Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 55 kayıt bulundu.

Dünyada Patolojinin Gelişimi

Patolojinin gelişimi insan bedenini ve işleyişini araştıran diğer bilim dallarındaki gelişmelerden etkilenmiştir. Önce insan anatomisi ayrıntılarıyla ortaya konulmuş, sonra histoloji, biyoloji, fizyoloji ve biyokimya hakkındaki bilgiler derinleşmiştir. Hastalıkların nedenlerinin anlaşılması için mikrobiyoloji, dahili ve cerrahi tıp dalları, son olarak da genetik ve moleküler biyoloji alanındaki atılımlar bilimin ve patolojinin yolunu aydınlatmıştır. Tıp dallarındaki bilginin günümüzdeki kadar yoğun olmadığı çağlarda bilim insanlarının birden çok bilim dalında çalışmalar yapmalarının nedeni, farklı dallar arasında işbirliği ve bilgi paylaşımının yarattığı avantajlardan yararlanmış olmalarıdır. Patolojide önde giden bilim insanı aynı zamanda anatomi, histoloji veya fizyoloji alanında da en ileri bilgilere sahip olmuştur. Yine de patolojinin 17. yüzyıldan itibaren sıçrama yapmasında Avrupa'da rönesans ("Yeniden doğuş") döneminin yarattığı bilimsel özgürlük ortamında otopsi incelemelerinin yaygınlaşması etkili olmuştur. Otopsi: Hastalıkların anlaşılmasında önemli aşama Hastalıkların nedenleri konusunda araştırmalar hasta bedenlerin ve beden sıvılarının incelenmesiyle giderek bilimsel zemine oturmuş, otopsi bu gelişmede önemli bir aşamayı oluşturmuştur. Otopside hastalıkların organ ve dokularda yol açtığı değişiklikler açığa çıkarılmıştır. Otopsi bulguları aynı zamanda hastalıkların tanısı ve ölümle sonuçlanan mekanizmaların anlaşılması için somut kanıtlar olarak değer kazanmıştır. İlk otopsinin 1286 yılında veba salgını sırasında İtalya'da Cremona şehrinde yapıldığı bilinmektedir. Şüpheli olgularda aileden ilk otopsi iznini isteyen hekim ise Antonio Benivieni (1440-1502)'dir. Giovanni Battista Morgagni (1682-1771) Patolojik anatominin babası kabul edilir. 700'den çok otopsi üzerinde elde ettiği bulguları kaydetmiş, 60 yıl sonra yayınladığı "De Sedibus et Causis Morborum" adlı 5 ciltlik bir eserde toplamıştır. Morgagni çalışmalarında Galen'in "Gerçeği arayanlar, nedeni kendisini doğrulamasa da gördükleri herşeyi dikkatle rapor etmelidir" öğüdüne uymuştur. Marcello Malpighi (1628-1694) Dokularda ilk mikroskopik incelemeleri gerçekleştirmiştir. 18. yüzyılın ilk yarısında histolojinin kurucusu Bichat da otopsi çalışmaları yaparak dokuları damar, kas, bağ dokusu ve kemik olarak dört ana kümede toplamıştır. 18. yüzyılın ikinci yarısında Fransız cerrah Guillaume de Puytren (1777-1823), klinikçi Mathew Baillie (1761-1823) otopsiyle uğraştı. İngiliz R. Bright otopsi serilerini inceleyerek böbrek hastalıklarının ilk sınıflandırmasını yaptı. Aynı dönemde Alman patolog ve anatomist Johann Friedrich Mecker (1781-1833) çok sayıda otopsi yaptı. Aynı zamanda fizyoloji, anatomi hocası ve arkeolog olan Johannes Müller (1801-1858), tümörleri makroskopik görünümlerine göre ilk sınıflandıran kişi oldu. Thomas Hodgkin (1798-1866) 7 Otopside lenf düğümünde tümör gelişimini değerlendirerek Hodgkin Lenfoma'yı tanımlamıştır. Karl F.Rokitansky (1804-1878) Viyana Üniversitesi'nde 30 yıl Patoloji hocalığı yapmış, bu süre içinde 70.000'den fazla otopside çeşitli hastalıkları gözlemlemiştir. Septal defektler ve diğer konjenital kalp anomalilerini tanımlamış, arter hastalıkları üzerine geniş makaleler yayınlamış, infektif endokarditlerde ilk kez bakterileri görmüştür. Eş zamanlı olarak Berlin'de Rudolf Ludwig Karl Virchow (1821-1902) "Hücresel patoloji" düşüncesinin fikir babasıdır. Otopsilerden elde ettiği 23.000 parçadan oluşan bir müze kurmuştur. Aynı zamanda arkeolog, antropolog, politikacı olan Virchow 1879'da Truva'yı görmek ve tarihi eser kaçırmak için 2 kez ülkemize gelmiştir. Milletvekilliği sırasında Berlin'in su ve kanalizasyon sistemlerinin kurulması için çalışmış, tifüs salgını hakkında daha 20 yaşında iken yazdığı bir rapor nedeniyle Berlin'den sürülmüştür. Virchow tıbbı bir sosyal bilim olarak nitelendirmiştir. Lösemi, tromboz, yangı ve tümörleri ilk kez ayrıntılı olarak tanımlamış, emboli, amiloid ve hemosiderin ile ilgili araştırmalar yapmıştır. Modern patoloji, hücresel patoloji İnsan anatomisi, fizyoloji, histoloji ve mikrobiyolojideki gelişmeler, normal ve hastalıklı sistem-organ-doku-hücre-inceyapının karşılaştırılmasına olanak tanımıştır. Modern patoloji, "Hücresel patoloji", "Fizyopatoloji", "Moleküler patoloji" bölümlerinden oluşmaktadır. 19. yüzyılda Virchow tarafından ortaya konulan "Hücresel patoloji" düşünce sistemi şöyle özetlenebilir: "Yaşamın temel birimi hücredir. Hastalıklar da hücre yapısı ve işlevlerinin bozulmasıyla başlar. Hasta hücrenin üremesiyle diğer hasta hücreler ortaya çıkar. Hastalığı anlamak için hücreyi incelemek gerekli ve yeterlidir. Yangı, dejenerasyon, tümör gelişimi bu şekilde açıklanabilir." Virchow, teorisini kendinden önce gelen bilim adamlarının bulgu ve düşüncelerine dayandırmıştır: Robert Hooke 1665'te bitki gözeneklerini gösterip bunlara "hücre" adını vermiştir. Lorenz Oken 19. yüzyılın başında "Bitkiler gibi insan ve hayvan bedenlerinde de bulunan hücrenin yaşamın en küçük birimini oluşturduğu" görüşünü öne sürmüştür. Histolojinin kurucusu Xavier Bichat "Hastalıkların dokuların bozulması sonucunda oluştuğunu" savunmuştur. Zamanının en büyük fizyologlarından biri olan Virchow'un Hocası Johannes Müller (1801-1858) ise yapı ile işlev arasındaki ayrılmaz bağı vurgulamıştır. Virchow'un hücresel patoloji kuramını ortaya koyarken hücrenin inceyapısından ve moleküler yapısından da söz ettiğini bu bilim adamının ileri görüşlülüğünü göstermesi bakımından eklemek gerekir. Alman bilimadamı Julius Cohnheim (1839-1884)Virchow'un öğrencisidir. İltihap patogenezi ve deneysel patoloji alanındaki çalışmalarla iz bırakmıştır. Cohnheim kurbağalardaki deneysel araştırmalarda iltihap bölgesine gelen elemanların kandan taşındığını, doku değişikliğinin, hücreye değil damara yönelik etkilerle oluştuğunu, hücre zedelenmesinin bunun sonucu olduğunu ortaya koymuştur. Dokuları dondurarak kesmeyi ilk deneyen bilim adamıdır. Virchow'un bir başka öğrencisi Elie Metchnikoff 1845-1916 fagositoz konusundaki çalışmalarıyla 1906 Nobel ödülü alıştır. İlk patoloji kürsüsü Jean Cruveilhier (1791-1873) tarafından Paris'te, 1836'da Hotel Dieu'da kurulmuştur. Dönemin eğitim merkezleri Almanya ve Avusturya, en tanınmış hocaları Müller, Rokitansky, Virchow ve Cohnheim olmuştur. Avrupa'da bu gelişmeler yaşanırken ABD izleyici durumundadır. Welch, Osler, Councilman, Delafield, Flexner gibi başlıca Amerikalı patologlar eğitimlerini Avrupa'da Rokitansky, Virchow ve Cohnheim'in yanında almıştır. Osler, 19. yüzyıl başında yaptığı otopsilerde birçok hastalığı ilk kez tanımlamıştır. Cohnheim'in öğrencisi Henry Welch (1850-1934), ABD'de ilk patoloji kürsüsünü John Hopkins'te kurmuştur.

http://www.biyologlar.com/dunyada-patolojinin-gelisimi

Biyoterörizm ve Biyolojik Silahlar

Biyoterörizm kavramı, 11 Eylül 2001 tarihini takiben ABD’de posta kaynaklı şarbon vakalarının görülmesiyle günlük hayatımıza girmiştir. Biyoterörizm kişiler, gruplar veya hükümetler tarafından gerek ideolojik, gerekse politik veya finansal kazanç sağlamak amacıyla hastalık yaratıcı patojenlerin (biyolojik savaş araçlarının-BSA) sivil halk üzerinde, hayvanlarda ve bitkilerde hastalık oluşturmak ve/veya ölüme neden olmak amacıyla açık veya gizli şekilde yayılması şeklinde tanımlanmaktadır. Peki biyolojik silahlar nedir?. Klasik olarak “Biyolojik Silahlar” sadece yaşayan canlılara kitlesel zarar veren patojen (bakteri, virüs, mantar) veya doğada patojen olmayan ancak genetik olarak değiştirilmiş mikroorganizmalar ile bu etkenlerin toksinleri olarak tanımlanmaktadır. Neden insanoğlu biyolojik silahları üretmektedir?. Nükleer, kimyasal ve konvansiyonel silahlarla karşılaştırıldıklarında biyolojik silahların çeşitliliği onları diğerlerinden ayıran en önemli özelliği oluşturmaktadır. Bulaşıcılığı yüksek, kolay ve hızlı üretilebilen, aşı ve tedavisi kullanıcı tarafından kolaylıkla kendi yandaşlarına uygulanabilen hemen hemen tüm mikroorganizmalar biyolojik saldırı amaçlı kullanılabilir. Günümüzde 43 mikroorganizma biyolojik silah adayı olarak kullanılabilir olmakla birlikte, bunlar arasında en önemlileri; şarbon, brusella, veba, Q ateşi, tularemi, çiçek, viral ensefalit, viral hemorajik ateş, botulizm toksini ve stafilokoksik enterotoksin B'dir. Biyolojik Silah Olarak mikroorganizmaların Avantajları: • Çok geniş alana dağılabilmesi (etki alanının geniş olması) • Kolay üretilebilir depolanabilir ve Üretim merkezlerinin kamufle edilebilir olması • Düşük maliyetle üretilmesi Kilometrekare kare başına düşen insan sayısının %50’sini etkileyen doz (LD50) baz alınarak maliyet hesaplandığında, konvansiyonel silahlar 2000$, nükleer silahlar 800$, kimyasal silahlar 600$, biyolojik silahlar ise 1 dolara mal olmaktadır. Bu nedenle biyolojik silahlar “Fakirin Atom Bombası” olarak tanımlanmaktadır. • Kullanımlarının kolay olması ve iz bırakmaması Biyolojik silah ajanları renksiz, kokusuz, tatsız olmaları nedeniyle insan gözüyle görülemezler. Aerosol bulutu halinde atıldığı zaman, mikroskopik boyutlardaki partiküller (1-10 m çapında) solunum ile akciğerlerin uç bölgelerine ulaşırlar. Ayrıca, etkilerinin ancak kuluçka süresinin sonunda görülmesi nedeniyle maruz kalanlar semptomlar ortaya çıkana kadar hedef olduklarının farkına varamazlar ve bu arada salgın yayılmış olur. • Az miktarının büyük kitleleri etkilemesi ve oldukça fazla sayıda insanda hastalık ve/veya ölüme neden olabilmesi: Örneğin Washington bölgesine, rüzgar yönünde 100 kg. aeresol şeklindeki şarbon sporunun yayılmasını takiben, 130000 ile 3000000 arasında ölüm gözleneceği, CDC tarafından geliştirilen bir ekonomik modele göre ise saldırıya maruz kalan her yüz bin kişi için 26.2 milyar dolarlık bir bütçe kaynağı gerektiği hesaplanmıştır. Bu da bir BSA’nın etkisinin bir megatonluk nükleer savaş başlığı etkisinden büyük, bir hidrojen bombasının etkisine ise eşit ya da daha büyük olacağı anlamına gelmektedir. • Dış ortam koşullarına dayanıklılığının yüksek olması: Örneğin şarbon sporu toprakta 40 yıldan daha uzun süre kalabilmektedir. • Bazı etkenlerin insandan insana bulaşma olasılığı: Veba, çiçek, kanamalı ateş gibi BSA’ya bağlı enfeksiyonların insandan insana bulaşarak salgın oluşturma ve böylece silahın hedef aldığı kitleden çok daha büyük bir kitleyi etkilemesi mümkün olmaktadır. Ayrıca BSA’lar yayılımı takiben insan vücudu gibi uygun bir ortam bulduklarında çoğalmaya başlarlar; bu şekilde kullanıldıkça çoğalan başka bir silah bulunmamaktadır. • Kitleler üzerinde panik etkisi yaratması ve sağlık sisteminde çökmeye neden olması sayılabilir Kendisini kullananlara zarar verebilmesi, etkilerinin önceden tahmin edilememesi ve uzun süre doğada kalabilmeleri ise BSA’ların olumsuz yönleridir. Biyolojik ajanların kullanımı temel olarak üç yolla olmaktadır: Kontamine su ve gıdalar, infekte vektörler ve aerosolizasyon aracılığıyla ile uygulanabilirler. Ancak, vektörlerin geniş kitleler üzerinde etkili olmaması ve gelişmiş ülkelerin su sistemlerindeki ileri düzeydeki arıtma teknolojisi nedeniyle BSA’nın bu şekilde kullanımı sınırlı olup, tercih edilmez. Aerosol, yapısı nedeniyle geniş bir yayılım sağladığı için biyoterörizmde kullanılan en etkin araçtır. Aerosol şeklinde hazırlanmış biyolojik silahlar; bakterilerin tarım ilaçlaması şeklinde uçaklardan veya sprey tanklarından yerleşim yerlerinin üzerine püskürtülmesi suretiyle etkili olurlar. Düşük maliyeti ve kolay uygulanabilmesi tekniğin avantajları olmakla birlikte etkili olabilmesi için ideal hava koşulları gereklidir. Şiddetli rüzgar, yağmur ve güneş ışınları gibi hava koşulları etkilerinin azalması ayrıca uygulama hatasına bağlı kullanıcının da zarar görmesi gibi olumsuzlukları da söz konusudur. BSA’nın çeşitliliği, hangisinin kullanacağının önceden bilinmemesi, kimyasal silahlarda olduğu gibi hemen belirti vermemesi, bu nedenle de olay mahallinin bilinememesi, hastalık tablosunun birbirine benzemesi dolayısıyla etkenin hangi ajan olduğunun kolayca belirlenememesi ve o bölgede doğal bir salgın olabileceği ihtimali gibi etmenler BSA’nın saptanmasını önemli ölçüde güçleştirmektedir. Yanısıra hangi ajanın ne zaman kullanılacağının bilinmemesi aşı gibi koruyucu önlemlerin uygulanmasını da imkansız kılmaktadır. Biyolojik saldırı olduktan sonra bazı bakterilere karşı antibiyotikler ile proflaksi uygulanabilirse de genetik olarak bu ilaçlara karşı dirençli hale getirilmiş BSA’nın olabileceği göz önünde bulundurulmalıdır. Etkili bir savunma için, saldırı olmadan önce ülkedeki ilgili kurum ve kuruluşların rasyonel ve ekonomik bir şekilde organizasyonu ayrıca operasyonda görev alacak teknik personelin teorik ve pratik eğitimlerinin yapılması gerekir. ABD Hastalık Kontrol ve Önleme Merkezi tarafından (CDC) biyolojik silahlara karşı savunma stratejileri beş ana başlık altında sınıflandırılmıştır. 1.Hazırlık, önlemler 2.Saptamak, gözetim (ilk olgular, otopsi) 3.Etkenin özelliklerini iyi bilme 4.Koruyucu yöntemlerin geliştirilmesi 5.İletişim ağının sağlıklı çalışması Ne zaman ve nereden geleceği tahmin edilemeyen biyoterörist saldırılara %100 hazırlıklı olmanın olanağı yoktur. Ancak, hangi BSA’nın karşı tarafın elinde olduğunu bilmek ve bu ajanlara karşı tanı, tedavi ve korunma açısından hazırlık yapmak esastır. BSA’nın kullanılmasını takiben hastanelerin aktive edilmesi, arındırma, izolasyon, karantina, proflaksi, aşılama, otopsi ve diğer koruyucu önlemlerin belirlenip sağlık örgütünün salgına vereceği savunma yanıtı için epidemiyolojik kapasitenin artırılmasına yönelik hazırlık planları geliştirilmelidir. Bu hazırlık planları, BSA’nın tanımlamasına yönelik yerel, bölgesel ve ulusal laboratuvarların tanı olanaklarına göre belirlenmiş bir laboratuvar ağı oluşturmalarını ve ajanların moleküler karakterizasyonu dahil her türlü incelemeyi yapabilecek çok gelişmiş bir referans laboratuvarının kurulmasını, laboratuvar ağı içerisinde verilerin sağlıklı paylaşımı için bilgisayar ağının kurulması, ulusal veya bölgesel düzeyde sürveyans sisteminin oluşturulması ile şüpheli olguların tanısı ve değerlendirilmesi için standart kriterlerin geliştirilmesini içermektedir. Ayrıca, sağlık personelinin nükleer, biyolojik ve kimyasal ajanlar (NBC) konusunda sürekli eğitilmesi gereklidir. Ulusal ve bölgesel düzeyde ilgili birimler arasında hızlı ve etkin bir iletişim ağının oluşturulması, kesin ya da şüpheli saldırı durumlarında paniğe meydan vermeden halkın bilgilendirilmesi sağlanmalıdır. BSA’nın ne gibi hastalıklar oluşturabileceği, tanı, tedavi ve korunma yolları hakkında toplumun eğitilmesi, biyolojik saldırı sırasında ve sonrasında halkı bilgilendirecek ve endişelerini giderecek eğitim materyallerinin hazırlanması gereklidir. Günümüzde, BSA’nın hızlı saptanmasına yönelik farklı sistemler geliştirilmiştir. Bu tanımlama sistemleri BSA kullanımına bağlı oluşan yapay bulutların analizine dayanan askeri sistemler ile (15 dakika içerisinde) olay yerine taşınabilir sistemler veya laboratuvarda uygulanan moleküler yöntemlere (bir saatten daha az zaman içerisinde) dayanmaktadır. “Biyolojik silahlara karşı korunmada en etkin yol koruyucu giysi ve maske kullanmaktır”. Savaş ortamında yapılabilecek bir biyolojik saldırıda 1-10'luk partikülleri filtre edebilen bir maske ve NBC koruyucu elbisesi birçok BSA için belli derecelerde güvenlik sağlayacaktır. Besin ve su kaynakları zincirinin de biyolojik ajan açısından izlenmesi gereklidir. Bütün teknolojik gelişmelere rağmen, sabunlu su ile vücudun ve özellikle ellerin yıkanması, halen oldukça geçerli ve önemli bir korunma yöntemidir. Biyolojik savaş ajanlarının gelişmesi ile beraber dünyada bu silahların üretimi, stoklanması ve kullanımının önlenebilmesi için 1925 yılında Cenova Protokolü, 1972 yılında Biyolojik Silahlar Konvansiyonu (BWC-Biological Weapons Convention) imzalanmış, farklı tarihlerde bu konvansiyonun gözden geçirildiği toplantılar yapılmıştır. Sonuç olarak, potansiyel BSA'ların tanısını koyabilecek referans laboratuvarların kurulması veya mevcut olanlara bu özelliklerin kazandırılması, olay yerinde tanımlama sistemlerinin sağlanması ve BSA’ları tanıyan, etkilerini ve taktik kullanımını bilen uzman biyolojik örnek alma ekiplerinin kurulmasına yönelik düzenlemelerin yapılması için bilimsel kuruluşlar, Üniversiteler ve TSK'lerin bu konularda işbirliği içinde çalışması ülkemiz güvenliği ve çıkarları açısından son derecede önemlidir. KAYNAKLAR • Bellamy RJ, Freedman AR. Bioterrorism. Q J Med 2001;94:227-234. • Kortepeter MG, Parker GW. Potential biological waeapons threats. Emer Infect Dis 1999;5(4):523-527. • Spencer RC, Lightfood NF. Preparedness and Response to Bioterrorism. J Infect 2001;43:104-110. • USAMRIID’s Medical Management of Biological Causalties Handbook.4rd ed. Feb 2001. • Henderson A, Inglesby V, O’Toole T. Bioterrorism Guidelines for Medical and Public Health Management. ASM press 2002. • Prevention of a Biological and Toxin Arms Race and the Responsibility of Scientists. Eds.Geissler E, Haynes RH. Akademie-Verlag Berlin 1991. • Public health response to biological and chemical weapons—WHO guidance(2004). Chapter 3&4, p 38-76. • Erdem H, Pahsa A. Biyolojik Silah Saldırılarına Yönelik Ulusal ve Bölgesel Yaklaşımlar. Infek Derg 2002;16(3) Ek. Uzm.Dr.Selçuk Kılıç RSHMB Salgın Hast. Arş.Md., Parazitoloji Laboratuvarı Kaynak: T.C. SAĞLIK BAKANLIĞI Refik Saydam Hıfzıssıhha Merkezi Başkanlığı ve Temel Sağlık Hizmetleri Genel Müdürlüğü Cilt:4 Sayı:5 Eylül-Ekim 2005 AYLIK EPİDEMİYOLOJİ RAPORU

http://www.biyologlar.com/biyoterorizm-ve-biyolojik-silahlar

1933 Reformu ve Hamdi Suat Aknar Sonrası (Patoloji'de Alman etkisi)

1933 Reformu sırasındaNazi Almanya'sından kaçarak ülkemize gelen Prof. Philip Schwartz (1894-1978) ve Prof. Siegfried Oberndorfer (1876-1944) uzun yıllar patolojik anatomi eğitimi vermişler, pek çok öğrenci ve patolog yetiştirmişlerdir. Prof. Schwartz patolojik anatomi kürsüsünün başına gelerek, öğrenci ve asistan eğitiminde makroskobi, mikroskobi ve otopsi konusunda pratik uygulamaya önem vermiş, Türkiye'de ilk kez klinikopatolojik dersleri 1942'de başlatmış, bugün hala korunan arşiv sistemini yerleştirmiştir. Schwartz'ın yanında yetişen Besim Turhan , Münevver Yenerman , Talia Bali Aykan , Süreyya Tanay , Bedrettin Pars , Kemal Akgüder , İhsan Şükrü Aksel ve Perihan Çambel Türkiye'nin ilk patoloji hocaları ve çeşitli patoloji kürsülerinin kurucuları olmuşlardır. Prof. Oberndorfer İstanbul Üniversitesi Tıp Fakültesi'nde 1937'de kurulan Genel Patoloji ve Deneysel Patoloji kürsüsüne atanmış; Sedat Tavat, Üveis Maskar , Osman Saka , Satı Eser gibi patologların yetişmesinde etkili olmuştur. Oberndorfer ülkemizdeki çalışmaları sırasında nöroendokrin hücreleri ilk kez tanımlamıştır. İstanbul Üniversitesi Tıp Fakültesi'nde bu gelişmeler yaşanırken Hamdi Suat Aknar'ın öğrencilerinden Kamile Şevki Mutlu ve Perihan Çambel patolojinin yaygınlaşması, kurumsallaşması konusunda önemli çalışmalar yapmışlardır. Kamile Şevki Mutlu (1906-1987) ilk kadın tıp profesörümüzdür. Hamdi Suat Aknar'ın ayrılmasından sonra İstanbul Tıp Fakültesi'nde durmamış, Ankara'ya gelerek Numune Hastanesi'ndeki patoloji laboratuarını kurmuştur. Burada 10 yıl süre ile çalışmış (1935-1945), daha sonra Ankara Üniversitesi Tıp Fakültesi açılırken Üniversite'nin gereksinimi nedeniyle Histoloji ve Embriyoloji kürsüsünü kurmuş, Üniversite'nin açılış dersini vermiştir. Perihan Çambel (1909-1987), Hamdi Suat'ın ardından Vakıf Gureba Hastanesinde çalışmış, ABD de kanser üzerine bilimsel araştırmalar yapmıştır. Daha sonra Ankara Numune Hastanesi'nde patolog olarak görev yaparken kanserle ile ilgili deneysel araştırmalarını sürdürmüştür. Kamile Şevki ve Perihan Çambel Hamdi Suat ile sonraki kuşak arasında aracı rol oynamıştır. Ancak Çambel'in Üniversite dışında kalması, Mutlu'nun ise Histoloji-Embriyoloji'ye geçmesi patoloji bakımından ciddi bir kayıp olarak değerlendirilebilir. Alman Hocaların ise Oberndorfer öldükten ve Schwartz başta maddi nedenler olmak üzere çeşitli nedenlerle ülkemizden ayrıldıktan sonra kalıcı izler bırakmamış, bir anlamda patoloji üçüncü kez yeniden doğmak durumunda kalmıştır. Kamile Şevki (1906-3 Ekim 1987) Darülfünun'un ilk kadın mezunlarından biri olarak bitirmiştir. Aynı yıl Hamdi Suat'ın yanında ihtisasa başlamış, ilk makalesini öğrenciliği sırasında yayınlamıştır. 1932'de Hamdi Suat'ın önerisiyle maddi güvence sağlaması için aynı zamanda dermatoloji uzmanlık sınavına girerek diploma almıştır. 1933-1935 yılları arasında Berlin Üniversitesi Patoloji Bölümünde Prof. Rössie'nin yanında çalışmış, yurda döndüğünde sınava girerek uzman olmuştur. Türkiye'nin ilk kadın patoloji uzmanı olarak İstanbul Üniversitesi'ne atanmış ancak Hamdi Suat buradan ayrılmış olduğundan Üniversite'de kalmamış, Ankara Numune Hastanesi Anatomik Patoloji uzmanlığına tayin olmuştur. Kamile Şevki'nin atama kararında Cumhurbaşkanı Atatürk'ün de imzası vardır. 1945'te Ankara Üniversitesi kurulana kadar Numune Hastanesi'nde çalışmıştır. Tıp Fakültesi'nin kuruluşunda Histoloji'de gereksinim olduğu için Embriyoloji kürsüsünü kurmak üzere atanmışsa da 1.6.1952'ye kadar vekaleten Numune Hastanesi'ndeki görevini sürdürmüştür. Yurtiçi ve yurtdışında çok sayıda çalışmaya katılmış, ülkemizde ilk elektron mikroskobunu kurarak hücrenin inceyapısı üzerinde araştırmalar yapmıştır. Atatürk'ün naaşının Etnografya Müzesi'nden Anıt-kabir taşınması sırasında gözlemci olarak bulunmuştur. İstanbul Üniversitesi Tıp Fakültesi ile Gülhane Askeri Tıp Akademisi'nden yetişen patologlar, Türkiye'nin ilk patoloji hocaları ve patoloji kürsülerinin kurucuları olmuşlardır. 1945'e kadar ülkemizdeki patologlar bu iki kaynaktan yetişmiştir. Kaynak:www.turkpath.org.tr

http://www.biyologlar.com/1933-reformu-ve-hamdi-suat-aknar-sonrasi-patolojide-alman-etkisi

