farklı kimyasal özellik taşıdıklarından, vücutta spesifik bağışıklığı uyararak özgül antikor sentezini sağlarlar, c) Kapsidler ve zarflar, hücre yüzeylerindeki spesifik reseptörlere bağlanmada önemli rol oynarlar ve virusların infeksiyon oluşturmasının veya hücrelere girişinin de ilk basamağını sağlarlar, d) Kapsidler ve zarflar, virusların güvenli olarak sitoplasmik membranı geçmesini ve hücre içine (sitoplasmaya) ulaşmasına yardımcı olurlar, e) Kapsidler ve zarflar, virusların morfolojik özelliklerini belirlemede de fonksiyoneldirler, f) Kapsidler ve zarflar (peplomerler), vücutta oluşan spesifik antikorların tanınmasında ve bunlara bağlanmada ve antikor-antijen interaksiyonlarında önemli görevlere sahiptirler. g) Bazı poxvirusları hariç tutulursa, zarfın bütünlüğü infektivite için gereklidir. Zarflı viruslarda, glikoprotein yapısında olan peplomerlerin yanı sıra Transport kanal proteinlerinin varlığı da bildirilmektedir. Bunlar, membranın (zarfın) permeabilitesinde değişiklikler yapmakta, virionun internal ortamını modifiye etmekte ve virionun olgunlaşmasına katkıda bulunmaktadırlar. 01.03. Viral Nukleik Asitler (viral genom, DNA ve RNA) Virusların genetik yapılarını oluşturan nukleik asitler (viral genom), deoksiribonukleik asit(DNA) veya ribonukleik asit (RNA)lerden sadece birinden oluşur. Diğer bir ifade ile, virionda ya DNA veya RNA'lardan sadece biri vardır ikisi birden bulunmamaktadır. Bunlara karşın, bakterilerin genetik materyallerini hem DNA ve hem de RNA oluşturur. Ancak bunlardan mRNA'da genetik bilgiler bulunur. Diğer RNA'lar (tRNA ve rRNA) nongenomiktirler. Viral genom, hücre içinde kendi replikasyonunda fonksiyonu olan enzimlerden bazılarının kodlarına sahip olmasına karşın, gerekli diğer enzimleri, makromolekülleri, replikasyon ve ekspresyon mekanizmalarını, içinde üredikleri hücrelerden sağlarlar ve yararlanırlar. Bazı nukleik asitler, hücrelere girdiklerinde, infeksiyonu başlatabilir ve infeksiyöz yeni nesiller oluşturabilir. Buna karşın, bir kısım viruslar da, genetik informasyonların hemen hepsi bulunduğu halde, viral genom infeksiyöz değildir. RNA viruslarında, viral genom, eğer negatif (sens) polariteli ise, veya çift iplikçikli ise, bunlardan pozitif polariteli mRNA( +mRNA)'nın meydana gelebilmesi (transkripsiyonu) için viriona bağımlı transkriptaz enzimine gereksinim vardır. Bazı viruslarda da, transkripsiyonda sellüler transkriptaz kullanılır. Retrovirusların pozitif polariteli iki molekül tek iplikçik RNA'ları infeksiyöz bir özellikte değildir. Bu virusların ancak, proviral çift iplikçikli DNA'ları hücre genomuna integre olduktan sonra replikasyonları başlar. Retroviruslar hariç, diğer virusların genomlarında, her genin sadece bir kopyası bulunur. Viral genom, taşıdıkları genetik materyal türü yönünden başlıca iki kısma ayrılırlar. 1) Deoksiribonukleik asit (DNA): Bütün DNA viruslarında tek bir molekül genom bulunur. Bu da ya tek iplikçikli (ssDNA, parvoviruslar) veya çift iplikçikli (dsDNA), lineer veya sirküler bir özelliğe sahiptirler. Bunlar hakkında ayrıntılı bilgiler tablo 44.2 gösterilmiştir. Papovaviruslarında sirküler olan dsDNA, genellikle, süpersarmal (süperheliks) bir form gösterir. Çift iplikçikli ve sirküler hepadnaviruslarında DNA iplikçiklerinden biri diğerinden daha kısadır ve bunu bağlı olarak ta genom kısmen tek iplikçikli bir özellik taşır (ss/dsDNA). Poxvirusların lineer iki iplikçiğinin uçları birbirlerine kovalent bağlıdır ve denatürasyon durumunda sirküler tek iplikçik form oluşmaktadır. Lineer çift iplikçikli bazı herpesviruslarında genomun sonunda tekrarlanan sekanslar vardır. Adenoviruslarında, terminal tekrarlar birbirlerine ters oriyentasyon gösterirler (inverted terminal repeat, ITR). Parvoviruslarında da uçlarda palindromik sekanslar bulunur ve bunlar bir saç tokası görünümü alabilmektedirler. Terminal strüktürler yapışkan uçlar oluşturmaları yönünden de önemlidir. DNA viruslarında, bazı RNA viruslarında rastlanan segment oluşumu, saptanamamıştır. Bazı DNA virusları, kendi nukleik asitlerin sentezinde önemli rolleri olan proteinlerin (özellikle, enzimlerin) kodlarını taşırlar. Örn, hepadnaviruslar DNA'ya bağımlı DNA polimeraz ve poxvirusları da çok sayıda (polimeraz, nukleertopoizomeraz, fosfohidrolaz, vs gibi enzimlerin kodlarına sahiptir. DNA viruslarında genom büyüklüğü, küçük DNA viruslarında (parvoviruslar) 4-5 kb (MA: 1.5-2.2 x 106) ve büyük DNA viruslarında (poxvirusları) 130-280 kbp (MA: 130-200 x 106) arası bir varyasyon gösterir. Genellikle, 1 kb veya 1 kbp uzunluk, ortalama büyüklükte bir proteini kodlayacak bilgilere sahip olduğu kabul edilir. Bu nedenle de genomları 4-200 kb uzunlukta olanlar hem 4-200 gene ve dolayısıyla da 4-200 proteini kodlayabilecek kapasiteye sahip olmaktadırlar. Ancak, kodlamayan sekanslar (intron), tekrarlanan baz sıraları ve diğer nedenler göz önüne alınırsa, yukarıdaki görüş pek gerçekleşememektedir. Poxvirusları hariç tutulursa, DNA viruslarının hemen hepsi ikosahedral simetriye sahiptirler. ds : Çift iplikçik Jawetz, 1998;Ustaçelebi, 1993;Fenner, 1993, Akan, 1994 ss : Tek iplikçik + : Pozitif polarite (+ sens) - : Negatif polarite (- sens) RT: Reverse transkriptaz 2) Ribonukleik asit (RNA): RNA karakterinde genoma sahip viruslar, nukleik asitlerinin yapısal özellikleri yönünden, DNA viruslarından daha komplike bir durum gösterirler. Bunlar da, tek veya çift iplikçikli, lineer, segmentli ve segmentsiz bir yapısal organizasyona sahiptirler. RNA viruslarında sirküler genom bulunmamaktadır: Retroviruslarında genom, iki adet tek iplikçik ve pozitif polariteli RNA molekül yapısındadır. Bazı virus familyalarındaki (Bunyaviridae, Orthomyxoviridae, Reoviridae, vs) viruslarda bulunan segmentlerin her biri ayrı bir gen olduğu ve segmentlerin birbirlerinden tam ayrı olmadığı ve birbirlerine non kovalent bağlarla birleştiği kabul edilmektedir. RNA viruslarında genom hem ikosahedral ve hem de helikal simetri gösterir. Tek iplikçik RNA viruslarından picornaviruslar ve caliciviruslar dışındaki, ssRNA taşıyan virusların etraflarında lipidden zengin bilayer bir zarf bulunur. ssRNA virusları, viral nukleik asitlerinin polarite durumlarına göre pozitif (+) veya negatif (-) polarite (sens) olmak üzere iki kategoriye ayrılmaktadırlar. Eğer RNA hücre içinde mRNA fonksiyonuna sahipse, pozitif polariteli (+) RNA ve eğer böyle bir etkinliği bulunmuyorsa negatif polariteli olarak (-) RNA olarak kabul edilir. Viral RNA'nın (+) polariteli olduğu durumlarda, genomun 3'-ucu, genellikle, poliadenilatlı (pol AAA....) bulunmaktadır (örn, caliciviruslar, coronaviruslar, picornaviruslar, togaviruslar); bazılarının 5'-ucu ise kepli (cap)'dir (7-metil guanosin). Örn, coronaviruslar, flaviviruslar, togaviruslar, vs). Picornavirusları ve caliciviruslarda, RNA'nın 5'-terminusunda protein molekülü vardır. RNA viruslarında replikasyonda görev alan bazı enzimlerin kodları yer almaktadır. Örn, retroviruslarında, RNA'ya bağımlı DNA polimeraz; orthomyxovirusları, paramyxo-filo, bunya, reo ve arenaviruslarında, RNA'ya bağımlı RNA polimeraz enzimi gibi. RNA viruslarının genom büyüklüğü, 7,5 kb (picornavirusları, MA: 2.3-2.8 x 106) ile 27-33 kb (coronaviruslar, 7 x 106) arasında değişmektedir. 02. Virusların Kimyasal Yapıları Olgun bir virus partikülü, her ne kadar bir bakteri kadar zengin ve çeşitli kimyasal komponentlere sahip değilse de duyarlı organizmaya girdiklerinde değişik derecede (virusa ve konakçıya bağlı olarak) immunolojik bir yanıt oluşturabilecek moleküllere ve kompleks yapılara sahip bulunmaktadırlar. Bu nedenle de, viruslar, immunolojik özellikleri bakımından, bakterilerden hiç de gerilerde değildir ve hatta daha da önde oldukları söylenebilir. Virusların kimyasal yapılarını oluşturan başlıca komponentler hakkında aşağıda kısa ve özlü bilgiler verilmektedir. 02.01. Viral Proteinler Virusların yapılarında bulunan proteinler (viral proteinler) başlıca iki karakter taşımaktadırlar. 1) Yapısal (strüktürel) proteinler: Bu tür proteinler virionun bir çok bölgesinde lokalize olmuşlardır. Bunlardan, kapsid proteinleri, bazı DNA ve RNA viruslarında kapsidi oluşturan protein alt ünitelerinin (kapsomerler) yapısında bulunurlar ve çok iyi immunojenik aktiviteye sahiptirler. Kapsid proteinleri, bir virionun yüzeyinde, değişik karakterlerde ve lokalizasyonlarda olabilirler (VP1, VP2, VP3......,gp,....). Helikal simetrili viruslarda ise, genomla birleşik olan kapsomerler, nukleokapsidi oluştururlar. Burada da kapsomerlerin yapısı yine proteinden meydana geldiğinden antijenik bir özellik taşır. Yapısal proteinlerin bazıları da virusun bağlanma proteinlerini (ligand) oluştururlar. Zarflı viruslarda zarfın yapısında bulunan proteinler (zarf proteinleri) virus tarafından kodlanan peplomerlerde lokalize olmuşlardır. Peplomerlerde virus tarafından kodlanan peplomerlerde lokalize olmuşlardır. Peplomerlerde (spike), başlıca hemaglutinin, neuraminidase ve F-proteinleri bulunmakta ve bunlar, hücre yüzeylerinde yerleşik olan spesifik reseptörlerle bağlanabilen ligandları oluştururlar. Protein ve glikoprotein özelliği taşıyan bu moleküller de çok iyi antijenik karaktere sahiptirler. Hemaglutininler (trimer molekül) genellikle, hem alyuvarlara bağlanarak hemaglutinasyon fenomenine neden olurlar ve hem de hücrelere bağlanmada etkin ligandları oluştururlar. Neuraminidase (tetramer molekül) ise, hücre yüzeylerinde lokalize olan reseptörlerin yapısındaki oligosakkaridlerdeki sialik asidi hidrolize ederek bunun aktivitesine mani olur ve virusun bağlantısını çözerek serbest kalmasını sağlar (elüsyon). Bu nedenle neuraminidaz "reseptör parçalayan enzim" olarak tanınmaktadır (parapoxvirusları, orthopoxviruslar ve diğerleri). Virusların hücre içlerine girmesinde bu olgunun önemi fazladır. F-proteini (füsyon proteini), bu moleküller, hücrelerin bir araya gelmesini sağladığı gibi, hücre membranları ile de interaksiyona girerek zarfın membranla bütünleşmesinde de önemli rol oynar ve nukleokapsidin sitoplasmaya girişini kolaylaştırır. Zarflı olmasına karşın, Coronaviridae ve Herpesviridae viruslarındaki peplomerlerin etkinliği, Orthomyxoviridae ve Paramyxoviridae virusları kadar değildir ve oldukça zayıftır. Bazı zarflı viruslarda da (rhabdoviruslar, reoviruslar, orthomyxoviruslar, vs) yapısal bir karakter taşıyan ve zarfın iç yüzünde lokalize olan nonglikozile matriks proteinleri (M-proteinleri) bulunmaktadır. Viruslara şekil vermede rollere sahip olan M-proteinlerine Arenaviridae, Bunyaviridae ve Coronaviridae familyası virusların da rastlanmamıştır. 2) Yapısal olmayan (non strüktürel) proteinler: Bu proteinler, genellikle, viruslar tarafından kodlanmakta olup enzim karakteri göstermektedirler. Bunlar, virusların hücre içinde replikasyonları ve transkripsiyon regulasyonunda görev almaktadırlar (transkriptaz, revers transkriptaz, erken gen proteinleri ve diğerleri). Poxviridae familyası virusları kodladığı proteinleri bakımından oldukça zengindirler. Retroviruslar da revers transkriptaz enziminin kodlarına sahiptirler. 02.02. Lipidler Bazı DNA (Herpesviridae, Hepadnaviridae, Iridoviridae) ve RNA virus familyalarında (Arenaviridae, Bunyaviridae ve diğerleri) nukleokapsidlerin dışında yer alan ve hücre orijinli olan zarflar genellikle lipidlerden zengindirler. Çünkü, zarflar, viruslar, hücre membranlarından (sitoplasmik membran, nükleer membran, endoplasmik retikulum) çıkarlarken (olgunlaşma sırasında) alırlar. Bu nedenle de zarfın kimyasal yapısı ile hücrelerinki arasında çok yakın bir benzerlik bulunmaktadır ve bunlar hücre tarafından kodlanırlar. Zarflarda bulunan lipidler, viruslara göre değişmek üzere, hücre kuru ağırlığının %20-35'i kadar olabilmektedirler. Herpes viruslarının zarfları, hücrelerin nükleer membranları, orthomyxovirus ve paramyxovirusların zarf lipidleri de sitoplasmik membranların kimyasal yapıları ile özdeştirler. Lipidlerin yapısında fosfolipid, kolesterol, nötral yağlar, trigliseridler, glikolipidler, vs. bulunmaktadır. Virusların etrafında bulunan zarfların lipid kompozisyonları ve moleküler yapıları, virus türlerine ve ayrıca, içinde üredikleri hücreler (özellikle, olgunlaşarak çıktıkları membranların yapısına) göre değişiklik göstermektedir. Hatta, aynı tür virusun zarf lipid kompozisyonu, üredikleri hücreler farklı ise, değişik yapısal karakter gösterebilir. Zarflar, genellikle iki katmanlıdır (bilayer). 02.03. Karbonhidratlar Karbonhidratlar, virusların değişik bölgelerinde lokalize olmuşlardır. Virusların genetik materyallerinde (DNA ve RNA) pentoz şekerleri bulunmaktadır. DNA viruslarında 2-deoxy D-ribose olan şeker, RNA viruslarında D-ribose molekülü halindedir. Bu durumları ile de, genoma ad verirler (DNA ve RNA gibi). Karbonhidratlar, genomun yapısındaki bazlar ile fosfat molekülleri arasında bağ kurarlar. Şöyle ki, pirimidin bazlarında, şekerin 1 no’lu karbon atomu ile bazın 3 no’lu nitrojeni ve pürin bazlarında da şekerin 1 no’lu karbon atomu ile, bazın 9 no’lu nitrojeni arasında beta glikozid bağları ile ve diğer taraftan da pentoz şekerleri 3. ve 5 no’lu karbon atomları ile fosfat moleküllerine fosfodiester bağları ile birleşerek kompleksler oluştururlar. Zarfların yüzeyinde bulunan peplomerlerin yapısında da şeker molekülleri bulunduğundan bunlar, glikoprotein yapısı taşırlar ve iyi bir antijeniteye de sahiptirler. Buna karşın, matriks proteininde (M-proteini) şeker molekülü bulunmamaktadır (nonglikozile). 02.04. Fosfatlar Fosfat molekülü (H3PO4), viral nukleik asitlerin 3. önemli yapısal komponentini oluşturur. Ayrıca, Poxviridae familyası viruslarında fosforilize olmuş bazı proteinlere (fosfoprotein) veya lipidlere (fosfolipid) rastlanılmaktadır. 02.05. Nukleik Asitler (viral genom) Viruslar, genetik materyal olarak DNA (deoksiribonukleik asit) veya RNA (ribonukleik asit)'lardan sadece birini taşırlar. Bütün viral genomlarda her genin sadece bir kopyası olmasına karşın, retroviruslarında iki molekül tek iplikçik RNA bulunmaktadır (2, ss RNA, diploid). Nukleik asitler, DNA veya RNA, 3 tür komponentten oluşmaktadır. Bunlar da, 1) Pirimidin veya pürin bazları: Pirimidin bazları timin (T), sitozin (C) ve pürin bazları adenin (A) ve guanin (G)'dir. Ancak, RNA'da timin yoktur bunun yerini urasil (U) almıştır. 2) Pentoz şekeri (C5H10O5) : DNA'nın yapısında 2-deoxy D-ribose (C5H10O4) bulunmasına karşın RNA'da D-ribose (C5H10O5) molekülü vardır. 3) Fosfat molekülü (H3PO4): DNA ve RNA'da aynı yapıda fosfat molekülü bulunmaktadır. Kaynak :Temel Mikrobiyoloji

http://www.biyologlar.com/viruslarin-morfolojik-ve-kimyasal-ozellikleri

DİŞİN GELİŞİMİ

Her diş bir mezodermal ve bir ektodermal komponente sahiptir. Ektodermal komponent sadece mineden oluşur. 5-6. haftalarda oral ektoderm alt ve üst çenede atnalı şeklinde linear kalınlaşmalar gösterir. Bu labiodental laminalar başlangıçta solid ve ortadan ikiye ayrılmış olup alttaki mezoderme doğru uzanırlar. Dış labial kenar, dudak ile çene kemiğinin alveolar çıkıntısı arasında bir oluk oluşturmak üzere yarılırken (gelecekteki vestibül) iç kenar, dental lamina, her yarım çenede 5 adet olan tomurcuk benzeri bir seri kalınlaşmalar veya diş germlerini yapar. Bunlar süt dişleridir. 10-12. haftada lingual tarafta ikinci seri diş germleri gelişir. Sayıları her yarım çenede 8 tanedir (5 tanesi süt dişlerinin yerini alır, diğer üçü molar dişler olup süt dişlerinde karşılığı yoktur). Her iki tip diş çıkarmada da diş germlerinin gelişimi benzer şekilde olur. Her epitelyal diş germi bir hücre kordonu ile dental laminaya bağlı olarak bulunur. Önce kep şeklindedir, sonra altından mezenşimal papilla tarafından invagine edilerek çan dönemi (enamel organı) haline gelir. Tamamen bağ dokusu içine gömülüdür (Dental kese). Dental laminayla ilişkisi parçalanıp kaybolduğunda gelişen dişi tamamen kuşatır. Enamel organın periferal kısmı tek tabakalı epitelyal hücrelerce oluşturulur. Hücreler çanın konveks kısmında alçak kübiktir ( Dış enamel veya dental epitelyum). Konkav kısmında daha prizmatiktir (iç enamel veya dental epitelyum). Çanın kenarında (servikal bölge veya boyun) karşılaşırlar, bu gelecekteki sementoenamel bileşkeyi belirler. Çana komşu iç enamel epitelyal hücreler olan nöral krest kökenli preodontoblastlar da kübikleşerek dentini oluşturacak olan odontoblastlara dönüşürler. Çanın iç kısmında hücreler yıldız (stellate) şekilli olup hücreler arası boşluklarla (stellate retikülüm) ayrılmıştır. Fakat iç enamel epitelyumuna komşu stratum intermedium olarak adlandırılan çok düzenli bir tabaka oluştururlar. Stratum intermedium boyunca iç enamel epitelyumun hücreleri enamel yapan ameloblastlara dönüşür. Dental enamel matriks aracılı biominearilazyon olarak bilinen amelogenesis ile oluşur. Amelogenesisin ana aşamaları: • Matriks üretimi (salgılama dönemi), dişin mineralizasyonunda ilk olarak dentin oluşur. Sonra kısmen enamal matriksi mineralize olur ve salgılama dönemi enamel tamamen oluşuncaya kadar devam eder. • Matriks olgunlaşması, mineralize matriksin kısmen olgunlaşması hem organik materyalin uzaklaşması hem de Ca+ ve fosfat girişiyle gerçekleşir. Böylelikle salgılama dönemi ameloblastları periyodik değişikliklerle olgunlaşma dönemi ameloblastlarına farklanır. Ameloblastların apikal kutuplarında Tomes’in çıkıntıları gelişen enamel ile sarılır. Ameloblastların apikal ve bazal kısımlarındaki bağlantı kompleksleri, hücrenin bütünlüğünü ve dentoenamal bağlantıdan uzaklaşmasını sağlar. Ameloblastların differansiasyonlarıyla birlikte, buna komşu dental papillanın periferal mezodermal hücreleri bir hücre kalınlığında odontoblastlar olarak düzenlenir. İkisi yalnızca bir bazal lamina materyali tarafından ayrılmış olup bu da daha sonra parçalanır. Gebeliğin 20. haftasında dişin sert dokuları oluşmaya başlar. Predentin boyuna doğru uzanır, kalınlığı artar. Odantoblastların sitoplazmik uzantaları dentinal lifler gibi oluşturulur. Odontoblastlar kollajen ve başlıca glikozaminoglikanlar olan matriksi oluşturur. İlk oluşan matriksde kalsifikasyonu takiben predentin dentine dönüşür. Çünkü mineralizasyon lifler ve temel maddenin oluşumundan sonra meydana gelir. Odontoblastlara komşu olarak daima ince predentin tabakası vardır. Bir kere dentin oluşumu başlayınca ameloblastlar dentin yüzeyinde enamel oluşturmaya başlarlar. İlk oluşan enamel % 70 mineraller v e% 30 organik matriksden meydana gelir, oysa matür enamelin % 99’u mineraldir. Bu yüzden matriks kristallit birikimi ve/veya düzenlenmesi ve daha sonra hemen tamamen kaybolması için gereklidir. Enamel kalınlığının artması ile ameloblastlar dentinden uzaklaşırlar. Gelişen enamel ekstramatriksinin esas proteinleri: • Amelogeninler; enamel gelişiminin erken evrelerinde enamel rodları arasında aralıklı olarak yerleşen önemli bir proteindir. • Amelobilastin, erken salgılama evresinden geç olgunlaşma evresine kadarameloblastlar tarafından üretilen sinyal proteinleridir. Fonksiyonları henüz çok iyi bilinmemekle birlikte amelogenesiste diğer proteinlerden daha belirgin bir role sahiptir. Enamel kristallerinin uzamasını kontrol ederek enamel mineralizasyonuna rehberlik eder. • Enamelinler, enamel tabakası boyunca yayılan proteinlerdir. Bu proteinler enamel olgunlaşması gibi proteolitik yarıklanma geçirirler. Bu yarıklanmanın düşük molekül ağırlıklı ürünleri olgun enamel kristallerinin yüzeyine tutunur. • Tuftelinler, dentinoenamel bağlantı noktasına yakın yerleşen en erken tanımlanmış proteinlerdir. Enamel demetlerinde yer alırlar ve hipomineralizasyondan sorumludurlar. Gelişen enamelin olgunlaşması mineralizasyonu ile devam eder ve vucudun en sert yapısı halini almasıyla sonlanır. amelogeninler ve ameloblastinler enamel olgunlaşması sırasında uzaklaşırlar. Bu nedenle olgun enamel sadece enamelinler ve tuftelinlerden oluşur. Enamel tamamen olgunlaştıktan sonra ameloblastlar dejenere olur ki bu dönem dişin diş etinden çıkışına yakındır. Enamel organın periferinde, gelecekteki boyun kısmında (çanın kenarında), iç ve dış enamel epitelinin birleştiği yerde, bir epitelyal hücre katlantısı gelişir ve aşağıya köke doğru büyür. Bu epitelyal kök kılıfıdır (Hertwing kılıfı). Kök gelişimi diş çıkmasından kısa bir süre önce oluşur ve gittikçe gingivaya doğru taç kenarları şeklinde ilerler. Odontoblastlar Hertwing epitelyal kılıfı ile ilişkili olarak gelişir ve dentini oluşturur. Sementum periodental membranı mezenşiminden gelişir. Hertwing epitelyal kılıfı yalnızca kök tamamen oluştuğu zaman kaybolur. Kalıcı bir dişin çıkması sırasında, yüzeyel süt dişleri büyüme basıncı ile gittikçe resorbe olur, osteoklastlar bu olay boyunca belirgindir. Süt dişlerinin taçın üst kısmında oluşan bölümü dökülür, kalan kısım resorbe olur.

http://www.biyologlar.com/disin-gelisimi

İNCE BARSAKLARIN HİSTOLOJİK YAPISI

İnce barsak, mide ile birleştiği pilorik orifisten başlar, kalın barsak olarak devam ettiği ileoçekal kavşağa kadar uzanır. Yaklaşık 7,2 metre uzunlukta sindirim kanalının en uzun komponenti olan ince barsak abdominal kavite içerisinde oldukça kıvrıntılı bir şekilde seyreder ve 3 kısımda incelenir; 1- Duodenum: Yalnızca 20 cm uzunlukta olan duodenum, ince barsağın ilk kısmı olup abdominal duvarın posterioruna tesbit edilmiştir ve uzunluğunun büyük bir kısmında mesentere sahip değildir, bu nedenle retroperitonealdir. Mide pilorundan başlayıp duodenojejunal kavşağa kadar devam eder. Konkav kenarına pankreas başı yerleşir ve pankreas ile safra duktusları duodenuma açılır. 2- Jejunum: Geri kalan ince barsağın duodenumdan sonraki ilk 2/5’idir. Yaklaşık 3 m uzunluktadır. 3- İleum: 2/5’ten arta kalan 3/5 son ince barsak kısmıdır. 4 m uzunlukta olup ileocekal kavşakta sonlanır. Jejenum ve ileum mezenterler ile posterior abdominal duvara asılıdır fakat ileumun son kısmı gene posterior abdominal duvara yapışmıştır. İnce barsakların fonksiyonları; 1- Kimus halindeki gıda maddelerini mideden kalın barsaklara iletilmesini sağlar, 2- Kendi duvarlarından ve yardımcı bezlerden salgılanan enzimler aracılığı ile sindirimi tamamlar. 3- Sindirim sonucu oluşan ürünleri kendi duvarları içerisinde bulunan kan ve lenf damarlarına absorbe eder. 4- Belirli bazı hormonları salgılar. İnce barsak, özellikle absorbsiyon ve sindirim salgılarını salgılama fonksiyonlarını görmek üzere belirli özelleşmelere sahiptir. Böylece mukozanın yüzey alanı arttırılmış olur.

http://www.biyologlar.com/ince-barsaklarin-histolojik-yapisi

Balıkların Fizyolojik, anatomik ve morfoloji yapıları sindirim, üreme,

Suda yaşayan, solungaçlarla solunum yapan ve yüzgeçleri bulunan omurgalı hayvanların genel adı. Balıkların yüzgeçleri iki çeşittir. Yanlarda çift olarak dizilmiş yüzgeçler, karada yaşayan omurgalıların ön ve arka üyelerine denktir: Solungaç kapaklarının arkasında gövdeye bağlanmış olan birinci çift, ön üyeleri karşılar ve göğüs yüzgeçleri diye adlandırılır. Karın çevresi kemiklerine bağlanan ikinci çiftse arka üyeleri karşılar ve karın yüzgeçleri diye adlandırılır. Tek ve dikey doğrultuda olan ikinci çeşit yüzgeçlerse sırtta, kuyruğun altında ve ucunda yer alırlar. Bazı türlerde yüzgeç bulunmaz, bazılarındaysa yüzgeçlerin yalnızca bir çeşidi vardır. Birçoğundaysa üç, dört, altı, sekiz, hatta on iki yüzgeç bulunur. Sırt ve anüs yüzgeçleri, en çok biçim değişikliği gösteren yüzgeçlerdir. Sözgelimi, sırt yüzgeci çoğunlukla tektir ve bazen başın hemen arkasından kuyruk yüzgecine kadar uzanır. Kuyruk yüzgeciyse, bazı balıklarda tam bir üçgeni anımsatacak biçimde, bazılarında yuvarlak, bazılarında elips biçiminde uzamıştır; çoğunlukla da çatallanmıştır ve eşit lopludur (bazı balıklarda yüzgeci oluşturan loplar eşit değildir). BALIKLARIN BİÇİMİ Balıkların genel biçimi, yaşama biçimlerine uygundur. Az çok mekik biçiminde olan bedenlerinde, baş, gövdeyle,aralarında öbür omurgalıların boynuna benzer hiçbir daralma olmaksızın birleşir. Levreğin, uskumrunun, sazan balığının biçimi, balıkların çoğunun biçimi konusunda bilgi verirse de , beden biçiminde hem genel olarak, hem de ayrıntılar açısından birçok değişiklik gözlenir. Beden bazen, yılanbalıklarında olduğu gibi, aşağı yukarı silindir biçiminde ya da elektrikli yılan balıklarındaki gibi, gümüş bir şerit biçimindedir; bazen de, deniz iğnelerininki gibi çok yüzlüdür ya da kirpi balıklarınınki gibi küremsi bir şişme gösterir. Yassı balıklar (dilbalığı, pisi balığı), yanlardan yassılaşmış balıklardır; vatozlarsa sırt-karın yönünde yassılaşmışlardır. ANATOMİ Balıkların iskeleti, dokunun niteliği bakımından, oldukça büyük çeşitlilik gösterir; bu da kemikli balıklar, lifli kıkırdaklı balıklar ve kıkırdaklı balıklar arasındaki farkları açıklar. Kemikli balıkların kemikleri çok sıkı liflerden oluşmuştur ve liflerdeki kireçli madde, dokularda hiçbir aralık kalmayacak kadar boldur. Kemikler kesinlikle bağdaşık yapıdadır ve öbür hayvanlardaki ilik adı verilen yağ karışımlı jelatini içermezler. Lifli kıkırdaklı balıkların iskeletinde, kireçli madde, iskelet öğelerinin temelini oluşturan kıkırdak içindeki lifler tarafından biriktirilir; ama, kemik dokusununkinden o kadar azdır ki, hiçbir zaman sertleşmez ve kemikli balıkların özelliği olan kemik bağdaşıklığını kazanmaz. Kıkırdaklı balıkların iskeletlerinin dokusuysa, her zaman çok yumuşaktır. MORFOLOJİ Balıklar arasında derisi bütünüyle çıplak, pulsuz türlere de rastlanır. Yılanbalığının pulları küçüktür ve bedenini kayganhale getiren kalın sümüksü bir maddenin oluşturduğu tabakanın altında gizlenmiştir. Bazı balıklarda pulların çapı 5-6 cm kadar olabilir. Kaygan, bazen dikenli ya da bölmeli olabilen pullar öylesine serttir ki, balık kemikten bir kılıfla kaplanmış gibidir. Vatozların derisindeki pullar, az çok çıkıntılı bir dikenin tabanını oluştururlar. Kirpi balıklarında bir dikenler, balık şiştiği zaman dikleşirler ve uzunlukları 4-5 cm'yi bulur. Pulların yapısı balıkların çeşitli takımlarında öylesine belirgindir ki, Agassiz, bu özelliği balıkların sınıflandırılmasına temel olarak almıştır. KASLAR Balıkların kas sistemi çok gelişmiştir. Gerçekten bedenlerinin en büyük bölümü çoğunlukla kaslardan oluşur. Dolgun liflerin oluşturduğu kaslar, genellikle beyaz, ama bazı türlerde de farklı renklerdedir. Balıklarda, kuyruk başlıca ilerleme organıdır. Düşey yüzgeçler gerçek bir kürek işlevi gören kuyruğun alanını yalnızca genişletmeye, oysa yan yüzgeçler, yani göğüs ve karın yüzgeçleri, hareketin yönünü etkileyerek hayvanı dengede tutmaya yararlar. Bu çeşitli organlar, balıkların genellikle büyük bir hızda yüzmelerini sağlarlar. Sözgelimi kılıçbalığının ve yelken balığının hızları yaklaşık olarak saatte 100 km'dir. Bazı türler, göğüs yüzgeçlerinin olağanüstü gelişmesi sayesinde sudan sıçrayarak belli bir süre havada kalabilirler. FİZYOLOJİ Balıklar kırmızı kanlıdır; elips biçiminde olan kan yuvalarının büyüklüğü, türlere göre değişir. Dolaşım sisteminde, bir kulakçık ile bir karıncıktan oluşan bir yürek vardır. Kulakçık kirli kanı alır; karıncık da solunum sistemine gönderir. Solungaçlarda oksijenlenen kanın büyük bir bölümü, uzun bir sırt damarında (ana atardamar ya da aort) toplanarak organizmaya dağılır. Böylece kan, memeli hayvanlarda ve kuşlarda olduğu gibi, dolaşım sistemini baştan sona geçerken solunum sistemini de bütünüyle aşar; ama yürekten sadece bir kez geçer. Balıklar solungaçlarla solunum yaparlar. Solungaçlar birbiriyle karşı karşıya gelebilecek biçimde her iki yanda dörder tanedir. (ama kıkırdaklı balıkların çoğunda, beşer solungaç vardır.) Ağzın içinde, birbirini izleyen iki solungaç arasında, suyun geçebildiği ve solunum sistemi mukozasının yüzeyine ulaşabildiği geniş bir yarık bulunur. Böylece, solungacın çok sayıdaki yaprakçıkları, suyun içinde kolayca kalkar ve yüzer. Ama balık sudan çıkarıldığında, bütün solungaç yaprakçıkları birbirinin üstüne yığılır ve balık ancak solungaçlarının küçük bir bölümüyle ve nemli oldukları sürece solunum yapar. Bir başka deyişle, balık suyun dışında kısa sürede ölür (ama yılanbalıkları gibi bazı türler, doğal ortamlarının dışında oldukça uzun süre yaşarlar). SİNDİRİM SİSTEMİ Balıklarda sindirim sisteminde büyük farklılıklar gözlenir. Bütün balıklarda görülen karaciğer genel olarak büyüktür ve yumuşak bir dokudan oluşur. Kıkırdaklı balıkların dışında, pankreasın yerini ya mide ile bağırsağın birleştiği mide kapısının çevresinde bulunan özel bir dokudan oluşmuş körbağırsaklar ya da bağırsağın başlangıcında bulunan bu dokunun kendisi alır. Ağzı donatan dişler de büyük ölçüde değişkenlik gösterir. Yalnızca birkaç türde hiç diş bulunmaz. Dişler genellikle avı tutmaya ya da parçalamaya yarar. Balıkların çoğu hayvansal besinlerle beslenirler. Yırtıcı olanların bir bölümü, kendi türlerinden olanları bile ayırt etmeksizin balıklara saldırarak beslenirler. Bazılarıysa kabukluları ve yumuşakçaları yer. Az sayıda balık türüyse bitkicildir ya da midelerini mikroskobik hayvancıklarla dolu suların çamurlarıyla doldururlar. Balıkların böbrekleri omurga boyunca uzanır. Ama sidik torbası göden bağırsağının üstündedir ve memelilerdekinin tersine, anüs ile üreme açıklığının arkasından dışarı açılır. SİNİR SİSTEMİ Balıkların beyni, bedene oranla çok küçüktür ve beyni oluşturan çeşitli bölümler eşit olmayan biçimde gelişmiştir. Bununla birlikte, beyinden çıkan sinirlerin dağılımı, öbür omurgalılarınkiyle tam bir benzerlik gösterir. Duyu organları arasında, genellikle büyük olan göz, geniş ve çok açık olan gözbebeğiyle dikkati çeker. Derin deniz balıklarının gözleri ya körelmiş ya da çok gelişmiştir. Kulağın yapısı yalındır: Yalnızca iç kulaktan oluşur. Kokualma organı, tabanı kıvrımlı bir zarla çok düzenli biçimde döşenmiş kapalı bir uçla son bulan, iki boşluktan oluşur; balıklar kokulara karşı çok duyarlıdırlar (hiç akıntı olmasa bile uzaktan yemin bulunduğu yere doğru hareket ederler) Buna karşılık, tat alma pek gelişmemiştir. Balıkların dili kemiktendir ve yapısında çok az sinir yer alır. Ayrıca, balıklar besinlerini ağızlarında tutmazlar. Dokunma duyusu son derece gelişmiştir. Böylece balıklar, şaşırtıcı bir keskinlikle, suyun en küçük titreşimlerini hissedebilir ve geldikleri yeri belirleyebilirler. Dokunmanın başlıca merkezi, omurgaya koşut olarak gövde boyunca uzanan ve yan çizgi adı verilen bir oluk içindedir. Dokunma duyusuna dudaklar da yardımcı olabilir. ÜREME Balıklarda yumurtalar genellikle beden dışında döllenir (yani ovipardırlar). Son derece ince, suyu ve dölleyici sıvıyı geçiren bir zarla kaplı olan yumurtaların büyüklüğü değişkendir. Bazı türler bir milyondan çok yumurta yumurtlar. Bütün bu yumurtalar iki zarla sarılmış bir vitellüsten oluşurlar; bazı köpekbalıklarında bir eten vardır. Dişi yumurtlama dönemindeyken, yumurtalar çok büyük bir gelişme gösterirler ve aşağı yukarı büyün karın boşluğunu doldururlar. Erkekte balık sütü denilen sperma içinde aynı şey söz konusudur. Üreme sırasında dişi ve erkek balıklar, olağan üstü etkinlik gösterirler: Su bitkilerini hareket ettirir, kıyılara yaklaşırlar ve dişi, sığ yerlere yumurtalarını döker. Yumurtalar bırakılır bırakılmaz, erkek balıklar onları döllerler. Sonra erkek ve dii, yumurtalarını bırakıp giderler. Ama, diken balıkları, horozbinalar, yayın balıkları gibi bazı balıkların yuva yapma içgüdüsüyle yumurtalarını koruduğu görülür. Bazı türlerde erkek ve dişi, yavruların çevresinde durur ve bir tehlike sezinledikleri anda onları geniş ağızlarının içine alarak korurlar. Bazı balık türleriyse çiftleşirler ve yumurtalar ana karnında açılır (yani ovovivipardırlar); yavrular kısa bir kanalla dışarı çıkarlar. Yalnızca köpekbalıklarında, yumurtalıktan ayrı, çoğunlukla gerçek bir dölyatağıyla son bulan uzun yumurtalık kanalları vardır. Köpekbalıkları ya canlı yavrular ya da bağsı bir maddeyle sarılmış büyük yumurtalar üretirler.

http://www.biyologlar.com/baliklarin-fizyolojik-anatomik-ve-morfoloji-yapilari-sindirim-ureme

Bitki Nedir?

Canlılar dünyasının en önemli gruplarından biri bitkiler, öbürü hayvanlardır. Fotosentezle kendi besinini kendisi üretebilen, kökü, gövdesi ve yaprakları olan üstün yapılı bitkiler bu özellikleriyle hayvanlardan kolayca ayırt edilebilir. Oysa evrimin daha alt basamaklarında bitkilerle ya da hayvanlarla ortak özellikler taşıyan, ama gerçek anlamda ne bitki, ne de hayvan sayılabilen pek çok canlı vardır. Uzmanlar, sınıflandırmada büyük güçlük çıkaran bu ilkel ve basit yapılı canlıları bugün bitkiler ve hayvanlar âleminin dışında tutma eğilimindedir. Ama geleneksel sınıflandırmaya bağlı kalan bazı bilim adamları, birçok özelliğiyle bitkilere benzeyen suyo-sunları (algler) ile mantarları tallıbitkiler adıyla bugün bile bitkiler âleminden sayarlar. Oysa bu canlıların, üstün yapılı bitkilere özgü gövde, yapraklar ve iletim damarları gibi özelleşmiş dokuları yoktur; hücreleri, tal denen basit ve özelleşmemiş ipçikler ya da katmanlar halinde bir araya toplanmıştır. Buna benzer temel farklılıkları göz önüne alarak mantarları ve suyosunlarını bitkilerden ayıran yeni sınıflandırmalarda ise bu canlılar, bitki ve hayvan benzeri bütün tekhücrelileri içeren Protista âlemi içinde sınıflandırılır; hatta mantarlar ayrı bir âlem olarak kabul edilir. Canlıların sınıflandırılmasını genel çizgileriyle ansiklopedinin CANLILAR maddesinde bulabilirsiniz. Bitkilerin yüz binlerce değişik türü vardır. Bu türlerin boyutları, ancak mikroskopla görülebilen bazı yaprakyosunları gibi çok küçük bitkilerden başlayıp, California’nın kıyı sekoyaları gibi yaklaşık 90 metre boyundaki dev bitkilere kadar uzanır. Bitki türleri açısından dünyanın en zengin bölgesi olan, Kuzey Kutbu ile tropik iklim kuşağı arasındaki enlemlerde 300 bin kadar bitki türünün bulunduğu sanılmaktadır. BAŞLICA BİTKİ SINIFLARINDAN ÖRNEKLER Bitkiler yeşil renkli klorofil pigmenti içeren ve fotosentezle kendi besinini kendisi üretebilen canlılardır. Hayvanİar gibi hareket organları olmadığı için bulundukları yere bağlı olarak yaşarlar. Hücre duvarları selülozlu, bu nedenle oldukça serttir. Yaklaşık 300 bin kadar türü olan bitkiler, benzer yapısal özelliklerine göre sınıflandırılır CİĞERYOSUNLARI ve YAPRAKYOSUNLARI Sporlarla üreyen ve toprak yüzeyinde yastık gibi bir örtü oluşturan küçük, yeşil, çiçeksiz kara bitkileridir. Yaprakyosunlarının yaprakları sivri uçlu, ciğeryosunlarınınki etli ve lopludur (25.000 tür). KİBRİTOTLARI: Sporlarla üreyen, iğnemsi yaprakları ve sporkesesi başaklarıyla (strobil) dev yaprakyosunlarını andıran çiçeksiz kara bitkileridir (400 tür). ATKUYRUKLARI: İçi boydan boya oyuk, eklemli ve boğumlu gövdeleri olan bitkilerdir. Her boğumdan çıkan uzun, sivri uçlu ve dikensi yapraklar gövdeyi çepeçevre sarar. Sporlar, kozalağı andıran sporkesesi başaklarınca üretilir (30 tür). EĞRELTİOTLARI: Genellikle parçalı olan yaprakları büyüdükçe bir yelpaze gibi açılan kara bitkileridir. Sporlar yaprakların alt yüzündeki sporkeselerince üretilir (10.000 tür). AÇIKTOHUMLULAR: Meyvenin içinde saklı olmayan tohumlarla üreyen odunsu bitkilerdir. İğneyapraklılar (kozalaklılar), yalancı sagupalmiyesi ile Cycadales takımının öbür üyeleri ve mabetağacı bu gruptandır (700 tür). KAPALITOHUMLULAR: Belirgin yaprakları, gövdeleri, kökleri ve çiçekleri olan otsu ya da odunsu bitkilerdir. Kapalıtohumlular, tohum çeneklerinin (çimyapraklarının) sayısına göre iki sınıfa ayrılır. Birçeneklilerde tek bir çenek bulunur. Buğdaygiller, İkiçeneklilerin iki tane çeneği vardır. Çiçekli Bitkiler Çok kalabalık bir grup olan çiçekli bitkilerin bütün türleri birbirinden öylesine farklıdır ki, aralarından tipik bir örnek seçmek neredeyse olanaksızdır. Kökü, gövdesi, yaprakları, çiçekleri ve meyveleriyle tam bir çiçekli bitki olan düğünçiçeği gene de en iyi örnek sayılabilir. Düğünçiçeğinin birçok türü saçak köklü, bazıları şişkin yumru köklüdür. Gövdenin altından çıkarak toprakaltında yayılan beyaz saçak kökler, tüy gibi incecik uzantılarıyla topraktaki suyu emer. Toprağın üstünde dallanarak yükselen ince, uzun gövdede belirli aralıklarla yerleşmiş küçük boğum yerleri vardır. Her boğumdan bir ya da birkaç yaprak çıkar. Yaprakların koltuğundan, yani gövdeye birleştiği yerden de her zaman ya bir çiçek tomurcuğu ya da bir yan dal gelişir. Yaprakların kısa bir sapı ve genellikle parçalı, genişçe bir ayası vardır. Gövdenin ve dalların ucunda tek tek ya da küçük kümeler halinde açan sarı çiçekler bulunur. Her çiçek, yeşil renkli beş çanakyap-raktan, parlak sarı renkli beş taçyapraktan ve çok sayıda erkekorgan ile dişiorgandan oluşur. Erkekorganlardan her birinin bir ipçiği ve sarı çiçektozlarını üreten bir başçığı vardır. Çiçeğin tam ortasında, çok sayıda yeşil mey-veyaprağından (karpel) oluşan dişiorganlar bulunur. Dişiorganlardan her birinin bir tepeciği ile bir yumurtalığı vardır. Tepecik yapışkan yüzeyiyle çiçektozlarını toplar; şişkince bir bölüm olan yumurtalık ise sonradan tohuma dönüşecek olan tohumtaslağını barındırır. Çiçeklerin tepeciği genellikle boyuncuk denen ince, uzun bir bölümle yumurtalığa bağlıdır. Tozlaşmadan sonra ça-nakyapraklar, taçyapraklar ve erkekorganlar dökülürken, her birinin içinde tek bir tohum bulunan şişkin yumurtalıklar birleşerek meyveye dönüşür. Düğünçiçeğinin meyvesi elma, armut, kiraz, şeftali gibi yakından tanıdığınız meyvelerden farklıdır. Ama botanik açısından, içinde tohumu ya da tohumları barındıran olgunlaşmış her yumurtalık bir meyve sayılır. Bitkilerin ÇİÇEK, GÖVDE, KÖK, MEYVE ve YAPRAK gibi temel bölümlerini ansiklopedide ayrı birer madde olarak bulabilirsiniz. Bütün Besinlerin Kaynağı Bitkiler olmasaydı ne hayvanlar, ne de insanlar var olabilirdi. Çünkü yeşil bitkilerin, su, suda çözünmüş tuzlar ve hava gibi inorganik maddeleri, bütün öbür canlılar için gerekli olan şeker ve nişasta gibi organik bileşiklere dönüştürebilme yeteneği vardır. Bitkilerin kendi besinini ürettiği bu sürece fotosentez denir. Fotosentezde bitkiler topraktan aldıkları suyu havadan aldıkları karbon dioksit gazıyla birleştirerek şekere dönüştürürler. Bu süreç bitkilerin yalnızca yeşil bölümlerinde, özellikle yapraklarında gerçekleşir. Çünkü fotosentezde önemli rol oynayan yeşil renkli klorofil pigmenti yalnız bu bölümlerdeki hüc­relerde bulunur. Bu bireşim (sentez) için gerekli olan enerji de güneş ışığından sağlanır . Bitkiler ürettikleri şekerleri hem büyümelerini sağlayan temel besin maddesi olarak kullanır, hem de sonradan kullanmak üzere yumru köklerinde ya da tohumlarında nişasta biçiminde depolayabilirler. Ayrıca yeniden karbon, oksijen ve hidrojene aynştınlabilen bu maddeler bitki için gerekli olan enerjiyi sağlar. Üstelik, bitkilerin ürettiği şeker ve nişasta yalnız bitkilerin değil bütün hayvanların ve insanların da temel besin maddesidir. Örneğin insanların temel yiyeceği olan ekmek, nişastah buğday tohumlarının öğütülmesiyle elde edilen undan yapılır. Ayrıca, antilop gibi otçul hayvanlar bitkileri, aslan gibi etçil hayvanlar da antilopları yediği için bitkiler dolaylı ya da dolaysız olarak bütün hayvanların besin kaynağıdır. İnsanlar ise hem bitkileri, hem bitkilerden elde ettikleri yiyecekleri, hem de bitkiyle beslenen hayvanların etini yiyerek beslenir. Değişik örneklerde bu “beslenme ağlan”nı geriye doğru izlersek, ilk basamaklarda hep bitkilerin yer aldığını görürüz. Bitkilerin, zengin bir besin deposu olmanın ötesinde birçok yaran vardır. Güzel görünümleriyle doğayı süsleyen bitkiler, fotosentez sırasında karbon dioksit alıp oksijen açığa çıkardıklarından, insan ve hayvanların solunumu için bitkilerin varlığı çok önemlidir. Ayrıca kökleriyle toprağı tutarak toprak kaybını önleyen bitkilerden yakacak, kâğıt, kereste, zamk, boya, ilaç, reçine, kauçuk, bitkisel yağlar ve dokumacılığın hammaddesi olan bitkisel lifler gibi çok değerli ürünler elde edilir. Baklagiller gibi bazı bitkiler de toprağı azotça zenginleştirerek tarımsal üretimin artmasına yardımcı olur. Bitki Islahı Bitkiler her zaman insanlar için vazgeçilmez besin kaynakları olagelmiştir. Çok eskiçağlarda bitkiler doğada kendiliğinden yetişir, insanlar da yemeye elverişli bitkileri bulabilmek için durmadan göç ederlerdi. Zamanla bitki yetiştirmeyi öğrenerek yerleşik düzene geçtiler. Bugün tarımı yapılan bitkilerin hepsi yabani bitkilerden türemiştir, ama birçoğu atalarından oldukça farklıdır. Çünkü bilim adamları ve tarım üreticileri, çaprazlama ve melezleme yoluyla daha yararlı, verimli ve üstün nitelikli bitkiler elde etmeyi başarmışlardır. Örneğin yabani buğdaydan, besin değeri ve verimi daha yüksek olan, daha iri taneli pek çok buğday çeşidi geliştirilmiştir. Bitkilerin çeşitli hastalıklara ve zararlı böceklere daha dirençli duruma getirilmesini de amaçlayan bütün bu çalışmalara “bitki ıslahı” denir. Dünya nüfusunun ve yiyecek gereksiniminin giderek artmasına karşılık besin kaynaklarının hızla tükenmesi bu çalışmaların önemini ön plana çıkarmıştır. Besin değeri olmayan birçok bitki de tedavi edici özellikleri ve ilaç yapımında kullanılan hammaddeleriyle tıp açısından önem taşır. DOĞADAKİ BÜTÜN BİTKİLERİN KORUNMASI GEREKİR. ÇÜNKÜ HİÇ İLGİNİZİ ÇEKMEYEN SIRADAN BİR OT BİLE İLERİDE İNSANLIĞA ÇOK YARARLI OLABİLİR. Bitkilerin Adlandırılması ve Sınıflandırılması Bitkilerin her dilde, ilk kez ne zaman kullanıldığı bile bilinmeyen özel bir adı vardır. Akşamsefası, civanperçemi, hanımeli, güveyfe-neri, çarkıfelek, ballıbaba, aslanağzı, bektaşiüzümü, cinsaçı, kadıntuzluğu, çobançantası gibi bu güzel ve anlamlı adlar genellikle bitkinin belli bir özelliğini ve halkın düşgücünü yansıtır. Ama her bitki türünün bu yaygın adından başka, iki sözcükten oluşan Latince bir adı daha vardır. Bu iki sözcüklü adlandırma sistemini ilk kez 18. yüzyılda İsveçli botanikçi Carolus Linnaeus geliştirmiştir. 1753′te yazdığı Species Plantarum (“Bitki Türleri”) adlı başyapıtında bitkileri önce Latince “cins” adıyla, sonra o türü aynı cinsin öbür türlerinden ayırt eden değişik bir özelliğiyle adlandırmayı öneren Linnaeus bugünkü bilimsel adlandırma sisteminin öncüsü sayılır. Bitkilerin nasıl sınırlandırıldığını ve adlandırıldığını daha iyi anlayabilmek için aşağıdaki örnek yararlı olabilir. Dutun Latince adı Morus’tur. Ama bu bitkinin birçok türü vardır. Bu türleri birbirinden ayırt etmek için, meyvelerinin rengini belirten Latince sözcükler de bitkinin bilimsel adına eklenmiştir. Örneğin beyaz dutun bilimsel adı Morus alba, kara dutunki Morus nigra, mor dutunki de Morus rubra’dır. Çünkü Latince alba, nigra ve rubra sözcükleri sırasıyla beyaz, kara ve morumsu kırmızı anlamına gelir. Bütün bu bitkiler Morus cinsinin bireyleri, yani türleridir. Aralarında büyük bir benzerlik olduğu için hepsi aynı cins içinde sınıflandırılmış, ama ağacın boyu, yaprakların biçimi, meyvelerin rengi ve tadı değiştiği için ayrı birer tür olarak kabul edilmişlerdir. Öte yandan dut, incir ve ekmekağacının birçok ortak özelliği olduğu için, hepsi aynı ailenin üyeleri sayılarak dutgiller (Moraceae) familyası, yani ailesi içinde toplanmıştır. Böylece, birbirine benzer özellikleri olan bütün akraba cinsler aynı aile içinde sınıflandırılır. Örneğin buğdaygiller familyası buğday, arpa, çavdar gibi tahılları ve bazı otsu bitkileri, baklagiller familyası da bakla, bezelye, fasulye, nohut, mercimek gibi tohumu yenen sebze bitkilerini, yonca, fiğ, burçak gibi yem bitkile­rini ve yerfıstığı, soyafasulyesi gibi yağlı tohumlu bitkileri içeren çok kalabalık ve değerli bitki aileleridir.