Türkiye ve Dünyadaki Herbaryumlar ve Kodları

Türkiye ve Dünyadaki Herbaryumlar ve Kodları

- Ankara Üniversitesi Fen - Edebiyat Fak. Herbaryumu: ANK - İstanbul Üniversitesi Eczacılık Fak. Herbaryumu : ISTE - Ege Üniversitesi Fen Fak. Herbaryumu : EGE - İstanbul Üniversitesi Fen Fak. Herbaryumu: ISTF - İstanbul Üniversitesi Orman Fak. Herbaryumu: ISTO - Gazi Üniversitesi Fen Fak. Herbaryumu: GAZI Dünya da ki Önemli Herbaryumlar - Kew Herbaryumu: Londra da bulunur (en çok örneğe sahip (İngiltere)): K - Edinburg Herbaryumu(İskoçya): E - Berlin Herbaryumu (Almanya): B - Leningrad Herbaryumu: Sentpetersburg da bulunur(Rusya): LE - Paris herbaryumu(Fransa): P - Cenevre herbaryumu (İsviçre): G - Genova herbaryumu(İtalya): GE

http://www.biyologlar.com/turkiye-ve-dunyadaki-herbaryumlar-ve-kodlari

Why some neurons 'outsource' their cell body

Why some neurons 'outsource' their cell body

Nerve cells come in very different shapes. Researchers at the Bernstein Center Berlin now reveal why, in insects, the cell body is usually located at the end of a separate extension. Using mathematical models, they show that this increases the strength of electrical signal transmission at no additional energetic cost. Nerve cells follow a functional design: They receive input signals over more or less ramified cell branches (dendrites), which they forward to other nerve cells along an elongated, thin cell process (axon). The cell body contains the nucleus with genetic material and other components of the machinery that keeps the neuron alive. Its location differs significantly between animal classes: in mammals, the cell body is usually found at a central position between the dendrites and the axon, while in insects, it is often "outsourced" to the end of a separate prolongation. "Since the description of nerve cells by Santiago Ramón y Cajal, there have been many speculations about the reasons for these different morphologies," says first author Janina Hesse at the Bernstein Center Berlin and the Humboldt University of Berlin. "Our study now points to a crucial cause: the reduction of signal loss and energy required during the transmission of electrical signals within the nerve cell." To support their hypothesis, the biologists applied mathematical models to determine the benefits of the remote location of the cell body. The computer models included the essential components of a nerve cell in a simplified form. In the models, the cell body was located either in a central or in an externalized position. This way, the researchers could simulate the electrical signal transmission in both conditions and estimate the required energy and conduction losses. "In order to transmit a signal to another cell, a neuron requires a certain signal strength in the axon. When the signal has to pass a central soma before it reaches the axon, the membrane leak diminishes the signal. This signal loss can be countered by active boosting, which is energetically costly for large cell bodies. A better solution may be an externalization of the cell body," senior author Susanne Schreiber explains. Hence, for organisms with large cell bodies, it is best not to make the signal pass across the cell body, but to transmit it straight from the dendrite to the axon. Insects take this direct route by relocating the neural cell bodies to the end of a thin prolongation. This advantageous shape allows the neurons to efficiently transmit even small input signals to neighboring cells. With their results, the Berlin researchers have shed light on a mystery neuroscientists have pondered since the first detailed morphological studies over 100 years ago. Their study has been published in the current issue of the journal Current Biology. Source: Bernstein Coordination Site (BCOS) http://www.biologynews.net

http://www.biyologlar.com/why-some-neurons-outsource-their-cell-body

Hacking the programs of cancer stem cells

Hacking the programs of cancer stem cells

All tumor cells are the offspring of a single, aberrant cell, but they are not all alike. Only a few retain the capacity of the original cell to create an entire tumor.

http://www.biyologlar.com/hacking-the-programs-of-cancer-stem-cells

Türkiye Zootekni Bölümlerinde Hayvan Davranışları Bilimi

Hayvan davranışları bilimi bakımından Türkiye’de son yıllarda sevindirici gelişmeler yaşanmaktadır. Lisans ve lisansüstü ders olarak hayvan davranışları, zootekni bölümü olan neredeyse tüm üniversitelerde okutulmaya başlanmıştır. Genellikle lisansta zorunlu ders olarak genel hayvan davranışları verilmekte, lisansüstünde ise seçmeli ders olarak türlere özgü davranış dersleri yer almaktadır. Ülkemizde davranış derslerinin türlere özgünleşmesi ilginçtir. Zira ülkemize kıyasla hayvan davranışları biliminin çok daha eski bir geçmişi olmasına rağmen batı ülkelerinde türlere ilişkin ayrı derslere neredeyse rastlanmamaktadır. Zootekni öğretiminin yapılanması ve bu konudaki ulusal alışkanlıklarımız ile ilişkilendirilebilecek bu oluşum aynı zamanda ülkemizde temel davranış çalışmalarına olan ilginin yetersizliğini de açıklamaktadır. Ülkemiz zootekni bölümlerinde hayvan davranışları konusunda yapılan ve Science Citation Index tarafından değerlendirmeye alınan dergilerde yayınlanan çalışmalara bakıldığında ilk yayının 1999 tarihli olduğu görülmektedir (Çam ve ark., 1999). Aynı yazarların daha sonraları davranış konularında yayınlarına rastlanmamaktadır. Bu çalışmayı, güncel değerlendirme makalesinin yazar(lar)ının da içerisinde bulunduğu 2001, 2002 ve 2003 tarihli üç araştırma makalesi izlemektedir (Savaş ve ark, 2001; Yurtman ve ark., 2002; Karaağaç ve ark., 2003). Kasım 2007 tarihi itibarıyla SCI tarafından taranan dergilerde hayvan davranışları konusunda yayınlanan Türkiye adresli toplam makale sayısı 21’dir. Makale sayıları bakımdan, Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Zootekni Bölümü (Savaş ve ark., 2001; Yurtman ve ark., 2002; Uğur ve ark., 2004; Savaş ve ark., 2007; Tölü ve Savaş, 2007; Atasoglu ve ark., 2007), Mustafa Kemal Üniversitesi Ziraat Fakültesi Zootekni Bölümü (Keskin ve ark., 2004; Keskin ve ark., 2005; Tapkı ve Şahin, 2006, Tapkı ve ark., 2006) ve Atatürk Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nden (Yanar ve ark., 2006; Metin ve ark., 2006; Güler ve ark., 2006) araştırma gruplarının çalışmaları dikkat çekmektedir. Anılan çalışmaların yarıya yakın bir bölümü pür uygulamalı etolojik çalışmalar olarak değerlendirilebilirler. Diğer çalışmalarda ise davranış özellikleri daha ziyade ikincil, yada destekleyici biyolojik göstergeler olarak kullanılmışlardır. Söz konusu çalışmalar türler bazında incelendiğinde küçükbaş hayvanların ağırlıklı olduğu, bunları sığırların izlediği gözlenmektedir. Türkiye adresli ve SCI indeksli yayınlar içerisinde kanatlı türlerde, biri yumurtacı tavuk diğeri güvercin özdekli olan yalnızca iki çalışmaya rastlanmıştır (Karaağaç ve ark., 2003; Savaş ve ark., 2007). Bununla birlikte, ulusal dergilerde yayınlanmış olan bazı araştırma makaleleri ile (Savaş ve Şamlı, 2000) yine bu konuda yürütülen tez çalışmalarına (Köse, 2004) da ulaşmanın mümkün olabileceği düşünülmektedir. Her ne kadar TÜBİTAK ULAKBİM bu konuda önemli adımlar atmış olsa da, ne yazık ki, ulusal paylaşım ağımızın yetersizliği nedeni ile çalışmalara ulaşmak son derece güç olabilmektedir. Bu nedenlerle değerlendirmede sadece uluslararası paylaşım kolaylığına sahip süreli yayınlar dikkate alınmıştır. Bilim insanlarının çalışma alanlarının belirlenmesinde ulusal nitelikli bilimsel toplantılar iyi birer araçtır. Zira bilimsel projeler, proje başladıktan çok kısa sonrasında bu tip toplantılarda sunulurlar. Halbuki bu çalışmaların makaleye dönüşmesi çok daha uzun bir süre alabilir. Bu bağlamda hayvan davranışları bilim alanındaki çalışmaların gelişimini takip etmek açısından Ulusal Zootekni Bilim Kongrelerinde sunulan bildiriler iyi birer araç olabileceği düşünülmüş ve 2000 yılından sonra yapılan üç Ulusal Zootekni Bilim Kongresi (2002 Ankara, 2004 Isparta ve 2007 Van) incelenmiştir. Ankara Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nce organize edilen III. Ulusal Zootekni Kongresi’ne toplam 167 bildiri sunulmuş olup, Hayvansal Üretim bunlardan biri küçükbaş diğeri balarısı özdeğinde olmak üzere, yalnızca iki tanesinin hayvan davranışları konusunu içerdiği gözlenmiştir. Süleyman Demirel Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nün gerçekleştirdiği IV. Ulusal Zootekni Kongresi’nde ise toplam bildiri sayısı 174, hayvan davranışları konulu bildiri sayısı 13 e ulaşmıştır. Son yapılan Van Kongre’si değerlendirildiğinde, bir önceki kongreye göre %13,2’lik bir artışla (Ankara ile Isparta arasındaki toplam bildiri sayısı artışı %4,2) toplam bildiri sayısının 197, hayvan davranışlarını konu alan bildiri sayısının ise 17 olduğu görülmektedir. Kongrelere göre hayvan davranışlarını konu edinen bildiri sayısının toplam bildiri sayısına oranı sırasıyla %1,2, %7,5 ve %8,6’dır. Bu gelişme hayvan davranışları bilim dalı bakımından sevindiricidir. Zootekni, veteriner hekimlik ve biyoloji öğrencileri için önemli bir Türkçe kaynak durumunda olan ve Ege Üniversitesi Ziraat Fakültesi Zootekni Bölümü öğretim üyesi Prof. Dr. Erdinç Demirören tarafından kaleme alınan “Hayvan Davranışları” kitabı da, bu konuda bir ilk olması nedeniyle anılmadan geçilemez (Demirören, 2007). Ancak bir tek kitabın bilim dalı için yeterli olmadığı, hayvan davranışları alanında Türkçe kaynak sıkıntısı çekildiği de bir gerçektir. Sonuç Hayvan davranışları bilimi, hayvanların çevresel düzenlemelerinde yararlı bir araç olarak görülmektedir. Bu yararlanma, çevrenin hayvanın davranışlarına göre şekillendirilmesi yanında davranış bakımından mevcut çevre koşullarına uyum sağlayabilecek hayvanların ıslah edilmesi şeklinde iki yönlüdür. Sözkonusu bilim dalından yararlanmanın anılan her iki yönünün de birlikte ele alınması ön koşuldur. Zira hayvan bilimi içerisinde bu güne değin yapılan çalışmalar göstermiştir ki, ne tek başına çevreyi ne de tek başına hayvanın genetik yapısını “yetiştiricinin arzuları doğrultusunda” optimize etmek mümkün olmuştur. Dolayısıyla optimizasyon bütüncül bir yaklaşımı gerektirir. Bu bilim dalından üretilecek bilgi hayvanların yaşamlarını daha sağlıklı sürdürmelerini, üremelerini ve üretmelerini sağlayacaktır. Bunların ötesinde hayvanlarla ilgili hukuki düzenlemelerde de bu bilim dalının vazgeçilmez katkısı bulunmaktadır. Hayvan refahının gözetilmesi anlamında Hayvanları Koruma Kanunu’nda hayvan davranışları bilim dalına doğrudan atıfta bulunulmaktadır (Kanun No: 5199; Madde 3, 5, 8 ve10). Ancak çevresel düzenlemeleri insan kontrolünde olan hayvanların davranışlarının yalnızca uygulamaya dönük olarak ele alınması, hayvan davranışları bilim dalının gelişmesini olumsuz olarak etkiler. Bilim dalının sağlıklı olarak gelişmesi için, yetiştirme olgusu altında hayvanların davranışlarına yönelik temel çalışmalara da gereksinim vardır. İlgili davranışların ortaya çıkışında etkili mekanizmaların aydınlatılabilmesi için fizyolojiden genetiğe, gelişme biyolojisinden patolojiye kadar davranışa temel oluşturan alanların kapsamı içerisinde çalışmak kaçınılmaz gözükmektedir. Söz konusu yaklaşım tarzı aynı zamanda bu konuda yetişecek genç bilim insanlarının temel etolojiyi ve ilgili alt dallarını iyi öğrenmelerini de sağlayacak niteliktedir. Zootekni açısından hayvan davranışları bilim dalının Türkiye’de son yıllarda sergilediği gelişimin niteliği sevindirici ve umut vericidir. Ancak ve ne yazık ki, zootekni bilim camiası içerisinde yapılan sohbetlerden takip edilen bir şekilde, özellikle davranışın sayısallaştırılması ve akabinde istatistiksel değerlendirilmesi konusunda bilimcilerimizin sorunlar yaşadıkları, kimi zaman bu güçlüklerin araştırmacıları söz konusu alandan vazgeçmenin eşiğine getirdiği izlenimi, çalışmaların sürekliliği açısından endişe yaratmaktadır. Öncelikle belirtmek gerekir ki tüm Dünya’da bu konuda çalışmalar yetersizdir. Bu durum söz konusu alanda bilimsel çalışma yapmaktan vazgeçmeyi değil ilgili sorunların üzerine gitmeyi ve araştırma yapmayı gerektirir. Nitekim hayvan davranışları bilimi alanında yöntem konusunda da çalışmalara gereksinim vardır. Kaynaklar Ataşoğlu, C., Yurtman, İ. Y., Savaş, T., Gültepe, M., Özcan, O. 2008. Effect of weaning on behavior and serum parameters in dairy goat kids. Animal Science Journal 79(4): 435-442. Bessei, W. 1983. Die Bedeutung der Lorenzschen Instinktlehre in der Diskussion um eine verhaltensgerechte Unterbringung von Legehennen. Züchtungskunde 55: 222-232. Çam, M., Kuran, M., Selçuk, E. 1999. Effects of time spent near mothers postpartum on the behaviour of ewes and lambs and on the growth performance of lambs in Karayaka sheep. Turk. J. Vet. Anim. Sci. 23: 335-342. Darwin, C. 1990. Türlerin kökeni. (Çev. Öner Ünalan) Onur Yayınları, Şahin Matbaası, Ankara, ss 392. Dietl, G., Nürnberg, G., Reinsch, N. 2006. A note on a quantitative genetic approach for modeling of differentiation tasks. Appl. Anim. Behav. Sci. 100: 319–326. Demirören, E. 2007. Hayvan davranışları. II. Baskı. Ege Üniversitesi Ziraat Fakül. yayınları No:547, İzmir. Hayvansal Üretim 49(2), 2008 Hayvan Davranış Bilimi ve Zootekni: Tanım ve İzlem 41 Güler, O., Yanar, M., Bayram, B., Metin, J. 2006. Performance and health of dairy calves fed limited amounts of acidified milk replacer. S. African J. Anim. Sci. 36: 149-154 Immelmann, K., Ekkehard, P., Sossinka, R. 1996. Einführung in die Verhaltensforschung. Blackwell Wissenschafts-Verlag Berlin, Wien, pp 287. Karaağaç, F., Özcan, M., Savaş, T. 2003. Verlauf von aggressivem Picken und einigen Verhaltensmerkmalen in rangordnungsinstabilen Käfiggruppen bei Legehennen. Arch. Tierz. 46: 391-396 Keskin, M., Şahin, A., Biçer, O., Gül, S. 2004. Comparison of the behaviour of Awassi lambs in cafetaria feeding system with single diet feeding system. Appl. Anim. Behav. Sci. 85: 57-64. Keskin, M., Şahin, A., Biçer, O., Gül, S., Kaya, S., Sarı, A., Duru, M. 2005. Feeding behaviour of Awassi sheep and Shami (Damascus) goats. Tr. J. Vet. Anim. Sci. 29: 435-439. Köse, K.,2004. Devriye köpeği amaçlı kullanılan alman çoban köpeği ile Belçika çoban köpeği (Malinois) ırkı köpeklerin eğitim sürelerini etkileyen faktörler. Yüksek Lisans Tezi. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Çanakkale, 56 s. Lorenz K. 1982 Vergleichende Verhaltensforschung. Grundlagen der Ethologie DTV Wissenschaft: München, pp 399. Lund, V., Coleman, G., Gunnarsson, S., Appleby, M. C., Karkinen, K. 2006. Animal welfare science—Working at the interface between the natural and social sciences. Appl. Anim. Behav. Sci. 97: 37-49. Metin, J., Yanar, M., Güler, O., Bayram, B., Tüzemen, N. 2006. Growth, health and behavioural traits of dairy calves fed acidified whole milk. Indian Vet. J. 83: 976-979 Millman, S.T., Duncan, I.J.H., Stauffacher, M., Stookey, J. M. 2004. The impact of applied ethologists and the international society for applied ethology in improving animal welfare. Appl. Anim. Behav. Sci. 86: 299-311. Mormede, P. 2005. Molecular genetics of behaviour: research strategies and perspectives for animal production. Livestock Production Science 93: 15–21 Sambraus, H.H. 1998. Applied ethology-it’s task and limits in veterinary practice. Appl. Anim. Behav. Sci. 59: 39-48. Sambraus, H.H. 2002. Aufgaben der Angewandten Ethologie bei Landwirtschaftlichen Nutztieren früher und heute. Gumpensteiner Tagung “Nutztierhaltung im Wandel der Zeit”, Bundesanstalt für alpenländische Landwirtschaft, Gumpenstein, A-8952 Irdning: 17-20. Sandilands, V. 2004. David Wood-Gush, the biography of an ethology mentor. Appl. Anim. Behav. Sci. 87: 173-176. Savaş, T., Şamlı, E. 2000. Tavuklarda agresyon ile sosyal hiyerarşinin yumurta verimi ve bazı davranış özelliklerine etkisi. Tarım Bilimleri Dergisi 6: 11-15. Savaş, T., Yurtman, I.Y., Karaağaç, F., Köycü, E. 2001. Einfluss der intensiven Gruppenhaltung und Geschlecht auf Oral-Stereotypien und einige Verhaltensmerkmale bei Mastlämmern. Arch. Tierz. 44: 313-322 Savaş, T., Konyalı, C., Daş, G., Yurtman, İ.Y. 2007. Effect of beak length on feed intake in pigeons (Columba livia f. domestica). Animal Welfare 16: 79-86. Smidt, D., Schlichting, M.C., Ladewig, J., Steinhardt, M. 1995. Ethologische und verhaltensphysiologische Forschung für tiergerechte Nutztierhaltung. Arch. Tierz. 38: 7-19. Steiger, A. 1993. Schlussbetrachtung zur 25. Freiburger Tagung und kritische Gedanken zur Stellung der angewandten Ethologie. Aktuelle Arbeiten zur artgemäßen Tierhaltung, Vorträge anlässlich der 25. Internationalen Arbeitstagung Angewandte Ethologie bei Nutztieren der Deutschen Veterinärmedizinischen Gesellschaft e.V. KTBL-Schriften-Vertrieb im Landwirtschaftsverlag GmbH, Münster-Hiltrup: 274-284 Tapkı, İ, Şahin, A. 2006. Comparison of the thermoregulatory behaviours of low and high producing dairy cows in hot environment. Appl. Anim. Behav. Sci. 99: 1-11. Tapkı, İ., Şahin, A., Önal, A.G. 2006. Effect of space allowance on behaviour of newborn milk-fed dairy calves. Appl. Anim. Behav. Sci. 99: 12-20. Tembrock, G. 1992. Verhaltensbiologie. 2. Auflage. Gustav Fischer Verlag, Jena, pp 386. Tinbergen, N. 1979. Tiere und ihr Verhalten. (Überstz. Hans-Heinrich Wellmann und Wolfgang Vilwock) Rowohlt Taschenbuch Verlag GmbH, Reinbek bei Hamburg, pp 191. Todes, D. 2003. İvan Pavlov: Hayvan makinesini araştırırken. (Çev. Ebru Kılıç), TÜBİTAK Popüler Bilim Kitapları, Ankara, ss. 118. Tölü, C., Savaş, T. 2007. A brief report on intra-species aggressive biting in a goat herd. Appl. Anim. Behav. Sci. 102: 124-129. Uğur, F., Savas, T., Dosay, M., Karabayır, A., Atasoglu, C. 2004. Growth and behavioral traits of Turkish Saanen kids weaned at 45 and 60 days. Small Ruminant Research 52: 179-184. Hayvansal Üretim

http://www.biyologlar.com/turkiye-zootekni-bolumlerinde-hayvan-davranislari-bilimi

Bilimin doğuşunu ve fizik kimya biyoloji matematik olarak temel biirmler haline dönüşmesini tarihsel boyutta açıklayınız