http://www.biyologlar.com/bitki-nedir

İSTİRİDYE BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Aynur LÖK - Ege Üniversitesi Su Ürünleri Fakültesi, Yetiştiricilik Bölümü Bornova-izmir Mollusca bireylerinin tüketimi insanoğlunun tarihi ile yakından ilgilidir. Bugün arkeolojik verilerden de anlaşılacağı gibi, deniz kıyısında yerleşim alanları oluşturmuş insanların balık avlamadan önce bu sabit canlıları tükettikleri bilinmektedir. Mağaralarda çok miktarda yenmiş midye ve istridye kabukları bulunmuş; ve bunların bir kısmından kolye yapılmışlardır. Doğal ortamlardan toplanarak tüketim ilk günden bu güne kadar gelmektedir. İlk kültür çalışmaları 17. yüzyılda Japonlar tarafından ele alınmıştır. Bambu kamışları dikerek istridyelerin bunların üzerine tutunmasını sağlayarak yetiştirmişlerdir. Yine bambu kamışlarından sal yaparak denizde sadece dikey değil yatay olarak da yetiştiriciliği başlatmışlardır. Bu dönemde yavruların çoğu doğadan toplanmaktadır. İnsan kontrolü altında ilk yavru üretimi 1879 yılında ele alınmıştır. 1920’de ise kültüre alınacak boya kadar yetiştirilmişlerdir. Bugün birçok ülke yarı kontrollü olarak dipte, kazıklarda, halatlarda, rafta ve sallarda yetiştiricilik yaparken, tam kontrollü olarak yumurtadan pazar boyuna kadar istiridye üretimini de başarılı bir şekilde yapmaktadırlar. Istiridye yetiştiriciliğinde söz sahibi olan ülkelerin birkaçını ve yetiştirdikleri türleri sıralayacak olursak şöyledir; Japonya Crassostrea gigas Fransa Ostrea edulis, Crassostrea angulata, C. gigas Amerika Crassostrea virginica Portekiz Crassostrea angulata Filipinler Crassostrea eradelis Avustralya Crassostrea commercialis Ingiltere Ostrea edulis İnsan gıdası olarak yararlanılan kabuklu su canlıları görüldüğü gibi dış ülkelerde önemli bir yer tutmaktadır. Ülkemizde ise kabuklu deniz canlılarının tüketimi sadece deniz kıyısı olan bölgelerde yaygındır. Kıyı harici şehirlerimizde bu kabuklu canlıların pazarlandığını görmek sanırız pek mümkün değildir. Bu kabuklu su canlıları son yıllarda ülkemizde tanınmaya başlanmıştır. Ülkemizde tüketiminin pek fazla olmamasına rağmen dış talebin yüksek olaması nedeni ile bazı ihracatçılar bu canlıları doğadan toplatarak Italya, Ispanya, Yunanistan gibi ülkelere pazarlanmaktadır(Alpbaz, 1993). İstridyenin Sistematikdeki Yeri Phylum: Mollusca Classis: Bivalvia (Lamelibranchiata) Ordo: Filibranchiata Familia: Ostreidae Genus: Ostrea (Linne, 1758) Species : Ostrea edulis (Linne) Ostrea lurida (Carpenter) Ostrea angasi (Sowerby) Ostrea chilensis (Philippi) Genus: Crassostrea (Sacco, 1897) Species: Crassostrea gigas (Thunberg) Crassostrea virginica (Glein) Crassostrea angulata (Lamarck) Crassostrea rhizophorae (Guilding) Crassostrea madrasensis (Preston) Ülkemiz sularını temsil eden tek tür Ostrea edulis’tir. Marmara Denizi, Ege Denizi, Akdeniz ve Karadeniz’in Istanbul Boğazı ile birleştiği noktada görülmektedir. -Genus: Crassostrea (Sacco, 1897) Olgun istiridyelerde kabuklar karınlı ve uzundur. CaCo3’ın depolanması nedeniyle kabuklar yapraksı görünümdedir, ve sol kapağın karınlı alanı içerideki canlının gelişmesine imkan verir. Sağ kapakçık tamamen düzdür. C. gigas’ta süslü yapıda kapak mevcuttur. Ovipardırlar ve büyük üreme kabiliyetine sahiptirler. Intertidal zonda yaşarlar. Tuzluluk değişimlerine dayanıklı olduklarından acı sularda kolonize olabilirler. C. gigas Pasifik Okyanusu kökenlidir. Ayrıca S.S.C.B.’nin Vladivostok Denizi’nde, Sacolin Adası’nda, Japonya’da lokal 2 ırkı vardır. Iwata bölgesinde, Hiroşima’da, Kore’de, Kuzey Amerika’da (Alaska’dan, Kalifornya’ya kadar) yayılım gösterir(Korringa, 1976a). Bazı araştırıcılar C. gigas ve C. angulata’nın aynı tür olduğunu belirtirler. Portekiz türünün C. gigas’tan türediğini, 15-17. yüzyıla kadar ticaret seferleri yapan tahta gemilere yapışarak Avrupa’ya gelip yerleştiklerini söylemektedirler. Bununla birlikte bu iki türün farklı özellikler gösterdiği belirlenmiştir. Bunlar; solunum metabolizması, küçük zerrecikleri tutma özelliği, büyüme kabiliyeti, üreme şekilleri, farklı hastalıklar karşısındaki durum fizyolojik olarak her iki ırkın az da olsa farklılık gösterdiği tespit edilmiştir. -Genus: Ostrea (Linne, 1758) Kabuk oval şekilli olup, belirsiz kanca burunlu (gagalı), yaprak şeklinde, sarımsı kahverengi renge sahiptir. Sol kabuk hafif küp, sağ kabuk yassı görünümdedir. En önemli türü O.edulis olup max. 12cm, genellikle 6-7cm uzunluğunda olurlar. Yetişkin türlerde bireyin şekli yuvarlaktır. Sınırlı bir üreme vardır ve larvipardır. Tuzlu sularda yaşayıp bulanıklılığa karşı toleransı azdır. Doğal ve kültür yatakları daima denizin içerisinde olmalıdır(Infralittoral zon). Bu daha çok Kuzey Avrupa türü olup Norveç’ten Fransa’ya kadar (Ingiltere, Almanya, Hollanda, Irlanda ve diğer ülkeler) uzanır. Daha güneyde Ispanya kıyıları ile Fas’ın güney ucuna kadar yayılmışlardır(Korringa, 1976b). Akdeniz’de Fransa, Italya, Sicilya’dan Karadeniz’e kadar uzanır. Ülkemizde sahil ötesi kumlu, çamurlu veya kayalık bölgelerde yaşarlar. 2-İSTRİDYENİN BİYOLOJİSİ Morfolojik olarak Ostrea edulis dairesel şekilli iki kabuktan meydana gelmiştir.Her iki kabuk dorsal kenarlarından boynuza benzeyen ligamentlerle birbirine bağlanmıştır. Ligamentin esnekliği kabukların açık durmasını sağlar. Bu, hasta yada ölü istridyenin karakteristik bir özelliğidir. Açılmış kabukların canlılığı herbiri ayrı fonksiyona sahip olan iki kısma ayrılmış adductor kası tarafından kontrol edilir. Adduktor kası merkezdedir ve her iki kabuğa sıkıca yapışmış durumdadır. Vücut kısmı addüktör kası ile mafsal arasında uzanır. Kalp, bağırsak, böbrek, mide bu bölümdedir. Gonadlar da buradadır. Üreme zamanında gonadlar tüm yüzeyi kaplayarak krem beyaz görünüm alırlar. Manto, vücut kısmının her iki yanını kaplayan düz bir dokudur ve kabuk kenarı boyunca sabit olarak uzanır. Manto kenarlarında bulunan materyalin ilavesi sonucu kenar kısmında kabuk oldukça gelişmiştir. İstridye kabuklarının %95’den fazlası kalsiyum karbonattır. Manto vücudun iki yanında kabukla vücut arasında bir örtü gibi bağ dokuya asılıdır. Bu nedenle bir ada gibidir. Mantonu uçları üç yaprak şeklindedir. Bunlardan iki sıra kabuk üretiminde görev alırlar, içteki ve en geniş olanı vücut ile kabuk arasında perde görevi yapar. Mantonun öbür ucundaki yapraklar ayrı ayrı veya birlikte hareket ederek suyun manto içine akışını kontrol eder, bu durumda kabuklar yuva gibidir. Manto bölgesine giriş manto uçlarının birleşmesi ile sınırlandırılır. Küçük organizmaların girmesine ve suyun atılmasına olanak verir. İstiridye solungaçları vücudun 2/3’ünü sarar. Belli aralıklar ile birbirine bağlanmış küçük filamentlerden oluşur. Su, manto boşluğundaki su alma bölümünden filamentler üzerinde bulunan kırbaç biçimindeki sayısız sillerin hareketi ile su tüplerine hareket eder. Bunlar sadece suyun hareketini sağlamaz, aynı zamanda istiridyenin besinin oluşturan küçük parçaları da sudan filtre eder. Bu süzülen su, solungaç tüplerine geçer ve oradan su verme bölümüne, en sonunda manto boşluğundan dışarı atılır. Solungaçlar dört adet yarı ay şeklinde tabakalardan ibarettir. Manto uçlarının birleşmesi, manto kısmını manto odası ve solungaçları içeren geniş bir oda küçük bir boşaltım odası olmak üzere ikiye ayırır. Ayrıca bir boşaltım kanalı içerir. Bu manto ile vücudun sağ yanı arasında bulunur ve istiridyelerin özellikle çamurlu ortamda yaşamasına yardımcı olur(Walne, 1974). Solungaçlar basit bir süzgeç mekanizması değildir. Aynı zamanda komplex bir ayırma aygıtı gibi olup, uygun gıdanın yeterli miktarda ayırım ve değerlendirilmesini yapar. Gıdasını teşkil edecekler ağıza, diğerleri atık bölgeye liflerin yardımı ile yollanır. Çok iri olanlar mantonun altına düşürülür (Walne, 1974). Kabuklularda solungaç yapısı birbirlerine benzemesine karşın farklılık filamentlerin bağlantı şeklinde olup, Mytilus edulis’te filamentler arası organik bağlara rastlanmaz. Fakat istiridyelerde bu olay yukarıda görüldüğü gibi bulunmaktadır. Örneğin akivadeslerde bu filament bağlantılarının derecesi istiridyelerde bulunanlardan çok daha yüksektir. İstiridyenin sağ kabuğu düzdür ve larva metamorfoza ulaştığında kendini sol kabuk üzerinde zemine tespit eder. Uygun koşullarda istiridyeler bütün gün boyunca kabuklarını açıp su içerisindeki planktonları ve zerrecikler halindeki organik maddeleri, hatta su içerisindeki mineraller maddeleri bile süzerek gıda olarak kullanırlar(Claus, 1981). Böylece su içerisindeki organik maddeleri ete çeviren canlılar olarak önem kazanırlar. Su akımının esas rolü şüphesiz ki beslenme üzerinedir. Fakat bunun yanında su, sindirim sisteminde ve böbreklerde oluşan atıkları uzaklaştırmaya yarar ve ayrıca canlıya O2 sağlar. İstiridyelerin filtrasyon hızını sıcaklık, suyun debisi ve partikül konsantrasyonu etki eder. 3-İSTİRİDYELERDE ÜREME İstridyeler eşeyli üreme gösterirler. Üreme organları erkek ve dişi gametleri oluşturur. Bunların üreme mevsimi ilkbahar sonu ile sonbahar arasında olup havaların ısınmasıyla başlar, soğumaya başlaması ile sona erer. Her iki seksdeki gonadlar birçok hayvanda bulunan ile karşılaştırıldığında basit yapıdadır. Sindirim sistemi üzerinde yerleşmiş durumdadır. Avrupa istiridyesi, Ostrea edulis, olgun durumda iken gonadlar 2 veya 3mm kalınlığında bir tabaka biçimindedir. Seksler arasındaki farklılık yumurta ve sperm varlığından hariç dış görünüşten belli olamaz. 3.1 İstiridyelerin Gonad Gelişim Safhaları İstiridyelerin gonad safhalarını belirlemek için alınan histolojik örneklerde gonad aşamaları beş grup altında değerlendirilmektedir(Cole 1942; Brausseau, 1995; Garcia-Dominguez ve ark., 1996, Yolkolu, 2000). Bu gruplar: Safha 0 Dinlenme Safha 1 Ilk Gametogenesis Safha 2 Olgunlaşmaya başlama Safha 3 Döl atımına hazır Safha 4 Kısmı olarak döl atımı olarak sınıflandırılır. 3.1.1 Dinlenme safhası Bu safhada olan bireylerde istiridyelerin cinsiyetinin belirlenmesi açısından histolojik olarak herhangi bir ip ucu yoktur. Ortamda cinsiyeti belirleyici olan germ(cinsiyet) hücreleri bulunmamaktadır. 3.1.1.1 Testis Safha 1: Ilk gametogenesis safhasındadır. Bu özellikte olan örneklerde foliküler küçüktür, yuvarlak veya oval şekillidir. Bağ dokusunun kapladığı alan geniştir. Spermatagonialar bir arada ve koyu renklidir. Safha 2:Foliküller oldukça büyümüştür. Bağ dokusunun kapladığı alan iyice azalmıştır. Spermatozoalar merkeze doğru yönelmiştir ve kırmızı şeritler halinde kuyruklar belirgindir. Safha 3: Istiridyelerin döl atımına hazır olduğu safhadır. Foliküller şişip birleşmiş ve çoğunluğu tamamen spermatazoa ile doludur ve kuyrukları kırmızı renktedir ve açıkca belirgindir. Maturasyon ile incelmeye başlamış olan folikül duvarlarının iç kısmına doğru spermatositler ve spermatidler sıralandırılmışlardır. Serbest spermatazoalar follikül lümellerine tamamen yerleşmişlerdir. Çok sayıda hareketli spermatazoa görülmektedir. Bağ dokusu alanı azalmıştır. Safha 4:Foliküller tamamen boşalmış ve dinlenme safhasına geçilmiştir. Bu da ortamda inaktif olan spermatagoniumlardan anlaşılmaktadır. Foliküller arası bağ dokusu iyice gelişmiştir. 3.1.1.2 Ovaryum Safha 1: Foliküller başlangıçta küçük, boş ve belirgin değildir. Folikül duvarları, gelişen oositler ve kök hücreleri ile belirginleşmiştir. Oogonia ve primer oositler küçüktür ve yumurta sarısı yoktur. Bu aşamadaki primer oositlerin çekirdeği büyüktür ve belirgindir. Sık demetler şeklinde folikül duvarına doğru yapışma olmaktadır. Oogenesis ilerlemektedir. Birkaç büyük oositin uzamaya başlaması ile genç oositler bölünmektedir. Safha 2: Oositler, lumenlere doğru genişlemiş ve yığılmaya başlamıştır. Sekonder oositler yoğun miktarda görülmektedir. Primer oosit ve serbest oosit birkaç tanedir. Bu serbest oositler, lümel merkezinde görülmektedir. Hala folikül duvarları ile bağlantılı olan uzamış oositler ile hemen hemen olgunlaşmış olan oositler yoğun olarak bulunmaktadır. Oositler konik ve oval şekildedirler. Bağ dokusunun alanı iyice azalmıştır. Safha 3: Birleşmiş foliküller, bir çekirdekçiği ve çekirdeğinin gözüktüğü polygonal şekilli, tamamen serbest olan oositler ile doludur. Sekonder oosit bir kaç tanedir. Safha 4: Oositler olgunlaşmış atıma hazır hale gelmişlerdir. Bağ dokusu tekrar belirginleşmeye başlamıştır. Ayrıca oositlerin şekli hekzogenal hale gelmiştir. Bazı boşalmış ve yıkıma uğramış foliküller bulunmaktadır. Avrupa istiridyesi, Ostrea edulis sukseksif hermafroditizm gösterir. Seksüel olgunluğa ilk ulaştığı zaman gonad normal olarak bir erkek gibi gelişir ve sperm verir. Gonad spermi bıraktıktan sonra dişi safhasına geçer ve sperm yerine yumurta üretir. Bu düzenli bir şekilde tüm yaşamı boyunca devam eder. Erkek tarafından dışarı bırakılan spermalar dişi tarafından su alma kanalı ile alınarak yumurtalar dişinin içinde döllenir. Döllenmiş yumurtalar 8-10 gün kadar dişinin palial boşluğunda kuluçkalandıktan sonra dışarıya serbest yüzen veliger larva durumunda bırakılırlar(Alpbaz ve Hindioğlu, 1991). Avrupa istiridyesinin döl verimi üzerine sıcaklığın, besinin, büyüklüğün ve yaşın etkisi büyüktür Avrupa istiridyesinin larva boyu 150-190µm büyüklüktedir. 120-130µm büyüklükte larvalar görülse de, yetiştiricilikte büyük larvalar alınır. Küçük larvalar elenir. Böylece daha dayanıklı ve sağlıklı bireyler elde edilebilir. Suya bırakılan veliger larvaları velumları sayesinde hareket ederler. Besin olarak fitoplanton tüketirler. 10-15 gün pelajikte yaşamlarını sürdüren larvalar 290-300µm ve bazen de 360µm büyüklükte iken zemine inerek, hayatlarının geri kalan kısmını sürdürecekleri sert bir substratuma kendilerini tespit ederler. Larvanın kuru ağırlığı hareketli dönemi boyunca 1µg’dan 4µg’a çıkar. Bunun %75-80’i kabuk ağırlığıdır. Yeni bırakılmış bir larvanın kuru ağırlığının %14’ü glikojen, %15,5-22,5’i yağdır. Crassostrea genusuna ait istiridyeler ise 100 milyonun üzerinde yumurta dökebilmektedirler. Bu yumurtaların hepsi aynı zamanda değil, üreme dönemi boyunca bırakılırlar. Crassostrea gigas’da ise dişi birey yumurtalarını deniz suyuna bırakır ve erkek bireyin bıraktığı spermalar ile su içinde döllenme olur. Yumurtalar yaklaşık 50µm büyüklükte olup çok küçüktürler. Yumurtalar ovaryumda iken armut şeklindedir. Ovaryumdan bırakılıp su ortamında döllendikten sonra spiral şekil alır. Birinci ve ikinci polar vücut görünerek yarılma devam eder. Gelişme, morula, blastula ve gastrula safhalarına doğru ilerler. Veliger safhada larvanın velumu ortaya çıkar ve aktif hareket etmeye başlar. Daha sonra D şekilli larvaya dönüşür. Larvada umbo oluştuğunda umbo safhasındadır ve kabuk uzunluğu 0,2mm’ye ulaştığında metamorfoz başlar(Bardach ve ark., 1972). Larva metamorfoz aşamasına geldiğinde anacına benzer bir hal alır. Her iki genusda da benzer belirti olan göz noktası ve ayağın görülmesi metamorfozun en önemli işaretidir. Zemine inen larvada velum kaybolur ve yüzme hareketi ayak ile sürünme hareketine dönüşür. Uygun substrat bulduğunda kendini sol kabuğundan salgıladığı özel bir salgı ile oraya yapıştırarak sesil hayatı başlamış olur. Hareket kabiliyeti artık bitmiştir. 4-İSTİRİDYE YETİŞTİRİCİLİĞİ İstiridye kültüründe yavru bireyler ya kuluçkahanelerde üretilerek ya da doğal alanlardan toplanarak elde edilmektedir. Kuluçkahaneden yavru üretimi gerçekleştirilirse, genetik seleksiyonlar yapılarak hızlı büyüyen, zor şartlara karşı dayanıklı, et verimi fazla, hastalıklara karşı dayanıklı bireylerin elde edilmesi söz konusu olabilmektedir(Rodriguez ve Frias, 1992). Doğal ortamdan toplanan yavrularda ise böyle bir seleksiyon şansı yoktur. 4.1. Kuluçkahaneden Yavru Temini Bu kültür yönteminde kıyısal alanda bir kuçkahane binasının olması gerekmektedir. Bir istiridye kuluçkahanesinde filtre odası, fitoplankton üretim birimi, anaç, larva ve yavru üretim birimi olmalıdır. 4.1.1. Deniz Suyu İstiridye kültüründe suyun filtrasyonu önemli bir konudur. Anaç ve yavru biriminde kullanılan suyun 40-60µm’lik kum filtrelerinden geçmesi yeterli olurken, fitoplankton ve larva üretiminde kullanılacak suyun 20, 10, 5, 1µm’lik kartuj filtrelerinden geçerek partiküllerden ve suda bulunabilecek diğer organizmalardan ayrılması gerekmektedir. Bazı üreticiler deniz suyu ile gelebilecek bazı organizmaların istiridye larvaları tarafından besin olarak değerlendirilebileceğini düşünerek kaba bir filtrasyon yapmaktadırlar. Fakat üretimi riske atmamak için iyi bir filtrasyon ve sterilizasyon önemlidir. Suyun iyi filtre edilmiş olması U.V. ışınları ile yapılacak sterilizasyon etkisini arttırmaktadır. 4.2. Anaç Özellikleri Genellikle istiridye anaçları üretim zamanında doğal stok alanlarından döl almak amacıyla kuluçkahaneye getirilir ve döl alma işlemi tamamlandıktan sonra tekrar denize bırakılırlar. Bu anaçlar hızlı büyüyen, zor şartlara karşı dayanıklı, et oluşturma kapasitesi yüksek, düzgün kabuk şekilli gibi özelliklere sahip istiridye stoklarından seçilmasi tercih edilir. 4.2.1. Anaç istiridyelerden döl alım yöntemleri Olgun istiridyelerden yumurta ve larva elde etmek için birkaç yöntem vardır. İstiridyenin yumurta ve larvalarını ortama normal olarak kendi isteği ile bırakması haricinde yumurtlamayı uyarıcı şok yöntemler de uygulanır. Bu şok yöntemler şöyledir; Termik şok: Şok yöntemlerin en çok kullanılanıdır. Olgun istiridyelerin ani olarak sıcak sudan soğuk suya, soğuk sudan sıcak suya bırakılması ile olur (Field, 1922). Bu işlem birkaç defa tekrarlanır ve istiridyenin larva bırakması beklenir. Kimyasal şok: İstiridyelerin manto boşluğuna 2cc, 0.5 mollük KCL solüsyonu enjekte etmek sureti ile yapılmaktadır. (Bayne; 1965) Elektrik şok: İstiridyelere düşük voltta elektrik verilmek sureti ile uygulanır (Iwata, 1950; Sugiura, 1962). Mekanik şok: İstiridyelerin adduktor kasına enjektör iğnesi ile dokunularak uyarı yapılmaktadır (Loosanoff ve Davis, 1963). Diğer Yöntemler Diseksiyon yöntemi Olgun İstiridyelerin kapama kasları kesilerek gonadlardaki yumurta veya spermler C.gigas’ta alınırken, O. edulis’te palial boşluktaki larvalar alınabilir. Sperm solusyonu Yumurtlamayı uyarmak için suya sperm solüsyonu verildiğinde de istiridyeler bir süre sonra yumurta bırakmış olur. Bu amaçla şok uygulamalar sonrasında elde edilecek fazla sperm solusyonu kullanılabilir. Şok yönetemlerin uygulanmasından yaklaşık 30dk sonra istiridyeler döllerini su ortamına dökerler. Eğer istiridyeler döllerini bırakmaya hazır değiller ise şok yöntemler ile başarılı bir sonuç elde edilemez. İstiridyeler bilindiği gibi yaz aylarını üreme için kullanılır. Kışın ise doğada üreme görülmez. Laboratuvarda uygun koşullar yaratılarak kış aylarında da istiridye üretimi yapılabilir. Bunun için doğal ortamdan alınan istiridyeler 10°C sıcaklıktaki suya bırakılırlar. Ortama alışan damızlıkların tutulduğu havuzdaki su sıcaklığı tedrici olarak 18°C’ye veya biraz daha yüksek sıcaklığa çıkartılır. Bu sıcaklıkta istiridyeler 2-4 hafta tutulur. Bu süre üretim mevsimine bağlı olarak değişir. İstiridyeler bu süre içerisinde gonadlarını olgunlaştırırlar ve sıcaklık 20°C’ye ulaştığında döllerini dökerler. Bu işleme gonad olgunlaştırarak döllerin alınması işlemi denilir. Burada kullanılan anaçlar genellikle genetik olarak istenilen özelliklere sahip özel anaçlardır. 4.3. Larva Kültürü Yumurta veya larvalar anaç biriminde elde edildikten sonra larva birimine alınırlar. Burada 50lt’den 2tona kadar silindir-konik polyester tanklar kullanılabilmektedir. Tank hacmi üretim kapasitesine ve üreticinin tercihine bağlı olarak değişir. Bu tankların alt kısmında bir su çıkış vanası olur. Tanklar 40watt’lık floresan lambalar altına yerleştirilir. Tuzluluğu ‰33-35 ve sıcaklığı 20-22 °C olan iyi filtre edilip sterilize edilmiş deniz suyu doldurulur. Bu tanklara başlangıçta veliger larvaları 10 adet/ml’yi geçmeyecek şekilde stoklanır. Larvalar büyüdükçe stoklama yoğunluğu 3-5adet/ml’ye indirilir. Tankların temizliği gün aşırı yapılır. Tank suyu tamamen süzülerek larvalar yıkanır ve temiz su ile doldurulmuş yeni tanka aktarılırlar. Bu temizlik işlemi larva kültür boyunca devam eder. Veliger safhasında 170-190µm büyüklükte olan larvalar metamorfoza yakın gözlenmiş safhada iken 240-350µm boya ulaşırlar. 4.3.1 Fitoplankton Üretimi Kuluçkahanede bulunan anaç, larva ve yavru istiridyelerin besinleri bu birimde üretilerek temin edilir. Larva beslemede açıklanan Wells-glancy veya Milford yöntemine göre kültür gerçekleştirilmektedir 4.3.1.1 Wells-glancy yöntemi Wells-glancy yönteminde deniz suyu sadece kum filtresinden geçirilir ve sera ortamındaki büyük hacimli tanklara(20-30 tonluk) gönderilir. Tanklara deniz suyu ile gelen fitoplankton hücrelerinin artmasına izin verecek nutriyent karışımı verilir. Bu tank suyu 5-6 gün içinde kahverengi veya yeşil renk aldığında doğrudan larva tanklarında besleme amaçlı kullanılır. Bu yöntemin dezavantajı deniz suyu iyi filtre edilmediği için zararlı fitoplanktonlar türleri de kısa sürede çoğalarak istiridye larvalarına zarar verebilir. Suyla birlikte gelen zooplanktonlar hem larvalara predatör olarak zarar verdiği gibi bazıları da ortamda çoğalan besine ortak olur. Deniz suyu sterilize edilmediği için hastalıklara neden olabilecek mikroorganizma bulaşması da söz konusu olabilir. Böyle bir kültür yönteminde larva yetiştirciliği riske atılmış olmaktadır. Bu yönteme dayalı yapılan fitoplankton kültürü daha çok yavru veya anaç beslemede kullanılabilir. Wells-glancy yöntemi fitoplankton üretim masrafını çok azalttığı için tercih edilmektedir(Bardach ve ark., 1972). 4.3.1.2. Milford yöntemi Milford yönteminde ise alg hücreleri tek tek ayrı tüplerde ve saf kültür olarak inkübatörde muhafaza edilir. Larva kültürüne başlamadan önce bu hücreler steril şartlar altında arttırılmaya başlar. Kültür suyu 0.45µm göz açıklığındaki Milipore filtreden süzüldükten sonra otoklavda sterilize edilir. Kültür hacmi 6lt’yi geçtiğinde suyun filtrasyonu 1µm’lik kartuj filtrelerde, sterilizaysonu ise U.V. lambalarından yararlanarak yapılır. Böylece larva beslemede istenilen hücrelerin kültürü ayrı tanklarda yapılmış olur. Kültür biriminin iyi bir fitoplankton artışı sağlanması için 18-22°C arasında olması sağlanır. Şeffaf polyester tanklar veya naylon torbalarda(50-500lt hacimli) kültür gerçekleştirilir(Bardach ve ark., 1972). 4.3.2 Larva Besleme Milford yöntemine göre kültüre alınan fitoplankton hücrelerinden larvalara ilk olarak Isochrysis galbana ve Monochrysis lutheri besin olarak verilir. Larvalar büyüdükçe Tetraselmis suecica, Dunaliella tertiolecta, Chaetoceras calcitrans gibi besinler kullanılmaktadır. Genellikle tek tür beslemesinden ziyade karışık türler ile besleme iyi sonuç vermektedir. Isochrysis galbana, Monochrysis lutheri 100 000 hücre/ml, Tetraselmis suecica, Dunaliella tertiolecta 50 000-80 000 hücre/ml larva tankında olacak şekilde besleme yapılır. Karışık besleme başlangıçta %50 Monochrysis lutheri ve %50 Isochrysis galbana, larva metamorfoza yaklaştığında ise %20-30 Tetraselmis suecica ile karışık besleme yapılır. Beslemede kullanılacak fitoplankton hücrelerinin canlı olmasına dikkat edilir. Bu nedenle logaritmik artış fazında iken fitoplankton hasat edilerek larvalara verilir. Chlorella sp., ve Phaedactylun tricornutum besleyici değeri düşükolduğu için kullanılması tercih edilmez. Ayrıca Chlorella sp kalın hücre duvarına sahip olmaları nedeniyle larvalar tarafından sindirilememekte ve metabolik artıkları istiridye larvaları için toksik etkiye neden olmaktadır. Bu sebeplerden dolayı kabuklu larva kültüründe besin olarak kullanılmazlar(De Pauw, 1981). Son yıllarda kurutulmuş alg tozlarının kullanılması ile kuluçkahaneler fitoplankton üretim birimlerini küçültmüşler veya tamamen kaldırmışlardır. İhtiyaç duydukları kadar toz fitoplanktonu satın alarak larva beslemede kullanmaktadırlar(De Pauw, 1981). Metamorfoz Larva kültüründe metamorfoz dönemi en önemli dönemlerden biridir. Larvaların günlük sayımları ve ölçümleri alınırken göz ve ayak noktasının oluşumu çok iyi takip edilmelidir. Bu dönemde larvalar zemine iner ve kendilerine uygun gördüklere yerlere yapışırlar. Larva kontrolü iyi yapılmadığı taktirde larvalar tank çeperlerine yapışırlar ve buralardan çıkarılmaları çok zor olur. Böylece bir larva üretim dönemi başarısızlıkla bitmiş olur. Metamorfoz aşamasına gelen larvalar ya ayrı tanlara alınırlar ya da bulundukları tanklar içersine yapışma işlemi başlamadan önce çeşitli kollektör malzemeleri bırakılarak larvaların bunların üzerine yapışması sağlanır. Burada kullanılan kollektör malzemesi larvanın en çok tercih ettiği materyal olan istiridye kabuklarıdır. Bir ip üzerine 3-4 cm aralıklar ile dizilen istiridye kabukları larva tanklarının içerisine tank dibine değecek boyda hazırlanarak sık bir sekilde tank yüzeyinden aşağı doğru sarkıtılırlar. 3-5 gün içinde larvalar bu kabuklar üzerine tutunarak metamorfozlarını tamamlamış olurlar. Bu yeni tutunmuş istiridye yavrularına “spat” adı verilir. Yeni tutunmuş bir spat 1,2-5,7mg canlı ağırlığa sahiptir. Bu spatlar 10-11 hafta sonra 220-500mg canlı ağırlığa ulaşır. Yavrular kollektörler vasıtası ile yetiştirme alanlarına taşınarak uygun sistemlerde büyümeye alınırlar(Utting, 1988). Eğer spatlar tek tek herhangi bir yüzeye yapışık istenmiyorsa, metamorfoz aşamasında iken su sikülasyonunun olduğu spat tanklarına alınırlar. Bu tanklar. 50cm genişliğinde, 30cm derinliğinde olup 2m uzunluğundadır. Tankların içine derinliği 10-15cm olan altı plankton bezi ile çevrelenmiş tepsiler tabanları dibe değmeyecek şekilde yerleştirilir. Tanka su girişi herbir tepsinin üstünden olurken su çıkışı ana tankın sifon çıkışından olmaktadır. Başlangıçta tepsilerin plankton bezi büyüklüğü 150µm’dir. Bu sistemin esas özelliği larvalar bu tepsilere yerleştirilmeden önce kum haline getirilmiş istiridye ve midye kabuklarının tepsi tabanındaki plankton bezini örtecek şekilde yayılmasıdır. Plankton bezi başlangıç boyunun larva boyuna göre çok küçük olmasının nedeni de bu kabukların tepsiden akıp gitmesini engellemek içindir. Kabuk tozu serpilen tepsilere larvalar bırakılır ve 3-5 gün içinde larvalar bu kabuk tozlarına yapışırlar. Zaman içinde spat istiridyeler büyüdükçe kabuk tozları görünmez, spatlar gözle rahatlıkla görünür hale gelirler. Spat büyüklüğüne paralel olarak tepsinin plankton bezi göz açıklığı arttırılır. Spatların 2-3mm boya kadar bu sistemlerde kalabilmektedir. Bu aşamada verilen deniz suyu sadece kaba filtreden geçmektedir ve besin olarak da diatom ağırlıklı besleme yapılmaktadır. Kuluçkahanelerde yapılan larva çalışmaları sırasında metamorfoz aşamasına yaklaşan istiridye larvalarının tutunmasını uyarmak ve hızlandırmak için bazı neuroaktif bileşikler kullanılmaktadır (Shau-Hwaitan ve Wong, 1995). Bazı araştırıcılar bu amaçla sıcaklığı arttırırken bazıları da tank suyuna kabuklu glikojeni, potasyum klorür veya bakır klorür solusyonu kullanırlar(Nell ve Holliday, 1986).. Bu bileşikler larvalarda göz noktası ve ayak oluştuktan sonra kullanılarak larvaların hemen hepsinin aynı anda metamorfozu tamamlaması sağlanmış olur. Kuluçkahanede 3-4mm boya ulaşana kadar spat istiridyeler tuttulur. Bu aşamadan sonra deniz alanında hazırlanmış olan uygun sistemlere taşınarak yetiştiriciliğe devam edilir. 4.4. Doğal Ortamdan Yavru Temini İstiridyelerin yavruları doğal ortamdan ya dreçler ile avlanarak toplanırlar ya da istiridye yataklarının olduğu alanlara üreme dönemlerinde bırakılan çeşitli malzemelerden hazırlanmış kollektörler ile toplanırlar. İstiridyeler biyolojik yapılarından dolayı tutunmak için özellikle kendi anaç kabuklarına benzer materyalleri tercih etmektedirler. Eğer ortamda kabuk yoksa, spatlar buldukları sert substrata kendini yapıştırırlar(Pascual ve Zampatti 1995). Birçok ülkede, yarı kontrollü yetiştiricilik çalışmalarında, spat istiridyelerin toplanmasında, geleneksel yöntemlerin yanında geliştirilmiş yeni malzemelerden hazırlanan kollektörler de kullanılmaktadır. 4.4.1 Kollektör Tipleri Spat toplamada kullanılacak kollektör tipi önemlidir. Şimdiye kadar birçok materyal ve dizayn kullanılmıştır. Fakat bunlardan hiçbiri için her yerde ve her tür için çok iyi sonuç veren sistem denilemez. Bir tür için iyi olan kollektör diğer bir tür için arzu edilen sonucu vermeyebilir(Bardach ve ark., 1972). Uzak doğuda mangrov (Rhizophora sp., Avicennia sp.) bitkilerinin kökleri ile başlayan spat toplama işlemi günümüzde kiremit, çeşitli mollusk kabukları(midye, istiridye, tarak gibi), ahşap, PVC, metal materyallerin kullanımına kadar uzanmaktadır. (Burrell, 1980; Heral, 1990). 4.4.1.1 Kabuk kollektörler Japonya’dan Amerika’ya kadar çok yaygın bir kullanım alanına sahiptir. Bir ucu sivri olan özel çekiçlerle delinen kabuklar, 2 m. uzunluğundaki galvaniz tele dizilmektedir. Teldeki kabuk sayısı 80 ila 100 arasında değişmektedir. Kabuklar arasında mesafe bırakabilmek için önceleri bambu kamışlar kullanılmaktaydı, ancak maliyet ve geri dönüşüm açısından daha karlı olan plastik tüpler son yıllarda tercih edilmektedir. Kabukların bol olduğu bölgelerde ise herhangi bir mesafe bırakmadan ip veya galveniz tel üzerine üst üste gelecek şekilde kabuklar dizilerek kollektörler hazırlanmaktadır (Korringa, 1976a-b; Haven ve ark., 1987; Mann ve ark., 1990). Fransa’da Ostrea edulis spatlarının toplanmasında kabuk kollektörler içerisinde en iyi sonucu midye kabukları vermektedir. Bu kabuklar ince uzun ağ fileler içerisine yerleştirilmekte ve daha önceden hazırlanmış olan metal çerçeveler üzerine bağlanarak deniz tabanına bırakılmaktadır. Bunlar daha çok gel-git’in olmadığı derin sulara yerleştirmektedir (Heral, 1990). Hazırlanan tüm kabuk kollektör çeşitleri raf veya sallardan sarkıtılarak denize bırakılırlar. Bir çok kuluçkahanede, çeşitli kabuklular kırılıp toz haline getirildikten sonra metamorfoz aşamasına gelmiş larvaların yerleştirildiği tavaların tabanına serilmekte ve larvaların bu kabuk tozlarına tutunması sağlanmaktadır. Bu istiridye yavrularının tek tek elde edilmesi amacıyla da avantajlı bir yöntemdir. Bu şekilde elde edilen spat istiridyeler torbalara yerleştirilip kültür sistemlerine yerleştirlmektedir(Pascual ve Zampatti, 1995). 4.4.2 Kiremitler Kollektör olarak kullanılan kremitler, yaklaşık olarak yarı silindirik şekildedir. 33cm uzunluğunda, 15cm genişliğinde ve ortalama 5cm yüksekliğindedirler. Bu kiremitlerden birinin ortalama ağırlığı 900gr’dır. Kiremitler 10’luk gruplar halinde bir araya getirilirler ve Bouquets olarak adllandırılırlar. Bu onluk grupların oluşturulması için kısa kenarından 7,5cm uzaklıkta iki delik açılmaktadır. 110cm uzunluğunda 1,5mm kalınlığında galvanizli tel ile köşeler kesişecek şekilde birbirine bağlanmaktadır. Daha sonra kirece batırılıp kuruyuncaya kadar bekletilmektedir Kiremit kollektörlerde, kireç solusyonunun kullanılması ile spatlar kiremitler üzerinden rahatlıkla çıkarılmaktadır(Walne, 1974; Korringa, 1976a-b; Heral, 1990). Hollanda’da S-tipi kiremitler istiridye yavrusu toplamak için daha uygun olduğu bildirilmektedir (Dutch Tipi). Burada kullanılan kiremitlerin kuru ağırlıkları 2kg’dır. Ancak deniz suyu içindeki ağırlıkları ortalama 2,5kg. cıvarındadır. 35x23cm boyutlarında ve 13mm kalınlığındadırlar. Bu kiremitler de kreç ile kaplandıktan sonra denize bırakılmaktadırlar (Korringa,1976b). Gerek Crassostrea gerekse Ostrea türleri için gel-git’in olduğu alanlarda yaygın olarak kullanılan kremit kollektörler zemine yerleştirilmektedir. Kollektörlerin bırakılacağı alanlar daha önceden deniz yıldızları ve yengeçlerden temizlenerek kollektör veriminin olumsuz etkilenmesi önlenmiş olur. 4.4.3. Plastik malzemeler Günümüzde geleneksel olarak kullanılan bir çok materyalin yanında kolay şekil verilebilen plastik malzemeler de kullanılmaktadır. Bu malzemelerin maliyeti diğer kollektörlere göre daha yüksek olmasına karşın, tekrar kullanılması nedeni ile tercih edilmektedir. PVC çubuklar, yarı silindir plastik kollektörler, plastik levhalar ve fileler en çok kullanılan plastik materyal tipleridir(Korringa, 1976a-b). Dayanıklı ve hafifitirler., spat hasatı pratiktir. 4.4.4. Bambu kamışı ve ahşap materyaller Özellikle Filipinler’de Crassostrea eradelie için kullanılan bir kollektördür. Hazırlanışı basit olduğu için Filipin’li üreticiler tarafından özellikle tercih edilmektedir. Bu bambu kamışlar 5-10cm çapında ve sağlam olanları tercih edilmektedir. Bambu kamışları kesildikten sonra güneşte kurutulmakta ve eğer kalın bambu kamışları varsa bunlar da ikiye ayrılarak kullanılmaktadır. Daha önceleri bu ülkede istiridye kabukları yaygın olarak kollektör yapımında kullanılmasına karşın, bambu kamışlarının iyi bir spat toplayıcı olmasının belirlenmesinden sonra istiridye kabuklarının kullanımı azalmaya başlamıştır. Kullanılan bu kamışlar intertidal alanlara 0,3-0,7m aralıklar ile yanyana dikilmektedir. Her bir bambu sırası arasında bir küçük tekne gezebilecek kadar mesafe bırakılmaktadır. Bambu kamışlarının sıralar halinde kullanımının dışında kamışların bir araya getirilmesi ile ızgaralar hazırlanmıştır. Hazırlanan bu ızgaralar deniz dibine dik olacak şekilde ve özellikle gel-git alanlarına yerleştirilmektedir (Bardach ve ark., 1972). 4.4.5. Ahşap ızgaralar Avusturalya’da Crassostrea commercialis ‘in spatlarını toplamada tahta ızgaralardan yararlanılır. 2m uzunluğundaki ve 22-25mm2 yüzey alanına sahip olan bu çıtalar belli aralıklar ile kafes şeklinde çakılarak ızgaralar oluşturulur. Bunlar zeminden 1-1,3m yukarıdaki raflara üst üste gelecek şekilde yerleştirilerek tren yoluna benzer uzun hatlar oluşturulur. Her bir sıra arasında tekne girecek kadar mesafe bırakılır(Kesteven, 1941). Pek yaygın olmamakla birlikte, ahşap kaplamalar güneş altında kurutulup spral şekline getirilerek, spat toplama için kullanılmaktadır (Quayle,1969). 4.4.6 Kayrak taşı Kayrak taşı, özellikle Fransa’da kullanılan materyaldir. İnce kare parçalar halinde kesilen taşlar bir çelik tel üzerine araları 4-5cm mesafe ile dizilirler. Tel üzerindeki taş adeti 15 ila 20 adet arasındadır. Bu şekilde hazırlanan kollektörler gel-git etkisinde olan raf sistemlerinin üzerine yerleştirilerek kullanılmaktadır. Bu taşlar aynı zamanda ince uzun dirtdörtgen şeritler halinde de değerlendirilebilmektedir. Hazırlanan dirtdörtgen plakalar aralarında 5-6cm’lik mesafe ile yan yana gelecek şekilde birleştirilirler ve raflar üzerine bırakılırlar(Berthome ve ark., 1984). 4.4.7 Spat toplamada kullanılan diğer malzemeler İngiltere’nin bazı bölgelerinde kullanılan, ince bir beton tabakası ile kaplanmış yumurta kolileri Karasal hayvanların kümesi olarak kullanılan küçük tel kafesler, Seramikten hazırlanmış, çatı kremitlerine benzer yarı silindirik yapılar, Plastik ile kaplanmış tel ızgaralar, Çimentolu alçı taşı, İnce dilimler halinde kesilmiş lastik parçaları çeşitli dizaynlarda hazırlanarak kollektör olarak kullanılmaktadır((Bardach ve ark., 1972; Mann ve ark., 1990; Soniat ve ark., 1991; Lök ve Yolkolu, 1999). Günümüze kadar birçok kollektör materyali ve dizaynı denenmiş olmasına karşın genel olarak en iyi kollektör şudur demek yanlış olur. Bir tür veya bölge için iyi olan bir kollektör, diğer bir tür ve bölge için arzu edilen sonucu vermeyebilir. Bir yörede kullanılacak olan kollektörün seçiminde dikkat edilecek belli başlı özellikler vardır. Bu özelliklerin başında istiridyenin türü gelmektedir ki, yetiştiriciliği yapılacak olan türün özellikle hangi materyallere tutunduğunu belirlemek gerekmektedir. Kullanılacak olan kollektör tipinin ekonomik açıdan maliyetinin düşük olması ve tekrar kullanılabilirliğinin olabilmesi yada dayanıklılığının uzun vadeli olması tercih sebebini oluşturmaktadır. Yine seçilen kollektör tipinin o yörede bol miktarda olması aranılan özellikler arasındadır. Larvalar yapışmak için temiz, sert yüzeyleri tercih eder. Kollektörler yapışkan, kaygan veya düz zeminli olmamalıdır. Kaba yüzeyler larvalar tarafından daha çok tercih edilmektedir. Kollektör rengi önemsizdir. Kollektörler batabilme özelliğine sahip olmasına karşın hafif olmalı, larvaların hareketine izin verecek kadar kollektörler arasında su hareketi olmalıdır. Kollektörler ile yavru toplama işlemine başlamadan önce, o bölgede mevcut olan istiridye yatakları ve bu istiridyelerin üreme zamanlarının çok iyi belirlenmesi gerekmektedir. Bu amaçla araştırıcılar bölgede plankton çekimi yapıp istiridye larvalarının bolluğunu ve yaşını takip ederek en uygun zamanı bildirirler. Bazı bölgelerde ise üreticiler geçmiş yılların tecrübesine göre kollektörlerini denize bırakırlar. Eğer kollektörler denize çok erken bırakılırlarsa çok fazla sayıda balanus veya diğer arzu edilmeyen fouling organizmalar kollektörlere yapışır ve spat toplama başarısını olumsuz etkiler. Kollektörlerin bırakılacağı alanlarda yapılacak ön çalışmalar ile en iyi kollektör tipi ve en uygun spat toplama zamanı tespit edilir(Mori, 1987). Larva toplama zamanı araştırma istasyonları tarafından belirlenir ve ilgilenen üreticilere ilan edilir. Yeni yapışan larva 0.3mm büyüklüğündedir. Yaklaşık bir ay sonra 1-1.5cm olur. Bu boydan sonra kollektörden ayrılarak büyütme alanlarına transfer edilirler. Bazı yetiştiriciler kollektör tipleri uygun ise spatları ayırmadan ya aynı alanda ya da gelişmenin daha iyi olacağı başka bir alana taşıyarak uygun kültür sistemlerine yerleştirilerek büyümeye alınırlar. 5- YETİŞTİRİCİLİK YÖNTEMLERİ Gerek kuluçkahaneden elde edilen ve gerekse doğal alanlardan toplanan yavru istiridyeler, pazar boyuna kadar büyütülecekleri yetiştirme alanlarına yerleştirilirler. Yetiştirme alanlarının seçiminde aşağıdaki konulara dikkat edilmelidir: a) İstiridyenin büyümesine izin verecek uygun su koşullarına(sıcaklık, tuzluluk) sahip olmalıdır. b)Evsel ve endüstriyel bir atık girdisi olmamalıdır. c)Plankton açısından zengin olmalıdır. d) Toksik plankton patlaması olmamalıdır. e)Suda belli bir su akıntısı olmalı, durgun su olmamalıdır f)Denizyolu ulaşımı üzerinde olmamalıdır. 5.1 Dip Kültürü Gel-git etkisindeki kıyı alanlarında uygulanana en eski kültür yöntemidir. İplere dizilmiş olan kabuk kollektörler spatlar tutunduktan sonra iplerden çıkarılarak spatlar ile birlikte deniz tabanına bırakılırlar. Bu genç bireyler 22 ay bu alanda kalırlar. Bir yaz sezonunun geçmesi et dolgunluğu için yeterli olmaktadır. İstiridyeler sonbaharda hasat edilirler. Hasat işlemi elle veya dreçler ile yapılır. Toplanan istiridyeler basınçlı su ile yıkanarak temizlenir ve pazara sunulurlar. Bu dip kültür sistemi zemine hazırlanan raylı sistemler ile biraz daha geliştirilmiştir. Raylı sistemlere istiridye büyüklüğüne uygun göz açıklığına sahip kasalar yerleştirilir. Kasaların üstü ağ fileler ile örtülür. Böylece sular yükseldiğinde kasa içersindeki istiridyelere bazı organizmaların zararı olmayacaktır. Ayrıca kasalara yerleştirilen istiridyeler zemine direk temastan kurtulmuş olmaktadırlar. Böylece istiridye üstünde çamur birikerek boğulma riski de azaltılmış olmaktadır(Iversen, 1976). 5.2.Sehpalarda kültür Dip kültüründe zararlı organizmalar ve istiridyeler üzerinde çamur birikmesi verimin düşük olmasına neden olmaktadır. Bu nedenle üreticiler ilk zeminden uzak kültür yöntemi olarak sehpa sistemini uygulamaya başlamışlardır. Gelgitin fazla olduğu yerlerde zeminden 30cm yukarıda ve 2m uzunlukta olacak şekilde metal çubuklardan 30-40cm genişliğinde sehpalar yapılmaktadır. Bu sehpalar üzerine kollktörlerden temizlenen veya kuluçkahanelerden alınan spatlar plastik torbalar içersine konarak yerleştirilir. Plastik gözenekli torbalar sehpalara her iki ucundan metel maşalar ile sabitlenirler. İstiridyeler büyüdükçe torbaların göz açıklığı da büyültülür. 2-2,5 yıl sonra istiridyeler hasat edilir. Bu sistemin en önemli sorunu torbalar üzerinde makro alg birikiminin fazla olması ve gözenekleri kapatmasıdır. Torbalar sık sık kontrol edilmeli ve fazla alg birikimi temizlenmelidir. Temizleme işleminde algin tamamı alınmaz. Kalan algler torba üzerinde sular çekildiğinde gölgeleme yaptığı için istiridyelerin sıcaklıktan etkilenmesini azaltır(Bardach, ve ark., 1972). 5.3.Raf Kültürü Raf kültürü ile istiridye yetiştiriciliği hem horizontal, hem de vertikal alanda yapılır hale gelmiştir. Gelgit etkisinin az olduğu deniz derinliği 1.5-2m’den 5-6m’ye kadar olan kıyısal alanlarda raf kültürü uygulanmaktadır. Bazı üreticile gelgit etkisindeki alanlarda da uygulamaya almaktadır. Bambu kamışlar aralarında 2-3m mesafe olacak şekilde 2 ila 5m derinliklerdeki suların bulunduğu yerlere çakılırlar. Diğer bambular ise denize dik çakılan kazıkların üstlerine yatay olarak olarak bağlanırlar. Bu rafların dizaynı uzun ikili sıralar halinde olabileceği gibi 10x10m ebatlarında da yapılabilir. Bu durumda bambu sıraları arasındaki mesafeler 50-60cm olacak şekilde ayarlanır. İstiridye spatlanın tutunduğu kollektörler yatay bambu kamışlarının üzerinden 40-50cm aralıklar ile sarkıtılarak spatların büyümesine izin verilir. Bu sistemde kollektör uçlarının deniz tabanına değmemesine dikkat edilir. Böylece zararlı organizmalardan kollektörler uzak tutulmuş olur. Raf sisteminde bambu kamışı dışında dayanıklı ahşap materyaller ve deniz suyuna dayanıklı metal konstrüksiyon da kullanılmaktadır(Korringa, 1976a-b). 5.4 Sal Kültürü Sallarda yetiştiricilik genellikle iç denizlerde uygulanır. Salların inşasında tropik kuşakta 10-15cm çaplı bambular veya sedir ağacı kullanılmaktadır. Birbirine 30 veya 60cm aralıkla monte edilirler. Salların ebadı, 9x5,4m dir. Bu büyüklükdeki bir sal, 500-600 adet istiridye kollektörü(spatlı) taşır. Salların yüzdürülmesinde tercihen dayanıklı plastik variller (50 galonluk), fıçılar veya yüzdürücüler (stypor) kullanılır. Sallar 5-10m aralıklarla birbirlerine bağlanır. Bir ünite yaklaşık 10 saldan teşekküldür. Salların büyüklükleri ve sayıları değişiklik gösterebilir(Bardach, ve ark., 1972; Burrell, 1980). Sallar genellikle bambulardan yapılır. Plastik borularda bu amaçla kullanılabilir (PVC sulama boruları). Bu tür malzemenin esneme payı fazladır. Elemanlar 8 numara telle bağlanır. Salların sabitlenmesi için (deniz demiri) çapalar kullanılır, diğer bir yöntem ise, biri 3 tonluk, diğeri 5 tonluk iki beton bloğun yardımı ile sabitlemektir. Sert havalarda salı sürükleyen dalgalar güçlü ise, 3 tonluk bloğu oynatırlar. 5 tonluk bloğu oynatmaya çalışırken dalga aralarında 3 tonluk blok boşu alarak dibe çöker ve salın sürüklenmesini önler. Çapalı sabitlemede çapayı bırakmak ve ipin kopması çok görülmüştür. Bir salın ömrü 5 yıldan fazla olabilmektedir. Sal kültürü ile 25mm büyüklüğündeki bir istiridye 9 ay içinde pazar büyüklüğüne ulaşabilmektedir. Bu sistem ile su alanında hem horizantal, hem de vertikal olarak yararlanma söz konusudur. Dipte yapılan bir kültür ile karşılaştırıldığında verim en az%50 artmaktadır. 5.5. Halatlarda Kültür Aralarında 3-6m mesafe ile bir kalın halat üzerine sabitlenmiş yüzdürücülerden oluşur. Yüzdürücü olarak 30-40 lt hacimli plastik bidonlardan yararlanılır. Bu sistem tek halat ile hazırlanabileceği gibi arasında 30-40cm mesafe olacak şekilde çift halat olarak da hazırlanabilir. Uzunluğu 60-75m arasında değişir. Her hattın ucunda duruma göre 1-3 arası çapa bulunur ve deniz dbine sabitlenir. Her ünitede 10-12 yüzdürücü vardır.Yüzdürücülere bağlı olan ana halat bedene spatlar tutunmuş kabuk kollektörler asılabileceği gibi, içinde istiridye olan ağ fileler de asılabilir. İstiridye kollektörleri veya fileleri 30cm aralıkla asılırlar. Sahilden uzak derin sularda kurulabilir ve zor hava şartlarına karşı dayanıklıdır. Sistemin yıpranma ömrü diğer sistemlere göre daha uzundur. Planktonnun daha az olduğu derin, sahilden uzak sularda kurulması tercih edilen bir sistem olduğundan spatların Pazar boyuna ulaşması 2 yılı geçebilir(Bardach, ve ark., 1972; Iversen, 1976; Burrell, 1980). 5.6 Kafes Kültürü Kollektörler ile toplanıp bir yıl sonra seyreltilen istiridyelerden güzel şekilli olanlar seçilirler. Tel çerçeveli ızgara şeklindeki kafeslere herbirinin ayrı ayrı konabileceği bölmelere istiridyeler yerleştirilir, sal veya halat sistemlerinden asılır. Yaklaşık 6-8 ay sonra 10-20 cm uzunluğa ve 10-30 gr et ağırlığına ulaşır. Bu yöntem daha çok istiridyeler pazara çiğ olarak sunulacağı durumlarda uygulanır. Izgara sistemi nedeni ile sıkışan istiridyelerde kabuk şekli düzgün olarak büyüme gerçekleştiğinden tüketici tarafında tercih edilmektedir. Sal veya halat kültür alanlarındaki yerleşim akıntı, tuzluluk, besin ve yerel balıkçılık aktivitelerine bağlı olarak ayarlanmalıdır. Yoğun istiridye ölümleri kıyısal ve acı sularda yapılan kültür alanlarında ve doğal stoklarda görülmektedir. Bu ölümlerin başlıca nedenleri; -yetersiz beslenme -aşırı yağmurlar ve seller nedeni ile oluşan ekstrem tuzluluk ve sıcaklık değerleri, -predatörlerin aşırı üreyip yayılması, -çamur birikimi, -düşük oksijen seviyeleri, -yoğun stoklamalar -hastalıklardır. Bunlara ilaveten yaz aylarında seksüel olgunlaşma ve yumurtlama esnasında da anaç istiridyelerde yoğun ölümler görülmektedir. 6-Zararlı Organizmalar İstridye doğal ortamda iken suda mevcut olan diğer canlılar tarafından da bazı etkilere maruz kalmaktadır. Bu etkilerin başında onları besin olarak kullananlar, yaşadıkları ortama ve besine ortak olanlar, üzerinde yaşayarak direk ve indirek etki edenler veya kabuklarını delip içine girerek yaşamlarını istiridye içinde geçirenler gelmektedir. Kabuklu yetiştiricileri bu zararlıları bilip önlem almak zorundadırlar. Bu zararlıları predatörler(bazı balık türleri, yengeçler, istiridye matkabı, deniz yıldızı, ahtopot ve deniz kuşları (Haemotopus ostrolegus), rakip canlılar ve fouling, boring organizmalar olarak sınıflandırmak mümkündür(Korringa,1976a-b, Spencer, 1990; Lök ve Köse, 1999). Bunların dışında kabuklularda toksik madde birikimlerine neden olan Gonyaulax sp., Dinophysis sp. gibi fitoplanton türlerinin olduğu alanlardan istiridye hasatı yapılmamalı veya toksik etkisi geçene kadar beklenmelidir. Toksik fitoplankton patlamaları sonucunda toplanıp tüketilen istiridye, midye gibi kabuklu su canlıları bünyelerinde biriktirdikleri toksite nedeni ile insanlarda ölümlere kadar varan sonuçlar ile karşılaşılabilmektedir(Hindioğlu, 1998). 7- SONUÇ İstiridye kültürü Romalılar zanında başlamış ve günümüze kadar birçok kültür yöntemi ve sistemi geliştirilmiştir. Kültür uygulamaları ülkelere, istiridye türüne ve üreticinin tercihine göre değişiklik göstermektedir. Üreticiler kendi ülke şartları için en uygun sistemi geliştirmişler ve halen daha başarılı sonuçlar alma yönünde çalışmalar devam etmektedir. Ülkemizde ise istiridye kültürünün başlatılması hem ekonomik sonuçları hem de uygun deniz alanlarının değerlendirimesi açısından önemli olacaktır. KAYNAKLAR Alpbaz, A., 1993. Kabuklu ve eklembacaklılar yetiştiriciliği. E.Ü. Su ürünleri Fakültesi yayınları No. 26, s. 82-130. Bardach, J. E., Ryther, J.H., McLarney, W. O., 1972. Oyster culture. Aquaculture, The Farming and Husbandry of Freshwater and Marine Organisms :. pp. 674-742. Bayne, B. L., 1965. Growth and delay of metamorphosis of the larvae of Mytilus edulis(L.) Ophelia, Vol:2, No:1, Denmark. Berthome, J.P., Prou, J., Razet, D. & Garnier, J., 1984. Premiere approche d’unemethode d’estimation previsionelle de la production potentielle d’huitre creuse C.gigas d’elavage. Haliotis 14 39-38. Brausseau, D. J.,1995. Gametogenesis and spawning in intertidal oysters (Crassostrea virginica) from Westrn Long Island Sound. Journal of Shellfish Research. Vol.14, No.2 pp.483-487. Burrell, Jr.V.G., 1980. Oyster culture. In: Huner,J.V., ve Brown E.E.(eds), Crustacean and Mollusk Aquaculture in the United States. pp. 235-305. Claus, C., 1981. Trends in nursery rearing of Bivalve Molluscs. In:Claus, C., De Pauw, N., Jaspers, E.(eds) Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.1-33. Cole, H. A., 1942.Primary sex phase in Ostrea edulis. Quart. J. Micros. Sci., 83. pp. 317-356. De Pauw, N., 1981. Use and Production of Microalgae as Food for Nursery Bivalves. In:Claus, C., De Pauw, N., Jaspers, E.(eds). Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.35-69. Field, I. A., 1922. Biology and Economic Value of the Sea Mussel Mytilus edulis. Bull. U. S. Bur. of Fisheries, Vol: 38, pp. 127-259, Washıngton. Garcia-Dominguez F., Ceballos-Vazquez , P. B., Qezada A.T. 1996. Spawning cycle of the pearl oyster, Pinctada mazatlanica (Hanley, 1856) (Pteriidae) at Isla Espirito Santo, Baja California Sur, Mexico. Journal of Shellfish Research, Vol.15, No.2. pp.293-303. Haywood, E. L., Soniat, T. M.1992. The use of cement-stabilizied gypsum as cultch for the Eastern oyster, Crassostrea virginica (Glein, 1791). J Shellfish Res.vol.11, No.2 pp. 417-419. Haven, D. S., Zeigler, J. M., Dealteris, J. T., Whitcomb, J. P., 1987. Comparative Attachment, Growth and Mortalities of Oyster (Crassostrea virginica) Spat on Slate and Oyster Shell In The James River, Virginia. Journal of Shellfish Research , Vol:6, No:2, pp. 45-48. Heral, M.,1990. Traditional oyster culture in France. In: Barnabe, G. (ed.), Aquaculture Vol.1, pp. 342-387. Hindioğlu, A., Alpbaz, A., 1991. İstiridye (Ostrea edulis, L.1758) larvası üretimi üzerine araştırmala. Eğitiminin 10.yılında Su Ürünleri Sempozyumu, sayfa: 578-589. Hindioğlu, A., Serdar, S., Yolkolu, S., 1998. Kabuklularda (Bivalve-Mollusk) algal biotoksin ve insan üzerindeki etkileri. Özhan, E. (ed.) Türkiye’ nin Kıyı ve Deniz Alanları II. Ulusal Konferansı,Türkiye Kıyıları 98 Bildiriler Kitabı,22-25 Eylül 1998.ODTÜ Ankara pp.173-187. Iversen, E.S., 1976. Farming the edge of the sea, pp.134-158. Surrey England. Iwata , K. S., 1950. Spawing Mytilus edulis discharge by electirical stimulation. Bull. Jap. Soc. Scic. Fish. 15, pp.443-446. Loosanoff, V.L., Davis, H.C., 1963. Rearing Molluscs. Advances in Marine Biology. Vol. I, pp. 14-106. Academic Press, London. Lök, A., Yolkolu, S., 1999. İstiridye yavrularının (spat) toplanmasında kullanılan kollektör tipleri. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.109-114. Lök, A., Köse, A., 1999. İstiridye kültüründe karşılaşılan zararlı organizmalar. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.114-119. Mann, R.; Barber, B.J.; Whitcomb, J. P., Walker, K. S., 1990. Settlement of oysters, C. virginica (Glein, 1791), on oyster shell, expanded shale and tire chips in the James River, Virginia. J Shellfish Res, vol. 9, No.1 pp.173-175. Mori, K., 1987. Managed coastal water for oyster culture in Japan. In: Michael, R. G.(eds.).Ecosystems of the World 29 Managed Aquatic Ecosystems pp.125-143. Nell, A. J., Holliday J. E., 1986. Effects of potassium and copper on the settling rate of Sydney rock oyster (Saccostrea commercialis) larvae. Aquaculture, 58 pp.263-267. Kesteven, G.L., 1941. The biology and cultivation of oysters in Australia. CSIRO, Divisionof Fisheries. Report 5, pp.1-32. Korringa, P., 1976a. Farming the cupped oysters of the genus Crassostrea P.219. Elsevıer Scientific Publishing Company-Newyork Korringa, P.,1976b. Farming the flat oysters of the genus Ostrea P.231 Elsevier Scientific Publishing Company-Newyork. Pascual, M.S., Zampatti, E.A., 1995. Evidence of a Chemically mediated adult-larval interaction triggering settlement in Ostrea puclchana: applications in hatchery production-Aquaculture133, pp.33-34 Rodriguez J., Frias, J. A., 1992. Tropical mangrove oyster production from hatchery-raised seed in Cuba. Journal of Shellfish Research, vol. 11, No.2, pp.455-460. Quayle,D. B., 1969. Pacific oyster culture in British Columbia. Fisheriesresearch Board of Canada Biological Station, Nanaimo, B.C. pp. 57-65. Shau-Hwaitan ve Tat-meng Wong, 1995. Introduction of settlement and Metamorphosis in The Tropical Oyster, Crassostrea belcheri (Sowerby), byNeuroactive Compounds, Journal of Shellfish Research, vol. 14 pp.435-438. Soniat, T. M., R. C. Bioadhurst III & E.L. Haywood III. 1991.Alternatives to clamshell as cultch for oysters, and the use of gypsum for the production of cultchless oyster. J Shellfish Res. 10:405-410. Spencer, B.E., 1990. Cultivation of Pacific oysters. Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research. No: 63, p.47. Sugiura, Y., 1962. Electirical induction of spawing in two marine invertebrates (Urechis unucintus and hermahproditic Mytilus edulis). Biol. Bull. Woods Hole Cilt:123, pp.203-206. Utting, S.D., 1988. The growth and survival of hatchery-reared Ostrea edulis L. spat in relation to environmental conditions at the on-growing site.Aquaculture,69:27-38. Walne, P. R., 1974. Culture of Bivalve Mollusch 50 years experience at Conwy.Fishing News Books Ltd. Farnham, Surrey England. Yolkolu, S., 2000. İstiridye (Ostrea edulis)’nin gonad gelişimi ve cinsiyet oranı üzerine bir araştırma. E.Ü. Su Ürünleri Fakültesi. Yüksek Lisans Tezi, p.69.

http://www.biyologlar.com/istiridye-biyolojisi-ve-yetistirme-teknikleri

EKSTRAHEPATİK SAFRA YOLLARI

Ekstrahepatik Duktuslar Ekstrahepatik duktuslar müküs salgılayan uzun prizmatik epitel ile döşelidir. Altında elastik liflerin çoğunlukta olduğu ve belirgin lenfoid yatkınlığa sahip bir subepitelyal bağ dokusu tabakası bulunmaktadır. Epitelden lümene göç eden pek çok lenfositler ve ender olarak da granülositler görülmektedir. Subepitelyal tabakada tubuloasinar bez kümelerine rastlanabilir, bu bezlerin çoğunluğu müköz tiptir. Bu tabakada kan damarları ve sinirler belirgindir. Ana safra duktusunda ayrıca bir de düz kas tabakası bulunur; başlangıçta izole düz kas lif demetlerinden meydana gelmiştir, fakat duodenum yakınlarında oblik ve transvers liflerden oluşan tam bir tabak halindedir. Özellikle sirküler lifler olmak üzere bu tabak ana safra duktusu terminalinde kalınlaşır (Boyden sfinkteri) ve safra ile pankreatik duktusun birleştiği ampullanın etrafında, duodenuma yakın olan ampullar açılmanın hemen proksimalinde de bu kas tabakası kalındır (Oddi sfinkteri). Duodenuma açılış (Vater ampullası) yerinde mukoza kapakçığa benzer katlantılara sahiptir ve bu katlantılar lümene uzanır. Ana safra duktusu küçük omentumu katettiği için periton ile de örtülüdür.