Ortaçağ sonlarında özellikle İtalya'da, zamanın siyasal istemleri teknolojiye yeni bir önem kazandırdı. Böylece askeri ve sivil mühendislik mesleği doğdu. Leonardo da Vinci bu mühendislerin en ünlüsüydü. Dahi bir ressam olarak insan anatomisini yakından inceledi ve resimlerine gerçeğe çok benzeyen biçimler aktardı. Bir heykelci olarak, zor metal döküm tekniklerini başardı. Sahne yapıtlarının yapımcı ve yönetmeni olarak, özel efektler sağlamak amacıyla karmaşık makineler geliştirdi. Askeri mühendis olarak bir kentin surlarından aşırılan havan topu mermisinin yörüngesini gözleyerek bu yörüngenin Aristoteles'in öne sürdüğü gibi iki doğrudan (eğimli bir çıkış ve ardından düşey düşüş) oluşmadığını belirledi. Leonardo ve arkadaşları doğayı gerçekten bilmek istiyorlardı. Gerçek deneyimin yerini hiçbir kitap tutamazdı ve hiçbir kitap olgular üzerinde egemenlik kuramazdı. Gerçi antik felsefenin nüfuzu kolayca kırılamayacak kadar sağlamdı, ama sağlıklı bir kuşkuculuk da gelişmeye başlamıştı. Eski otoritelerin gördüğü geleneksel kabule inen ilk önemli darbe, 15. yüzyıl sonunda Yenidünya'nın bulunuşu oldu. Büyük astronom ve coğrafyacı Ptolemaios, Avrupa, Afrika ve Asya olarak yalnızca üç kıtanın var olduğunu öne sürmüştü. Aziz Augusti-nus ve Hıristiyan bilginleri de bu görüşü benimsemişlerdi. Yoksa dünyanın öteki tarafındaki insanların baş aşağı yürümeleri gerekirdi. Yenidünya'nın bulunuşu, matematik çalışmalarını da hızlandırdı. Zenginlik ve ün arayışı denizciliğin gerçek bir bilime dönüşmesine yol açtı. Rönesans'ta canlanan düşünsel etkinlikler, antik bilgilerin tümüyle gözden geçirilmesine olanak sağladı. Ortaçağ düşüncesinin temelini oluşturan Aristoteles'in yapıtlarına Platon'un ve Galenos'un yapıtlarının çevirileri ve daha da önemlisi Arkhimedes'in, kuramsal fiziğin geleneksel felsefenin dışında nasıl oluşturulabileceğini gösteren yapıtları eklendi. Rönesans biliminin yönünü belirleyen antik yapıtların başında, Musa'nın çağdaşı olduğu kabul edilen efsanevi rahip, peygamber ve bilge Hermes Trismegistos'a dayandırılan Hermetika gelir. Hermetika yaratılış konusunda insana geleneksel metinlere göre çok daha önemli bir rol veriyordu. Tann insanı kendi suretinde yaratmıştı. Bir yaratıcı olarak ve yaratma sürecinde insan Tann'yı taklit ediyordu. Bunun için de doğanın gizlerini bilmek zorundaydı. Yakma, damıtma ve öbür simya işlemleriyle doğa işkenceden geçirilerek gizleri elde ediliyordu. Başarının ödülü, sıkıntı ve hastalıklardan kurtuluşun yanı sıra sonsuz yaşam ve gençlik olacaktı. Bu düşünce, insanın bilim ve teknoloji aracılığıyla doğaya boyun eğdirebileceği görüşüne yol açtı. Modern bilime temel oluşturan bu görüşün yalnızca Batı'da egemen olduğunu vurgulamak yerinde olur. Doğadan yararlanma konusunda yüzyıllarca geride bulunan Batı'nın Doğu'yu geçmesinde bu yaklaşımın önemli rolü olsa gerektir. Hermetika, aydınlanma ve ışık kaynağı olan Güneş üzerine coşkulu bölümler içerir. Hem Platon'un, hem de Hermetika'mn çevirmeni Floransalı Marsilio Ficino, 15. yüzyılda Güneş üzerine yazdığı incelemede adeta putperestçe hayranlığa varan bir üslup kullanmıştı. 16. yüzyılın başlarında bir Polonyalı öğrenci, İtalya'daki gezisi sırasında bu düşüncelerden etkilendi. Ülkesine döndükten sonra Ptolemaios'un astronomi sistemi üzerinde çalışmaya başladı. Görevli bulunduğu kilisenin yardımıyla, kilisenin gereksinim duyduğu Paskalya ve öteki yortuların tam günlerinin saptanması gibi önemli hesapların yapılmasında kullanılan astronomi gözlem aygıtlarını geliştirmeye koyuldu. Bu genç öğrencinin adı Mikoiaj Kopernik'tir. Fiziğin doğuşu: Yaklaşık yarım milyon yıl önce ilk insanlar, elde yapılmış yalın araçlar kullanıyor ve ateşi biliyorlardı. Bundan 20 000 yıl önce yaşayan Taş devri insanı, mağara duvarlarına resimler yapabiliyor, ok ve yay kullanabiliyordu (günümüzde bile, hâlâ Taş devri teknolojisiyle yaşamını sürdüren topluluklara Taşlanmaktadır). Günümüzden 10 000 yıl önce insanlar, toprağı işlemeye başlamışlardı. Bilimin ilk temel işaretleri ise, bundan 5 000 yıl Önce Babil'de ortaya çıkmaya başladı. Ancak Ortaçağ teknolojisi. Roma teknolojisinden pek farklı değildi; hattâ Romalıların su sistemleri daha iyiydi. Günümüzdeki anlamıyla bilim, XVII. yüzyılda ortaya çıktı. XVIII. ve XIX. yüzyıllarda endüstri devrimi gerçekleştirildi. XX. yüzyılda ise fizik, günlük yaşamda büyük bir yer tutmaya başladı. Günümüzde, bu bilim dalına dayanmayan bir yaşam düşünülemez. Klasik fiziğin temelleri, XVII. yüzyılda, GALİLEİ, KEPLER, BÖYLE, NEWTON, HOOKE, HUYGENS, GUERİCKE, TORRİCELLİ gibi bilginler tarafından atıldı. Günümüzdeki uygarlık düzeyi varlığını, bu temellere borçludur. XVII. yüzyılda, aynı zamanda, felsefe ile fiziğin birbirinden ayrılması da gerçekleşti. XVIII. yüzyıldan önce fiziğe, «doğal felsefe Bilimsel yöntem: Bilimsel yöntem, gerçeğin ortaya çıkarılmasını sağlayan «yanılmaz Neden-sonuç ilişkisi, çağımızda çok açık görünmesine karşılık, her zaman kabul edilmemiştir. Eskiden doğal olayların açıklanması, tanrıya bağlanmaktaydı. Günümüzde fizik, anlayış düzeyimizi biraz daha derine götürmeye ve olayların altında yatan gerçek nedenleri ortaya çıkarmaya çalışmaktadır. Çevrelerindeki olayları kaydeden ilk insanlar İ.Ö. 3000 yıllarında yaşayan Babillilerdi (Mezopotamya). Yazıyı bilen bu insanlar, gökcisimlerinin hareketlerini kataloglara geçirdiler. Aynı dönemde Kuzeybatı Avrupa'da yaşayanlar ise, yazıyı bilmemelerine karşılık, taşları kullanarak, gökcisimlerinin hareketlerini toprak üstünde belirtmeye çalıştılar. Babillilerin ve eski Mısırlıların tuttuğu kayıtlar, Yunanlıların eline geçti. Yunanlılar bunları yeniden düzenleme çabalarına girişti. Mekanik ve statikte bazı ilkol kavramlar (ARKHİMEDES'in banyo deneyi ve kaldıraç yasaları gibi) ortaya kondu. Yunanlıların en büyük katkısı, fiziğin gelişmesinde önemli payı bulunan bazı MATEMATİK ilkelerini bulmalarıdır. İ.S. III. yüzyılda Diophantos bazı fizik temellerini ortaya koymuştur, ama fiziğin bugünkü dayanağını oluşturan cebir daha sonra geliştirilmiştir. Bilimin geliştirilmesi, Yunanlılardan sonra Araplar tarafından yürütüldü. Bazı yeni buluşlar, sözgelimi İbni Heysem'in OPTİK konusuna ve matematik simgelere ilişkin düşünceleri, önceleri İtalya, daha sonra da Kuzey Avrupa'da ortaya çıkan bilimsel anlayışın ilk kıvılcımı oldu. Matematiğin Tarihi Gelişimi Ortaçağ İslâm Dünyası'nda başta aritmetik olmak üzere, matematiğin geometri, cebir ve trigonometri gibi dallarına önemli katkılarda bulunan matematikçiler yetişmiştir. Ancak bu dönemde gerçekleşen gelişmelerden en önemlisi, geleneksel Ebced Rakamları'nın yerine Hintlilerden öğrenilen Hint Rakamları'nın kullanılmaya başlanmasıdır. Konumsal Hint rakamları, 8. yüzyılda İslâm Dünyası'na girmiş ve hesaplama işlemini kolaylaştırdığı için matematik alanında büyük bir atılımın gerçekleştirilmesine neden olmuştur. Daha önce Arap alfabesinin harflerinden oluşan harf rakam sistemi kullanılıyordu ve bu sistemde sayılar, sabit değerler alan harflerle gösteriliyordu. Örneğin için a harfi, 10 için y harfi ve 100 içinse k harfi kullanılıyordu ve dolayısıyla sistem konumsal değildi. Böyle bir rakam sistemi ile işlem yapmak son derece güçtü. Erken tarihlerden itibaren ticaretle uğraşanların ve aritmetikçilerin kullanmaya başladıkları Hint Rakamları'nın üstünlüğü derhal farkedilmiş ve yaygın biçimde kabul görmüştü. Bu rakamlar daha sonra Batı'ya geçerek Roma Rakamları'nın yerini alacaktır. Cebir bilimi İslâm Dünyası matematikçilerinin elinde bağımsız bir disiplin kimliği kazanmış ve özellikle Hârizmî, Ebu Kâmil, Kerecî ve Ömer el-Hayyâm gibi matematikçilerin yazmış oldukları yapıtlar, Batı'yı büyük ölçüde etkilemiştir. İslâm Dünyası'nda büyük ilgi gören ve geliştirilen bilimlerden birisi olan astronomi alanındaki araştırmalara yardımcı olmak üzere trigonometri alanında da seçkin çalışmalar yapılmıştır. Bu konudaki en önemli katkı, açı hesaplarında kirişler yerine sinüs, kosinüs, tanjant ve kotanjant gibi trigonometrik fonksiyonların kullanılmış olmasıdır. Yeniçağ Bu dönem diğer alanlarda olduğu gibi matematik alanında da yeniden bir uyanışın gerçekleştiği ve özellikle trigonometri ve cebir alanlarında önemli çalışmaların yapıldığı bir dönemdir. Trigonometri, Regiomontanus, daha sonra da Rhaeticus ve Bartholomaeus Pitiscus`un çabalarıyla ve cebir ise Scipione del Ferro, Nicola Tartaglia, Geronimo Cardano ve Lodovice Ferrari tarafından yeniden hayata döndürülmüştür. Yapılan çalışmalar sonucunda geliştirilen işlem simgeleri, şu anda bizim kullandıklarımıza benzer denklemlerin ortaya çıkmasına olanak vermiş ve böylelikle, denklem kuramı biçimlenmeye başlamıştır. Rönesans matematiği özellikle Raffaello Bombelli, François Viète ve Simon Stevin ile doruk noktasına ulaşmıştır. 1585 yılında, Stevin, aşağı yukarı Takîyüddîn ile aynı anda ondalık kesirleri kullanmıştır. Bu dönemde çağdaş matematiğin temelleri atılmış ve Pierre de Fermat sayılar kuramını, Pascal olasılık kuramını, Leibniz ve Newton ise diferansiyel ve integral hesabı kurmuşlardır. Yakınçağ Bu dönemde Euler ve Lagrange, integral ve diferansiyel hesabına ilişkin 17. yüzyılda başlayan çalışmaları sürdürmüş ve bu çalışmaların gök mekaniğine uygulanması sonucunda fizik ve astronomi alanlarında büyük bir atılım gerçekleştirilmiştir. Mesela Lagrange, Üç Cisim Problemi'nin ilk özel çözümlerini vermiştir. Bu dönemde matematiğe daha sağlam bir temel oluşturmaya yönelik felsefi ağırlıklı çalışmalar genişleyerek devam etmiştir. Russell, Poincaré, Hilbert ve Brouwer gibi matematikçiler, bu konudaki görüşleriyle katkıda bulunmuşlardır. Russell, matematik ile mantığın özdeş olduğunu kanıtlamaya çalışmıştır. Matematiğin, sayı gibi kavramlarını, toplama ve çıkarma gibi işlemlerini, küme, değilleme, veya, ise gibi mantık terimleriyle ve matematiği ise "p ise q" biçimindeki önermeler kümesiyle tanımlamıştır. Hilbert'e göre ise, matematik soyut nesneleri konu alan simgesel bir sistemdir; mantığa indirgenerek değil, simgesel aksiyomatik bir yapıya dönüştürülerek temellendirilmelidir. Sezgici olan Brouwer de matematiğin temeline, kavramlara somut içerik sağlayan sezgiyi koyar; çünkü matematik bir teori olmaktan çok zihinsel bir faaliyettir. Poincaré'ye göre de matematiğin temelinde sezgi vardır ve matematik kavramlarının tanımlanmaya elverişli olması gerekir. Yine bu dönemin en orijinal matematikçileri olarak Dedekind ve Cantor sayılabilir. Dedekind, erken tarihlerden itibaren irrasyonel sayılarla ilgilenmeye başlamış, rasyonel sayılar alanının sürekli reel sayılar biçimine genişletilebileceğini görmüştür. Cantor ise, bugünkü kümeler kuramının kurucusudur. Kimya'nın Tarihsel Gelişimi Kimya sözcüğünün ( Eski Mısır dilinde "kara" ya da "Kara Ülke" ) sözcüğünden türediği sanılmaktadır Bir başka sav da khemeia (Eski Yunanca khyma: "¤¤¤¤l dökümü) sözcüğünden türediğidir Kimyanın kökenleri felsefe, simya, ¤¤¤¤lürji ve tıp gibi çok çeşitli alanlara dayanır Ama kimya ancak 17 yüzyılda mekanikçi felsefenin kurulmasıyla ayrı bir bilim olarak ortaya çıkmıştır Mezopotamyalılar, Çinliler, Mısırlılar ve Yunanlılar çok eski çağlardan beri bitkilerden boyarmadde elde etmeyi, dokumaları boyamayı, deri sepilemeyi, üzümden şarap, arpadan bira hazırlamayı, sabun üretimini, cam kaplar yapmayı biliyorlardı Eski çağlarda kimya sanatsal bir üretimdi Daha sonra Antik Çağın deneyciliği, Yunan doğa felsefesi, Rönesans simyası, tıp kimyası gelişti 18 yüzyılda kuramsal ve uygulamalı kimya, 19 yüzyılda organoteknik ve fizikokimya, 20 yüzyılda ise radyokimya, biyokimya ve kuvantum kimyası gibi yeni dallar ortaya çıktı Ünlü kimya tarihçisi Hermann Kopp, İS 300- 1600 arasını, soy (asal) olmayan ¤¤¤¤lleri soy ¤¤¤¤llere dönüştürecek filozof taşının ve insan ömrünü sonsuzlaştıracak yaşam iksirinin arandığı simya çağı; 1600- 1700 arasını ilaçların hazırlandığı iyatrokimya (tıp kimyası) çağı; 1700- 1800 arasını, yanma sürecinin araştırıldığı filojiston kimyası çağı; bundan sonraki dönemi ise nicel kimya çağı olarak adlandırmıştır 16- 18 yüzyıllar arasındaki dönem yeniçağ kimyası olarak da tanımlanır Kimyanın kökeninin, yaklaşık olarak Hıristiyanlık çağının başlarında Mısır'ın İskenderiye kentinde biçimlenmeye başladığı kabul edilir Eski Mısır'ın ¤¤¤¤lürji, boya ve cam yapımı gibi üretim zanaatları ile eski Yunan felsefesi İskenderiye'de bir araya gelerek kaynaşmış ve İS 400'lerde uygulamalı kimya bilgisi gelişmeye başlamıştır Justus von Liebig'e göre simyacılar önemli aygıt ve yöntemler bulmuşlar, sülfürik asit, hidroklorik asit, nitrik asit, amonyak, alkaliler, sayısız ¤¤¤¤l bileşikleri, şarap ruhu (alkol), eter, fosfor ve Berlin mavisi gibi çok çeşitli maddeleri kullanmışlardır Hıristiyanlığın ilk yüzyılında Yahudi Maria olarak bilinen bir kadın simyacı çeşitli türde fırınlar, ısıtma ve damıtma düzenekleri geliştirmiş, simyacı Kleopatra ise altın yapımı konusunda bir kitap yazmıştır Maria'nın buluşu olan su banyosu günümüzde de "benmari" adı altında kullanılmaktadır 350- 420 arasında İskenderiye'de yaşayan Zosimos, simya öğretisinin en önemli temsilcisidir ve 28 ciltlik bir simya ansiklopedisi yazmıştır Roma İmparatorluğu ve Bizans İmparatorluğu'nda, daha sonra da İslam ülkelerinde kimya tekniğinde büyük ilerlemeler olmuş ve Aristoteles'in bütün maddelerin sonuçta dört öğeden (toprak, su, hava, ateş) oluştuğu ve bunların birbirine dönüştüğü biçimindeki kuramı İskenderiyeli ve daha sonra da Cabir, İbn Hayyan, Ebubekir el-Razi ve İbn Sina gibi Arap simyacılar tarafından geliştirilmiştir İbn Sina özellikle dönüşümle ilgilenmiş ve el-Fennü'l-Harmis nün Tabiiyat adlı kitabının mineralojiyle ilgili bölümünde mineralleri taşlar, ateşte eriyen maddeler, kükürtler ve tuzlar olarak dört gruba ayırmıştır İbn Sina madde ve biçimin bir birlik olduğunu, doğa olaylarının açıklanmasında doğaüstü ve maddesel olmayan güçlerin etkisinin olmadığını söylemiş, kuramsal düşünceyi ve kavram üretmeyi öne çıkarmıştır Rönesans döneminde geçmiş yılların getirdiği kimya bilgisinin birikimiyle, tıp ve kimyasal üretim alanlarında uygulamalı kimya ortaya çıktı Bu dönemde eczacılıkta inorganik tedavi maddelerinin kimyasal yöntemlerle elde edilmesine "kemiatri" (kimyasal tedavi) adı verildi Kemiatrinin kimya temeline dayalı ilaç üretimi biçimindeki pratik amacının yanı sıra, hastalıklar ve madde alışverişi olaylarının kimyasal yorumu gibi kuramsal bir amacı da vardı Bu kuramsal amaçla ilgili yönelime iyatrokimya denir Günümüzde kemiatrinin karşılığı farmasötik kimya ve kuramsal biyokimyadır İyatrokimyanın öncüsü olan İsviçreli hekim Paracelsus'a ( 1493- 1541) göre tuz, kükürt ve cıva, var olan bütün cisimlerin temel yapıtaşı olan beden, can ve ruhun karşılığıydı Bu üçlü arasında denge bozulduğunda hastalık başlıyordu Paracelsus midenin bir kimya laboratuvan olduğunu, özsuların yoğunlaşmasıyla hastalıkların ortaya çıktığını ve bu durumun ilaçla giderilebileceğini savundu ve farmakolojide kimyasal maddelerden yararlanılması yolunda çaba harcadı Johann Baptist van Helmontx(1580-1644) ve Johann Rudolph Glauber (1604-68), Rönesans kimyasının temsilcileridir Suyun temel element olduğuna inanan van Helmont'un en önemli çalışmaları çeşitli süreçlerle gaz üretimini ilk kez açıkça gerçekleştirmesi ve deneylerinde teraziyi kullanarak kimyasal çalışmalara nicel özellik kazandırmasıdır Glauber'in en büyük başarısı ise, yemeklik tuzu sülfürik asitle parçalayarak tuz asidi (hidroklorik asit) ve sodyum sülfat elde etmesidir Sodyum sülfat dekahidrat günümüzde de onun adıyla Glauber tuzu olarak bilinir Glauber ayrıca ilk kez ¤¤¤¤llerin tuz asidi içinde çözünmesiyle ¤¤¤¤l klorürlerin oluşacağını gösterdi Simya 16 ve 17 yüzyıllarda Avrupa'da derebeyi saraylarında giderek yayıldı ve bu durum, bilimsel kimya gelişene ve elementlerin birbirine dönüştüğü inancının sarsılmaya başlamasına değin sürdü 17 yüzyılda kimyanın sanat ya da bilim olup olmadığı çok tartışıldı Bu yüzyılda, çağdaş anlatımla, uygulamalı ve kuramsal kimya ayırımı vardı Kemiatri, ¤¤¤¤lürji kimyası, madencilik ve demircilik kimyası uygulamalı kimyanın içinde yer alıyordu Kuramsal kimya ise betimlenebilen "tüm doğa bilimleri" anlamına gelen physica'nın içindeydi Yeniçağdaki oluşum deneyimden (experientia) deneye {experimentum) doğru oldu ve deneyin doğa araştırmasındaki bilimsel önemi kabul edildi Kimya zamanla simyadan ayrıldı ve eski çağların gizemli görüşlerinden uygulamalı kimyaya geçildi Eski kimyada madde ve bileşikler yalnızca beklenen son ürün açısından önemliydi Çeşitli reçeteler ise beklenen sonuca götüren bir araçtı Eski düşünce ve bilgilerin doğruluk ya da yanlışlıklarının denetlenmesi ancak kimyasal tepkimelerin gözlenmesi ve tepkime sürecinin incelenmesiyle olanaklıydı Mekanikçi felsefe ile kimyanın etkileşimine en iyi örnek Robert Boyle'un çalışması oldu İngiliz bilim adamı Robert Boyle 1661'de yayımladığı The Sceptical Chymist (Kuşkucu Kimyacı) adlı yapıtıyla Aristotelesçi görüşleri çürüttü Böyle, kimyasal elementleri maddenin parçalanmayan yapıtaşları olarak açıkça tanımladı, ilk kez kimyasal bileşikler ile basit karışımlar arasında ayrım yaptı, kimyasal birleşmelerde özelliklerin tümüyle değiştiğini, basit karışımlarda ise böyle değişimlerin olmadığını söyledi; gazlar üzerinde yürüttüğü deneylerde gazların basıncı ile hacimleri arasındaki bağıntıyı belirleyen yasayı buldu ve ilk kez elementlerin ve bileşiklerin doğru tanımını yaptı Böyle ayrıca havanın yanma olaylarındaki rolünü keşfetti ve havanın tartılabilir bir madde olduğunu söyledi 18 yüzyılda kimyanın temel sorunu yanma olayının (ateş ruhlarının işlevlerinin) açığa kavuşturulması oldu 17 yüzyıl ortalarına doğru maddedeki elementlerden birinin yanmaya neden olduğu ileri sürülmüş ama bu sav, ateşin maddesel bir cisim olamayacağı gerekçesiyle ünlü simyacı van Helmont tarafından reddedilmişti Alman simyacı Johann Joachim Becher (1635-82) bu öneriyi daha sonra 1669'da yeniden gözden geçirdi ve terra pinguis olarak adlandırılan ateş elementinin yanma sırasında kaçıp giden bir nesne olduğunu varsaydı Becher'in öğrencisi ve Berlinli bir hekim olan Georg Ernst Stahl ( 1660- 1734) bu nesneye "flojiston" adını verdi Yanma olayına yanlış da olsa ilk kez bir bilimsel açıklama getiren flojiston kuramına göre yanıcı maddeler, yanıcı olmayan bir kısım ile flojistondan oluşur Buna göre ¤¤¤¤l oksitler birer element, ¤¤¤¤ller ise kil (¤¤¤¤l oksit) ile flojistondan oluşan birer bileşik maddedir ¤¤¤¤l yandığında eksi kütleli "plan flojiston bir ruh gibi ayrılır ve elementin külü (¤¤¤¤l oksit) açığa çıkar Küle yeniden flojiston verildiğinde de yeniden ¤¤¤¤l oluşur Örneğin çinko oksit flojistonca zengin olan kömürle ya da hidrojen gazıyla ısıtıldığında yeniden çinko oluşur ve hafifler Bir yüzyıl boyunca kimyaya egemen olan bu kuram element kavramına uygun olmamakla birlikte kimyanın bilimsel gelişmesinde çok büyük rol oynadı Cavendish, Priestley ve Scheele ise çalışmalarında karbon dioksit, oksijen, klor, ¤¤¤¤n (bataklık gazı) ve hidrojen gazlarını ayrı gazlar olarak tanımladılar Cavendish ayrıca gazları yoğunluklarına göre ayırdı İlk kez suyun bir element olmayıp oksijen ile hidrojenin bir bileşiği olduğunu kanıtladı Bu çalışmaların da yardımıyla flojiston kuramı yıkıldı Aynı zamanda bir fizikçi olan Antoine-Laurent Lavoisier ( 1743-94) kimyanın babası sayılır Lavoisier ¤¤¤¤l oksitlerinin daha önce Priestley ve Scheele'nin keşfettiği oksijen ile ¤¤¤¤llerin yaptığı bileşikler olduğunu kanıtladı, yanma ve oksitlenme olaylarının günümüzde de geçerli olan açıklamasını yaparak kimyada yeni bir çığır açtı Kapalı kaplarda yaptığı deneylerde, kimyasal tepkimeler sırasında kütlenin değişmediğini saptayarak 1787'de kütlenin korunumu yasasını ortaya koydu Kimya'daki devrim yalnızca kavramlarda değil yöntemlerde de gerçekleşti Ağırlıksal yöntemler duyarlı çözümler yapmayı olanaklı kıldı ve kütlenin korunumu yasasıyla nicel kimya dönemi başladı Lavoisier'den sonra 1798'de Alman kimyacı Richter birleşme ağırlıkları yasasını, 1799'da gene Alman kimyacı Proust sabit oranlar yasasını ve 1803'te ingiltere'den John Dalton katlı oranlar yasasını geliştirdi Gay-Lussac da Alexander von Humboldt'un yardımıyla öbür gazlarla tepkimeye giren bir gazın her zaman belirli hacim oranlarıyla birleştiğini buldu İtalyan fizikçi Amedeo Avogadro 1811'de, gaz halindeki pek çok elementin birer atomlu değil, ikişer atomlu oldukları ve aynı koşullar altında bulunan gazların eşit hacimlerinde eşit sayıda molekül bulunacağı varsayımını geliştirdi Avogadro'nun bu varsayımını 50 yıl sonra, 1860'ta Stanislao Cannizzaro yasa düzeyine çıkardı 19 yüzyılın başlarında ingiliz kimyacı Humphry Davy ve öteki bilim adamları, volta pillerinden sağladıkları güçlü elektrik akımlarını bileşiklerin çözümlenmesi ve yeni elementlerin bulunması çalışmalarına uyguladılar Bunun sonucunda kimyasal kuvvetlerin elektriksel olduğu ve örneğin aynı elektrik yüklü iki hidrojen atomunun birbirini iteceği ve Avogadro varsayımına göre birleşerek çok atomlu molekülü oluşturmayacağı ortaya çıktı 1859'da Alman fizikçi Gustav Kirchhoff ve kimyacı Robert Bunsen'in bulduğu tayf çözümleme tekniğinin yardımıyla da o güne değin bilinen elementlerin sayısı 63'ü buldu Elementlerin atom ağırlıkları ile fiziksel ve kimyasal özellikleri arasındaki bağıntıyı bulan Rus kimyacı Dimitriy İvanoviç Mende-leyev 1871'de ilk kez kimyasal elementlerin periyodik yasasını açıkladı Mendeleyev'e göre hidrojenin dışındaki elementler artan atom ağırlıklarına göre bir sırayla düzenlendiğinde, bunlann fiziksel ve kimyasal özellikleri de bu sıraya göre düzgün bir değişim gösteriyordu Ama bu düzgün gidiş kesintilerle birkaç sıra halindeydi ve bu sıralara periyot adı verildi Mendeleyev'in tablosunda atom ağırlığı daha büyük olan bazı elementlerin ön sıralarda yer alması atom ağırlıklarının ölçüt alınamayacağını gösterdi İngiliz fizikçi HG Moseley 1913'te X ışınımı yardımıyla elementlerin atom numaralarını saptadığında bu sıralamada atom numaralarının temel alınması gerçeği ortaya çıktı Bundan sonra Mendeleyev'in tablosundaki boş olan yerler yeni keşfedilen elementlerle dolmaya başladı Wilhelm Röntgen'in 1895'te X ışınımını bulmasından hemen sonra Henri Becquerel 1896'da, uranyumdaki doğal radyoaktifliği keşfetti ve 1900'de fizikçi Max Planck kuvantum kuramını ortaya attı Rutherford 19J9'da havadaki azotu, radyum preparat-lanndan salınan alfa taneciklerinin yardımıyla oksijene ve hidrojene dönüştürerek ilk yapay element dönüşümünü gerçekleştirdi August Kekule'nin 1865'te kurduğu yapı kuramının genişletilmesi sonucunda, bire-şimleme (sentez) ve ayrıştırma yoluyla pek çok yeni madde elde edilebildi Bu kurama göre atomlar değerliklerine karşılık gelecek biçimde bileşikler halinde birleşirler ve her atomun belirli bir değerliği vardır Kekule' nin bu açıklamalarından sonra kimyasal bileşikler yeni bir biçimde değerlendirilmeye başladı Örneğin su (H2O) H-O-H, karbon dioksit (CO2) O-C-O, biçiminde gösterildi Bu gösterimden bireşimleme kimyası çok yararlandı Kekule ayrıca moleküllerin farklı özelliklerinin atomların birbiriyle yaptığı farklı bağlarla belirlendiğini kanıtladı ve kapalı formülü C6Ü6 olan benzenin halka biçiminde birleşmiş bir yapısı olduğunu çözdü Yapı kuramına dayanarak varlığı düşünülen bileşiklerin bireşimsel olarak üretilebilmesine yönelik özel yöntemler geliştirildi; yapısı bilinmeyen doğal ya da yapay bileşiklerin iç yapılarını çözmek amacıyla da tam tersi bir yol izlenerek bunların yapılan sistemli bir biçimde ve aşamalı olarak parçalanarak bulundu Kekule'nin buluşu aromatik karbon kimyasının hızla gelişmesini olanaklı kıldı F Wöhler, siyanür bileşikleriyle çalışırken üreyle formülü aynı olan amonyum siyanatı bireşimledi Biri mineral, öbürü hayvansal kökenli olan her iki ürün de aynı elementlerin aynı sayıdaki atomlarından oluşuyordu Bu buluşla izomerleşme olgusu ortaya çıktı ve inorganik kimya ile organik kimya arasındaki farklılık ortadan kalktı Kimya alanındaki çalışmalar sonraları maddelerin tepkime biçimleri, ısı etkisi, çözeltiler, kristallenme ve elektrolizle ilgili konulara yöneldi ve galvanizleme konularındaki gelişmelerden fiziksel kimya (fizikokimya) doğdu Bu arada M Berthelot termokimyanın temellerini attı Raoult, W Ostwald, van't Hoff, J W Gibbs, Le Chatelier ve S Arrhenius fiziksel kimyanın gelişmesinde önemli rol oynadılar İtalyan bilim adamı Alessandro Volta'nın 1800'de iki ¤¤¤¤l levha arasına nemli bez ya da tuz çözeltisi koyarak elektrik akımı elde etmesi kimyada önemli gelişmelere neden oldu Humphry Davy 1807'de özel olarak geliştirdiği Volta pilini kullanarak erimiş külden elektrik akımı geçirdi ve bu yolla önce potasyum adını verdiği elementi, sonra da sodadan sodyum elementini ayırmayı başardı Bu da elektrokimya dalında önemli adımlar atılmasını olanaklı kıldı Çağdaş bilimin gelişmesiyle Sanayi Devrimi arasında yakın bir ilgi olduğu düşünülmekle birlikte, Sanayi Devrimi'nin anayurdu olan İngiltere'de bile bilimsel buluşların dokuma ve ¤¤¤¤lürji sanayisini doğrudan etkilediğini göstermek zordur, 18 yüzyılda bilim dikkatli bir gözlem ve deneyciliğin sanayide üretimi önemli ölçüde iyileştirebileceğini gösterdi Ama ancak 19 yüzyılın ikinci yansından başlayarak bilim sanayiye önemli katkıda bulunmaya başladı; kimya bilimi anilin boyalar gibi yeni maddelerin üretilmesini olanaklı kıldı ve boyarmadde ile ilaç sanayisi hızla gelişen ilk kimya sanayisi oldu 20 yüzyılda madencilik, ¤¤¤¤lürji, petrol, dokuma, lastik, inşaat, gübre ve gıda maddeleriyle doğrudan ilişkisi olan kimya sanayisi elektrikten sonra bilimin uygulamaya geçirildiği sanayiler arasında ikinci sırayı aldı Yalnızca kimyanın değil, fiziğin de kimya sanayisine girmesiyle laboratuvarda elde edilen sonuçlann doğrudan uygulamaya sokulduğu kimya fabrikaları kurulmaya başladı Bu süreçlerin denetlenmesinde çeşitli aygıtlara gerek duyulduğundan fiziksel kimyacılar ve fizikçiler kimya sanayisinde etkin olmaya başladı ve böylece kimya mühendisliği mesleği doğdu. Biyolojinin Tarihsel Gelişimi Biyoloji bilimi, insanın kendini ve çevresindeki canlıları tanıma merakından doğmuştur İlk insanlar çevrelerinde yaşayan sığır , geyik ve mamut gibi hayvanların resimlerini mağara duvarlarına çizerek bunları incelemeye başlamışlardır. Antik çağdan günümüze kadar biyoloji bilimindeki gelişmeleri, ilgili bilim adamlarıyla aşağıdaki gibi özetleyebiliriz: Thales (Tales) (M.Ö. VII. yy .) İlk biyolojik yorumları yapmıştır. Aristo (M.Ö. 384-322) Canlılar dünyasını inceleyen ve ‘’bilimsel doğa tarihi’nin kurucusu olan ilk bilim adamıdır. Aristo, bir bilim adamında bulunması gereken iki önemli özelliğe, yani iyi gözlem yapabilme ve bunlardan doğru sonuçlar çıkarabilme yeteneğine sahiptir .Çalışmalarını ‘’Hayvanların Tarihi, Hayvan nesli üzerine'’ ve ‘’Hayvan Vücutlarının Kısımları Üzerine'’ adlı kitaplarında toplamıştır. Aristo, canlıların oluşumlarını ‘’kendiliğinden oluş (abiyogenez)'’ hipotezi ile açıklamış, ayrıca ilk sınıflandırmayı da yapmıştır. Galen (M.Ö. 131-201) Canlı organlarını inceleyerek fizyoloji biliminin doğmasını sağlamıştır . Galileo (Galile) 1610 yılında ilk mikroskobu bulduğu samlmaktadır. Mikroskobun keşfi biyolojik çalışmalara büyük ivme kazandırmıştır . Robert Hooke (Rabırt Huk) 1665 yılında mikroskop ile mantar kesitini inceleyerek ilk hücre ( cellula )yi tanımlamıştır. Leeuwenhoek (Lövenhuk) 1675 yılında geliştirdiği mikroskop ile ilk bir hücrelileri (bakterileri) göstermiştir. Carolus Linnaeus (Karl Linne) 1707-1778 yıllarında ilk sınıflandırmayı yapmıştır. Schleiden (Şlayden) 1838′de bitki hücreleri üzerinde çalışmalar yapmıştır. Schwann (Şivan) 1839′da hayvan hücresini bitki hücresiyle karşılaştırdı.Schleiden ve Schwann’ın hücre teorisinin ortaya konulmasında katkıları olmuştur. Charles Darwin (Çarls Darvin) 1859 yılında ‘’Türlerin Kökeni'’ adlı yayınlayarak ‘’doğal seleksiyon’ yoluyla türlerin evrimini ortaya koymuştur. Pasteur (Pastör) (1882-1895) Biyogenez hipotezini kanıtladı. Mikroskobik canlıların fermantasyona (mayalanma) neden olduğunu tespit etti. Aynca kuduz aşısının bulunmasını sağladı . Gregor Mendel (1822-1884): Kilisesinin bahçesinde yetiştirdiği bezelyelerde yaptığı deneyler sonucunda kalıtsal özelliklerin dölden döle geçişi ile ilgili önemli sonuçlar elde etmiştir. Mendel bu çalışmalarıyla genetik bilimin kurucusu olmuştur . Miescher (Mişer) 1868′de nükleik asitleri bulmuştur. Beijrinck (Bayerink) 1899′da tütün yapraklarında görülen tütün mozaik hastalığını incelemiştir. Virüslerin keşfine katkıda bulunmuştur . Wilhelm Röntgen (Vilhem Röntgen) 1895 yılında tıpta kullanılan röntgen ışınlarını bulmuştur . Sutton (Sattın) 1903 yılında kalıtımın kromozom kuramını yani genlerin kromozomlar üzerinde bulunduğunu açıklamıştır . Wilhelm Roux (Vilhem Ru) (1850-1924) Embriyolojinin kurucusu olmuştur. Otto Mayerhof (Otto Mayerhof) 1922′de kastaki enerji dönüşümlerini inceleyerek Nobel tıp ödülünü almıştır. Sir Alexender Fleming (Sör Aleksendır Fleming) 1927′de penisilini bularak bakteriyal enfeksiyonlara karşı etkin mücadeleyi sağlamıştır . E.A.F Ruska 1931 yı1ında elektron mikroskobunu bulmuştur. James Watson (Ceyms Vatsın), Francis Crick (Fransis Krik) 1953 yı1ında DNA molekül modelini ortaya koymuşlardır .İkili sarmal modeli günümüzde de geçerliliğini korumaktadır. Steven Howel (Stivın Havıl) 1986 yı1ında ateş böceklerinin ışık saçmasını sağlayan geni ayırarak tütün bitkisine aktarmış, tütün bitkisinin de ışık saçmasını sağlamıştır. İşte bu olay gen naklinin başlangıcı olmuştur. Wilmut (Vilmut) 1997 yı1ında bir koyundan alınan vücut hücresinin çekirdeğini, başka bir koyuna ait çekirdeği çıkarılan yumurta hücresine aktararak genetik ikiz elde etmiştir . Tüm bu çalışmalar biyolojiyi 21. yüzyılın en önemli bilim dallarından biri yapmıştır Biyoloji ile ilgili bazı bilgilerin tarih öncesinde ortaya çıkmış olduğunu arkeolojik veriler ortaya koymuştur. Cilalı Taş Devri'nde, çeşitli insan toplulukları tarımı ve bitkilerin tıp alanında kullanımını geliştirmişler, sözgelimi eski Mısırlılar, bazı otları ilaç olarak ve ölülerin mumyalanmasında kullanmışlardır. Bununla birlikte bir bilim dalı olarak biyolojinin gelişimi, eski Yunan döneminde ortaya çıkmıştır. Tıbbın kurucusu sayılan Hipokrates, insan biyolojisinin ayrı bir bölüm olarak gelişmesine büyük katkıda bulunmuştur. Biyolojinin temel gereçleri olan gözlem yapma ve problem belirleyerek çözüme ulaştırmayı kurumlaştıran Aristoteles'tir. Aristoteles'in özellikle üremeye ilişkin gözlemleri ve canlıların sınıflandırılması sistemiyle ilgili görüşleri önemlidir. Biyoloji incelemelerinde öncülük daha sonra Roma'ya ve İskenderiye'ye geçmiş, M.Ö. II. yy. ile M.S. II. yy'a kadar incelemeler özelikle tarım ve tıp çevresinde odaklanmıştır. Ortaçağ'da ise, biyoloji incelemesinde islâm bilginleri öne geçmişler ve eski Yunan metinlerinden öğrendikleri bilgileri geliştirerek, özellikle tıp bilimine büyük katkıda bulunmuşlardır. Rönesans'la birlikte Avrupa'da, özellikle de İtalya, Fransa ve İspanya'da biyoloji araştırmaları hızla gelişmiş, XV. ve XVI. yy'larda Leonardo da Vinci ve Micheangelo, güzel sanatlarda kusursuzluğa erişme çabaları içinde, son derece usta birer anatomi bilgini haline gelmişlerdir. Bu arada Andreas Vesalius, öğretim gereci olarak ölülerin kesilip incelenmesinden yararlanma uygulamasını başlatmış, ölüler üstünde kesip biçmelere dayalı ilk anatomi kitabıyla anatomi ve tıp araştırmalarında bir devrim gerçekleştirmiştir. XVII. yy'da William Harvey insanda dolaşım sistemine ilişkin çalışmaları başlatmıştır. XVIII. ve XIX. yüzyıllarda ise biyoloji bilimi önemli bir ilerleme kaydetmiştir.Bu dönemde yapılan çalışmalar aşağıdaki gibi özetlenebilir: Jean-Baptiste Lamarck omurgasız canlıların sınıflandırılmasının detaylı çalışmasına başladı. 1802 Modern anlamda "Biyoloji" terimi, birbirlerinden bağımsız olarak Gottfried Reinhold Treviranus ve Lamarck tarafından kullanıldı. 1817 Pierre-Joseph Pelletier ile Joseph-Bienaime Caventou klorofili elde ettiler. 1828 Friedrich Woehler, organik bir bileşiğin ilk sentezi olan ürenin sentezini gerçekleştirdi. 1838 Matthias Schleiden tüm bitki dokularının hücrelerden oluştuğunu keşfetti. 1839 Theodor Schwann tüm hayvan dokularının hücrelerden oluştuğunu keşfetti. 1856 Louis Pasteur mikroorganizmaların fermentasyonda etkili olduklarını vurguladı. 1869 Friedrich Miescher hücrelerin çekirdeğinde bulunan nükleik asitleri keşfetti. 1902 Walter S. Sutton ve Theodor Boveri mayoz bölünme sırasında kromozomların hareketlerinin Mendel'in kalıtım birimleriyle paralellik gösterdiğini saptayıp, bu birimlerin kromozomlarda bulunduğunu ileri sürdü. 1906 Mikhail Tsvett organik bileşiklerin ayrıştırılması için kromatografi tekniğini keşfetti. 1907 Ivan Pavlov sindirim fizyolojisi ve eğitim psikolojisi bakımından büyük önem taşıyan salya akıtan köpeklerle klasik koşullanma deneyini tamamladı. 1907 Emil Fischer yapay olarak peptid amino asit zincirlerinin sentezini gerçekleştirdi ve bu şekilde proteinlerde bulunan amino asitlerin birbirleriyle amino grubu - asit grubu bağlarla bağlandıklarını gösterdi. 1909 Wilhelm Ludwig Johannsen kalıtsal birimler için ilk kez "gen" terimini kullandı. 1926 James Sumner üreaz enziminin bir protein olduğunu gösterdi. 1929 Phoebus Levene nükleik asitlerdeki deoksiriboz şekerini keşfetti. 1929 Edward Doisy and Adolf Butenandt birbirlerinden bağımsız olarak östrojen hormonunu keşfettiler. 1930 John Northrop pepsin enziminin bir protein olduğunu gösterdi. 1931 Adolf Butenandt androsteronu keşfetti. 1932 Hans Krebs üre siklusunu keşfetti. 1932 Tadeus Reichstein yapay olarak gerçekleştirilen ilk vitamin sentezi olan Vitamin C'nin sentezini başardı. 1935 Wendell Stanley tütün mozaik virüsünü kristalize etti. 1944 Oswald Avery pnömokok bakterilerde DNA'nın genetik şifreyi taşıdığını gösterdi. 1944 Robert Woodward ve William von Eggers Doering kinini sentezlemeyi başardı 1948 Erwin Chargaff DNA'daki guanin birimlerinin sayısının sitozin birimlerine ve adenin birimlerinin sayısının timin birimlerine eşit olduğunu gösterdi. 1951 Robert Woodward kolesterol ve kortizonun sentezini gerçekleştirdi. 1951 Fred Sanger, Hans Tuppy, ve Ted Thompson insulin amino asit diziliminin kromatografik analizini tamamladı. 1953 James Watson ve Francis Crick DNA'nın çift sarmal yapıda olduğunu ortaya koydu. 1953 Max Perutz ve John Kendrew X-ray kırınım çalışmalarıyla hemoglobinin yapısını belirledi. 1955 Severo Ochoa RNA polimeraz enzimlerini keşfetti. 1955 Arthur Kornberg DNA polimeraz enzimlerini keşfetti. 1960 Robert Woodward klorofil sentezini gerçekleştirmeyi başardı. 1967 John Gurden nükleer transplantasyonu kullanarak bir kurbağayı klonlamayı başarıp, bir omurgalı canlıyı klonlayan ilk bilim adamı olarak tarihe geçti. 1970 Hamilton Smith ve Daniel Nathans DNA restriksiyon enzimlerini keşfetti. 1970 Howard Temin ve David Baltimore birbirinden bağımsız olarak revers transkriptaz enzimlerini keşfetti. 1972 Robert Woodward B-12 vitamininin sentezini gerçekleştirdi. 1977 Fred Sanger ve Alan Coulson dideoksinükleotidleri ve jel elektroforezini kullanımını içeren hızlı bir gen dizisi belirleme tekniğini bilimin hizmetine sundu. 1978 Fred Sanger PhiX174 virüsüne ait 5,386 bazlık dizilimi ortaya koydu ki bu tüm genom dizilimi gerçekleştirilen ilk canlıydı. 1983 Kary Mullis polimeraz zincir reaksiyonunu keşfetti. 1984 Alex Jeffreys bir genetik parmak izi metodu geliştirdi. 1985 Harry Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl ve Richard Smalley Karbon-60 Buckminster-fulleren molekülünün olağanüstü stabilitesini keşfettiler ve yapısını açığa çıkardılar. 1985 Wolfgang Kratschmer, Lowell Lamb, Konstantinos Fostiropoulos ve Donald Huffman Buckminster-fulleren'in benzende çözülebilirliğinden dolayı isten ayrılabildiğini keşfettiler. 1990 ve 2000’li yıllarda yapılan biyolojik çalışmaların çoğu genetik kopyalamalar üzerine oldu.Bu durum da XXI.yüzyılın genetik bilimi üzerine kurulacağı işaretlerini veriyor.

http://www.biyologlar.com/bilimin-dogusunu-ve-fizik-kimya-biyoloji-matematik-olarak-temel-biirmler-haline-donusmesini-tarihsel-boyutta-aciklayiniz

Structure of a hantavirus protein as a promising model for drug design

Structure of a hantavirus protein as a promising model for drug design

Bank voles are small rodents that are not dangerous by themselves, but their excreta can contain one of the dangerous hantaviruses. While bank voles are unaffected by the infection, hantaviruses can cause potentially fatal diseases in humans for which no treatments exist. In central and northern Europe, infection is accompanied by fever, headache, or even renal failure. The strain that occurs in East Asia -- the Hantaan virus -- is even more dangerous: up to five percent of infected patients die of hemorrhagic fever, renal failure, or severe respiratory disorders. Dr. Daniel Olal and Prof. Oliver Daumke of the MDC in Berlin have now analyzed the nucleoprotein of the Hantaan virus by means of X-ray crystallography and identified its three-dimensional structure. Olal and Daumke have worked out how individual nucleoproteins oligomerize in the presence of RNA molecules, and they have found hexameric circular complexes. "We already know about cellular defense mechanisms that inhibit viral growth. We think that the circular structures we have identified could play a part in this," says Olal. The nucleoprotein plays an important part in replication of the viral genome. If its function is disrupted, the cell cannot produce functional virus particles. This protein is therefore an ideal target structure for future drugs. "Our structure could be useful for the design of small molecules that specifically block the nucleoprotein," says Olal. The researchers have identified three binding pockets on the surface of the protein that could serve as docking sites for such compounds. Olal is positive that such drugs will be developed in the future: "After all, the technology for finding candidates for drug development is getting better all the time." Source: Max Delbrück Center for Molecular Medicine in the Helmholtz Association http://www.biologynews.net

http://www.biyologlar.com/structure-of-a-hantavirus-protein-as-a-promising-model-for-drug-design

Zoolojik Nomenklatur Nedir

Hayvanlar iki isim­le isimlendirilmektedir (Linne). Bir ülkede, belki bir ülkenin farklı bölgelerinde hayvanlara verilen isimler birbi­rinden farklı olacaktır. Aynı hayvana oradaki insanların kendi diliyle farklı isim vermesi en doğal sonuçtur. Bu sorunlar ikili isimlendirme ile aşılmış bulunmaktadır. Çünkü bu isimler verilirken ikisi de bugün için kullanılmayan dillerden ya latince ya da eski yu­nanca karşılıkları ile verilir. Eğer bu dillerin dışında isim verilecekse, bu isimler de ya latinceleştirilir ya da yunancalaştırılır. Bunun sonunda o hayvanın tüm dünyada geçerli bir ismi olur. Örneğin Musca domestica dünyanın her yerinde evlerde canımızdan bezdiren karasinektir. Afrika’da da Asya’da da Amerika’da da hep aynıdır. İşte bunlar uluslararası bir organizasyon ile yapılmaktadır. Tüm dünyadaki hayvan taksonomistleri organize olarak, kavramları standardize etmek, herkesin kullanabileceği ortak kurallar oluşturmak amacıyla çeşitli yıllarda (1901 Boston, 1904 Berlin, 1907 Boston, 1910 Graz, 1913 Monaco, 1927 Budapeşte, 1930 Padua, 1948 Paris), 1953 Kopenhag, ve 1958 Londra) bir araya gelmişlerdir. Bu toplantılar özünde başlangıç niteliğini aşma­mıştır Londra’da 1958 yılında yapılan 15.nci toplantıda önemli bir adım atılmış Aristo’nun tipolojik düşüncesi ile populasyon düşüncesi bir arada ele alınarak bir kitap hazırlanmıştır (Zoolojik İsimlendirme Yasa Kitabı). Buna uygun olarak 6 Kasım 1961 tarihinde tüm dünyada geçerli bir metin yayınlandı (International Code of Zoological Nomenclatura). Bu metinde yer alan kurallara uymayan yayınların geçerliliği olmayacaktır. Bu metinin bazı maddeleri 1963 yılında Washington’da yapılan 16.ncı kongrede değişikliğe uğramış ve bu değişiklik de basılarak yürürlüğe girmiştir. Hiçbir yasa değişmez değildir. Bu yasada da mutlaka değişiklikler olacaktır. Ancak olaya bir düzen getirmesi bakımından önemli bir adımdır. Ama tüm yasalarda olduğu gibi yenisi çıkana kadar, eskisi yürürlüktedir ve geçerliliğini korumaktadır. Araştırmacıların bu yasalara uyması zorunludur. Aksi durumda ciddiye alınmazlar. Hayvanlar isimlendirilirken ismin stabilitesine önem verilir (sözü edilen yasa­nın 23.ncü maddesi), öyle sık sık değiştirilmesi istenmez. Yanlışlıkla aynı hayvana farklı isimler verilmişse, ilk isim geçerli olur (priorite yasası). Daima en eski isim geçerlidir Bazen belli bir cins adı altında verilen tür isimleri, daha sonraki uygulama­larla değişik cinsler altında da verilebilir. Normal olarak tür ismini veren araştırıcının ismi tür isminin yanında yer alırken, bu gibi değişiklik sonunda o tür başka bir cins altında verildiğinde tür ismini verenin adı bu kez parantez içinde verilir. Örneğin bir yengeç türü olan Cancer maenas Linnaeus (kısaca L. yazılabilir), daha sonra yapılan çalışmalarla bir başka cins altında (Carcinus) verildiğinde Carcinus maenas (Linnaeus ya da sadece L.) şeklinde yazılır. Bunun anlamı maenas tür isminin Linnaeus tarafın­dan başka bir cinsin türü olarak verildiğidir Prioritenin bir başka uygulaması da günümüzde daha az kullanılmaya başla­nılmasına karşın, sinonim uygulamasıdır. Bir hayvana verilen birden fazla isim, en eski ismin altında sinonim listesi olarak verilir. Sınıflandırmada uygulanan önemli bir konu da deskripsiyonunu (betimlemesi­ni) yaptığınız tür için bir örnek tip seçmektir. Şayet türünüz bilim dünyası için yem ise, bu seçtiğiniz örnek (holotip ya da typus) tüm ayrıntıları ile tanımlanıp şekil ve fotoğraflarla desteklenir. Seçilen örnek o türü en iyi aksettiren özelliklere sahip olmalıdır. Yayından sonra bu örnek en iyi şekilde saklanır. Saklandığı müze ya da benzeri oluşumdan dışarıya çıkarılmaz. Onu görmek isteyen bilim adamı gelir görür. Ancak aynı anda toplanan ve holotip ile benzer özellikler gösteren diğer örnekler de saklanır. Bunlar paratip, holotipin karşı eşeyinden olanlar da allotip olarak isimlendirilir. Holotipe benzeyen daha sonradan tanımı yapılmış örnekler sintip (ya da kotip) olarak isimlendirilir. Sintipler arasından holotipin kaybolması ya da yıpranması durumunda onun yerine geçmek üzre seçilen tiplere de lektotip denir. Lektotipin seçilmesi ile geriye kalan sintiplere de paralektotip , holotipin bulunduğu yerden alınan örneklere de terratip denir. Holotip ve ona yakın diğer tipler de kaybolabilir Bu kez onların yerine geçmek üzre toplanıp betimlenen tür neotiptir. Tür için olduğu gibi daha büyük kategoriler için de tipler vardır. Örneğin cins tipi. Sistematik kategorilerden sadece tür ve daha altındakiler reel kavramlardır. Bunlar elle tutulabilir ya da gözle görülebilir. Tür üstündeki ilk kategori olan cins bile bu tanıma uymaz. Onu elle tutamaz, gözle algılayamazsınız. Bu nedenle bir cins bilim dünyasına sunulacaksa bir türle birlikte sunulur. İşte cinsi cins yapan bu tür, cins tipi­dir. Bunun gibi örnekleri daha üst kategorilere de uygulamak olasıdır. Hiyerarşik Sistem Sistem kendini oluşturan alt birimlerden oluşur. Hatta bunlar alt sistemler de olabilir. Sistematikte daha önce de sözü edildiği gibi kategoriler vardır. Bunlardan biraz önce de sözü edilen reel kavram olan tür kategorisi baz olarak alınır ve diğerleri üst kategoriler olarak birlikte nitelendirilir.