http://www.biyologlar.com/ekstrahepatik-safra-yollari

Evrim Teorisi ile İlgili 5 Soru 5 Yanıt

Charles Darwin’in meşhur “Türlerin Kökeni” isimli yapıtının yayınlanmasının üzerinden bir buçuk yüzyıl geçti. Bu süre içinde evrim kuramı sürekli sorgulandı. Darwin genetik ve moleküler biyoloji konusunda hiçbir şey bilmemesine rağmen modern biyoloji bu büyük bilim adamının şaşırtıcı fikirlerini hep doğruladı. Ne var ki bugün evrim biyolojisinin hâlâ yanıtlayamadığı sorular var. Saygın bilim dergisi New Scientist bunların içinden önemli bulduğu 5 tanesini seçerek, en son bulguların ışığı altında uzmanlardan bunları yanıtlamasını istedi. Aşağıda bu sorulara 5 bilim adamının verdiği yanıtları kısaltılmış şekliyle bulacaksınız. 1.Soru Yaşam nasıl başladı? Bu soruyu Glaskow’daki Scottish Üniversities Çevre Araştırmaları Merkezi’nden Michael Russell yanıtladı. 4 milyar sene önce, nükleer ve yerçekimsel enerji Dünya’nın içini kavururken, dışı asteroid darbeleri altında delik deşik olmuştu. Doğal olarak bu ortamda canlıların yaşaması olası değildi. Her şeye rağmen hayat başladı. Pek çok bilim adamı ”vivosentrik” bir yaklaşımla bu olağanüstü olaya açıklık getirmek istediler. Bu yaklaşımın amacı, bugünün hayat şekillerinden başlayıp, aşama aşama geriye doğru giderek organik yapı malzemelerinin kökenini bulmaktı. Bana kalırsa bu yaklaşım başarısızla sonuçlanmaya mahkumdu, çünkü bu bakış açısı ilk Dünya’nın jeokimyasını dikkate almaz ve yaşamın ortaya çıkış nedenini gözardı eder. Şikago Üniversitesi’nden Stanley Miller ‘ın proteinlerin yapı taşı olarak bilinen amino asitleri yaratmasının üzerinden 50 sene geçti. Metan, hidrojen ve amonyağı, kapalı bir cam gereç içinde ısıtan Miller, daha sonra karışımı elektrik kıvılcımı ile hareketlendirdi. Bu deneysel çalışma, kavurucu bir Dünya’da yaşamın bir yıldırım düşmesi ve morötesi radyasyonla başlamış olabileceğiiddiasını doğrulayan bir kanıt olarak ele alındı. Ancak bugün insanlar proteinlerin ilk başta varolduğuna inanmıyor. Bugün geçerli olan düşünceye göre hayat bir RNA dünyasında başladı. Ve bu dünyada RNA’ların sadece bilgi taşıyıcı olarak değil, ilk denizlerdeki organik bileşimlerden yararlanarak, yaşamın reaksiyonlarını katalize eden ilkel enzimler olarak davrandığı düşünülüyor. Ne var ki okyanusların, hayat için gerekli olan organik molekül konsantrasyonunu sağlamış olma olasılığı çok düşük. Kuramcılar bu soruna çözüm oluşturabilecek değişik düşünceler ortaya atıyor. Bazıları yaşamın kuru bir kara parçasında, -dönemsel olarak buharlaşan bir gölette- başlamış olabileceğini ileri sürerken, başkaları okyanusların donup, gerekli molekül konsantrasyonunun artakalan sıvıda birikmiş olabileceğini ileri sürüyor. Diğer bilim adamları, metabolizmanın bir kil ya da pirit yüzeyinde iki boyutlu başlama olasılığından söz ediyor ve bu iki boyutluluğun lipidlerin hücre zarı olarak kendilerini örgütleyinceye kadar sürdüğüne inanılıyor. İddialar bunlarla sınırlı değil. Uzayın dört bir yanında yaşayan organik moleküller hayatı başlatmış olabilir. Bunlar göktaşlarının üzerinde Dünya’ya inmiş, okyanus yüzeylerinde birikerek, organik reaksiyonların meydana geldiği küçük kesecikler oluşturmuş olabilir. İnandırıcı değil Ben bu kuramların hiçbirini inandırıcı bulmuyorum. Benim görüşüme göre yaşamın kökeni biyolojik değil, jeolojik. Evrim ağacını köklerine doğru irdelemek yerine, kökten başlayarak yukarı doğru çıkmakta fayda var. Bu arada ilk Dünya’nın jeolojik yapısını hesaba katmak gerekiyor. Evrenimizde, yapılar eldeki malzeme ile inşa edilir. Bu süreçte enerji bir düzeyden diğerine geçiş sırasında azalırken, entropi (herhangi bir sistemin evrenle beraber düzensizlik ve etkisizliğe doğru olan eğilimi) çoğalır. Dolayısıyla yaşamın kökenlerini ortaya çıkartma çabalarımızda, ilk Dünya’yı oluşturan malzemenin ve enerjinin yaşam-benzeri bir yapıyı oluşturmak için nasıl biraraya geldiğini sormamız gerekir; hangi termodinamik ve kimyasal reaksiyonların söz konusu olduğunu, atık ve aşırı ısıdan nasıl kurtulduğumuzu öğrenmemiz gerekir. Özetle, yanıt bulmamız gereken soru şu: Kendi kendini düzenleyen elektrokimyasal bir aracın, birkaç milivoltluk bir enerjiyle, redoks reaksiyonlarından yararlanarak, aynı anda çoğalarak ve dışkı atarak nasıl varolduğunu çözmemiz gerekir. Başlangıç noktası İlk Dünya yaşamın başlangıç noktası olarak iki adet saha adayı sunuyor. Biri okyanus sırtlarındaki asidik pınarların içindeki mineral tortul birikimleri; diğeri deniz tabanındaki alkalin sızıntıları. Bu iki tip pınar daha soğuk, karbonik okyanus tabanına sürekli olarak malzeme ve enerji taşır. Ayrıca bu iki ortam da bugün bile canlı organizmaların yaşamasına uygun alanlardır. Ama bana göre pek çok nedene bağlı olarak okyanus sızıntıları yaşamın başlangıç noktası olmaya daha yatkın. Bir kere bu okyanus sızıntıları dayanılabilir bir sıcaklık olan 75 derecedir. Oysa asidik pınarlarda sıcaklık 350 dereceye kadar çıkar ve burada organik moleküller yaşayamaz. Ayrıca alkalin sızıntılar organik moleküllerin eriyebilirliklerine uygundur. Ve alkalin sızıntıların asidik okyanus sularıyla birleştiği noktada daha çok enerji bulunur. Çünkü denizden gelen protonlar, sızıntıdaki elektronları güçlendirir. Sonuçta toplamda ortaya yarım voltluk akım çıkar. Bu da metabolizma için yeterlidir. Yaşam eski alkalin sızıntılarda başladıysa neye benziyor olabilir? Bana kalırsa bu ilk şekil hareketsiz demir sülfid bölmeleri şeklindeydi. Bunlar yarı geçirgen, yarı iletken olmakla birlikte, reaksiyonları katalize edebilecek özellikteydi. Ayrıca demir sülfid zarlar organik zarların öncüsü, atası olabilir. Daha da önemlisi bunlar moleküler yapı bloklarını biraya getirmiş olabilir. Dolayısıyla yaşamın kimyasal reaksiyonlarının olması için ideal bir ortam oluşturuyordu. Bu demir sülfid bölmelerinin içinde hidrojen, amonyak ve siyanür kaynayıp durur. Bunların birarada reaksiyona girmesi için gerekli olan enerji, derece derece değişen elektronlardan sağlanır. Sonuçta şeker, ribonükleik asitler ve amino asitler oluşur. Eğer demir sülfid bölmeler Dünya’da hayatı başlatacak yapı taşlarının biraya gelmesi için yeterli ortamı sağladıysa, evrendeki herhangi bir gezegende nemli, kayalık ve güneşin aydınlattığı ortamlarda aynı rolü oynamıştır. Dolayısıyla sıvı suyun bulunduğu her yerde hayat oluşabilir. 2. Soru Mutasyonlar evrimi nasıl gerçekleştirdi? Bu soruyu University College London’dan Andrew Pomiankowski yanıtladı. Genetik mutasyonlar evrimin hammaddesidir. Ama hangi tip mutasyonların önemli olduğunu belirtmek gerekir. Eskiden beri biyologlar genlerdeki değişiklikler üzerinde durmayı seçim eder. Bu da protein kodlarının DNA dizilimidir. Son yıllarda kabul gören görüş şudur: Mutasyon sonucunda, amino asit dizilimi biraz değişik proteinler oluşur. Proteinler organizmaya hayatta kalma avantajı sağlar. Ne var ki pek çok gen diziliminin değişimi milyonlarca senede ama gerçekleşir. Bu yavaşlıkta seyreden bir değişim, morfolojik ve davranışsal evrimi yaratmış olabilir mi? Ben ve benim gibi gelişim biyologları en son yıllarda buna alternatif oluşturan bir görüş ortaya attı. Bu görüşe göre evrim konusunda en önemli rolü oynayan unsur, DNA’nın gen ifadesini düzenleyen bölgesindeki mutasyonlardır. Aykırı yollar var Son 10 senede bu konuda gerçekleştirilen en önemli keşif, değişik hayvan grupları arasındaki ortak gelişim genetik yollarıdır. Klasik örnek ”Hox” genleridir. Hox genleri sorumludur. Bunlar ilkin meyve sineklerinde keşfedildi. Ama balıklarda, kurbağalarda ve insanlarda da aynı gen bulundu. Bu organizmalarda vücut şekli değişik olmakla birlikte, Hox geninin dizilimi birbirinin aynısıdır. Daha da önemlisi, Hox genlerinin uzak türler arasında değiş tokuş edilmesidir. Bundan da şu sonuç çıkıyor: Evrim, aslında genleri korumaya alıyor. Ama aralarındaki etkileşimle oynayarak meyve sineklerinden insanlara dek çok değişik türlerin oluşumunu hazırlıyor. Gen ifadesini denetim eden sistemlerin biri ”cis-regülasyonudur”. Cis-regülasyonu, transkripsiyon faktörleri olarak bilinen proteinlerin, DNA’nın “promoter bölgeleri”ndeki genlerine bağlanmasıdır. Her promoter’ın çoklu bağlanma siteleri vardır. Transkripsiyon faktör bağlama, genleri açık ya da kapalı konuma getirir. Bunun sonucunda gen ifadesi gelişim sırasında denetim edilir. Ayrıca transkripsiyon faktör bağlama, organizmanın aynı genlere sahip olmakla beraber değişik şekillere dönüşmesine izin verir. Sonuçta ortaya az değişik proteinler çıkar. Sözgelimi embriyo evresinden yetişkine dönüşmek ya da dişi/erkek form değişikliği gibi. Şimdi artık, cis-regülasyon’un gelişim için çok önemli olduğu biliyoruz. Son yıllara kadar genlerin birbiriyle nasıl iletişim kurduğunu bilmiyorduk. Ama en son araştırmalar genler arasındaki iletişim ağını yavaş yavaş aydınlatıyor. Bu bilgilerin ışığı altında mutasyonların şekil ve işlev açısından ne biçimde uyum sağladını anlayabiliyoruz. Ama bu konuda temkinli davranmakta yarar var. Tüm bilim dallarında yeni bulguları abartma eğilimi vardır. Gen ağlarındaki evrimsel değişikliklerin, morfolojik evrimi tetikleyen en önemli güç olduğu iddialarını değerlendirirken kuşku payı bırakmakta yarar var. Kuşkusuz, genlerin iç mutasyonlarının ve yeni gen mutasyonlarının evrim konusunda çok önemli rol oynadığını biliyoruz. Ayrıca bundan böyle gen dizilimi konusundaki fonksiyonel değişiklikleri izleyebiliyoruz. 3. Soru Yeni türler nasıl oluştu? Bu soruyu İngiltere’deki Hull Üniversitesi’nden George Turner yanıtladı: Son günlere kadar türlerin nasıl oluştuğunu bildiğimizi sanıyorduk. Bu sürecin popülasyonların tecrit edilmesiyle oluştuğu inancı yaygındı. Popülasyonlar ciddi bir ”gen darboğazı”ndan geçerse çeşitlenme başlıyordu. Sözgelimi hamile bir dişi, uzak ve izole bir adaya gider ve doğan çocuklar birbirleriyle çiftleşirse yeni bir tür doğabilir. “Kurucu etkisi” adı verilen bu modelin güzelliği laboratuvarda test edilebilme olasılığıydı. Ne var ki gerçek yaşamda bunu kimse başaramadı. Evrim biyologlarının çabalarına rağmen, kimse kurucu popülasyondan yeni bir tür yaratmayı başaramadı. Dahası, bildiğim kadarıyla, küçük organizmaların yabancı ortamlara bırakılması sonucu yeni türler oluşmadı. Son günlerde çabalar başka bir yöne yoğunlaştı. Biyologlar çeşitliliğin coğrafi tecritten kaynaklandığına inansa da bu bağlamda “şans” ve küçük popülasyon kavramları geçerliliğini yitirdi. Artık biyologlar, türleri hızlı bir biçimde değiştiren aykırı yolları incelemeyi seçim ediyor. Etkili olan belli başlı güçler ekolojik seleksiyon (Değişen çevre koşullarına uyum çabaları sonucunda ortaya yeni türler çıkar) ve seksüel seleksiyondur (Değişen cinsel tercihler popülasyonda değişiklik yaratır). İşte en kritik soru bu iki gücün önemi üzerine yoğunlaşıyor. Ekolojik seleksiyona en güzel örnek ”paralel çeşitlenme” olgusudur. Burada aynı türler, birbirinden bağımsız şekilde, benzer çevresel koşullara tepki olarak, değişik mekânlarda ortaya çıkar. Buna en iyi örnek Kanada göllerinde yaşayan dikenli balıktır (gasterostus). Kanada’daki göllerde iki çeşit dikenli balık bulunur. Biri dipteki yiyeceklerle beslenirken, diğeri planktonlarla beslenir. Mitokondriyal DNA’larının (mtDNA) incelenmesi sonucu bu iki türün paralel çeşitlenme sonucu ortaya çıktığı anlaşıldı. Bu bulgular, “simpatrik çeşitlenme” denilen yeni bir oluşumu da ortaya çıkarttı. Burada çeşitlenme coğrafi tecride bağlı değildir; melezleşme söz konusudur. Tecrit çeşitlenmesini savunanlar bu görüşe karşı çıksalar da mtDNA çalışmaları simpatrik çeşitlenmeyi destekliyor. Bazı biyologlar melezleştirme sürecinin yeni türlerin oluşumunda önemli bir rol oynadığını düşünüyor. Kuram olarak, bir türün paralel evrim sonucu mu, seksüel seleksiyon sonucu mu yoksa melezleştirme sonucu mu ortaya çıktığını ”çeşitlenme genleri” ne bakarak test edebiliriz. Çeşitlenme genleri, değişik organizmaları birbiriyle karıştırarak üretme olasılığını ortadan kaldırır. Her gün yeni bir genom diziliminin çözümlendiği en son dönemlerde, biyologlar bir gün bu tür genleri keşfedeceklerini umuyor. Ayrıca genlerin ifade farklılıklarının daha çok incelenmesi sonucu çeşitlenmeyi daha iyi anlayabileceğiz. Bana kalırsa çeşitlenme nedenlerini araştırırken en uygun yöntem Mendel tipi çapraz eşleştirmedir. Dolayısıyla çeşitlenmenin tek bir genden mi yoksa bir çift genden mi -erkeğin kur yapması ve dişinin bu sinyale yanıt vermesi gibi- kaynaklandığı netlik kazanabilir. Pek çok bilim adamı bu yöntemin genel tabloyu açıklamakta yetersiz kalacağını iddia etse de, çeşitlenmesini yeni tamamlayan türleri incelemenin en doğru yöntem olduğunu düşünüyorum. 4. Soru Evrim tahmin edilebilir mi? Bu soruyu Oxford Üniversitesi’nde ve Yeni Zelanda’daki Auckland Üniversitesi’nde çalışan Paul Rainey yanıtladı: Son yıllarda yitirdiğimiz Stephen Jay Gould ‘a göre evrim, gelişigüzel ve seçici güçlerin sürekli olarak birbirleriyle etkileşimi sonucu ortaya çıkar. Gelişigüzel unsurların (mutasyon, rekombinasyon ve göç) ve stokastik unsurların (hedefe ulaşmak için uygun olasılıkları seçme işlemi-eş bulma olasılığı gibi) varlığı, evrimin tekrarlanamadığını, tahmin edilemediğini, hatta hiçbir kuralın geçerli olmadığını ortaya koyar. Ancak, Darwin’in net bir biçimde belirttiği gibi, beklenmedik bir olay ile doğal seleksiyon yan yana, beraber etkili olabilirler. Aslında Darwin’in doğal seleksiyon kuramının öngörüsü şudur: Organizmalar çevrelerine uyum sağlar. Olasılık çerçevesi En önemlisi, Darwin’in kuramına dayanarak yapılan bütün tahminler olasılık çerçevesi içinde ele alınır. Bu bağlamda spesifik bir olaya karşı bütün olasılıkları öngörmek gerekir. Burada en önemli sıkıntı, bütün olasılıkların hiçbir zaman hesaba katılamamasıdır. Bugünün evrim biyologları “yasaları” fizik bilimindeki yasalar gibi ele almasalar da -Darwin ve başka 19.Yüzyıl biyologlarının yaptığı gibi- evrimle ilgili kimi temel kuralların varolduğuna dair somut kanıtlar elde ediyor. Evrimsel değişikliklerin mekanizması daha iyi anlaşıldıkça, kimi sonuçların olası başka sonuçlardan daha olası olduğu görülüyor. Tarihsel olasılıklara bir göz attığımızda, Gould’un iddiasına kesin bir yanıt getirmek olası değil. Ama işe başlarken, biyolojik sistemlerin temel yapıları hakkında elde ettiğimiz bilgilerin ışığı altında, evrimin nereye varacağına dair tahminlerde bulunabiliriz. Şimdiden organizmaların çevrelerine nasıl uyum sağlayacağına dair öngörülerde bulunabiliyoruz. Dolayısıyla gelecekte olası değişikliklere dair kantitatif (nicel) tahminlerde bulunmak da olası olabilir. 5. Soru Tanrı’nın evrimle ilgisi ne? Bu soruyu İngiltere’deki Liverpool Üniversitesi’nden Robin Dunbar yanıtılyor: Pek çok insan, bu konuda meşhur bilim felsefecisi Karl Popper ile aynı fikirdedir. Popper’a göre din metafiziğin dünyasına aittir; bilimsel sorgulamaya tabi tutulamaz. Biyologların çoğu bu görüşe katılarak Tanrı konusunu tartışmaların dışında tutar. Ancak din ve tanrıların kişi davranışı üzerinde çok büyük etkisinin olduğunu yadsımak da doğru değildir. İşte bu sebeple ben ve benim gibi düşünen biyologlar, dinlerin niçin varolduğunu ve kişi evriminin hangi noktasında devreye girdiğini araştırmaya başladık. İnsanlar hayvan standartlarına göre çok tuhaf bir özellik sergiler. Bu özellik içinde bulunduğumuz topluluğun isteklerini kabullenme konusunda gösterdiğimiz olağaüstü arzu, hatta bu yolda canımızı bile vermeye hazır durumda olmamızdır. Bu düzeyde bir özveri başarının anahtarıdır. İnsanlar, kollektif çözümlerden yola çıkarak kendi küçük dünyalarıyla sınırlı kişisel sorularına yanıt getirmeye çabalarlar. Bu çözümün yararlı olabilmesi için kişiler kısa vadeli kişisel çıkarlarını uzun vadeli kazançlarıyla değiş tokuş etmeyi öğrenmek zorundadır. Ve gruba uyum sağlama özelliği bizi başka bir tehlikeyle karşı karşıya bırakır. Bu tehlike, topluma ait olma özelliğinden yararlanıp, bunun bedelini ödemek istemeyen parazitlerdir. Tabi ki bu asalakları durdurmanın yolları vardır. Biri, yasalar yardımıyla denetleme, ikincisi toplumsal terbiye kurallarıdır. Ama bu iki yöntem de bir yere kadar yararlıdır: “Benim yaptıklarımı senin onaylayıp onaylamaman beni ilgilendirmez. Ben kazancıma bakarım” şeklinde düşünenlere bu iki yöntem etkili olmaz. İşte bu noktada din devreye girer; kontrolumuzun dışında kimi güçlerin müdahale etme olasılığı insanlarda tedirginlik yaratır. Dinin yarattığı ceza sistemi herhangi bir sivil kuruluşun uygulayacağı cezadan daha ağırdır. Ama bu sistemin çalışması, insanların doğaüstü bir dünyanın varlığına inanmasına bağlıdır. İşte bu aşamada türümüze özgü olan bir özellik önem kazanır. Bu, kişi beynini okuma yeteneğidir. Buna “Aklın teorisi” diyebiliriz. Bu kuramı şu cümleyle açıklayabiliriz: “Senin ve benim ahlaklı davranma arzusu duyduğumu bilen doğaüstü bir varlığın varolduğunu sandığına inanıyorum.” Bu düşünca tarzı, dini doğaüstü kişisel inançların ötesine geçirerek, herkesin paylaştığı toplumsal bir fenomen haline getirdi. Beynimiz tanrıları ve dinleri yaratmamıza izin veriyor. Ama bu, büyük beyinlerin tesadüfen ortaya çıkarttığı bir yetenek midir? Yoksa uyum kaygısı sonucu mu ortaya çıkmıştır? Benim çalışmalarımdan çıkarttığım sonuçlara göre insanların da dahil olduğu primatlarda neokorteksin hacmi -özellikle frontal lob- doğrudan grubun büyüklüğne ve sosyal yeteneklere bağlı olarak değişir. Başka bir deyişle, beynin boyutlarının evrimi, geniş grupların içinde istikrarı sürdürebilecek sosyal yeteneğe bağlı olarak gelişir. Söz konusu insanlar olduğu zaman, bu toplumsal uyum çabalarına din de dahildir. Dinin büyük ölçüde zihinsel güce gereksinim duyduğu gerçeğinden hareketle, dinin ne zaman evrimleştiğini sorabiliriz. Dinsel inançları destekleyecek zihinsel gelişime, evrimsel tarihimizin en son dönemlerinde eriştiğimizi söyleyebiliriz. Dinin, yarım milyon sene ilkin Homo sapiens’in ortaya çıkışından ilkin başlaması olanaksız görünüyor. Bu tarih büyük bir olasılıkla modern insanın 200.000 sene ilkin ortaya çıkışına denk gelebilir. Aynı dönem lisanın da ortaya çıkışına rastlıyor. Kaldı ki dinin varlığı büyük ölçüde lisana bağlıdır. Tabi ki din ödül kavramını da beraberinde getirir. Dini yasaklar toplum krallarına uyumu sağlamakla birlikte, dinsel faaliyetler grubun bir parçası olma duygusunu da yaratır. Son yıllarda sinirbilim beyindeki “Tanrı-noktası”nın yerini buldu. Bu bölge varlığımızın uzamdaki yeri ile ilgili duyulardan ve “evrenle tek vücut olma” duygusundan da sorumlu. Fakat gruba bağlılığı pekiştiren ön önemli araç endorfinler. Bu beyin salgısı, vücut stres altında olduğu zaman salgılanır. Pek çok dinsel törende dövünme, dans ve ilahilerden oluşan uzun ayinler sonucunda endorfinin salgılanması tesadüf değildir. Endorfinlerin uyuşturucu etkisi insanlarda rahatlama ve aynı deneyimi paylaşan grup bireyleriyle yakınlaşma duygusu uyandırır. Dolayısıyla dinler, asalakların toplumsal yaşamın bütün avantajlarından hiçbir bedel ödemeden yararlanmasını önlemek için büyük beyinler tarafından yaratılmıştır. Ama dinsel faaliyetler, doğal dünyanın acımasızlığına karşı toplumsal dayanışmayı artıran yararlı etkinliklerdir. Kaynak: “EVRİM ile ilgili 5 soru 5 yanıt”, Cumhuriyet Bilim Teknik, 5.7.2003, New Scientist’ten Reyhan Oksay çevirisi, 14 Haziran 2003 Bilim Bilmek

http://www.biyologlar.com/evrim-teorisi-ile-ilgili-5-soru-5-yanit

OMURGASIZ HAYVANLAR SİSTEMATİĞİ

Canlılarla ilgili problemler ele alındığında organizmalar sınıflandırmak ve onları gruplara ayırmak zorunluluğu ortaya çıkmaktadır. Yeryüzünde milyonlarca canlı varlık vardır ve bunun yanı sıra geniş ölçüde bir çeşitlilik de görülür. Sınıflandırmanın Tarihçesi İnsanlar yaradılışlarından itibaren çevrelerinde bulunan bitki ve hayvanları öğrenmeye çalıştılar. İlk insanlar, bitki ve hayvanları kendileriyle olan ilişkisine göre tanıdıklarından, o zamanlarda yapılmış olan sınıflandırmalar fazla derin olmayan günlük tecrübe ve gözlemlere dayanıyordu. Daha sonra bilgiler arttıkça onların bir esasa göre sınıflandırılması ihtiyacı ortaya çıkmıştır. Milattan önce 4. asırda filosozofiyi ilk teklif eden Aristo ilk bilimsel sınıflandırmayı yapmıştır. Aristo ve öğrencisi Theophrastus bitkileri ot, ağaçcık, ve ağaçlar; hayvanları da havada, suda ve karada yaşayan kuşlar, balıklar, balinalar ve böcekler olmak üzere 4 gruba ayırıyorlardı. Böcekleri de ısırıcı, emici, kanatlı ve kanatsız olarak gruplamışlardır. Canlıları sınıflandırmada çeşitli gelişme ve kademelerden sonra John Ray (1627-1705) belli bir tür kavramı geliştirmiştir. Ona göre tür, ortak ataları olan, benzer bireylerin bir grubudur. Ray çok az farklılıkları olan çeşitli organizmaların aynı türe sokulabileceğine inanıyordu. Böylece canlılarla ilgili gözlemler türlerle ilgili bir hipotezle birleştiriliyordu. Ray ve onu destekleyenler tabiattaki türlerin sayısının değişmez olduğuna inanıyorlardı. Tür anlamı Ray’den sonra değişmiştir. Linnaeus.dan sonra Lamarck hayvanları 8 klasise ayırmış, hayvanlar için omurgalı ve omurgasız tabirini kullanmış daha sonra Cuvier (1796-1832) mukayeseli anatomiden faydalanarak hayvanları Vertebrata, Mollusca, Arthropoda, Radiata olmak üzere 4 ana gruba ayırmıştır. Sistematik bir esasa göre, yapı benzerliği esas alınarak bitki ve hayvanların sınıflandırılması ilk defa İsveçli biyolog Carl Von Linnaeus tarafından yapılmıştır (1707-1778). Sistematiğin babası olarak tanımlanan Linnaeus, Systema Naturae (1758) adlı yapıtında hayvanlar alemini sınıf, takım, cins ve türlere göre gruplara ayırmıştır. Linnaeus.un diğer bir önemi binominal nomenclature denen metodu kurmasıdır. Bu metoda iki adla adlandırma denir. Yani her çeşit canlı iki isimle anılır. Bunlardan birincisi yani o hayvanın ait olduğu cins (genus-çoğulu genera)’ın adı büyük harfle, tür adı ise küçük harfle yazılır. Her ikisi de latincedir. Dünyanın her yerinde bu şekilde kullanıldığından anlaşma zorluğu ve karışıklık olmaz. Linnaeus de tür sayısının değişmez olduğuna inanmıştı. Bugün tür¸ ortak atadan gelen, birbiriyle çiftleşebilen, doğurgan yavrular meydana getiren, kendi aralarında nesil veren dolayısı ile gen alışverişinin devam ettiği tabii topluluklara (Yani doğal populasyonlar) ait gruplar olup çok benzer diğer gruplardan üreme bakımından izole bireyler topluluğu olarak tanımlıyoruz. Belirli bir ekolojik nişe sahip olan bu populasyonlar, yapı ve işlevleri ile birbirine benzeyen fiziksel ve kimyasal koşullara benzer tepki gösterirler. Sınıflandırmada Kategoriler Sistematikte en küçük grup tür olduğuna göre yapı taşı da türdür. Türler birleşerek genusları onlar da sırasıyla daha büyük grupları oluştururlar. Örneğin 1. Tür - Species - Homo sapiens 2. Cins - Genus - Homo 3. Aile - Family - Hominidae 4. Takım - Ordo - Primates Super- Class - Enteria 5. Sınıf - Class - Mammalia 6. Phylum - Þube - Chordata 7. Regnum - Alem - Animale Bir canlı türünün tam olarak sınıflandırılabilmesi için en az 6 gruptan söz edilmesi gerekir. Bazı durumlarda ara gruplardan da faydalanılır. Böyle ara gruplar için Alt= sub, Üst = super terimleri kullanılır. Örneğin Sub species = Salmo trutta abanticus = Abant gölünde yaşayan bir tür alabalık. Ayrıca tür adını ilk kez kullanan araştırıcının adı da 2. isimden sonra ilave edilir. Leptinotarsa decemlineata (Say, 1879) Hayvanlar Alemini Sınıflandırmada Esas Alınan Başlıca Özellikler Hayvanlar alemini sınıflandırmada esas, hayvan populasyonları arasında var olan akrabalık ilişkileridir. Linnaeus’den sonra sistematik üzerine olan çalışmalar ilerlemiş evrim teorisinin kabul edilmesiyle de, yani Darwin.le, zoologlar evrimsel orijini birbirine çok yakın olan organizmaları bir gruba koymak suretiyle daha çok, doğal ilişkilere dayanan bir tasnif sistemi kurmaya çalışmışlardır. Yapısal benzerliklerin çoğu evrimsel akrabalığa bağlı olduğundan organizmaların modern tasnifi birçok bakımdan Linnaeus’nin ortaya koyduğu mantıki yapı benzerliğine uymaktadır. Özet olarak modern sistematik yapılırken hayvanların yanlız dış görünüşlerinden değil, karşılaştırmalı anatomilerinden ve embriyonal gelişmelerinden faydalanılarak evrimsel gidişlerine uygun akrabalık derecelerine göre sınıflandırma yapılır. Bu sınıflandırmada hareket noktası olan temel kavramlar şunlardır : Homoloji : Birbiriyle hiç ilgisiz gibi görünen bazı yapılar incelenecek olursa birçok temel köken benzerlikleri ortaya koyulabilir. Örneğin; fokun  yüzme ayağı, yarasanın kanadı, insanın kolu. Bunlardan ilki yüzmeye, ikincisi uçmaya, üçüncüsü yakalamaya yarar. Ancak bunların iç yapısı, kemik ve kasları incelenirse her üçünün de kökten birbirine benzediği görülür. Yüzme ayağı, kanat ve kol aynı orijinlidir, fakat zamanla her biri temel örneğe kıyasla belirli bir görevi yerine getirmek için değişmiştir. Orijinleri aynı olup yani aynı kökenden gelen ancak değişik işler görebilecek şekilde farklılaşarak evrimleşmiş yapılara homolog yapılar denir. Sınıflandırmada özellikle homolog yapılar göz önünde tutulur. Bunun dışında daha farklı benzerlikler de vardır. Örneğin hayvanlarda kanat; sinek ve yarasa kanadının her ikisi de uçmaya yarar. Ancak bu benzerlik yüzeyseldir. Benzerliklerin yüzeysel olduğu ve hemen hemen aynı işi gören yapılara analog yapı denir. Fakat bunların embriyonal dönemlerdeki durumları birbiriyle kıyaslanırsa tamamen farklı kökenden oldukları görülür. Orijinleri tamamen ayrı olan bu yapıları, evrimsel gidişleri, benzer işi gördüklerinden, birbirine benzeyen duruma getirmiştir. Yüzeysel olan bu benzerliklerin doğal sınıflandırmada hiçbir önemi yoktur. Fizyoloji ve biyokimyadan da yararlanılarak canlılar arasındaki akrabalık tesbit edilir. Son zamanlarda, biyologlar protein yapılarının benzerliğinden yararlanmışlardır. Hayvanların bir hücreden veya çok hücreden yapılmış olması yüksek kategorilerde önemli bir temel karakter olup böyle bir ayırım sonucunda hayvanlar alemi Protozoa ve Metazoa olmak üzere 2 büyük subregnuma (veya Regnum yani Aleme) ayrılır. Embriyodaki hücre tabakası , Diploblastik, (Porifera, Coelenterata.) Triptoblastik (diğerleri); Simetri (bilateral, lateral) ve segmentasyon büyük grupları sınıflandırmadaki ayırıcı özelliklerdir. Sindirim, dolaşım ve sinir sisteminin olup olmaması (Protozoa ve Porifera.da yok; Coelenterata ve Platyhelminthes’de sindirim gastrovasküler boşluk halinde, ağız açıklığı vardır, diğerlerinde sindirim borusu hem ağız hem de anüs var) ve söz konusu grubun kendine has morfolojik karakterleri yine başlıca ayırıcı özelliklerdendir. Aristo zamanından beri biyologlar canlılar dünyasını en basit anlamda bitkiler ve hayvanlar olmak üzere 2 aleme ayırmışlardır. Buna göre derinliğine düşünülürse birçok türü, mikroskop altında gözlenebilen ve bir hücreli organizmalardan pek çoğunu bitki veya hayvanlar aleminden birine dahil etmek kolay bir iş değildir. Bundan bir asır önce Alman biyolog Ernest Haeckel birçok özellikler bakımından bitkilerle hayvanlar alemi arasında yer alan bütün bir hücreli organizmaları kapsayabilen Protista’yı üçüncü bir alem olarak teklif etmiştir.Uzun süre dünya biyologlarının pek rağbet etmediği bu teklif ilk bakışta sınıflandırmayı basitleştireceği yerde daha da güç duruma sokacağı ortaya konmuştur. Çünkü bitki benzeri olan bazı protistalar bitkilerle çok yakın ilişki kurarlar. Birçok grup (veya türler) gösterdikleri  bazı karakterler nedeniyle bitkilerle hayvanların arasında yer alırken diğer karakterleri nedeniyle hem bitki hem de hayvanlardan çok farklı bir durum gösterirler. Hatta farklı biyologlar tarafından Protista alemi içerisinde gösterilen organizmalar da farklı olabilmektedir. Bazı sistematikçiler Protista içerisine sadece birhücreli formlar koydukları halde bazıları mantarları, çokhücreli algleri hatta bakteri ve mavi yeşil algleri de Protista.ya dahil etmektedirler. Daha yakın zamanlarda bazı biyologlar Monera diye dördüncü bir alem açılmasının uygun olacağını savunmuşlardır. Monera alemi, bakteriler ve mavi yeşil algler gibi pek çok ortak karakterlere sahip organizmaları içine almaktadır. Prokaryot maviyeşil alglerde çekirdek zarı bulunmadığı gibi mitokondri, kloroplast gibi zarla çevrilmiş organeller de bulunmaz. Diğer taraftan bitki ve hayvan bütün Protista’lar Eukaryottur ve çekirdek zarıyla çevrilmiş gerçek nukleus ihtiva ederler. Bitki ve hayvanlar arasında pek çok temel benzerlikler vardır : 1. Her ikisinde de yapı ve fonksiyon birimi hücredir. 2. Her ikisinde de metabolik olayların çoğu ortaktır. Ancak her iki grup çok bariz ve farklı bazı yollarla birbirinden kesinlikle ayrılır. 1. Bitki hücreleri hücreyi çevreleyen ve bitkiye destek vazifesi gören selülozdan ibaret sert bir hücre çeperi salgılar. Hayvan hücrelerinde böyle bir çeper yoktur. Ancak bazı bitkilerde selüloz çeper bulunmadığı gibi (bir grup hayvanda da) tunicat gibi ilkel Chordatlar.da hücrelerin etrafında aynen bitki hücrelerinde olduğu gibi, selüloz çeper vardır. 2. Bitki büyümesi genellikle sınırsızdır. (Bu büyüme ömür boyu aktif büyüme fazında kalan bazı bitki hücreleri ile gerçekleştirilir, tropik bitkilerde devamlı, ılıman bölge bitkilerinde ise daha çok ilkbahar ve yaz aylarında). Hayvanların çoğunda son vücut büyüklüğü belli bir büyüme devresi sonunda ortaya konmuş olur. Ancak timsahlar, kaplumbağalar ve istakozlar uzun süre büyümelerini devam ettirirler. 3. Hayvanların çoğu hareket eder, bitkiler ise istisnalar dışında 4. En önemli fark ise gıda temin etmeleridir. Bitkiler yeşil renkli klorofil pigmenti yardımı ile fotosentez yapar. Fotosentez ile suyu parçalayabilmek için ısı enerjisini kullanırlar ve neticede karbondioksiti karbonhidrata indirgerler. Klorofil ihtiva etmeyen mantarlar ve bakteriler bu kaideye uymazlar (bazı yüksek organizasyonlu bitkiler). Evrimsel olayların asırlar önce cereyan etmiş olması ve ilk formlara ait fosillerin yetersiz olması nedeni ile bugün bile önemli bitki ve hayvan phylumları arasındaki evrimsel yakınlık hakkındaki görüşler açık değildir. Örneğin, virus ve bakterilerin diğer organizmalara olan evrimsel yakınlığı fazla bilinmediği gibi önemli alg ve mantar cinsleri arasındaki akrabalığa dair eldeki mevcut deliller de yetersiz olup önemli Protozoa cinsleri ile çok hücreli hayvanlar arasındaki akrabalık ilişkileri hakkındaki bilgiler de henüz kesin değildir. Hayvan gruplarını incelerken; hücre tabakalaşmasını, solunum olup olmamasını, metameri durumunu, sindirim sistemini ele alıp kendine özgü morfolojik karakterleri vurgulayacağız. Canlılar alemi bitkiler ve hayvanlar olarak (genel bir ifade ile) ele alınmakta son zamanlarda aşağıdaki gibi gruplandırılmaktadır. I. Alem : Monera II. Alem : Protista - Birhücreliler III. Alem : Fungi - Mantarlar IV. Alem : Plantae - Bitkiler V. Alem : Animalia - Hayvanlar I. Alem : MONERA Prokaryot olan bu organizmalar çekirdek, çekirdek zarı, plastit, mitokondri ve tubuler yapı taşımayan, kamçıları olmayan ancak kamçı benzeri uzantılar taşıyan, birhücreli canlılardır. Bölünme ya da tomurcuklanma ile eşeysiz ürerler, kalıtsal madde alışverişi konjugasyon, transformasyon, transdüksiyon veya plasmit değişimi ile gerçekleşir. Eubacteria ve Archaebacteria şeklinde iki gruba ayrılırlar. 2700 farklı türü bilinmektedir. II. Alem : PROTİSTA Ökaryot canlılar olan (Yani zarla çevrili çekirdek, kamçı, sil, yalancı ayak ve organel içeren) bir ve çok hücreli fotosentetik algler, çok çekirdekli ya da çok hücreli heterotrof bazı mantarlar, bir hücreli ökaryotik canlıları içerir. Fotosentez, absorbsiyon ya da doğrudan yeme ile beslenirler. Eşeyli ya da eşeysiz çoğalırlar. 60.000 yaşayan, 60.000 de fosil türü ALT ALEM (SUBREGNUM): PROTOZOA Protozoa (Eski yunanca protos = birinci; zoon = hayvan) bir hücreli mikroskobik hayvanlardır. Bir protozoon’ın yapısı çokhücreli hayvanların (birhücreye) bir hücresine karşılıktır fakat fonksiyon bakımından çokhücreli bir organizmanın bütün temel görevlerini yapar. Birhücrelilerin hepsi çok küçük mikroskobik hayvanlar olmakla beraber büyüklükleri oldukça değişiktir. Bazıları 2-3 mikron boyunda olup çoğu 250 mm. den daha küçüktür. (Nadir olarak 15-16 mm. boyunda olanlara da rastlanır Sporozoa’dan Porospora gigantea ). 30.000’den fazla bir hücreli hayvan türü bilinmektedir. Bunlar tatlı sularda, denizlerde, rutubetli topraklarda yani sulu ortamda yaşarlar. Bir kısmı da diğer hayvanların vücudunda parazittir. Kuru yerlerde ancak kist halinde bulunurlar. Bu geçici bir korunma durumu olup aynı zamanda birhücrelilerin yayılması bakımından da avantaj sağlar. Þöyle ki bu durumda kuş, böcek ve rüzgarla her yere taşınabilirler. Denizde yaşayanlarda kuruma tehlikesi olmadığından genellikle kist oluşumu yoktur. Vücutları stoplazma ve nukleustan ibarettir. Stoplazma ekto ve endoplazma olmak üzere 2 kısma ayrılmıştır. Dışta yer alan ektoplazma granülsüz veya çok az granüllü ve yoğun, iç kısımda bulunan endoplazma ise granüllüdür. Ekto ve Endoplazma arasında geçiş vardır. Genellikle hücre zarı yani Pelikula (veya Pellicula) altında ektoplazma, anterior uçta cytostom (hücre ağızı) ve cytopharynx bulunur. Besin stoplazma içine geçerken etrafında bir zar şekillenerek koful oluşur. Sindirim bu kofulun içinde gerçekleşir. Posterior uçta cytopig (hücre anüsü) bulunur. Hücre anüsü bir çok kamçılıda ve özellikle sillilerde görülür. Hücre anüsü çok dar yapılı olduğundan, varlığı ancak dışkılama sırasında belirlenebilir. Bir veya daha fazla nukleuslu olabilirler. Tek nukleuslu formlara monoenergid , çok nukleuslulara da polyenergid adı verilir. Bir hücrelilerde bütün hayatsal olaylar organellerle yapılır. (Belirli bir ödevi olan stoplazma farklılaşmalarına organel denir.) Hareket organelleri pseudopod (yalancı ayak), flagellum (kamçı), sillerdir (kirpik). Pseudopodların yeri değişken olup vücudun herhangi bir yerinde teşekkül edebilir ve kaybolur. Buna karşın kamçı ve kirpikler yeri ve şekilleri sabit olan daimi organellerdir. Sporozoa ve Ciliatlar.da vücudun uzayıp kısalması myonem adı verilen kas lifleri ile yapılır. Parazit birhücrelilerde hareket organeli genellikle yoktur. Bununla birlikte bir kısmı (gelişimin erken evrelerinde) yer değiştirebilirler. Kayma şeklinde olan özel bir yöntem ile hareket edebilirler. Kirpik ve kamçılar hareketten başka duygu organı vazifesini de görürler. Bundan başka bazı flagellatlarda göz vazifesini gören ve ışıktan etkilenen kırmızı renkli stigma vardır. Ciliatlar.ın bir çoğunda uyartı nakleden organeller de tesbit edilmiştir.Bunlar sillerin dip cisimlerini birbirine bağlayan ektoplazmik fibrillerdir. Bir hücrelilerin bazılarında örneğin amiplerde vücut ince bir zarla örtülüdür. Plasmolemma adı verilen ve çok ince olan bu zar madde alış verişini düzenler. Fakat hayvanın vücuduna belirli ve sabit bir şekil vermez. Buna karşın bir çok tek hücrelilerde korunma ve destek organelleri vardır. Bu organeller sayesinde vücut şekilleri sabit kalır. Koruma ve Destek Organelleri: Yapılarına göre iki türlüdür. 1. Euplasmatic : Stoplazmanın farklılaşmasından meydana gelen organeller; fibriller aksopodların eksen çubukları radyolenlerin iç kapsülleri, pelikula vs. 2. Alloplasmatic : Stoplazmanın salgı maddesinden meydana gelen organeller; örtüler, kabuklar, evcikler, kistler ve iskeletler. Örtü ve kabuklar vücut yüzeyine yapışıktır. Evcikler ise yalnız belirli yerlerde yapışıktır. Kistler: Bunlar ya yalnız organik maddeden (jelatin, pseudokitin, sellüloz) veya inorganik maddeden SiO2 ve Ca2CO2 den yapılmıştır. Tatlısu protozoonlarında ve bir çok parazitlerde görülen geçici korunma organelleridir. Bunlar yaşamaya elverişli olmayan zamanlarda ve bazen çoğalma esnasında meydana gelirler. Kist meydana geleceği zaman hayvan bütün organellerini kaybeder. Yuvarlak bir şekil alır. Kendi etrafına saldığı jelatinli tabaka sertleşir. Böylece kist meydana gelmiş olur. Normal şartlar başlayınca kist parçalanır ve yeniden organeller teşekkül eder. Beslenme (4 tiptir) I. Ototrof : Bitkilerdeki fotosenteze karşılıktır. Yani anorganik maddeleri organik hale koyar. (Bir kısım flagellatlarda) II. Saprozoik : Erimiş haldeki organik maddelerle geçinirler. Bu maddeler bakteriler tarafından parçalanmış olan organik maddeler vücut sıvıları ve barsak sıvılarıdır. (Parazit yaşayanlar ve renksiz flagellatların bir kısmı). III. Miksotrof : Hem organik ve hem anorganik maddelerle geçinirler (Euglena). IV. Heterotrof : Katı organik maddelerle beslenir (serbest yaşayan birhücrelilerin çoğu). Beslenme ile ilgili organeller. Cytostom (Hücre ağzı), Cytopharynx (yemek borusu) Ciliatlar.da besin stoplazma içine geçerken bir sıvı vakuolü teşekkül eder. Sindirim bu vakuol içersinde olur. Artık maddeler vücudun herhangi bir yerinden veya hususi bir yerden (Cytopig ) dışarıatılır. Boşaltım organeli : Osmoz sonucunda ve besin maddeleri ile birlikte stoplazma içersine giren fazla suyun dışarı atılmasına yarayan Kontraktil vakuollerdir. Deniz formlarında çok nadir olarak bulunur; parazitlerde yoktur. Esas olarak tatlı su protozoonlarında mevcuttur. Katı atıklar çok defa stoplazmada biriktirilir. Öyle ki bu durum bir çeşit atık pigmentasyonuna (renklenmesine) neden olur. Çoğalma 11 1. Bölünme : Enine (Ciliata) veya boyuna olmak üzere (Ekseri flagellatlarda) ikiye bölünme. 2. Tomurcuklanma : İkiye bölünmenin bir modifikasyonuna tomurcuklanma adı verilir. Öncelikle tomurcuk taslağı meydana gelir. Bu taslak ana hayvanın büyüklüğüne erişince koparak ondan ayrılır veya koloniler oluşur. 3. Multible bölünme : Nukleus bir çok defalar bölünür. Sonra stoplazma nukleus sayısı kadar parçalanır. Çoğalma neticesinde fertler bazen bir arada kalarak kolonileri meydana getirirler. Cinsiyet ve Döllenme : Cinsiyet olayları bütün gruplarda görülür. Döllenme çok hücrelilerdeki gibi cinsiyeti farklı iki hücrenin haploid sayıdaki kromozomlarının birleşmesiyle 3 şekilde olabilir. 1. Konjugasyon, 2. Autogamie, 3. Kopulasyon Kopulasyon : Yüksek organizasyonlu hayvanlarda olduğu gibidir. Birleşen hücrelere gamet, birleşme mahsulüne zigot denir. Basit halde, kopulasyon yapan gametler normal vegetatif fertlerden farklı değillerdir. Yani bunlarda gametleri verecek olan fertler bir çoğalma safhası geçirmeden doğrudan doğruya gametlere değişirler. Böyle bir kopulasyonda eşeysel bir çoğalmadan bahsedilemez. Çünkü redüksiyon Diğer durumda ise gametler vegatatif fertlerden farklıdır. Esas ferdin ikiye bölünmesi (mayoz bölünmesi neticesinde) meydana gelir ve kromozom sayısı yarıya iner. Birbiri ile birleşen gametler ya görünüşleri aynı isogamet (isogamie) veya farklı anisogamet (anisogamie)’dir. Anisogamide yedek besin maddesi içeren gamete dişi veya macrogamet diğerine de erkek ya da microgamet denir. Sporozoonlarda izogamiden çok hücrelilerdeki oogamie’ye kadar bütün tipler görülür. Konjugasyon : Yalnız Ciliat’larda görülen özel bir döllenme şeklidir. 12 Autogamie : Kendi kendini döllemedir. Ekseriya bir kist içinde meydana Bazı tek hücrelilerin yapısı çok basit olduğu halde diğer bazıları çok kompleks bir yapı gösterir. Kompleks yapılı birhücrelilerde bütün hayatsal olaylar çeşitli organellerle yapılır. Protozoon’lar hareketlerini sağlayan yapının çeşidine göre sınıflandırılır. SUBREGNUM PROTOZOA 1. Class - Flagellata (Mastigophora) Kamçılılar 2. " - Sarcodina (Rhizopoda) Kökbacaklılar 3. " - Sporozoa (Sporlular) Hareket organeli yok, parazit 4. " - Ciliata (Infusoria) Kirpikliler Sub Class Protociliata " Euciliata " Suctoria Barnes ve Demirsoy.a göre de Phylum (Şube) : Sarcomastigophora 1. Class : Flagellata (Mastigophora) Kamçılılar 2. Class : Sarcodina (Rhizopoda) Kökbacaklılar Phylum Sporozoa Sporozoa (Sporlular) Hareket organeli yok, parazit Phylum Ciliophora - Ciliata Ciliata (Infusoria) Kirpikliler Subclass Protociliata Euciliata Suctoria 13 I. Class - FLAGELLATA (Mastigophora) , Kamçılı hayvanlar Flagellatlar bir veya birkaç kamçıya sahiptirler. Kamçı hareketi temin eder ve besin almaya yarar. (Çıkış yeri Flagellata sistematiğinde önemlidir). Nukleus zarından veya stoplazma içindeki dip taneciğinden (bazal granül) çıkar. Burada bir de kamçı kesesi teşekkül etmiştir. (Dip taneciği bazı flagellatlarda bölünme anında ikiye ayrılır, kutuplarda iğ iplikleri meydana getirir). Flagellatlarda kamçının dip kısmına yakın bir yerde göz lekesi (stigma) denen kırmızı pigmentli bir organel vardır. Bu organizmalarda karbonhidrat depo eden cisimcikler stoplazmada yer alır. Plastidler genellikle serbest yaşayanlarda bulunur. Kloroplast içerenler güneş ışığında besin yapabilirler. Bu karakterleri nedeniyle bitki olarak da sınıflandırılırlar. Ancak hepsinde selüloz bir hücre çeperi yoktur. Çoğalma uzun eksen boyunca bölünmek suretiyle eşeysizdir. Bölünme ön uçtan başlar, nukleus mitozla bölünür, organeller bölünür. Eşeysel çoğalma tam olarak ancak bir kaç Zooflagellat.da saptanmıştır. (Son zamanlarda yapılan çalışmalar çoğalma olaylarının günün karanlık peryodunda olduğunu göstermektedir). Klorofilleri olmasına rağmen yaşadıkları ortamda bazı amino asitlerin mevcut olmasını isterler. Flagellatlar ototrof, heterotrof bazısı da saprofit olarak yaşar. Katı haldeki besin maddeleri ile beslenen türlerde, besin vücudun ön kısmında, kamçı dibinde bulunan ağız yolu ile vücuda girer. Þimdiye dek bildiklerimizden bu grubun hem bitki hem de hayvansal organizmalara ait özellik gösterdiği anlaşılmaktadır. Bu özellik evrim bakımından bitki ve hayvanların aynı orijine sahip olduklarını destekler durumdadır. Bazı flagellatlar, örneğin Eudorina ve Volvox koloni teşkil eder, Volvox’lar, çok hücreli hayvanların embriyo gelişmelerinin blastula safhasına benzer. Tek hücreliler ve çok hücreliler arasında geçit gibi görülürler. 14 Uygun olmayan şartlar altında kist teşkil ederler veya palmella safhasına geçerler. Palmella safhasında kistlerden farklı olarak metabolizma devam ettiği gibi bölünme ve çoğalma olayları da görülür. Vücut küre şeklini alır ve kamçılar kaybolur. Tatlısu flagellatlarında boşaltım organeli olarak kontraktil vakuol bulunur. Bunlar ya tek ya da vakuol sistemi halindedir. Fazla suyun dışarı atımında da kullanılır. Flagellatlara yağmur suları, birikinti suları, dam olukları, nehir ve göl gibi sularda rastlanır. Bazıları hayvan ve insanlarda parazittir. 60.000 kadar flagellat türü bilinmektedir. Ordo - Cystophlagellata : Doğrudan gözle görülebilecek büyüklüktedirler. Pelikula ile örtülü vücut içi jelatinli bir madde içerir mahtut bir bölgede stoplazma toplanmıştır. Noctiluca   miliaris : 1-1,5 mm. çapında bir veya iki kamçılı ve genellikle küre biçimindedirler. Stoplazma vücudun ön kısmında bulunur ve küçük bir bölgeyi kaplar. Vücudun geri kalan kısmını jelatine benzer bir madde doldurmuştur. Stoplazma, jelatinsi madde içine ağ şeklinde uzantılar gönderir. Başka organizmaları yiyerek geçinir. Stigma ve plastidleri Çoğalmaları ikiye bölünme veya zoospor meydana getirmek suretiyle olur. Zoosporlar birleşerek zigotu teşkil eder. Çok sayıda Noctiluca bir araya gelirse, ışık salmaları nedeni ile yakamoz denen olayı meydana getirirler. Denizde pelajik yaşarlar. Ordo - Euglenoidina : İğ şekilli, oval, uzun vücutlu olup vücut yüzeyi kalın bir pelikula ile örtülüdür, renkli veya renksiz olabilirler. Renklilerde parlak yeşil kromatofor bulunur. Euglena   viridis : Oval görünüşlüdürler. Yeşil renkli kromatoforları ince uzun olup bir merkez etrafında toplanmıştır. Bol oldukları zaman su 15 yüzünde hareket ederler. Yeşil lekeler meydana getirirler. Stigma ve boşaltım organeli olan kontraktil koful, vücudun ön kısmında yer almıştır. Astasia sp. Kromatoforsuz ve çoğu stigmasızdır. Ordo - Phytomonadina : Sabit şekilli, oval ve uzun flagellatlar olup vücut yüzeyi ince veya kalın olabilen selüloz zarla örtülüdür. Stigmaları vardır. İki kamçılı olup çanak şekilli bir kromatoforları vardır. Soliter yaşarlar veya koloni teşkil ederler. Nematod gibi diğer omurgasızların bağırsaklarında kamçısız olarak bulunan parazit türleri de vardır. Volvox : Tatlısularda yaşarlar ve koloni teşkil ederler. Bir kolonide 4-128 fert bulunur. Bazı türlerde 20 bin kadar fertten oluşan koloniler de görülür. Kolonide hareket belirli bir bölgeden öne doğru görülür. Yüzlerce fert küre üzerinde sıralanmıştır. Her fert ucu küre merkezine uzanan 6 köşeli jelatin bir piramit içindedir. Komşu fertler stoplazma köprücükleri ile irtibatlıdırlar (Fertler küre veya yassı şekillidirler). Çoğalma eşeyli veya eşeysiz olabilir. Koloninin ön kısmında bulunan fertler çoğalma kabiliyetini kaybetmiştir ve beslenme işini görür. Her bir fertte aynı delikten çıkan eşit uzunlukta 2 kamçı, stigma, çanak şeklinde kromatofor ve kontraktil vakuol Gonium : 4-16 fertlik koloni teşkil ederler. Eudorina : Genel olarak 32 nadiren 16 fertlik koloniler teşkil eder. Ordo - Protomonadina : Parazit flagellatlardır. Hayvan karakteri gösterirler. Küçük renksiz, 1-2 kamçılı, ameboid hareketli olup çoğu besinini pseudopod teşkil ederek veya basit bir ağızla alır. Soliter veya koloni halinde yaşarlar.Bu takım içerisinde yer alan bir familya (Coanaflagellatidae) ön tarafında birbirine çok yakın mikrovilluslardan oluşmuş .Collare. = yakalık taşırlar. Kamçı, bu yakalığın içinde bulunur. Coanaflagellatlar,süngerlerin koanositlerine benzediklerinden belki çok hücrelilerin köken aldığı hat olabilecekleri düşünülmektedir. 16 Leismania : Bu genus’a bağlı türlerin bazısı böceklerde bazısı omurgalılarda yaşar ve önemli hastalıklara neden olur. Leishmania donovani (Visceral Leismaniasis): Kala-azar hastalığının etkenidir. Hindistan, Güney Rusya, Çin, Türkistan, Irak ve Akdeniz havzasında görülür. Başka memleketlerde hem çocuk hem de büyükler hastalığa yakalanabildikleri halde Akdeniz havzasında bilhassa 4 yaşın altındaki çocuklarda görülür. Parazit memeli konakçısında dalak, karaciğer, kemik iliği, barsak ve lenf bezlerinin kan hücrelerinde (reticulaendothelial) bulunur. İnsan vücudundaki hücrelerde kamçısını kaybetmiştir. Hücre içinde çoğalır, çoğalma sonucu hücreler patlar, genç fertler yeni hücrelere geçer. Bir kısmı da dolaşım sistemine geçer, ara konakçı sinek (Phlebotomus) böyle bir kanı emince hastalık etkenini alır. L. donovani sinek vücuduna geçince kamçılı hale geçer, orta barsakta (mide) çoğalır oradan ön barsağa ve tükrük bezlerine geçer. Hastalarda karaciğer ve dalak şişer. Kansızlık baş gösterir. Düzensiz nöbetler sonucu hasta tedavi edilmezse öldürücüdür. Leishmania tropica : Asya, Afrika, İran, Arabistan ve Türkiye.de bulunur. Avrupa memleketlerinden (İspanya, İtalya, Yunanistan ve nadiren Fransa’da rastlanır). Yurdumuzda Güney ve Güneydoğu illerinde vardır. Ara konakçısının insektisitler ile hemen hemen ortadan kaldırıldığı yerlerde çok nadir olarak ortaya çıkar. Böceklerden (Diptera) ara konakçısı Phlebotomus papataci dir. Parazit ara konağın orta barsak epitelinde çoğalır, ön barsağa doğru yayılır, epipharynxe yerleşir ve nihayet sineğin bir insanı ısırması ile memeli konukçuya geçmiş olur. Memeli konukçularındaki kuluçka süresi birkaç gün, haftalar ve hatta bazen 3-4 yıl olabilir. Deride önce sivilce şeklinde bir kabarcık daha sonra birkaç santimetrelik yara meydana gelir. (Bir yıl içinde yara kurur ve bir leke bırakır. Onun için hastalığın bir başka ismi "Yıl- çıbanı" veya "Þark- çıbanı"dır. Bazı hallerden sonradan bakterilerinde yaraya girmesi ile yara daha çok büyüyebilir. Þark çıbanı el, yüz, ayak gibi örtülmeyen yerlerde 17 Trypanosoma : Bu genus omurgalı hayvanlarda kan paraziti olan türleri ihtiva eder. Serbest olarak kanda yaşar onun dışında diğer sistemlerde de görülür. (Konakçılar arasında kan emen omurgasız hayvanlar vasıtasıyla yayılır). Parazit, omurgalı hayvanın vücudunda tam bir Trypanosoma karakteri gösterir. Burada parazitin vücudu uzar, iki uç sivrileşir, dalgalı bir zar içinde uzanan kamçı görünür. Trypanosoma türleri bütün hayvanlarda bulunabilir, ancak insanda ve evcil hayvanlarda patogendir. (muhtemelen bu konakların yeni olması nedeniyle) Hastalık yapan türler tropik bölgelerde yaşar. Trypanosoma lewisi : Fare kanında bulunur. Patojen değildir. Trypanosoma   brucei : Sığırlarda nagana hastalığına sebep olur. Güney Amerika.da görülür. Trypanosoma   gambiense : Afrika da uyku hastalığının etkeni olup en önemli patogen trypanosomalardandır. Glossina palpalis denen çeçe sineği ile taşınır.Parazit, sineğin sindirim kanalında çoğalır, gelişimini tamamlar. Tükrük bezine geçer. Sinek insanın kanını emerken paraziti memeli konukçusuna bulaştırır. Düzensiz aralıkla nöbet başlar. Hastanın ateşi yükselir, lenf bezleri şişer, Parazitin metabolizma sonucu meydana getirdiği maddeler hastada felç yapar ve "uyku" haline neden olur. Sinir sistemini istila ettiğinde genel olarak öldürücüdür. Termit ve selülozla (simbiyoz) beslenen diğer böceklerin barsaklarında yaşayan ve Beta glikosidaz enzimi salgılayan ve böylece selülozu glikoza çeviren birçok flagellat türü bilinmektedir. II. Class : SARCODİNA (Rhizopoda) Bu sınıfa dahil hayvanlarda vücut şekilsiz olup simetrisiz olduğu gibi küresel simetri gösterenler de vardır. Flagellatlar.dan daha basit olup, gelişim dönemlerinde bazen kamçı içerirler. Yine Flagellatlar.dan farklı olarak vücut yüzeyinde pelikula bulunmaz . Vücut ordolara göre çıplak 18 veya kabukludur. Stoplazma bariz biçimde ekto ve endoplazma kısımlarına ayrılmış veya ayrılmamıştır. Nukleus bir veya daha fazladır. Hareket ve besin alma organeli çeşitli tipteki yalancı (Pseudopod) ayaklardır. Yalancı ayaklar loblu (lobopod), iplik gibi (filopod) ağ (retikulopod) şeklinde yahut desteklidir (aksopod). Deniz ve tatlısularda yaşarlar. Tatlısularda yaşayanlarda l-2 kontraktil koful vardır. Bazılarında kabuk, evcik, bazılarında stoplazma içinde SiO2 den ibaret iskelet bulunur. Çoğalmaları ikiye veya daha fazla parçalara bölünme ya da tomurcuklanma ile olur. I. Ordo: Amoebozoa : Stoplazma ekto ve endoplazmaya ayrılmış hareket loblu lobopod veya iplik filopodlarla olur, bunlar ya bir yerden çıkar veya vücut yüzeyine dağılmıştır. Subordo - Amobina Amoeba (Çıplak amipler) : Bu subordo’nun en tipik örneği amip cinsidir. Amipler tatlısularda yaşarlar. Çapları 200-300 mikron kadardır. Stoplazma ekto ve endoplazma olarak belirli bir şekilde ayrılmıştır, bir veya birkaç tane besin vakuolü, küre şeklinde bir kontraktil vakuol (nadiren 2-3) ve disk şeklinde nukleusları vardır. Pseudopodları lobopod veya filopod şeklinde olup bu harekete amoeboid hareket denir. Amoeboid harekete birçok Protozoa.da rastlandığı gibi kan hücrelerinden akyuvarlarda da görülür. Pseudopodun meydana geldiği bölgede endoplazmanın kolloid hali değişir. Gel halindeki endoplazma sol haline geçer. Amibin kontraksiyonu ile arka bölgede sol haline geçen endoplazma pseudopod istikametinde akar. Amip sudaki besin parçasını çevirir ve onu içine alır. Sindirim vakuol içinde olur. Sindirilmeyen artıklar hücrenin herhangi bir bölgesinden dışarıya atılır. Çoğalma eşeysizdir. İkiye bölünme tomurcuklanma ve multible bölünme ile olur. Amoeba   proteus : Çapı 200-500 mikron olan en büyük amip türlerindendir. 19 Amoeba vespertilio : En çok görülen tatlısu formlarından biridir. Entomoeba coli : İnsan kalın barsağında kommensal olarak yaşar. Besin kofulu içinde yemiş olduğu bakteri maya ve diğer mikroorganizmalar vardır. Entomoeba   histolitica : İnsanlarda amipli dizanteriyi yapar. Barsak epitelini yer. Parazit barsak boşluğunda iken minuta adını alır. Minutalarda besin kofulu içinde bakteri yoktur (E. coli.den farklı). E. histolitica kistleri su vs. ile alınır. Kistler sindirim borusunda açılarak amipler barsak dokularına girer. Barsak duvarına yerleştikten sonra magna adını alır. (Barsak epitelini ve alyuvarları yediği için vakvuolde alyuvarlara rastlanır). Minutalar barsak boşluğunda kist teşkil eder ve ancak yeni bir konağa (insana) geçtiği zaman açılır. Subordo - Thecamoeba (Kabuklu amipler) Bu grupta kadeh, şişe yumurta vs. şeklinde olan bir kabuk meydana getirilir. Kabuğun organik maddesine dışardan alınan anorganik maddeler de karışır. Pseudopodların dışarı uzanabilmeleri için kabukta bir tane büyük veya daha fazla küçük delik bulunur. Arcella   vulgaris - Nukleus 2 veya daha fazladır. Saat camına benzeyen kabukları vardır. Pseudopodlar filopod cinsindendir. Difflugia : Balon şeklinde olan kabukları yabancı cisimlerle sertleşmiştir. Pek çok türü vardır. 2. Ordo - Foraminifera : Vücut plazmasında bariz bir ektoplazma ayrımı yoktur. Dallanan pseudopodları vardır. Hepsi kabukludur ve kabuğun üzerinde çok sayıda küçük delik bulunur. İlksel formlar kum, kitin, sünger spiküllerinden, yüksek formlar ise kalsiyum karbonattan yapılmış kabuk içerirler. Kabuk boşluğu ya tek bir odacıktan ya da ara bölmeler ile birbirinden ayrılmış olan bir çok odacıktan oluşmuştur. Foraminifer kabuklarının deniz dibinde birikmesi ile tebeşir ve kalker tabakaları 20 teşekkül etmiştir Denizlerde yaşarlar. (18.000 türü bilinmektedir). Pseudopodların hepsi ya büyük delikten çıkar veya buna ilave birçok küçük delik bulunur. Salyangoz kabuğu biçimindedir. Bölünerek çoğalırlar. Bir veya daha çok sayıda küçük nukleus içerirler. Ammodiscus - Kabuk bir odacıklı olup kumdan yapılmıştır. Az veya çok helezonlu boru şeklindedir. Nummulites - Çap 19 cm. büyük fosil formlar bu cinstendir. Kabuk mercimeğe benzer üzerinde ikinci bir kabuk vardır. Foraminiferlerden Fusulinidae familyası birinci zamanın son devrinde oldukça kısa bir süre (75 milyon yıl) içerisinde büyük bir gelişme göstermiş ve sonra yok olmuştur (bunların bazıları sığ deniz tabanını kaplayan çapı 2 cm. kadar olan büyük tek hücrelilerdir). Genellikle bu fosillere petrolün bulunduğu yataklarda rastlanır. (Bir petrol kuyusu kazılırken tortul kayaları arasında birbirini izleyen ince tabakalar halinde Fusilinidae türlerinden oluşan katlar görülür. Tabakalardaki (belli bir kısmı içinde bulunan) türlerin incelenmesiyle sondaj yapılan yerde paleozoik tabakada ne kadar ilerlendiği tahmin edilebilir. 3. Ordo - Heliozoa (Güneş hayvancıkları) - Küre şeklindedirler. Stoplazma ekto ve endoplazma bölgelerine ayrılmışlardır. (Dıştaki ektoplazma bir veya daha çok vakuollüdür. Endoplazma orta bölgede granüllü olup nukleuslar yer alır). Çoğu tatlısularda yaşar, vücut çıplak veya kabuk kafesle örtülüdür. Pseudopod destekli tipinde (aksopod) olup, ekto-endoplazma sınırından, ya da nukleustan hatta çok nukleuslu türlerde herbiri bir nukleustan çıkar. (Hususi bir destek noktasından çıkar). Actinosphaerium - Örtü ve iskeleti yoktur. Oldukça büyük çapı= l mm. Aksopodların eksen çubukları ekto-endo stoplazma sınırında olup endoplazmada 200 veya daha fazla nukleus var. (Ektoplazmada 2-14 kontraktil koful yer alır. Kokmuş bataklık sularında bulunur. 21 Clathrulina - Küre şeklinde büyük delikli pseudokitinden iskeletleri vardır. Boru şeklinde uzun bir sapla kendilerini tespit ederler. 4. Ordo - Radiolaria - Stoplazmaları iç ve dış olmak üzere kapsül ile iki bölgeye ayrılır. (Kapsül organik madde ve pseudokitinden yapılmıştır) kapsül üzerindeki delikler vasıtasıyla iki stoplazma bölgesi temas halindedir. Genellikle silisyum dioksitten pek azında da stransiyum sülfattan yapılmış (kalsiyum aliminyum silikatta olabilir) değişik şekillerde hayvanlar aleminin en güzel ve zarif iskeletlerini salgılarlar. Başlıca iskelet elementleri iğne, diken, dallı veya çatallı çubuklar ve muhtelif şekilde delinmiş küreledir. (Bunlar kapsülün iç ve dışında bulunabilirler) Bu iskeletler okyanus tabanında çamur haline gelir ve basınçla çakmak taşı gibi silisli kayalara dönüşür. Endoplazmada bir veya daha çok nukleus, yağ damlacıkları, ektoplazmada besin vakuolleri, pigmentler ve yağ damlaları (Tek hücreli alg) yer alır. Bir kısımdan çok sayıda pseudopodlar çıkar. Pseudopodlar çoğunlukla filopod veya aksopod tipindedir (bu ordoda kontraktil vakuol yok). Dış tabakalarını genişleterek suda farklı seviyelere iner ve çıkarlar. Denizlerde yaşarlar, genellikle plankton hayvanlardır. Heterotrofturlar, flagellatlar ve diatomeler ile beslenir. Theopilium - İskelet miğfer şeklinde-Akdeniz.de Heliosphaeera - İskelet kafes şeklinde - Akdeniz.de III. Class - SPOROZOA (Sporlular) Omurgalı ve omurgasız hayvanlarda hücre içi ve hücre dışında yaşayan parazitlerdir. Her tür belirli bir konakçıda yaşar. Yuvarlak veya oval bir hücreye benzerler. Tek bir nukleusları vardır. Parazit olduklarından hareket ve boşaltım organelleri yoktur. Sporozoonlar konakçı vücudunda bir süre eşeysiz olarak çoğalır. Bu tarz çoğalmaya Schizogonie ana sporozoona Schizont ve bölünme sonucunda 22 meydana gelen genç hayvana da Merozoit denir. Merozoitler sağlam konukçu hücrelere hücum ederler diğer hücreleri aşılarlar. Merozoitlerin büyümesi ile yine eşeysiz çoğalan Schizont’lar veyahut eşeyli olarak çoğalan gamontlar teşekkül eder. Parazit organizma ancak eşeyli çoğalma yani Sporogonie yolu ile başka konukçulara geçme imkanını bulur. Yaşam döngüleri üç bölüme ayrılabilir; 1. Sporogonie (eşeysiz çoğalır) 2. Schizogonie (eşeysiz çoğalır) 3. Gametogonie (eşeyli çoğalır). Bu ayrımda, schizogonie safhası iki bölüme ayrılarak schizogonie ve gametogonie olarak incelenmektedir. Schizogonie periyodunun sonuna doğru bazı gametler makro ve mikrogamete dönüşerek eşeyli çoğalırlar. Bu safha eşeysiz ve eşeyli iki bölüme ayrıldığından bir farklılık oluşmaktadır. Gamontlar çoğunlukla bölünerek veya doğrudan doğruya gametleri (mikro ve makro gamet) meydana getirir. Gametlerin birleşmesi ile ortaya çıkan zigot yardımı ile parazitin geçişi olur. Zigot’un etrafı koruyucu sert bir kabukla örtülür onun için buna Spor da denilir. Sporozoa adı buradan gelmektedir. Zigot=spor, içinde çok sayıda genç fert teşekkül eder. Spor başka bir konakçıya geçince muhafaza parçalanır ve genç Sporozoitler serbest hale geçer. Büyüyerek schizont haline gelir. Bazı türlerde zigotun bir konakçıdan diğerine geçişi kan emen bir ara konakçıyla olur. Bu halde zigot etrafında kabuk bulunmaz. Sporozoanın çoğunda, bir hayat devri içinde schizogonie ve sporogonie birbirini tabip eder. Bu çoğunlukla konakçı değişimi ile birlikte görülür. Ordo - Coccidiomorpha : Hücre içi parazitidirler. Hayvanların barsak epiteli veya iç organlarında yaşarlar. Eimeria - küçük bir çiyan cinsi olan Lithobiusların barsak epitelinde yaşar. Ayrıca kümes hayvanlarının barsaklarında da yaşar. Plasmodium - Anopheles cinsinden dişi bir sivrisinek bir insanı soktuğunda deride açtığı deliğe biraz da tükrük akıtır. Şayet bu sinek plazmodiumlu ise tükrük içerisinde bulunan sporozoidler kana geçer ve eritrositlere girerler. Sporozoidler eritrositin içinde büyüyerek amip şekilli 23 bir schizont haline geçerler. Oradan karaciğere geçer, burada multible füzyon (çok parçaya bölünme) geçirerek merozoitler oluşur. Bu şekildeki çoğalmaya Schizogonie denir. Bu faz yaklaşık 10 gün sürer, çıkan merozoitler tekrar karaciğer hücrelerine saldırarak schizogonie ile çoğalabilirler. Merozoitler daha sonra eritrositlere saldırırlar ve burada tekrar schizogonie geçirirler. Eritrositin içi merozoidlerle dolunca parçalanır ve serbest kalan merozoidler schizogonie’yi tekrarlamak üzere diğer eritrositlere girerler bu bir süre devam ettikten sonra schizontlar merozoitlere kıyasla daha büyük olan ve daha çok besin maddesi ihtiva eden erkek ve dişi gamontlara değişirler. Gamontlar ancak ara konak vazifesi gören bir sivrisineğin barsağına geçebilirlerse gelişmelerine devam ederler. Bu zamanda erkek gamontlar multiple bölünmeyle 4 veya 8 mikrogamet meydana getirir. Dişi gamontlar olgun makrogametlere değişirler. Döllenme sivrisineğin barsak boşluğunda olur. Zigot uzundur ve amoeboid hareket eder. Buna ookinet zigot denir. Ookinet sivrisineğin barsak epitelinden geçerek barsak kaslarına yerleşir ve etrafı kalın bir kılıfla çevrelenir. İçerde multiple bölünme ile pek çok sayıda sporozoid meydana gelir. Kılıfın patlaması ile serbest hale gelen sporozoidler sivrisineğin vücut boşluğundan geçerek tükrük bezlerine gelirler. Böyle bir sivrisineğin insanı sokması ile Plasmodium’un hayat devresi tamamlanmış olur. Nöbetler daima merozoidlerin kan içine dökülmesi zamanına rastlar. İlk nöbetten bir hafta sonra gametler teşekkül eder. Gamontlu kan emmek sureti ile sivrisinekler enfekte olur. sivrisinekteki gelişme 10-20 gün arasındadır. Enfeksiyondan sinek etkilenmez. Plasmodium   vivax : 48 saatte bir alyuvarlar parçalanarak merozoitler kana geçer. Alyuvarların patlamasından önce titreme, patlamasından sonra ateş gelir. Bu parazitin neden olduğu sıtmaya Tersiana denir. Plasmodium   falciparum (Lavenaria malaria) : Tropik sıtmaya sebep olur. 48 saatte schizogoni devresi tamamlanır. Eritrositlerin birbirine yapışması sonunda kılcal damarların tıkanma tehlikesi vardır. Beyin ve kalp damarları tıkanırsa ölüme sebep olur. 24 Plasmodium   malaria : Schizogoni devresi 72 saattir. Quartana tipi sıtmaya neden olur. Sıtma tedavisi 17. asırda cinchona denen bir ağaç kabuğunun Peru’dan Avrupaya getirilmesi ile başlar. O zamandan beri kinin, malarya tedavisinde kullanılmaktadır. Denilebilir ki bu ilaç insanlar tarafından keşfedilen ilaçlar arasında son zamanlarda keşfedilen sülfamidler ve antibiyotikler dahil en fazla nisbette insan hayatı kurtarmıştır. 2. Ordo - Gregarinida : Birçok omurgasız hayvanın barsak ve vücut boşluklarında parazit olarak yaşarlar. Gragarina   blattarum : Hamam böceklerinin barsaklarında parazit olarak yaşarlar. Vücutları epimerit, protomerit ve deutomerit olmak üzere üç bölümlüdür. Epimerit çengellidir. Hayvanın tutunmasına yardım eder. Nukleus bir tane olup deutomerit bölümünde yer alır. IV. Class : CILIATA (Infusoria) Birhücreli hayvanların en yüksek organizasyonlu grubunu teşkil ederler. Vücutları oval, küre, silindir, vazo vs. gibi değişik şekillerde olup pelikula ile sarılmıştır. Bazıları üzerini örten zarın (pelikula) elastiki olması sebebi ile şekillerini değiştirebilir. Stoplazmaları ektoplazma ve endoplazma bölgelerine ayrılmıştır. Ektoplazmada kirpikler (sil), miyonemler, besin alma ile ilgili olan organeller, kontraktil vakuoller ve savunma organeli olan trikosistler bulunur. Endoplazma granüllü bir sıvı halindedir. Burada besin kofulları yedek besin depoları (glikojen ve yağ) ve nukleuslar görülür. Hareket organeli olan siller beslenmede de etkili kısa iplikçiklerdir. Bunlar ektoplazmada bulunan dip taneciklerinden çıkarak pelikula’yı deler ve yüzeye geçerler. Uzunlamasına ve diagonal olarak sıralanmış vaziyettedirler. Ciliat’ların bir kısmı da dip taneciklerini birbirine bağlayan 25 ipliksi bir sistem mevcuttur. Siller yapı ve fonksiyonları bakımından flagellatların kamçılarına benzerlerse de boyları kısa ve sayıları fazladır. Vorticella gibi bazı Ciliat gruplarında düz veya çizgili kas liflerinden ibaret miyonemler vardır. Bu lifler sayesinde bütün vücut veya bazı kısımları kontraksiyon yapabilir. Heterotrofturlar, bazıları bakteri, küçük birhücreliler ve çürümüş besinler ile geçinir. Bunlarda peristom bölgesindeki tüylerin hareketi ile ağıza doğru bir su akımı oluşturulur. Besinler titrek tüylerin hareketi ile cytostom ve huni şeklindeki cytopharynxten geçer. Bu arada küresel biçimde toplanan besin koful içine alınır. Besin kofulları stoplazma içinde belirli bir yönde hareket ederler. Sindirilen besinler koful membranından stoplazmaya geçer, artık maddeler ise sitopig’den dışarı atılır. Tatlısularda yaşayan türlerin ektoplazmasında ve belli yerlerde kontraktil kofullar vardır. Paramecium’da kontraktil koful etrafında daire şeklinde sıralanmış toplayıcı kanallar vardır. Trikosistler, korunma organelidir. Bunlar ektoplazmada, vücut yüzeyine dik olarak sıralanmış oval veya çomak şeklinde küçük organellerdir. Mekanik veya kimyasal uyartı karşısında pelikulada bulunan delikten fırlatılarak sivri uçlu uzun iplik halini alırlar. Paramecium gibi bazı cinslerde bu organeller bütün vücutta, yahut vücudun belli bölgesinde bulunur (Didinium). Endoplazmada Macronukleus ve Micronukleus vardır. Macronukleus beslenmede rol oynar. Micronukleus, çoğalma ile ilgilidir, sayısı l-80 kadar olabilir. Bölünmeleri enine ikiye bölünme şeklindedir. Nadiren boyuna olur. Macronukleus amitoz, micronukleus mitozla bölünür. Vorticella ’da olduğu gibi yeni teşekkül eden fertler bir araya gelerek koloni meydana 26 getirebilirler. Yalnız Suctoria alt-sınıfında tomurcuklanma ile çoğalma görülür. Ciliatlar.da Protociliata hariç hepsinde eşeysel çoğalmaya benzetebileceğimiz konjugasyon görülür. Konjugasyonda bireyler ağızlarınının bulunduğu kısımdan yan yana gelerek bir çift teşkil ederler. Bu sırada çiftteki her organizmanın macronukleus’u parçalanarak kaybolur. Mikronukleus’lar ise, üst üste iki defa bölündüğünden her bir fertte 4 nukleus meydana gelir. Bunlardan üçer tanesi stoplazma içinde erir. Geriye kalan birer nukleus bölünerek ikişer nucleus meydana getirir. Bu sırada yan yana gelmiş olan iki ciliat’ın hücre zarı eriyerek arada bir stoplazma köprüsü teşekkül etmiştir. Her iki organizmanın nukleuslarından birisi stoplazma köprüsü yolu ile diğerine geçer ve orada bulunan nukleus ile birleşir. Bundan sonra fertler birbirinden ayrılır. Bu dönemden sonra örneğin Paramecium caudatum ’da üç bölünme ile 8 nukleus teşekkül eder. Bunlardan üç tanesi kaybolur. Geriye kalanlardan 4’ü macronukleuslar.ı bir tanesi de micronukleus.u meydana getirir. Paramecium ve micronukleus bölünür. Macronukleuslar taksim edilir. Paramecium ve micronukleuslar tekrar bölünür. Neticede bir macro bir micronukleusu olan 8 Paramecium meydana gelir. Ciliata sınıfı 3 alt sınıfa ayrılır: l- Subclass; Protociliata 2- Subclass; Euciliata 3- Subclass; Suctoria 1- Sub Class Protociliata : Vücut şekilleri yuvarlak veya yassı olup siller vücudun her tarafında bulunur. Hücre ağzı ve kontraktil koful yoktur. Nukleus iki veya daha çok bölünme ile ve konjugasyonla değil kopulasyon şeklinde eşeyli olarak çoğalırlar. Kurbağaların larva ve erginlerinde nadiren de diğer soğuk kanlı ve omurgalılarda barsak parazitidirler. 27 Opalina ranarum : Vücut yassı ve çok nukleuslu su kurbağalarının son barsağında parazittir. 2- Subclass Euciliata : Hücre ağzı vardır, genç ve ergin safhaları kirpikli olan Ciliatlardır. 1- Ordo - Holotrichia : Basit yapılı siller kısa ve eşit boyda bunlar ya boyuna sıralar halinde bütün vücut yüzeyini kaplar veya kemer oluşturacak şekilde sıralanırlar. Ağız yüzeyde veya içeri çökük bir çukur (peristom) dibindedir. Paramecium : Bu grubun en çok bilinen cinsidir. Þekli nedeniyle terliksi hayvan olarak da adlandırılır. En çok rastlanan türleri; Paramaecium bursaria- geniş ve yassı olduğundan yeşil renkli görülür (zooklorel= yeşil renkli alg, stoplazmada simbiyoz olarak bulunur). Paramecium caudatum : En çok rastlanan türdür. Colpidium colpoda : Şekil olarak böbrek gibidir. Dileptus: Ön uçta uzun ve kontraktil bir hortum bulunur, arka uç sivri, macronukleus tespih tanesi gibi bir veya birçok kısımlıdır. 2 - Ordo - Spirotricha : Peristomun sağından veya ön kenarından cytopharynx’e inen adoral membranal bölge içeren tüm Ciliatlar bu grupta yer alır. Kirpikler kaynaşıp zar şekline dönmüştür. Sub Ordo 1- Heterotrichae - Kirpikler vücudun her tarafında eşit ve uzun sıralar oluşturacak tarzda dizilmiştir. Ayrıca ağzın bulunduğu bölgede cytopharynx.e kadar devam eden bir kirpik bölgesi vardır Stentor (Borozan Hayvanı) : Vücut huniye benzer biçimdedir. Ağızları vücudun geniş tarafında olan ağız çukurunun (peristom) dibindedir. Membranel bölgesi peristomun etrafını sardıktan sonra helezonlar teşkil ederek sitofarinse iner. 28 Genellikle kendilerini bir yere iliştirirler ancak buradan ayrılarak serbest yüzdükleri görülür. Macronukleus tesbih şeklinde olup micronukleus bir veya birden fazladır. Balantidium : Omurgalı (Domuzlarda) ve omurgasız hayvanların barsaklarında parazit olarak yaşar. Sub Ordo 2-Entodinomorpha : Sınıfın en kompleks grubudur. Vücudun arka ucunda değişen sayı ve biçimde dikenimsi uzantılar yer alır. Ağız bölgesinden başka diğer bölgelerde de membranal bölgeler vardır. Entodinium : Siller yalnız adoral bölgede yer alır. Sığır, koyun, deve vs. geviş getiren hayvanların sindirim sisteminde yaşar. Arka ucu uzantılıdır. Ophryoscolex : Arka uçtaki uzantıların dışında bazı türlerde ön uçta da diken çelenkleri vardır. Daha çok keçilerde bulunur. Stylonychia : Arka uçta 3 uzantı vardır. Tatlısularda bulunur. 3 - Ordo - Peritrichia : Siller diğer ordolara göre daha azalmıştır. Vücudun ön ucunda daire biçiminde peristom vardır ve burada etrafı sillerle çevreli iç ve dış sil kemeri oluşturur. Adoral bölgedeki siller dalgalı bir zar görünümünde. Bazılarında vücudun arka tarafında halka şeklinde sıralanmış siller bulunur ve genellikle vücutları bir sapta tutunmuştur. Çoğalmaları diğer Ciliatlardan farklı olarak boyuna bölünme iledir. Konjugasyonda görülür. Vorticella : Saplı ve çan biçimindeki vücutta siller yalnız ön tarafta iki sıra helezon oluşturacak tarzda dizilmiştir. At nalı şeklindeki macronukleus’un girintisinde küçük bir micronukleus bulunur. Sap ile kendini bir yere tutturur ve sapta bulunan esnek iplikler (miyonem) ile ileri geri hareket edebilir. Kontraktil vakuol bir tanedir. Vorticella microstoma - Pis sularda görülür. Vorticella nebulifera - Temiz sularda. 29 3 - Sub Class Suctoria : Gençleri serbest yüzer ve kirpikli Ciliatlara benzer. Ergin safhada silleri yoktur. Yerine emme tentakülleri meydana gelmiştir. Doğrudan doğruya veya sap ile kendilerini bir yere tesbit ederler. Sap kutikuladan yapılmıştır. Uzayıp kısalamaz. Bir adet oval biçimli uzun veya dallı macronukleus veya daha fazla sayıda micronukleus bulunur. Besin alma organelleri emme tentakülleridir, bunlar ektoplazmanın tüp şeklindeki uzantılarıdır. Stoplazmalar ekto ve endo olmak üzere ikiye ayrılır. Emme tentakülleri avın üzerine yapışır ve av felce uğratılır. Sonra da emilir. Eşeysiz çoğalma iç ve dış tomurcuklanma ile olur. Eşeyli çoğalma ve konjugasyon da görülür. Ephelota   gemmipara : Emme tentaküllerinden başka sivri uçlu tentakülleri de vardır. Denizlerde yaşarlar. SUB-REGNUM : METAZOA Protozoaların dışında METAZOA adı altında toplayabileceğimiz diğer hayvan phylumlarında vücut çok hücreden yapılmıştır. Gelişmeleri sırasında çeşitli embriyo tabakaları ve bunlardan da farklı organlar teşekkül eder. Phylum : PLACOZOA En ilkel çok hücreliler olarak kabul edilirler. 1883 yılında Avrupa.daki bir deniz akvaryumunda küçük, hayvana benzer serbest yaşayan bir canlı bulundu ve adına Trichoplax adhaerens dendi. Bu canlı, yassı vücutlu (bazen küremsi) 0.1-3 mm çapında, gevşek yapılı, kasılgan, mezenşime benzeyen ince iç hücreleri örtmüş monosilli epitel hücreleri ile çevrilidir. Kenar kısımları düzensiz, amipler gibi şekil değiştiren hücrelerden oluşmaktadır. Renksizdirler. Üzerindeki silleri ile çok yavaş olarak sürünür gibi hareket ederler. Bir hücreli ve algler ile beslenirler. Bölünme ve tomurcuklanma ile eşeysiz olarak çoğalırlar. DNA miktarı bugüne kadar bilinen hayvanların hepsinden daha azdır. Birçok araştırmacı bunları süngerler ile birlikte incelemeyi teklif etmektedirler. 30 Phylum : PORİFERA (Spongaria) Süngerler radiyal simetrilidir. Farklılaşmış bir organ sistemleri yoktur. İlk defa Aristo tarafından hayvanlar alemi içersine ilave edilen bu canlılar, sonradan uzun yıllar bitkisel organizmalar olarak kabul edilmiş hatta bazıları cansız olduklarını iddia etmiştir. 18. Asrın başlarında Zoophyta grubu içersine konulmuş daha sonra Linnaeus bunları Coelenterata grubu içersine yerleştirmiştir. 19. asrın başlarında phylum Porifera adı altında ayırt edilerek hayvanlar alemindeki bugünkü yerini almıştır. Ancak bugün bile süngerlerin sistematik yeri münakaşalıdır. Birçok araştırmacı tarafından Protozoa ve Metazoa gibi ayrı ve bunlara eşit anlamda Parazoa adı altında incelenmektedir. Süngerlerin çoğu denizde (larvaları hariç) sesil olarak yaşarlar. Ufak bir grubu (Spongilidae familyası) tatlı sularda bulunur. Sahillerde ve derin sularda kendilerini taşlar, mercan resifleri, bitkiler veya herhangi bir sert yüzey üzerine tesbit ederler. Çeşitli vücut şekilleri de (vazo, kadeh, torba veya şekilsiz kümeler halinde) bazen de çeşitli cisimlerin üzerini örten kabuk şeklinde olur. Boyları birkaç mm. ile iki m. arasında olup çok değişiktir. Renkleri genellikle kirli sarıdan (kirli beyaz, gri, yeşil, mavi, kırmızı, hatta) siyaha kadar olur. Genellikle çoğalan fertler ana hayvandan ayrılmayarak koloni meydana getirirler. Soliter yaşayanları da vardır. Bütün metazoonlardan çok daha ilkel bir yapı şekli ile Protozoa kolonisinden biraz daha ileri hücresel yapı gösterirler. Tüm çok hücrelilerin atası olan Protozoa.nın koloni teşkil eden flagellat grubundan süngerler alınmış ancak bir yan kol olarak kalmışlardır. Yüksek organizasyonlu hayvanlardan herhangi birinin süngerlerden gelmiş olduğuna dair bir kanıt yoktur. Uyarmalara karşı duyarsız olduğu sinir sistemi ve sindirim boşluğu bulunmayan tek Metazoa phylumu olduğu bilinmekteydi. Ancak son elektromikroskobik çalışmalarla bir sinirsel düzenlenmenin olduğu gösterilmiştir. 31 Basit yapılı bir süngerde vazo şeklinde olan vücut ortada geniş bir boşlukla bunun etrafını saran ince bir çeperden teşekkül eder. Sünger kapalı olan dip kısmıyla vücudunu bir yere tesbit eder. Serbest kalan taraftaki deliğe osculum ortada kalan boşluğa da osculum boşluğu gastral boşluk veya spongocoel denir. Sünger vücut hücreleri yapı ve görevleri farklı iki tabaka meydana getirir. Vücut çeperi gastral ve dermal olmak üzere iki tabakadan yapılmıştır. Gastral tabaka : Osculum boşluğunu çevreleyen bu tabaka bir epitel gibi yanyana gelmiş başka hiçbir grupta görülmeyen kamçılı ve hunili hücrelerden (choanocyte) yapılmıştır. Bunlar, kamçıların devamlı burgu hareketiyle osculum boşluğundaki suyu harekete getirir ve su ile birlikte sürüklenen besin maddelerini içlerine alarak sindirirler. Dermal tabaka : Bu tabakanın dış yüzeyi büyük ve yassı Pynacocyte (Pinakosit) hücrelerinden yapılmıştır. Bu hücrelerin arasında Porocyte denen por hücreleri bulunur. Por hücreleri dermal tabakasından başlayıp osculum boşluğuna kadar devam eden uzun hücrelerdir. Ortalarında hücre içi bir kanal uzanır ve kanalın bir ucu vücut yüzeyinden dışarıya diğer ucu ise iç boşluğa açılır (Bu kanala ostium adı verilir). Dermal tabaka esasında mezenşim karakterinde olup, esas kısmı peltemsi bir yapı gösteren ara madde yani matrixten yapılmıştır. Bu kısım içinde Amoebocyte hücreler yer alır. Amoebocyte hücrelerin çeşitli tipleri vardır. Örneğin cinsiyet hücrelerinin orijinini teşkil eden ve regenerasyonda rol oynayan archeocyte hücreleri; besin maddesini bir yerden diğer bir yere nakleden gezici hücreler ve sünger iskeletini teşkil eden skleroblast ve spongioblast hücreleri. Süngerlerde su vücuda porlardan girer ve choanocyteler aracılığı ile osculumdan dışarı atılır. Özel bir sindirim kanalı olmadığından choanocyteler tarafından yakalanan besinler burada sindirilir (hücre içi sindirim şeklinde). 32 Süngerlerin besinini mikroskobik organizmalar ve organik parçacıklar (ölmüş bitki ve hayvan artıkları) teşkil eder. Süngerlerde yapı bakımından 1- Ascon, 2- Sycon ve 3- Leucon olmak üzere üç tip ayırt edilir. Yapı bakımından basit olan sünger Ascon tipinde olanıdır. Bu süngerlerde gastral boşluk ile dış ortam arasında vücut çeperine kat eden kısa ve düz kanallar bulunur. Sycon tipte vücut duvarı içersinde tüp şeklinde çöküntüler meydana gelmiştir. Bu çöküntülerin etrafında choanocyteler yer alır. Leucon tipte vücuttaki mezenşim tabakası çok kalındır. Vücut duvarının içersinde odacıklar oluşmuştur. Bu odacıklar etrafında choanocyteler yer alır. Bütün sünger tiplerinde vücut desteğini sağlayan iskelet mevcuttur. Bu, spongin liflerinden yapılmıştır. İskelet genellikle iğne şeklinde spiküller veya ağdan yapılmıştır. Mezenşim içersinde yer alan özel hücreler tarafından meydana getirilirler. Spiküller kalkerli ve silisli maddelerden yapılmış olup skleroblast hücreleri tarafından meydana getirilir (Spiküller eksen ve ışın sayısına göre tiplere ayrılır ve buna göre süngerler arasında bir ayırım yapılır). Lif ağı şeklinde olan iskelet ise bileşimi kollagene benzer bir protein olan sponginden yapılmıştır. Spongin spongioblast adı verilen hücreler tarafından salınır. Çoğalma : Eşeyli ve eşeysizdir. Eşeysiz çoğalma 1. tomurcuklanma ile olur ve koloniler meydana gelir. Tatlısularda yaşayan süngerlerde iç tomurcuklanma yani gemmula adı verilen özel bir eşeysiz çoğalma görülür. Tatlısu süngerleri bulundukları suyun kuruması ve donması gibi uygun olmayan yaşama şartlarında ölmeye mahkumdurlar. Bu gibi hallerde tatlısu süngerlerinde gemmula (iç tomurcuklar) meydana getirilir. Gemmula teşekkül edeceği zaman özel arkeositler (Amoebocyteler) bir araya gelir ve dışında epidermis hücreleri bulunan toplu iğne başı gibi yuvarlak ve kabuğu değişik ortam şartlarına dayanıklı olan sarı renkli 33 tanecikler gemmula meydana gelir ve ortam şartları normale dönünce tam bir sünger halini alırlar. Gemmula teşekkülü kurak mevsimlerde tatlısu süngerlerinde türlerinin devamını sağlar. Diğer bir eşeysiz çoğalma 2. Regenerasyon.dur. Yaralanan ve kopan yer Amoebocyte ile tamir edilir. (Bununla birlikte yavaş da seyredebilir. Bazen aylar yıllar alır.) Parçalanan kısımlar Amoebocyte hücre yardımı ile hemen onarılır. 3. Eşeyli çoğalma: Yumurta ve spermalarla olur. Ekserisi hermafrodittir. Dışardan su ile birlikte gelen sperma evvela bir choanocyte içine girer ve buradan yumurtaya iletilir. Döllenme ana hayvanın mezenşimi içinde olur. Döllenmeden sonra segmentasyon başlar (totalegual). Çoğalan hücreler bir blastula meydana getirirler. Silli epitel ihtiva eden embriyo kanala geçerek ana hayvanı terk eder. Bir süre serbest yüzdükten sonra invaginasyon ile dış yüzeydeki kamçılı hücreler içe dönerek vücudun iç yüzeyini örter. Daha sonra kendini bir yere tesbit eden larva ergin bir sünger halini alır (zoocoğrafik dağılış bu yol ile sağlanmış olur). Süngerler diploblastik olmakla beraber embriyonun ektodermi ergin ferdin iç kısmını, endodermi ise dış kısmını örtmüş olur. Bu durum süngerlerin karakteristik özelliğidir. Solunum : Amoebocyte hücreleri O2 ’yi vücut mezenşimi içinde vücuda dağıtır. CO2 ’yi de dışarı atar ve solunumla ilgili olaylar hücre içinde cereyan eder (Protozoa gibi). Süngerler çok basit organizasyonlu olmaları nedeniyle yüksek bir regenerasyon yeteneğine sahiptir. İpek parçadan geçirilen süngerin her parçası yeni bir sünger meydana getirebilir. 3 sınıf ayırt edilir. 1- Class - Calcarea (Calcispongia) 2- " - Hexactinellide 3- " - Demospongia 34 1- Class - CALCAREA Spikülleri Ca2CO3’den yapılmıştır. Vücut yüzeyi sert kıllarla örtülüdür. Hepsi denizlerin derin olmayan kayalık sahillerinde bulunurlar. Birkaç milimetre ile 15 cm. kadar yükseklikte olan küçük formlardır. Grantia : 2,5 cm. boyunda basit silindir şeklindedir. Akdeniz ve Atlantik sahilinde bol bulunur. (Sycon tipinde iskelet kalkerden yapılmıştır.) Leucosolenia : Grantia’ ya benzer, daha küçük, kanal şekli daha karışıktır. Akdeniz (Çok sayıda türü var.) 2 - Class - HEXACTİNELLİDA : Camlı süngerler. Spiküllerini ya ayrı ayrı veya silisli bir madde ile lehimleyerek ağ meydana getirirler. Radiyal simetrili silis sipiküllerinden yapılmıştır. Euplectella   aspergillum : Venüs sepeti sıcak denizlerde yaşar (güzel görünüşlü). 3 - Class - DEMOSPONGİAE : Deniz ve tatlı sularda yaşar. Ticari önemi olan bütün süngerler bu gruptandır. En büyük süngerlerdendir. İskeletleri spongin denen ve bir çeşit protein olan keratin liflerinden meydana gelmiştir. Denizde yaşayan formlar 150 cm. kadar olabilir. Bazılarında silispikül vardır. Euspongia officinalis (Banyo süngeri) : Karışık yapılıdır. Spongin lifleri ve diğer anorganik maddeler ağ şekilli iskelet oluşturur. Lifler ıslakken yumuşak, kuruyunca sertleşir. (Hayvanın oluşumundan sonra canlı kısım parçalanır, döğülür ve hazırlanır.) Memleketimizde Akdeniz’den toplanır. Spongilla   lacustris : (Spongiller ağ tarzındadır) Kanal sistemli Leucon tipinde karışıktır. Büyük formlar hoş olmayan kokuları ince dikenli iskeleti ve tadı nedeniyle özellikle balıklar tarafından yenmez. Küçük formlar birkaç yıl büyükler ise 50 yıl veya daha fazla yaşar. Ayrıca bir 35 takım canlıların Annelid, Crustacea vs. barınağıdır. Sonuç olarak hücre tabakaları Diploblastik, coelom yok, metameri yok, sindirim sistemi, hücre içi morfolojik karakterleri farklılaşmış organ sistemi yok. PHYLUM : COELENTERATA Doku ve kısmen organların bulunduğu ilk hakiki metazoalardır. 1- Embriyolarında iki bariz hücre tabakası (diploblastik) mevcuttur. Kelime olarak coel= boşluk, enteron= sindirim sistemi anlamına gelir ki bu grubun üyeleri içi oyuk kese biçiminde ve 2- ışınsal simetrili vücut yapısına sahiptir. 3- İç kısım dışarıya bir ağızla açılan sindirim boşluğudur. Coelenterata adı da bu nedenle verilmiştir. Phylumun öteki adı knidaria ise bu gruba 4- özgü knidoblast ’ ların varlığına dayanmaktadır. Bu grubun bütün diğer yüksek organizasyonlu hayvanlarla aynı kökenden geldiklerine ve bunların atası olduğuna inanılmaktadır. Sebep olarakta yüksek organizasyonlu hayvanlar gibi bunların da dışarıya bir ağızla açılan iç sindirim boşluğunun varlığı gösterilmektedir. Protozoonların Ciliatlardan geldiğine inanılır. Çünkü Coelenterata larvaları (Planula) silli yapısı ve serbest yüzen tek hücresi ile Ciliatlara benzetilmektedir (Süngerlerde ise böyle bir durum yok yan dal halinde kalmış). 5- Bu grupta ilk gerçek doku gelişimi görülür. Aynı zamanda epitel, bağ, kas, sinir dokuları ve üreme organları bulunmaktadır. Sindirim boşluğunu kaplayan hücrelerin oluşturduğu tabaka (Gastrodermis) endodermden, dışını örtenler ise epidermis (ektoderm) dir. Yüksek organizasyonlu hayvanların aksine bu ikisi arasında mezoderm tabakasının hücresi yoktur. 6- Aradaki mesoglea denen, boşlukta hücresiz veya çok az hücre kapsayan jelatimsi bir matrix ile doldurulmuştur. Epidermis genellikle yassı bir hücre tabakası, dışı ince bir kutikula ile örtülü veya siller ve kamçılar içerir. Buradaki epitel kas hücreleri vücudun kontraksiyonunu sağlar. Özellikle ağız ve tentakül civarında duygu hücreleri dağılmıştır veya toplanarak duygu epitelini oluştururlar. Duygu hücrelerinden, bundan başka, ağız ve tentaküllerde 36 knidoblastlar yer almıştır. İntertestial hücreler tomurcuk ve diğer hücreleri oluştururlar. Bu phylumdaki (dimorfizm) hayvanların çoğunda iki tip fert görülür ve genel olarak bu, iki tip döl değişimi ile ortaya çıkar. Bunlardan sesil yaşayana polip serbest yaşayana meduz adı verilir. 7- Metagenez yani döl değişimi eşeyli ve eşeysiz çoğalmanın biri ardından tekrarlanmasıdır. Polipten eşeysiz olarak meduzlerin, meduzden eşeyli olarak poliplerin oluşumu metagenez olarak bilinir. Meduz vücudunun yanlarında küçük birer çıkıntı halinde gonadlar bulunur. Dişi gonad, yumurtaları; erkek gonad, spermaları meydana getirir. Döllenme suya dökülen spermatozoonların ovaryum içindeki yumurta hücresi ile döllenmesi sonucu olur. Polip tomurcuklanma ile eşeysiz olarak meydana gelir. Bazen meduz bazen de polip nesli bulunmayabilir. Tomurcuklanma en çok rastlanan çoğalma tarzıdır. Ayrıca 8- regenerasyon kabiliyeti çok yüksek küçük bir parça kısa bir zamanda bir fert oluşturur. Polip torba şeklinde olup ortada gastral boşluk ve bunu çevreleyen çeperden meydana gelir. Ağız peristom adı verilen bölgenin ortasındadır. Bunun aksi tarafı ile kendilerini tesbit ederler. Peristomun kenarında yakalama kolları tentaküller yer alır. Meduz ters dönmüş bir polip şeklindedir ve bir şemsiyeye benzer. Üst taraf Uxumbrella polip vücuduna, alt taraf subumbrella ise peristoma tekabül eder. Þemsiye sapının üzerinde kısa bir ağız borusu manubrium yer alır. Sub ve Uxumbrella sonunda tentaküller yer alır. Gastral boşluk çevresinde halka kanal ise basit ve dallanmış kanalları ihtiva eder. Bu phylumun en önemli özelliklerinden biri de knidoblast denen hücrelerin içinde yakıcı kapsüllerin (nematocyte) bulunuşudur. Yakıcı kapsüller mikroskobik hücre organlarıdır. Kitine benzeyen bir maddeden yapılmış ve dışında knidosil denen bir iğne taşır ve bu iğnenin besine dokunuşu ile nematosit dışarı fırlatılır. Fırlamada besin hayvanından gelen kimyasal etkenin olduğu zannedilmektedir. 37 Yakıcı kapsüller üç tiptir. 1- Penetrante : Öldürücü kapsüller (minyatür şırıngayı andırır fırlatıldığında hyphotoxin akıtır). 2- Volvante: Sarıcı kapsüller (avını ya paralize eder ya da öldürür). Kapsül içinde kapsüle bağlı bir ip var. Hayvana sarılır kaçmasını önler. 3- Glutinante: Yapışkan kapsüller (avlamadan başka hidranın takla atar gibi hareketinde tentakülün sert zemine yapışmasını sağlar). Vücut duvarında Ektoderm hücreleri arasında epitel kas hücreleri bulunur. Bunlar elastikiyeti sağlar. Vücudun ve tentakülün hareketi. Bundan başka peristom orta ağız sahası ile tentakül hücreleri üzerinde duygu hücreleri Bu hücreler ya toplanarak duygu epiteli teşkil ederler ya da epitel hücreleri arasına dağılmıştır. Duygu hücreleri sinir hücreleriyle irtibattadır. Bunlar polarize (kutuplaşma) olmadıklarından uyartıları her yöne naklederler. Beyin ve omurilik gibi merkezileşme yok. Ektoderm hücreleri arasında İnterstitital adı verilen enbriyonal hücreler de vardır. Bunlar knidositleri meydana getirirler, cinsiyet hücreleri değişirler, regerenasyon ve tomurcuklanma ile diğer hücre tüplerini verirler. Knidoblast hücreleri yakıcı kapsüller ihtiva eder. Endoderm kısmında çok vakuollü ve uçları ekseriya iki kamçılı hücreler bulunur. Bunlara besin hücreleri denir. Bunların arasında sayıca daha az olan bez hücreleri vardır. Avlarını canlı olarak yakalarlar. Yakalanan avlar evvela nemotocytler ile uyuşturulur, öldürülür ve sonra yutulur. Sindirim kısmen hücre içinde kısmen de hücre dışında yapılır. Vücut boşluğuna alınan madde endodermden çıkarılan enzimlerle kısmen sindirilir. Daha sonra besleyici hücre pseudopodlar ile besini hücre içine alarak (interselular olarak) sindirir ve besin maddesi diffüzyonla diğer hücrelere iletilir. Artıklar ağız yolu ile atılır. 38 Solunum: Suda erimiş 02 vücut duvarındaki ektoderm hücreleri ile alınır ve CO2 i dışarı verir. Endodermde bu olayı tekrarlar. 1) Hydrozoa, 2) Scyphozoa, 3) Anthozoa olmak üzere 3 sınıfa (class) ayrılır. 1. Sınıf HYDROZOA : Döl değişimi vardır. Ekto ve endoderm arasındaki ara tabakada hücre bulunmaz. Cinsiyet hücreleri ektoderm kökenlidir. Hem polip hem meduz dölü var. Bir hidroid polipin vücudu kaide, sap ve esas vücut kısmı olmak üzere 3 bölgeden yapılmış olup gastral boşluk ince bir tüp gibidir. Kaide, vücudu tesbite yarayan küçük bir tutunma kısmıdır. Koloni teşkil eden formlarda kaidenin etrafında zemin üzerine yayılan boru şeklinde uzantılar, stolon vardır. Stolon koloniyi sabit tutmaya yaradığı gibi tomurcuklanma ile üzerlerinde yeni fertler de oluşabilir. Soliter poliplerde stolon yoktur. Hidromeduz umbrellasının kenarında tentatüller bulunur. Bundan başka Uxumbrella ile subumbrella sınırında şerit şeklinde bir saçak (velum) vardır. Velum Obelia dışındaki hidromeduzlar için karakteristiktir. Meduzların sinir dokusu poliplere nazaran daha iyi gelişmiştir. Duyu organları genel olarak statositlerdir. Meduz ve meduzitler ayrı eşeylidir. Gonadlar manibriumun çeperinde veya radyal kanalların da altlarında bulunur. Cinsiyet hücreleri ekseriya dışarıya bırakılır. Döllenme ve gelişme nadiren ana hayvanın vücudunda olur. Meduzlar plankton (deniz yüzeyinde) halinde yaşarlar. Yalnız hidralarla bazı koloni teşkil eden formları tatlısuda yaşar. 1. Ordo - Hydroida : Umbrellaları genel olarak yüksektir. Gonatları manibriyum etrafında teşekkül eder. (Soliter veya koloni teşkil ederler). Kolonide iş bölümü vardır. Poliplerin bir kısmı besin almaya yarar (hidront); bir kısmı ise üremeyi temin eder. Buna üreme polibi gonangium denir. Üreme polibi 39 üzerinde cinsiyet fertleri gonoforlar meydana gelir. Hidroid poliplerinin koloni teşkil edenlerinde ektoderm kökenli bir kitin dış iskelet bulunur. Bu iskelet bazen sapların ve stolonların etrafını çeviren bir ince boru halindedir. Bunun dışında bazı hallerde hydrantların etrafında bir dış iskelet (hidroteka veya hydrotheca) bulunur. Bu şekilde hydrantlar tehlike halinde kendilerini teka içine çekebilir. Bazen tekalarda 1 veya daha fazla parçalı kapak bulunur. 1- Fam : Hydridae : Soliter yaşarlar. 5-6 tentakülden ibaret bir tentakül çelenkleri vardır. Gastral boşluk tentaküllerin içine kadar uzanır. Meduz dölü yoktur. Dünyanın her tarafında göl veya gölcüklerde yaşarlar. Teka bulunmaz. Hydra vulgaris : Tatlısuda yaşar. Hydra viridis Chlorohydra viridissima : Endoderm hücrelerinde simbiyont olarak yaşayan yeşil renkli zooklorelleri ihtiva ettiğinden yeşil renklidir, berrak suda yaşar. 2- Fam : Campannularidae : Hidrantların etrafında yer alan çan biçimindeki hidrotekaları ile tanınırlar. Obelia : Tek bir bireyle yaşama başlayan fert zamanla çok dallı koloniler meydana getirir. 3 - Fam : Sertullaridae : Sapsız olan hidrotekalar 1-4 parçalı kapak ihtiva ederler. Hydrantlar tamamen teka içerisine çekilebilir, tekalar karşılıklı ve dönüşümlü dizilir. Sertularella 4 - Fam - Plumularidae : Koloni dalları tüy şeklindedir. Hydrotekalar dallar üzerinde bir sıra üzerinde bir tarafı daha yapışarak dizilir. Kapak yoktur. Genellikle meduz dölü yoktur. (Eşeysel fertler meduzoidler halinde kolonilere bağlı kalır). Aglophenia 2 - Ordo : Siphonophora 40 Yüksek polimorfizm gösteren suda yüzen veya sabit olan bu grup şekilleri değişmiş polip ve meduz tipleri ihtiva eder. Zehirlidir. Physalia - Serbest yüzen en tehlikeli deniz analarındandır. Zehiri kobra yılanınkine yakın olup , büyük ızdırap verir. 2. Class : SCYPHOZOA Genellikle büyük deniz analarının bulunduğu gruptur. Vücutları 4 ışınlı bir radial simetri gösterir. Mezoglea tabakası hücreli bir jelatin tabakası halindedir. Eşey hücreleri endodermden oluşur. Döl değişim vardır. Ancak polip dölü gerileyerek önemini kaybetmiş meduz dölü önem kazanmıştır. Bu grupta (umbrellanın kenarında velum yoktur) Subumbrellanın ortasındaki dört köşeli kısa bir manibriumun ucunda dört köşeli ağız vardır. Ağzın köşe kısımları genellikle uzayarak kısa veya uzun olabilen ağız tentaküllerini meydana getirir. Sifo meduzlarda duygu cisimlerine rhopalium adı verilir. Vücut kenarları eşit bölmeler halinde loblara ayrılmış ve Rhopaliumlar kenar lopları arasındaki girintilerde yer almıştır. Bazılarında ışık verme kabiliyeti vardır. Birçoklarında mesoglea içinde zooksantel ve zookloreller yer alır. Hepsi karnivordur. Bu hayvanlar çana benzer vücutlarının açılıp kapanması, nabız atışı şeklinde bir hareketle yayılırlar. Vücutları kase, kadeh, borozan, kubbe, tabak, piramit, küp şeklindedir. Ordo - Semaeostomeae Umbrellanın tabak veya kase şeklinde olması ve kısa manibrium ile diğer ordolardan ayrılır. Aurelia (deniz anası): Bütün dünya denizlerine dağılmıştır. Ters dönmüş bir kaseye benzer. Aurelianın periferinde eşit bölümler halinde 8 lob bulunur. Bu loblar arasındaki girinti kısmında rhopalium denen 8 adet duygu organı yer alır. Subumbrellanın merkezinden kısa bir manibrium uzanır. Ortasında kase şeklinde ağız açıklığı bulunur. Manibriumdan 4 ağız tentakülü çıkar ve su içerisinde uzanır. Bu kollar üzerinde çok sayıda yakıcı hücre yer alır. Aurelia’nın besinini teşkil eden küçük 41 hayvansal organizmalar bu kolların yardımı ile yakalanır. Mide umbrella bölgesinin hemen hemen yarısını kaplayan at nalı şeklinde 4 gastrik cep ihtiva eder. Bu gastrik ceplerin iç yüzeylerinde de yakıcı hücreler yer alır. Gastrik ceplerin dış kenarlarında sekizi dallı bir kanal sistemi vardır. Bunlar periferde halka kanallarla birleşir. Bu sistem hem sindirim hem de sindirilen besinin sirkülasyonu ile ilgilidir. Üreme bilindiği gibi meduzlarda eşeylidir. Gastrik ceplerin tabanında parlak pembe renkte gonatlar yer alır. Bunlardan gametler teşekkül eder (Endodermden). Gametler olgunlaşınca gastrik cepler içine dökülürler ve buradan ağız yolu ile dışarı atılır. Yumurta suda döllenir ve az bir zamanda kirpikli bir planula larvası meydana gelir. Kısa bir süre serbest yüzdükten sonra kendisini sert bir zemin üzerine tesbit eder ve genç bir polip gelişir. Daha sonra polibin serbest ucunda enine bölünmeler ile tomurcuklar ephyra meydana gelir. Ephyra’ların kenarları 8 girinti ile parçalara ayrılmıştır. Az sonra her bir ephyra ana fertten ayrılır. Vücudun altı üstüne döner ve bu suretle serbest yüzen bir meduz meydana gelir. Ve aynı devrede devam eder. Aurelia   aurita   - 5-40 cm. boyda olup bütün Avrupa denizlerinde yaşar. Büyük sürüler teşkil ederler. 3. Class : ANTHOZOA (Mercanlar) 6000 türü ile en geniş sınıftır. Pharynx ve mezenterin gelişmiş olması ile farklıdır. Pharynx tüp şeklinde olup dış ortamı gastrovasküler boşluğa bağlar. Mezenter gastrovasküler boşluğun içinde septumlar biçiminde ve arada mezoglea bulunan iki gastrodermis tabakasından yapılmıştır. Bitki benzeri tamamıyla polip evresindeki sölenteratlar olup denizlerde yaşarlar. 6-8 veya çok ışınlı vücut bilateral simetrilidir. Yalnız polip dölü bulunur ve çoğu koloni halinde yaşarlar. Gastral boşluk oluşmuş bölmeler odacıklara ayrılmıştır. Mercanların hemen hemen hepsinde iskelet ektodermik veya mezenşimik olup ektoderm hücrelerinin kalkerli veya keratinli salgılarından meydana gelir. Çoğalmalar eşeysiz yani 42 tomurcuklanma ile veya eşeylidir. Eşey hücreleri endodermden meydana gelir ve ayrı eşeylidirler. Denizlerde bulunur. Soliter veya koloni halinde sesil olarak yaşarlar. Koloniyi bağlayan ana doku mezoglea ve gastrodermal tüplerdir ve koloninin alt yarısını yapıştırır. Mercan kayalıklarında olduğu gibi ölü iskeletlerinden oluşan resifler (üstündeki bireyler canlıdır) yuva ödevi görür. Sıcak denizlerde bulunurlar (Deniz gülü, deniz kırbacı, deniz yelpazesi, deniz kalemi, mercan başlıca örneklerdir). Phylum - CTENOPHORA (Taraklılar) Knidositleri bulunmayan sölenterlerdir. Yalnız iki tentakülleri vardır. Vücutlarının yanlız bir boşluk ihtiva etmesi, organ sistemlerinin bulunmayışı sinir sisteminin subepitel oluşu ile knidlilere benzerler. Denizlerde 100 kadar türü olup ceviz büyüklüğündeki küçük hayvanlardır. Bir jel kütleyi çevreleyen iki hücre tabakasından oluşurlar. Ekto ve endoderm arasındaki jel kütle mezogleaya benzer olup daha gelişmiştir ve içinde hücre bulunur. Dış yüzey tarağa benzeyen ektoderm kökenli 8 sıra kirpikle örtülmüştür. Bunların yardımı ile su üstünde hareket ederler. Vücudun üst kutbunda primer eksenin ucunda karmaşık yapılı bir duygu organı yer alır. Vücut yüzeyindeki tarak benzeri organlar radial simetrili, iç organları ise bilateral simetrilidir. Bu organ hücrelerine bağlanan 4 kirpik demeti ile dengelenen kalker tanecikler kirpiklere daha çok yüklenir ve duygu hücrelerini uyarırlar. Bu durum bazı kirpiklerin daha çok vurularak normal duruma dönmesini sağlar. Sinir sistemi epidermis altında yer alan dağınık bir sistem şeklinde olup bir ağ halindedir. Duygu organında kirpiklere uzanan sinir uzantıları vuruşları kontrol eder. Ağız vücudun alt tarafındadır. Sindirim boşluğu gastrovasküler boşluk halindedir. Sölenterlerden başlıca farklılıkları çok değişik larva gelişimine sahip olmalarıdır. Hepsi hermafrodittir. Çoğu parlak renklidir. Boşaltım sistemi henüz gelişmemiştir. Hem sölenterlerde hem de bu grupta büyük regenerasyon yeteneği görülür. Ktenoforların hepsi karnivordur. 43 Pleurobranchia   ileus - Az çok küre biçiminde ve 13 mm. boyda olup kuzey denizi ve Atlas Okyanusu.nda bulunur. COELEMATA (Bilateria) Sölomatlar bilateral simetrili muhtemelen yerde sürünen hayvandan türemiştir, çünkü bunların ağızları aşağı doğru yönelik olarak vücut ventral ve dorsalde farklılaşmış böyle olunca bileteral simetri doğmuştur. Duyu organları öne yönelmiş bunu sinir sistemi izlemiş ve hayvanın hareket ettiği yönde bir baş ortaya çıkmıştır. Organların oluşumuna mezoderm de katılmıştır ve mezodermle astarlanmış ikinci bir karın boşluğuna rastlanır (Coelom). Phylum : PLATYHELMİNTHES (Yassı kurtlar) Vücutları dorso-ventral olarak yassılmış, genellikle yaprak şeklinde ve yumuşak yapılı olan hayvanlardır. Tatlısu, deniz ve karalarda yani nemli ortamlarda serbest olarak yaşayan türlerden başka parazit olanları da vardır. Gastrodermis ve epidermis arası (blastocoel) mezenşim dokusu ile doldurulmuştur. Yassı kurtlar vücudun ventral bölgesinin orta kısma yerleşmiş tek açıklık olan ağızla, dışarı ile ilişkili bir gastrovasküler boşluğa sahiptir. Bu boşluk bazen dallanmış da olabilir. Dolaşım sistemi yoktur. Bu nedenle de sölenterlere benzerlerse de simetri durumlarının farklılığı, gonatların da taşıma kanallarının oluşu ve boşaltım organlarının varlığı ile onlardan ayrılır. En dışta epitel tabaka ve salgıladığı kutikula ile siller olup, vücut derilerinin altında bir epitel ve kas tabakası yer alır. Bu tabaka ile barsak arasındaki boşluk yıldız şekilli hücrelerin meydana getirdiği (ve aralarında boşluklar bırakan) blastocoel ile doludur. (Blastocoel intercelular boşluk bırakan yıldız şekli hücrelerden oluşmuştur ve bütün organlar bu doku içine gömülüdür). Sindirim sistemi sert bir yutak ve orta barsak olarak ayırdedilir. Anüs yoktur (ağız her iki maksatla da kullanılır). Torba halinde olan barsak parazit içermez. Boşaltım organı protonefridium tipinde ve dallı bir kanal sistemi halindedir. Protonefridiumlar yüzlerce alev hücresi içerir, çift ya da tek, bazen de çok 44 sayıda delikle dışarı açılır. Bu delikler vücudun karın tarafında ya da son kısmında bulunurlar. Protonefridiumlar vücudun su miktarını da düzenlerler. Sinir sistemi ağ şeklinde olup bazen de bir beyin ganglionu ile ondan çıkan sinir kordonları biçimindedir. Vücutları dışta ektoderm, içte endoderm ve bu iki tabaka arasında organların bir çoğunu meydana getiren mezodermden oluşur. Bu organlar kaslı bir yutak, basit gözler, duygu organları, bir beyin ganglionu, bir çift birbirine bağlı karın sinir şeridi ve üreme organlarıdır (ovaryum ve testisler, bunlarla ilgili kanallar, penis ve vaginadır). Sölenterlerin aksine yüksek organizasyonlu hayvanlar gibi bilateral simetrili olup belirli bir ön ve arka uca sahiptirler. Hareket vücut yüzeyindeki kirpiklerle, kısmen de toprak solucanlarına benzer şekilde kas kasılmalarıyla yapılır. I - Class - Turbellaria Tatlı su, tuzlu su ve rutubetli topraklarda serbest yaşarlar. Boyları 0.1-500 mm. arasında değişir. Fam: Planariidae :Yassı vücutludurlar,belirli bir baş bölgesi ayırdedilmez. Fakat ön taraf daha geniş olup duygu organı, göz, statosit, tentaküller içerir. Ağız karnın orta bölgesindedir. Başın iki yanı kulak gibi çıkıntılı olup, bazen iki yanında tat ve koku çıkıntıları bulunur. Düz bir boru halinde olan yutak (pharynx) bazen etrafı kas kılıfı ile çevrili ve ağızdan dışarı çıkarılarak ava sokulan bir boru halindedir.Derileri bir tabakalı yumuşak ve silli epidermis şeklindedir. Dışarı doğru kutikula salınmaz. Derideki kas kılıfı kontraksiyonu ile sürünerek hareket eder (karın tarafındaki yoğun siller yaşlanma sonucu azalır veya suda dalgalanarak yüzen planariadaki gibi). Sillerin hareketi vücut çevresindeki suyun hareketini dolayısı ile solunumu kolaylaştırır. Boşaltım organı protonefridiumlardır. Protonefridium vücudun iki yanında uzanan çok dallı iki kanaldan oluşur. Vücut dokusu içine kadar ulaşan ve bu kanallarla ilgili her bir küçük kanal ucunda kirpik demetine sahip olan alev hücreleri vardır. Üremeleri enine bölünme ile eşeysiz ve hermafrodit olduklarından karşılıklı döllenme ile eşeylidir. Hepsi karnivordurlar (böcek, solucan yer). 45 Turbelleryalarda çok yüksek regenereasyon kabiliyeti vardır. Solunum vücut yüzeyi ile yapılır. Planaria - Vücut benekli gri ve siyaha yakın renklerde olup 5-25 mm. uzunluktadır. Bunları bıçakla keserek öldürmek hemen hemen olanaksızdır. Bir planaryadan kesilip ayrılan en küçük parçalar bile yenilenme yetenekleri sayesinde eksik kısımlarını tamamlayarak yaşamaya devam ederler. Kesilen parçanın baş kısmına olan uzaklığı yenilenme yeteneğinin başarısını etkiler. Yenilenme, paranşim içinde yer alan neoblastlar tarafından yapılır. II - Class - TREMATODA Ergin haldeyken çeşitli hayvan ve bazen insanların iç organlarında parazit olarak yaşarlar. Yapı olarak turbelleryalara benzerlerse de parazit yaşamalarından dolayı konakçıya yapışmaya yarayan bir ya da daha fazla vantuza ve kirpikler yerine kalın bir dış tabakaya yani kutikulaya sahip olmaları ile onlardan ayırt edilirler. Turbellaryaların bütün hayat boyunca muhafaza ettikleri silli epitelleri trematodların sadece larva döneminde görülür. Yer yer diken ve pullar bulunur. Sindirim, boşaltım ve üreme organları turbellayalara benzer. Ancak ağız ön uçta yer alır. Genellikle hermofrodit hayvanlardır. Beslenmeleri ağız ve barsakla, büyük kısmında ise sadece vücut yüzeyi ile gerçekleşir. Ordo - Digenea Fam. Fasciolidae -Vücutları dorso-ventral yönde yassılaşmış olup, 10 mm. kadar büyüklüktedirler. Biri ağız çevresinde diğeri ise karın ortasında olmak üzere iki vantuzları vardır. Karın vantuzunun yeri familya ayrımında kullanılır. Cins-Distomum : Bu cinse bağlı türler geviş getiren hayvanlarda görülür ve karaciğer sülüğü veya karaciğer kelebeği olarak isimlendirilirler. Tesadüfen insanlara geçerek ölüme sebep olabilir. Distomum lanceolatum (Küçük Karaciğer Kelebeği): Ergin halde koyun, keçi, sığır, at karaciğerinde bulunur. Gelişme safhasında salyangoz ve 46 karınca olmak üzere iki ara konukçusu vardır. Boyu en fazla 1 cm. kadardır. Yassı vücutludur. Önde yer alan ağız bir ağız vantuzu (çekemi) içinde bulunur (geriye doğru barsağın uçları kapalıdır). Ağız vantuzunun gerisinde karın vantuzu yer alır. Parazit konukçu hayvana bu vantuz vasıtası ile tutunur. İki vantuz arasında eşey deliği bulunur. Hermofrodittirler. Bir çift olan testislerden çıkan kanallar birleşerek bir tek kanal (vas defferens) oluşturur ve penise açılır (Penis, penis kesesi içindedir). Dişi üreme organını küçük bir ovaryum, kısa bir oviduct ve uterus takip eder ve penisin yanından dışarı açılır. Bir fert binlerce yumurta meydana getirir. Yumurtalar konukçu hayvanın safra salgısı ile dışarı atılır. Yumurta açılır, içinde tam olarak gelişmiş sillerle örtülü bir miracidium larvası çıkar ve besini ile birlikte kara salyangozunun sindirim kanalına geçer, yumurta kabuğu erir; miracidium larvası serbest hale geçer ve orta barsak duvarına yerleşerek Sporosist meydana getirir (Bunun içinde ikinci bir sporosist dölü), daha sonra içerde serkaria dölü meydana gelir. Serkarialar vena vasıtası ile salyangozun solunum organı boşluğuna gelir ve burada (grup halinde) kistler oluşur. Her kistte 300 kadar serkaria vardır. Kistler solunum organından mukusla dışarı atılır ve otlara yapışır. Bu otu karınca (Formica) yerse metaserkariaya değişir. Bu hayvan koyun keçi vs. tarafından yenirse kist midede açılır ve mide duvarını deler. Vena yolu ile karaciğere gider, safra kanalına yerleşir ve erginleşir. Yumurtalar safra ile barsağa gelir, oradan dışkı ile dışarı atılır. Konakçının zayıflamasına ve ölümüne neden Fasciola   hepatica: Boyu 20-30 mm. kadardır. Koyun, keçi ve sığırların safra kesesinde bulunur. Halk arasında karaciğer kelebeği denir. Kutikula üzerinde diken gibi kabartılar vardır (kirpikli epitel). Dışkı ile konukçunun vücudundan atılan yumurtalar ancak su ile temas ettiği takdirde açılır ve içinden miracidium larvası çıkar (larva su içinde serbest yüzerken). Limnea cinsinden su salyangozuna girer, karaciğere yerleşerek sporosist oluşturur. Sporosistin içindeki embriyonal hücreler redia’ları 47 bunlar da serkariaları meydana getirir. Serkarialar salyangozun barsağı yolu ile dışarı atılır. Bunlar su kenarında bir bitkiye tutunur ve orada kist haline geçer. Otu yiyen konukçu hayvanın midesinde kist açılır, serkaria karaciğere geçerek safra kanalı ve kesesine yerleşir. Yumurtaları idrar yollarında iltihaba sebep olur. Distomum 5-6 mm. en çok 1 cm boyda olmasına karşın bunlar 20-30 mm. boyda olduklarından safra kanallarını kolayca tıkayabilir. Barsak Distomum.daki gibi iki kola ayrılarak aşağı iner ve yanlara doğru kollar oluşturur. Opisthorcis sinensis : (Çin karaciğer kelebeği) İnsan, köpek, kedi, fok ve balık yiyen memelilerin safra kanallarında bulunur. Miracidium ve serkarialar için ana konak salyangoz ve balıktır. Oryantal bölgelerde yaygındır (İnsan dışkısı karışmış sularla sulama nedeni ile) safra ve karaciğerde tahribat yapar. Echinostoma   (Schistosoma)   haematabium: Erkek büyük ve kalın vücutlu olup vücut ventralinde boydan boya bir yarık taşır. Dişi iplik şeklinde daha ince olup erkekteki bu yarık içinde yaşar. İnsanların toplardamarlarında parazit olarak bulunur. Sıcak ülkelerde ara konak su salyangozu olup özellikle pirinç tarlalarında su ile temastaki insan derisinden girerek yumurtalarını kana bırakırlar. Biraraya geldiğinde böbrekten atılamayıp iltihap ve kanamaya neden olur. III. Class - CESTODA (şeritler) Endoparazittirler. Ergin halde omurgalıların barsaklarında, nadiren karın boşluğunda parazit yaşarlar. Dar ve yassı şerit şeklindeki hayvanlarda önde başın bulunduğu kısma scolex denir. Scolex baş ve boyun kısımlarını kapsar. Bu kısımda parazitin konukçu hayvana tutunmasına yarayan çengel ve vantuzlar bulunur. Vücudun geride kalan kısmı seri halinde proglottis denen bölmelerden ibarettir. Proglottisler boyun kısmından tomurcuklanma ile meydana gelirler. Bu nedenle en yaşlı proglottisler en sondadır. Bunlar zaman zaman atılır. Bütün vücut yüzeyi kutikula ile örtülüdür. Kutikulanın altında sırasıyla kaide (bazal) membranı ve bunun altında dış tarafta halka, iç tarafta ise boyuna 48 uzanan kas liflerinden oluşmuş kas tabakaları bulunur. Bunun dışında parenşim kaslar da bulunur. Boşaltım organları protonefridiumlardır. Sinir sistemi başta enine bir ganglion ile geriye doğru uzanan iki sinir şeridinden meydana gelmiştir ki bunlar ana boşaltım kanallarının dışında uzanırlar. Barsak sıvısı içinde yaşadıklarından sindirim sistemi ve ağız yoktur besinlerini barsaklardan osmos yolu ile alırlar. Hermafrodittirler ve proglottislerin her birinde erkek ve dişi üreme organları vardır. Her bir proglottis kendisi ya da başka bir proglottis ile çiftleşebilir. Döllenmiş yumurta ile dolan proglottis kopar ve konakçı vücudundan atılır. Ordo- Cestodes Fam.