http://www.biyologlar.com/zoolojik-nomenklatur-nedir

Dünya’nın Tarihi ve Önemli Doğa Olayları

Yaklaşık 4.6 milyar yaşındaki dünya bu yaşı ile görece genç bir gezegen sayılır. Dünyanın 4.6 milyar yıllık tarihini doğa tarihi anlamında düşündüğümüzde iki bölüme ayırabiliriz. Birinci bölüm dünyanın oluştuğu 4.6 milyar yıl öncesinden başlayıp Kambriyen patlaması denilen ve dünya  üzerinde  canlı  çeşitliliğinin  inanılmaz  bir  şekilde  arttığı  yaklaşık  540  milyon  yıl öncesinde başlayan zaman dilimi ile sona erer. Bu dönem Prekambriyen olarak adlandırılır. Bu dönemde dünya üzerinde ilk canlılar görülmeye başlayıp dünya yavaş yavaşa yaşam için elverişli bir hale dönüşür. İkinci dönem ise Kambriyen patlaması ile yaklaşık 540 milyon yıl önce başlayıp günümüze kadar gelir ve Fanerozoik olarak adlandırılır. Bu dönemde dünya canlıların istilasına uğramıştır. Önce denizde başlayan canlılık ilerleyen zamanlarda karalarda da hâkimiyet sürmüştür. Özellikle ikinci dönem doğa tarihi müzeciliği anlamında çok büyük önem taşır.  1.Prekambriyen Dönem (4.6 Milyar-541 Milyon): Bu dönem dünya tarihinin en önemli dönemi olsa da, canlılık çeşitliliği anlamında Fanerozoik dönemle karşılaştırılamaz. Hadean, Arkeyan ve Protezorik olmak üzere üç eona ayrılır. A.Hadean(4.6-4  Milyar): Dünyanın ortaya çıktığı dönem ile başlar. Bu dönemde ilk okyanuslar ve atmosfer oluşmaya başlar.  Bu dönemde dünya atmosfer tam olarak  oluşmadığı  için  güçlü  meteor  bombardımanına  maruz  kaldı.  Dünya üzerinde kayaçların ilk izleri görülmeye başladı.B.Arkeyan (4-2.5 Milyar): Canlılığın ilk ortaya çıktığı zaman dilimi olmasından dolayı doğa tarihinin en önemli dönemlerinden birisi, hatta en önemlisidir. İlk kayaçlar bu dönemde oluştu. Volkanik ve metamorfik kayaçlar daha sonra büyük kıtaları oluşturacak küçük kıtacıkların oluşmasını sağladı. Okyanuslarda mikrobiyal yaşam başladı. Döneme adını da veren tek hücreli mikroorganizmalar  olan  Arkeyalar okyanuslarda yayılmaya başladı.  Bu dönemin en önemli özelliği diyebileceğimiz olay  mavi-yeşil alglerin (siyanobakteriler) ortaya çıkmasıdır. Bunlar fotosentez yapabilen bakteriler olup okyanuslara oksijen vermeye başladılar ki bu gelişme de ileride patlak verecek canlı çeşitliliğinin en önemli aşamasıdır. C.Protezorik (2.5 Milyar-541 Milyon): Dünya’nın kabuğunun soğuması ile beraber ilk büyük kıta olan Rodinia oluştu ve tektonik hareketler sonucu sürüklenmeler görüldü. Bu dönemde biri 2.4 Milyar yıl öncesinde ve diğeri 650 milyon yıl kadar önce olmak üzere iki büyük buzul çağ meydana geldiği düşünülmektedir. Bu  dönemlerde okyanuslar da dâhil olmak üzere bütün dünyanın buzul ile kaplanmış olduğu  düşünülmektedir.  Çözülmüş  tuzlar  denize  tuzluluğunu  kazandırdı.  Bir önceki  dönemde  algler  tarafından  meydana  getirilen  oksijenin  okyanuslarla beraber atmosfere de salınmaya ve bol miktarda bulunmaya başladı. Bu da Arkeyaların büyük miktarda yok olmalarına neden oldu. Yine oksijenin varlığı bu dönemin sonlarına doğru ilk çekirdekli canlıların ortaya çıkmasını sağladı.2.Fanerozoik (541 Milyon - Günümüz) : Bu dönem diğer dönemin 8 de 1 i kadar küçük bir zaman dilimini kapsasa da canlılığın göstermiş olduğu devasa çeşitlilikten dolayı çok önemli bir yer tutar. Bu dönemde kıta hareketleri sonucunda kıtalarda kırılmalar ve birleşmeler meydana geldi. Buz tabakalarında büyüme ve küçülmeler görüldü. Canlılık inanılmaz boyutlarda gelişme ve çeşitlenme gösterdi. A.Paleozoik (541-252 Milyon)a.Kambriyen(541 -485 Milyon) : Bu dönem ‘Kambriyen patlaması’ olarak bilinen ve canlılığın ortaya çıkması ve hızlı bir şekilde çeşitlenmesi ile anılır (yaklaşık olarak 25 milyon yıllık bir süreçte). Kambriyenin başlamasından hemen önce Rodinia parçalandı ve Gondvana ile Laurentiya’yı oluşturdu. Hava sıcak ve nemli idi. Protezorik dönemde görülmeye başlayan ve Edikara faunasına dâhil edilen ilk çok hücreliler bu dönemde de görüldü.  Bu canlıların kabukları olmadığı  için  dolaşırken  bıraktıkları  izler  veya  yuva  delikleri     ile tanımlanabiliyorlar  (iz  fosiller).  Üç  loblu  gibi  eklembacaklılar  bu  dönemin ortalarına doğru görülmeye başlandı. Bu dönemin belki de en önemli özelliği ilk omurgalıların ortaya çıkmasıydı (Yunnanozoon ve Pikaia).    b.Ordovisyen(485-443  Milyon):Bu dönemde artana canlı çeşitliliği yeni bir çevre ve beslenme ağı oluşmasına yol açtı. Bu dönemin önemli özelliği ilk çenesiz balıkların ortaya çıkması oldu. Karada yaşama ait ilk izler daha sonraki dönemde ortaya çıksa da, Ordovisyen döneme tarihlendirilen  iz  fosiller  bu dönemde  karada  canlılar  olduğunu  göstermektedir.  Karada  bıraktıkları  iz fosillerden yola çıkarak tam olarak olmasa da belli sürelerle karada zaman geçirdikleri düşünülebilir. Dönemin sonunda meydana gelen büyük bir kitlesel yok oluş ile önemli miktarda canlı türü yok oldu.c.Silüryen (443-419  Milyon): Kıtaların çarpışması ile Lavrasya adındaki süper kıta oluştu. Bu dönemde yaygınlaşan çenesiz balıklarla beraber okyanuslarda çeneli balıklar da görülmeye başlandı. Önceki dönemde geçici olarak  karaya çıkan canlılar bu dönemde kalıcı olarak karaya yerleşti. Damarlı bitkiler ve kara yosunları  ile  beraber  eklembacaklılar  da  kara  yaşamına  uyum  sağlayarak yayılmaya başladılar. d.Devoniyen (419 - 358  Milyon): Bu dönem de birçok ilki içinde barındırır.  Bu dönemde denizde balık çeşitliliği arttı ve köpek balıkları ile kemikli balıklar görülmeye başlandı. Tohumlu bitkiler ve ormanlar bu dönemde ortaya çıkıp yayılım  göstermeye  başladı.  Bu  dönemin  belki  de  en  önemli  özelliği omurgalıların karada yaşamaya başlamasıdır. Amfibi denilen iki yaşamlılar hem kara hem de suda yaşamaktaydılar. Ayrıca ammonitler de ilk kez bu dönemde görülmeye başlandı. e.Karbonifer(358-298  Milyon): İsminden de anlaşılacağı üzere dünya kömür yataklarının çoğu bu dönemde oluştu. İki kıta Gondvana ve Lavrasya birleşerek Pangea’yı oluşturmaya başlarlar. Yeryüzünün büyük kısmı yağmur ormanları ile kaplıydı, iklim çok nemli ve tropikti. Ormanların iyice yaygınlaşması sonucu birçok böcek türü ortaya çıktı. Amfibilerin yanında bu dönemde tamamen kara yaşamına uyum sağlamış canlılar da görülmeye başlandı. İlk sürüngenler ortaya çıktı. Dönemin sonlarına doğru memelilerin ataları sayılan türler ortaya çıkmaya başladı.f.Permiyen(298-252 Milyon): Paleozoik çağın son dönemi olan Permiyen büyük bir  kitlesel  yok  oluş  ile  anılmaktadır.  Tüm  türlerin  %  90  ı  yok  oldu. Karboniferde başlayana Pangea’nın oluşum süreci bu dönemde tamamlanır. Dönemin  başında  buzul  çağı  etki  göstermekteydi.  Tüm  dönem  boyunca kuraklık  egemen  oldu.  Sürüngenler  iyice  dağılım  göstermeye  başladı  ve memeli benzeri sürüngenlerin sayıları artmaya başladı.    B.Mezozoik (252-66 Milyon)a.Trias (252-201  Milyon): Dönemin sonuna doğru dev kıta Pangea’da kırılmalar başlar.  Mevsimsel  farklılıklar  çok  yüksektir;  ya  çok  yağış  ya  çok  kurak dönemler vardır. Denizlerde yırtıcı sürüngenler hakimdi. Kaplumbağalar ilk kez bu dönemde görülmeye başladı. Açık tohumlu bitkiler karalara hakimdi. Bu bölümde karasal hayvanlar anlamında en önemli olayları memelilerin atası olduğu düşünülen Cynodonta’ların ve ilkin dinozorların ortaya çıkmasıydı. Dönemin sonlarına doğru kemirgen ebatlarında gerçek memelilerin ortaya çıkmasıdır. b.Jura (201-145 Milyon): Bu dönemde iklim önceki döneme göre daha dengeli  bir hal aldı. Denizlerde ilk modern kemikli balıklar ortaya çıkmaya başladı, ayrıca gerçek timsahlar da bu dönemde görülmeye başlandı. Yine bu dönemin en önemli özelliklerinden biri, hatta belki en önemlisi, ilk kez kuşların ortaya çıkmasıdır. Otobur ve etobur dinozorlar ortaya çıktı ve karalara egemen hale geldiler.c.Kretase(145-66   Milyon): Bu  dönemde  Lavrasya  ve  Gondvana  tamamen ayrılmıştır. Denizlerde dev yırtıcı sürüngenler hüküm sürüyordu, ayrıca ilk modern köpekbalıkları da bu dönemde görülmeye başlandı. Bu dönemde çiçekli bitkiler ilk kez görüldü ve bununla beraber arı, karınca ve kelebek gibi birçok böcek türü de ilk kez ortaya çıktı. Dinozorlar için tepe noktası olan bu çağda yeni türler ortaya çıktı ve karada baskın halde yaşadılar. Dönemin sonunda  doğ  tarihinin  en  büyük  ve  en  tartışmalı  yok  oluşlarından  birisi yaşandı. Türlerin %60 - 80 ı yok oldu. Kesin nedeni bilinmese de bir göktaşının buna neden olduğu düşünülmektedir.C.Senozoik(66 Milyon-Günümüz)a.Paleojen (66-23 Milyon)-Paleosen(66-56 Milyon):Kıta oluşumları başladı. Böylece farklı bölgelerde yaşayan  canlılar  farklı  uyum  süreçleri  geçirerek  değişimler  geçirdiler. Dinozorlardan boşalan yerleri ilkel memeliler kapladılar. Dev etçil kuşlar da bu dönemde yaygındı. -Eosen(56-34  Milyon): At,  gergedan,  primat,  fil  ve  domuz  gibi  memeli takımlarının ilk temsilcileri bu dönemde görülmeye başlandı. Balinalar, yarasalar ve ilk modern kuşlar da bu dönemde ortaya çıktı. Tek toynaklılar bu dönemde görülmeye başladı.  -Oligosen (34 -23 Milyon): Bu dönemde iklimde görülen önemli ısı düşmesi nedeniyle  buzullar oluşur.  Modern  çiçekli  bitkiler  ortaya  çıkmıştır.  Eosen’de  ortaya  çıkan  tek toynaklılardan  sonra  bu  dönemde  çift toynaklılar da görülmeye başlandı. b.Neojen(23-2.58 Milyon):-Miyosen(23-5.30 Milyon):Bu dönemde kıtalar modern biçimlerini almaya başlamıştır.  Oligosen’de  soğuyan  hava  tekrar  ılıman  bir  hal  alsa  da dönemin sonlarına doğru yine bir soğuma eğilimi başlar. Memelilerin ilkel türleri  yok  olup  modern  memeliler  ortaya  çıkmaya  başlamıştır.  İnsan evrimi açısından çok önemli bir dönemdir. Bu dönemde insan şempanze ayrımı olmuş ve ilk hominidler ortaya çıkmıştır.  -Pliyosen(5.30-2.58 Milyon):  Bu dönemde hava iyice soğumuş ve buzullar önemli  miktarda  artmıştır.  Dönemin  sonlarına  doğru  buzul  çağı başlamıştır.  Birçok  hayvan  artık  modern  biçimlerine  ve  ebatlarına kavuşmuştur. Bu dönemde hominidler hızla evrimleşmişlerdir ve evrim sürecindeki belki de en önemli olay olan iki ayak üzerinde dik yürüme konusunda  uzmanlaşmışlardır. Ayrıca  dönemin  sonlarına  doğru Homo cinsinin ilk üyeleri ortaya çıkmıştır.c. Kuaterner(2.58-Günümüz):-Pleistosen (2.58  Milyon -10.000): Buzul çağı olarak bilinen bu dönemde hem insan hem hayvanlar için önemli göçler meydana gelmiştir. Dönem sonunda  birçok  hayvan  türü  yok  olmuştur.  Ancak  bu  yok  oluşun öncekilerden farkı, insan etkisinin de neden olmuş olma ihtimalidir. Bu  dönemde büyük yırtıcılar ve mamut gibi dev otoburlar hüküm sürmüş ve dönem  bitmeden  yok  olmuşlardır.  İnsan  evrimi  bu  dönemde  en  hızlı seyrini göstermiş; anatomide hızlı değişmeler olmuş ve anatomik modern insan bu dönemde ortaya çıkmıştır. Bu dönem buzul çağının sona ermesi  ve ılıman iklimin başlaması ile biter.-Holosen(10.000-Günümüz): Önceki dönemler ile karşılaştırıldığında süre anlamında en kısa dönem olmasına rağmen, teknolojik gelişmelerin çok hızlı gelişmesi doğa tarihi anlamında olmasa bile, insanlık tarihi anlamında değişimin  en  çok  olduğu  dönemdir.  Genel  olarak  jeolojik  çağ  olarak tanımlanmaz. Hazırlayan: Ahmet İhsan Aytek Kaynaklar: Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/  

http://www.biyologlar.com/dunyanin-tarihi-ve-onemli-doga-olaylari

Zooming in on bacterial weapons in 3-D

Zooming in on bacterial weapons in 3-D

The plague, bacterial dysentery, and cholera have one thing in common: These dangerous diseases are caused by bacteria which infect their host using a sophisticated injection apparatus. Through needle-like structures, they release molecular agents into their host cell, thereby evading the immune response. Researchers at the Max Planck Institute for Biophysical Chemistry in Göttingen in cooperation with colleagues at the Max Planck Institute for Infection Biology in Berlin and the University of Washington in Seattle (USA) have now elucidated the structure of such a needle at atomic resolution. Their findings might contribute to drug tailoring and the development of strategies which specifically prevent the infection process. Hundreds of tiny hollow needles sticking out of the bacterial membrane – it is a treacherous tool that makes pathogens causing plague or cholera so dangerous. Together with a base, embedded in the membrane, these miniature syringes constitute the so-called type III secretion system – an injection apparatus through which the pathogens introduce molecular agents into their host cell. There, these substances manipulate essential metabolic processes and disable the immune defines of the infected cells. The consequences are fatal as the pathogens can now spread within the organism without hindrance. To date, traditional antibiotics are prescribed to fight the infection. However, as some bacterial strains succeed in developing resistances, researchers worldwide seek to discover more specific drugs. The exact structure of the 60 to 80 nanometre (60 to 80 millionths of a millimetre) long and about eight nanometre wide needles has so far been unknown. Classical methods such as X-ray crystallography or electron microscopy failed or yielded wrong model structures. Not crystallisable and insoluble, the needle resisted all attempts to decode its atomic structure. Therefore Adam Lange and Stefan Becker at the Max Planck Institute for Biophysical Chemistry together with a team of physicists, biologists and chemists chose a completely novel approach. In cooperation with David Baker at the University of Washington, and Michael Kolbe at the Max Planck Institute for Infection Biology, the scientists successfully combined the production of the needle in the laboratory with solid-state NMR spectroscopy, electron microscopy, and computer modelling. The researchers deciphered the structure of the needle atom by atom and visualised its molecular architecture for the first time in the angstrom range, a resolution of less than a tenth of a millionth of a millimetre. This image shows syringes isolated from Shigella flexneri. Adding soluble needle protein leads to a spontaneous elongation of some needles. This required progresses in several fields. "We have made big steps forward concerning sample production as well as solid-state NMR spectroscopy," says Adam Lange. "Finally, we were also able to use one of the presently most powerful solid-state NMR spectrometers in Christian Griesinger's NMR-based Structural Biology Department at our Institute." With 20 tesla, the magnetic field of this 850 megahertz spectrometer is about 400,000 times as strong as that of the earth. "We were surprised to see how the needles are constructed," says Lange. As expected, the needles of pathogens causing diseases as diverse as food poisoning, bacterial dysentery, or the plague show striking similarities. However, in contrast to prevailing assumptions, the similarities are found in the inner part of the needles whereas the surface is astonishingly variable. According to the scientist, this variability might be a strategy of the bacteria to evade immune recognition by the host. Changes on the surface of the needle make it difficult for the host's immune system to recognize the pathogen. The scientists Lange, Kolbe, Becker, and their Max Planck colleagues Christian Griesinger und Arturo Zychlinsky, have focused on the bacterial injection apparatus for several years. Together with the Federal Institute for Materials Research and Testing they already showed in 2010 how bacteria assemble their miniature syringes. The discovery of their structure in atomic detail not only enables researchers to gain new insights into how these pathogens outwit their host cells, it also offers the prospect to block the syringe assembly and the delivery of the bacterial factors using tailored molecules. Such substances, referred to as antiinfectives, could act more specifically and much earlier during infection than traditional antibiotics. "Thanks to our new technique, we can produce large amounts of needles in the lab. Our aim is now to develop a high-throughput method. This will allow us to search for new agents that prevent the formation of the needle," explains Stefan Becker. Source : Max-Planck-Gesellschaft http://www.biologynews.net

http://www.biyologlar.com/zooming-in-on-bacterial-weapons-in-3-d

Doğa Tarihi Çalışmaları Kronolojisi

MÖ 2500-600: Babiller matematik çalışmalarına başlamışlardı. Bir çemberi 360 dereceye bölmüşler, 60 dakika ve 60 saniyeyi belirlemişlerdir. Tarımsal faaliyetlerini düzenlemek için sel baskınlarını hesaplamaya yönelik bir takvim oluşturmuş ve bir yılı 4.5 dakikalık yanılma payı  ile  hesaplamışlardı.  MÖ  2000  e  gelindiğinde  arkeolojik  kayıtlardan  ele  geçen papirüslerde Mısırlıların tedavi yöntemleri geliştirdiklerini görüyoruz. Nil’in hareketlerine göre seneyi dörder aylık üç mevsime ayırmışlardı ve bir yılı 365 gün olarak belirlemişlerdi.     MÖ  6.  Yüzyıl: MÖ  570’li  yıllarda  Yunan  filozof  Xenophanes  dağlarda  bulduğu  deniz kabuklarından ilham alarak ilk jeolojik teoriyi oluşturdu. Dünyanın ardışık tufanlar yaşadığı fikrini ortaya attı. İnsanların yaratıldıkları formda kaldıklarını ve hiç değişmedikleri fikrini savunan  dine  eleştiri  getirdi.  530’lı  yıllarda  ise  başka  bir  Yunan  filozof  ve  astronom Anaximander evrim fikrini ortaya attı. Canlıların ilk önce balçıktan oluştuklarını ve insanların diğer  türlerde  evrimleştiğini  dile  getirdi.  Aynı  dönemde  Yunan  matematikçi  ve  filozof Pythagoras ise dünyanın yuvarlak olduğunu savundu.  MÖ 5. Yüzyıl: Bu yüzyıl tarihin babası olarak adlandırılan Heredot’un yaşadığı yüzyıldır (484-425). Historia adlı eserinde genel olarak tarihi konulara yer verse de coğrafya ve sosyolojik bilgiler de içerir. Heredot insan çeşitliliğinin çevresel şartlardan kaynaklandığını savunuyordu; ona göre bu çeşitlilik çevreye yapılan uyuma göre belirleniyordu. Deneysel araştırmalar da yaptı.  Mısır  ve İran’dan  topladığı  kafataslarına  taş  ile  vurarak  dayanaklıklarını  ölçtü  ve Mısırlıların  daha  kalın  kafatasına  sahip  olduğu  sonucuna  vardı  ve  İranlıların  kafalarını korumak için bu yüzden başlık taktıklarını ve mısırlıların takmadıklarını açıkladı. Tıp tarihini en  önemli  kişilerinden  Yunanlı  bilgin  Hipokrat  da  bu  dönemde  yaşamıştır  (460-377). Çalışmaları Corpus Hippocraticum adlı eserinde toplanmıştır. Hipokrat vücudu bir organizma olarak görmüş ve vücudun anlaşılmasının ancak çevre ve davranışlar ile ilişkisinin anlaşılması ile mümkün olabileceğini iddia etmiştir. MÖ 4. Yüzyıl: Yunan bilgin Aristo bu dönemde yaşamış ve felsefi konuların yanında zooloji ve anatomi  üzerine  de  çalışmalar  yapmıştır  (384-322). Historia   Animalium adlı  yapıtında insanlar,  maymunlar ve kuyruksuz büyük maymunlar arasındaki benzerlikleri tanımlamış ve aralarında  önemli  bir  bağ  olduğunu  söylemiştir.  Aristo  da  insan  çeşitliliğinin  çevresel nedenlerden kaynaklandığını savunmaktadır. MÖ 314 yılında Yunan filozof ve botanikçi Theophrastus yazdığı iki botanik kitabı ile –Historia  plantarum ve Plantarum  causae-450 bitkiyi kaydetti. Bu daha sonraki botanik kitaplarına temel olmuştur. Botaniğin kurucusu olarak anılan Theophrastus ayrıca bilinen ilk jeoloji kitabının da yazarıdır.MÖ 3. Yüzyıl:MÖ 240’lı yıllarda Yunan coğrafyacı ve matematikçi Eratosthenes dünyanın çevresinin 46.000 km olduğunu hesapladı. Ayrıca eylem ve boylamları gösteren ilk dünya haritasını da üretti. MÖ  1.  Yüzyıl: MÖ  20’li yıllarda  Yunan  coğrafyacı  Strabo  var  olan  tüm  coğrafi   bilgiyi Geographicaadını verdiği 17 ciltlik eserinde topladı.MS 2. Yüzyıl: Bu dönemin bilginlerinden Mısır-Yunanlı bilgin Ptolemy organik dünya ile inorganik dünyanın yaradılışta oluşturulduğunu ve yaradılıştan beri herhangi yeni bir türün olmadığını savunmuştur.  MS  11.  Yüzyıl: 1086  yılında  bir  Çin  kitabında  erozyon,  yerkabuğunun  yükselmesi  ve sedimantasyon gibi jeoloji kavramları açıklandı. Bu yüzyılın sonlarına doğru (yaklaşık 1190 yılında) Avrupa’da manyetik pusula kullanılmaya başlandı. MS 15.Yüzyıl: Bu yüzyıl ünlü İtalyan bilgin Leonardo da Vinci’nin yaşadığı yüzyıl olarak bilim tarihinde  önemli  bir  yer  yutar  (1452-1519).  Fizik,  biyoloji,  jeoloji,  anatomi,  mimarlık, mühendislik, resim, heykel, müzik, botanik ve matematik gibi alanlarda çok önemli çalışmalar yaparak gerçek anlamda bir bilgin olma sıfatına layık olmuştur. Ölü canlılar üzerinde yaptığı çalışmalar ile 750 den fazla anatomi çizimi yaparak anatomi anlamında çok faydalı bilgileri ortaya çıkarmıştır, ayrıca kan ve damarlar üzerine yaptığı çalışmalar kan dolaşımı sisteminin anlaşılması  için  zemin hazırlamıştır.  Yaptığı  birçok  mekanik  çizimin  yanında  (helikopter, paraşüt, matbaa, İstanbul’a boğaz köprüsü gibi), fosiller üzerine yaptığı çalışmalar ile de doğa bilimlerin büyük katkılar sağlamıştır.   MS 16. Yüzyıl: 1517 yılında İtalyan bilim insanı Girolamo Fracastoro fosilleri organik kalıntılar olarak açıkladı. 1543 yılında modern astronominin kurucusu olarak anılan Polonyalı Nicolaus Copernicus güneşin merkezde olduğu gezegen hareket sistemini De  revolutionibusorbium coelestium(Göksel Kürelerin Devinimleri Üzerine) adlı eserin açıkladı ki bu bilim dünyasında bir  devrim  oldu. Heliosentrik  (güneş  merkezli)  bir  sistem  olduğunu  ve  gezegenlerin mükemmel birer dairesel yörüngelerde hareket ettiklerini savundu. Kitabı 1616 yılında kilise tarafından yasaklansa da 1835 yılında yasaklar listesinden çıkarıldı. Aynı yıl (1543) bilim dünyasında başka bir önemli gelişme daha yaşandı. Modern anatominin kurucusu olarak bilinen Hollanda’lı anatomist Andreas Vesalius insan anatomisi üzerinde yaptığı çalışmalarını De humani corporis fabrica libri septem (insan vücudu yapısı üzerine yedi kitap) adlı eserinde topladı. Kitabı birçok insanı kesip inceleyerek yaptığı çalışmalara dayanmakta olup, daha önceki bir çok çalışmayı da çürütmüştür. 1544 yılında Alman teolog Sebastian Münster ilk dünya coğrafyası dergisini bastı. Alman mineralog Georgius Agricola 1546 yılında yazdığı eseri  olan De natura fossilium’de (Fosillerin doğası üzerine) ‘fosil’ terimini yer altından kazılarak çıkarılmış her şey olarak tanımladı. 1570 yılında ilk geniş kapsamlı dünya haritası Hollandalı coğrafyacı Abraham Ortelius tarafından basıldı. Bu yüzyılın sonlarında yine doğa tarihinin önemli bilginlerinden İtalyan Galileo Galilei (Galileo olarak bilinir) önemli keşifler yapmıştır. Aristoteles’in hareket teorilerini çürütüp, Copernicus’un güneş merkezli evren teorisini desteklemiştir. MS 17. Yüzyıl: 1608 yılında Hollanda’da optikçi Hans Lippershey ilk teleskopu icat etti ki bu gökbilim açısından dönüm noktalarından biri oldu. Bundan hemen bir yıl sonra Galileo teleskop yardımı birçok gezegene ait tanımlamalar yaptı. Aynı yıl Lippershey yine optik ile uğraşan Zacharias Jansen ile beraber mikroskobu icat ettiler. Mikroskop da teleskop gibi bilim tarihinde dönüm noktası olan icatlardan biri oldu. 1643 yılında İtalyan fizikçi Evangelista Torricelli  hava  basıncını  ölçemeye  yarana  barometreyi  icat  etti.  1654 yılında  İrlandalı başpiskopos James Ussher Annlium  pars  postierior adlı eserinde, yaptığı hesaplamalara dayanarak dünyanın milattan önce 23 Ekim 4004 tarihinde yaratıldığını öne sürmüştür.  17. Yüzyılın ikinci yarısında İngiliz fizikçi Sir Isac Newton’un önemli buluşlarına sahne oldu. 1665 yılında evrenselyerçekimi fikrini ortaya attı.  1668 yılında da aynalı teleskopu icat etti. 1687 yılında  3  ciltlik  büyük  eseri  olan Philosophiae  naturalis  principia  mathematica’yı (Doğa felsefesinin  matematiksel  ilkeleri) bastı ki bu eser şimdiye kadar yazılmış en büyük bilim kitaplarından biridir. Bu yüzyılın en öneli bilim adamlarından birisi de Danimarkalı anatomist ve jeolog Nicolaus Steno’dur. İnsan ve hayvanların beyinlerini incelemiş ve beyin epifizlerinin benzer olduğunu göstererek bunların insanlara özgü olduğunu söyleyen Descartes’in tezlerini çürütmüştür. Anatomi çalışmaları olsa da asıl ününü jeoloji çalışmaları ile kazanmış ve jeolojinin babası unvanını almıştır. Üst üste yerleşmiş olan tabakalardan aşağıda olanın daha önce oluşmuş olduğunu belirleyerek jeoloji ve paleontoloji bilimine çok büyük katkı sağlamıştır.  Bu ilkeyi ve keşfettiği diğer ilkeleri 1669 yılında yayınladığı De  Solido  Intra  Solidum  Naturaliter  Contento Dissertationis Prodromus adlı eserinde açıklamıştır.  MS 18. Yüzyıl: 1714 yılında Alman fizikçi Daniel Gabriel Fahrenheit termometreyi icat etti. 1735 yılı biyoloji anlamında çok önemli bir yıldı. İsveçli botanikçi Carl Linnaeus yayınladığı eseri Systema naturaeile biyoloji dünyasında çok önemli bir yer aldı. Linnaeus canlıların cins ve tür isimleri ile sınıflandırılmasını öngören çalışması ile taksonominin temellerini attı. 1743 yılında İngiliz doğa bilimci Christopher Packe ilk jeoloji haritalarından birini çizdi.  18. Yüzyılın ikinci  yarısında  biyolojik  bilimler  anlamında  Fransız  doğa  bilimci  Georges-Louis  Leclerc, Comte de Buffon önemli çalışmalar yaptı. 1749-1804 (öldükten sonra da çalışmaları basıldı) yılları arasında 44 serilik Historie  naturelle adlı eseri yayınlandı. Hayvanların aynı olmadığını ve çeşitlilik gösterdiğini savunan Buffon benzer türlerin ortak atadan geldiğini de savunarak daha sonra gelişecek evrim teorilerine de katkı yapmıştır. Büyük ölçekte bir evrimi inkâr etse de  canlılar  arasında  çevre  şartlarına  göre  değişimler  olduğunu  savunmuştur.  Ayrıca çalışmaları Lamarck ve Cuvier gibi önemli bilim insanlarına esin kaynağı olmuştur. 1775 yılında On  the  Natural  Variety  of  Mankind adlı eserinde Alman anatomist ve antropolog Johann  Friedrich  Blumenbach insanları kafatasları üzerinde yaptığı çalışmalara göre beyaz, siyah, sarı, kırmızı ve kahverengi ırk olmak üzere 5 ırka ayırmıştır. Köken olarak beyaz ırkın kafatasının  oluştuğunu  ve  diğer  ırkların  çevreye  uyum  sonucu  bundan  farklılaştıklarını savunmuştur. Ayrıca morfolojinin çevreye uyum sonucu değişebileceğini ancak türleşmenin özel bir oluşum süreci ile meydana geldiğini savunmuştur. Yine aynı dönemde yaşamış olan Amerikalı teolog  Samuel  Stanhope  Smith  ise Essay  on  the  Causes  of  Variety  of  Complexion and Figure in the Human Species adlı eserinde insan çeşitliliğinden bahsetmiştir (1810). Ona göre insanoğlu ırksal kademelere ayrılamaz ve tekdir. Farklılıkları sadece çevresel etkiler belirler. Deri renginin de iklimden etkilendiğini savunmuştur. 1779  yılında İsviçreli jeolog Horace Bénédict de Saussure ‘jeoloji’ terimini kullanmıştır. Yüzyılın sonunda 1799 yılında Alman doğa bilimci Alexander von Humboldt Jura dönemini tanımlamış ve yine aynı yıl İngiliz jeolog  William  Smith  kayaç  tabakalarının  içerdiğifosilleri  ile  tanımlanabileceğini  ortaya atmıştır.   MS 19. Yüzyıl: Evrim çalışmaları anlamında altın bir yüzyıldır. Fransız doğa bilimci Jean-Baptiste Lamarck daha sonra teorisi çürütülse de evrim teorilerinin başlaması açısından çok önemli bir bilim adamı olarak bilinir. 1809 yılında yayınladığı eseri Philosophie zoologique ou exposition des considerations relatives a l’histoire naturelle des animaux’de (Zoolojik felsefe: hayvanların doğal tarihlerininin yorumlanması) canlıların çevresel şartlar gereği özellikler kazandığı ve kazanılmış bu yeni özellikleri sonraki nesillere aktardığını savunmuştur. Yine bu dönemde  yaşamış olan  Georges  Cuvier  yaptığı  çalışmalar  ile  karşılaştırmalı  anatomi  ve omurgalı  paleontolojisinin  öncüsü  konumundadır.  Evrim  fikrine  karşı  çıkan  Cuvier’in görüşüne göre dünya belirli zamanlarda büyük tufanlar geçirmiş ve bu tufanlar ile canlılar yok olup ardından yeni canlılar ortaya çıkmıştır (katastrofizm). Bu dönemde yaşayan İngiliz nüfus bilimci Thomas Malthus da doğa bilimcisi olmamasına rağmen evrim teorisine önemli katkılar sağlamıştır. 1729 ile 1826 yılları arasında 6 baskı olarak yayınlanan eseri An  Essay  on  the Principle   of   Population‘da;  nüfusların  besin  kaynakları  aşacak  şekilde  büyüdüğünü,  bu büyüme sonucu toplumlarda besin kaynağı için çekişme olacağı ve bu çekişmeye herkesin ayak uyduramayacağını ve dolayısıyla sadece bazı canlıların hayatta kalacağını savunmuştur. Bu eseri Wallace ve Darwin tarafından okunarak doğal seçilim fikrine ilham kaynağı olmuştur.   Darwin’le berabermodern evrim teorisinin öncülerinden birisi de Galli doğa bilimci Alfred Russel Wallace’dir. Doğal seçilim fikrini Darwin’den bağımsız olarak bulan Wallace Darwin’e 1858 yılında yazdığı mektupla fikirlerini belirtmiş ve bu mektup Darwin’in kitabını yazmasını hızlandırmıştır. Darwin gibi çıktığı yaptığı bir yolculuk sonrası fikirleri gelişmiştir (Malay takımadaları, Güneydoğu Asya). 1871 yılında yayınladığı eseri Contributions to the Theory of Natural  Selection (Doğal seçilim teorisine katkılar) kendi fikirlerini açıklayarak Darwin’in teorisine destek olmuştur. 1815 yılında William Smith fosillere dayalı kayaç sınıflandırması ile ilgili kitabını yayınladı (Strata  Identified  by  Organized  Fossils). 1822 yılında Kretase dönemi Omalius d’Halloy tarafından tanımlandı. Aynı yıl Mary Mantell bir iguanadona ait olan ilk dinozor fosilini buldu. 1830 yılında İskoç jeolog Charles Lyell dünyanın yüzeyinin geçmişte geçirdiği fiziksel, kimyasal ve biyolojik süreçlerin aynılarının bugün de geçirdiğini öne sürdüğü üniformitarizm’ teorisini ortaya attı. 1830-1833 yıllarında yayınladığı 3 ciltlik eseri Principles of  Geology modern jeolojinin gelişmesinde çok önemli bir yer tutmuştur. Bu kitabın Charles Darwin’i de etkilediği düşünüldüğünde sadece jeoloji değil aynı zamanda biyoloji  bilimi üzerinde de ne kadar etkili olduğu ortaya çıkar. Ayrıca Lyell Pliyosen, Miyosen ve Eosen dönemlerini de tanımlamıştır. Arka arkaya gelen bir süreçte; 1834 yılında da Friedrich August von Alberti Trias dönemi, 1835 yılında Roderick Murchison Silüryen dönemi ve Adam Sedgwick Kambriyen dönemi, 1839 yılında Adam Sedgwick ve Roderick Murchison Devoniyen dönemi, 1841 yılında ise yine Roderick Murchison Permiyen dönemi tanımladı. 1840 yılında İsviçreli zoolog ve jeolog Louis Agassiz  buz  devirleri  teorisini ortaya attı. Alp’lerde yaptığı çalışmalar sonucu buzulların hareket ettiğini gösterdi ve önceki dönemlerde dünyanın buz çağı yaşadığını iddia etti. Bu yüzyılında özellikle evrim ve paleoantropoloji anlamında çok önemli keşifler yapıldı. 1856 yılındaAlmanya’nın  Neander  vadisinde,  daha  sonra Homo   neanderthalensis olarak sınıflandırılacak, Neandertal fosilleri bulundu. 1858 yılında Amerikalı jeolog Antonio Snider-Pellegrini kıta kayması teorisini ortaya attı. 1869 yılında İsviçreli fizikçi Friedrich Miescher yaptığı deneyler sonucu saf DNA elde etti ve bu genetik çalışmalar anlamında bir dönüm noktası oldu. Bu dönem genetik bilimi için başka bir anlam daha ifade eder. 1822-1884 yılları arasında yaşamın olan Avusturyalı botanikçi Gregor Mendel bezelyelerüzerinde yaptığı çalışmalar ile bir türün özelliklerinin kalıtım yoluyla sonraki kuşaklara aktarıldığını bularak genetik biliminin temellerini atmıştır.Mendel’in kalıtım yasaları 20. yüzyılın başlarına kadar pek  kabul  görmese  de  bu  tarihlerde  yapılan  deneyler  ile  ispatlanarak  genetiğin  temel ilklerinden biri halini almıştır.Yüzyılın sonlarına doğru İsveçli kimyager Svante Arrhenius küresel ısınma kavramını dile getirdi. Özel Bölüm ‘Charles Darwin ve Evrim Teorisi’: Bu yüzyılın bilim tarihi açısından şüphesiz en önemli olaylarından biri, hatta en önemlisi, Charles Darwin’in geliştirdiği evrim teorisidir. Biyolojinin temellerinin atıldığı bu önemli olay için ayrı bir yer açmakta fayda var. 1809 -1882 yılları arasında yaşayan İngiliz doğa bilimci Darwin yaptığı işle ironik olarak teoloji eğitimi almak üzere Edinburgh’a gönderilse de içindeki doğa bilimi tutkusu onu orada 3 seneden fazla tutamadı. HMS Beagle adlı askeri araştırma gemisi ile 1831 de başlayan ve 5 yıl süren gezisi daha sonra biyolojinin en önemli konularından biri olacak evrim teorisinin kurulmasını sağladı. Lamarck’ın teorisi gibi bazı değişim teorileri olsa da o zamana kadar genel görüş canlıların olduğu şekilde yaratıldıkları idi. Darwin Galapagos adalarında yaptığı incelemelerde farklı ortamlarda birbirlerine benzer ancak farklı hayvanlar olduğunu tespit etti. Buradan yola çıkarak canlıların zaman içerisinde değişen çevre şartlarına uyum sağlamak için değişim geçirdiklerini, değişimi daha iyi geçiren ve uyum sağlayan canlıların hayatta kalırken güçsüz canlıların ise yok olduğunu öne sürerek doğal seçilim tezini ortaya attı. Geziden döndükten sonra kitap çalışmalarına başlayan  Darwin 1858 yılında Wallace’den aldığı  mektupta  fikirlerinin  aynı  olduğunu  görüp  çalışmalarının  hızlandırdı. 1859  yılında biyoloji ve doğa bilimleri tarihinin belki de en önemli kitabı olan ‘On the Origin of Species by Means  of  Natural  Selection,  or  the  Preservation  of  Favoured Races in the Struggle for Life’ı’(Doğal Seçilim Yoluyla Türlerin Kökeni ya da Hayat Kavgasında Avantajlı Irkların Korunumu Üzerine) yayınladı.Burada değinilmesi gereken nokta, Darwin’in bu teoriyi ve çalışmayı hazırlarken  birçok  farklı  disiplindenbilim  insanının  çalışmalarını  okuması  ve  onlardan esinlenmesidir (Lyell ve Malthaus gibi). Ayrıca Darwin’in hiçbir genetik bilgisi olmadan ve kalıtım yasasını bilmeden bu teoriyi geliştirmesi de zekâsının göstergesidir. Genel evrim kuramının yanında Darwin insan evrimi üzerine de çalışmış ve bu konuda 1871 yılında The Descent  of  Man,  and  Selection  in  Relation  to  Sex (İnsanın türeyişi ve seksüel seçme) adlı eserini  yayınlamıştır.  Darwin  bu  kitabında  değindiği  seksüel  seçme  doğal  seleksiyon kavramının temellerinden biri lup; karşı cins tarafında tercih edilmek için daha iyi özelliklere sahip olmayı ifade eder. Daha büyük vücut yapısı, daha kuvvetli olma, daha becerili olma, daha zeki olma gibi özellikle bunların arasında sayılabilir. Bu kitapların yanında, jeoloji, zooloji ve botanik üzerine birçok eseri de vardır.   MS 20. Yüzyıl: 1927 yılında Belçikalı astronom Georges Lemaitre evrenin yaklaşık 13,7 milyar yıl önce aşırı yoğun ve sıcak bir noktadan meydana geldiğini savunan‘Big Bang’ teorisini ortaya attı(Big Bang ismi sonradan verildi).1947 yılında Amerikalı kimyager Willard F. Libby karbon tarihleme metodunu bulmuştur ki bu tarih öncesi bilimler için çok önemli bir dönüm noktasıdır. 1953 yılında genetik çalışmalar için başka bir dönüm noktası oldu ve Amerikalı James Watson ve İngiliz Francis Crick DNA’nın çift sarmallı yapısını çözdüler. 1968 yılında bazı kayalar üzerinde 3 milyar yıl öncesine giden canlı kalıntıları bulundu. 1984 yılında Russ Higuchi  150  yıl önce  ölmüş bir  hayvandan DNA örneği  almayı başarmış  ve  antik DNA çalışmalarının başlamasını sağlamıştır. İlk çalışmayı Higuchi’nin yapmasına rağmen antik DNA’nın çalışmalarının lideri konumunda İsveçli bilim insanı Svante Pääbo bulunur. 1985 yılında bir insan mumyasından DNA çıkarmayı başararak bu çalışmaların öncüsü olmuştur.  1988 yılında İsrailli ve Fransız bilim insanları tarafından bulunan fosiller, Homo sapiens’in önceki düşünülenin neredeyse iki katı bir zaman dilimi olan 90.000 yıllık bir süreç öncesinde yaşadıklarının ortaya koydu. 1987 yılında Amerikalı bilim adamları Rebecca Cann, Mark Stoneking ve Alan Wilson yaşan insanlar üzerinde yaptıkları DNA çalışmaları ile mitokondriyalDNA’larının kökeninin yaklaşık 200 bin yıl öncesi muhtemelen Afrika’da yaşayan bir kadına gittiğini tespit ettiler (bu yüzden mitokondriyal  Havva  olarak  da  adlandırılır).  Afrika’dan  çıkış  kuramını  desteklemesi  ve modern insanın kökeni hakkında bilgi vermesi açısından çok önemli bir gelişmedir.  1991 yılında Amerikalı jeologlar dünyaya 65 milyon önce bir göktaşı çarptığını onayladılar. 1994 yılında Etiyopya’da Amerikalı paleoantropolog Tim White liderliğindeki ekip 4,4 milyon yıllık hominid kalıntıları buldular (Ardipihtecus ramidus). Bu buluntu iki ayak üzerinde dik yürüme yetisinin  bilinenden  daha  eski  bir  zamanda  başladığını  göstermiş  olmakla  beraber,  bu hominidlerin ormanlık bir alanda yaşamış olmaları iki ayak üzerinde dik yürüme yetisini ortaya çıkaran mekanizmalar ile ilgili teorilerin tekrar gözden geçirilmesini sağladı. 1995 yılında İspanya’da bulunan taş aletler Homo cinsinin 1 milyon yıldan daha önce Avrupa’da yaşadıklarının gösterdi.  MS 21. Yüzyıl: 2002 yılında Güney Afrika’da Blombos mağarasında bulunan ve 70.000 yıl öncesine tarihlenen iki adet boyalı süs eşyası insanın soyut düşünme yeteneğinin sanılandandaha önce başladığını ortaya koymuştur. 2000 yılında Kenya’da (Orrorin tugenensis) bulunan ve 6 Milyon yıl ile tarihlendirilen hominid ile 2002 yılında Çad’da bulunan 7 milyon yıllık hominid kalıntıları(Sahelantropus tchadensis) 21. Yüzyılın başında paleoantropoloji bilgilerini geliştirmiş ve en eski hominid kalıntıları konumuna geçmişlerdir. 2006 yılında Svante Pääbo liderliğinde  başlayan  Neandertal  genom  projesi  2010  yılında  sonuçlarını  açıklamış  ve Neandertaller  ile  modern  insan  arasında  gen  alışverişiolduğu  açıklanıp,  Afrika  dışında yaşayan  insanların  belli  oranlarda Neandertal geni  taşıdıkları ortaya koyulmuştur.  2008 yılında Sibirya’da Altay dağlarında yer alan Denisova mağarasında yaklaşık 40 bin yıllık bir parmak kemiği bulundu. Bu kemik üzerinde yapılan DNA çalışmaları bu kemiğin ne modern insana ne de Neandertallere ait olduğunu ortaya koydu. Özel Bölüm ‘Leakey Ailesi’: İnsan evrimi çalışmalarında en önemli malzemeler olan fosillerin bulunması konusunda Leakey ailesinin yeri çok önemlidir ve bu yüzden ayrı bir başlıkta  değinmekte fayda var. Ailenin ilk nesil paleoantropologları Mary ve Louis Leakey’dir. Louis Leakey Kenya’da görevli bir İngiliz misyonerin oğlu olarak dünyaya geldikten sonra Cambridge’de antropoloji okudu. 1926-1935 yılları arasında doğa Afrika’da bir dizi arkeolojik ve paleoantropolojik çalışma gerçekleştirdi. 1960 yılında Olduvai Gorge’da Homo  habilis olarak sınıflandırılan, erken hominidlere göre daha büyük beyne sahip olan ve alet yapabilen bir hominid keşfetti. Louis Leakey’in buluntuları insanlığın kökeninin Afrika olduğunu ve bu kökenin  sanılandan  çok  daha  eskiye  gittiğini  gösterdi.  1936  yılında  yine  bir  İngiliz paleoantropolog  olan  Mary  Leakey  ile  evlendi.  Mary  Leakey  Londra’da  eğitimini tamamladıktan sonra 1935 de Tanzanya’ya gelerek 1 yıl sonra evleneceği Louis Leakey’in kazısına katıldı. O da Louis Leakey gibi hayatının çok büyük bir kısmını doğa Afrika’da fosil arayarak geçirdi. 1959 yılında Australopithecus boisei cinsine ait 1.75 milyon yaşında hominid fosillerini keşfetti. 1976 yılında çalışmalarını Tanzanya’nın başka bir bölgesi olan Laetoli’ye kaydırdı ve 1978 yılında o zamana kadar insan atalarına ait bulununmuş en eski izleri keşfetti. Bunlar 3.75 milyon yıl ile tarihlendirilen 2 farklı hominidin volkanın küller üzerinde bıraktığı ayak izleriydi. Eski olmasının yanında iki ayak üzerinde dik yürüme ile ilgili de önemli bilgiler vermesi açısından bu buluş çok önemlidir. Leakey ailesinde üçüncü nesli Mary ve Louis Leakey’lerin oğlu Richard Leakey ve eşi Meave Leakey temsil eder. 1944 doğumlu Richard Leakey Omo, Koobi Fora ve Batı Turkana’da çalışmalar yaptı. 1967 yılında Omo’da yaptığı çalışmalar esnasında şimdiye kadar bulunmuş en eski Homo  sapiens fosillerinden  biri  olan Omo kafatasını ve bazı vücut kemiklerini keşfetti. Yaklaşık 160.000 yaşında olan bu kafatası Homo  sapeins’inen  eski  örneklerinden  biri  olup  modern  insanın  ortaya  çıkışının  tarihi açısından çok önemli bir fosildir. Daha sonra Koobi Fora’da çalışmalara başlayan Richard Leakey 1969 yılında kaba yapılı Australopithecus olarak bilinen Paranthropus boisei‘ye ait bir kafatası buldu. 1.7 milyon yıl ile tarihlendirilen bu kafatası ile beraber taş alet olduğu düşünülen buluntular da ele geçmesi bu türün taş alet yapan veya kullanan ilk hominid olabileceğiniakla getirdi. Yine Koobi Fora’da yapılan kazılarda; 1972 yılında Homo rudolfensis sınıflandırılan 1.8 milyon yıllık; 1975 yılında Homo  erectus olarak sınıflandırılan 1.75 milyon yıllık ve 1976 yılında yine Homo  erectus olarak sınıflandırılan 1.6 milyon yıllık kafatasları bulmuştur.   Hazırlayan: Ahmet İhsan Aytek Kaynaklar: Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/

http://www.biyologlar.com/doga-tarihi-calismalari-kronolojisi

Uluslararası Müzeler Konseyi(Icom)

Konsey1946 yılında Paris’te farklı müzelerden uzmanlar tarafından kuruldu ve başkanlığa Chauncey  Hamlin  getirildi.  Hemen  ertesi  yıl  ise  Meksika’da  ilk  genel  kurullarının gerçekleştirdiler. 1965 yılına kadar geçen süreçte büyümeye başlayan konsey bu süreçte yedi konferans gerçekleştirdi. Bu konferanslarında ele alınan üç temel madde; müzelerin eğitici rolleri, sergiler ve kültürel maddelerin uluslararası dolaşımı ile bu maddelerinkorunmasıydı. Konsey70li yıllarında sonlarında gelişmekte olan ülkelerde de faaliyet göstermeye başladı. 1977 yılında Asya, Afrika ve Latin Amerika ülkelerinde müzeciliğin gelişmesine yardım etme ve müze uzmanları yetiştirme kararı alındı. Bu yıldan 1986 yılına kadar geçen süreçte konsey 2  temel  madde üzerinde yoğunlaştı. Bunlar; müzelerin toplumların gelişmesine olan katkıları politikasının sonuca varması ve müzecilik için mesleki ahlak kurallarının belirlenmesiydi. 90 lı yılların sonunda  kültürel  maddeleri  yasadışı  yollardan  ele  geçirilmesi  ve  kaçırılmasına  karşı çalışmalar başlatıldı. Konseyinmerkezi Paris’te olup 14 farklı ülkeden toplam 16 komite üyesinden oluşan bir heyet tarafından yönetilmektedir. Her sene genel kurul yapılırken, üç senede bir de müze uzmanlarının katılımı ile büyük bir konferans düzenlenir.Konsey birçok farklı disiplinde uzmanın bir arada çalıştığı 31 uluslararası komite ile çalışmalar yapar.Bu komiteler  ile  birlikte konseyin amacı; soyut  ve somut kültürel varlıkları korumak, müzecilik standartlarını  belirlemek,  bilimsel  bilgiyi  yaymak, kültürel  maddelerin  kaçakçılığı  ile savaşmak, diğer  birlikler  ile  işbirliği  yapmak  ve konsey üyeleri  için  geliştirici  tavsiyeler hazırlamaktır.  Ayrıca birliğe bağlı 117 ulusal komite de kendi bölgeleri ile ilgili çalışmalar yürütürler.Bu komiteler ayrıca birliğin strateji planlarını da hazırlarlar. Örneğin birliğin 2011 -2013 yılları için hazırladığı plana göre birliğin hedefleri; konsey üyeleri için üyelik değerini ve şeffaflığını arttırmak, kültürel miras ve müze uzmanlıkları geliştirmek, kültürel miras alanında birliğin  liderliğini  güçlendirmek ve  bu  stratejik  planın  hayata  geçirilmesini  sağlayacak kaynakları bulmak ve yönetmek olarak belirlenmiştir.Konsey1986 yılında müzecilik mesleği için ahlak kuralları belirlemiş ve 2004 bunlar günün şartlarına göre gözden geçirilerek düzenlenmiştir.Bu kurallar üye müzelerin uygulaması gereken minimum standartları belirlemiştir. Bunlar:1.Müzeler insanlığın kültürel ve doğal mirasını korur, yorumlarve tanıtımını yapar2.Müzeler koleksiyonları toplumun yararı ve gelişmesi için muhafaza ederler3.Müzeler birincil kanıtları bilgi elde etmek ve bilgiyi arttırmak için korur4.Müzeler doğal ve kültürel mirasın değerlendirilmesi, anlaşılması ve yönetilmesini sağlayacak imkânlar sağlarlar5.Müzeler kaynaklarından diğer kamu hizmetlerin yararlanmasıiçin imkânlar sağlarlar6.Müzeler koleksiyonlarının kökeni olan ve hizmet ettikleri toplumlar ile yakın bir işbirliği içinde olurlar7.Müzeler yasal çerçeve içinde çalışırlar8.Müzeler profesyonelce yönetilirlerBirliğin üye sayısı yaklaşık 30.000 olup birliğe üye müze sayısı 20.000 civarındadır. İngilizce, İspanyolca ve Fransızca birliğin resmi dilleri olarak kabul edilmiştir.Ayrıca 18 Mayıs her sene müzeler günü olarak kutlanmaktadır.Türkiye’de bu konseye üye olarak bir ulusal komite oluşturmuştur. Bu komitenin yönetmeliği ‘Milletler  arası  Müzeler  Konseyi  (ICOM)  Türkiye  Milli  Komitesi  Yönetmeliği’  olarak hazırlanmış ve Milli Eğitim Bakanlığı’nın 26.10.1970 tarih ve 7349 sayılı yazısı uyarınca 16.11.1970 yılında bakanlar kurulu tarafından onaylanarak yürürlüğe girmiştir. Burada önce çıkan maddelere baktığımızda; 4. madde müzeyi ‘Kültür eserlerini koruyan ve bu eserleri etüd, eğitim ve bedii zevki yükseltme amacıyla toplu halde teşhir eden kamu yararına çalışan, sanata, ilme, sağlığa, teknolojiye, ait koleksiyonları bulunan müesseselere müze adı verilir’ şeklinde  tanımlamıştır.  5.  madde  müzenin  kapsamını;  ‘Daimi  teşhir  bölümü  bulunan kütüp haneler ve arşiv merkezleri resmi şekilde halkın ziyaretine açık bulunan tarihi anıtlar tarihi anıtlara ait binaların kısım ve müştemilatı, tarihi, arkeolojik tabii önemi haiz mevkiler ve parklar, nebabat ve hayvanat bahçeleri, akvaryumlar ve benzeri teşekküller bu tarife girer’ şeklide açıklamıştır. 6. maddede amaçlar; (1) Türkiye müzelerini ve müzecilik mesleğini milletlerarası seviyeye yükseltmek ve temsil etmek,(2) Müzeleri ve müzecilik mesleğini korumak ve geliştirmek ve (3) Toplum hizmetine, bilgilerin yayılmasına ve milletlerarası karşılıklı  münasebetlerin  gelişmesine faydalı  olmak ‘ şeklinde belirtilmiştir. 6.  maddede belirtilen amaçların gerçekleştirilmesi için izlenecek yol ise 7. maddede; ’(1) ICOM Türkiye Milli Komitesi, Milletlerarası Müzeler Konseyi (ICOM) ve bu konseye bağlı Milli Komiteler ve ihtisas teşekkülleri ile temas ve münasebetler kurar, imkânlarına göre onlarla işbirliği yapar, (2) Türkiye’deki her çeşit müze faaliyetlerini dışarıdaki milli komitelere aksettirir ve çeşitli müze mensuplarının yabancı ülkelerdeki müzelerde yetişmeleri için imkanlar arar.  ICOM  ve ona  bağlı  milli  komiteler  arasında  mesleki  eleman  ve  teknik  malzeme  bakımlarından ihtiyaçlara uygun gelişmeyi sağlamak üzere karşılıklı tedbirler alınır. Bu alanda girişilecek her türlü işbirliği hususundaki teşebbüslerin gerçekleşmesine çalışır ve (3) Müze ve müzecilikle ilgili yayınlar yapar’ şeklinde kararlaştırılmıştır.   Hazırlayan: Ahmet İhsan Aytek   Kaynaklar:   Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/  