- Taeniidae Taenia   solium: (domuz tenyası) Ergin halde insan ince barsağında yaşar. Ara konakçısı domuzdur. Ara konağın sindirim kanalına geçen yumurtanın kabuğu erir serbest kalan onkosfer (kancalı embriyo larvası) barsak epitelini delerek kas dokusuna geçer ve sistiserkus (kist) meydana getirir. Böyle bir domuz eti iyi pişirilmeden yenirse, kist barsakta erir, scolex dışarı çıkarak barsak duvarına tutunur. Bundan sonra proglottisler gelişmeye başlar. Ergin halde boyu 3-4 m. kadardır. Taenia   saginata : (Sığır tenyası) Bu şeridin ara konakçısı yalnız sığırdır ve ergin halde insanda bulunur. Sığır etinde bulunan larva şekline Cysticercus adı verilir. Larvalı sığır eti çiğ veya az pişmiş olarak yendiği zaman insanın ince barsağında 8-10 m. boyunda olan şerit meydana gelir. Pişmeden veya az pişmiş olarak yendiği zaman parazit alınmış olur. Domuz şeridine benzer ancak kanca yoktur. Bu şeritler besine ortak olarak insanı zayıflatır. B12 vitamini sömürür, fakat aynı zamanda meydana getirdiği toksik maddelerle kansızlık ve sinir bozukluklarına sebep olur. Parazitleri düşürmek için ilaç verilir. Ama scolex düşmedikçe 2,5 - 3 ay içinde şerit tekrar eski halini alır. 49 Echinococcus   granulosus: (Köpek tenyası) İnsanlar için en tehlikeli olan şerit köpek tenyasıdır. Ergin halde köpeklerde bulunan bu şeridin gelişmesinde ara safha koyunda ve insanda geçer. Köpekle oynayan bir çocuğu, köpek yaladığı zaman yumurtaları kolayca alabilir. Yumurtalar çiğ olarak yenen sebze ve meyvalardan da alınırlar. O zaman parazitin larvası insanın özellikle ak ve karaciğerinde bazen bir çocuk başı büyüklüğünde kistler meydana getirir. İçerisinde birçok scolex oluşur. Kistler çiğ et yiyen köpeklerin barsağında ergin şerit haline geçer. Bu parazit evcil hayvanlarda büyük ekonomik zararlara sebep olur. Kistler delindiği zaman kanla nakledilen scolexler vücudun başka yerlerinde yeni kistler meydana getirirler. Bunlar kalp ve beyine, diğer önemli organlara geçtiği zaman hastanın durumu çok ciddi bir hal alır. Kistlerin tedavisi ancak operasyonla mümkün olmaktadır. PSEUDOCOELOMATA Blastocoel ergin dönemde vücut boşluğu biçiminde gelişir, pseudocoel denen bu boşluk bütünüyle periton zarla astarlanmamıştır. Madde iletimi, azotlu atıkların depolanması, gametlerin gelişme ortamı, eşey bezleri ve organların gelişme ortamı görevlerini üstlenmiştir. Vücut örtüleri tek tabakalı epiteldir. Kaslı yutağın ve anüslerinin gelişmiş olması bu hayvanları Platyhelmintlerden ayırır. Regenereasyon yetenekleri yoktur. Phylum- NEMERTEA (Hortumlu solucanlar) Bazı literatürde class olarak alınmaktadırlar; en yakın akrabalarının Platyhelmintler olduğu düşünülmektedir. Platyhelmintler ile Annelid arasında özelliklere sahiptirler. Paranşime sahip olması, rhabdit benzeri salgı salgılayan silli epitel ile örtülü olması ile Platyhelmintlere, dolaşım sistemlerinin oluşması ve anüse sahip olmaları ile de Annelidlere benzerler. Vücutları yassı veya yuvarlak olup belirli bir baş bölgesi gelişmemiştir. Küçük bir gruptur (550 tür) hemen hepsi denizlerle serbest olarak yaşar. Parazit değillerdir; bu nedenle de fazla bir ekonomik önemleri yoktur; ancak evrimsel açıdan ilk organ sistemlerinin 50 görüldüğü bu grupta boy ortalama 5-20 cm. olup siyah ya da renkli çizgileri olan hayvanlardır. Gruba adını veren proboscis (hortum) vücudun ön ucuna açılan içi boş ve besin yakalanmasında kullanılan kaslı bir tüptür. Bu grupta görülen ilk önemli gelişme bir uçta besin almaya yarayan bir ağız aksi tarafta artıkların atılmasını sağlayan anüs ve arada bir özafagus ve barsakla tam bir sindirim sisteminin bulunmasıdır. Su ve metabolik artıklar yassı kurtlarda olduğu gibi alev hücreleri (protonefridium) ile atılır. Diğer bir gelişme sindirim ve dolaşım işlevlerinin ayrılması olup ilk dolaşım sisteminin bu grupta görülmesidir. Bu sistem vücut boyunca uzanan birbirine enine damarlarla bağlanmış kaslı 3 tüpten meydana gelmiştir. Kalp ve kılcal damarlar yoktur. Kırmızı kan hücreleri içeren gruplar vardır. Kan hareketi, vücut kontraksiyonu ve kaslı kan damarlarının kasılması ile olur. Vücudun ön ucunda sinir halkası ile birbirine bağlanmış iki grup sinir hücresinden (ganglion) meydana gelen bir beyin yer alır. Ayrı eşeylidirler. Regenereasyon yetenekleri var. Gelişmeleri metamorfozla olup larvasına "pillidium" larvası denir. Cerebratulus marginatus: Yassı vücutlu olup 30-40 cm. boydadır. Akdenizde yaşar. Memleketimizde Ankara tavşanlarında rastlanmaktadır. Aschelminthes 1. Phylum: Rotifera 2. Phylum: Nematoda 3. Phylum: Nemotomorpha 1. Phylum - ROTİFERA (Rotatoria) Bunlara döner solucanlar da denir. Bütün dünya deniz ve tatlısularda taban cisimcikleri üzerinde ve alglerde bulunur; bir kısmı da planktoniktir. 51 Laboratuvarlarda Protozoa kültürlerinde de rastlanır. Protozoonlardan daha büyük, mikroskobik hayvancıklardır. Vücutları baş, gövde ve ayak olmak üzere 3 bölgeye ayrılır. Vücut ince bir kitin tabakası ile kaplı olup genellikle arka uçta bir ayak yer alır. Hayvanın tespit edilebilmesi salgı bezleriyle olur. Başta kenarı sillerle çevrili bir disk organı vardır. Buna tekerlek organı da denir. Bu organ harekete ve besin almaya yarar. Rotatorlar saydamdır. Hareket halindeyken iç organları görülür. Ağızdan sonra kaslı farinx (mastax) gelir. Farinx, kutikular bir çeneye sahip olup 7 parçadan oluşmuştur. Öğütücü mide kitinden öğütücü dişler içerir. Daha sonra kaslı mide yer alır. Sindirilmeyen maddeler anüs ile sonlanan bir barsakla dışarıya atılırlar. Başaltım organı protonefridiumdur. İyi gelişmiş bir sinir sistemi vardır. Dişiler partenogenetik olarak çoğalabilirler. Yumurtalar döllenmeden gelişebilir. Erkekleri dişilerinden daha küçüktür. Rotifera’lar arasında şekil ve yaşadıkları yerler bakımından çok büyük değişiklikler vardır. Göl sularında bulunanların vücudu uzun yapılıdır. Arka kısımları çatal şeklindedir (bu hayvanlar ağızlarının etrafında bulunan kirpiklerle suda yüzerler ve solucan şeklinde hareketler yaparlar). Diğer bazı Rotifera’lar silindiriktir ve içinde yaşayabilmek için kendilerine bir kabuk örerler, bu şekilde dış etkilerden kendilerini korumuş olurlar. Bu durum onların çok yaygın olmalarını sağlar. Rotiferlerde yalancı bir coelom bulunduğundan Nematoda ve Gastrotrichia.larla çok yakın akrabalıkları olduğu kabul edilmektedir. Rotifer ve Gastrotrichialar sabit hücreli hayvanlardır. Embriyonik gelişme sonunda mitoz durur. Büyüme ve regenereasyon görülmez. Yalnızca birkaç gün yaşarlar ve yaşlanma başlar ancak günde birkaç saat sodyum sitrat içinde tutulurlarsa insanlardaki gibi yaşlanma nedeni olan kalsiyum tümüyle alınır ve yaşam süresi uzatılabilir. Bu alanda yapılacak deneyler ile insanın ömür uzunluğunun uzatılabileceği sanılmaktadır. Rotatorlar kuru olarak yani latent safhada yılarca canlı tutulabilir. - 272° C.da 8 saat yaşarlar. Bu nedenle deneylerde de kullanılabilirler. 52 Fam - Philodinidae Philodina - Tatlı ve durgun sularda serbest olarak yaşarlar. Sürünerek hareket eden birçok rotator ihtiva ederler. Fam - Brachionidae Gövde kase şeklinde olup vücudunda çıkıntı şeklinde küçük dikenler bulunur. 2. Phylum - NEMATODA Rotifera ve Gastrotrichia ile akraba oldukları ileri sürülmektedir. 10.000 den fazla türü olan bu grup üyeleri denizlerde, tatlısularda, toprakta bitkisel ve hayvansal çürümüş maddeler içinde bulunur. Gruplar farklı ortamlarda yaşamalarına karşın vücut organizasyonları çok benzer. Vücutları uzun ve segmentsizdir; ön kısmı yuvarlak arka kısmı iğ şeklinde sivri, yassı veya çatallıdır. Büyüklükleri çok değişir, serbest yaşayan gruplar 1 mm. kadardır, parazit yaşayan at barsak nematodu 35 cm., Floria medinensis ise 2 metredir. Çoğu hayvan ve bitki parazitidirler. Hemen hemen her toprakta ekonomik önemi büyük olan çok sayıda nematod Başta halka biçimli bir serebral ganglion buradan karın tarafına inen sinir kordonları bulunur. Nematodlarda sindirim sistemi düz bir boru şeklindedir. Ön uçta ağız, arkada anüs bulunur. Bilindiği gibi bu grupta vücut duvarı ile sindirim sistemi arasında yer alan vücut boşluğu, pseudocoel (yalancı boşluk) tipindedir (hakiki coelomda bulunan mezodermik tabaka yoktur). Vücutları kalın fakat çok esnek olan epidermis tarafından salgılanan kalın, üstü partiküllü birkaç tabaka olabilen kutikula ile kaplanmıştır. Silli epitel yoktur. Yalnız boyuna kasları gelişmiştir. Bu nedenle kolaylıkla yılan gibi sürünerek hareket ettikleri halde zorlukla yüzerler. Ergin devrede hücre bölünmesi (mitoz) durur. Ancak hayvan hücre büyümesi ile gelişir. Genç bir nematodun ergin hale gelmesi sırasında kutikula büyümeyi engeller. Bu nedenle kutikula periyodik olarak değiştirilir (gömlek 53 değiştirme). Bu bir nevi deri değiştirmektir. Bu grupta genellikle ergin oluncaya kadar 4 kez deri değiştirme görülür. Her organ belli sayıda hücre içerir. Regenereasyon yoktur. Nematodların çoğu ayrı eşeylidir. Bu durum hayvanlar aleminde ilk defa görülür ve eşeyli olarak ürerler. Erkek eşey açıklığı anüsten, dişinin ise ön ventral taraftan (bir çift olarak) açılır. Fam - Ascaridae - Oldukça kalın vücutludurlar. Ascaris lumbricoides   (barsak solucanı): İnsanlarla domuzların ince barsağında (30 cm. yuvarlak açık pembe renkli) yaşarlar. Ayrı eşeylidirler. Parazit yaşadığı için ağız ve anüs küçülmüş olup, dolaşım sistemleri Döllenme vücut içinde olur, erkekten alınan spermalar uterusa gelerek yumurtayı döller. Sert bir kabuk ile çevrilen yumurtalar yaşadığı hayvanın barsağına inerek dışarı atılır, yumurtaların gelişebilmesi için birkaç hafta nemli toprak veya suda kalması lazımdır. Yumurtalar henüz dışkı içinde iken içlerinde küçük kurtçuklar gelişir. Bu yumurtalar domuz veya insan besinine karışarak alınırsa ince barsakta açılır. Genç kurtlar ince barsağı delerek kan damarlarına buradan da kalp ve akciğere geçerek, bronşlara girerler. Oradan hava boşluğuna ve yemek borusuna tekrar bronşa geçerek erginleşirler. Genç kurtlar çok sayıda ise iltihap, sıtma, kanama gibi nöbetlere sebep olur. Bir dişi askaris günde 200.000 döllenmiş yumurta bırakır. Ascaris   megalocephala (at askarisi) 20-30 cm. boyda olup at barsaklarında parazittir. Fam. Anguillulidae Tarımda ekonomik önemi olan türleri içerir. Anguillula tritici : Buğday zararlısı Anguillula dipsaci : Çavdarda zararlı Heterodera : Pancar ve domateste zararlı 54 Fam. Filariidae İplik kalınlığında ince uzun vücutludurlar. Erginleri lenf dokularında yaşar. Birkaç cm. boydadır. Küçük larvalar kana karışır ve kan emen sineklerle yeni konağa geçer. Filaria - Çoğu bağ dokusu içinde genellikle derinin altında yaşar. Filaria bancrofti - İnsanların lenf sisteminde yaşar ve lenf damarlarını tıkar (Dokularda şişme görülür vücudun altı ve bacaklar şişer). Fil hastalığı elephantiasisi yapar. İnsandan insana geçimi sinek ile olur. Fam. Trichinellidae Trichinella   spiralis: Hayat devresinin bir kısmını insanda geçirip, domuz ve sıçan ince barsağında parazit olup kana, dokulara, çizgili kaslara geçip orada kalker kist oluşturur. Kurtçuklar birkaç yıl sonra yeni konukçuya geçer, kistler sindirilir. Larvalar ince barsakta erginleşir ve hastalık Trichinosis başlar, barsak çeperlerinin delinmesi ateş ve ishal yapar. İkinci safha larvalar kas dokusuna yerleşir. Kas faaliyeti durur. Ağrılar başlar ölüm görülebilir. Fam. Strongylidae - Vücutları silindir şeklinde bazen de iplik gibidir. Kenarları ekseriye dişli olan büyük bir ağız kapsülü içerir. Ancylostoma   duodenale   (Kancalı kurt) Anemiye neden olur. Erginler insan ince barsağında beş sene kadar kalabilir. Barsağın mukozası ile beslenir ve dişleri ile barsak tümörlerini eritir. Fam. Oxyuridae - Çok küçüktür. Gelişmelerinde taşıyıcı ara konak yoktur. Omurgalı hayvanlarla arthropodların barsaklarında yaşarlar. Ağızlarının kenarı düz veya dudaklıdır. Oxyuris - Çoğu 3 dudaklı olup dişilerde vücudun arka ucu iğne gibi uzun ve sivri, erkeklerin ise küttür. Oxyuris   vermicularis - İnsanlarda genellikle çocuklarda görülen parazitlerden biridir (dişiler 2-5 mm, erkekler ise 9-12 mm. boyunda olur). 55 Genç hayvanlar ince barsakta, erginleri kör barsak ve kalın barsakta yaşarlar. Genellikle geceleri yumurta ile dolu dişiler anüsten çıkarak anüs çevresine binlerce (13.000 kadar) yumurta bırakırlar. Normal halde bunlar gelişerek larvaları meydana getirirler. Larvalar henüz yumurta kabuğundan çıkmamış bir halde ağız yolu ile insana geçtikleri taktirde 14 günde ergin hale gelirler. Parazitlerin cilt üzerindeki hareketleri kuvvetli bir kaşıntı yapar. Bazen kaşınan yerlerden tırnak aralarına giren yumurtalar bilhassa küçük çocuklarda parmakların ağıza sokulması ile tekrar aynı konağa döner. Önemli enfeksiyonlara sebep olur. 3. Phylum - NEMATOMORPHA Vücutları iplik şeklinde ve çok uzun olan çoğunlukla kaynak sularında rastlanan kıl kurtlarıdır. İki uçta biraz yassılaşmış olan vücut silindirik bir yapı gösterir. Larva parazitken, erginleri serbest yaşar. Vücutları hipodermis tarafından salgılanan kutikula tabakası ile örtülüdür. Hipodermis bir hücre sırasından meydana gelmiştir ve altında hücreleri epitel şeklinde sıralanmış bir kas kılıfı yer alır. Kas kılıfı yalnız boyuna uzanan liflerden yapılmıştır. Vücudun ön ucunda bulunan ağız ya çok küçülmüş veya tamamen kapanmıştır. Barsak karın sinusunun içinden geçer. Bütün vücut boyunca uzanan sindirim borusu ergin hayvanlarda yer yer körelmiş olabilir. Bu hayvanlarda özel bir boşaltım aygıtı yoktur. Hepsi ayrı eşeylidir. Yumurtalarını suya ve su bitkileri üzerine uzun iplikler halinde bırakırlar. Yumurtalardan küçük larvalar çıkar, bunlar böcekler tarafından besin ile alınırlar. Larvalar bu hayvanların sindirim borusundan vücut boşluğuna geçerler ve orada metamorfoz geçirerek süratle ergin boya ulaşırlar ve konağı terk ederek serbest olarak kaynak suları içinde yaşarlar. Fam- Gordiidae (tel kurtları) Gordius aquaticus - Kahve renkli bir tel şeklindedir. Avrupada bulunur 56 PHYLUM - GASTROTRİCHA Rotiferlere çok benzerler, ancak tekerlekler organı yoktur. Vücutları karın tarafı yassı bir şişeye benzer. Ön uçları baş şeklinde arka uçları çatallıdır. Vücut yüzeyi ince bir kutikula ile örtülüdür ve yüzeyde diken, pul gibi çıkıntılar görülür. Vücut yüzeyinde bazı bölgeler (karın yüzeyi ve ön uca yakın kısım) sillidir. Karın tarafındaki silli bölge yan yana uzanan iki şerit meydana getirir. Baş kısımda da kamçılardan meydana gelmiş dört püskül bulunur. Deride birçok bezler vardır. Ağız ön uçtadır. Sindirim borusu düz olarak arka uca kadar uzanır ve anüs ile sonlanır. Boşaltım organı vücudun yanlarında yer alan 7 çift protonefridiumdur. Boşaltım kanalları dolanmaz, ancak çok kıvrımlıdır. Sinir sistemi ön barsağın yan kısmında yer alır, iki parçalı beyin ve bundan ayrılan bir çift sinir kordonundan meydana gelir. Ancak mikroskopta görülebilen küçük hayvanlar olup havuzlarda, durgun sularda ve çok azı denizlerde yaşarlar. Besinleri bakteri ve alglerdir. Bu phylumda da rotororlarda olduğu gibi hücre sayısı sabittir. Bir kısmı hermofodittir. Bir kısmı da partenogenetik çoğalan dişilerden meydana gelmiştir. Erkeklere PHYLUM - BRYOZOA (Yosun hayvanları) Bir kısmı yosunlara çok benzer diğer bir kısmı da kayalar üzerinde ince dantelli kabuklar şeklinde görünürler. Genellikle koloni meydana getiren sesil hayvanlardır. Bazı türler kalsiyum karbonattan meydana gelen koruyucu bir kılıf salgılarlar. Ağız; üzerinde tentaküller bulunan daire veya at nalı şeklinde lopofofor adı verilen bir kenarla çevrelmiştir. Sindirim borusu "U" harfi şeklindedir (bu sebeple anüs ağıza yakındır). Hermofrodit hayvanlardır. Tatlısuda yaşayanlar statoblast adı verilen tomurcuklanma ile ürerler. 2 gruba ayrılırlar: 1. Entoprocta, 2. Ectoprocta 57 1. Entoprocta- Hakiki karın boşluğu (Coleom) yoktur. Yerine yalancı coelom (Pseudocoelom) mevcuttur. Anüs lopofoforun içindedir. 2. Ectoprocta- Gerçek coelom vardır ve anüs açıklığı lopofoforun dışında kalır. Kolonilerinde avicularium adı verilen ve kuş gagasına benzeyen bir organ bulunur. Kaslarla hareket eder ve ses çıkararak açılıp kapanır. Küçük hayvanların koloni üzerine yerleşmesine engel olur. PHYLUM - BRACHİOPODA (Kandil kabuklular) Kökeni eski devirlere dayalı, kaslarla açınıp kapanan ve kalsiyum karbonattan meydana gelmiş kabukları ile midyelere benzerler. Ancak midyelerde kabuk vücudun sağında ve solunda, bu grupta ise hayvanın altında ve üstünde yer alır. Alttaki kabuk bir sap kısmı ile sağlam bir zemine tutunur ve hepsi denizde yaşar. Sesil hayvanlardır. Jeolojik devirlerde çok daha zengin (3.000 tür) tür sayısına sahip olmakla birlikte bugün 200 kadar türle temsil edilirler. Ağızın iki yanında sillerle çevrilmiş lopofofor kolları tentakülleri bulunur. Boşaltım organları sindirim sistemi kontraktil çalışan kalp, gerçek coelom boşluğu vardır. Yumurtadan çıkan larva sillerle örtülüdür. COELOMATA Bu hayvanlar periton denen mezodermal zar ile yani epitelle tamamen çevrilerek astarlanmış ikinci bir karın boşluğu içerirler. İç organlar bu boşluk içinde yerleşmiş yine peritonla astarlanmışlardır. Coelomatlar ergin dönemde bilateral simetrilidirler. PHYLUM - ANNELİDA Tatlısu, deniz ve karada yaşayan halkalı kurtların bir kısmı diğer hayvanlarda parazittirler. Vücut homonom segmentlere ayrılmıştır. Gerçek coelom ve mezoderm (schizocoel) ihtiva ederler. Sindirim, boşaltım, üreme ve sinir sistemleri vücut boyunca uzanır veya kısmen metameri gösterir. 58 1. Annelitlerde deri ve kas çok iyi gelişmiştir. Vücut en dışta epidermisin bir salgısı olan kutikula ile sarılmıştır. Bunun altında tek tabakalı bir epidermis bulunur. Ondan sonra halka kaslar daha sonra da boyuna kaslar yer alır. 2. Sindirim sistemi Genel olarak önde ağızla başlayan ve anüsle sonlanan uzun bir boru şeklindedir. 3. Dolaşım sistemi kapalıdır. Barsağın üstünde, mezenter içinde uzanan kontraktil bir sırt damarı ile barsak ve karın sınırı arasından geçen bir karın damarından meydana gelir. Sırt ve karın damarı vücudun ön ve arkasında birleştikleri gibi her segmentte bu iki damarı birbirine birleştiren halka şeklinde damarlar vardır. Bazı hallerde sırt damarından başka halka damarlardan bazıları da kontraktil olabilir. Bu taktirde bunlara kalp adı verilir. Kan sırt damarında arkadan öne doğru karın damarında da önden arkaya doğru akar. Kan plazmasında az miktarda kan hücresi ve erimiş halde hemoglobin bulunur. Annelitlerde damar sistemi olmayan birkaç basit form da mevcuttur. 4. Solunum, deri ve bazı sucul gruplarda solungaçlarla yapılır. 5. Boşaltım organı segmental sıralanmış nefridium’lardır. Her segmentte bir çift nefridium vardır. Organları silli bir huni (nefrostom) ile coelom boşluğundan başlarlar ve huninin devamı olan silli boşaltım kanalı da aynı segmentten veya onu takip eden segmentin ventral kısmından dışarıya açılır. Nefridiumlar boşaltım maddelerinden başka coelom boşluklarına geçen eşey hücrelerini de dışarı taşırlar. 6. Sinir sistemi vücudun ön kısmında bulunan bir çift serebral ganglion ile başlar. Buradan ayrılan iki konnektif yutağın etrafını bir halka gibi sardıktan sonra ilk segmentin ventral bölgesinde yer alan karın ganglion çifti ile birleşir. Vücut boyunca her segmentte 1 ganglion çifti bulunur. Bir önceki segmentte bulunan ganglion çiftlerini birleştiren sinir ipliklerine konnektif, aynı segmentte bulunan iki ganglionu birleştiren ipliğe komisur denir. Annelitler ve Artropodlar için karakteristik olan bu tip sinir sistemine ip merdiven sinir sistemi denir. 59 7. Üreme, ayrı eşeyli veya hermafrodit olabilir. Bazı türlerde eşeysiz üreme de görülür. Gelişmelerinde bazı gruplarda sillerle kaplı bir trochophora larva evresi vardır. 8. Mezodermik orijinli olan coelomun içi bir epitel tabakası ile örtülü olup gerçek bir karın boşluğu meydana getirir. Vücut ile barsak arasında kalan coelom boşluğu yani epitel tabakanın barsağa dayanan kısmına splanchopleura, vücut duvarının kas kılıfına dayanan kısmına ise somatopleura adı verilir. 9. Annelitlerde genelde yüksek bir regenereasyon yeteneği vardır. I. Class- POLYCHAETA l. Hemen hemen hepsi denizlerde yaşayan, hafifçe dorso ventral yassı kurtlardır. 2. Belirli bir baş bölgesi vardır. Çenenin değişimi ile meydana gelmiş olan pharynx çevresinde prostomium ile örtülen bir peristomium gelişmiştir. Başın ön kısmı çevresinde 4 çift tentakül var. 3. Parapodiumun bulunması ile karakteristiktir. Parapodun üzerine çok sayıda kitin kıllar (setae) bulunur. 4. Kan kırmızı renkte olup nedeni kan sıvısında erimiº halde bulunan hemoglobin ve ameobosit hücreleridir. 5. Ayrı eşeylidirler. Her üreme mevsiminde coelom epitelinden geçici olarak ovaryum ve testisler meydana getirilir. Döllenme suda olur. Yumurtadan trochophor larvası çıkar. Sub.Class - Errantia Farinkslerini torba gibi ağızdan dışarıya uzatılabilir ve genellikle kitin çene veya diş ihtiva eder. 1-2 çift gözleri vardır. Vücut homonom segmentlidir. Geçici olarak borular içerisinde yaşıyorlarsa da genellikle serbest hareket ederler. 60 Fam. Nereidae Nereis Nereis diversicolor - (deniz kurdu) 8-8.5 cm. boyda olup. Avrupa denizlerinde bulunur. Nereis virens - Kum kurdu veya midye kurdu. Sub.Class - Sedentaria Segmentlere göre vücutları 2 veya 3 farklı bölgeye ayrılır. Gözleri ya çok küçüktür veya hiç bulunmaz. Devamlı olarak boruların içinde yaşarlar. Bazıları kuma gömülürler. Arenicola Arenicola marina - Boyu 12-15 cm. olup olta yemi olarak kullanılır. Akdeniz ve Atlas Okyanusu.nda yaşar. II. Class - OLYGOCHAETA 2000 kadar türü vardır. Tatlısularda ve nemli toprakta yaşar. Belirli bir baş bölgesi yoktur. Yarık biçiminde olan ağız ön uçta, anüs ise arka uçta yer alır. Barsak bütün sırt boyunca uzanan typhlosolis adı verilen girintiye sahiptir. Bu yapı barsakta emilim yüzeyini arttırmaktadır. Barsağın etrafında yer alan Chloragen hücreleri, karaciğer gibi ödev görüp, glikojeni sentez ve depo ederler. Class’ın ismi harekette rol oynayan Setae’lardan ileri gelir. Setaeları kaslar hareket ettirir. Parapod bulunmaz Polychaetlerden farklı olarak hermafrodittirler. Bununla birlikte eşeysiz çoğalan türler de vardır. Her solucan hem dişi hem erkek olabilir. Ancak döllenme vücut içinde olur. Yumurta içinde küçük bir solucan gelişir. Gelişmeleri esnasında, trochophor larvası yoktur . Olygochaetaların en belirgin özelliklerinden biri genellikle eşeysel olgunlaşma sırasında delikler civarında, 6, 7 segmenti kapsayan ve vücudu bir halka gibi saran clitellumun bulunmasıdır. Gelişme sırasında bir madde salınır. Bu, karından birbirine dönük olan hayvanların birbirine bağlanmasını sağlar. Bu kısımda ortalama 32. segmentten geriye 6-7 segmenti kapsar ve burada epidermis çok bezli ve şişkin bir hal alır. Her 61 segmentte kısa kitin setalar vardır. Clitellumda intersegmental boğumlar ve kıllar belirsizleşir veya tamamen kaybolur. Vücut yüzeyi ince bir kutikula ile örtülüdür. Bunun altında epidermis daha içte biri halka şeklinde diğeri de boyuna uzanan liflerden meydana gelmiş 2 kas tabakası ve coelom epiteli bulunur. Karada yaşayanlarda bazı segmentlerde sırt tarafta birer por bulunur. İç tarafta coelom boşluğuna açılan bu porlara coelom ve sırt porları denir. Kuruma tehlikesi olduğu zaman coelom sıvısının bir kısmı buradan dışarıya verilerek derinin nemli kalması sağlanır. Yüksek regenereasyon kabiliyetleri vardır. Besinleri Fam. Tubifidae Çok ince yapılıdırlar . Tubifex tubifex Tatlısularda. Suların dibinde başları dip çamuruna gömülü arka uçları serbest olarak yaşarlar. Boyları 8,5 cm. kadar olabilir. Fam. Lumbricidae - (Toprak solucanları) vücut kılları S şeklinde kıvrık ve sivri uçludur. Her segmentte 8 kıl bulunur. Bunlar yanlarda birer çift boyuna sıra teşkil edecek şekilde sıralanır. Dişi genital por 15, erkek genital porları ise genellikle 14’üncü segmentten dışarıya açılır. Lumbricus terrestris - Boy 30 cm. segment sayısı 140-180 kadar tarla ve bahçe toprakları içinde bulunur, clitellum 31-37 segmentler arasında yer alır. L. rubellus - Boy 15 cm. kadar, clitellum 26-32 segmentler arasında yer alır. Genellikle çürümüş yapraklar arasında bulunur. III. Class - HIRUDINEA Parazittirler ve vücutları sabit sayıda segment içerir. Derilerindeki sekonder bölmeler sebebiyle her iç segment dışta 2-14 halka gösterir. Hirudo medicinalis eskiden beri tıpta kullanılır. Vücutta belirgin bir baş bölgesi yoktur. Bugün bu hayvanlardan elde edilen hirudin maddesi kanın pıhtılaşmasını önlediğinden geniş ölçüde faydalanılmaktadır. Sülükler tatlısularda yaşarlar. Vücutları dorso ventral yassılaşmıştır. Vücudun her iki ucunda anterior ve posteriorde birer vantuz bulunur. 62 Sülükler vantuzlarla tutunarak ileri doğru hareket eder. Ön vantuzun içinde ağız, ağzın arkasında 3 köşe teşkil edecek şekilde sıralanmış 3 kitin diş bulunur. Bu dişlerle yara açıp kan emer. Kan emenlerde tükrük bezi salgısı kanın pıhtılaşmasını önleyen ferment içerir. Sindirim kanalında yan cepler vardır. Bunun için bir defa kan emince aylarca besin almadan yaşayabilir. Hermafrodittirler (Eşeysiz çoğalmazlar). Paraziter yaşama uygun olarak Parapodium veya setaeları yoktur, regenerasyon kabiliyetleri çok azdır, Trochophora larva dönemi Fam. Hirudinidae Hirudo medicinalis - Tıpta kullanılır. Boyu 15 cm. kadardır ve tatlısularda yaşar. Limnatis nilotica - 8-10 cm. boyda olup çeşme yalaklarında yaşar, memeli ve insana geçer. Burun ve ağız boşluklarına yapışarak kan emer. Phylum - ONYCHOPHORA Tropik bölgelerde yaygındırlar. Taşlar altında ağaç kovuklarında rastlanan geceleyin faal olan hayvanlardır. Vücut annelitlere benzer şekilde homonom segmenlidir. Ancak bu segmentler dış boğumlarla birbirlerinden ayrılmadıkları için dıştan görünmezler. Taşıdıkları üyeler segmentlerin yerini işaret eder. Ayrı bir baş bölgesi yoktur. Vücudun ön kısmında ventral olarak yerleşmiş ağız ve yanlarında papillalar bulunur (dorsalde anten gibi bir yapı). Dorsalde göz yer almıştır, ayaklar poliket parapodlarını andırır. Ancak yürümeye yaradığından homolog değildir. Ayrı eşeylidirler. Döllenme ve yumurtaların gelişmesinin bir kısmı vücut içindedir. Dolaşım açık olup kalp dorsaldedir. Kan kısmen hemocoel içinde dolaşır. Solunum püskül trakelerle olur. Boşaltım organı nefridiumlardır. Bu özellikleriyle arthropodlar ile annelitler arasında bir karakter gösterirler ve Arthropodaya geçişi oluştururlar. Fam. Peripatidae 63 Peripatus - Boyları 5 cm. olup geceleri faaldirler. Phylum - ARTHROPODA (Eklem bacaklılar) Karada, tatlı ve tuzlu sularda, havada yaşarlar. Ekvatordan kutuplara kadar geniş bir yayılış alanına sahiptirler. Arthropodlar, homonom segmentli olan annelidlerin aksine Heteronom segmentlidirler. Yani embriyo dönemlerinde muhtelif vücut bölgelerindeki segmentler değişik şekilde gelişerek bir takım bölgeler meydana getirmiştir. Bu bölgeler baş , toraks ve abdomen olmak üzere üç kısımdır. Arthropodlardaki simetri, annelidlerde olduğu gibi, bilateraldir. Hareket değişik sayıdaki segmentlerden yapılmış bacaklarla sağlanır. Kasları enine çizgilidir. Kontraksiyon süratli olduğundan, hareket de çabuk olur. Deri, kutikula ve Ca tuzlarının birikimi ile olağanüstü sertleşmiş ve bir dış iskelet meydana getirmiştir. Dış iskelet harekete engel olmamak için segmentler arasında kesintili olup yerini ince deri kıvrımlarına bırakır. Kaslara destek ödevini görür, zaman zaman atılır ve alttaki deriden yeniden meydana getirilir ki buna deri değiştirme denir. Böylelikle dış iskelet hayvanın büyümesine engel olmaz (her larva ergin hale gelinceye kadar belirli sayıda deri değiştirir. Bu sayı türe, sıcaklığa ve besine göre değişik olup 5-7 kadardır. Lahana kelebeğinde sıcaklığa göre 3-5, güvede ise besine göre 4-40 defa deri değiştirilir). Arthropodlarda her segmentte bir çift ekstremite yer alır. Ancak birçok grupta segmentler kaynaşmış olup dolayısıyla ekstremite sayısı segment sayısını belirler. Başta: Antenler, ağız ekstremiteleri ve gözler bulunur. Toraksta yer alan ekstremiteler hareketi sağlar ve çeşitli gruplarda yürüme, çoğalma, duygu organı, koşma gibi çok değişik görevleri görür. Sindirim borusu vücut boşluğunda serbest olarak uzanır. Dolaşım sistemleri açıktır. Kan kısmen damarlarda kısmen de vücut boşluklarında dolaşır. Boşaltım organları koksal bezler, maksil bezleri, anten bezleri veya böceklerde olduğu gibi malpiki boruları şeklindedir. 64 Solunum suda yaşayanlarda solungaç veya boru ve kitap şeklindeki trakelerle yapılır. Sinir sistemi beyin, yutak konnektifi ve karın ganglionlarından meydana gelmiştir. İp merdiven şeklindeki duyu organları iyi gelişmiştir. Antenler, basit ve bileşik gözler işitme organları ve denge organları bulunur. Ayrı eşeylidirler. Döllenme genellikle içte olur. Bazılarında partenogenez de görülür. Genel organizasyon ile Arthropodalar muhtemelen Annelidaya benzeyen vücudu segmentli kurt (larva) gibi bir atadan köken almışlardır. Bu köken canlıda, çok basit yapılı olan baş muhtemelen duyu kıllarını taşımaktaydı. Ağız ventral tarafta yerleşmiştir. Prostomiumun gelişmesindeki ilk basamak bir çift ventral üye yeni bacakların her vücut segmentinde meydana gelmesi ve hareketin buna ilavesidir. İkinci aşama da buna paralel biçimde başta duyu organları olan göz ve antenlerin gelişimidir. Phylum Oncopoda ve Onycophoranın yaşayan örnekleri bunu göstermektedir. Arthropoda evriminde üçüncü basamak bacakları oluşturan kısımların birbiriyle eklem oluşturacak biçimde bölümlere ayrılmasıdır. Bu gelişme birinci çift extremitelerin ağıza gıda atmaya veya almaya yarayacak şekilde gelişmesini dolayısı ile birinci vücut segmenti ile başın birleşmesini sağlamıştır. Trilobita’da anten ve gözler bu kademede iyi gelişmiştir. Bu kademeye yakın bir noktada Arthropodalar farklı iki dala ayrılır. Birinci grup Cheliserata yani örümceklerin bulunduğu grup diğeri ise (Insecta) böcekler Mryapodlar ve Crustaceae.leri içeren Mandibulata.dır. Günümüzde yaşayan eklembacaklılar iki altşubeye ayrılırlar. Antensiz olanlar keliser (cheliser) taşımaları nedeniyle Chelicerata altşubesine dahil olup bu grupta akrepler, örümcekler ve akarlar yer alır. Anten taşıyanlar ise, ağızın gerisinde yer alan ilk üye çiftinin mandibula olması nedeni ile Mandibulata altşubesi içerisinde incelenirler ve bu grup içerisinde böcekler, kabuklular, kırkayaklar ve çıyanların bulunduğu myriapoda grubu yer alır. 65 Zoologların çoğu böyle bir gruplandırmayı kabul etmektedir. Bununla birlikta bazı sistematikçiler Mandibulata altşubesi, birbirleri ile yakın akrabalıkları olmadıkları ileri sürülen grupları içerdiğinden yapay bir birlik oluşturmaktadırlar. Büyük bir olasılıkla Arthropoda evriminde, Mandibulata ve Chelicerata şeklinde iki daldan çok dört ana dal mevcuttur. Bu dallar; Trilobita (soyu tükenmiş), Chelicerata, Crustacea ve Uniramia altşubeleri ile temsil edilmektedir. Uniramia içerisinde kırkayaklar, çıyanlar ve böcekler yer alır. Diğer üç altşubenin üyeleri sucul olmasına karşın Uniramia karada evrimleşmiştir. Uniramia türleri mandibula ve bir çift anten taşırlar; Uniramia ismi bu hayvanların üyelerinin dallanmamış olduğuna ya da dallanmamış atasal bir üyeden köken aldığına işaret Bazı görüşlere göre, Uniramia üyelerinin ya da tüm altşubelerin farklı Annelida benzeri atadan köken aldığına ilişkin, karşılaştırmalı morfolojiden elde edilen bazı kanıtlar vardır. Eğer bu doğru ise, Arthropoda superphylumu (üstşube) olarak düşünülüp, Trilobita, Chelicerata, Crustacea ve Uniramia, şube (phylum) düzeyine yükseltilebilir. Arthropoda.nın polifiletik olduğu görüşünü bazı uzmanlar ve özellikle bir çok entomolog kabul etmemektedir. Arthropoda phylumunun sistematiği 1. Sub.phylum TRİLOBİTOMORPHA 2. Sub.phylum MANDİBULATA Class : Crustacea Sub.class : Entomostraca Sub.class : Malacostraca Grup Myriopoda Class Chilopoda Class Diplopoda Class Symphyta Class Pauropoda 66 Class Insecta 3. Sub.phylum CHELİCERATA Subphylum - TRİLOBİTOMORPHA (Fosil Formlar) Class - Trilobita Bütün arthropodlar içerisinde en ilkel gruptur. Hepsi denizlerde yaşamış olan bu grubun bugün yaşayan temsilcileri yoktur. Toraks segmentlerinde 1’er çift üye vardır. Son segment üyesiz telsondur. Başta 1 çift anten vardır. Sonra gelen 4 segmentin her biri segmentli üye taşır. Bu grupta vücut tipik olarak birisi dorsal, diğeri ventral, diğer ikisi de yanlarda olmak üzere 3 bölge halindedir ve bu bölgelerin herbiri lobus olarak adlandırılmıştır. Bu nedenle trilobit denmiştir. Subphylum - CHELİCERATA Vücut Cephalothorax (Baş ve toraks) ve abdomen olmak üzere iki kısımdan oluşmuştur. Cepholothorax’da 6 çift ekstremite bulunur. Bunlar : 1. çift Chelicer (ağızın ön tarafında) 2. çift Pedipalpus 3.- 6. çift Yürüme bacağı I. Class - Arachnida 1. Ordo - Scorpionida (Akrepler) Cephalothoraks 6 segmentlidir, abdomen iki kısım olup preabdomen 7, dar ve uzun olan post abdomen 6 segmentten oluşur. Abdomen Cephalothorakstan büyüktür, cephalothorax abdomene bütün genişliği ile bağlanır. Oldukça gelişmiş olan pedipalpusların dip tarafı geniş olup besinin ağıza alınmasına yardım eder. Pedipalpusun uçları kıskaçlıdır (örümcekten farkı) avlarını pedipalpleri ile avlar chelicerleri ile parçalayıp yerler. Chelicer ise küçük ve ucu makas şeklindedir (3 parçadan yapılmıştır). Postabdomenin son segmentindeki telson kısmında zehir iğnesi ile zehir bezi yer alır. Preabdomenin ventralinde 1. sternitin 67 ortasında genital kapak, genital delik ve 2. sternit üzerinde pectin adı verilen dokunma ve bulma organı olarak kabul edilen bir çift tarak bulunur. 3, 4, 5 ve 6. sternitte kitap trakelerine ait birer çift solunum deliği vardır. Akreplerde yürüme bacaklarında göze çarpan özellik ön bacakların diğerlerine göre küçük oluşudur. Cephalothoraks’ın ön orta kısmında 2 median göz ve yanlarda 2-5 tane nokta göz bulunur. Bileşik gözler daha iyi gelişmiştir. Ağız pedipalpler ile bacaklar arasındaki artrium içinde ve üst dudağın altındadır. Akreplerde yumurta dişinin vücudunda açılır ve yavru olarak dışarıya çıkar (doğuruyormuş gibi ancak uterus yoktur). Yavru sırtta taşınır ve bakılır. 700 türden 4 tanesi Türkiye’de vardır. Fam. Buthidae Buthus gibbosus - Batı, Orta ve Doğu Anadolu’da bulunur 6 cm. kadar boydadır. Androctanus crassicauda - Güney ve Güneydoğu Anadolu’da (Adıyaman) bulunur. Bizdeki akreplerin en büyüğüdür. Fam. Scorpionidae Pandinus imperator - Ülkemizde bulunmaz. Dünyanın en büyük akrebi olup Afrika’da yaşar 22 cm. kadar boydadır. Scorpio maurus fuscus - Kuzey Anadolu’da bulunur 6 cm. boydadır. 2. Ordo - Solpugida (Örümcek benzeri) Cepholothorax abdomenle tüm genişliği ile birleşir. Abdomen segmentlidir. Zehir bezleri yoktur. Hızla kaçarlar. Görünüşleri korkunçtur. Halk arasında büyü denir. 3. Ordo - Areneida (Örümcekler) Vücut, cephalothoraks ve abdomenden oluşur. Cephalothoraks ile abdomen dar bir bel (pedicel) bölgesi ile ayrılır. Abdominal bölgede segmentasyon kaybolmuştur. Yalnızca bir familyada segmentasyon görülür. Cephalothorax, karapaks denilen daha sert bir kitinle kaplıdır. Gözlerin sıralanışı sistematikte önemlidir. Bu kısımda 3-4 çift ocel göz 68 bulunur. Cheliserleri tipiktir. Geniş bir kaide kısmı ile kıvrık bir çengel kısmı vardır. Zehir bezinin salgısı bir kanal ile dışarı akıtılır (bu salgı sindirimde rol oynar). Pedipalpus kıskaçlı değildir ve kaide kısmı geniştir. Besin almada kullanılır. Erkekte uç kısım şişe şeklindedir. Kopulasyon sırasında spermleri alır ve dişiye nakleder. Dişide bu kısım çengel şeklindedir. Yürüme bacakları coxa, trochanter, femur, patella, tibia, metatarsus, tarsus segmentlerini içerir. Tarsus segmentinin apexinde çengel biçiminde dişler bulunur. 4. çift bacağın metatarsusu üzerinde 2 sıra halinde tarak şeklinde dikenler bulunur ki buna calamistrum denir. Yine bacakların tarsus kısmında bir çift çengel tarak şeklinde çıkıntılar yer alır. Bu yapılar ağlar üzerinde kolaylıkla yürümeyi sağlar. Örümcek bacaklarının çoğunda diken ve tüy bulunur ki bu sistematikte önemlidir. Abdomenin arka ucunda, anüs önünde 4-6 çift konik çıkıntı halinde görülür, son kısmında ağ papilleri yer alır. Koninin uç kısmında küçük deliklerden oluşmuş cribellum levhası yer alır. Ağı yapan sıvı buradan salınır. Opistosomada (abdomende) ventralde öne yakın bir kısımda eşey açıklığı ve bunun yan taraflarında da kitap trake şeklinde solunum organları yer alır. Boşaltım organları (Prosomada) Cephalothorax’ta yer alan 7 çift koksal bezleridir. Ayrı eşeylidir. Yırtıcı, dişi erkeği yer Fam. Aviculariidae- Büyük örümcekler Zehirli kuş ve memelilere dahi saldırırlar. Avicularia avicularia - Kuş örümceği. Fam. Theridiidae- Bütün dünyaya yayılmış vücut küre şeklinde bacaklar ince, zehirleri ölüme neden olur. Latradectus congulobatus- Boyu küçük petrol renginde karnının üstü kırmızı ayakların son parçası esmer kırmızı Akdeniz sahillerinde bizde de olabilir. Zehiri çok kuvvetli halk korkar. Latradectus lugubris, Güney Rusya Türkistan, İran ve Türkiye.de. Çok zehirlidir. At, deve ve sığırlarda ölüme sebep olur. Fam. Lycosidae Koşucu örümcekler, 69 Hognatarantula- boyu 3-3.5 cm. açık kirli kahve rengi kırmızı renkleri var. Halk arasında büyü denir. 4. Ordo- Acarina- (Kene ve uyuz böcekleri)- Toprak ve suda serbest bir kısım da sıcak kanlı hayvanların parazitidir. Cephalothorax ile abdomen birleşmiştir. Vücut segmenti hemen tamamen kaybolmuştur. Ağız yapıları delici ve emici tipte değişmiştir. Delici formlarda ve celiserler delme dikeni stilet şeklini almıştır. Pedipalpusların kaide parçası ve üst dudak bu kısım etrafını bir kılıf gibi sarar. Solunum püskül trakeler ile. Vücut ve bacaklarda kıllar bulunur. Boşaltım birkaç türde koksal bez. Genelde malpiki tüpleriyle yapılır. Bir kısmı basit bir kalp içerir. Diğerlerinde kalp yoktur. Kıl düzenim ve sayısı sistematikte önemlidir. Fam. Ixodidae- Sert kabuklu gerçek keneler Ixodes ricinus. Göz yok, pedipalp 3, 4 parçalı tokmak şeklinde hortum var. Evcil hayvan paraziti kan emer. Bacakların ucu çengelli ve tutunma alanı içerir. Fam. Argasidae- Yumuşak vücutlu keneler Argas   persicus tavuklarda evlerde çatılarda veya parazit hayvan yuvasında yaşarlar. Fam. Eriophyidae- Bitki özsuyu ile beslenen keneler. Eriophyes pini-sarı çamda düğüm şeklinde mazı oluşumuna sebep Fam. Phyllocoptidae- Uzun kurt şekilli yaprakların sararma ve dökülmelerine neden olur. Phyllocoptrata oleivorus (Turunçgil pas akarı)- Turunçgil meyvalarının kabuklarını tahrip eder. Kabuk kalınlaşır, meyvalar küçük kalır, suyu azalır, asit miktarı artar, dal ve yaprakların bazı hastalıklara hassasiyeti Fam. Tetranychidae- Birçok tür. Bitki .zsuyu emer. Tükrükle temasa geçen bitki hücrelerinde marazi gelişme ve büyümeler olur. Tetranychus ulmi- Avrupa kırmızı örümceği- Kışı yumurta halinde geçirir. Yaprakların renginin değişmesine ve vaktinden önce dökülmesine 70 neden olur. Mahsül azalır ve meyve kalitesi düşer. Elma, armut ve şeftali ağaçlarında görülür. Fam. Sarcoptidae (Acaridae)- Uyuz böcekleri mikroskobik hayvanlardır. Boşaltım organları küçülmüş kalp yoktur. Vücut tıknaz ince derili, ağız extremiteleri kısa bir emme konisi gelişir, Deri içinde veya üstünde yaşar. Sarcoptes scabiei- İnsanda, parlak kirli sarı yalnız dişisi insan epidermisi altında birkaç mm. ile 3-4 cm. arasında tüneller açar ve burada yumurtlar. Sarcoptes canis- Köpekte yatay tüneller açarak uyuz hastalığı Pseuroptes ovis- Koyunda Subphylum - MANDİBULATA Chelicerata’lardan farklı bu grupta anten, mandibul ve maxil vardır. Aynı zamanda bileşik göz ihtiva ederler. 1- Class - Crustacea- Sert kabukludurlar. Büyük bir kısmı denizlerde bir kısmı tatlısularda rutubetli bataklık yerlerde, az bir kısmı da acı sularda yaşar. Kaya, bitki veya hayvanlara yapışık olarak bulundukları gibi parazit olanları da vardır. Parazitlerin bir çoğu o kadar şekil değiştirmişlerdir ki erginlerinde sınıf karakterini görmek mümkün değildir. Bulundukları grup ancak biyolojk gelişmelerini takip etmekle anlaşılır çünkü biyolojik gelişmelerinde tipik ve ortak larva tipleri vardır. Vücut genel olarak baş (cephalo), göğüs (toraks) ve karın (abdomen) olmak üzere 3 kısma ayrılır. Baş birbiriyle kaynaşmış bir biçimde 5 segmentten meydana gelmiştir. Ancak bu segmentlere karşılık gelen ekstremiteler görülür. Bazen baş, toraksın 1. ve 2. segmenti ile veya tümü ile birleşmiş olabilir. Baş ile göğsün birleşmesi sonucunda cephalothorax meydana gelir. Başla toraks arasında bariz bir sınır yoktur. Başın arka kenarındaki dorsal deri katlanmasının geriye doğru uzaması sonucu oluşan, iki parçalı bir kabuk şeklinde carapax bütün vücudu içine alır. Bazen de vücudun bir kısmını örten dorsal bir kabuk şeklindedir. Değişik şekilli olan toraks (2-60) segment ihtiva eder. 71 Genellikle abdomen segmentleri dıştan görülebilecek şekilde belirgindir. Başta sırası ile 2 çift anten, 1 çift mandibula, 2 çift maksil yer alır Bu sınıfa özel bir karakter veren antenlerin 1. çifti 2. çiftten çok küçük, diğer üyelerin aksine bir kollu olup duyu almaçlarını içerir. 2. çift antenler yarık ayak biçiminde hareket eder ve yakalamayı sağlarlar. Antenlerden başka bu kısımda gözler vardır. Çoğunda bileşik gözler bir sap üzerinde olup özel kaslarla hareket ettirebilir. Başta bulunan 1 çift mandibula ile 2 çift maksilla ağız ekstremiteleridir. Besin almaya yararlar. Crustacea ekstremiteleri yarık ayak veya çatal ayak şeklindedir (Tipik olan ekstremitelerin kaide kısımları coxa ve precoxa’ dan ibaret olup bundan sonra 5 parçalı bir endopodit kısmı ile kama şekilli bir exopodit kısmı bulunur. Bu ekstremitelerin iç ve dış kollarında çeşitli şekilde uyartılar bulunabilir). Toraks ayakları (thorocopodlar) muhtelif grupların yaşayışına göre değişik biçimlidir. Yüzme ve besin toplamak gibi işlevleri yerine getirirler ve bunlar yarık ayak tipindedir. Bazı gruplarda abdomendeki ekstremiteler kaybolmuş bazılarında gelişmiştir. Bunlara pleopod denir ve yüzmeye, sıçramaya yararlar. Vücudun son kısmında üye olmayan telson denen bir çıkıntı vardır ve furka isimli 2 uzantı taşır. Birkaç parazit form hariç hepsi ayrı eşeylidir. Gelişmelerinde genel olarak metamorfoz görülür. Yumurtalardan nauplius (gelişme safhası) larvası çıkar. Bu larva, yumurta şeklinde 3 çift ekstremite alında ocel göz ve segmentsiz olan vücudu ile karakteristiktir. Bundan başka metanauplius, zoea ve mysis larva tipleri de görülür. Boşaltım organı 1 çift anten bezi ve 1 çift maxil bezidir. Gelişmiş Crustacea.lerde dolaşım sistemi sırttaki kalp dışında arter ve venaları da geliştirecek biçimde evrimleşmiştir. Solunum organı olarak abdomen bacakları üzerinde ve toraks bacakları bazalinde solungaçlar yer almış olup basit formlarda bu görevi deri almıştır. Ayrı eşeylidirler. 72 Sub. Class- Entomostraca- Segment sayısı çok değişik olup vücudun son kısmında çatal şeklinde uyartıları alan furca bulunur. Parazit formlar hariç, derileri fazla sertleşmemiştir. 1. Ordo- Phyllopoda- Fam. Branchipodidae- Uzun vücutludurlar. Carapax’ları yoktur. Abdomende ise ekstremite yoktur. Ucunda bölmesiz 2 furka bulunur. Branchipus schaefferi- Tatlısularda yaşar. Uzun ve hafifçe yanlardan basık bulunan vücutları 1 cm. boyundadır. 2. Ordo- Cladocera (Su Pireleri)- Vücut yanlardan basık ve 2 yan parçadan oluşmuş bir carapax ile örtülüdür. Baş bunun dışında kalır ve karın tarafına doğru yönelmiştir. Vücut az sayıda segmentli olup segment sınırları belirli değildir. Fam. Daphniidae- 7-8 mm. boyundadırlar. Balık yemi olarak önemlidir. Daphnia magna-, Bütün dünyada, küçük durgun göl, havuzlarda ve tatlısularda bulunur. Daphnia longispina - Ülkemizde Gölbaşı.nda tespit edilmiştir. Daphnia pulex- Bütün Avrupada 3. Ordo Copepoda - (Kürek Ayaklılar)- Sularda serbest yaşayanları olduğu gibi parazit olanları da vardır. Vücut yapıları yayılış tarzına göre değişmiş, bazıları Crustacea.den ziyade kurda benzer bu ancak gelişme safhalarından anlaşılır. Bunlarda carapax görülmez. Bunların birinci antenleri uzun ve kuvvetlidir. Erkeklerin l. çift antenlerinden biri (sağdaki) diğerine nazaran daha kuvvetlidir. Fam. Centropagidae, Tatlısu ve denizlerde yaşarlar. En az 24 segmentli antenleri iplik gibi uzundur. Diaptomus emiri - Emir gölünde dişiden 7 tek yumurta salkımı var. Fam. Cyclopidae (tepegöz) Çoğunluk tatlusuda yaşar. l. çift antenlerin her ikisi de erkek bireylerde dişiyi tutmaya yarar. Boyu thorax cephalo uzunluğunu geçmez. Dişide l çift yumurta salkımı bulunur. Cyclops stenur Çubuk barajı, Emir gölü.nde bulunur. 73 4. Ordo Cirripedia (Sülük ayaklılar) erginleri denizde yaşayan hayvanlar üzerinde yengeç, balina vs. veya taş, gemi, tekne iskele gibi yerlere kendilerini tespit ederler. Birinci anteni tutunma organı şeklinde olur. Bu kısım vantuz gibi genişlemiştir. Bazılarında tespit yeri bir safiha gibi genişler, bazılarında da bir sap gibi uzar. Vücutları 2 parçadan oluşmuş bir carapax ile tamamen örtülüdür. Bunun altında kalker plakaları bulunur. Yumurtadan nauplius larvası çıkar bir müddet sonra bu larva cypris larvasına dönüşür. l. anten bu dönemde iyi gelişmiştir. Bu dönemde deniz dibine çökerek kendini tesbit eder. Balanus- Genellikle vapurlara yapışırlar. Yenir. Sub.Class Malacostraca Cephalothorax ve abdomen olmak üzere 2 kısımdan meydana gelen vücut, sabit sayıda segmentten oluşur. (Gövde daima l4 segmentlidir yalnızca Lepostrakada da 15 segmentten yapılmıştır) Başta 5, toraksta 8, abdomende 6, nadiren 7 segment bulunur. Segmentlerin herbirinin dorsal kısmına tergum ventral kısmına sternum denir. Bunlar da yanlarda pleuron denilen kısımlarla birleşirler. Bazılarında cephalothorax segmentlerinde kalkan şeklinde bir karapax bulunur. Bütün extremitler ve abdomen karapaxın dışındadır. Abdomenlerinin son kısmı çoğunluk yassı bir telson ile sonlanır. Extremite ve ganglion ihtiva etmez. l çift büyük birleşik göz, alın gözü erginde yok. Bazen kollar çok dallı. Mandibulalarda çiğneyici kısımlar meydana gelmiştir. Toraksta 8 çift abdomende 6 çift ekstremite vardır. Toraks ayakları yarık ayak şeklindedir. ve yürümeyi sağlarlar. Abdomendekiler ve telson yüzmeyi sağlar. Solunum solungaç ile yapılır. Istakoz, karides gibi Crustacea.lerde sindirim sistemi çok iyi gelişmiştir. Squiilla- Akdenizde yaşar. Ordo-Decapoda (On ayaklılar) Crustacealer içinde en evrimli olan gruptur. Vücut baş ve thorax segmentlerinin oluşturduğu büyük bir cephalothorax ve abdomenden oluşmuştur. Cephalothorax’ın sırt tarafında büyük kalkan şeklindeki carapax vücuda yapışık yanlarda ve karına doğru sarkar. Baş carapax’ın altına çekilmiştir. Carapax rostrum denen öne doğru sivri bir uzantı meydana getirir. Vücut segmentleri veya kuyruk 74 yüzgeçleri yassı ve geniş bir alan oluşturup karına doğru kıvrıktır. Torakstaki ilk üç ekstremite besin sağlamak üzere maxilliped şeklinde değişikliğe uğramıştır. Birinci çift diğerlerinde büyük, ucu daima makaslıdır; 5 çift dış kollarını kaybederek bir kollu, yürüme bacağı haline dönüşmüştür. Bu grupta abdomen şekil ve büyüklüğü çok değişiklik gösterir. Bazılarında uropod ve telsondan meydana gelmiş bir kuyruk yüzgeci bulunur. Abdomende yüzmeye yarayan 5 çift pleopod vardır (karında bulunan birinci yüzgeç ayağı dişide çok küçülmüş veya kaybolmuştur. Erkekte ise protopodit ve endopodit kısımları kaynaşarak spermanın dişiye iletilmesini sağlarlar). Sinir sistemi gelişmiştir. Baş ganglionu ile ventral özofagusun altında 6 ganglionun kaynaşmasından meydana gelmiş subözöfegal ganglion bulunur. Karın ganglionları da kaynaşmıştır. l. antenlerinin kaide kısmında da ilk parçada denge organları statositler bulunur. Solunum larvalarda vücut yüzeyi, ergin de solungaçlarla yapılır. Boşaltım 2. antenlerin kaide kısmına açılan anten bezleri ile yapılır. Gelişimlerinde metamorfoz görülür. Zoea, metazoe larva safhaları ile çeşitli larva tipleri görülür. Sub.Ordo - Natantia Vücut hafifçe yanlardan basık, rostrum iyi gelişmiş toraks bacakları zayıf, abdomen bacakları ise iyi gelişmiş olup yüzücüdürler. Abdomen cephalothoraxtan uzun ve kuyruk yüzgeci içerir. Familya : Carididae Palaemon serratus (karides) yenir. Sub.Ordo - Reptantia Vücut sert karın yönünde yassıdır (Üstten basık). Rostrum küçük veya yoktur. Yürüme bacakları iyi gelişmiş ve ilk çiftinde makas gibi büyük kıskaç vardır ve hepsinden kalındır. Fam. Palinuridae (Zırhlı kabuklular) - Kutikula kalın olup zırh gibi vücudu sarar. Carapax üzerinde dikenler bulunur. Karın ayakları yüzme bacağı şeklinde ve zayıf dişilerde yumurta taşımaya yarar. Amacura - Vücut yuvarlak abdomen gelişmiştir. Carapax epistomla kaynaşmaz, rostrum gelişmiştir. Yürüme bacaklarının ilk üç çifti makaslı, birincisi çok kalındır. Fam. Nephropsidae 75 Homarus vulgaris (Astacus gammarus) - Istakoz. Koyu mavi renkli 30-45 cm. Yenir. Pişirince kızarır, yosunlu kayalık sahillerde bulunur. Fam. Potamobiidae Potamobius (Astaculus) fluviatilis - Tatlısu ıstakozu (yenir). Anumura - Abdomen iyi gelişmemiş ve yumuşak telson körelmiştir. Carapax epistomla kaynaşmaz. 3. yürüme bacağı makaslı değildir. Fam. Paguridae (Keşiş Istakozları) Abdomen yumuşak olduğundan diğer hayvanlar tarafından kolaylıkla yenir. Deniz salyangozlarının boş kabukları içerisine yerleşirler. Brachyura (Yengeçler)- Vücutları dorso-ventral yassılaşmış, kısa ve yassı olan abdomen cephalothorax’ın altına doğru kıvrılmıştır. Carapax epistomla kaynaşır. Kuyruk yüzgeçleri yoktur. Dişilerde abdomenin son segmenti yuvarlak, erkeklerde sivridir. Yürüme bacağının ilk çifti daima makaslıdır. 3. çiftte hiçbir zaman makas yok. Fam. Canciridae Cancer pagurus (pavurya) - Akdenizde 9-12 cm. yenir. Fam. Majiidae Maja- Deniz örümceği 12-18 cm. Bazı memleketlerde yenir. Fam. Potamonidae (tatlısu yengeci) - Cephalothorax enine oval biçimdedir, yüzme bacakları yoktur. Potamon fluviatilis - 5 cm. yenir. Göl ve nehir kenarlarında taş dibinde. Fam. Portunidae- (yengeç) İyi yüzücüdürler. Yürüme bacaklarının son kısımı levha şeklini almış yüzme bacağı haline gelmiştir. Portunus puber (Çalpara) - Karadenizde, tatlısularda bulunur. ORDO ISOPODA (Tesbih böcekleri), Boyları 1 mm. ile 25 cm. arasında değişir. Vücut dorso-ventral basıktır. Carapax hiçbir zaman tam olarak gelişmemiştir. Karada yaşayanlarda kitin tabakası çok sertleşmiştir. Baş toraksın birinci segmenti ile kaynaşmıştır. Toraks 7 veya 6 segmentlidir. Abdomen çok kısa ve segmentleri birbirine kaynaşmıştır. 76 Asellus   aquaticus - Tatlısuda bulunur. Boy l2 mm. kadardır. Kör kuyu mağara, derin göllerde yaşar. Oniscus   murarus (Asellus) (Duvar tesbih böceği)- 12 - 17 mm boyda kerpiç duvarlarda, mahsenlerde, serlerde, rutubetli depo, kiler, çürümekte olan bitki altında veya sağlam bitki üzerinde yaşarlar. ORDO-AMHIPODA - Dış görünüş olarak çok değişik şekilli olanları vardır. Çoğunda vücut yandan basıktır. 5- 20 mm büyüklüktedir. Baş toraks’ın 1 ve 2. segmenti ile kaynaşmıştır. Deniz ve tatlısularda yaşarlar. Ayrı eşeylidirler. Gelişmelerinde metamorfoz yoktur. Fam. Gammaridae Vücutları incedir. Suda karınlarının hareketiyle süratle yüzeler. Hızla akan acı ve tatlı sularda yaşarlar. Gammarus pulex - Boyu 12 -17 mm. Ülkemizde de tespit edilmiştir. MYRIAPODA’LAR Myriapodalar bir sınıf; Pauropoda, Symphyla, Diplopoda ve Chilopoda da ordo olarak ele alınıyordu. Sonra bu ordolar arasındaki benzerlik ve farklılıkların bir class seviyesinde olduğuna karar verildi. Biz de bu grupları class olarak inceleyeceğiz ancak bu classlara dahil olan hayvanların myriapodalar olarak ortak karakterleri şunlardır. Bu hayvanların hepsi karada yaşarlar. Vücutları baş ve gövde olmak üzere ikiye ayrılmıştır. Başta bir çift anten iki üç çift ağız ekstremiteleri ve değişik sayıda nokta göz bulunur. Myriapodlarda yavaş yavaş böcek başı gelişimi görülür, maksillalar kaynaşarak labiumu oluşturur. Solunum trake ile yapılır. Boşaltım organı malpiki borularıdır. Vücut değişik sayıda segment içerir. Her segmentte bir veya iki çift exremite bulunur. Myriapoda grubunu dört sınıfta inceleyeceğiz, Pauropoda, Symphyla, Diplopoda, Chilopoda. Class. Pauropoda - Genital açıklık (üçüncü segmenttedir) vücudun ön ucuna yakındır. Küçük boylu yuvarlak yassı şekildedirler. Antenleri farklı olarak iki kolludur. Ağız extremiteleri l çift mandibul ile l çift zayıf maxildir. Maxiller alt dudağı oluşturmak üzere kaynaşmıştır. Dolaşım 77 sistemi, gözleri ve trakeleri körelmiştir. Nemli yerlerde ormanlarda yaşarlar. Kutikula kitin içermez. Fam. Pauropodidae Pauropus huxlegi l-l,5 mm. dir. Rutubetli yerlerde yaşar. Class. Symphyla Genel olarak küçük boyludurlar (1-8 mm). Vücutları yumuşak ve pigment bulunmadığından beyazımsı, renksizdir. Genital açıklık üçüncü segmentte öndedir. Başta l çift ve bir kollu çok segmentli iplik şeklinde uzun anten bulunur. Bu grup Apterygotlara benzeyen bir sınıftır. Ağız l çift mandibula, l çift maxilla ve bir de ağız kapağı şeklinde labiumdan (2. maxil) ibarettir. Gövdeyi oluşturan segmentlerden birer çift ekstremite çıkar. Solunum organları püskül trakeler halindedir (Bu grup böceklere köken teşkil ettiği için önemlidir). Vücudun arka ucunda 2 büyük uzantı ve uçlarında ağ bezlerine ait kanallar açılır. Dünyanın her tarafında bulunur. Hareketlidirler. Işıktan kaçarlar. Scutigerella immaculata Class- Diplopoda (Kırk ayaklar) Çoğunluk uzun boyda ve silindirik yapılı hayvanlardır. Genital açıklık ön uçtadır. Deri fazla miktarda Ca2C03 içerdiğinden serttir. Tergit, sternit, pleura bölgeleri iyi gelişmiştir. 2,5 mm.den. 28 cm.’ye kadar olabilirler. Ağız parçaları l çift mandibula ile l çift 2. maxilla’dır. (l. maxilla bulunmaz). Başta l çift anten yer alır. Antenler çok kısa 8 parçalıdır. Genel olarak vücutları çok sayıda segmentten meydana gelmiştir. Bu segmentlerden ilk 4 çifti toraksı oluşturur (ilk defa) bu segmentlerden l. de ekstremite yoktur. Diğer 3’ünde l’er çift ekstremite vardır. Bacaklar karının orta çizgisine yakın yerinden çıkar. Abdomende 2 segmentin bir tek tergitle örtülmesi sonucu olarak her segmentten ikişer çift ekstremite çıkar gibi görülür. Bacakları genel olarak zayıf yapıdadır ve yanlarında büyük bir çengel ile bir de kıl gibi ince çengel bulunur. Sinir sistemleri büyük bir beyin ganglionu ile homonom metamerli karın ganglionları zincirinden ibarettir. Gözleri birçok ocel gözün biraraya 78 gelmesinden meydana gelmiş kümecik halindedir. Antenlerin üzerinde koku almaya yarayan çıkıntılar vardır. Sindirim sistemi çok basit olan bu grubun son barsağın başlangıcında bulunan malpiki boruları ekskrasyon (boşaltım) organı görevi yapar. Dolaşım sistemi iyi gelişmiştir. Solunum püskül trakelerle olur. Ayrı eşeylidirler. Fam. Julidae Vücut çok segmentlidir. Julus   terestris 30-70 segmentli geceleri faaldir. Dokununca helezon gibi kıvrılır. Class. Chilopoda (Çıyanlar) Vücut uzun dorso ventral basıktır. boyları 3 mm. ile 260 mm. arasında değişir. Baş gövdeden bariz olarak ayrıdır. Genital açıklık vücudun sonundadır. Başta basit yapıda çok sayıda segmentten ibaret l çift uzun kıl gibi anten, l çift mandibula ve 2 çift maxilla vardır. Gövde kısmında herbir segmentten l çift ekstremite çıkar. Birinci segmente ait ekstremite çifti şekil değiştirmiş olup bunun kaide kısmında yer alan zehir bezi kanalı sivrilmiş olan uç kısımdan dışarıya açılır. Sinir sistemi başta bulunan bir serebral ganglion ile ventralde homonom karın ganglion zincirinden ibarettir. Ayrıca böceklerdeki gibi bir visceral sinir sistemi de vardır. Sindirim sistemi basit; son barsağa ektodermik 2 malpiki borusu açılır. Ağıza 2 tükrük bezi açılır. Geceleyin faaldirler. Solunum boru trakelerle yapılır (böceklerdeki gibi). Diğer arthropodları avlayarak geçinirler. Ayrı eşeylidirler. Fam. Scolopendridae Gövde 25-27 segmentli, Bacaklar uzun olduğundan Áok hýzlý hareket ederler. Scolopendra   morsitans (çıyan) Ülkemizde tespit edilmiştir. Gündüzleri taşlar altına saklanır. S. cingulata 5-9 mm boyundadır. S.gigantea - 26 cm. Hindistan’da bulunur, zehiri insanı öldürür. Fam. Lithobiidae Vücut Scolopendridae’ye göre daha kısa ve segment sayısı az. Bacakları ise daha uzundur. Cins Lithobius- Ormanlarda bulunur. Fam. Scutigeridae Vücut kısa antenler kıl gibi ince. Bacaklar uzun ve vücudun arkasına doğru uzunlukları artar. 79 Scutigera   coleopterata Boy 16-24 mm. evlerde bulunur. Gece çıkar ve çok hızlı hareket eder. Phylum: MOLLUSCA (Yumuşakçalar) Bu phylum arthropod’lardan sonra en kalabalık grubu teşkil eder. Aşağı yukarı bugün 90.000 kadar yaşayan, 35.000 kadarda fosil türü Phylum üyelerinde vücut bilateral simetrili olup, baş, ayak ve iç organlar torbası olmak üzere üç bölge ayırt edilir. Ergin vücut yapısı diğer omurgasızlardan çok farklılık gösterir. Fakat ilkel mollusklarda görülen veliger larva tipi annelidlerin trochophor larvasına çok benzer. Bu mollusk ve annelidlerin ortak bir atadan geldiklerini düşündürmektedir. Ancak molluska, kendine özgü (amphineuralar dışında) segmentsiz bir vücut yapısı geliştirirken annelidler segmentli bir vücuda Başta ağız açıklığı cerebral ganglion ve göz bulunur. Karın bölgesinde geniş ve yassı kas dokusundan yapılmış bir ayak, ayağın üzerinde iç organlar kütlesi, bu kütleyi örten iki katlı bir deri olan manto ve mantonun üst yüzeyinde Ca2C03’ten oluşan kalkerli, sert bir kabuk yer almıştır, manto ile vücut boşluğu arasındaki kısım manto boşluğudur. Kabuk mantodaki salgı bezlerinin salgısıdır. Arthropodların dış örtülerine benzer olarak bu kabukta barınmayı sağlar, fakat hayvanın hareketini güçleştirir. Sindirim sistemi ağız, yutak, yemek borusu, mide, barsak ve anüsten meydana gelen tek bir tüpten ibarettir. Bu kısım bazen kıvrılmış olabilir. Yutak bir kas grubu yardımı ile hareket eden, tipik törpü şeklinde dili andıran bir yapıya (radula) sahiptir. Mollusklarda sadece bivalvlerde radula bulunmaz. Bunlar deniz suyunu süzerek besinlerini sağlayan hayvanlardır. Mollusklar da hem gerçek bir coelom, hem de dolaşım sistemi görülür. Coelom boşluğu, kalp, gonad ve boşaltım organı ile temas halindedir. 80 Dolaşım sistemleri açıktır. Ancak Cephalopoda sınıfının bütün üyelerinde kapalı dolaşım sistemi görülür. Çok gelişmiş olan kalp bir karıncık ve 2 kulakçıktan oluşmuştur. Kalp bazılarında bir bazılarında ise iki atriumlu olabilir. Kalp, omurgalı hayvanlarda olduğu gibi pericard ile çevrilmiştir. Kulakçıklar kanı toplardamarlardan alır, karıncığa pompalar. Kuvvetli kaslı karıncık atar damarlarla vücuda sevk eder. Boşaltım organı Annelidlerde olduğu gibi, bir çift olan ve kirpikli huni ile başlayan hakiki nefridiumdur. Kirpikli huninin bir ucu perikardial boşluğa, diğer ucu da manto boşluğuna açılır. Bu durumda perikard boşluğu coeloma karşılıktır. Cephalopodada nefridiumlar böbrek keselerini oluşturmuşlardır. Nefridiumlar boşaltım maddelerini manto boşluğu vasıtasıyla dışarı atarlar. Manto boşluğundaki solungaca ktenidium denir. Solunum genellikle solungaçlarla, ilkel formlarda hava teması ile gerçekleşir, ara formlarda akciğer gelişimi görülür. Sinir sistemi belirli sayıda çift ganglionlardan meydana gelmiştir. Tipik olarak üç çift ganglion bulunur: l- Serebral ganglionlar (beyin ganglionu), 2- Pedal ganglionlar (ayak gangalionu), 3 Vücudun arkasındaki Visceral ganglionlar (iç organlar torbası ganglionu). Birçok molluskda ayrıca bir çift 4. Pallial ganglion (manto ganglionu) bulunur. Bu ganglionlar sinir şeritleri vasıtası ile birbirine bağlıdır. Bütün yumuşakçalarda deri altında bu ganglionların oluşturduğu sinir ağı bulunur. Sinir ağına özellikle ayakta, mantoda ve cephalopodların tentaküllerinde rastlanır. l- Class Amphineura - Chiton ve bunların arkabaları ile temsil (tümü fosil) edilen bu grupta vücut elips şeklinde olup küçük ve kabuklu hayvanlardır. Chiton: Classa örnek teşkil eden bu hayvanın konveks olan dorsal yüzeyinde kiremit sırası gibi birbiri üzerine binmiş 8 adet Ca2C03 plakası bulunur. Bu plakalar yalnız yanlarından mantoya bağlı, manto ile ayak arasında pallial boşluk bulunur. Molluskların ekonomik önemi olan başlıca sınıfları şunlardır: l- Lamellibranchiata (Peleciopoda), 2- Gastropoda, 3- Cephalopoda (Cephalopodlar). 81 Class I- Lamellibranchiata (Bivalvia) (Midyeler) Balta ayaklılar Suda yaşarlar. Bilateral simetrilidirler. Kabuk ve manto sağ ve sol olmak üzere ikiye ayrılmış ve bu iki parça yer yer birleştiğinden 2-3 aralık kalmıştır. Bu aralıklar kullanılmış suyu dışarı atmaya ve solunum suyunu almaya yararlar ve bazen manto kenarları buradan sifon biçiminde dışarı çıkan birer yapı oluşturmuştur. Bu yapı suyun giriş çıkışını düzenler. Kabuk karın tarafından açılır. Dorsalden elastiki bir ligamentle bağlıdır, baş tamamen kaybolmuştur. Göz çoğunda yoktur. Ayak bazı türlerde körelmiş olabilir, varsa kuvvetli kaslardan yapılmış olup distal kısmı hayvanın ön ucundan dışarı çıkar ve hareketi sağlar. Ligamentin iki yanında her bir kabuk birer umbo içerir, bunun altında kabuk kenarına paralel büyüme çizgileri yer almıştır. Kalp hayvanın sırtında pericardium (coelom boşluğu) içindedir. 2 atriyum 1 ventriculus, yani 2 kulakçık, 1 karıncık içerir. Ventriculustan aorta çıkar ve aorta arterlere, daha küçük arterlere ve onlar da daha küçük kılcaldamarlara ayrılır. Arterler manto, sindirim sistemi ve ayak gibi organlara gider. Ayrıca venalar (toplar damarlar) da gelişmiştir, (böbrek venaları gibi). Kan, venalardan kulakçıklara oradan pompalanarak, karıncığa oradan da aort’lara (ön ve arka) oradan da vücuda dağılır. Kan sıvısı hemoglobin ve hemosiyanin içerir. Boşaltım organı nefridiumlardır. Yüksek formlarda böbrek oluşumu görülür. Ön uçta ağız bulunur. Midenin altında ayağın üst tarafında karaciğer yer almış olup salgısını mideye gönderir. Barsak çok kıvrım yapar ve yukarı dönerek perikardial boşluktan (coelom boşluğu) bazen karıncıktan geçer. Bazı türlerde manto kenarında dokunma ve ışığa duyarlı benekler vardır. Ayakta pedal ganglionun yanında statocyst denen denge organı vardır. İçindeki kum granülleri hayvanın hareketi doğrultusunda yer değiştirir. Sinir uçları uyarılarak mesajlar beyine gider. Kabuk parçaları sırt tarafta elastiki bir şerit (ligament) vasıtasıyla birbirine bağlanmıştır. Çoğunda ligamente ilave olarak kabuk parçalarının ön kenarlarında dişler bulunur. Bu dişler karşı parçada kendilerine karşılık gelen çukurluklara girerek bir çeşit menteşe oluştururlar. Dişlerin yapısı ve büyüklüğü eşit (homodont) 82 veya değişik (heterodont) olabilir. Her kabukta birbirinden diğerine uzanan ve kabukların kapanmasını sağlayan anterior ve posterior adduktor kasları vardır. Ayrıca anterior ve posterior retraktor kasları ile bir de sadece anteriorda yer alan protraktor kas bulunur. Bunlar ayağın hareketini kontrol ederler. Midye kabuğunun en içteki kalsiyum karbonattan yapılmış sedef tabakası, epitel hücreleri tarafından ince tabakalar halinde salgılanır. Eğer kabukla manto epiteli arasına bir madde girerse epitel hücre, yabancı madde etrafında merkezileşen Ca2CO3 tabakaları salgılamak üzere uyarılır. İnci bu yolla oluşur. Deniz ve acı su midyelerinde embriyonal gelişmeden sonra serbest yüzen silli veliger larvası vardır ki annelitlerin trochophora larvasına benzer. Burdan dibe inerek ergin midyeye erginleşir. Döllenme suda olur. Tatlısu midyelerinde ise parazit yaşayan glochidium larvası vardır. I. ORDO Protobranchiata Midyelerin en ilkel grubudur. Arka yan tarafta çift sıralı tarak şeklinde iki solungaca sahiptirler. Her ktenidium ayakla manto arasında uzanan yatay bir eksen ve iki sıra flamentten oluşur. İlkel midye flamentleri kısa ve yassı üçgenler şeklinde diğerleri iplik şeklindeki flamentler kıvrılarak serbest ucu uzayıp dış taraftan yukarı uzayarak U şeklini alır. Cins Nucula (Fındık midyesi)- Midyelerin en küçüğüdür. 4 mm. Kabuk yuvarlak ve üçgen şeklindedir. Avrupa denizlerinde yaşar. Cins Arca Kabuk parçalarının yüzeyi ışın şeklinde kaburgalı Arca noae (Nuhun gemisi midyesi) - 8-10 cm. Taxodont menteşeli (eşit yapılı birçok küçük diş). II. ORDO - Heterodonta Midyelerin çoğu bu ordodandır. Heteredont menteşeli ve [solungaçları çift yaprak şeklinde olup solungaç flamentleri enine köprülerle birbirine bağlıdır (kabuk çevresi eşit olmayan az sayıda dişi içermektedir). ] Adduktor kaslar (kapama) eşit büyüklükte ve iki tane. Fam. Unionidae - Nehir ve göl midyeleri kabuk parçaları uzunca ve eşittir. Dış yüzey esmer yeşil renkte iç yüzey sedeflidir (Menteşe az dişli veya dişsiz olur). 83 Cins - Unio - Kabuk kalın ön kısmı kısa arka kısmı çok uzundur. Margaritana margatirifera (Nehir inci midyesi) -Dağlardaki derelerde bulunur. 10 cm. İncisi makbul değil. Cins - Anodonta (Göl midyesi) Kabuklar çok ince ve geniş olup tipik tatlısu midyesidir, Menteşe dişsiz. Tüm dünyada yaygındır. Fam. Cardiidae Cins - Cardium (kalp midyesi)- Kabuk kalp şeklinde üzerinde ışınsal olarak sıralanmış çizgiler var. Bunlara kaburga denir (4-5 cm. kabuk dişli). Fam. Tridognidae Tridagna gigans (dev midye)- Boy 2 m. Ağırlık 250 kg. 10 kg. kadar da eti vardır, yenir. Hint okyanusunda yaşar. Kabukları çamaşır teknesi olarak kullanılır. III ORDO - Anisomyaria - Adduktorlar ya farklı büyüklükte veya bir tanesi hiç bulunmaz genellikle menteşede diş yoktur. Solunum solungaçları yaprak şeklindedir. Ekonomik önemi olan midyeler, denizlerde bulunurlar ve çoğunlukla sifonlarını su içine uzatarak kum ve çamura gömülü yaşarlar. Fam. Aviculidae - Kabuk parçaları eşit değildir, menteşe kenarları dişsiz veya zayıf dişli olup kanat biçiminde uzantılardan oluşmuştur. Cins Avicula (Kuş midyesi) Sol kabuk parçası sağdan daha kubbeli boyu 8 cm. dir. Meleagrina margaritifera (İnci midyesi) - Uzunluk 15-30 cm. şark incisi denilen kıymetli incileri meydana getirir ve kabuklarından da sedef elde edilir. Hint Okyanusunda yaşar. Fam. Ostreidae - Kabuk parçaları eşit değildir. Menteşe zayıf ve dişsiz olur. Daha büyük ve kubbeli olan sol kabuk parçası yere yapışır. Sağ parça bir kapak gibi onu örter. Ostrea edulis (İstiridye) - Kabuk büyüklüğü 8-l0 cm. kadardır. Kayalık yerlerde bulunur. Salgı ile kendilerini kayalara veya kabuklara yapıştırır. Fam. Mytilidae Kabuk parçaları eşit, menteşe yok. Ligament iç tarafta yer alır. 84 Cins- Mytilus (Deniz midyesi yenen) - Kabuk parçaları eşit, uzun arka tarafı yuvarlak üçgen şeklinde hemen bütün denizlerde bulunur. Menteşe yok. Ayakları küçülmüş olup salgısı ile kenetlenmiş sert zemine tespit Class : 2 - Gastropoda : Salyangozlar Karada yaşayan tek Mollusca sınıfıdır. Tatlısu ve denizlerde de bulunur. Tek bir dorsal kabuk var (İnsan besini) . Veliger larvasında ağız önde anüs arkadadır. İç organlar torbası embriyolojik gelişme esnasında 180 derecelik (torsiyon olayı) bir dönme yapar. Vücudun her iki tarafının eşit büyümemesinden dolayı bir tarafın, genellikle de sol tarafın daha fazla büyümesi ile torsiyon ortaya çıkar. Bu nedenle önce arkada bulunan kalp ve anüs ağzın üzerinde yer alır ve solungaçlar da ön tarafa gelmiş olur. Soldaki organlar gelişemez kaybolur. Sağdakiler sola geçer. Torsiyondan sonra vücut büyük ölçüde asimetrik bir yapı kazanır. Kabuk, torsiyon olayından bağımsız olarak bir düzlemde rulo gibi kıvrılır. Opisthobranciata.da ve diğer bazı gruplarda olduğu gibi torsiyona ilave olarak detorsiyon yani geri torsiyon görülür. Bu olayda vücut yine simetrisiz kalır; fakat önceden öne gelmiş organlar yana kayar. Torsiyon olayında, manto boşluğu öne kaydığından, tehlike anında hayvanın başını saklayabileceği bir odacık şekillenmiş olur ve hayvan bu odacığın ağzını gerektiğinde ayağı ile kapatarak korunur. Ayrıca buharlaşma ile su yitirilmesini önler. Detorsiyon ile, manto boşluğu vücudun yan tarafına kaydırılarak sindirim kanalı ile atılan atıkların solunum suyuna karışması engellenmiştir ve detorsiyon, büyük bir olasılıkla bununla ilgili geliştirilmiş bir uyumdur. Kuvvetli kaslardan yapılmış geniş bir ayak (çoğunlukla mukus salan hücrelerle kaplı ve ventral taraftan dışarı açılan bir bez içerir) ile sürünerek ve ayak yüzgeç gibi kullanılarak hareket sağlanır. Karada yaşayan ve karadan tatlısuya geçen Gastropodlarda solungaç küçülmüş, buna karşılık manto boşluğu solunum organı olarak gelişmiştir, ayrıca bazı gruplarda akciğer görür. Mantonun içi kılcal damarı ağ gibi örülmüş hava solunum deliğinden girer ve geri çıkar. Genellikle iç döllenme görülür. Bir kısım gastropodlar hermafrodittirler. 85 Genital delik sağ göz tentakülünün dibine yakın bir yerden dışarı açılır. Bu grupta iyi gelişmiş bir baş bulunur. Başın dorsalinde 1-2 çift tentakül ve 1 çift göz yer alır. Göz, ya tentakül dibindeki kabartının veya geriden çıkan özel tentakülün ucunda olabilir. Ağız içinde bir dili andıran radula, bunun üzerinde birkaç sıra halinde dizilmiş kitin dişler yer alır. Gastropodların ataları muhtemelen bilateral simetriliydiler. Fakat torsiyon sonucu sindirim, kalp, anüs, solungaç, boşaltım, sinir sisteminin bir kısmı bugün kaybolmuştur. Dişlerin uçları arkaya dönüktür. Aşındıkça alttan yenileri çıkar. Hem herbivor, hem karnivor olanları vardır (Dişlerin durumuna göre). Gastropodlarda veliger larva tipi görülür. I ORDO - Prosobranchia - En ilkel gruptur. Solungaçlar öndedir. Başta 1 çift tentakül bulunur ve gözler bunların dibinde yer alır. Genellikle denizde yaşarlar. Torsiyon vardır ve visceral konnektif buna bağlı olarak 8 şeklindedir. Bu sebeple manto ön tarafa gelmiş ve içinde bir ktenidium olup kalbin önünde yer alır. Çoğu denizde bir kısmı da tatlı ve acı sularda yaşarlar. Kabuk büyük ve kalındır. Fam. Patellidae - Cins - Patella (Çanak salyangozu) - Kabuğu çanak şeklindedir, Avrupa denizlerinde yaşar. Fam. Cypraeidae - Kabuk yumurta şeklinde iki taraftan kıvrık. Operkulum Cins - Cypraea (Porselen salyangozu) - Kabuğun üzeri parlak bir tabaka ile kaplıdır. Fam. Muricidae (Dikenli salyangoz) - Kabuk ağzının ön ucu kısa veya uzun olabilen düz bir kanal şeklinde uzamıştır. Tropik denizlerde, yırtıcı salyangozlardır. Cins - Murex -Kabuk üzerinde en az 3 sıra diken veya kabartı bulunur. II ORDO - Opisthobranchia - 86 İç organlarda az veya çok geri torsiyon (detorsiyon) görülür. Solungaçlar arkada yandadır. Başta 2 çift tentakül vardır. Gözler art tentakül dibindedir. Kabuk küçük veya hiç yoktur. Fam. Limacinidae - Cins - Limacina - Denizde yaşar. Balinaların besinini oluşturur. Sürüler halinde dolaşır. III ORDO Pulmonata - Akciğerli anlamına gelir. Kara salyangozlarında tekrar suya dönünce akciğer oluşmuştur. Düzenli aralıklarla hava için yukarı çıkarlar. Başta 1- 2 çift tentakül vardır. Ktenidium bulunmaz manto boşluğu fazla damarlı tavanı ile akciğere dönüşmüştür, manto açıklığı ise solunum deliği görevini görür. Hepsi hermofrodit. Larva evresi görülmez. Yumurta doğrudan doğruya gelişir. Genellikle karada, az bir kısmı suda yaşarlar. I - Sub.Ordo - Basommatophora - Bir çift tentakül bulunur. Gözler bunların dibindedir. Birkaçı denizde, çoğu tatlısuda yaşarlar. Fam. Limneidae - Kabuk ince, ağzı keskin kenarlı, tatlısularda yaşarlar. Cins - Limnaea - Kabuk koni şeklinde tepesi sivri, kabuk ağzı geniş ve oval biçimdedir. II - Sub.Ordo - Stylommatophora - İki çift tentakül bulunur. Gözler arka tentakülün ucunda yer alır. Karada yaşarlar. Fam. Helicidae - Kabuklu salyangozlar. Cins - Helix - Kabuk bütün vücudu içine alacak büyüklükte ve yüksekliği ile genişliği hemen hemen aynıdır. Kışın kabuk ağzı kapatılır. En çok tür içeren cinstir. Helix   pomata - Bağ-bahçe salyangozu, Avrupa kara salyangozu en büyüğüdür. Fam. Limacidae - Bütün türleri çıplaktır. Kabuk küçük plakalar şeklinde içte yer alır. Cins - Limax - Bahçe sümüklüböceği 87 Limax   agrestis - Üreme yeteneği fazla olan bir gruptur. Taze filizleri yiyerek zarar verir. III - Class - Cephalopoda Molluskların en yüksek organizasyonlu grubudur. Genel olarak ağız etrafındaki kollarla 1/2 m. olurlar. 5-10 cm. ve 17 m. olanlar da vardır. Bu durumda ağırlık birkaç tonu bulur. Bilateral simetrilidirler. Vücut baş ve iç organlar kitlesi olmak üzere iki bölgeye ayrılır. Büyük olan baş üzerinde çok iyi gelişmiş bir çift göz bulunur. Gözler ilkel gruplarda merceksiz, gelişmiş olanlarda merceklidir. Ayak bölgesi bu grupta büyük bir kısmı önde ağızın etrafını çeviren kollara dönüşmüş, geri kalan kısmı da manto önünde vücut çeperine yapışan huni şeklini almıştır. Ayrıca bir ayak bölgesi yoktur. Derin deniz formlarında ışık verme kabiliyeti vardır. Ağız başın tepesinde etrafı halka biçiminde bir kıvrımla (dudak) çevrilidir. Ganglionlar yutak etrafında bir ganglionlar kitlesi oluşturmuş, buccal, cerebral, pedal ve visceral ganglionlar gelişmiştir. Boşaltım organı nefridium ve böbrek keseleridir. Manto boşluğu muhtemelen ortadan boğumlanarak önde pericard boşluğu, arkada gonad Coelomunu oluşturmuş, içinde ovaryum ve testisler bulunur. Manto boşluğunda, solungaçlar, böbrek, genital delik ve anüs yer alır. Mürekkep balıklarında kıkırdaktan oluşan bir iç iskelet bulunur. Ayrıca bu grupta mürekkep kesesi vardır. Kese anüsün yanına açılır. Tehlike anında buradan manto boşluğuna siyah bir sıvı salınır, oradan sifonla dışarı püskürtülür ve hayvan kendini düşmana karşı saklar. Mürekkep seyreltilmiş melanin pigmentidir. Bugün yaşayan türlerin çoğunda kabuk kaybolmuş veya körelmiştir. Ayrı eşeylidirler. Döllenme vücut içinde olur. Kapsadıkları solungaç sayısına göre 2 gruba ayrılırlar. Ordo - Tetrabrahchiata - İki çift solungaç bulunur. İki nefridium vardır. Başta zayıf vantuzsuz 38 kol vardır. Bunlar kılıf içine çekilebilir. Çok odacıklı ve Ca2CO3’dan oluşan ve helezon şeklinde kıvrık kabukları vardır. Hayvan büyüdükçe en son meydana gelen en büyük odacığa çekilir. Bugün bu gruptan yalnız bir cins yaşamaktadır. Diğerleri fosil 88 formlardır. Göz merceksizdir. Göz basit bir boşluk olup içi ektodermik retina tabakasıyla kaplıdır ve küçük bir delikle dışa açılır. Fam. Nautilidae Cins- Nautilus - Hint Okyanusu ve Büyük Okyanusta yaşar. Dorsalde manto tarafından salgılanan iyi gelişmiş bir dış kabuk vardır. Ordo - Dibranchiata - Bir çift solungaç bulunur, bir çift nefridium vardır. Ağzın etrafında 8 veya 10 kol bulunur. 1.Sub. Ordo - Decapoda - İkisi ayrı tipte, 10 kol bulunur. Vücut çıplak, kabuk rudimenter (kalıntı) haldedir. On koldan uzun olan iki tanesine tentakül adı verilir. Uç kısımlarında vantuzları bulunur. Vücut uzun ve yanları yüzgeçlidir. Gözler gelişmiş merceklidir. Tehlike anında kullandığı mürekkep kesesi vardır. Fam. Loliginidae - Vücut oldukça uzun ve koni şeklinde, yüzgeçler büyüktür ve vücudun alt ucuna yakındır. Tentaküller geri çekilmez. İç kabuk kitinlidir. Loligo vulgaris - (kalamar) Yenen bir türdür Akdenizde ve Atlas okyanusunda bulunur. 45-60 cm boyundadır. Fam. Sepiidae - Vücut oval şekilli yan yüzgeçler uzun olur. İç kabuk kalkerlidir. Tentaküller geri çekilebilir. Sepia   officinalis - (Mürekkep balığı) Yüzgeçler gövde boyunca devam eder. Vücut uzunluğu 20-30 cm. 2.Sub.Ordo - Octopoda - Ahtopotlar. 8 kolu vardır. Tentaküller bulunmaz. Vantuzları sapsızdır. Vücut kısa ve yuvarlaktır. Fam. Octopodidae - Kollar büyük ve dip kısımda kısa bir zarla birbirine bağlı. Octopus vulgaris - Ahtopot, kolları üzerinde iki sıralı vantuzlar yer alır. PHYLUM : ECHİNODERMATA (Derisi Dikenliler) Larvaları bilateral, erginleri ise radial simetrili olan hayvanlardır. Vücut eksenden geçen düzlemlere göre beş kısma ayrılır. Genelde beş ışınlı veya küre şeklindedir. Gösterdikleri çok değişik karakterler nedeniyle sistematik yerleri oldukça şüphelidir. Vücut örtüsü genelde silli bir 89 epiteldir. Bunun altında mezodermal bağ doku kökenli dermal plakalardan oluşmuş bir kabuk yani iç iskelet bulunur. Bu mezenşim hücrelerden meydana gelen mezodermik deri iskeletinin oluşturduğu kalker cisimcikler ya dağınık ya kaslar ile bağlı ya da kaynaşarak kabuk oluşturur. Bazen yüzeye hareketli ve hareketsiz dikenler çıkar. Bunların modifiye olması ile pediseller oluşur (savunma organıdır, ambulakral ayakları korur) Dorsal yüzeyi büyük ve sabit dikenler ile örtülüdür. İskelet uzun dikenli Ca2CO3 tan oluşmuş eksoiskelet, dermal kalker plakalar endoiskeletten oluşur. Ca2CO3 tan yapılan dermal plakalar kaslarla ve konnektif doku ile bağlıdır ve bu da eksoiskelete hareket ve esneklik kazandırır. Sölom, yani vücut boşluğu üç ayrı boşluk sistemi halindedir. 1- Organların yer aldığı perivisceral sistem: Bu boşluk silli bir epitelle çevrilmiş olup hayvanın içerisinde içi hücreli bir sıvı ile dolu geniş bir alan oluşturur. 2- Perihemal sistem: Ağzın etrafında bir halka kanal ile buradan ayrılan beş radial kanal ve ayrıca uca doğru uzanan bir aksial kanaldan oluşmuştur. (oral halka kanal) Kan damarı sistemi gibi görülen ambulakral kanal sisteminin altında muhtemelen ambulakral ayaklara ve gonatlara besin taşıyan kesin işlevi henüz bilinmeyen, aboral bölgede bir halka kanal gelişmiş olabilir. 3-Ambulakral kanal sistemi: Aboral kısımda yeralır . Ağız ventralde yani oral tarafta; anüs ise dorsalde yani aboral tarafta olup arada sindirim borusu yer alır. Baş ve beyin yoktur. Hareket, su basıncına dayanan su-damarı (Ambulakral damar sistemi) sistemi ile yapılır. Ambulakral kanal sistemi ağız etrafında bir halka kanal ve bundan ayrılan beş radial kanal ile bu kanallardan çıkan küçük lateral kanallardan oluşur; lateral kanallar tüp biçimli deri uzantısı olan ambulakral ayakların içine açılır. Burada genellikle kontraktil bir ampul bulunur. Ambulakral kanal sistemi, halka kanaldan ayrılan medrapor kanalı (taş kanal) ile dışarıya bağlanır. Sistemin görevi hareket ve yer değiştirmeyi sağlamaktır. Ampul içindeki su, kontraksiyon ile ayağa itilir, ayak uzar ve yapıştığı 90 yerden çözülür; ayak çeperinin kontraksiyonu ile de su ampule geri döner. İçte basınç oluşur ayak ucundaki vantuz yere yapışır; vücut o yöne çekilir. Solunum dışa doğru deri çıkıntılarından oluşan çok sayıda dermal solungaçlar ve ambulakral ayaklar ile sağlanır. Dış ortamdaki su ve iç ortamdaki sölom sıvısı arasındaki gaz alışverişi bu dermal solungaçlar, ambulakral ayaklar ve vücut içine doğru yönelmiş deri çöküntüleri ile gerçekleşir. Gerçek bir dolaşım sistemi yoktur. Ağız çevresinde halka biçimli bir kanal ve ayrılan radyer kollar (Asterias). Kan, renksiz lenf yapısındadır ve amobosit hücreler içerir. Sillerin hareketi sölom sıvısının hareketini sağlar. Duygu organları iyi gelişmemiştir ancak deri epiteli hassastır. Ayrı eşeylidirler. Genital stolon ve gonatlar genital sistemi oluşturur. Sperm kesesi ve yardımcı bezler yoktur. Gonatlar, örneğin deniz yıldızında, kolların her iki tarafında birer tane, yani beş çift salkımdan oluşur. Eşey hücreleri aboral kutuptan kol bazaline yakın bir yerden küçük kanallar ile dışarı atılır. Döllenme suda olur. Zigot bipinnaria denen bilateral larva safhasını verir. Silli epitel ile örtülü bu larva Mollusk ve Annelidlerdeki trochophoraya ve de ilkel konlat larvasına benzer. Sinir sistemi ağız üzerindeki bir sinir halkası ve beş radial koldan ibarettir. Beyin yoktur. Epitel doku altındaki sinir hücresi ve liflerden oluşan ağlar halindedir. Sölom hücresi ile göçmen hücreler boşaltımı yapar. I- Class: Asteroidea (Deniz yıldızları) Genellikle 5 kolludurlar; daha fazla kollu da (40 kola kadar) olabilirler. Tüp ayaklar kolların altında bir oluk içinde bulunur. İstiridye ve deniz tarağının en büyük düşmanıdır. Büyük regenereasyon kabiliyeti vardır. Fam. Astropectinidae Astropecten auranticus 5 halkalı Fam. Asterinidae Cins. Asterina spp. Kolların kısalığı yüzünden vücut 5 köşeli görülür. Fam. Asteridae Kollar uzun sayıları 5-12 olur. 91 Cins. Asterias Deniz yıldızı II.Class: Echinoidea (Deniz kestaneleri) Bu sınıfta kol yoktur. Kabuk üzerinde bulunan pedisel ayaklar bütün vücutta dikenler arasındadır. Þekilleri basık yarım küreyi andırır. İskeletine testa adı verilir. Sindirim kanalının ön kısmında Aristo feneri denilen kalkerli dişli bir yapı bulunur. 1. Ordo: Regularia - Vücut az çok küre şeklindedir. Fam. Echinidae Cins. Echinus 2. Ordo: Clypeasteroidae - Disk şeklindedirler. Kabuk çok basık olur. Ağız düz veya konkav olan oval kısımda, anüs ayrı tarafta kenara yakın Fam. Clypeastridae Cins. Clypeaster 3: Ordo: Spatongoidae - Kalp şeklindedirler ve ağız tam ortada yer almaz. Anüs iki yüzeyin sınırında veya sınıra yakın yerde bulunur. Fam. Spatangidae Cins. Spatangus III: Class: Ophiuroidea (Yılan yıldızları) Yılana benzer kollar bulunur, bu hayvanlar kollarını yılan gibi oynatarak hareket ederler. İnce uzun gevrek yapılı bu kollar vücuttan belirli bir şekilde ayırtedilir. Harekette tüp ayaklar kullanılmaz. Tehlikede kollarının birisini bırakıp kaçarlar. Fam. Ophiolepididae Cins: Ophiura (Yılan yıldızı) IV: Class: Holothurioidea (Deniz hıyarları) 92 Bu sınıf diğer sınıflardan dikensiz uzun ve kaslı bir vücut yapısıyla ayrılırlar. Vücudun ön ucunda ağzın etrafında geri çekilebilen tentaküller bulunur. İskelet vücut içine gömülüdür. Küçük kalker plakalar halindedir. Fam. Cucumariidae V. Class: Crinoidea (Deniz zambakları) Genel olarak sesil olarak yaşayan çiçek, bitki benzeri hayvanlardır. Merkezi olarak yerleşmiş ve yukarı dönük bir ağız ve küçük vücudun üzerinde kollar yer alır. Aksi tarafta bulunan sap, kök benzeri bir yapı ile vücudu tespit eder. Kollar üzerinde tüy benzeri telekler bulunur. Fam. Pentacrinidae- Kollar halinde çok dallıdır.