http://www.biyologlar.com/uluslararasi-muzeler-konseyiicom

Kültür ve Tabiat Varlıklarını Koruma Kanunu

Kanun 21.03.1983 tarihinde kabul edilmiş olup 2863 kanun numarası ile 23.03.1983 tarihinde resmi gazetede yayınlanarak yürürlüğe girmiştir. Kanunun amacı; ‘korunması gerekli taşınır ve  taşınmaz  kültür  ve tabiat  varlıkları  ile  ilgili  tanımları  belirlemek, yapılacak  işlem  ve faaliyetleri düzenlemek, bu konuda gerekli ilke ve uygulama kararlarını alacak teşkilatın kuruluş ve görevlerini tespit etmek’ olarak belirlenmiştir. Kanunun kapması ise; ‘korunması gerekli taşınır ve taşınmaz kültür ve tabiat varlıkları ile ilgili hususları ve bunlarla ilgili gerçek ve tüzelkişilerin görev ve sorumlulukları’ olarak belirlenmiştir. Her ne kadar doğa tarihi müzeciliği kapsamında olmasa da ikinci bölümde yer alan ‘Korunması Gerekli Taşınmaz Kültür ve Tabiat varlıkları’ kapmasına; tarihi mağaralar, kaya sığınakları; özellik gösteren ağaç ve ağaç toplulukları ile benzerleri de girer (Madde 6).Genel olarak doğa tarihi müzeciliği anlamında baktığımızda kanunun üçüncü bölümü olan ‘Korunması Gerekli Taşınır Kültür ve Tabiat Varlıkları’ doğa tarihi müzelerinin koleksiyonlarını içeren kalıntıları ilgilendirir. Bu madde uyarınca korunması gerekli taşınır kültür ve tabiat varlıkları; ‘jeolojik, tarih öncesi ve tarihi devirlere ait, jeoloji, antropoloji, prehistorya, arkeoloji ve sanat tarihi açılarından belge değeri taşıyan ve ait oldukları dönemin sosyal, kültürel, teknik ve ilmi özellikleri ile seviyesini yansıtan her türlü kültür ve tabiat varlıkları’ olarak belirlenmiştir (Madde 23 a fıkrası). Doğal varlıklar olarak olaya baktığımızda ise kanunun koruduğu tabiat varlıkları; ‘her çeşit hayvan ve bitki fosilleri, insan iskeletleri, çakmak taşları, volkan camları, kemik veya madeni her türlü aletler’ olarak karşımıza çıkar. Bu tabiat varlıkların hepsi 24. madde ile gözetim altına alınmıştır. Sözü geçen madde: ‘Devlet malı niteliğini taşıyan korunması gerekli taşınır kültür ve tabiat varlıklarının  Devlet  elinde  ve  müzelerde  bulundurulması  ve  bunların  korunup değerlendirilmeleri  Devlete  aittir.  Bu  gibi  varlıklardan  gerçek  ve  tüzelkişilerin  ellerinde bulunanlar, değeri ödenerek Bakanlık tarafından satın alınabilir.’ Burada bahsedilen tabiat varlıklarının  müzelere  alınması  ise  25.  madde  ile  belirlenmiştir.  Sözü  geçen  madde: ‘Dördüncü maddeye göre Kültür ve Turizm Bakanlığına bildirilen taşınır kültür ve tabiat varlıkları ile 23 üncü maddede belirlenen korunması gerekli taşınır kültür ve tabiat varlıkları, Kültür ve Turizm Bakanlığı tarafından bilimsel esaslara göre tasnif ve tescile tabi tutulurlar. Bunlardan Devlet müzelerinde bulunması gerekli görülenler, usulüne uygun olarak müzelere alınırlar.’ 26. madde müze kurma ve geliştirme görevini Kültür ve Turizm Bakanlığına verir. Aynı şekilde bu tür müzelerin kurulması için izin verme yetkisi de 26. madde ile Kültür ve Turizm Bakanlığına verilmiştir. Sözü geçen madde: ‘Bu Kanunun kapsamına giren kültür ve tabiat  varlıklarına  ait  müzelerin  kurulması,  geliştirilmesi  Kültür  ve  Turizm  Bakanlığının görevlerindendir. Bakanlıklar, kamu kurum ve kuruluşları, gerçek ve tüzelkişilerle vakıflar, Kültür ve Turizm Bakanlığından izin almak şartıyla, kendi hizmet konularının veya amaçlarının gerçekleştirilmesi için her çeşit kültür varlığından oluşan koleksiyonlar meydana getirebilir ve müzeler kurabilirler. Ancak, gerçek ve tüzelkişilerle vakıflar tarafından kurulacak müzelerin faaliyet konuları ve alanları, yapılacak başvuruda beyan olunan istekleri değerlendirerek, Kültür  ve Turizm  Bakanlığınca  verilecek  izin  belgesinde  belirlenir’.  Kültür  ve  tabiat varlıklarının yurtdışına çıkarılması ve bilimsel veya eğitsel amaçlarla kopyalarının çıkarılması ile ilgili şartlar da 32 ve 34. maddeler ile belirlenmiştir. Yurtdışına çıkarılma yasağı ve gerek olduğunu izin verilmesi ile ilgili yasa olan 32. madde; ‘Yurt içinde korunması gerekli taşınır kültür ve tabiat varlıkları yurt dışına çıkarılamaz. Ancak, milli çıkarlarımız dikkate alınarak, bunların  her  türlü  hasar,  zarar,  tehdit  veya  tecavüz  ihtimaline  karşı,  gideceği  ülke makamlarından  teminat  almak  ve  sigortalanmak  şartı  ile  yurt  dışında  geçici  olarak sergilendikten  sonra  geri  getirilmelerine;  Kültür  ve  Turizm  Bakanlığınca  teşkil  edilecek yükseköğretim kurumlarının Arkeoloji ve Sanat Tarihi bilim dallarının başkanlarından oluşan bilim kurulunun kararı ve Kültür ve Turizm Bakanlığının teklifi üzerine Bakanlar Kurulunca karar verilir’ şeklinde belirlenmiştir. 34. madde ise kopya çıkarılması şartlarını açıklar: ‘Kültür ve Turizm Bakanlığına bağlı ören yerleri ve müzelerdeki taşınır ve taşınmaz kültür varlıklarının öğretim,  eğitim,  bilimsel  araştırma  ve  tanıtma  amacı ile  fotoğraflarının  ve  filmlerinin çekilmesi, mulaj ve kopyalarının çıkartılması Kültür ve Turizm Bakanlığının iznine bağlıdır.’Bilindiği üzere doğa tarihi müzelerinde sergilenen malzemelerin büyük birçoğu kazılardan çıkan fosillerden oluşur. Bu konuda 41. madde; ‘Kazılarda meydana çıkan bütün taşınır kültür ve tabiat varlıkları, kazı yapan heyet ve kurumlar tarafından her yıl yapılan kazı sonunda Kültür ve Turizm Bakanlığının göstereceği Devlet müzesine nakil olunur. Kazı ve sondaj araştırmalarında elde edilen insan ve hayvan iskeletleri ile bütün fosiller, Kültür ve Turizm Bakanlığınca uygun görüldüğü takdirde, tabiat tarihi müzeleri ile üniversitelere veya ilgili diğer  Türk  bilim  kurumlarına  verilebilir’  şeklinde  düzenlenmiştir.  Bu  kanunda  belirtilen maddeler dışında, Kültür Varlıkları ve Müzeler Genel Müdürlüğü İle İlgili Mevzuatı altında bir ‘Müzecilik  Kılavuzu’  hazırlanmış  ve  bakanlık  makamının  onayı  ile  21.03.2001  tarihinde yürürlüğe girmiştir. Bu kılavuzun amacı; ‘1050 sayılı Muhasebe-i Umumiye Kanunu, 832 sayılı Sayıştay Kanunu ve 3386  sayılı  kanun  ile  değişik  2863  sayılı  Kültür  ve  Tabiat  Varlıklarını  Koruma  Kanunu kapsamına giren korunması gerekli taşınır kültür ve tabiat varlıklarının, envanteri ve ayniyat işlemlerinin müzelerce nasıl yapılacağına ilişkin  esas  ve  usulleri  tespit  etmek,  uygulamada birliği oluşturmak müzelerde ve ören yerlerinde bulunan taşınır ve taşınmaz kültür ve tabiat varlıklarının her türlü tehlikeye karşı korunması ve bunun için tüm olanakların kullanarak gerekli önlemlerin alınmasını sağlamak’ olarak saptanmıştır.Bu  kılavuzda  kültür  ve  tabiat  varlıklarının  müzeye  girişi  ‘araştırma,  sondaj  ve  kazılarda bulunarak müzeye nakli, satın alma bağış, zoralım ve devir yolu ile olur’ olarak belirlenmiştir. Ayrıca  yine  bu  kılavuzda;  müzeye  giren  varlıkların  envantere  nasıl  alınacağı,  depo tanzimlerinin  nasıl  yapılacağı,  kaybolan,  çalınan  ve  yapılan  sayım  sonrası bulunamayan varlıklarla  ilgili  yapılacak  işlemleri,  müzeler  arası  devirde  yapılacakları  ve  müzenin güvenliğinin sağlanması ile ilgili şartlar belirtilmiştir.   Hazırlayan: Ahmet İhsan Aytek   Kaynaklar:   Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/  

http://www.biyologlar.com/kultur-ve-tabiat-varliklarini-koruma-kanunu

Doğa ve Canlı Hayat İçin Doğa Tarihi Müzelerinin Önemi

Adından da anlaşılacağı gibi ‘doğa’ genel anlamda doğa tarihi müzelerinin temel konusudur. Bu anlamda doğal hayatın korunması ve sürdürülebilirliği noktasında doğa tarihi müzelerine çok iş düşer. Doğal hayatın ve canlılığın korunması ve sürdürülebilirliği ancak bilinçli bir toplum  oluşturma  ile sağlanabilir  ki  bilinçli  bir  toplum  oluşturmada  müzelerin  önemi büyüktür. Zira müzeler bilimsel bilgiler ışığında, insanları bilimin getirebileceği ağır anlam karmaşalarına sokmadan, yalın ve aydınlatıcı bir şekilde sıkmadan bilinçlendirebilen yerlerdir.Doğa tarihi müzeleri toplumun ‘canlı çevreyi’ tanımaları için en uygun ortamlardan birisidir, hatta bazı durumlarda en uygun ortamdır. Hayvanat bahçesi veya botanik parklar gibi yerler de bu amaca hizmet etseler de, doğa tarihi müzelerinin sağlayacağı bir canlılık çeşidini sağlayamazlar. Özellikle nesli tükenmiş canlılar söz konusu olduğunu doğa tarihi müzelerinin rolü çok daha önem kazanır. İçerdiği çeşitlilik ve fiziksel ortamın uygunluğu bakımından baktığımızda  hiçbir  kurum  veya  yapı,  canlılık  ve  doğal  hayat  konusunda  toplumu bilinçlendirmede doğa tarihi müzeleri kadar etkili olamaz. Doğa tarihi müzeleridünyanın geçirdiği jeolojik ve biyolojik değişimleri zaman uyumu içerisinde anlatarak insanlarındoğal hayatın oluşumu anlamasının sağlarlar. Yine aynı şekilde iklimsel değişimler, yer altı ve üstü kaynakları, biyoçeşitlilik ve ekoloji gibi doğal hayatın oluşması ve devamının sağlanmasını belirleyen  faktörlerin  de  toplum  tarafından  anlaşılması  doğa  tarihi  müzelerine  özgü faaliyetlerdendir. Çevreyi bilmeyen bir insanın çevrenin korunması anlamında da fikir sahibi olamayacağını düşündüğümüzde bu müzelerin önemi bir kez daha ortaya çıkar.Her ne kadar üniversiteler, sivil toplum kuruluşları, devlet kurumları veya özel yapılanmalar da toplumu bu  konularda bilinçlendirmeye  çalışsalar  da, doğa  tarihi müzeleri  süreklilik bakımından diğerlerinden öne çıkar. Bu noktada müzeler sadece bir sergi veya bilimsel araştırma  merkezi  olarak  faaliyet  göstermekle  kalmayıp,  toplumu  bilinçlendirmedeki önemlerinin de bilinci ile yönetim prensiplerini belirlemelidirler. Dünyanın  önde  gelen  doğa  tarihi  müzelerine  baktığımızda  bilimsel  araştırmalarının ve bununla doğru orantılı olarak müzecilik faaliyetlerinin kapsamında biyolojik çeşitliliğin önemli bir  yeri  olduğunu görüyoruz.  Bu  çalışmalar  bölgesel  olduğu  gibi  genel  anlamda  da olabilmektedir. Örneğin; Smithsonian Ulusal Doğa Tarihi Müzesi Fransız Guyanası bölgesinde bir  koruma  programı başlatmış ve bu program çerçevesinde bölgenin biyolojik çeşitliliğinin belirlenmesi, anlaşılması ve korunması hedeflenmiştir. Bu proje bağlamında toplanılan tüm örnekler  sınıflandırılmış,  tanımlandırılmış  ve  etiketlendirilmişlerdir.  Daha  sonra  300  ün üzerinde bilim adamı ile işbirliği yapılarak bu bilimsel süreç pekiştirilmiş ve bilimsel makaleler hazırlanmıştır. Programın ilk ayağı olan bilimsel çalışma kısmı bittikten sonra asıl önemli olan kısım başlamaktadır. Program neticesinde elde edilen bilgiler toplumun anlayacağı düzeyde eğitim materyallerine dönüştürülmüş ve bölgedeki görevlilere ve öğrencilere bu konu ile ilgili eğitimler verilmiştir. Bu ve bunun gibi diğer programlarda, programın bilimsel kısmının önemi yadsınamaz. Ancak elde edilen bilimsel bilgileri uygulamaya dökemediğimiz takdirde bilimin önemi kalmaz. Bu noktada bilgiyi elde etmekten ziyade bilgiyi topluma anlatabilme gücü de ön plana çıkmaktadır. Bu da doğa tarihi müzelerinin önemli görevlerindendir. Amerikan Doğa Tarihi Müzesi bünyesinde bulunan Biyoçeşitlilik ve Koruma Merkezibölgesel değil dünya çapında bir çalışmayı hedef almıştır. Bu noktada amacını; değişik ekosistemlerde bilimsel araştırma yapmak, bilimsel çalışmaların koruma politikasına uygulanabilirliğini güçlendirmek, profesyonel, kurumsal ve toplumsal kapasiteyi arttırmak ve halkın biyolojik çeşitliliği ve onu korumanın önemini anlaması ve bu korumaya yardım etmesi konusunda müzenin çabalarının arttırmak olarak belirlenmiştir.Düzenledikleri çalışma grupları, konferanslar, sempozyumlar, halk  programları  ve  sergiler  ile  halkı  bilinçlendirmektedirler.Buradaki  maddelerden  de anlaşılacağı  üzere  Amerikan  Doğa  Tarihi  Müzesi  politikalarını  halkın  bilinçlendirilmesi üzerinde yoğunlaştırmıştır. Bu örneklerden de anlaşılacağı üzere dünya çapında büyük doğa tarihi müzeleri, doğal hayatın  ve  canlılığın  korunması  ve  sürdürülebilirliği  konusunda  halkın  bilinçlendirilmesi açısından  kendilerine  düşen  görevi  anlamış  ve  müze  politikalarını  ve  programlarının belirlerken bu esasları da göz önünde bulundurmuşlardır.     Hazırlayan: Ahmet İhsan Aytek   Kaynaklar:   Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/  

http://www.biyologlar.com/doga-ve-canli-hayat-icin-doga-tarihi-muzelerinin-onemi

Müzelerde Eğitim

Müzelerde Eğitim

Genel anlamda müzelerde eğitimi bilimsel eğitim ve toplumsal eğitim iki başlık altında incelemek gerekse de toplumsal anlamda sağlanan eğitim daha ön plana çıkar.