http://www.biyologlar.com/omurgasiz-hayvanlar-sistematigi

Arthropoda (eklembacaklılar)

Bugün; dünyada bilinen hayvan türlerinin yaklaşık 2/3'ni Arthropoda (eklembacaklılar) şubesi oluşturmaktadır. Artropodlar, dünyada yaşayan hayvanlar içinde tür bakımından olduğu gibi, birey sayısı bakımından da en zengin grubu oluşturur. Ayrıca, hayvanlar aleminde en fazla tür çeşitliliğine sahip böcekler (Classis: Insecta) de bu grupta yer almaktadır. Eklembacaklılar şubesinde yer alan Arachnida sınıfı, geniş bir spektruma sahip olup Örümcek (Araneae), Akrep (Scorpionida), Kamçılı akrep (Uropygi), Silindir örümcek (Solifugae), Kamçılı örümcek (Amblypygi), Ot biçen (Opilionida), Akar (Acarina), Yalancı akrep (Pseudoscorpionida), Kırbaçlı örümcek (Palpigradi), Kamçılı akrep (Uropygi), Kırbaçlı akrep (Schzomida) ve Ricinulei gibi çok sayıda farklı grupların birleşmesiyle oluşur ve Araknitler (Classis: Arachnida) olarak adlandırılırlar. Örümcekler her türlü habitat ve ekosistemde yaşayabilmektedir. Dünya üzerinde çok geniş bir yayılış alanına sahip olan örümcekler, kutuplardan kıta içlerine, deniz yüzeyinden 5000 m’ye ulaşan yükseltilere kadar yayılabilmektedir. Bunların çoğu karada, pek azı kıyılarda ya da tatlı suların yüzeyinde ve içinde yaşarlar. Genellikle bahçelerde, duvar üzerinde, saçak altında ağ gererek yaşayan hayvanlardır. Günümüzde örümcekler, karasal ekosistemlerde yaşayan başta böcekler olmak üzere birçok artropodların etkili predatörü olarak tanımlanmaktadır. MORFOLOJİ Prosoma ve opistosoma olarak iki kısma ayrılan vücut; pedisel denilen yapı ile birbirine bağlanmıştır. Prosoma bölgesinde yer alan ilk çift ekstremite keliserler olup bunların bağlandığı kısımda bir çift zehir bezi yer alır. Bezlere bağlı zehir kanalı keliserlerden, bunların ucunda bulunan ve sokma iğnesi olarak kullanılan kıskaçlara açılır. Zehir avın felç edilerek daha kolay yenmesini sağlar. İkinci ekstremiteler altı parçalı pedipalplerdir. Bunlardan sonra 7 parçalı dört çift yürüme bacakları yer alır. Bu segmentler kaideden uca doğru koksa, trohanter, femur, patella, tibia, metatarsus ve tarsus yer alır. Başın ön kısmında genellikle 8 (bazen 6) adet göz, iki veya 3 sıraya dizilmiş olabilir. Opistosoma farklı büyüklüklerde olmasına rağmen sistematikte önemli bir kriter sayılmaz. Dorsal kısımda kalp ya da yaprak şeklinde “folium” yer alır. Opistosomanın arka ucunda anüs, hemen altında ise üç çift ağ memeleri yer alır. Memelerden farklı yapılardan ağ çıkar ve bu değişiklik familyalara göre farklılık gösterir. Opistosomanın ventralinde, ön orta kısımda genital delik yer alır. Bundan başka solunum açıklığı olan boru trake stigmaları da örü memeciklerinin ön orta bölgesinde yer almıştır. Fenoloji Yumurtadan çıkan bir örümcek yavrusu, birkaç gün dişi örümcek tarafından bakıldıktan sonra yuvadan ayrılır ve belirli bir yere ağını kurduktan sonra burada yaşar. Bu da örümceklerin ergin hale geçmeden ağ örebilme kabiliyetinde olduğunu göstermektedir. Örümcekler ayrı eşeylidir. Erkeklerde opistosomanın her iki tarafında uzanan tüp şeklinde bir çift testis bulunur. Bu testisler epigastik çöküntünün arkasında tek bir eşeysel delikle dışarıya açılır. Erkeklerde kavuşma organı pedipalpuslardır. Dişi üreme sisteminde ise ovaryumlar, opistosomanın karın tarafından arkaya uzamış iki torba şeklindedir. Örümceklerde eşeysel dimorfizim görülür. Genellikle erkek dişiden küçüktür. Çiftleşme meydana gelmeden önce bir çok davranış gösteren türlerde kimyasal algılama ve dokunma organları iyi gelişmiştir. Cezbetme amacıyla salgılanan bu maddelere feromon denir. Bir defada 300-3000 yumurta bırakabilirler. Yumurtalar kokon içerisinde bazılarında anneye bağlı olarak taşınır. Yavrular ilk deri değiştirmeye kadar kokon içerisinde kalır. Yavrular kokondan çıktıktan sonra erginlere benzerler ve dolayısıyla larva devresi görülmez. Bir yavru örümcek ergin oluncaya kadar 6-8 kez gömlek değiştirir. Örümcekler yılın belli periyotlarında erginleşirler. Bu durum genellikle ilkbahar aylarında başlayıp sonbahara kadar sürmektedir. Bazı türler ise tüm yıl boyunca erginleşebilmektedir. Genel olarak Mayıs ve Haziran aylarında erginleşirler. Örümceklerde ömür uzunluğu 1-2 hatta 10 yıl sürebilmektedir. Uzun yaşayan örümcekler daha çok tropikal alanlarda yayılış göstermektedir. Genital yapı Örümcekler gelişme durumlarına göre Orthognatha ve Labidognatha olmak üzere iki alttakıma ayrılırlar. Orthognatlar ilkel yapılı olup tropikal ve çöl ekosistemlerinde yaşarlar. Gelişmiş örümceklerin içinde yer aldığı Labidognat örümcekler ise genital organlarının kompleks olup olmamasına göre Haplojin ve Entelejin örümcekler olarak iki gruba ayrılır. Genellikle altı gözlü olan Hoplojinlerde basit bir palp ve epijin bulunurken Entelejin örümceklerde ise palp ve epijin, ekstra kitinsi yapılar ile daha kompleks bir durum oluşturup tam bir kilit-anahtar özelliği kazanır. Erkek ve dişilerde opistosomanın ön orta kısmında akciğerlerin hemen gerisinde enine uzanan genital bir delik vardır. Erkek örümceklerde pedipalpler ampül şeklinde çiftleşme organı olarak görev yapar. Ayrıca femur, patella veya tibia ile pedipalpuslar uç kısmından öne doğru “apofiz” adı verilen kalınlık ve uzunluğu değişen bir uzantı yaparlar. FİZYOLOJİ Beslenme ve Sindirim Çoğu polifag olan örümceklerin besinini, diğer hayvanların ve özellikle böceklerin vücudundan emilen özsuları oluşturmaktadır. Sindirim sistemi ağızla başlar, bunu kısa bir farinks izler. Daha sonra emici mide ve orta barsak (gerçek mide) gelir. Orta barsakta keseler halinde kör barsaklar yer almaktadır. İnce barsak, opistosoma bölgesinde birkaç küçük kanalla karaciğere birleştiği yerde genişler ve sonra ince, düz bir boru halinde devam eder. Arka uca yakın bir yerde yeniden genişleyerek bir kese oluşturur ve anüsle dışarı açılır. Barsak opistosoma bölgesinde büyük sindirim bezleri ve karaciğerle sarılır. Solunum Solunum trakelerle ve kitap akciğerlerle yapılır. Kitap akciğerler genellikle iki kese halinde olup her birinde 15-20 tane yaprak şeklinde ve üzerinde ince damarlar bulunan lameller vardır. Dışarıya açılan deliklerden hava girer ve bu yolla kan temizlenir. Ayrıca trakeler de bulunabilmesine rağmen, böceklerde olduğu gibi vücudun bütün kısımlarında dallanma göstermezler. Özellikle opistosomaya yayılmışlardır. Sinir Sinir sistemi baş bölgesinde bulunan bir beyin (iki loblu bir ganglion) ile göğüs bölgesinde bulunan bir ganglion kümesi (subözefagial ganglion) ve bunlardan çıkan sinirlerden oluşmaktadır. Pedipalpuslarda ve yürüme bacakları üzerinde duygu kılları bulunmasına rağmen başlıca duyu organları gözler olarak kabul edilir. Genellikle büyüklükleri ve duruş biçimleri türden türe göre değişen sekiz tane göz bulunur. Örümcekler, objeleri ancak 10-15 cm uzaklıktan net olarak görebilirler. Dolaşım Dolaşım sistemi, opistosomanın dorsal bölgesinde üç veya dört ostiumlu kalp ile, atar ve toplar damarlar, bir seri vücut boşluğu veya sinüslerden oluşmuştur. Kalp, kastan yapılmış kontraktil bir tüp biçiminde olup perikardium denilen bir kılıf içinde bulunur. Kalpten perikardium boşluğuna ostium adı verilen üç veya dört çift delik açılır. Kalpten arkaya doğru bir atardamar uzanır, öne doğru bir aort açılır. Aorta kollara ayrılarak prosomadaki doku ve organlara gider. Renksiz olan örümcek kanında amoeboid hücreler bulunmaktadır. Vücut boşluklarını dolaşan kan, kitapsı akciğerlere giderek temizlenir; buradan toplar damarlarla perikardiuma gelir ve en sonunda ostiumlardan geçerek tekrar kalbe döner. Boşaltım Boşaltım organı olarak, ince barsağa açılan malpighi tüpleri ile dördüncü yürüme bacağının kaidesinden dışarı açılan iki koksal bez bulunur. Koksal bezlerin bazen köreldikleri görülmüştür. Bu nedenle bunların açıklıklarını bulmak oldukça güçtür. Koksal bezler, tatlı su istakozunda bulunan anten bezleri ile homolog organlardır. Bunlar annelidlerin nefridyumlarına benzeseler de nefrostomları ve kanalları içinde kirpik yoktur. GENEL ÖZELLİKLER Kamuflaj, Taklit ve Mimikri Örümceklerin değişen çevre koşullarına karşı yaptıkları adaptasyonlarından (uyma) daha etkili olan ve onları düşmanlarına karşı koruyan başka adaptasyonları da vardır. Bu koruyucu hareketler, basit kamuflaj renklerini kullanmaktan, taklit içeren kompleks davranışlara kadar uzanmaktadır. Çoğu örümcekler ölü (donuk) renge sahip olup çevrelerinde fazla dikkat çekmezler. Aksine çok belirgin yeşil renklerde olan Micrommata virescens veya Araniella cucurbitina türleri, yaprak üzerinde yaşadıkları için, bunları doğal ortamlarında seçebilmek oldukça zordur. Örümcekler yere düştüğünde çoğu kez bacaklarını vücuduna doğru çeker ve Katalepsi denen “ölüyü oynama” davranışını sergiler. Aynı zamanda, düşmandan korunma amaçlı olarak yapılan bu davranış; sadece örümceklerin taklit etmeleriyle değil böceklerin de örümcekleri taklit etmeleri yönüyle oldukça ilginçtir. Örneğin; bazı meyve sinekleri (Rhagoletis, Zonosemata) kanatlarında bazı zıplayan örümceklerin (Salticid, Phidippus) bacaklarını andıran belirgin koyu çizgiler taşırlar. Dolayısıyla kanatlarını kaldırıp indirdiklerinde hareket eden bir örümcek izlenimi verirler. Kışlama Örümcek faunasının %85’i kışı toprakta özellikle de soğuğa karşı iyi bir yalıtkan olan yaprak döküntüsünün içinde geçirir. Bu süre boyunca örümceklerin çoğunda, bacaklar vücuda sarılmış ve görünen vücut yüzeyi minimuma düşmüş durumdadır. Yaprak döküntülerinin altındaki mikrohabitat örümceği sadece aşırı sıcaklık değişimlerinden değil aynı zamanda kuraklıktan da korur. Ilıman bölgelerdeki “kışın-aktif” örümcekler, özellikle soğuğa karşı dirençli olmasalar da, diğer örümceklere nazaran çok düşük sıcaklıklarda daha aktiftirler. -4°C’nin altında diğer örümcekler gibi sabit dururlar ve -7°C’nin altında ölürler. Kışı pasif şekilde atlatan örümcekler soğuğa karşı daha dirençlidirler. Çoğu bahçe örümceği (Araneus sp.) korumasız yerlerde bile-20°C’ye dayanabilir. Örümceklerin bu soğuğa, nasıl dayanabildikleri ise henüz net olarak açıklanamamıştır. Fakat örümcek hemolenfinde antifiriz görevi gören gliserol varlığı ve oranının kış aylarında, yaza göre çok daha yüksek olması bu konuyu aydınlatmada bir giriş noktası oluşturmaktadır. Ancak bu konuda da bazı çıkmazlar dikkat çekmektedir. Adaptasyon Örümcekler soğuk, nemlilik, su baskını ve yiyecek sıkıntısı gibi olumsuz durumlara karşı çeşitli adaptasyonlar geliştirmişlerdir. Kışı aktif olarak geçiren örümcekler üzerine günümüzde kış ekolojisi ve bu hayvanların soğuğa karşı dirençleri araştırılmaktadır. Örümcekler uygun mikrohabitatlara sığınarak soğuğa karşı dirençlerini artırırlar. Metabolik oranlarını düşürür ve hazırlanırlar. Zehir ve Özellikleri Bütün örümceklerde bulunan zehir bezleri keliser içlerinde yer alır ve uçtaki kanca ile ava enjekte edilir. Zehirleri neurotoksik etkide olup solunum organlarında felçlere yol açar. Ölüm olayları genellikle çocuklarda ve solunum yetmezliğinde meydana gelir. Ilıman bölgede yayılış gösteren örümcekler az zehirli olup, insan için öldürücü bir etkiye sahip değildir. Ancak tropikal bölgelerde yaşayanlar çok zehirli olup insan için ciddi tehlikelere yol açabilir. İnsanlar için öldürücü etkiye sahip olan örümcekler çoğunlukla Araneidae, Agelenidae, Argiopidae, Clubionidae, Eresidae, Loxoscelidae, Lycosidae, Theridiidae familyalarına bağlı türlerdir. Tarantulalar büyük örümcekler olmalarına rağmen genel olarak düşünüldüğünden daha az tehlikelidirler. ZEHİRLENMELER Yeterli miktarda alındığında, vucudun kimyasal ve fizyolojik düzenine etki ederek, sonuçta ölüme yol açan maddelere toksin yada zehir denilir. Yeteri miktarda verildiğinde, zehir gibi davranabilecek bir kimyasal maddenin dokularda yol açtığı hasarın klinik belirtilerine de zehirlenme denilir. Zehirin etkisi dozuna ve alınış şekline bağlı olarak değişebilir. Zehirlenmede, zehirli maddenin molekül ağırlığı, proteinlere bağlanabilme gibi özellikleri ve de etkili olacakları yapıların özellikleri önemlidir. Zehirler, öncelikle merkezi sinir sistemine etki ederler. Bu etkiye bağlı olarak, zehirli maddenin özelliğine göre vucudun diğer sistemlerini bloke edebilirler. Akut zehirlenmelerde, irritabilite artışı, titreme, hallusinasyon ve koma görülebilir. Kronik zehirlenmede, organlarda duyu kayıpları gibi sinir sistemi üzerinde çeşitli bozukluklar ortaya çıkabilir. Zehirlenmeler üç yolla gerçekleşebilir: 1. Ağız yolu ile; Gıda zehirlenmeleri, ilaçlarla olan zehirlenmeler, kimyasa maddeler ile zehirlenmeler, alkol zehirlenmeleri. 2. Solunum yolu ile; Karbonmonoksit ve diğer zehirli gazlar ile olan zehirlenmeler. 3. Deri yolu ile; Zehirli gazların teması ile olan zehirlenmeler, böcek öldürücü ilaçların neden olduğu zehirlenmeler, yılan, akrep, örümcek ve diğer zehirli hayvanların sokmasıyla meydana gelen zehirlenmeler. Akut zehirlenmelerin ilk yardım ve tedavisinde, zehirlenen kişinin, zehiri ne zaman, ne miktarda ve ne şekilde alındığının bilinmesi hayati öneme sahiptir. Örümcek Sokması Örümcek türlerinde, keliserlerinin kaide kısmında büyük zehir bezleri bulunur. Bu sebeble bilinen 20.000 örümcek türünün hemen hemen hepsi zehirlidir. Bu bezler bir kanalla keliserlerin son segmentinden dışarı açılır. Hayvan, avını ısırdığında uç segment ava batar ve zehrini ava boşaltır. Zehrin ava akıtılmasında bezlerin çevresindeki kaslar etkilidirler. Çok az örümcek türü insan için tehlike oluşturur. Çünkü, etkili zehirlere sahip olan türlerin birçoğunun zehir dişleri insan derisine etki edemeyecek kadar kısa ve kırılgandır. Fakat çocuklar için ölümcül olabilirler. G.Amerika’da yaşayan Phoneutria cinsi örümcekler bilinen en güçlü nörotik zehire sahiptir ve insanlar için büyük tehlike oluşturular. Kara dul olarak bilinen Lactrodectus cinsine ait örümcekler de kas sinir iletimini bloke eden peptid yapıdaki zehirleriyle bir diğer zehirli grubu oluştururlar. Kahverengi örümcekler olarak adlandırılan Loxoceles cinsi örümcekler ve Argyronetidae familyasına ait su örümcekleride oldukca zehirli diğer türlerdir. Örümcek zehirlerinin hemen hemen hepsi nörotoksiktir. Bu zehirler sinir sistemine etki eder ve bağlantılı olarak kas kasılmaları ortaya çıkar ve sonuçta ölüm meydana gelebilir. Genel kanının aksine, küçük örümcekler büyük örümceklere göre daha güçlü zehirlere sahiptirler. Tarantulalar sanıldıkları kadar zehirli türler değildirler. Belirtiler Sokulan yerde şiddetli bir ağrı, yanma, şişme, kızarıklık ve karıncalanma meydana gelir. Sokulan bülgede iki adet diş izi görülebilir. Zehirlenen bireyin karın, göğüs, omuz ve sırt kısmında şiddetli kramplar meydana gelir. Görülebilecek diğer semptomlar, baş ağrısı, baş dönmesi, kaşıntı, titreme, göz kapağında şişme, bulantı ve kusma, özellikle ayaklarda uyuşmalardır. Örümcek sokmalarında, özellikle çocuklarda solunum yetmezliği sebebiyle ölümler meydana gelebilir. Ortaya çıkabilecek diğer bir önemli sorunda kangrendir. İlk Yardım Öncelikle ısrılan bölgenin hemen yukarısı, bir ip yada bezle, dolaşımı yavaşlatmak amacıyla sıkılır. Isırılan bölge su ve sabunla iyice yıkanmalıdır. Daha sonra bölgeye beze sarılı buz parçaları veya ıslatılmış bir bezle soğuk uygulanır. Özellikle çocuklarda enfeksiyonu önlemek amacıyla ısırılan kısma antibiyotik krem sürülülür. Aynı amaçla amonyak veya permanganat, karbonat eriği yada sirke kullanılabilir. Acıyı azalmak amcıyla asetominofen verilebilir. Daha sonra hasta, zehrin etkisine bağlı olarak gerekebilecek daha ileri tadaviler için acilen bir sağlık kuruluşuna götürülmelidir. Ağ Tüm örümcekler, türler arası farklılıkları yansıtacak şekillerde ipliğimsi ağ üretebilme yeteneğine sahiptirler. Bu nedenle sınıflandırmada kullanılan önemli bir kriterdir. Örümcekler ağlarını iki dal arasına, dal ile yapraklar arasına, çalı aralarına, yerdeki otsu bitki aralarına, toprak keseklerine, taş altlarına, evlerde duvarlara, bodrum katlarına örerler. Çok çeşitli şekillere sahip olan ağlar genellikle tekerlek gibi iç bükey çadır, dış bükey çadır, huni, düzensiz ve sık balıkçı ağlarını andırırlar. Örümceklerde ağlar, bir yayılma aracı olarak da kullanılır. Örümceklerin ürettikleri ipek, fibrion denilen yapısal bir proteindir. Opistosomanın son kısmında bulunan ağ memelerinden sıvı halde çıkan ipek hava ile temas edince yapışkan iplikçiklere dönüşür. Bu nedenle, havada uçan ufak bir böcek ağa dokunur dokunmaz yapışır. Kur yapma Örümcekler birbirleriyle iletişim kurmaları için çeşitli yollar geliştirmişlerdir. Kur yaparken, mekanik, kimyasal veya görsel işaretler önemli rol oynamaktadır. Özellikle ağ kenarından geçen titreşimler gibi çeşitli mekanik sinyalleri sezen, algılayan reseptörler de önemlidir. Ağ örümcekleri tarafından titreşimle yayılan sinyallerin bu türe özgü oldukları ve çiftleşme için yeterli oldukları kuvvetli bir ihtimaldir. Gezgin örümcekler de kur yapma döneminde titreşen sinyaller yaymaktadır. Titreşimlerini toprak veya yaprak gibi katı bir nesne aracılığıyla veya havada ses olarak aktarabilirler. Ses çıkarma Böceklerde olduğu gibi, örümceklerde ses çıkarırlarken esas olarak bacak veya karın gibi vücut kısımlarını kullanarak trompet gümletme sesi, stridülasyon organları kullanılarak bir eğeye sürtülen metal sesi, karın ve bacaklar titretilerek ses çıkarılır. Kur döneminde erkek kurt örümceklerinin gösterdiği davranışlara dişiler de aynı şekilde karşılık verdiklerinden bu vücut kısımlarının iletişimdeki fonksiyonları açıktır. Bu durum stridülasyon için oldukça karışıktır. Stridulasyon’da kullanılan organlar yapısal olarak iyi tanımlanmıştır. Fakat bunlara bağlı iletişim fonksiyonları net değildir. Ama ağ örümceği Steatoda bipunctata üzerinde yapılan incelemeler stridülasyonun hem kur yapma döneminde hem de şiddetli karşılaşmalarda kullanıldığını göstermiştir. S. bipunctata’larda sadece yetişkin erkek bireyler stridulasyon organlarını kullanırlar. Bunlar prosoma üzerinde, opisthosomaya yerleştirilmiş sırt sırta gelen (1 mm2) güçlü keskin uçlardan oluşurlar. Zirai Mücadele Tarımsal ekosistemlerdeki predatörlerin avlarının büyük bir kesimini Collembola, Diptera ve Afidler gibi yumuşak vücut yapılı böcekler oluşturmaktadır. Tarımsal ekosistemlerde örümceklerin bulunduğu iki katman vardır: Toprak yüzey zonu ve vejetasyon zonu. Her bir zonda farklı örümcek grupları yer alır. Zirai alanlara uygulanan bazı pestisidlerin örümcek populasyonlarında önemli kayıplara neden olmaktadır. Pestisitler, kültür bitkilerine zarar veren böcekler kadar predatörü olan örümceklerin de yok olmasına sebep olmaktadır. Kültürel ve kimyasal tekniklerin dikkatli seçimi ile örümceklerin tarımsal ortamlardaki etkinliğini korumak ve daha da arttırmak gereklidir. Düşmanları Omurgalılar içinde balıklar, iki yaşamlılar, sürüngenler, kuşlar ve özellikle kemiriciler içinde bir çok düşmanları vardır. Birçok balık, özellikle alabalık, su yüzeyine gelir ve örümcekleri avlayabilir. İki yaşamlılar arasında kara kurbağaların en çok örümceklerle beslendikleri tahmin edilmektedir. Sürüngenlerin de besin listesinde örümceklerin yer aldığı bilinir, fakat genel olarak sürüngenlerin örümcek nüfusu üzerinde çok az bir etkiye sahip oldukları düşünülmektedir. Örümceklerin düşmanlarından sadece bir kaçı memelidir. Örümcekler, örneğin köstebek, kirpi gibi böcekçil memeli besinlerinin % 1-2'sini oluşturur. Yarasalar da örümceklerle beslenir. Örümceklerin asıl düşmanları kendileridir. Bazı türler diğer örümcek türleri üzerinden beslenirler. Kannibalist canlılar olduklarından, tür içinde doğal bir dengeleme söz konusudur. KAYNAKLAR Brignoli, P. M., 1983. A Catalogue of the Araneae 1940-1981, Part I and II. Manchester University Press. Manchester. 754 p. Foelix, R. F., 1982. Biology of Spiders. Harvard University Press. Cambridge. 514 p. Nentwig, W., 1968. Non-webbuilding spiders: prey specialists or generalists. Oecologia (Berlin) 69: 571-576. Nentwig, W., 1987. Ecophysiology of spiders. Regensburg University, Institute of Zoology. Regensburg. 815 p. Tyschchenko, V. P., 1971, Identification Key to Spiders of the European USSR, Opred Faune USSR 105, Leningrad. 281 p. (in Russian).

http://www.biyologlar.com/arthropoda-eklembacaklilar

Down Sendromu nedir

Eğer hamile iseniz bebek bekleyen anne adaylarının hepsinin en büyük ortak korkusunu çok büyük bir olasılıkla siz de yaşıyorsunuz demektir.

http://www.biyologlar.com/down-sendromu-nedir

Clavibacter michiganensis subsp. michiganensis

Belirtiler 1-Bulaşık tohumlardan oluşan fideler sağlıklı olarak gelişebilir olgunluk aşamasında bitkilerde sera koşulları altında ilk belirtilerini oluşturur. 2-Sıcak havalarda yapraklarda ters solma meydana gelir . 3-Yapraklar üzerinde ilk olarak beyaz interveinal alanlar daha sonra kahverengi nekrotik lezyonlara dönüşür. Bitkide geriye dönüşü olmayan solgunluk oluşur. 4-Yaprak damarları arasında ani solgunluk ,ve yanıklıklar gözlenebilir. 5-Meyvelerin olgunlaşmasında dengesizlik gözlenir ,gelişmede başarısızlık ve meyve dökümü olabilir. 6-Meyve üzerinde kuşgözü şeklinde noktalar gözlenebilir. 7-İnfekteli bitkilerde gövdenin yaprakla birleştiği noktalarda kesitte özde boşluklar vasküler sistemde sarımsı bazen kırmızımsı kahverenkli renk değişimi gözlenir .Bu renklenme yalnızca ilerlemiş infeksiyonlarda belirgindir. 8-Bazı durumlarda meyve dokusunda damarlanmalar gözlenebilir. 9-İlerlemiş infeksiyonlarda yaprak sap kısmında yumuşama ve renk değişimi gözlenir. BİYOLOJİSİ Enfekte olmuş domates tohumu fideleri ile yüksek bulaşmalar olmaktadır. Yayılması örtü altı üretimde kültürel tercihlerin değişmesi yağmurlama sulama, kimyasal uygulamalarda spreyleme benzeri kültürel uygulamalar bakterinin stomalar vasıtası ile hem doğal hemde yara dokularından giriş yapmasında etkindir ,,genç bitkiler daha duyarlıdır .Bununla birlikte, doğal koşullar altında, domates bitkiler duyarlı gibi görünmektedir Bakteri bitki artıkları üzerinde uzun bir süre canlı kaldğı gibi,sera konstrüksiyonu ve ekipmanlar üzerinde yaşamını sürdürebilmektedir . Toprak ta tek başına uzun süre hayatta kalamaz ancak tohum üzerinde en az 8 ay canlılığını sürdürür. Eppo Bölgesi: Avusturya, Belarus, Belçika, Bulgaristan, Çek Cumhuriyeti, Mısır, Finlandiya, Fransa, Almanya, Yunanistan, Macaristan, İrlanda, İsrail, İtalya( Sardunya ve Sicilya dahil ),Lübnan, Litvanya, Fas, Hollanda, Norveç % 1 tohum taşınması ile ) oluştu Polonya, Portekiz (ortadan), Romanya, Rusya (Avrupa, Sibirya), Slovenya, İspanya, İsviçre, Tunus, Türkiye, İngiltere (mevcut seralarda bulunamadı ancak geçmişte görülen ), Ukrayna, Yugoslavia. Yugoslavya. Asya: Ermenistan, Azerbaycan, Çin, Hindistan İran, İsrail, Japonya, Lübnan, Türkiye. Afrika: Mısır, Kenya, Madagaskar, Fas, Güney Afrika, Tunus, Togo, Uganda, Zambia, Zimbabwe. Zambiya, Zimbabve. Clavibacter michiganensis subsp. Michiganensis Kuzey Amerika: ABD ve Yaygın Columbia British Kanada (Nova Scotia) (California, Florida, Georgia, Hawaii, Iowa, Illinois, Indiana, Michigan, North Dakota, Meksika. Orta Amerika ve Karayipler: Kosta Rika, Küba, Dominika, Dominik Cumhuriyeti, Panama. Güney Amerika: Arjantin, Brezilya (São Paulo), Şili, Kolombiya, Ekvator, Peru, Uruguay. Okyanusya: Avustralya (New South Wales, Queensland, Güney Avustralya, Tasmanya, Victoria, New Zealand, Tonga. Batı Avustralya, Yeni Zelanda, Tonga. AB: Mevcut. Dağılım haritası B) 26. IMI (1996, No. Tohum patojenin uzun mesafede taşınmasında ana vektör olduğu ve tohum ticareti artışı ile kolaylaştığı görülmüştür. PEST ÖNEMİ Ekonomik etkileri Hastalık etmeni 1910, ABD' ilk kez yayınlanmış ciddi kayıplara neden olmuş özellikle sera ve tarla domateslerinde hastalığın %70 verimde azalmaya neden olduğu kayıt edilmiştir. Fransa'da yürütülen bir çalışmada 1991 yılında % 20-30 verimde kayıplara neden olduğu bildidilmiştir.1991 Kontrol 1-Sağlıklı tohumlar kullanımı hastalığın kontrolü için en önemli koşul(Thyr ve ark., 1973). A substantial 2-Tohumların kimyasal olarak dezenfeksiyonu infeksiyonun azaltılmasında önem kazanmıştır. Dhanvantari (1989) 3- Koruyucu önlemler ile hastalıklı bitki artıklarının imha edilmesi , 4-Kullanılan ekipmanların dezenfekte edilmesi . 5-Dayanıklı çeşitler konusunda çalışmalar yapılmış (Van Steekelenburg 1985 de) ticari bir çeşit henüz yok. Bitki sağlığı risk Bakteri, serada domates üretiminde en ciddi hastalıklarından birisidir dahası bitki sağlığı konusunda önlem alınmaz ise kontrol güçleşebilir.Tohum test yöntemlerinin revizyonu gerekir Örnek temsilcisi ne uygun olarak çok sayıda tohum uygun yöntem ile test edilmelidir.

http://www.biyologlar.com/clavibacter-michiganensis-subsp-michiganensis

Kök Hücre ve Telomeraz

Aldıkları sinyale göre farklı hücre türlerine dönüşüyorlar. Bunu kontrol eden unsurlarsa genlerdir. Bir kök hücresinin hangi hücreye dönüşeceğini hücre çekirdeğindeki genler belirlemektedir. Diğer hücreler ölünce veya hasar görünce, kök hücreler hangi hücre türüne ihtiyaç varsa o hücreye dönüşüyorlar. Bu işlem sırasında bazı genler daha aktif hale gelirken, bazıları da baskılanmaktadır. Kendisini yenileme gücüne sahip olan kök hücreler, bir bakıma diğer hücre türleri için tükenmez bir kaynak görevi üstlenmektedirler. İlk olarak 1998 yılında insan embriyosundan kök hücre elde edilip kültürlerde çoğaltılmasından sonra kök hücre araştırmaları hız kazandı. Değişik hücre türlerine dönüşebilme potansiyeli olan kök hücreleri, kontrol edilebildikleri taktirde laboratuvar ortamında istenilen hücre türüne dönüştürülebiliyorlar. Böylece vücutta eskiyen, hastalanan veya ölen hücrelerin veya organların yerini doldurmak üzere laboratuvarda kök hücrelerinden yeni hücreler, hatta yeni bir organ elde edilebilir. Ancak bunu başarabilmek için hücrenin genetik şifresini ve kontrol mekanizmalarını çok iyi bilmek gerekiyor. Kök Hücre nedir? Erkeğin spermi ile kadının yumurtası birleştiğinde, yani döllenme sonrası oluşan hücre (zigot) tek başına tüm organizmayı meydana getirebilecek genetik bilgiye ve güce sahiptir. Vücuttaki tüm hücrelere dönüşebilecek potansiyele sahip olan bu ilk embriyonel hücreye "totipotent" herşeyi yapabilen anlamında hücre denilmektedir. Döllenmeyi izleyen ilk dört ile beş gün içerisinde tek hücreden meydana gelen tüm hücreler aynı güce sahiptir, yani döllenme sonrası ilk dört gün içerisinde oluşan hücreler rahim içerisine yerleştirildiğinde her biri tek başına bir organizma, yani insan oluşturabilecek güçtedirler. Anne karnında ilk dört gün içerisinde eğer herhangi bir nedenle bu hücreler birbirinden ayrılırsa, ayrılan her hücre kendi başına büyüyebilir ve ayrı bir insan meydana gelebilir. Genetik şifreleri aynı olan bu kişiler “tek yumurta ikiz” leridir. Beşinci günden, yani 2-3 hücre bölünmesinden sonra meydana gelen hücreler "blastosit" denilen küresel bir şekil alırlar. Bu kürenin içerisindeki hücreler vücuttaki tüm hücrelere dönüşebilecek potansiyele sahipler; ancak tek başlarına tüm organizmayı oluşturamamaktadırlar. Yani, döllenmeden 6-7 gün sonra meydana gelen hücrelerden herhangi biri alınıp rahime yerleştirilirse bu hücre artık bir insan oluşturamıyor. Beşinci günden sonra oluşan hücreler her hücre türüne dönüşebilecek güce sahipler. Gerekli ortam sağlandığında bu hücreler bilinen yaklaşık 200 hücre türüne dönüşebiliyorlar. Ancak bu hücreler artık tek başına tüm organizmayı oluşturamıyorlar. Bu nedenle bu hücrelere "pluripotent" hücre deniliyor. Hayvanlardan ilk olarak 1981 yılında elde edilen bu tür kök hücreler yaklaşık 15 yıl sonra insanlardan da elde edildi. Hücrelerin bölünme kapasitesini, yani bir bakıma ömrünü belirleyen faktörlerden biri, kromozomların ucunda bulunan ve "telomer" denilen DNA zincirleridir. Bu zincirlerin uzun kalmasını sağlayan ise telomeraz enzimidir. Bir hücrede telomeraz ne kadar aktifse telomer uzunluğu da o kadar korunabiliyor demektir. Telomerler ne kadar uzun olursa hücrelerin bölünme kapasitesi de o kadar fazla olur. Kök hücrelerde de çok aktif telomeraz faaliyeti ve buna bağlı uzun telomer zinciri vardır. Bu nedenle kök hücreler çok uzun sürelerle bölünerek kendilerini kopyalayabiliyorlar. Anne karnındaki organizmanın daha sonraki gelişim aşamalarında hücreler biraz daha özel görevlere sahip oluyor ve erişkin kök hücrelerine dönüşüyorlar. Bu erişkin kök hücreleri de belirli hücre türlerini meydana getiriyor. Örneğin kan kök hücresi kemik iliğinde bulunuyor ve gerektiğinde beyaz kan hücreleri, kırmızı kan hücreleri ve kanın pıhtılaşmasında görev alan trombositlere dönüşüyor. Aynı şekilde deri kök hücreleri de değişik deri hücrelerine dönüşebiliyorlar. Biraz daha özelleşmiş olan bu kök hücrelere "multipotent" (çok yetili) hücre deniliyor. Tüm organizmayı oluşturma gücüne sahip olan veya tüm hücre türlerine dönüşebilen kök hücreler, insan gelişiminin ilk aşamalarında, yani embriyo aşamasında bulunuyor. Ancak biraz daha özelleşmiş kök hücreleri çocuklarda ve hatta erişkinlerde bulunabiliyor. Buna en iyi örnek kemik iliğindeki kan kök hücreleri. Bu hücreler hem çocuk hem de erişkin kemik iliğinde bulunuyorlar. İnsan vücudunda ancak belirli birkaç hücre türüne dönüşebilen erişkin kök hücreleri, laboratuvar koşullarında gerekli ortam ve sinyaller sağlandığında çok daha fazla hücre türüne dönüşebilmektedirler. Örneğin, normal koşullarda sadece kan hücrelerine dönüşen kan kök hücreleri, istenildiğinde sinir hücresine dönüşebiliyorlar. Kök Hücrelerin Kaynağı: Kök hücreler üç kaynaktan elde ediliyor. Bunlardan ilki insan veya hayvan embriyosu. Yani daha anne karnında 5-6 hücre aşamasındaki organizmadan kök hücre elde edilebiliyor. Buna embriyonel kök hücre deniliyor. İnsan embriyonel kök hücresi ilk olarak 1994 yılında elde edildi, 1998 yılındaysa laboratuvarlarda üretilmeye başlandı. Anne karnında büyüyerek fetus haline gelen organizmanın ileride sperm veya yumurta olacak üreme hücreleri de kök hücre kaynağı olarak kullanılabiliyor. Kök hücrelerin diğer bir kaynağıysa erişkinlerde bulunan ve birkaç hücre türüne dönüşebilen "erişkin kök hücre" leridir. Hücrelerin duvarındaki belirli işaretleri tespit ederek, yani bir bakıma bar kodunu okuyarak hangi hücrenin kök hücre, hangisinin farklılaşmış hücre olduğunu anlamak mümkündür. Erişkin kök hücrelere en iyi örnek, her insanda kemik iliğinde bulunan kan kök hücreleridir. Deneysel çalışmalarda her iki kaynaktan elde edilen kök hücreler kullanılmaktadır. Hangi kaynaktan alınırsa alınsın elde edilen kök hücrelerin laboratuvarda çoğaltılmasıyla yeni kök hücre elde edilmesi veya farklı hücre elde edilmesi mümkündür,. ancak embriyodan elde edilen kök hücreler ahlaki açıdan oldukça tartışmalıdır. Bu hücreleri elde etmek için embriyonun hayatına son vermek gerekiyor ve bu da özellikle toplumun tutucu kesiminin tepkisine yol açmaktadır. Telomerler ve Telomeraz: Telomerler, ökaryotik kromozomların uçlarında yer alan ve çok sayıda "TTAGGG" dizi tekrarı içeren heterokromatik yapılar olup kromozom stabilitesinde, gen ekspresyonunda, kromozomal replikasyonda, tümör oluşumunda, yaşlanmada ve hücre bölünmesinde rol aldıkları bilinmektedir. Ökaryotik hücrelerdeki DNA replikasyonunda, kalıp DNA'nın 3' ucunun normal replikasyon mekanizmasıyla kopyalanamamasına "replikasyon sonu problemi" denmektedir ve bunu kompanse edecek moleküler mekanizmaların yokluğunda, her hücre bölünmesinde kromozomal DNA'nın 3' ucunda, yaklaşık 50-200 nükleotidlik kayıp olmakta ve sonuçta "hücresel yaşlanma" gelişmektedir. Telomeraz (telomer terminal transferaz), kromozomal uçlardaki "TTAGGG" tekrarlarının sentezinden sorumlu olan ribonükleoprotein yapıda özel bir DNA polimerazdır. Embriyonik hücreler ve erişkin kök hücrelerinde aktif olan bu enzim, normal somatik hücrelerde saptanmamakta, immortal kanser hücrelerinde ise yeniden aktive olmaktadır. İnsan telomeraz enziminin bilinen 3 komponenti mevcuttur: 1) İnsan telomerazı RNA komponenti (hTR) 2) İnsan telomerazı reverse transkriptazı (hTERT) 3) İnsan telomerazı protein komponenti (TP 1) "hTR"nin, telomer DNA'sına komplementer olan ve 5'-CCCUAAA-3' tekrarlarını içeren 8-30 bazlık bir bölümü sentezde kalıp olarak kullanılmaktadır. Telomerazın katalitik altbirimi olan "hTERT" ise bu diziye komplementer olan "GGTTAG" dizi tekrarlarını sentezlemekte ve "G"den zengin olan 3' ucuna eklemektedir. RNA kalıbının, yeni sentezlenen telomerik dizinin 3'ucuna doğru kaymasıyla, DNA polimeraz bu diziyi kalıp olarak kullanarak karşı komplementer zinciri tamamlar. Telomerazın RNA altbirimine bağlanan "TP1"in, enzimatik aktivitenin regülasyonunda rolü olabileceğini ileri sürmektedir. Kaynaklar Başaran, N. 1996, Tıbbi Genetik, 6.baskı, Bilim Teknik Yayınevi, İstanbul. Klug, W., Cummings M.R. 2002. Genetik Kavramlar, 6.baskı, Çeviri Ed. Öner, C., Palme Yayıncılık, Ankara. Temizkan, G. 1999, Genetik II.Moleküler Genetik, İ.Ü.Fen Fakültesi Basımevi, İstanbul, encarta.msn.com/text www.personal.psu.edu/users www.omu.edu.tr www.tubitak.gov.tr gslc.genetics.utah.edu/units/cloning/whatiscloning/      

http://www.biyologlar.com/kok-hucre-ve-telomeraz

Beynin Yapısı ve Anatomisi

Basit yapılı hayvanların beyni kalınlaşarak kordon biçimini almış tek bir sinir lifinden oluşur. Genel kural olarak, gelişmiş hayvanların beyni basit yapılı hayvanlarınkinden, iri yapılı hayvanların beyni de küçük hayvanlarınkinden daha büyük ve karmaşıktır. Ama beyin büyüklüğünün zekayla hiçbir bağlantısı yoktur. İnsanlarda yetişkinlerin beyninin çocuklarınkinden, erkeklerin beyninin kadınlarınkinden biraz daha büyük olması yalnızca yaş, vücut ağırlığı ve cinsiyet farkından kaynaklanır. Yüzeyi, yani beyin kabuğu insanda öylesine kıvrımlıdır ki, bu görünümüyle iri bir cevizi andırır ve kıvrımları açılıp yayılacak olsa bir yastık yüzü kadar geniş bir alanı kaplar. Beynin birçok işi nasıl başardığını öğrenmeden önce yapısına yapısına göz atmakta fayda vardır. Çok karmaşık olan beynin yapısını tam anlamıyla anlatabilmek için ayrı bir kitap yazmak gerekir,bundan dolayı, biz onun yapısını sadece ana hatlarıyla ve basitleştirilmiş olarak anlatacağız. Beyin kabaca üç bölüme ayrılır. Ark (yamuk) beyin, orta beyin ve ön beyin. Arka beyin, beyin sapı ve beyincik olarak ikiye ayrılır. Ön beyin ise ara beyin ,talamus ve hipotalamus olarak üçe ayrılır. Beynin yapısıyla ilgili olarak anlattıklarımızı aşağıdaki gibi sıralarsak anlaşılmaları daha da kolaylaşacaktır. I ARKA BEYİN A Beyin Sapı B Soğanilik C Köprü II ORTA BEYİN III ÖN BEYİN a) Arabeyin b) Talamus c) Hipotalamus Beyinin en büyük ve en önemli kısmı asıl beyindir. Fakat beyini incelemeye, beyin sapının omurilikte birleştiği, arka beyinin en alt kısmından başlayacağız. Bir beyin fotoğrafına bakıldığında, beyin sapı, beynin hafifçe kalınlaşmış bir devamı gibi görülür. Merkezi sinir sisteminin işleyişinde beynin diğer kısımları gibi beyin sapının da kendine özgü görevleri vardır. Beyin sapı ve köprü işbirliği yaparak kalp atışları, kan basıncı ve nefes alma gibi yaşamsal önemi çok büyük olan vücut faaliyetlerini kontrol ederler. Beyincik beyin sapının tam arkasında kafatasının dibindedir. İçinde hareketlerimizi kontrol eden çok sayıda sinir elyafı bulunur. Beyincik, hareketlerin başlatılmasını değil, çeşitli kas hareketlerinin uyumlu bir şekilde yapılmasını sağlar. Ayrıca beyincik, iç kulakta bulunan ve vücut dengesini koruyarak devrilmemizi önleyen bir mekanizmadan gelen sinir elyaflarının son durağıdır. Arka beynin beyin sapının üstüne doğru genişleyen kısmına ‘‘köprü’’ adını ilk olarak veren, rönesans devrinin cerreh ve anatomistlerinden Costanzo Varoli’dir. Yüz kasları, çiğneme kasları ve dudak kaslarıyla yüz ve göz ifadelerini kontrol eden önemli kafa sinirleri buradadır. ARA BEYİN: Beyin sapının üst kısmında, ara beyin denen bölge yer alır. Ara beyin, bildiğimiz o kıvrıntılı beyin yarım kürelerinin iç kısmını dolduran bir çok farklı bölgenin oluşturduğu bir yapılar topluluğudur. Bu bölgeler, öğrenme, hafıza, açlık-susuzluk, vücudun iç dengesinin korunması, vücuttaki hormon sistemlerinin kontrolü, heyecanlar, duygusal tepkiler, duygulara göre vücudun iç ortamının düzenlenmesi gibi çok önemli fonksiyonlar yürütürler. Bu ara beyin bölgelerinin çoğu, az önce bahsettiğimiz, sıvı dolu beyin içi boşluklarının (ventriküllerin) etrafını sarmış vaziyette bulunur LİMBİK SİSTEM "Kabuk altı" (subcortical), ara beynin etrafında onu bir halka gibi saran, işlevsel bir birliktelik oluşturmuşlardır. Bu yapıya, özel olarak Limbik sistem (latince: limbus= halka, sınır) adı verilir. İşte bu limbik sistem içinde yer alan hippokampus, amigdala, forniks, mamillar cisim, septum, cingulat kabuk gibi yapılar, heyecansal ve temel zihni fonksiyonları yürütürler. Örneğin sinirlenince kontrolümüzü kaybetmemize sebep olan yapılardan en önemlisi, burada bulunan amigdallerdir; veya, öğrendiğimiz herhangi bir şeyi hafızaya almamızı, buranın bir üyesi olan hippokampus sağlar. Ara beyinde ayrıca, vücuda giden emirlerin düzenlenmesinin yapıldığı ara merkezler de bulunur.

http://www.biyologlar.com/beynin-yapisi-ve-anatomisi

Başlıca Plasmidler ve Özellikleri

Bakterilerde, karakterleri çok değişik olan doğal plasmidler bulunmaktadır. Taşıdıkları özel genlere dayalı olarak bunları 6 grup altında incelemek mümkündür. 1) F plasmidi (fertilite faktörü, F faktörü, seks faktörü) 2) Rezistenslik plasmidleri (R plasmidleri, R faktörleri) 3) Virulens plasmidleri 4) Bakteriyosin plasmidleri 5) Metabolik plasmidler 6) Büyük plasmidler F plasmid (F Faktörü, Seks Faktörü) F faktörü (fertilite faktörü) en iyi E. coli K 12 suşlarında incelenmiştir. Bir plasmid olan F faktörü, sirküler, sarmal ve çift iplikçikli otonom bir DNA molekülüdür (MA: 63x106 dalton, 95 kbp uzunlukta ve hücre de 1-3 tane kadar). Konak bakterisinin yaklaşık %2'si kadar uzunlukta olan bu plasmid, yapısında replikasyon orijininden (RO)'dan ayrı olarak kendisinin transferini sağlayabilecek ve pilus formasyonunu kodlayan bilgilere sahiptir (Tra operonda 21 gen). Bu plasmid hangi hücreye aktarılırsa, o bakteride hücre membranında pilus sentezi (pilus formasyonu) meydana gelir. Bu pilus (seks pilusu), bu faktörü taşımayan alıcı hücrenin (F- hücre), verici hücre ile (F+ hücre) bağlantı kurmasına ve bir konjugasyon köprüsü oluşturmasına yardımcı olur. F faktörü konjugatif (transmissible) bir plasmiddir. F faktörü bakterinin sitoplasmasında bulunabileceği gibi, konakçının genomuna da integre olabilir ve Hfr (high frequency recombination) hücre meydana gelir. F plasmidi ile başlıca 3 tür konjugasyon oluşabilmektedir. Bunlar da, 1) F+ hücre x F- hücre konjugasyonu: F faktörünü sitoplasmasında taşıyan bir F+ hücre ile buna sahip olmayan F- hücre arasında gerçekleşen F faktörü aktarılmasında seks pilusu önemli fonksiyona sahiptir. Ancak, böyle iki hücrenin direkt teması da genetik madde aktarımına yardımcı olabilmektedir. F+ hücre x F¯ hücre birleşmelerinde genin aktarımı tek yönlüdür. Yani vericiden alıcıya doğrudur. İki yönlü olmamaktadır. Ayrıca, F+ hücre ile F- hücre birleşmelerinde de alıcı hücre her zaman F+ hücre şekline dönüşmeyebilir. Konjugasyon sırasında, F faktörünün bir iplikçiğinde oluşan kopma (ori T bölgesi) ve buradan ayrılan 5' ucu, seks pilusunun oluşturduğu köprüden geçerek F- hücreye transfer edilir. Aktarılan tek iplikçiğin karşısında 5' ¬ 3' yönünde ikinci bir iplikçik sentezlenerek alıcı hücrede çift iplikçikli ve sonra da sirküler forma dönüştürülür. Böylece başlangıçta F- olan alıcı hücre F+ hale dönüşmüş olur. Vericide bulunan tek kopya da rolling circle replicationla çift iplikçikli forma getirilir. Böylece verici hücre de yine plasmid kalmış ve bu hücre F+ karakterini korumuş olur. Alıcı hücreye aktarılan F plasmidi, burada sitoplasmada kalır. Nadiren bakterinin genomuna da integre olabilir ve hücreyi Hfr haline getirebilir veya bazen de hücreden ayrılabilir. Genetik materyalin, vericiden alıcıya aktarılmasında seks pilusunun çok önemli fonksiyonu olmasına karşın, aktarım bazen, direkt temas sonunda da meydana gelebilmektedir. 2) Hfr hücre x F-hücre konjugasyonu: F faktörünün alıcı hücrenin kromozomu ile birleştiği durumlarda, bakteride seks pilus formasyonu çok daha fazla sıklıkta meydana gelir ve buna bağlı olarak ta gen transferi çok daha yüksek oranda gerçekleşir. Hfr hücrelerde, kromozom üzerinde lokalize olan F faktöründe iplikçikte oluşan kopma sonu ayrılan 5'-ucu konjugasyon köprüsüne girerek buradan alıcı (F- hücre) hücreye transfer edilir. Ancak, bağlı bulunduğu konakçı genomundan da bir segmentin veya nadiren tüm kromozomun da, tek iplikçik halinde, alıcıya aktarılmasını sağlayabilir. Alıcıya geçen tek iplik F faktörü ve/veya kromozom segmenti burada çift iplikçikli ve sirküler forma dönüştürülür. Vericide kalan tek iplikçik F faktörü rolling circle replication ile çift iplikçik haline getirilir. Eğer genomdan bir segment (tek iplikçik) gitmişse, bu da karşı iplikçik kalıp olarak kullanılarak yeni iplikçik sentezlenerek çift iplikçikli hale getirilir. Alıcı hücreye aktarılan F faktörü veya F faktörü + kromozom segmenti, ya alıcı hücrenin genomuna integre olur ve bu hücreyi de Hfr haline getirir veya F plasmidi, hücre sitoplasmasında da kalabilir. F+ hücrelerden F- hücrelere aktarılan F plasmidinin alıcı hücrenin kromozomu ile integre olma olasılığı 10-5-10-6 arasındadır. Kromozomla birleşme geriye dönüşlü de olabilir. Yani F faktörü genomdan ayrılabilir. DNA transferi belli bir hız ve belli bir yerden başlayarak devam eder. Bu hız 37°C 'de bir saat içinde yaklaşık 105 nukleotid çifti kadar olduğu belirlenmiştir. F+ hücrelerden alıcıya F faktörünün transferi oranı genellikle düşüktür. Çünkü, pilus formasyonu, Hfr hücrelere göre daha azdır, Ayrıca direkt  kontakla yapılan transferlerde de, sıvı ortamda bakteriler serbest olarak bulunduklarından ve aralarında az da olsa bir mesafe olduğundan direkt temas oldukça sınırlı kalmaktadır. Bazı durumlarda mikroorganizmalar sıvı ortamda kümeler tarzında veya birbirlerine bağlı olarak da üreme gösterebilirler. Ancak, böyle kümeler tek bir mikroorganizmadan oluşması nedeniyle hepsi aynı karakteri yani hepsi F- olabilirler. Katı ortamlarda da üreyen koloniler, aynı şekilde, tek bir mikroorganizmadan kaynaklandığı için aynı sorun burada da bulunmaktadır. F faktörü, sadece E. coli suşları arasında transfer edilmez. Aynı zamanda, salmonella, shigella, pseudomonas, proteus, vs cinslerine ait türlerde de meydana gelebilir. F+ E. coli suşları diğer  Gram negatif mikroorganizmalarla da konjugasyon yapabilir. Ancak; daha az sıklıkta bir gerçekleşme elde edilir. Örn, E. coli ile salmonella arasındaki konjugasyon oranı 10-6-10-8 kadardır. Salmonella ile shigella arasında da buna benzer bir oran bulunmaktadır. F faktörü bazı indükleyicilerin (akridin boyaları, ethidium bromide, mitomycin C, vs) etkisinde veya spontan olarak bakteriden çıkabilir (eliminasyon, plasmid eksklusiyonu). Böylece, F+ hücreler F-  hücre haline gelebilirler. 3) F' hücre x F- hücre konjugasyonu: Bazı indükleyicilerin etkisi altında, Hfr hücrelerinde kromozomda yerleşik bulunan F plasmidi buradan ayrılabilir. Bu ayrılma tam veya kısmi olabildiği gibi bazı durumlarda da kromozomdan da bir segmentin veya genin birlikte çıkmasına neden olabilir. Kısmi ayrılmalarda ise, plasmidin bir bölümü bakteri kromozomu üzerinde kalır. Bakteri genomundan bir segmentin F plasmidi ile birlikte çıkması (F' plasmidi) durumunda oluşan F' hücre ile F- hücre konjugasyonlarında, bakteri genomu da alıcı hücreye çok nadiren transfer edilebilir ve bu bakteriyi, aktarılan faktör yönünden pozitif hale getirebilir. Ancak, çoğu kez bakteri segmenti transfer edilmez veya aktarılsa bile kromozomla birleşmeyebilir. Konjugasyonun önemli olan yanlarından biri de, kesintili konjugasyon denemeleri ile bakterinin zamana karşı kromozom lokalizasyonlarının haritasını yapmak mümkündür. Böylece hazırlanan kromozom haritalarında hem genlerin yerleri ve hem de aktarılma süresi içinde zamanları da belirlenmektedir. F faktörünün bakteri kromozomuna integrasyonunda her ikisinde bulunan İS-elementlerinin rolü olduğu bildirilmektedir. Bakterideki İS-elementi ile F plasmidinde bulunan İS-elementi karşılıklı gelerek çapraz integrasyonla F faktörü kromozoma integre olur. Rezistenslik Plasmidleri (R Plasmidleri) Enterobakteriler arasında çeşitli ilaçlara karşı dirençlilik, hem in vitro ve hem in vivo olarak saptanmıştır. İlk defa bu özellik, 1951 yılında Japonya'da seyreden bir dizanteri olgusundan izole edilen S. flexneri suşunun 4 antimikrobial maddeye (kloramfenikol, tetrasiklin, streptomisin ve sulfonamid) karşı dirençli olduğu belirlendikten sonra anlaşılmıştır. Bu etkenin dışında, birçok ilaca karşı çoğul dirençlilik E. coli, salmonella, shigella, Klebsiella, proteus ve bazı enterobakterilerde de rastlanmıştır. Daha sonraları antibiyotik sayısında, dirençlilik yönünden artmalar olmuş ve yukardakilere ilaveten ampisilin, kanamisin, neomisin, vs gibi antibiyotiklere çoğul dirençlilik gösteren suşların sayısında artmalar meydana gelmiştir. R plasmidleri çift iplikçikli sarmal, sirküler  ve yapıda DNA karakterinde genetik elementlerdir. Molekül ağırlıkları >50x106 kadar olup genellikle konjugatif bir özelliktedirler  Bakteri kromozomu ile de integre olabilirler. R faktörleri iki bölümden oluşurlar. Biri konjugasyonu ve aktarılmayı yöneten transfer faktörü (TF) ve diğeri de çeşitli ilaçlara karşı dirençliliği tayin eden rezistenslik faktörü (RF) veya R determinanttır. E. coli 'de bu iki faktör tek bir ünite halinde bulunmasına karşılık salmonella ve proteuslarda bunlar ayrı sekanslar halindedirler. Bu faktörler birbirlerinden bağımsız olarak aktarılabilirler ve akridin boyalarından da ayrı ayrı etkilenirler. Eğer, RF transfer edilirse alıcı hücre ilaçlara karşı dirençli hale gelir. Ancak, RF'nin, TF olmadan tek başına aktarılması olanaksızdır. Bu nedenle RF'nin aktarılması diğer mekanizmalar tarafından yönetilir. Patojenik bakteriler, kendilerinde bulunan R faktörlerini nonpatojenik olanlara transfer edebilir. R plasmidleri, aynı zamanda, bazı faktörleri, diğer plasmidlerle birleşerek veya transpozonlardan alabilirler. Bazıları da R faktörlerini amplifiye edebilir veya plasmid sayısı (kopya sayısı) artırılabilir. Böylece bakteriler arasında rezistenslik konsantrasyonu çoğalmış olur. RF ve TF'yi ayrı üniteler halinde bulunduran suşlarda ya biri veya ikisi birlikte transfer edilebilir. R faktörleri, etkilerine göre karakterize edilebilirler. Bazıları fertiliteye mani olur ve F pilus oluşumunu baskılar (fi+, fertilite inhibisyon pozitif), bazıları da etkilemez (fi-, fertilite inhibisyon negatif). Ancak, fi+ faktörü, F faktörünün aktivitesini sınırlandırır. Buna karşın, fi-, F faktörünün etkinliğine tesir etmez. Bazen de bir hücrede fi+ ve fi- faktörleri bir arada bulunabilirler. Bu durum, aynı hücrede her iki faktörün replikasyon için aynı bağlanma yerine sahip olmadıklarını göstermektedir. R faktörü taşıyan hücrelerde, F piluslarına benzeyen piluslar (R pilusu) oluşmaktadır(R-plus formasyonu). Bu pilus da R faktörünü transferde bir konjugasyon köprüsü oluşturur ve genetik materyalin aktarılmasında önemli rol oynar. R faktörü, çeşitli antibiyotiklere karşı dirençliliği tayinde rol alan genlere sahiptir. Şimdiye kadar, 7-8 antibakteriyel maddeye karşı rezistenslik tespit edilmiş olup bunların da tek bir R faktöründe toplanabileceği belirlenmiştir. Bir bakteride, ilaç dirençliliği oluşursa, bu zamanla çok yönlü R faktörüne dönüşebilir ve diğer Gram negatiflere de aktarılabilir. Antibiyotikler alındığında, bunlara duyarlı olan mikroorganizmalarda azalmalar meydana gelirken, dirençliler de ise bunların yerini alma ve çoğalma gözlenir. Bu arada, R faktörünün de hem patojenik ve hem de nonpatojenik Gram negatiflere transferi artar. Böylece, barsakta, R faktörünü taşıyan hücre sayısı çok fazla bir düzeye ulaşır, komensal ve patojenikler arasında yaygın bir hale gelir ve hastalığın nüksüne yol açar. Bu tarz infeksiyonlara, Gram negatif etkenlerden ileri gelen infeksiyonların sağaltımında kullanılan streptomisin uygulamasından sonra rastlanmaktadır. R faktörünün bir kısmı, zamanla, spontan olarak veya antibiyotik baskısının kalkması sonu, konakçı bakteriden ayrılabilir. Spontan kaybolmalarda R faktörünün, kromozomla aynı anda bölünerek kardeş hücrelere aktarılması da rol oynar. P. multocida, S. aureus, Salmonella, Shigella, genellikle, ilaçlara duyarlı, buna karşın Pseudomonaslar ise dirençlidirler. Mutasyonlar sonu da, antibiyotiklere karşı dirençlilik oluşabilmektedir. Ancak, bu tarz rezistenslik, yukarıda açıklandığının aksine, ekstrakromozomal değil kromozomaldir. Bakterilerde bulunan restriksiyon endonuklease enzimleri yabancı orijinli genetik materyallerin invazyonuna mani olur. Ancak, bu koruma işlevi her zaman başarılı olmaz ve yabancı DNA segmentleri hücrelere girer ve kromozomla da birleşebilir ve mutasyonlara da yol açabilir. R faktörü, R+ hücrelerden R- hücrelere genellikle, konjugasyonla transfer olmasına karşın Gram pozitiflerde (stafilokoklarda) genel transdüksiyonla aktarma meydana gelir. R faktöründeki çoğul dirençlilik, bunda bulunan transpozon (Tn) ve/veya İS-elementlerinden kaynaklanmaktadır. Çeşitli antimikrobial ilaçlara ve metallere karşı dirençliliği sağlayan ve R plasmidlerince kodlanan özellikler ve bunların mekanizmaları hakkında ayrı bir bölüm halinde, bu kısmın  sonunda, bilgi verilmektedir. Bakteriyosin Plasmidleri Bakteriyosinler, bazı bakteriler tarafından sentezlenen dar spektrumlu ve letal etkili proteinlerdir. Bakteriyosinlerin bir kısmı kromozomal olmasına karşın, bazıları da plasmid orijinlidirler. Bakteriyosinler, ancak, kendini sentezleyen türden veya konakçısına çok yakın olan mikroorganizmalara etkilidirler. Örn., E. coli tarafından sentezlenen colicin (kolisin, bakteriyosin), bunu sentezleyemeyen E. coli 'ler ile S. sonnei  için letaldir. Ancak, diğer bazı enterobakterilere de etkili olabilmektedir. Bu etki çok sınırlıdır. İnsan ve hayvanlardan izole edilen E. coli suşlarının yaklaşık %40 kadarının kolisinojenik olduğu belirtilmektedir. Şimdiye kadar 20'den fazla ve ayrı özellikte kolisin izole edilmiş olup bunlar A'dan V'ye kadar, büyük harflerle bir sıralamaya tabi tutulmuştur. Bunların her biri, E. coli 'lerin bazılarına etkili olmakta ve böylece bir konakçı spektrumu ve spesifitesi meydana gelmektedir. Kolisin sentezleyen suşlar (kolisinojenik suşlar) kendi  oluşturdukları kolisinlere dirençlidirler. Ancak, kolisin sentezlenmeyenler etkilenirler. Bakteriyosinler, Gram negatif mikroorganizmaların yanı sıra bazı Gram pozitiflerce de (stafilokok, streptokok, listeria, basiller vs) sentezlenebildikleri açıklanmıştır. Bakteriyosin formasyonu için, bakterilerde, özel, bakteriyosinogenlerin bulunması gereklidir. Bunlar, bakteriyosin sentezini spesifiye eden özel genler olup bir kısmı ekstrakromozomal bir karakter taşırlar. Bir çok bakteride böyle genler bulunmasına karşın, genellikle, baskı altında tutulurlar ve bakteriyosin oluşturmazlar. Bu nedenle de hücre filtratlarında bakteriyosinlere çok az rastlanır ve bazen de hiç bulunmayabilirler. Ayrıca, bazı bakteriyosinojenik suşlar da, aynen bakteriyofajlarda olduğu gibi (lizojenik suşlar), bakteriyosin sentezi için indüklenmeleri gerekmektedir. Bakteriyosin sentezleyen hücrelerde, özel bir pilus formasyonuna rastlanmamaktadır. Bunları kodlayan genler, ancak F veya R faktörlerinin oluşturdukları pilusların konjugasyon köprülerinden yararlanarak diğer bakteriye aktarılabilirler. Fakat, Col E1 pilus formasyonunu tayin edebilir ve kendinin transferini sağlayabilir. Bunun yanı sıra, çok az oranda da bakteri kromozomundan bir segmenti de mobilize edebilir ve aktarıldığı hücreye taşıyabilir. Ancak, kromozoma integre olmazlar. Bazı kolisinler (Col E1), bazı E. coli suşlarında bulunan özel bir plasmid (Col plasmidi) tarafından spesifiye edilirler. E. coli 'lerin genomunda doğal olarak kolisin sentezleyen bir gene rastlanamamıştır. Ancak,  kendilerine kolisin geni transfer edilirse böyle E. coli 'ler kolisin genini eksprese edebilirler. Col plasmidi kendi konakçı bakterisini, aynı kolisine karşı dirençli hale getirmesine karşın, diğer kolisinlere duyarlı olabilirler. Örn., Col1 A plasmidi E. coli 'yi colicin A 'ya karşı dirençli yapmasına karşın, colicin B ve diğer kolisin türlerine duyarlıdır. Kolisinler, etkilerine göre, E. coli 'ler, Fredericq tarafından 20 farklı tipe ayrılmış ve bunlara A'dan V'ye kadar bir isim verilmiştir (Freedericq klasifikasyonu). Bu sistematikte, E. coli 'lerin dirençlilikleri esas alınmıştır. Ancak, bu sistematik pratiğe pek uymamaktadır. Şöyle ki, bir E. coli suşu, birden fazla türden kolisin sentezlediği gibi, birden fazla türden kolisini kodlayabilmektedir. Bakteriyosinler düşük molekül ağırlığında ve protein karakterinde substanslar olup her birinin amino asit sıraları ile bazılarının bunları kodlayan genlerin bazılarının baz sıraları saptanmıştır. Yapıları oldukça basit, karbonhidrat ve lipid molekülleri yönünden de bazıları yoksundurlar. Bu nedenle bakteriyosinlerin plasmidler tarafından spesifiye edilip-edilmediklerini saptamak oldukça kolay olmaktadır. Gram pozitiflerce sentezlenen bazı bakteriyosinler, ayrı cinsten mikroorganizmalara da az da olsa etkili oldukları açıklanmıştır. Ancak, bu özellikteki bakteriyosinlerin bir kısmı kromozomal orijinlidirler. Şöyle ki, P. aeruginosa 'nın aeruginocini (pyocin) kromozomal genler tarafından spesifiye edilirler. Bakteriyosinler proteazlar tarafından inaktive edilirler. Bazılarının morfolojileri de, elektron mikroskopla yapılan muayenelerde, faj kuyruklarına benzediği açıklanmıştır. Kolisinlerin ve diğer bakteriyosinlerin molekül ağrılıkları 12000-90000 arasında değişmektedir. Kolisinlerin bazıları iki asimetrik protein molekülü olarak sentezlenir. Bunlardan büyük olanı, duyarlı bakteriyi öldürür ve küçük alt ünite ise kolisin immunite proteini aktivitesi gösterir. Bu alt ünite, kolisinin, in vitro, etkisini inhibe etmesine karşın, büyük alt ünitenin bakteriyi öldürmesine mani olacak etkinlikte değildir. İmmunite proteini kolisine sıkıca bağlanır. Gram pozitif mikroorganizmaların plasmid orijinli bakteriyosinlerinin (streptococcin, staphylococcin, lactocin, vs) molekül ağırlıkları 10000-25000 arasındadır ve yapılarında lipid ve karbonhidratlar bulunmaktadır. Bu duruma göre lipoprotein veya glikoprotein özelliği taşımaktadırlar. Kolisinler bazı antibiyotiklerden (Streptomycin, chloramphenicol) daha büyük molekül ağarlığına sahiptirler. Böyle büyük moleküllerin bakterilerin hücre duvarından içeri girmeleri oldukça zordur. Ancak, bakteriyosinler bir çok tarzda hedef bakteriyi etkileyerek lize ederler. Kolisinlerin hücre membranına bağlı enzimleri aktive ederek veya bazıları da hücre membranından içeri girerek, DNA ve RNA'ların fonksiyonlarını bozarlar. Kolisinler, daha ziyade, RNase ve DNase gibi etkinlik gösterirler. Bazıları da hücre membranının permeabilitesini artırır ve böylece kolisinlerin geçişini kolaylaştırır. Buna bağlı olarak diğer moleküllerin içeri ve dışarı akışı hızlanır ve hücrenin ortamdaki metabolik dengesi bozulur. Kolisinler, aynı zamanda, bakteri hücre membranında bulunan kolisin reseptörlerine tutunarak etkili olabilmektedirler. Colicin-B, E, K ve -M reseptörleri, ferri enterocholin, Vit B12, nukleosid ve ferrichrome (sıra ile) moleküllerinin hücreye girişinde rol oynarlar. Kolisin reseptörleri kolisinin aktivitesi için önemlidir. Eğer hücre duvarı ve buna bağlı reseptörler giderilirse, orijinal hücre kolisine rezistans olsa bile, elde edilen sferoplastlar duyarlılık gösterirler. Ekseri kolisinler (Colicin A, -E1, Ia, Ib, -K) hücre duvarını kanallar oluşturarak, iyonların kolayca girip-çıkışına permeable hale getirir. Kolisinle muamele edilmiş hücrelerden genellikle potasyum (K+) iyonları fazla miktarda dışarı çıkar. Colicin E1 ve -K, hücrelerdeki ATP'ye bağlı reaksiyonları inhibe ederler (protein ve nukleik asit sentezleri de dahil). Katyonların hücreden çıkışı, bunların kofaktör olarak rollerine de mani olduğundan enzimlerin aktivitesini de inhibe eder. Colicin E2 ile muamele edilen hücrelerin DNA'ları parçalanır. Ayrıca, Colicin E2 ile temas eden hücrelerde (bakterilerde) 16SrRNA'nın 3-terminusundan 50 nukleotidin çıkmasına neden olur ve bu RNA etkisiz hale gelir. Cloacid DF13'de (E. cloacae DF13 tarafından sentez edilir) benzer tarzda etkiye sahiptir. Bu kolisinlerin pürifiye formları in vitro olarak nuklease aktivitesi gösterirler. Col El, -A, Ia, ve Ib, hücre membranında depolarizasyon meydana getirerek bakteriyi öldürürler. Col E2 ve -E3'ün de DNase aktivitesi bulunmaktadır. Col -M ve Pesticin (Y. pestis tarafından sentezlenir), hücre duvarında ayrışmalar oluşturarak mikroorganizmaları lize eder. Pesticin, hücre duvarındaki NAGA ve NAMA molekülleri arasındaki beta-1,4 bağlarını koparır. Kolisinleri spesifiye eden plasmidler başlıca iki gruba ayrılmaktadırlar. Grup I Col plasmidleri nonkonjugatif bir karakter taşımakta ve MA. 5x106 kadardır (Col El-K30, ve Clo DF13, vs). Grup II Col plasmidleri ise konjugatif olup MA: 50-80 x 106 civarındadır. Bazıları birden fazla kolisin sentezi için genetik informasyonlara sahiptir. Bunlar aynı zamanda ilaçlara dirençlilik genleri de taşımaktadırlar (Col V, ve Col B, F pilusu oluştururlar). E. coli kültürlerinde, yaklaşık %0.1 bakteri Col+ bir özellik taşımaktadır. Kolisin sentezi ancak bir kaç saat sürer. Bazı kolisinlerin de kendi bakterisine etkiledikleri açıklanmıştır. Bakterilerde, konjugasyon için pilus formasyonunu kodlamayan nonkonjugatif karakterdeki kolisin plasmidleri, eğer konakçı bakteri Col I gibi I pilus oluşturan bir plasmidle super infekte olduklarında, konjugatif plasmid kendi DNA'sı yanı sıra, diğer plasmidlerin de transferini ve hatta, kendi konakçısının DNA'sını da aktarabilir. F piluslarını adsorbe eden fajlarla, I piluslarına bağlanan fajlar (Ifl) farklıdırlar. I pilusları, Col+ bakteri ile Col I- E. coli 'ler arasındaki konjugasyonlarda Col I faktörü alıcıya aktarabilir. Kolisinojenik plasmidler, bakteri içinde bağımsız olarak replike olabilir ve konakçısı için de zararlı bir etkiye sahip değildir. Yani sentezlediği kolisinden konakçısı genellikle etkilenmez. UV-ışınları ve mitomycin C ile bazı kolisinojenik faktörler (plasmidler), indüklenebilirler. Başlangıçta (orijinalinde) Col plasmidi taşımayan ve nonkolisinojenik olan bir bakteri, bu faktörü sonradan alarak Col+ hale gelebilir. E. coli 'lerin kolisinojenik olup-olmadıklarını belirlemek için pratikte kullanılan bazı teknikler bulunmaktadır. Bunlardan birisi de "makrokoloni" yöntemidir. Bu teknik kısaca şöyledir: Taze E. coli buyyon kültürü, agar besi yerinin ortasına, 1 cm çapında yer kaplayacak tarzda ekilir. Uygun bir ısıda (37°C) 48 saat inkube edildikten sonra, kültürün kapağına 1 ml kloroform konarak petri kutusu tersine çevrilir ve böylece 30 dakika kadar bekletilir. Petri kutusunun kapağı açılarak kloroformun uçması beklenir (15. dakika). Bundan sonra, bütün kolisinlere duyarlı olan E. coli K suşunun 24 saatlik buyyon kültüründen 1/100 sulandırılarak bundan petri kutusunu ortasındaki kültüre kadar gelmemek kaydıyla ekim yapılır ve 37°C 'de 24 saat inkube edilir. Ekilen suşun ürememesi kolisinin varlığını ortaya koyar. Ekilen suşun, daha ziyade ortadaki büyük koloniye yakın bölgelerinde inhibisyon oluşur. Aşağıda bazı önemli bakteriyosinler ve bunları sentezleyen mikroorganizmalar gösterilmiştir. Ancak bunların hepsi plasmid orijinli olmayıp bazıları kromozomaldır. A) Gram negatif mikroorganizmalar Aerosin (A. aerogenes), Alveisin (B. alvei), Kloasin (E. cloacae), Kolisin (E. coli) Pestisin (Y. pestis, Y. pseudotuberculosis) Piyoin (P. aeruginosa) B) Gram pozitif mikroorganizmalar Stafilokoksin (Staphylococcus), Streptokoksin (Streptococcus), Subtilisin (B. subtilis), Seresin (B. cereus), Monosin (L. monocytogenes), Megasin (B. megaterium) Kolisin grupları ve bazı kolisinler Grup A(I): E, E1, E2, E3, K, L, N, S4, X Grup B (II): B, D, G, H, I, M,S, V,Q Virulens Plasmidleri Patojenik mikroorganizmalar, kendilerinde bulunan bazı virulens faktörleri (bunlardan biri veya birkaçı ile birlikte) ile konakçıyı hastalandırırlar ve hatta ölümlerine neden olabilirler. Ancak, bu etkinlikleri, virulent bakterinin konakçıya yeterince ve uygun yoldan girmesi ve konakçının genetik ve/veya immunolojik yönden (spesifik antikor taşımaması) duyarlı olması ile yakından ilişkilidir. Bakteri, ne kadar virulent olursa olsun, eğer konakçı buna direnç gösteriyorsa, mikroorganizma üreyemez, infeksiyon veya hastalık oluşturamaz. Bakterilerin sahip oldukları virulens faktörlerinin bir kısmı da kromozomlarında kodlanmasına karşın bazıları da plasmid orijinlidir. Plasmidlerce kodlanan başlıca virulens faktörleri hakkında aşağıda kısa özlü bilgiler verilmektedir. C. tetani (nörotoksin), B. anthracis (pOX1 letal toksin ve pOX2 kapsül formasyonu), B. thuringiensis (kristal toksin, insekt larvaları için toksik) A. tumefaciens (Ti plasmidi, dikotiledon bitkilerde tümör formasyonu), L. lactis (nisin), S. aureus (eksfoliatif toksin), Y. pestis, Y. psedotuberculosis, Y. enterocolitica (membran proteinlerini kodlayan plasmidler). S. sonnei, S. flexneri, S. dysenteriae (dizanteri oluşturan toksinlerin kodlarını taşıyan plasmidler), insanlardan izole edilen E. coli 'lerde LT ve ST-toksinlerin sentezlerini spesifiye eden plasmidler (CFA-1, -2, E8775), buzağı ve kuzularda hastalık oluşturan E. coli 'lere ait K99 antijenleri ile domuz ishallerinden ayrılan E. coli 'ler de bulunan K88 ve 987 antijenleri plasmidler tarafından kodlanmaktadırlar. Bazı virulens faktörleri de kromozomal orijinli oldukları gibi bir kısmı da fajlarla spesifiye edilirler. Örn, C. diphtheriae 'ye ait beta fajının kodladığı difteri toksini veya C. botulinum C 'de bulunan fajda aynı tarzda toksin sentezini spesifiye eder. Metabolik Plasmidler Metabolik aktivite bir çok bakteride kromozomlarda bulunan özel genler tarafından yönetilirler. Ancak, bazı bakterilerde de metabolizma ile ilgili reaksiyonlar hem kromozomal ve/veya hem de plasmid orijinli olabilmektedir. 1) Degradatif plasmidler: P. putida ve diğer pseudomonaslarda bir çok kimyasal maddeyi ayrıştırabilecek plasmid kaynaklı enzimlere sahiptirler. Böyle enzimlerin sayısı 10'dan fazlayı bulmaktadır. Örn., SAL, NAH, ASL ve TOL plasmidleri, sıra ile salycylate, naphtalene, alkyl benzen sulphonate ve tolueni ayrıştırarak catechola çevrilir ve sonra da plasmidlerce kodlanan enzimler tarafından acetaldehyde ve piruvatlara dönüştürülür. Degradatif plasmidler konjugatif bir özellikte olup molekül ağırlıkları oldukça yüksektir (50-200 x 106). Bu plasmidler, genellikle, kompatible bir karaktere sahiptirler ve büyük plasmidler arasındadırlar. TOL, SAL, OCT ve NIC plasmidleri de iki veya daha fazla farklı küçük plasmide ayrılabilirler ve bunlar bağımsız replikasyon orijinine sahip olduklarından da, transfer edildiklerinde hücre içinde serbest replike olabilirler. Ancak, bunlar, nonkonjugatif bir özellik gösterirler. TOL ve NAH gibi plasmidler de geniş bir konakçı spektrumuna sahiptirler ve E. coli 'lere ve pseudomonaslara transfer edilebilirler. 2) Diğer metabolik plasmidler: Salmonellalar, genellikle, Lac-'dirler. Bazen Lac+ fenotipe dönüşebilirler (S. typhi). Bunları, Lac+ plasmidler gerçekleştirirler. Lac+ plasmidlere, salmonellalar dışında, serratia, S. lactis ve proteuslarda da tesadüf edilmiştir. Plasmidler, aynı zamanda, salmonellalarda, sukroz fermentasyonuna da neden olabilirler. E. coli 'lerde K88 antijenlerini kodlayan plasmidler, aynı zamanda, rafinozun fermentasyonuna da sebep olurlar. Bazı raf + plasmidler de H2S üretimini de bakterilere kazandırabilirler. Plasmid SCP1 (Streptomyces coelicolor), methylenomycin sentezini kodlayabilmektedir. Kasugamycin ve chloramphenicol da plasmidler tarafından spesifiye edilirler. Rizobiumlarda bulunan plasmidler de legumine bitki köklerine nitrojen fikzasyonunda etkin fonksiyonlara sahiptirler. Büyük Plasmidler Patojenik ve nonpatojenik bakterilerde molekül ağırlıkları 1-600 magadalton (Md) arasında değişebilen plasmidlerin varlığı belirlenmiş, bunların bir kısmının da moleküler yapıları ve kodladıkları spesifik proteinlerin karakterleri saptanmıştır. Genel bir kural olmamakla beraber, molekül ağırlığı 50 Md'den fazla olanlar "büyük plasmidler" olarak dikkate alınmaktadırlar. Taşıdıkları çok değişik ve spesifik markerler yanı sıra, rekombinant DNA teknolojisinde de, özellikle, gen aktarmalarında önemli fonksiyonları olan plasmidlere, daha ziyade kirli ve organik materyallerden zengin sularda yaşayan bakterilerde rastlanılmaktadır. Bakterilerin tek ve aynı zamanda küçük kromozoma sahip olmaları bunların genetik potansiyellerini ve diğer bazı fonksiyonlarını, ökaryotiklere oranla, daha kısıtlamaktadır. Ancak, bakteri genomlarında meydana gelen çeşitli mutasyonlar ve buna ilaveten, bakterilerde bulunan ve çok değişik karakterler taşıyan büyük plasmidler, fajlar, transposon ve İs elementleri, bakterilere yeni sekanslar, genler ve bunlara bağlı olarak yeni özellikler kazandırmaktadırlar. Fakat, bu genlerin bazıları, fazla sayıda meydana gelen replikasyonlar sırasında veya indüktörlerin etkisi altında, bakterilerden ayrılmakta ve mikroorganizmalar orijinal parental fenotipik karakterlerine tekrar dönmektedirler. Bakteri kromozomunun %3-5'i uzunluğuna kadar ulaşabilen büyük plasmidler, hücre içinde, genellikle, küçük plasmidlere oranla daha az sayıdadırlar (1-5 adet). Kointegrasyon sonunda  sayıları daha da azalmaktadır. Plasmidler, hücre içinde ya bağımsız replikonlar halinde bulunurlar veya birbirleriyle birleşerek (kointegrasyon) büyük plasmidleri meydana getirirler. Ancak, bunun anlamı, her zaman böyle olur manasını taşımaz. Bazen de, tersi olabilmektedir. Yani, büyük plasmidler, daha küçük replikonlara ayrılmaktadırlar. Kointegrasyon sonucu oluşan multimerik plasmidler etkinlik bakımından diğerlerine oranla daha fazla avantajlıdırlar. Hatta, bazılarında da, birden fazla replikasyon orijini bulunmaktadır. Ancak, replikasyonda sadece bunlardan biri fonksiyonel olmaktadır. Bakteri sitoplasmasında bağımsız bir replikon olarak bulunan plasmidler, genomla da birleşebilirler ve bunun bir devamı haline gelebilirler. Bazı durumlarda da plasmidlerle kromozom arasında biyokimyasal yönden bir işbirliği de gelişmektedir. Şöyle ki, bir kimyasal maddenin metabolize olmasında önce kromozom (veya plasmid) etkinlik göstermekte ve oluşan ürünler de plasmid (veya kromozom) tarafından son ürünlere kadar ayrıştırılmaktadır. Örn, P. putida da bulanan CAM (campher) plasmidi (200 Md), campherin ayrışmasının bir bölümünü, bakteri kromozomu da geri kalan kısmını tamamlar. P. oleovorans 'da bulunan OCT (octane) plasmidi (200 Md), alkanları kullanma kapasitesini spesifiye eder. Ancak, tam olarak, alkanları yağ asitlerine kadar ayrıştıramaz. İlk basamakta, alkane oksidasyonu plasmid tarafından yönetilir. İkinci aşamada ise, alkol dehidrasyonu, bağımsız olarak hem plasmid ve hem de kromozom tarafından spesifiye edilir. Agrobacterium tumefaciens, ornitini iki ayrı basamakta ayrıştırır. Bunlardan biri pTiC58 plasmidinde kodlanmıştır ve diğeri ise kromozomal orijinlidir. Kromozom-plasmid işbirliğine (interaksiyon) TOL (toluene) plasmidinde de rastlanılmıştır. Bazı durumlarda da işbirliği ters veya olumsuz bir yönde gelişebilmektedir. Şöyle ki, Rhizobium leguminosarum (sym plasmidi, pRIJI) ve R. trifoli 'de (pRtr5a) bulunan plasmidler, bakterilerin bakteriosin sentezlerini inhibe ederler. Aynı fonksiyona sahip plasmidlerin molekül ağırlıkları, değişik bakterilerde, farklı ölçülerde olabilmektedir. Örn, E. coli 'de laktoz fermantasyonu 58.5 Md'luk plasmid tarafından yönetilmesine karşın, K. pneumoniae 'de 163 Md'luk plasmid aynı fonksiyonu yapar. R. leguminosarum 'da bulunan 100 Md'luk plasmid, hidrogenase aktivitesini spesifiye etmesine karşın A. eutrophus 'da 300 Md'luk plasmid aynı aktiviteyi iki enzimle yapar. Bezende, aynı aktivite, aynı tür içindeki suşlar arasında değişik molekül ağırlığındaki plasmidler tarafından, spesifiye edilebilmektedir. Örn, B. thuringiensis suşlarında insektisidal delta tonsinini kodlayan plasmidlerin molekül ağırlıkları 44;50 ve 75 Md arasında bulunmaktadır. Halobacterium suşları arasında da gaz vakuollerini kodlayan plasmidlerin molekül ağırlıkları 44 ve 100 Md' arasıdır. Kromozomla birleşen plasmidler bazı nedenlerle genomdan ayrılabilir ve ayrılırken de kromozomdan bir segment alabilirler. Böyle plasmidler de sitoplasmada sirküler forma dönüştürülerek bağımsız olarak kalabilecekleri gibi konakçıdan da çıkabilirler. Bazı plasmidler de bir bakteride tek bir ünite halinde bulunduğu halde, diğer bir bakteri de iki plasmid halinde olabilmektedir. Örn, E. coli 'deki RI ve NR1 plasmidleri, P. mirabilis'e transfer edilirse küçük replikonlara ayrılmaktadır. P. rettgeri 'den izole edilen R plasmidi 'R 394, 115 Md) iki plasmide ayrılabilmektedir (11 ve 102 Md). Bunlardan her biri ayrı bir rezistanslık genini kodlarlar. E. coli 'de bulunan R plasmidi tek bir ünite halinde ancak  iki kısımdan oluşmakta (RF ve TF).  Proteus veya salmonellalar da iki replikona ayrılabilmektedir. P. mirabilis 'teki rezistenslik plasmidi (NRI) kloramfenikollu ortamda üretilirse, NR1'in büyüklüğünde ve r-determinant sayısında artmalar meydana gelmektedir. Benzer olguya, tetrasiklin plasmidine sahip olan S. faecalis 'te de rastlanılmıştır. Bakteri içinde iken inkompatible olan iki plasmid, birleştiklerinde (kointegrasyon)  bir arada uzun sürü bulunabilmektedirler. Örn, UV-ışınları ve uygun seleksiyon yöntemleri CAM ve OCT plasmidlerini kointegre hale getirebilmektedir. Kointegrasyon aynı zamanda, nontransmissible (nonkonjugatif) olan plasmidlerin mobilizasyonuna yardımcı olduğu gibi, bazılarının da kromozomla birleşmesine veya genomdan ayrılmasına da yol açabilmektedir. İn vitro hazırlanan plasmidler, (suni plasmidler) bakterilere aktarıldıktan sonra hücre içinde bazı yapısal değişikliklere maruz kalmaktadırlar.

http://www.biyologlar.com/baslica-plasmidler-ve-ozellikleri

Türkiye'de Su Kirliliği Sorunları

Büyük bir su potansiyeline sahip olan ülkemizde düzensiz kentleşme ve endüstrileşme sonucu su kirliliği hızla yayılma göstermektedir. Arıtma tesislerinin bulunmaması, çevre sağlığı görevini ve kontrollerini tamamiyle yüklenen bir organizasyon olmaması nedeniyle kirliliğin boyutları farkında olunamayan ciddi boyutlarda gelişme göstermektedir. Hemen belirtmek gerekir ki, su kaynaklarımızın ne kadarının doğal kriterler bakımından sağlıklı bir düzeyde olduğunu belirtmek zordur. Su kirliliği alanında yapılan çalışmalar yetersiz ve dağınıktır. Bazı körfezlerimiz ile kirlenmenin yüksek düzeylerde olduğu bazı akarsu ve göllerimize ait yapılan çalışmalardan, buralardaki kirlenmenin düzeyi hakkında bilgiler edinilmiştir. Körfez ve denizlerimizdeki kirlenme düzeyi a. İzmit Körfezi Çevresinde yoğun gelişme gösteren endüstri ve yerleşim alanının etkisinde kalan İzmit Körfezi 300 km2 alanlı en derin noktasının 183 m olduğu, 48 km uzunluk ve 2-10 km genişliğinde bir körfezdir. Körfeze yaklaşık 120 civarında kuruluşun atıkları boşalmaktadır. Özellikle akıntının düşük olduğu doğu bölgesinde ve yerleşim ile endüstri kuruluşlarının sık olduğu kuzey sahillerinde kirlilik önemli düzeydedir. Sanayi kuruluşlarının atık sularında çeşitli maddeler, pH, BOI5 (BOD5), KOI (KOD), renk, bulanıklık gibi tüm kirlilik kritarleri sınır değerleri aşmaktadır. Ayrıca Pirelli, Seka, Petrol Ofisi, İpraş, Petkim, Besin Sanayi, Süperfosfat Sanayi, Hereke Sümerbank Fabrikası, Bayer Tarım, Zirai Alet Fabrikaları ve Mezbaha gibi kuruluşların atık sularında koli bakterisinin izin verilenin üzerinde bulunması da çevre sağlığı açısından dikkat çekicidir. Körfezin doğu kesiminde ve kuzey sahillerinde muhtelif kesitlerdeki analiz raporlarından özellikle sahile yakın kesimlerde çözünmüş oksijenin balıkların yaşayamayacağı düzeye indiği, BOİ, KOİ ve koli bakterisi değerlerinin çok yüksek boyutlara ulaştığı görülmektedir. Kirlilik kıyılarda fazla, körfez ortasına doğru daha azdır. Bölgenin güney tarafında önemli kirletici kaynakların bulunmamasına karşın, doğudan dökülen derelerin etkisi ile taban yükselmesi ve belirli düzeyde organik kirlilik görülmektedir. Rüzgarla yayılan yağ ve benzeri yüzücü atıklar geniş bir yüzey kaplamaktadırlar. Gölcük kanalizasyonları ve askeri tesisler nedeniyle körfezin güney sahillerinin en kirli bölümü Gölcük yöresidir. b. Gemlik Körfezi Gemlik ve yöresinin en önemli endüstriyel faaliyetinin zeytincilik ve sabunculuk olması nedeniyle kent içinde yağ ve sabun imal eden küçük kuruluşların, evsel atık sularına karışan kirli suları körfezi kirleten önemli kaynaklardır. Ayrıca suni ipek ve viskoz ürünleri fabrikası, azot sanayi ve diğer bazı küçük sanayi de kirliliği arttırmaktadırlar. Körfeze ortalama olarak yılda 6.9 x 106 m3 atık su karışmaktadır. Yapılan analizlere göre körfez sularında BOİ ve KOİ ve askı madde değerleri oldukça yüksektir. Körfeze en fazla atık suyu suni ipek ve viskoz sanayi bırakmakta olup, bu şekilde meydana getirilen kirlilik 340 bin nüfusun oluşturacağı kirliliğe eşdeğer bulunmaktadır. Ağır metaller ve reaksiyon bakımından da kirlenmeler saptanmış bulunmaktadır. Normal deniz suyunda çinko miktarları 7-21 mg/l düzeyinde bulunurken, fabrikanın asit deşarj kanalları ile ortalama 2300 ppm dolaylarında çinko körfeze bırakılmaktadır. c. Haliç Kağıthane ve Alibey derelerinin birleştiği ağızdan Sarayburnuna kadar 7.5 km uzunluğunda olan Haliç'in en geniş yeri 750 m dir. Haliç sularının kirlenmesi ve Haliç’in dolmasında rol oynayan atık sularını iki grupta toplayabiliriz: • Yerleşim yerlerinden gelen pis sular, kanalizasyon ve endüstri atık suları. Yapılan bir incelemeye göre İstanbul’da kanalizasyon, pis su ve endüstri atık sularının % 25 i Haliç'e dökülmektedir. Bunun günlük miktarı 30 000 m3 ’tür. • Kısmen yerleşim yerlerinden ve büyük kısmı Alibey ve Kağıthane dereleri havzalarından gelen ve yağışlar ile oluşan yüzey suları. Bu iki dere 192.4 ve 181.6 km2 lik havzalara sahip olup, fazla miktarda sediment taşımaktadırlar. Bir yıl içinde Haliç'e taşınan sediment miktarı 93 510 m3 olup bunun Haliç deniz tabanı olan 1.42 x 106 m2 ye yayıldığı kabul edilirse her yıl tabanın 6.6 cm yükselmesi gerektiği ortaya çıkar ki bu 10 yıllık ölçümler sonucu saptanmış ve tabanın yılda 10 cm yükseldiği saptanmıştır. Her türlü endüstriyel, evsel artıklar ve erozyon nedeniyle, Haliç her geçen gün içinde dolmakta, su sirkülasyonun bulunmayışı nedeniyle de dip kısmında kalın bir çamur tabakası bulunmaktadır. Organik maddenin fazlalığı yüzünden otrofikasyon başlamış, serbest oksijen düzeyi asgariye düşmüş ve H2S oluşumu hızlanmıştır. Haliç'e doğrudan verilen veya dere suları ile gelen sabun fabrikalarının sodyum ve çinko tuzları, boya ve apre tesislerinin, madeni eşya fabrikalarının metal tuzları deniz canlılarının yaşamı üzerinde son derece zararlı olmaktadır. Asit, yağ, tuz kireçli maddeler, organik asitler, gliserin, soda, amonyak, katran, naftalin ve benzeri maddeler bütün su ürünleri üzerinde olumsuz etki yapmaktadır. Yapılan araştırmalara göre balıklar l mg/l düzeyinde deterjan içeren sulardan derhal uzaklaşmaktadırlar. Ençok zararı ise yumurtadan yeni çıkmış balıklar ile bunlara yem görevini yapan diğer küçük canlılar görmektedir. Marmara Denizinde, İstanbul çevresinde bazı mevkilerde yapılan ölçümlere göre deterjan düzeyinin 2.1 mg/l olduğu kesimler bulunmaktadır. Sulara ve oradan su canlılarına taşınan toksik elementlerden birisi de civa olup besin zincirinde ilerledikçe konsantrasyonu artmakta ve zehirlenmelere neden olmaktadır. Marmara Denizinde avlanılan balık ve midyelerde ortalama civa konsantrasyonu 0.4 ppm düzeyinde bulunmaktadır. Japonya’da bazı mevkilerdeki değerler çok yüksek olarak saptanmıştır (midyelerde 11.4-39.0 ppm, balıklarda 10.0-35.7 ppm). Besin maddelerinde Dünya Sağlık Teşkilatı'na göre kabul edilen en yüksek civa miktarı 0.05 ppm, ABD standartlarına göre 0.5 ppm dir. Ege denizinde kirlenme araştırmaları, ağır metal iyonları ve pestisid kalıntıları analizleri kontrol edilerek yapılmıştır. Otuz kadar balık türünde yapılan analizlere göre 1972 yılı itibariyle civa yönünden sularımızda önemli bir sorun olmadığı belirtilmektedir. Klorlu insektisidlerin kalıntı miktarları Dünya Sağlık Örgütü (WHO) nün tolerans limitlerinin altında kalmaktadır. İzmir Körfezinde zaman zaman görülen kırmızı su çiçeklenmesi (Red Tides) önemli bir kirlilik göstergesidir. Körfeze gün geçtikçe artan şekilde gelen kentsel atık suları ve beraberlerinde getirdikleri fazla miktardaki nitrat ve fosfat elementleri, su dinamiğinin hareketsiz veya çok az olduğu koy ve körfezlerde, özellikle sıcak mevsimlerde bazı bitki planktonlarının aşırı derecede çoğalmalara neden olurlar. Bu organizmaların fazla çoğalması, bulunduğu su ortamına, içindeki kırmızı pigmentlerden dolayı kırmızımsı bir görünüm verir. İzmir Körfezinde 1955 yılından beri Temmuz ve Ağustos aylarında devamlı olarak meydana gelen bu olay nedeni ile balıklarda kitle ölümleri görülmektedir. İzmir körfezinin ilk kirlilik nedeni Gediz Nehri iken, bunun yatağının değiştirilmesinden sonra, artan sanayileşme ve şehirleşme, körfezdeki kirliliğin kaynakları olmuştur. Akdeniz sahillerinde de avlanılan değişik türden 234 balık üzerinde yapılan pestisid kalıntı analizlerine göre; DDT türevleri 0.100-0.147; BNC izomerleri 0.104-0.150; aldrin 0.022-0.039; endrin 0.015-0.0244; dieldrin 0.013-0.048 ppm değerlerinde ölçülmüştür. En yüksek değerler Alanya ve Silifke kesimlerinde avlanılan balıklarda saptanmıştır.

http://www.biyologlar.com/turkiyede-su-kirliligi-sorunlari

Biotop Tipleri

Eğer denize dökülen büyük bir akarsuyun (Örneğin, Büyük Menderes gibi) kenarında durarak, çamurla karışık ve adeta sapsarı görünümdeki suyun, yavaş yavaş denize akışına bakıp, bu suyun yüksek dağ ve ormanlardan veya bunların yaylalarındaki çayırlardan doğarak, yer yer köpüren, coşan ve çağlayan şelaleler meydana getiren billur gibi şeffaf ve tertemiz birçok suların birleşiminden türediğini düşünebilmek gerçekten zordur, işte, bu iki kutup arasında görülen son derece farklı fiziksel koşulların yarattığı biyolojik habitatlar da, kaynaktan başlayarak denize ulaşıncaya değin çok değişik görünümler yansıtırlar. Durumu daha iyi anlayabilmek için, örnek olarak seçtiğimiz akarsuyun çıktığı yerden (kaynağından) başlayarak döküldüğü yere (denize döküldüğü yer) doğru yavaş yavaş yürüyelim. Önce birçok küçük su sızıntılarının meydana getirdiği dereciklerin toprak ve çakıllar arasında meandirlar çizerek aşağı doğru ilerlediklerini ve bu arada, birbirlerine yakın olanların zaman zaman birleşerek daha büyükçe dereler oluşturduklarını, önlerine gelen engelleri aşarak ve etrafa köpükler saçarak coşku içinde aktıklarını ve nihayet, önlerine rastlayan tümseklerden düşerek maydana getirdikleri şelalelerin kayalar üzerinde kazan şeklinde küvetler açtıklarını adeta görür gibi oluruz. Bundan sonra da arazinin eğimine ve ekolojik yapısına bağımlı olarak birbiri ardına sayısız göletler oluşturup aşağı doğru indiğine tanık oluruz. Dağ derelerinin suyu genellikle soğuk olur. Bunun nedenini ise, üzerlerinde genellikle karlar bulunduran ve bu nedenle de devamlı olarak serin olan bölgenin yeraltı suyundan kaynaklanmış olmasında aramak gerekir. Aşağı vadilerde su sıcaklığının son derece yüksek olduğu ve o oranda yavaş aktığı mevsimlerde bile, sıcaklık 12°C yi geçmez, hatta çoğu zaman daha da düşük olabilir. Bu nedenledir ki, eğer kaynağa çok yakın değilse, oksijence de çok zengin olabilir. Genellikle karların erimesiyle meydana gelmiş, soğuk saydam ve temiz bir sudur. Aslında da böyledir. Dere, dağların küçüklü büyüklü birçok vadilerinden gelen kollarla da birleşerek aşağıya doğru indikçe büyür. Nihayet dağın eteğine varıncaya kadar kollar alarak daha da fazla büyür ve genişler. Vadiye inildiğinde, hızında bir yavaşlama ve yatağında bir genişleme görülen küçük bir nehir halini alır. Su, bu düzeyde bile bol miktarda erimiş oksijen içeriyorsa da sıcaklığı biraz artmıştır. Bununla beraber yaz mevsiminde bile sıcaklık ender olarak 10°C nin üzerine çıkar. Artık yukarıda görülen o hızlı akıntılar burada görülmez, düzlüğe doğru akışında seçkin bir yavaşlama dikkati çeker. Ovalara yaklaşırken eğim daha da azalmış olduğundan akışın iyice yavaşladığı görülür. Kaynağa yakın bölgelerde derenin tabanı, dağlardan koparılarak sürüklenmiş büyük taşlarla dolu olduğu halde, aşağı vadilere doğru inildikçe onların yerini giderek küçülen çakıllar ve sonra da kumlar alır ve nihayet yerlerini çamura terkeder. Böylece dere yatağının kenarlarında çeşitli su bitkileri görülmeye başlar ve su düzeyi de giderek derinleşir. Bu tip habitatlara, özellikle nehrin kıvrımlarında meydana getirdiği küçük koylarda ve yanlarda açılan akıntısız küçük körfezlerde rastlanır. Bu durum ise, suyun yavaş akışına ve daha derin oluşuna bağlıdır. Bu bölgede su hareketinin azlığı nedeniyle hava absorbsiyonu da azalacağından ve sıcaklık da arttığı için oksijen konsantrasyonu daha düşük olur. Nihayet vadiye inildiğinde etrafı su bitkileri ile donatılmış ve özellikle yaz aylarında suyu iyice ısınmış, oldukça büyük bir nehirle karşılaşırız. Bundan sonra da nehrin denize dökülmeden önce aşağı. havzaya yaklaşırken gel-git etkisi altında deniz suyu ile de karışarak acısu özelliği kazandığını ve nihayet denize boşaldığını görürüz. Bu değişik akuatik ortamların faunası da fiziksel görünüm ve koşullarda olduğu gibi çok değişik özellikler taşımaktadır. Burada bizi doğrudan ilgilendiren kuşkusuz balıklar ve onlarla yakından ilgili fauna olacaktır. Şimdi biz bu durumu da yukarıdan (membadan) aşağıya (mansaba) yürüyerek incelemeye devam edelim. İlk bakışta, bu berrak suda herhangi bir yaşamdan eser yokmuş gibi görünürse de kaynaktan biraz uzaklaşınca su içinde bulunan bir taşı ters çevirecek olursanız, bazı yassılaşmış böcek veya kurtçukların, ışıklı yerden kuytu ve gölge yerlere doğru kaçıştıklarını ve hemen diğer taşlar altına veya deliklere sığındıklarını görürsünüz. Bunların çoğu, ilgili habitatlarda yaşamaya alışmış olan Tricopter larvalarından ibarettir. Işıktan hoşlanmadıkları için genellikle derelerdeki taşların alt yüzeylerinde yaşarlar. Bu nedenle de kaldırılan taşların altından, karanlık bir köşe aramak için etrafa kaçışırlar. Aynı taşlar üzerinde ara sıra yassı kurtlara da (Planaria) rastlanabilir. Bu hayvanların görünüşleri, taşlar üzerinde temkinle sürünerek gidişleri nedeni ile çok küçük sülükleri hatırlatır. Daha dikkatli bir araştırma sonunda da bazı küçük balıkların taşlar arasında koşuştuklarını görürüz. Bunlar da çoğu kez bıyıklıların (Barbus) yavruları veya Tatlısu alası (Salma trutta)'nın genç bireyleri olabilirler. Bu arada nadiren Yılan balığı (Anguilla anguilla) gençlerine de buralarda rastlanabilir. Bu bölgede çok görülen Alabalıklar oldukça parlak ve renkli görünürler. Özellikle genç bireylerin vücutlarının iki yanında ve yanaklarında etrafı açık mavi veya beyazımsı halelerle çevrilmiş parlak kırmızı benekler dikkati çeker. Alabalıkların ulaşabileceği en üst yatakları oluşturan bu bölge, kaynağa oldukça yakındır. Buradan aşağı doğru, Alabalıkların gidebileceği yer, bölgenin iklimi ve topografyası ile ilgili olarak değişmektedir. Üreme zamanı gelince (Kasım-Ocak) bir içgüdü sonucu, hormonal bir tepki ile bu balıklar dağ derelerinin kaynaklarına doğru yola çıkarlar. Bazen çağlayan ve şelale gibi su setleri bu dönüşü neredeyse olanaksız hale koyabilirse de çoğunlukla atlayarak, sıçrayarak bu engelleri aşmasını bilirler. Bu dönüş sırasında genellikle Barbuslar da onları izlerler. Bu bölge, Alabalıkların rengi ve görünüşü kadar değişiktir. Bu balıkların yaşadığı yükseklikler ülkemizde bazan 2000-2500 m. ye kadar çıkabilir. Aşağı bölgelerdeki nehir, dere ve çayların kaynağına yakın kesimlerindeki temiz ve bol oksijenli akarsularda da, bu balıklara çok rastlanır. Bununla beraber, Vadi boyunca Bıyıklı balık (Barbus) türleri ile birlikte Çöpçü balığı, Kaya balığı (Gobio), Tatlısu sardalyası (Alburnus), Çöpçü balığı (Cobitis) ve Yılan balığı (Anguilla) cinslerine ait türlere de rastlanabilir. Daha aşağılarda akarsu birkaç kol daha alarak genişler ve nihayet vadinin aşağı kesimlerine inilince, etrafı adeta su bitkileri ile sınırlandırılmış büyük bir kanal şeklini alır. Daha da kuzeyde yer alan Avrupa ülkelerinde bu bölgeye kadar çeşitli Alabalık türleri yaşamakta ise de, ülkemizde sular vadiye inince birden ısındığı için, yerini daha çok Cyprinid-lere terk eder. Bunlardan ise, akarsuyun aşağı havzasında ilk dikkati çeken ve bölgemizde kababurun olarak isimlendirilen Chondrostoma nasus türüdür. Bunlar boynuzumsu maddeden (keratin) yapılmış keskin dudakları ile sualtı vejetasyonundan faydalanmağa ve küçük dip faunası ile beslenmeye gelirler. Buna karşın Tatlısu kefali olarak bilinen Leuciscus cephalus ise yüzey suyunda organik orijinli, büyük ve küçük ne bulursa onları yem olarak alır. Aynı habitatta, aşağı yukarı benzer davranışlarla yem arayan diğer bir Tatlısu kefali türü (Leuciscus borysthenicus), zeminde yaşayan Tatlısu kayası (Gobio gobio) ve sığ yerlerdeki otlar arasında bulunan Ot balığı (Phoxinus phoxinus) yadırganmayan formlar olarak görülürler. Bunların yanında, genellikle onların genç formları ile beslenen ve yırtıcı bir balık olarak tanınan Tatlısu köpek balığı (Aspius vorax) na da rastlanabilir. Bazen de, Alabalıkların (Salma trutta) bulunduğu derelerin alt başlarında Turna balıklarına (Esox lucius) rastlanabilir. Aynı şekilde, fakat daha çok tabanı çakıllı ve taşlı bölgelerde Sazangillerin (Cvprinid) en değerli balıklardan biri olan Bıyıklı (Barbus) türleri dikkati çeker. Bunlar Alabalıklardan sonra, bu üçüncü bölgenin hemen hemen en önemli ve ekonomik değeri yüksek balıkları olarak tanınırlar. Bu bölge suları genellikle küçük derelerin birleşerek nehirleşmeye doğru gitmesiyle karakterize edilir. Bununla beraber, oldukça süratli akarlar ve halen bol oksijen içerirler. Sıcaklık, bu bölgede yaz mevsimi süresince 10.5°C yi geçmez ve sığ kesimlerde kum yığınları ile ufak çakıl bankları bulunur. Sahillerinde bazen oldukça dar ve sık bir vejetasyon kemeri meydana gelir. Şüphesiz Bıyıklı (Barbus) türleri değişik klimatik bölgelerde değişik türlerle (Barbus capito, Barbus rajanorum, Barbus plebejus, Barbus mursa v.b.) temsil edilebilirler. Bu arada Cyprinid' lerden Kızılgoz (Rutilus rutilus) ve Yassı Kızılkanat (Scardinius erythrophthalmus) türleri de aynı ortamda bulunabilirler. Bununla beraber, her zaman bu böyle demek değildir. Bundan başka yine oldukça yırtıcı türlerden olan Tatlısu levreği (Perca fluviatilis) ile onun yakın akrabası olan Stizostedion lucioperca bazı bölgelerde ve özellikle ikincisi, Eğridir ve Marmara göllerinde ekonomik değeri büyük olan bir sofra balığı olarak önemlidirler. Bu bölgelerde, Yılan balıklarına (Anguilla anguilla) daima rastlanır Her halde en fazla sayıda türe, nehrin dördüncü bölgesinde rastlanacaktı. Bu bölgeye predominant bir karakter kazandıran kapak balığı Abramıs brama' nın çokluğu, burayı özellikle batıda «Abramis bölgesi» olarak adlandırmaya neden olmaktadır. Bu isim altındaki bölgelerde, nehir, dere ve çaylar genellikle sakin akarlar, derinlik hemen hemen her yerde aynidir ve yaz sıcaklığı oldukça yüksektir. Bazen sıcaklık çok yüksek değerlere dahi ulaşabilir. Yüzey sularında çok iyi oksijenlenme olmakla beraber, zemin sularında özellikle yazın oksijen miktarı zayıftır veya bazen hiç oksijene rastlanmayabilir. Kenarlar sık bir vejetasyon kemeri ile örtülüdür. Zemin oldukça yoğun bir sedimantasyonu teşkil eden kum veya çamurla kaplıdır. Etrafında sayısız yan sular, küçük koy, körfez ve gölcükler bulunur. Sığ sularla durgun ve sakin koylar ve yan gölcükler özellikle yumurtalarını akuatik bitkiler üzerine yapıştıran Sazan (Cjprinid) ve Turna (Esocid) gibi birçok balık türleri için yumurta bırakma ortamı teşkil ederler. Özellikle Abramis brama bu tip sualtı vajetasyonu içeren durgun suları çok sever Su sıcaklığı bu bölgelerde yazın 18°C yi geçer. Şüphesiz böyle bir biotopta Abramis'in birçok akrabaları da beraber bulunabilir. Bunlar arasında ekonomik yönden en değerli olanları Aynalı Sazan dışında şüphesiz ki Doğal Sazan balığı (Cyprinus carpio) ve Yeşil sazan (Tınca tınca) lardır. Bunlardan sonra Kızılkanat sürülerini (Scardinius erytrophthalmus,, uzun burnu ve zemine doğru bakan ağızları ile dikkati çeken ve oldukça karakteristik bir balık olan ve ülkemizin bazı kesimlerinde (Eğridir) Çiçek balığı adı ile anılan Vimba vimba'yi unutmamalıyız. Bunlardan başka bu tip biotoplarm diğer bir formu da, Havuz balığı adı ile anılan sarı-kahverengi görünümde Carassius carassius' lardır. Ayrıca, bu bölgelerde yem bol olduğu için, predatör balıklardan Tatlısu levrekleri (Perca fluviatilis ve Stizostedion lucioperca gibi türler) Barbus' ların bulunduğu bölgeden çok daha fazla bulunurlar. Bu arada büyük nehirlerimizin çoğunda bulunan ve ekonomik değeri çok yüksek olan Yayınlardan Silurus glanis'te böyle yavaş akan bölgelerin karakteristik bir formudur. Bu balık, daha çok batık veya devrilmiş ağaç kütüklerinin dalları altında veya sahil banklarının altındaki oyuklarda saklanarak önlerinden geçecek avı (diğer balıklar, kurbağalar v.b.) yakalamak için fırsat beklerler ve tetikte dururlar. Bazan yüksek rakımlı sulara da çıkarlarsa da, buralarda kolaylıkla yakalayabilecekleri, yavaş hareket eden balıklar bulunmadığı için doğal olarak nadir görülürler. Yılan balıkları (Anguilla anguilla) özellikle Abramis bölgesinde çok bulunurlar. Ayrıca denizden gelipte, buralarda yumurta bırakan daha birçok balık türleri göze çarpar. Bunların en küçüğü Tirsi balıkları (Alosa türleri) ve en büyükleri de Mersin balıkları (Acipenser türleri)'dir. Mersin balıkları özellikle Karadeniz'de oldukça azalmışlardır. Bu balıklara, tatlısu ile deniz suyunun birleştiği yerde (nehirlerin ağzından 4 km. içeriye kadar), bölgelerin özelliklerine göre az veya çok miktarlarda rastlamak mümkündür. Med-cezir, su akıntılarının değişmesine ve kuvvetli rüzgarlarda tuzlulukta büyük dalgalanmalara (tuzluluğun azalıp çoğalmasına) sebep olurlar. Bu nedenle, buralarda yaşayan hayvanlar gerek tatlısu ve gerekse tuzlu suya karşı büyük bir tolerans gösterirler. Balıklar arasında bu türlü adaptasyon yeteneği özellikle Pisi balığında (Plueronectes flesus) ve Dikence balığında (Gasterosteus aculeatus) görülür. Gerek Abramis bölgesinde ve gerekse nehir ağzı bölgesinde, her türlü hayatın küçük formlarına rastlamak mümkündür. Zemin faunası arasında mikroskopik yapıda olan ve çok değişiklik gösteren kurtlar, yumuşakçalar (Salyangozlar, Midyeler v.b), böcek larvaları ve diğer birçok organizmalarla her türlü organik madde tüketicileri bulunabilirler. Sahillerde, sakin ve kuytu bölgelerde sıcak mevsim boyunca büyük boyutlu planktonik Krustase larvaları gelişir ve bütün nehir ağzı bölgesine dağılırlar. Şüphesiz ki, bu bölgelerin birbirlerinden kesinlikle ayrıldığı düşünülemez. Özellikle aktif organizmalardan olan balıklar bu bölgeler arasında devamlı şekilde geçiş yapabilirler. Bu nedenle belirlenen sınırların daima coğrafik, klimatik ve ortam etkileri altında olduğunu düşünmek gerekir. Bununla beraber, bir nehrin belirli kesiminin özellikleri, onun hangi bölgeye ait olduğunu büyük bir yaklaşımla gösterebilir. Türkiye'de oldukça uzun ve bazen düzenli akan bölgeler içeren nehirler olduğu gibi, özellikle dağlık bölgelerde kısa ve çoğu zaman düzensiz akan nehirler, çaylar ve dereler de vardır. Kuşkusuz özellikle ikinci gruptaki nehir, dere ve çaylarda tedricen değişen biotoplara rastlamak olanağı yoktur. Diğer taraftan, ülkemizde spor balıkçılığı geliştirilemedeği için aslında ne amatör balıkçılar ve ne de biyologlar bu bölgeleri ayırmağa lüzum görmemişler, dolayısıyla böyle bir çalışmaya da gereksinim duyulmamıştır. Nehirler bir yana bırakılacak olursa, göller, gölcükler ve barajlar ülkemizde tatlısu balıkçılığı yönünden büyük önem taşıyan azımsanmayacak biotopları oluşturur ve çoğu iyi besleyici (Eutrof) karakter gösterirler. Eutroph karakterdeki göl ve gölcüklerimizin aşağı yukarı hepsi sığ sulardır. Çoğunda güneş radyasyonları tabana kadar nüfuz edip, zengin bir vejetasyonun gelişmesine neden olur. Bu yüzden, böyle biotoplar genellikle vejetasyonla örtülüdürler. Diğer taraftan, güneş radyasyonlarının tabana kadar ulaşamadığı derin göller (Van, Beyşehir ve Eğridir gölleri) de mevcuttur. Böyle göllerin tabanında vejetasyon olmadığı gibi, dip suları da yüzeye nazaran oldukça düşük sıcaklıktadır. Farklı göller arasında bir de Alpin gölleri, ele alacak olursak, bunlar ülkemizin yüksek dağlık bölgelerindeki küçük göllerle karşılaştırılabilir. Bunlar çoğu zaman 1500—2000 m. nin üzerindeki yüksekliklerde bulunurlar ve çoğunlukla etrafları karlarla örtülü olabilir. Genellikle eriyen kar sularıyla beslendiklerinden, yüzey ve dip sıcaklıkları düşük olur. Bu tip göllerdeki balık faunasının başında Alabalıklardan (Salmonidae) Salmo trutta (Abant gölü), Sazangillerden (Cyprinidae] Ot balığı (Phoxinus) ve sirazlar (Capoeta) (Eğridir gölü) gelir. Bu türler, dağların her türlü olumsuz şartlarına, bu arada kar ve buzun engellemesi sonucu ortaya çıkan oksijensizlik ve ışıksızlığa da dayanıklılık gösterirler. Kış boyunca, yaşamını sürdürebilen birkaç bitkinin fotosentez olayı ile de suya oksijen sağlanması olanaksızdır. Aksine, karanlık bir ortamda solunum ile devamlı CO2 çıkartarak sudaki yaşamı temsilinden tedirgin edebilirler. Çünkü, fotosentez ile çıkarttıkları çok az miktardaki oksijeni kendi solunumları için kullanırlar.

http://www.biyologlar.com/biotop-tipleri

CANLILARDA DESTEK VE HAREKET SİSTEMLERİ

I . CANLILARDA DESTEKLEYİCİ YAPILAR İskelet ve kas sistemi , canlıların kendilerine ait şekillerini koruyan ve hareketlerini sağlayan sistemlerdir.Bu iki sistemin bulunduğu canlılar özellikle omurgalılardır.İskelet sadece hareketi sağlamakla kalmaz ,ayrıca vücudun dayanıklılığını da artırır . Kaslar ise canlıların aktif yer değiştirmelerine yardımcı olur. Bir hücreli canlılarda , insanlarda ve hayvanlarda bulunan gelişmiş yapılı hareket organları yoktur.Bunlarda hareket ; sitoplazma veya hücre zarından oluşan bazı özel yapılarla sağlanır. Hareketin gerçekleştirilmesi ya bulunulan ortamla pasif olarak , yada özel yapılarla aktif olarak sağlanabilir. A . PASİF HAREKET Bu çeşit harekette , canlı yer değiştirmek için kendi enerjisini kullanmaz . Bulunduğu veya yaşadığı ortamın hareket etmesiyle, hareket sağlanmış olur . Örneğin ; bir çok bakteri ve tek hücreli canlı yaşadıkları suyun hareketi ile yer değiştirebilir. B . AKTİF HAREKET Bazı bir hücreli canlılarda ise, hareketin sağlanmasında hücre zarından oluşturulan özel yapılar kullanılır. Bu şekilde, canlının bir uyarana bağlı olarak, ve enerji harcayarak yer değiştirmesine taksis (göçüm) denir. Taksis hareketleri; yalancı ayaklar, siler veya kamçı kullanılarak gerçekleştirilebilir. Yapılan hareket uyarının yönüne doğru ise pozitif taksis, uyarının zıt yönüne doğru ise zıt taksis adını alır. Örneğin; öglenanın ışığa doğru gitmesi pozitif fototaksis, amipin ısı kaynağından uzaklaşması negatif termotaksis, paremesyumun besin kaynağına doğru gitmesi ise, pozitif kemotaksis olarak adlandırılır. *Amipsi hareket: Kök ayaklılar grubunda incelenen amip gibi bazı bir hücrelilerde , sitoplazmada bulunan ve kasılıp gevşeme özelliğine sahip olan proteinler sayesinde, yalancı ayaklar oluşturulur . Bu şekilde oluşturulan yalancı ayaklar sayesinde, besinlerin alınması ve organizmanın yer değiştirmesi sağlanır . Yalancı ayak oluşturma, insan vücudundaki akyuvarlarda ve yine bir protist olan cıvık mantarlarda da görülür. * Sil hareketi: Terliksi hayvan (paramesyum) gibi bir hücreli canlılarda görülür. Bunlarda hücre yüzeyinden çıkan çok sayında küçük sil, birlikte hareket ederek canlının yer değiştirmesini sağlar. * Kamçı hareketi: Öglena ve bazı bir hücrelilerde, bazı bakterilerde sperm hücrelerinde hücre zarından uzanan bir veya birkaç tane kamçı ile hareket sağlanır. Protein yapılı olan kamçılar, su içinde burgu hareketi yaparak, canlının yer değiştirmesini sağlar. Bir hücreli canlılarda, gelişmiş yapılı destek sistemleri bulunmaz. Ancak paramesyum ve öglena gibi bir hücrelilerde, pelikula denilen bir zar kalınlaşması bulunur. Bazen pelikulann yapısında kalsiyum ve silisyum minerallerinin birikmesiyle sert bir kabuk oluşur. Süngerlerde iç iskelet, spikül denilen yapılardan oluşur. Bunlar, kalsiyum karbonat ve silis gibi inorganik ve spongin gibi organik maddeden oluşan küçük yapılı iğne şeklinde kemiklerdir.Bu iğneler süngere, desteklik sağlayan bir iç iskelet olarak görev yapar. Derisi dikenlilerde, iskelet birbirine bağlanmış plakalardan meydana gelir. Bu plakalar üzerinde dikenler bulunur. Hayvanlarda İskelet Sistemi Hayvanlarda görülen iskelet iç ve dış olma üzere iki tiptir. Vücudu dış kısımdan örten ve destekleyen iskelete dış iskelet, iç kısımda bulunanlara da iç iskelet denir. a.Dış iskelet: Bir hücre veya özel hücre grubunun salgıladığı organik ve inorganik maddelerden meydana gelir. Dış iskeletin üzerinde hiçbir vücut örtüsü bulunmaz. Kaslar iskelete içten bağlanmıştır. Vücut için iyi bir koruyucu olan dış iskelet karada yaşayan organizmalarda fazla su kaybını önler. Dış iskelet esnek bir yapıya sahip olmadığı için, eklem bacaklılarda büyüme sırasında zaman zaman değiştirilir. b. İç iskelet: Vücudun içinde bulunur. Kaslar iskelete dıştan bağlanmıştır. Üzeri çeşitli vücut örtüleri ile örtülmüştür. Omurgalılarda çok iyi gelişmiş bir iç iskelet vardır. Köpek balıklarında iç iskelet kıkırdaktan ibarettir. Bu iskelet bütün hayat boyunca kemikleşmeden kalır. Diğer omurgalılarda ise embriyo döneminde kıkırdak dokusundan oluşan iç iskelet daha sonra kemik dokuya dönüşür. II . İNSANDA İSKELET SİSTEMİ Omurgalıların çoğunda ve insanda iskelet vücudun çatısını oluşturur. İskelet aynı zamanda kaslara bağlanma yüzeyi sağlayarak hareket sistemine de yardımcı olur. İskeleti meydana getiren kemikler organizmaların ihtiyacı olan bazı temel mineralleri depo eder. Diğer taraftan, kemikler bir kısım kan hücrelerinin kırmızı kemik iliğine sahiptir. Vücuttaki kemiğin bir kısmı bağ dokusundan, bir kısmı da kıkırdak dokusundan gelişir. Organizmanın hayatı boyunca bir taraftan kemik yapımı devam ederken diğer taraftan da yapılan kemikler yıkılır. Büyüme çağından yapım yıkımdan daha fazla olduğundan kemikler uzar ve kalınlaşır. Orta yaşlılarda kemik yapım ve yıkımı denge halindedir. Yaşlılarda ise yıkım yapımdan daha fazladır. Bu nedenle kemikler gözenekli bir hal alır ve kolaylıkla yıkılabilir. 1 . Kemiklerin yapısı Kemiklerin yapısında, %25 su, %45 inorganik madensel tuzlar(kalsiyum fosfat, kalsiyum karbonat, magnezyum fosfat az miktarda sodyum ve demir) ve %30 organik maddeler bulunur. Madensel tuzlar kemiğe sertlik kazandırır. Organik maddeler ise esnekliği sağlar. Yaş ilerledikçe tuzların kemikte birikme oranı yükselir ve kemiğin sertleşmesini sağlar. Bundan dolayı çocuk ve gençlerde kemik elastiki yaşlı insanlarda ise sert ve kırılgandır. Canlı kemik hücrelerine osteosit ve bu hücreler tarafından salgılanan ara maddeye osein denir. Bu iki yapı kemik yapısını meydana getirir. Osein protein yapıda bir ara maddedir. Kemikler yapıları yönüyle iki kısma ayrılır. a . Sıkı kemik dokusu : İskeleti oluşturan bütün kemiklerin dış yüzeyi ile uzun kemiklerin gövdesi,, sıkı kemik dokusundan meydana gelir. Bu doku iç içe daireler halinde sıralanmış lamelli yapıdadır. Lamellerin ortasında kan damarları ve sinirlerin geçtiği havers kanalı bulunur. Havers kanalındaki kan damarlarından osteositlere besin ve oksijen iletilirken artık maddeler aynı yoldan geri alınır. Havers kanallarını birbirine bağlayan kanallara da volkman kanalları denir. Ortasında havers kanalı, etrafında halkasal kemik hücreleriyle aralarını boşluk bırakmadan doldurmuş ara maddeden yapılmış lamelli birimlere havers sistemi denir. b . Süngerimsi kemik dokusu : Kırmızı kemik iliği ve düzensiz boşlukların bulunduğu ince kemik lamellerinden oluşmuştur. Sıkı kemiğe oranla daha yumuşaktır. Uzun kemiklerin baş kısmı ile diğer kemiklerin iç kısmında bulunur. 2 . Kemik Çeşitleri İnsan iskeletini oluşturan kemikler uzun, yassı ve kısa kemikler olmak üzere üç şekilde gruplandırılır. a . Uzun kemikler : Kol ve bacaklarda bulunur. İki uçtaki şişkin kısma baş, iki baş arasında kalan kısma gövde adı verilir. Uzun kemikte en dışta kemiğin enine büyümesini ve onarılmasını sağlayan kemik zarı ( periost ) vardır. Uzun kemiğin baş kısmında, dışta ince bir tabaka halinde sıkı kemik dokusu, ortada süngersi kemik dokusu bulunur. Gövde kısmı ise tamamen sıkı kemik dokusundan yapılmış olup, ortasında kanal şeklinde bir boşluk yer alır. Bu kanalın içini sarı kemik iliği doldurur. Uzun kemiğin baş kısmı ile gövdesi arasında kemiğin boyuna uzamasını sağlayan kıkırdak dokudan yapılmış bir tabaka bulunur. Bu tabaka bir süre kemiğin boyuna uzamasını sağlar ve daha sonra kemikleşir. Bundan sonra kemiğin uzaması eklem kıkırdağı tarafından devam ettirilir. b . Yassı kemikler : Göğüs, kafatası, kalça ve kaburga kemiklerinden meydana gelmiştir. Bu kemikler dıştan kemik zarı (periyost) ile sarılıdır. Kemik zarının altındaki sıkı kemik dokusu ve bunun ortasında da süngersi kemik dokusu yer alır. Yassı kemiklerde sarı kemik iliği bulunduran kanal yoktur. Sadece kırmızı kemik iliği bulunur. c . Kısa kemikler : El ve ayak bileklerinde bulunur. Bu kemiklerin en, boy ve kalınlıkları yaklaşık birbirine eşittir. Şekil bakımından farklı olmamakla beraber, yapı bakımından yassı kemiklere benzerler. Kısa kemiklerde kemik kanalı yoktur. Süngersi dokuda kırmızı kemik iliğine rastlanır. 3 . Eklemler Eklemler iki kemiğin birleştiği yerlerde meydana gelir. Eklemler hareketsiz, az hareketli ve hareketli olmak üzere üç gruba ayrılabilir. a . Hareketsiz eklemler (Oynamaz) : Kafatası gibi iskeletin hareket etmeyen kısımlarındaki kemiklerde görülür. Eklemleşen kemikler çok sıkı bir şekilde birbirine testere gibi girinti ve çıkıntılarla bağlanmışlardır. Bağlanma kemik uzantılarının birbiri içerisine iyice sokulmasıyla oluşur. b . Az hareketli eklemler (Yarı Oynar) : Omurgadaki doğrulma ve bükülme hareketleri gibi kemiklerin kısıtlı hareket etmesini sağlayan eklemlerdir. Az hareketli eklemlerden oluşan omurgada, omurlar arasında kıkırdak dokusu bulunur. Bunların esnekliğine bağlı olarak kısıtlı hareket meydana gelir. c . Hareketli eklemler (Oynar) : Vücudun en çok hareket eden kısımları olan kol ve bacaklarda bulunur. Eklemleri oluşturan kemik uçları bağ dokusundan meydana gelmiş ortak bir kapsülle çevrilmiştir. Kapsülle eklem arasındaki boşluk eklem boşluğudur. Eklem kapsülünün iç yüzeyi ince bir zarla örtülmüştür. Bu zar yumurta akına benzeyen bir salgı meydana getirir. Eklem boşluğunda toplanan bu sıvı ( eklem sıvısı ) eklem uçlarının kayganlığını sağlar. Ayrıca kemiklerin eklem yüzeyleri eklem kıkırdağı ile örtülüdür ve bir kemikten diğerine uzanan bağ dokusundan meydana gelmiş eklem bağları bulunur. Bütün bu yapılar ekleme sağlamlık ve kolay hareket etme özelliği kazandırır. 4 . İskeletin Bölümleri İskeletin yapısın oluşturan bütün kemikler; baş, gövde ve üyeler iskeleti olarak ayrılan, üç bölümü meydana getirirler. a . Baş iskeleti : İskeletin bu kısmında kafatasını oluşturan kemikler ve yüz kemikleri bulunur. Kafatası beyin ve kısımlarının korunmasını sağlar. Bu yapıyı oluşturan kemikler, birbirine sıkıca bağlıdır. Kemiklerin arasında sadece omurilik ve sinirlerin çıkmasını sağlayan delikler bulunur. Kafatası, alın, yan kafa, şakak, art kafa kemiği, temel ve kalbur kemiklerinden oluşur. Yüz kemikleri ise; tırnakçık, elmacık, burun, sapan, boynuzcuk, damak, üst ve alt çene kemiklerinden meydana gelir. Bunlardan alt çene kemiği şakak kemiğine bağlı ve hareketlidir. b . Gövde iskeleti : İskeletin bu kısmı, omurga, göğüs kemiği ve kaburgalardan meydana gelir. Omurga; Boyundan başlayarak kuyruk sokumuna uzanan, 33 omurun üst üste gelerek dizilmesiyle meydana gelen bir yapıdır. Bu yapıyı oluşturan omurların her birinde, genel olarak iki yan çıkıntı, bir dikensi çıkıntı, omur cismi, omur deliği, omur yayları ve eklem çıkıntıları bulunur. Her omur, diğerine kıkırdak disklerle bağlanarak omurgayı meydana getirir. Üst üste dizilen omurlardaki omur delikleri, omurga kanalını oluşturur. Bu kanalın içinde omurilik vardır. Omurga, boyun, sırt, bel, sağrı ve kuyruk sokumu olmak üzere beş bölümden meydana gelir. Boyun bölgesi yedi omurdan oluşur. Bunlardan birincisi atlas, ikincisine de eksen kemiği denir. Kafatası atlas kemiğine bağlıdır. Eksende bir çıkıntı ise atlas kemiğinin içine girmiştir. Bu yapı, kafatasının hareket ettirilmesini sağlar. Kaburgaların bir ucuyla bağlı olduğu sırt bölgesi ise on iki omurdan meydana gelir. Omurganın bel bölgesi beş omurdan oluşur. Bu kısım hiçbir kemikle bağlantılı olmadığı için, bel bölgesinin rahat hareket ettirilmesini sağlar. Beş kemikten oluşan sağrı ve dört kemikten oluşan kuyruk sokumu kemikleri ise, birleşerek tek bir kemik halini almıştır. Göğüs kemiği; vücudun göğüs bölgesinde ve kalbin üzerinde bulunur. Bu organı koruma ve kaburgalara bağlanma yeri olarak görev yapar. Kaburgalar; on iki çift olup , yedi çifti doğrudan göğüs kemiğine bağlıdır. Diğer kaburgalardan 8, 9 ve 10. kaburgalar birleşerek yedinci kaburgaya bağlanırlar. Son iki kaburga ise, yüzücü kaburgalar olarak adlandırılır. Çünkü bunların ön uçları serbesttir. Bu durum, soluk alış verişi sırasında diyaframın aşağıya doğru rahat hareket etmesine olanak sağlar. c . Üyeler iskeleti : Omuz kemeri ve kalça kemeri ile kol ve bacaklardan meydana gelir. Omuz kemeri, köprücük ve kürek kemiklerinden oluşur.Kalça kemeri ise, kalça, çatı ve oturga kemiklerinden meydana gelir. Bu kemikler önden birbirleriyle arkadan da sağrı omurlarıyla birleşerek leğen kemiğini oluştururlar. Kol kemikleri; pazı, ön kol, dirsek, bilek, tarak ve parmak kemiklerinden meydana gelir. Her bir kolda toplam otuz kemik bulunur. Bacak kemikleri: diz kapağı, uyluk, baldır, kaval, bilek, tarak ve parmak kemiklerinden meydana gelir. Bacağın alt kısmında, önde bulunan kemiğe kaval, arkada bulunan kemiğe ise baldır kemiği denir. 5 . Kemik Oluşumu ve Kontrolü Kemik dokusunun ve kemiklerin oluşmasında hormonlar,mineraller, dengeli beslenme ve genetik faktörler etkilidir. Kemiğin sertleşmesi için kalsiyum, fosfor , potasyum minerallerinin kemiğe geçmesi ve bunların kandaki miktarlarının belli sınırlar arasında tutulması gerekir. Kalsiyumun kemikten kana ve kandan da kemiğe geçişi parathormon ve kalsitonin denilen iki hormonla düzenlenir. D vitamini, kemiklerde kalsiyum ve fosfat birikmesini sağlayarak kemikleri sertleştirir. Derideki D vitamini öncüsü olan maddeler ultraviyole ışınların etkisi ile D vitaminine dönüştürlür. D vitamini yetersizliğinde kemikte gerektiği kadar kalsiyum ve fosfat birikemez ve böylece kemik yumuşak kalır. Bu durum çocukluk çağında olursa, bacaklarda eğrilikler ( raşitizm ) ve göğüs kafesinde çıkıntı meydana gelir. Şayet yetişkinlerde görülürse kemik yumuşamamasına neden olur. Kemiğin enine ve boyuna büyümesi ile son şeklini almasında genetik faktörlerde önemlidir. III . KAS SİSTEMLERİ Kaslar, canlı organizmada hareket sistemini meydana getiren yapılardandır. Sinir sisteminden sonra, vücudun oldukça özelleşmiş bir dokusunu oluşturur. Kasların en önemli özelliği, kasılma özelliğidir. Bundan dolayı kas hücreleri diğer hücrelere göre uzundur. Kaslar vücut şeklinin korunmasında ve desteklenmesinde de görev yaparlar. Örneğin, omurgalıların karın kasları, bu bölgedeki organlara desteklik sağlar. Eklemlerin birbirine bağlanması ve hareketi de kaslarla olur. Dolaşım, sindirim ve boşaltım sisteminin birçok organı kaslarla donatılmıştır. 1 . Kasların Yapısı ve Organizasyonu Çeşitli organların yapısına katılan kaslar, kas hücreleri ve bunların oluşturduğu kas dokusundan ibarettir. Düz kas, çizgili kas ve kalp kası olmak üzere üç tip kas vardır. a . Düz Kaslar : Hücreleri mekik şeklindedir. Büyüklükleri bulundukları organa göre değişir. Çekirdek hücrenin orta kısmında bulunur. Kas hücrelerinin sitoplazmalarında boyuna uzanan iplikçikler görülür. Miyofibril olarak adlandırılan bu iplikçikler kasılmayı sağlar. Düz kas dokusu isteğimiz dışında çalışır. Bu organların kasılmaları yavaş ve düzenlidir. Eklembacaklılar dışındaki diğer omurgasız hayvanlar düz kaslara sahiptir. Omurgalılarda da sindirim, solunum, dolaşım, üreme ve boşaltım sistemlerini meydana getiren organların duvarlarında önemli ölçüde kas dokusu bulunur. b . Çizgili kaslar : Omurgasızlardan eklem bacaklılardaki kaslar bu tiptendir. Çizgili kaslar beynin kontrolünde isteğimize bağlı olarak kasılırlar. Bunlar; düz kasa oranlar çok daha hızlı kasılır fakat çabuk yorulurlar. Çizgili kas hücreleri. Uzun ve silindir şeklinde hücrelerdir. Çok sayında oval şekilli çekirdekleri vardır. Çekirdek hücrelerinin kenar kısımlarında yer alır. Miyofibriller özel bir diziliş gösterirler. Bu diziliş kas lifinde birbirini izleyen açık ve koyu bantlar meydana getirir.Kas demeti incelenirken kas hücrelerinin sınırları ayırt edilemez. Kas liflerinde açık renkli görülen bölgeler I bandı koyu renkli görülen bölgeler A bandı olarak isimlendirilir. I bandının tam ortasında koyu renkli ince bir çizgi vardır. Buna Z çizgisi denir. Kas dokusunda ardı ardına gelen iki Z bandı arasındaki bölgeye sarkomer denir ve kasılma birimi olarak kabul edilir. Miyofibriller çok daha ince ipliklerin düzenlenmesiyle meydana gelmişlerdir.Bunlardan kalın ve kısa olanına miyozin, ince ve uzun olanına aktin iplikleri denir. Aktin ve miyozin ipliklerin temel yapısı proteindir. Çizgili kasların kemiklere bağlandığı yerler sıkı bağ dokusundan yapılmıştır. Bunlara kas kirişleri veya tendonlar denir. İskelet kasları çoğunlukla çiftler halinde çalışırlar. Her hareket birbirine zıt çalışan çift kaslar sayesinde meydana gelir. Bu kaslara antagonist kaslar denir. Antagonist kaslardan birinin kasılması diğerinin gevşemesine sebep olabilir. Kol ve bacak hareketleri, karın, sırt ve omuz hareketlerinde antogonist kaslar aktivite gösterir. Eğer eklem dik ve hareketsiz kalırsa her iki kas da belli bir kasılma durumundadır. Bu tip hareketler sırasında aynı görevi yapan, yani aynı anda kasılan veya gevşeyen kaslara sinerjit kaslar denir. c . Kalp kası : İstemsiz olarak kasılırlar. Liflerdeki telcikler tek çekirdeklidir. Çekirdekler hücrenin ortasında bulunur. Kalp kası enine bantlaşma gösterdiği için çizgili kasa benzer. Kas telleri kısa boyludur. Birbirine bağlandıkları yerlerde ara diskler bulunur. Ayrıca teller yan kollarla da birbirine bağlanırlar. 2 . Kasların Çalışması Omurgalıların ve eklem bacaklıların hareketlerinin omurgasızlara oranla çok daha hızlı olmasının sebebi, hareketi sağlayan kasların çizgili olmasındandır. Çünkü çizgili kasların kasılma hızı düz kaslara göre çok daha yüksektir. Örneğin, bir insanın göz kası saniyenin yüzde biri içinde kasılır. Bir sineğin kanat çarpışı son derece hızlıdır. Havada sabit duruyor gibi kanat çırpan bazı böceklerin, kanat hareketlerini bile görmek imkansızdır. Kaslar beyin ve omurilikten gelen sinir uyartıları ile uyarılarak kasılma durumuna geçerler. Düz kas hücrelerinin çoğunluğunda sadece bir kısım hücre sinir uçları ile bağlantılıdır. Diğer hücrelere uyartılar bu hücrelerden aktarılır. Düz kastaki kasılmanın yavaş olmasının sebebi beklide budur. Halbuki çizgili kas hücrelerinin hepsi veya birkaç noktadan sinir uçları ile temas halindedir. Felç gibi çeşitli sebeplerle hareket yeteneğinin kaybolması, kasların bozulmasından değil kaslara uyartı taşıyan, sinirlerin zedelenmesinden dolayıdır. Kasların Kasılmasını Uyaran Faktörler Düz kaslar ve kalp kasını uyaran sinirler otonom sinir sistemine aittir . Çizgili kaslar ise kalın ve miyelinli sinir lifleri ile uyarılır. Sinir uçları çizgili kas hücreleri üzerinde birçok kollara ayrılarak sonlanırlar. Bu noktalara motor plak adı verilir. Bir sinir teli birden fazla sayıda kas hücresi ile bağlantılı olabilir. Örneğin, tek bir motor sinir 650 tane bacak kas hücresini uyarabilecek yapıdadır. Kas hücreleri motor sinirle gelen uyartıya saniyenin onda biri ile yüzde biri gibi çok kısa süren bir kasılma ile cevap verir. Kasın kasılma evreleri : Bir kasın kasılması sırasında üç evre ayırt edilir. Bunlar bekleme evresi, kasılma evresi ve gevşeme evresidir. a . Bekleme (latent) evresi : Uyarının uygulanması ile kasılmaya başlama arasındaki geçe süredir.Yaklaşık 0,01 saniye sürer. b . Kasılma evresi : Kasılmanın başladığı an ile gevşemenin başladığı an arasındaki kısa süredir. Yaklaşık 0,04 saniye sürer. c . Gevşeme evresi : Kasın gevşeyerek eski halini almasıdır. Yaklaşık 0.05 saniye sürer. Kasılmayı kısa süren bir dinlenme devresi takip eder. Ancak bu dinlenme evresinden sonra ikinci bir kasılma meydana gelebilir.İkinci kasılmanın birincinin üzerine binmesi, kasların normalden daha fazla kasılmasına sebep olur. Bu olaya birikim denir .Kas yoruldukça kasılma giderek zayıflar ve sonunda durur. 3 . Çizgili Kasların Kasılması Çizgili kasın kasılmasını en iyi açıklayan hipotez kayan iplikler hipotezi olarak bilinir.Kasılma sırasında A bandının boyu değişmezken I bandı kasılır ve H bandı görünmez. Böylece miyozin ipliklerin uçlarının I bandına yaklaşması veya iki Z çizgisinin birbirine yaklaşmasıyla kasın boyu kısalır. Gevşeme anında ise kas eski özelliğine kavuşur. Buradan kolayca anlaşılabileceği gibi, kas kasılmasında görev alan en önemli yapılar aktin ve miyozin ipliklerdir. Aktin ve miyozin iplikleri arasında oluşan çekim kuvvetleri ve ara köprüler böyle bir kaymanın sebebidir. Kasılma ve gevşeme sırasında bazı kimyasal maddeler görev aldığı gibi çok miktarda da enerji harcanır. Zaten kaslar, enerjinin en yoğun üretildiği ve harcandığı yerdir. Bu yüzden kas hücrelerinde çok miktarda mitokondri bulunur. Bilhassa kalp kasında mitokondrilerin sayısı fazladır. Kuş ve böceklerin uçma kaslarında da çok miktarda mitokondri vardır. 4 . Kasılmanın Kimyasal Olarak Açıklanması Önceki bölümlerde çizgili kasların motor sinin lifleri taşıdığı uyartılarla faaliyete geçirildiği belirtilmiştir. Bu sinirlerin kastaki uçlarına motor uç plağı denilmektedir. Motor uç plağı sinir teli ile kas teli arasında oluşmuş bir çeşit sinapstır. Uyartıları kaslara taşıyan motor sinirlerinin son kısımlarında bol miktarda küçük kesecikler vardır. Bu kesecikler asetilkolin taşırlar. Uyartıların gelmesiyle birlikte asetil kolin, sinir ve kas hücresini ayıran aralığa dökülür. Bu asetil kolin, kas hücrelerinin endoplazmik retikulumlarında depo edilmiş olarak bulunan kalsiyum iyonlarının aktin ve miyozin ipliklerin aralarına yayılmasını sağlar. Bu enerji ile aktinlarin miyozin üzerinde kayması sağlanır. İşte kasılma olayı bu değişmelerle birlikte başlar Kasların kasılması sırasında glikojen, oksijen, kreatin fosfat ve ATP ’nin azalmadığı gözlenmiştir. Buna karşılık aynı anda karbondioksit, laktik asit, ADP ve inorganik fosfatın arttığı tespit edilmiştir. Bu veriler kasılmanın kimyasal yönden açıklanmasına yardımcı olmuştur. Kasların kasılabilmesi için gerekli enerji ATP’ den sağlanır. Kalsiyum iyonlarının varlığında, ATP den inorganik fosfatın ayrılmasıyla açığa çıkan enerji kasılmada kullanılır. Kas kasılması sırasında ATP çok çabuk harcandığı için yeniden yapılması lazımdır. Harcanan ATP nın tekrar yerine konması için birinci enerji kaynağı kreatin fosfat denilen moleküldür. Kreatin fosfattan yüksek enerjili bir fosfat koparılarak ADP, ye katılır. Böylece ATP yeniden ve çabucak elde edilmiş olur. Bunu şöyle gösterebiliriz. ATP elde etmenin diğer ikinci yolu ise glikozun glikoz ile ATP ye dönüştürülmesidir. Glikozun devamı oksijen varsa mitokondride gerçekleşir. Oksijen yoksa laktik asit fermantasyonu meydana gelir. Laktik asit oksijenli şartlarda mitokondrilerdeki krebs çemberine katılmak ve daha çok enerji vermek üzere tekrar pirüvik asite dönüştürülür. Glikoz kalmayınca, glikojen yıkımı başlar. O da bitince diğer besinler solunuma katılır. İskelet kasında oluşan ATP ya doğrudan kullanılır, ya da geçici olarak kreatin fosfat şeklinde depolanır. Çünkü kreatin fosfat depolanabilen yüksek enerjili bir bileşiktir. Kaslar oksijensiz şartlardaki kasılmalarını sürdürebilmek için glikolizle enerji elde etme yolunu kullanırlar. Çünkü kaslar aşırı derecede çalıştıkları zaman enerji elde etmek üzere hemen gerekli oksijeni bulamazlar. Oksijenin bol bulunmadığı hallerdei sitoplazmadaki glikojen laktik asite yıkılırken, serbest kalan enerji kreatin fosfatın yeniden sentezlenmesini sağlar. Bu defa da kaslarda kas yorgunluğuna neden olarak laktik asit birikimi görülür. Oksijenin az olduğu ortamlarda görülen yorgunluk belirtilerinin sebebi budur. Fizyolojik tetanoz : Kasa arka arkaya uyarı verilirse, kas gevşemeye vakit bulamaz, kasılı bir vaziyette kalır. Bu duruma fizyolojik tetanoz denir.

http://www.biyologlar.com/canlilarda-destek-ve-hareket-sistemleri

İLGİNÇ BİTKİLER

Arum zambağı Arum zambağı döllenmeye hazır hale gelince keskin kokulu bir amonyak gazı (NH3) yaymaya başlar. Çiçeğin son derece ilginç bir yapısı vardır. Polenlerinin bulunduğu bölüm beyaz yapraklı yapının içinde dip taraftadır ve dışarıdan görünmez. Bu yüzden sadece koku yaymak böceklerin dikkatini çekmek için yeterli değildir. Polenler döllenmeye hazır olduğunda zambak saldığı kokuyla birlikte çiçeğinin dışta kalan bölümünü de ısıtır. İşte bu yalnızca aydınlık saatlerde ve bir gün içerisinde gerçekleşen ısınma ve koku böcekler için çok çekicidir. Bu ısı ve koku nasıl ortaya çıkıyor sorusunu cevabını bulmaya çalışan bilim adamları bitkinin metabolizmasında gerçekleşen hızlanma sonucunda ortaya özel bir asit çıktığını bulmuşlardır. Glutanamik asit denen bu maddenin kimyasal yollarla parçalanması sonucunda çiçeğin yaydığı ısı ve koku oluşur. Bu sayede böcekler çiçeğe gelirler. Ne var ki böcekler için bu yeterli değildir çünkü arum zambağının polen tozları dipte kapalı torbacıklarda bulunur. Çiçek buna da hazırlıklıdır. Yağlı olan dış yüzeyi sebebiyle gelen böcekler kayarak aşağı çiçeğin içine düşerler ve bir daha da kaygan duvarlardan yukarı tırmanamazlar.Bulundukları bölümde çiçeğin dişi organlarının ürettiği şekerli bir sıvı vardır. Ayrıca gece olunca polenlerin kapalı olduğu torbacıklar da açılır ve böcekler bunlara bulanırlar. Böcekler çiçeğin içinde bir gece kalırlar. Sabah olunca çiçeğin üzerinde bulunan dikenler bükülerek böceklerin yukarı tırmanması için merdiven işlevi görürler. Merdivenden tırmanan böcekler özgürlüklerine kavuşur kavuşmaz görevlerini yerine getirmek için dölleyici polen yükleriyle birlikte başka bir zambağa giderler. Passiflore çiçeği İlgi çekici bir güzellikte olan Passiflore çiçeği yaprakları üzerinde yer alan küçük iğneler sayesinde düşmanı olan tırtıllara karşı koyabilmektedir. Bu iğneler yumurtadan çıkan tırtılların en ufak bir yer değiştirmesi halinde bedenlerine saplanır. Böylece passiflore çiçeği bu tırtıllar henüz doğup ona zarar vermeden önlemini almış olur. Kardelenler Çevremizdeki güzellikler bazen oldukça etkileyici biçimlerde belirirler. Kışın kar örtüsünün altında donmuş bir şekilde korunan kardelenler baharda karların erimesi ile birlikte çiçek açarlar. Karların içinden çıkan bu muazzam güzellik ve renk cümbüşü Allah'ın yaratışındaki kusursuzluğun ve ihtişamın örneklerinden yalnızca bir tanesidir. Taş kaktüsü Resimde görülen bu canlı kayalar gerçekte toprağın altında gizlenmiş olan bir bitkinin etli yapraklarıdır. Çiçek açmadığı zamanlarda bir kayadan farksız olan taş kaktüs bitkisi aslında gerçek bir kaktüs değildir. Kayaya benzeyen görünüşü onun düşmanlarından çok iyi bir şekilde korunmasını sağlar. Küstüm otu Küstüm otunun çok ilginç bir savunma sistemi vardır. Bu bitkinin yapraklarına dokunulduğunda birkaç saniye içinde sapla birlikte yapraklarının gövdeye doğru yaslandığı görülecektir. Eğer bitkiyi rahatsız eden etki devam ederse bu kez küstüm otu aşağıya doğru ikinci bir hareket yaparak gövdesinin üzerindeki sivri dikenleri ortaya çıkarır. Bu da böcekleri kaçırmak için yeterlidir. Bitkideki bu hareketi gerçekleştiren mekanizma elektrik akımlarıyla başlar. Bu akım aynı insan vücudundaki sinirlerden geçen akım gibidir. Bitkinin reaksiyonları bizde olduğu kadar hızlı değildir. Bununla birlikte bitki özünü taşıyan kanallar aracılığıyla iletilen elektrik sinyalleri 30 santimetrelik mesafeyi bir-iki saniye içinde geçer. Isı ne kadar yüksek olursa reaksiyon o kadar hızlı olur. Her bir yaprağın dibi (yaprağın sapıyla birleştiği yerde) oldukça şişkindir. Buradaki hücreler sıvıyla doludur. Uyarı buraya ulaştığı zaman yaprağın dibindeki şişkinliğin alt yarısı aniden suyunu boşaltır ve aynı anda diğer üst yarı bu suyu kendi bünyesine alır. Ve yaprak aşağıya doğru düşer. Böylece uyarı saplar boyunca ilerlerken yapraklar domino taşları gibi teker teker ardı ardına kapanır. Bu şekilde bir savunma hareketinden sonra bitkinin tekrar hücrelerini doldurup yapraklarını açabilmesi için 20 dakika gereklidir. Genlisia Genlisianın tuzağı hayvan bağırsağına benzer. Toprak altında dallanmış olan yaprakları içi boş borular şeklindedir. Topraktan çekilen su bu borularda ilerler. Boruların uçlarındaki yarıklarda bitkinin içine doğru yönelmiş bir akıntı vardır. Bu akıntı bitkinin içinde su pompalayan tüycüklerden kaynaklanır. Su içindeki böcekler ve diğer organizmalar akıntı nedeniyle boruların uçlarındaki yarıklardan içeri doğru sürüklenir. Bu sürüklenme boyunca geçtikleri her yer uçları aşağıya bakan kalın ve sert tüylerle kaplıdır. Tüycükler de birer sübap gibi iş görerek böceği bitkinin içine doğru iten ikinci bir etki meydana getirirler. Kurban içerilere doğru ilerledikçe bir dizi öldürücü sindirim beziyle karşı karşıya gelir. Sonunda da Genlisianın besini olmaktan kurtulamaz.

http://www.biyologlar.com/ilginc-bitkiler

 
3WTURK CMS v6.03WTURK CMS v6.0