http://www.biyologlar.com/muzelerde-egitim

Kuşların ve Uçuşun Evrimi Üzerine Teoriler

1861 yılında Almanya`nın Bavyera bölgesindeki Jura dönemine ait kireçtaşında bir asimetrik tüy fosilinin bulunması, kuşların Sürüngenler Çağı`ndan beri var olduklarının kanıtı olarak büyük bir heyecanla karşılanmıştı. Bu fosil tüyün bulunmasının hemen ardından, aynı bölgeden ve yine Jura dönemine ait, hem sürüngen hem de kuş özellikleri taşıyan bir hayvanın eksiksiz iskeletine ait fosilin bulunması ise, yaratılışçı görüşün hakim olduğu o günlerde, kuşkusuz başta Darwin olmak üzere bir çok biliminsanı için büyük önem taşıyordu. Archaeopteryx lithographica olarak adlandırılan bu fosil, bir ara-form olarak Darwin`in ortaya attığı evrim teorisini kanıtlar nitelikteydi ve bu fosilin bulunmasıyla kuşların ve uçuşun kökenine ilişkin günümüze dek süren, evrim biyolojisinin belki de en hararetli tartışmaları başlamış oluyordu. Kuşların evrimsel yolculuğuyla ilgili araştırmalar için çok önemli bir başlangıç noktası olan bu fosil, evrim teorisinin ışığı altında kuşların hangi sürüngen kolundan, nasıl bir evrim geçirerek günümüze geldiğini açıklamada bir anahtar rolü görebilirdi. Nitekim Archaeopteryx fosilleri 1861 yılından günümüze dek bu sorulara yanıt arayan araştırmacılar için her zaman önemli bir referans oldular. Günümüzde paleontologların çoğu, kuşların atasının dinozorların bir kolu olduğunda hemfikir.Yazılan bir çok kitap ve makalede kuşların atasının dinazorlar olduğundan sözedildiğini ve dünyanın önde gelen bir çok müzesinin dinozor bölümlerinin bu görüş doğrultusunda düzenlendiğini görmek mümkün. Almanya`nın Bavyera bölgesi ise yerini, 90`lı yıllarda ortaya çıkarılan tüylü dinozor fosilleriyle ünlenen Çin`in Lianoing bölgesine bırakmış durumda. Liaoning bölgesinde yakın zamanda bulunan dört kanatlı bir dinozor fosili de uçuşun evrimiyle ilgili önemli ipuçları içeriyor. Archaeopteryx: Ne kadar sürüngen, ne kadar kuş? Darwin`in "o tuhaf kuş" diyerek sözünü ettiği Archaeopteryx, gerçekten de özelleşmiş birincil ve ikincil uçuş tüylerinden oluşan çok gelişmiş tüyleriyle modern zaman kuşlarına oldukça benziyordu ve kendini önceleyen uzun bir kuş evrimine dikkat çekiyordu. Archaeopteryx`in hem sürüngen hem de kuş özellikleri, kuşların hangi atadan evrimleşmiş olabileceklerine dair önemli ipuçları verirken, fazlasıyla modern yapıdaki tüyleri, uçuşun ve tüylerin kökenine dair çok az ipucu sağlıyordu. Tüyler ve uçuş kuşların en karakteristik özellikleri olduklarından, kuşların evrimsel yolculuğunun tamamıyla aydınlatılabilmesi için Archaeopteryx fosilleri tek başlarına yeterli değildiler. Daha ilkel yapıda tüylere sahip ara-form fosillerinin de ortaya çıkartılması gerekiyordu. Archaeopteryx, günümüzde olduğu gibi bulunduğu ilk yıllarda da, başta Huxley ve Darwin olmak üzere birçok biliminsanı tarafından kuş evriminde bir yan kol olarak görülüyordu. Bu durum, paleontologların, hem modern kuşlar hem de kuş evriminin modern kuşlara uzanan ana kolunda yer almadığı düşünülen bu eski kuş için ortak bir ata aramaları anlamına geliyordu. Ataya ilişkin kuramlar Kertenkelelerden pterozorlara (uçan sürüngenlere), timsahlardan dinozorlara kadar Mezozoik çağ sürüngenlerinin çoğunun kuşların atası olduğu öne sürülmüş. Ancak günümüze dek ulaşabilen yalnızca iki temel kuram olmuş. Bu iki kuram arasındaki en önemli farklılıklar, kuşların atası olarak hangi sürüngen kolunun görüldüğüne ve ilk kuşun ortaya çıkış zamanına ilişkin görüşlerdir. Bu iki kuramı anlatmaya, sürüngenlerin milyonlarca yıllık tarihlerine göz atarak başlamak gerekiyor. Sürüngenler Çağı`ndan çok önce, geç Paleozoik çağda ortaya çıkmış olan kotilozorlar (köken sürüngenler) tüm sürüngenlerin atası olarak kabul edilirler. Anapsid kafatasları olan bu ilkel sürüngenlerin diapsid kafatasına sahip canlılara evrimleşen kollarından biri ise tekodontlardır. Yaklaşık 245 milyon yıl önce dünyada yaygın bir dağılım göstermiş heterojen bir sürüngen grubu olan tekodontlar, timsahların, pterozorların ve dinozorların atası olarak kabul edilirler. Tekodontların bir kolu olarak evrimleşen pterozorlar, uçma yetenekleri ve kuşlarınkine benzeyen diğer uçuş karakterleri nedeniyle bir zamanlar kuşların atası olarak gösterilmişlerse de, bu görüş hiçbir zaman fazla destekçi bulmamış ve benzerliklerin benzeştiren evrimin sonucu olduğu konusunda görüş birliğine varılmış. Aynı şekilde dinozorların iki ana kolundan biri olan Ornitiskianlar (kuşkalçalı dinozorlar) da, isimlerinden de anlaşılacağı gibi sadece yüzeysel bir benzerlik yüzünden kuşların atası olarak gösterilmiş, ancak bu görüş de fazla taraftar bulmadan unutulmuş. Dinozorların diğer ana kolu olan Sauriskianlar (sürüngen kalçalı dinozorlar) ise, etçil ve otçul olmak üzere iki kola ayrılırlar. Etçil olan teropodlar arasında Jurassic Park filminden hatırlayacağımız dev T-Rex gibi büyük dinozorların yanısıra, Huxley`in Archaeopteryx ile benzerliklerine dikkat çektiği Compsognathus (bkz. Bölüm 1) gibi küçük dinozorlar da yer alırlar. Huxley`in, 1868 yılında yazdığı ve tavuk büyüklüğündeki bir teropod dinozoru olan Compsognathus ile Archaeopteryx arasındaki benzerliklere değindiği makaleleri, kuşların teropod dinozorlardan evrimleştiği yönündeki görüşün ortaya çıkmasına neden olmuştu. Oysa Huxley`in o yıllardaki yazıları incelendiğinde, zaman zaman bu görüşünden geri adım atarak, teropod dinozorlar ve kuşlar için ortak bir atadan söz ettiği görülür. Öte yandan, Huxley`in çağdaşı bazı biliminsanları kuşlara ata olarak otçul dinozorları gösterirken, bazıları dinozorları kuşların atası olamayacak kadar fazla özelleşmiş buluyorlardı. Daha o yıllarda dinozorların ve kuşların sözü edilen benzerliklerini pterozor örneğindeki gibi benzeştiren evrime bağlayan ve yine ortak bir sürüngen atadan söz eden biliminsanları olsa da, kuşların atasını daha ilkel sürüngenlerde arayan hipotezin gerçekten doğuşu ancak bir sonraki yüzyıl içinde oldu. 1913 yılında Güney Afrikalı paleontolog Robert Broom`un, alt Triyas kayaçlarından 230 milyon yıllık fosili çıkartılan küçük bir tekodontun kuşların atası olduğu yolundaki düşünceyi ortaya atmasıyla, tekodont-ata hipotezi de doğmuş oluyordu. Broom`un Euparkeria adını verdiği bu tekodont dört ayaklıydı, ancak iki ayaklılığa doğru bir geçiş sürecindeydi. Broom`a göre dinozorların fazla özelleşmiş sayıldığı noktalarda yeterince ilkel olan Euparkeria, kuşların atası olmak için gerekli tüm anatomik özelliklere sahipti. Danimarkalı paleontolog Gerhard Heilmann`ın 1926 yılında yazdığı "Kuşların Kökeni" adlı kitap da bu hipotezi destekler nitelikteydi. Günümüzde konuyla ilgili bir klasik olarak kabul edilen bu kitap, kuşların kökeni ve evrimiyle ilgili ilk kitaptı ve burada Heilmann, Euparkeria`dan, kuşların kökenini açıklayan anahtar fosil olarak söz ediyordu. Aslında tüm yazdıklarının kuşların teropod dinozorlardan evrimi için de geçerli olabileceğinin görüldüğü kitabında Heilmann, teropod dinozorlarda bir kuş karakteristiği olan lades kemiğine rastlanmamış olduğuna dikkat çekiyor, ilkel formları ve lades kemiğine sahip olmaları nedeniyle tekodontların kuşların atası olduğunu savunuyordu. Aslında Huxley`in makaleleriyle ortaya atılmış olan bu dinozor-ata teorisininin, biraz değişikliğe uğramış olarak tekrar gündeme gelmesi, paleontolog John Ostrom`un 1973 yılından başlayarak yayınladığı makalelerle oldu. Ostrom, 1964 yılında keşfettiği ve bir erken Kretase dönemi teropod dinozoru olan Deinonychus ile Archaeopteryx arasında, benzeştiren evrimden kaynaklanmayacak kadar fazla benzerlik bulmuş ve kuşların teropod dinozorlardan gelmiş olduğunu savunmuştu. Archaeopteryx`den 40 milyon yıl genç olan bu fosille Archaeopteryx`in kol, el, kalça, bilek ve omuz kemikleri üzerinde yaptığı incelemeler sonunda özelleşmiş kemikler açısında çok benzediklerini gören Ostrom, Eichsatt Archaeopteryx`inin 20 sene boyunca bir teropod dinozoru (Compsognathus) zannedildiğini de hatırlatıyordu. 1986 yılına gelindiğinde ise paleontolog Sankar Chatterjee, Teksas`taki geç Triyas dönem katmanlarında bulduğu ve Protoavis olarak adlandırdığı bir fosili bilim dünyasına duyuruyordu. Chatterjee`nin, kafatası ve boyun kemiklerinde modern kuşlarla birçok benzerlik bulduğu ve en eski kuş olarak sözünü ettiği bu tartışma yaratan fosil, Archaeopteryx` den yaklaşık 75 milyon yıl gençti ve benzerlikleri kanıtlandığı takdirde dinozor ata teorisini çürütebilirdi. Ne var ki bu fosil iyi bir şekilde korunmadan günümüze ulaşmıştı ve parçacıklı yapısıyla tek bir bireye değil de, farklı birkaç türe ait bireylerin kemiklerinin biraraya gelmesiyle oluştuğu izlenimini uyandırıyordu. Bütünlükten uzak bulunan bu fosil, günümüze dek kuşkuyla sözü edilen bir fosil olarak kaldı. Kuşların tüylerden sonra en karakteristik özelliği sayılan lades kemiğinin, 20. yüzyılın sonlarına doğru Velociraptor ve Ingenia gibi bazı geç Kretase teropod dinozorlarında da bulunması, kuşların atasının teropod dinozorlar olduğu teorisini güçlendirdi. Hatırlanacağı gibi, Heilmann`ın teropod dinozorlarla kuşlar arasında gördüğü benzerliklere rağmen onların ortak bir atadan geldiklerini söylemekten öteye gitmemesinin nedeni, teropod dinozorlarda Heilmann için de çok önemli bir kuş karakteristiği olan lades kemiğinin bulunmamasıydı. Özetleyecek olursak, kuşların kökeniyle ilgili kuramlardan bir tanesi, Archaeopteryx fosilleriyle teropod dinozorlar arasında homolog olduğu düşünülen benzerlikler nedeniyle, kuşların atasının dinozorların bu kolu olduğu yönündeydi. Teropod dinozorlarla kuşlar arasındaki tüm sonradan edinilen benzerliklerin benzeştiren evrimden kaynaklandığını ve teropod dinozorların kuşların atası olamayacak kadar özelleşmiş olduklarını söyleyen tekodont ata teorisi ise, kuşların atasının teropod dinozorlardan önce yaşamış ilkel bir sürüngen olduğunu savunuyordu. Tüm bunlara ek olarak, fosilleri inceleyen bazı bilimsanlarının dinozorlar ve kuşlar arasındaki benzerlikleri, bazılarının ise farklılıkları vurgulaması, bu iki kuramın savunucularını karşı karşıya getiren önemli bir ayrılma noktasının sistematik yöntem farklılıkları olduğunu ortaya koyuyor. Günümüzde çoğu biliminsanınca kanıtlandığı düşünülen teropod-ata teorisinin uçuşun kökenine ilişkin bölümü, son olarak bulunan ilginç bir fosille birlikte çürütülmüş gibi görünüyor. Bu durum kuşların evrimsel yolculuğunu aydınlatmanın zorluğunu çok iyi anlatıyor olsa gerek. Bu yüzden, günümüz Archaeopteryx`lerine geçmeden önce, uçuşun ve tüylerin kökeniyle ilgili olan ve kuşların atasına ilişkin kuramlara paralel olarak gelişen tartışmalara değinmemiz gerekiyor. Uçuşun kökenine dair Kuşların atasının hangi hayvan kolu olduğuna ve kuşların bu atadan kaç milyon yıl önce ayrıldığına ilişkin araştırmalar ve tartışmalar, doğal olarak tüylerin ve uçuşun kökeniyle de çok yakından ilgilidir. Kuşların en karakteristik özelliği olduğu düşünülen tüyler, omurgalı derisinin en karmaşık türevidir. Morfolojik bir harika olarak tanımlayabileceğimiz tüyler, çok karmaşık yapıları ve sayısız işlevleri olması bakımından çok zengin bir evrimsel geçmişe işaret ederler. Tüylerin bir şekilde sürüngen pullarından evrimleştiği genel olarak kabul edilirken, sürüngen pulundan karmaşık yapıdaki tüye kadar olan evrimsel basamaklarda hangi yapıların ortaya çıktığı ve bu yapıların canlıların çevreye uyumunda nasıl bir değere sahip olduğu konusunda yıllar içinde birçok farklı görüş ortaya atılmıştır. Tüylerin, uçuş dışında, yalıtımdan kamuflaja ve kur davranışına kadar kuşların yaşamında büyük önem taşıyan pek çok işlevi vardır. Ancak kuşkusuz uçuşla ilgili/aerodinamik özellikler tüylerin birincil işlevidir. Uçuşun kökeniyle ilgili görüşlerin ve ortaya atılan senaryoların kimi, tüylerin en başta yalıtım ve iletişim gibi uçmayla ilgisiz bir nedenle evrildiğini savunurken, kimi de tüylerin, birincil işlevleri olan uçuştan farklı bir bağlamda evrimleşmiş olmasının mümkün olmadığını savunur. İlkel sürüngen atanın pullarının hangi işlev doğrultusunda evrim geçirerek ilkel tüylere dönüştüklerini ve buna bağlı olarak uçuşun kökenini açıklamaya çalışan iki temel kuram vardır. Bunlardan ilki uçuş evriminin yerde başladığını savunur. Bu kuramı destekleyenlerin çoğu, kuşların iki ayaklı teropod dinozorlardan geldiğini savunan araştırmacılardır. Kuşların atasının teropod dinozorlardan daha ilkel olan tekodontlar olduğunu savunanlar ise, uçuş evriminin ağaçta başladığını savunurlar. İlkel sürüngenvari kuş atasının ağaçta yaşamış olduğunu varsayan teoriye göre, sürüngen pullarında oluşacak her bir küçük değişiklik (uzama ve çatlama) bu hipotetik canlının aerodinamik yeteneklerinin gelişmesi demek olacaktı. Bu ilkel atanın sürüngen pulları karmaşık yapıdaki uçuş tüylerine dönüşürken, önceleri yerçekiminin sağladığı enerjiyi kullanarak ağaçtan ağaca süzülen canlının süzülme yeteneği zamanla gelişecek, manevra gereği ortaya çıktıkça da kanat ve kuyruk tüyleri karmaşık bir yapıya doğru evrim geçirecekti. En ünlü tekodont ata savunucusu olan Alan Feduccia`nın da desteklediği bu teori, özetle, tüylerin en başta uçuşla ilgili olarak evrildiğini varsayıyor ve kuşların atasının Triyas dönemde yaşamış küçük, dört ayaklı, ağaçta yaşayan bir tekodont olduğunu savunuyordu. Kuşların iki ayaklı, etçil teropod dinozorlardan geldiğini düşünenlerin desteklediği ve uçuş evriminin yerde başladığını savunan teori ise, tüylerin öncelikle ısı düzenleyici olarak evrildiğini varsayıyordu. Diğer bir deyişle, kuşlarda görülen sıcakkanlılığın uçuştan önce evrimleşmiş olması gerektiğini savunuyordu. 1969 yılında bazı dinozor türlerinin sıcakkanlı olmuş olabilecekleri yönündeki görüşü ilk kez ortaya atan ve günümüzün ünlü teropod-ata savunucusu olan John Ostrom`un önderliğindeki bu teoriye göre, kuşların teropod atasındaki ilkel tüyler öncelikle ısı yalıtımını sağlamıştı. Aktif, sıcakkanlı, koşarak avlanan bu etçil yırtıcı dinozorların ilkel tüylerle kaplanacak ön uzuvları, onların böcek ve benzeri küçük avlarını ağızlarına doğru süpürmelerini sağlayacaktı. Bu ilkel atanın avı peşinden koşarken ani manevralar yapabilmesi ya da avcılardan kaçarken tepelerden aşağıya süzülebilmesi de modern, gelişmiş kanat ve kuyruk tüylerinin evrilmesiyle gerçekleşecek ve böylelikle ilk olarak ısı yalıtımı sağlama yönünde evrilmiş olan tüyler sonradan aerodinamik işlevler doğrultusunda evrimlerini tamamlayacaklardı. Tüyleriyle fosilleşmiş olarak bulunan ilk kuş olan Archaeopteryx`in fazla modern yapıdaki tüyleri ise, ne yazık ki ilk tüye ve ilk uçuşa dair pek fazla ipucu vermiyordu. Yine de Archaeopteryx`in nasıl bir uçucu olduğuna ve ne tip bir ortamda yaşadığına ilişkin araştırmalar yapılırsa bazı sorular yanıtlanabilirdi. Asimetrik tüyleri Archaeopteryx`in uçabildiğini gösterirken, fazla çıkıntılı olmayan göğüs kemiği uzun süre kanat çırparak uçamayacağını düşündürüyordu. Feduccia, bir çok farklı ekolojik alandan seçtiği 500`den fazla kuşun pençeleri üzerinde yaptığı ölçümlerle Archaeopteryx`inkileri kıyaslıyor, Archaeopteryx`in pençelerinin yerde yaşamasını mümkün kılmayacak derecede kıvrık olduğuna dikkat çekiyor ve Archaeopteryx`in kesinlikle ağaçlarda yaşadığını savunuyordu. Bu görüşe karşı çıkanlar ise, Archaeopteryx fosillerinin bulunduğu Solhofen bölgesinden hiçbir ağaç fosilinin çıkarılmadığını, Jurassic dönemde bu bölgede ağaçların olmadığını ve dolayısıyla Archaeopteryx` in ağaçlarda yaşamış olmasının mümkün olmadığını ileri sürüyorlardı. 20 metreye ulaşabildiği bilinen Gingko gibi bir çok bitkinin Jura dönemi Avrupa`sında görüldüğü ve Solnhofen fosil kayıtlarında ağaçlara ait izler bulunmamasının bir çok nedeni olabileceği ise, bu itiraza verilen bir yanıttı. Yerde başlayan uçuşu savunanların karşılaştıkları en büyük itiraz ise, teropod atanın yerçekimini yenerek havalanmak için çok fazla kaldırma gücüne ihtiyaç duyacağı idi. Bu gerçekten yerinde bir itirazdı ve bu yüzden de uçuşun yerden başladığı teorisi uçuş evriminin ağaçta başladığını savunan teoriden daha az destekçi buldu. Uçuş evriminin yerde gerçekleştiğini düşünen araştırmacılar, Archaeopteryx`in kanatlarını ve uçuş kapasitesini inceleyerek bu önemli fiziksel problemi çözmeye çalıştılar. Son yıllarda yapılan ve bazı kuş türlerinin henüz uçamayan yavrularının bir tehlike durumunda dik yamaçlarda kanat hareketleriyle destekli olarak koşmalarını inceleyen ilginç bir araştırma ise, ilkel tüylere sahip koşan bir teropod atanın düşünüldüğünden daha fazla hareket özelliği olabileceğini savunuyordu. Uçuşun evrimiyle ilgili teoriler içinde şu günlerde tekrar gündeme gelen bir diğeri ise William Beebe`ye aitti. Beebee, 1915 yılında Berlin Archaeopteryx`inin bacaklarında gördüğü tüy izlerine dayanarak Archaeopteryx` ten önce ağaçlarda süzülen dört kanatlı bir sürüngen formun yaşamış olduğu teorisini ortaya atıyordu. Uçuşun kökeniyle ilgili bir görüşü olan tüm araştırmacılar, Archaeopteryx`in anatomisini ayrıntılı bir şekilde inceleyerek teorilerini kanıtlayacak karakterler ve davranış repertuarı bulmaya çalışırken biyolog Philip Regal, Kaliforniya`da yaşayan bir tür tilkinin sadece böceklerle beslendiğine dikkat çekerek uyarıda bulunuyordu. Regal, hiç bir araştırmacının bu tilkilerin anatomisini inceleyerek bu sonuca varmayacağını belirtirken, bir canlının davranışlarının sadece anatomisine dayanılarak tahmin edilemeyeceğine dikkat çekiyordu. Kuşların ve uçuşun kökeniyle ilgili tüm teoriler Archaeopteryx`in ve hipotetik kuş atalarının yerde veya ağaçta resmediliği bir çok çizimle desteklenmeye çalışılırken, Çin`in Liaoning bölgesi de kuşların kökeniyle ilgili tartışmaların ve hatta fosil ticaretinin merkezi olmaya hazırlanıyordu. Dinozorlar hala yaşıyor mu? Kretase döneminde yaşanan hızlı iklim değişiklikleri ve volkanik kül yağmurları Çin`in kuzeydoğusunda yer alan Liaoning Bölgesi`nde fosilce zengin eski bir göl yatağı oluşmasına neden olmuş. Aralarında dünyanın en eski çiçekli bitki fosilinin de bulunduğu bir çok önemli fosil bu bölgeyi dünyanın doğa tarihine ışık tutan bir merkez haline getirmiş durumda. 1994 yılında burada bulunan saksağan büyüklüğündeki ilkel bir kuş Archaeopteryx`e olan benzerliğiyle dikkat çekiyordu. Confuciusornis adı verilen bu kuş, modern yapıdaki uçuş tüyleriyle belli bir mesafeyi uçabilen ilk kuş olarak kabul edildi. Bu kuşa ait fosillerden bir kısmının kuyruğunda eşeysel dimorfizme işaret eden tüyler bulunuyordu. Modern bir gaga yapısına sahip en eski kuş olarak da büyük önem taşıyan Confuciusornis`in Archaeopteryx gibi 3 kıvrık tırnağı olması ise bazı arştırmacılar için Confuciusornis`in ağaçlarda yaşamış olduğunun kanıtıydı. Öte yandan diğer araştırmacılar Confuciusornis`in el yapısını dinozorların kavrayan elinin uçan ele evriminin bir kanıtı olarak görüyor ve Confuciusornis`i uçabilen, tüylü bir teropod dinozor olarak tanımlıyorlardı. Bu bölgeyi kuş kökeni tartışmalarının merkezi haline getiren fosillerden ilki 1996 yılında çıkarıldı. Sinosauropteryx adı verilen bu fosil çok iyi bir şekilde korunmuştu ve bu fosilde genelde fosilleşmeyen karaciğer gibi yumuşak dokuları bile görmek mümkündü. Ancak fosilin tartışmaları alevlendiren özelliği, başından kuyruğuna dek bir hat boyunca inen ve hav izlenimi veren yelesiydi! Kuşların atasının teropod dinozorlar olduğunu savunanlarca ilkel tüy olduğu düşünülen bu lifler, sıcakkanlılığın uçuştan önce evrimleştiğinin kanıtıydı. Bu fosil hayvanın Compsognathus`a olan benzerliği ise teropod ata teorisi savunucuları için kuşların dinozorlardan gelmiş olduğunun kesin bir kanıtıydı. Ne var ki bazı araştırmacılara göre sırt çizgisiyle sınırlılığı şüphe uyandıran bu lifler tüylerin atası olabilecek bir yapıda değildi ve üstelik bu yapılar bazı modern sürüngenlerde de görüldüğü gibi deri altındaki bir tür kolajen destek yapısı olabilirlerdi. Sinosauropteryx fosilinin yankılarının sürdüğü 1997 yılı içinde yine Lianoing`den bu kez peşisıra iki yeni ilginç fosil daha çıkarıldı. Archaeopteryx`e benzerliğinden dolayı Protarchaeopteryx olark adlandırılan ilk fosil, Archaeopteryx`den daha ilkel yapıda tüylere sahipti ve bu tüylerin simetrik yapısı uçuş yeteneğinin olmadığını gösteriyordu. Caudipteryx adı verilen ikinci fosilde de yine benzer yapıda tüyler bulunuyordu. Bu fosilin kuyruğunda göze çarpan kabarık tüyler ise kur davranışıyla ilgili olarak yorumlanıyordu. Bu iki fosil bir çok araştırmacı tarafından Sinosauropteryx ve Archaeopteryx arasında yer alan tüylü teropod dinozor formları olarak kabul edilirken, Feduccia bu fosilleri dinozorlardan çok uçamayan kuşlara benzetiyortu. Uçamamanın ikincil olarak (sonradan) evrimleştiğini belirten Feduccia, çok iyi korunmuş olduğu halde Caudipteryx fosilinde lades kemiğinin görülmeyişini bu gibi kuşlarda görülen lades kemiği kaybının bir örneği olarak görüyor ve bu kuşları "Mezozoik kivi" olarak tanımlıyordu. Bu iki fosilin uçma kaybının çok eskiden evrimleştiğinin bir kanıtı olduğunu belirten Feduccia, "Şayet Mezozoik kayaçlarda bir emu* (Avustralya`da yaşayan ve devekuşuna benzeyen, uçamayan bir kuş türü) fosiliyle karşılaşsaydık bu kuşta gördüğümüz dejenere olmuş tüyleri modern tüye geçişteki bir basamak olarak mı yorumlayacaktık?" diye sorarak uçmayan kuşların uçuşun kökenini aydınlatmadaki önemini vurguluyordu. 2000`li yıllara girildiğinde ise evrim biyolojisinin bu çok tartışılan konusuyla ilgili kitap ve makalelere yenileri eklenmeye, fosil kayıtları da artmaya devam ediyordu. Arjantin`deki geç Triyas döneme ait depozitlerde kuş ayak izlerine ait olduğu düşünülen fosillerin bulunması yine farklı şekillerde yorumlanırken, Lianoing bölgesinden olay yaratacak bir başka fosil çıkarılıyordu. 77 cm boyutlarındaki küçük bir teropod dinozoruna ait olan bu yeni fosil, W. Beebee adını tekrar gündeme getiriyor ve uçuşun kökeniyle ilgili tartışmaları alevlendiriyordu. Microraptor gui adı verilen bu önemli fosil gerçekten de ön ve arka uzuvlarındaki, asimetrik uçuş tüylerinden oluşan kanatlarıyla Beebee`nin hipotetik 4-kanatlı kuş atasına benziyordu. Bir tür teropod dinozoruna ait olan bu fosil bir yandan uçuşun teropod dinozorlardan evrimleştiğini gösteren bir başka kanıt olarak görülürken diğer taraftan uçuş evriminin ağaçlarda süzülmeyle başlamış olduğu teorisini destekliyordu. İlk Archaeopteryx fosilinin bulunduğu yıldan günümüze kadar yapılan araştırmalar sonucunda kuşların ve uçuşun kökenine dair bir çok bilinmeyenin aydınlatıldığı ve yeni bilgilere ulaşıldığı kesin. Biyolog Richard O. Prum ise tüm bu yeni bilgiler ışığında "kuş" tanımının geçirdiği değişikliğe dikkat çekiyor. Prum, evrim biyolojisi, paleontoloji ve sistematikdeki gelişmelerle kuşları dinozor atalarından ayıran anatomik boşluğun silindiğini söylüyor ve son olarak bulunan 4 kanatlı dinozor fosiliyle birlikte kanat çırparak uçuş dışında kuşlara özgü hiçbir temel karakterin kalmadığını belirtiyor. Sonuç olarak denebilir ki sayıları hiç de az olmayan biliminsanına göre dinozorlar hala yaşıyorlar. İnsanoğlunu da çok etkilemiş olan uçuş, canlıların kazandığı en karmaşık yeteneklerden biri ve bizim kuş tanımlarımızı tekrar gözden geçirmemiz gerekiyor.

http://www.biyologlar.com/kuslarin-ve-ucusun-evrimi-uzerine-teoriler

Hücre zedelenmesinin nedenleri ve zedelenmeye karşı hücrenin verdiği uyum yanıtları nelerdir; hasara uğrayan dokunun onarılması nasıl gerçekleşir?

Hücre Zedelenmesinin Nedenleri Hücre zedelenmesinde pek çok etken söz konusudur. Trafik dahil pekçok kazanın neden olduğu gözle görülen fiziksel travmalardan, belli bazı hastalıklarda neden olabilen defektli enzimleri oluşturan gen mutasyonlarına kadar sıralanabilir. Zedeleyici etkenler aşağıdaki gibi, sınıflanabilir. Oksijen Kayıpları: Hipoksi (oksijen azlığı- oksijen yetersizliği), hücre zedelenmesi veya ölümünün en önemli ve en çok görülen nedenidir. Hipoksi pekçok durumda görülür. Bunlar içinde en önemli olanı iskemidir. Hipoksi, iskemiden (kansızlık) farklıdır ve ayrılmalıdır. İskemi, dokulara gelen arteriyel akımın engellenmesi veya venöz dönüşün azalmasıyla ortaya çıkan dolaşımdaki kan kaybıdır. Bir bölgedeki kan akımının durması olarak özetleyebiliriz. İskemi, dokuları hipoksiden daha çabuk zedeler. Hipoksik doku zedelenmesi, karşımıza şu durumlarda çıkar. 1-İskemix: Mortalite (kalb hastalığı- miyokard enfarktüsü) ve morbiditenin (serebral ve renal iskemik hastalıklar) başlıca nedenidir. 2-Asfiksi (solunum zorluğu- solunum yetersizliği) nedeniyle, kanın oksijenizasyonundaki azalmaya bağlı olarak hücre zedelenmeleri ortaya çıkabilir. Buna kalb-akciğer hastalık- larında ve pnömonide görülen yetersiz kan oksijenlenmesi örnek verilebilir. 3-Anemixx veya karbon monoksit (CO) zehirlenmesinde görülen, kanın oksijen taşıma kapasitesindeki düşme, diğer bir örnek olabilir. Kimyasal Etkenler ve İlaçlar: Zehir olarak bilinen maddeler, tedavi amaçlı kullanılan bazı ilaçlar (hassas bünyeli kişilerde) ve ilaçların aşırı kullanılma durumlarında, hücre zede-lenmeleri meydana gelebilir. Hücrelerin bazı yaşamsal işlevlerini, örneğin membran permea-bilitesini, osmotik homeostazı (hücre içi denge) ve enzim entegrasyonunu (sistemi) bozarak, ciddi hücre zedelenmesi ve belki de tüm organizmanın ölümüne neden olabilir. Esasda zarar-sız olan glukoz ve tuz gibi kimyasallar, konsantre olduğunda osmotik çevreyi bozarak, hücre zedelenmesine ve hatta ölüme yol açabilir. Fiziksel Etkenler: Travma, sıcak ve soğuk olmak üzere aşırı ısı, ani ve farklı atmosfer basınç değişiklikleri, radyasyon ve elektrik şoku, hücre üzerinde geniş etkiler gösterir. Enfeksiyöz Etkenler: Bu grupta submikroskopik viruslardan, mikroskopik bakteri, riket- siya, fungus ve parazitlere kadar geniş bir mikroorganizma grubu bulunur. Mikrobiyolojik ajanlar olarak, salgıladıkları toksinler ve enzimlerle hücrenin metabolizmasını inhibe eder ve hücresel yapıları destrüksiyona uğratır. İmmunolojik Reaksiyonlar: Biyolojik etkenlere karşı vücudu koruyan immün sistem, bazı durumlarda immun reaksiyonlara neden olarak, hücre ve doku zedelenmesi meydana getirebilir. Yabancı proteinlere (antijen) karşı gelişen anaflaktik (allerjik) reaksiyon, önemli bir örnektir. Ayrıca bu grupta endojen antijenlerin sorumlu olduğu immunolojik reaksiyonlar söz konusu olabilir. Bunlar da “otoimmun hastalıklar” olarak sınıflanır. Radyasyon: Ultraviyole (noniyonize -güneş ışını) ışınlar hücrelere zarar vererek güneş yanıklarına neden olabilir. İyonize radyasyon hücrelerdeki moleküllere direkt etki yapıp, mo-lekül ve atomların iyonizasyonuna neden olarak veya hücre komponentleri ile etkileşen serbest radikal oluşumuna neden olarak hücrelere zarar verir. Genetik Defektler: Tek bir genin eksikliği veya yapısal bozukluğu, hastalığa neden olabi-lir. Doğuştan var olan metabolik depo hastalıkları ve bazı neoplastik hastalıklar gibi, bir çok hastalığın temelinde, genetik defektlerin rol oynadıkları bilinir. Beslenme Dengesizlikleri: Vücudun bazı aminoasitler, yağ asitleri, vitaminler gibi, orga-nik ve inorganik maddeleri besinlerle alması gerekir. Beslenme yetersizliğinde ortaya çıkan protein ve besin eksikliği, doku hasarlarına neden olabilir. Besinlerin eksikliği gibi, aşırılıkla-rında, ortaya çıkan şişmanlık ve atheroskleroz da morbidite ve mortaliteye zemin hazırlaya-rak, zarar verir. Obesite, tip 2 diyabetes mellitus riskini arttırır. Hayvansal yağ yönünden zen-gin olan gıdalar, atheroskleroz ve kanseri de içeren pekçok hastalığın oluşumundan sorumlu olabilir. Yaşlanma; hücre zedelenmesine neden olan diğer bir örnekdir. Yıllar geçtikçe hücrelerde çoğalma ve kendini onarma yeteneklerinde meydana gelen azalmalar ve buna bağlı ölümler oluşur. Hücre Zedelenmesinin Mekanizmaları Hücre zedelenmesine neden olan pek çok farklı yol vardır; fakat bunların hepsi öldürücü değildir. Bununla birlikte, herhangi bir zedelenmeden kaynaklanan, hücre ve doku değişiklik-lerine yol açan, biyokimyasal mekanizmalar oldukça karmaşıktır ve diğer intrasellüler olaylar ile sıkıca birbiri içine girmiştir. Bu nedenle, sebep ve sonuçları birbirinden ayırdetmek müm-kün olmayabilir. Bir hücrenin yapısal ve biyokimyasal komponentleri o kadar yakın ilişkide-dir ki, zedelenmenin başlangıç noktası önem taşımayabilir; fakat pek çok sekonder etki süratle oluşur. Yine de hücre zedelenmeleriyle ilgili bilinen pekçok özellik vardır. Örneğin siyanürle aerobik solunumun zehirlenmesi, intrasellüler osmotik dengenin korunması için elzem olan sodyum, potasyum ve ATP aktivitelerinde azalmalara neden olur. Bunlar korunamadığı za-man, hücre süratle şişer, rüptüre olur ve nekroza gider. Hücre hasarlarına neden olan, bazı zedeleyici ajanların patojenik mekanizmaları çok iyi ta-nımlanmıştır. Örneğin, siyanürle zehirlenmede mitokondriyada oksijen taşıyıcı bir enzim olan sitokrom oksidazın inaktive edilmesiyle, ATP’yi tüketerek, hipoksi yoluyla hasar meydana getirir, yani intrasellüler asfiksiye yol açar. Yine aynı şekilde anaerobik bazı bakteriler, fosfo-lipaz salgılayarak hücre membran fosfolipidlerini parçalayıp, hücre membranında direkt hasar meydana getirir. Hücre zedelenmesinin pekçok şeklinde, hücreyi ölüme götüren moleküler mekanizmalardaki bağlantıları anlamak bu kadar kolay değildir. Reversibl zedelenmenin neden olduğu hücresel bozukluklar onarılabilir ve zedeleyici etki hafifletilebilirse, hücre normale döner. Kalıcı veya şiddetli zedelenme, o bilinmeyen “dönüşü olmayan nokta” yı aşarsa irreversibl zedelenme ve hücre ölümü meydana gelir. İrreversibl zedelenme ve hücre ölümüne neden olan “dönüşü olmayan nokta”, hala yeterince anlaşılama-mıştır. Sonuç olarak; hücre ölümüne neden olan bilinen ortak bir son yol yoktur. Bütün bunla-ra rağmen, hücre ölümünü anlamak ve açıklayabilmek için, bir miktar genelleme yapılabilinir. İrreversibl hücre zedelenmesinin patogenezinde başlıca iki olay vardır. Mitokondrial disfonk-siyonun düzelmeyişi (oksidatif fosforilasyon ve buna bağlı ATP üretiminin yapılamaması) ve hücre membranındaki ağır hasardır. Bunu ispatlayan kanıtlar vardır. Lizozomal membran-lardaki zedelenme enzimatik erimeye neden olup, hücre nekrozunu ortaya çıkarır. Zedelenme İle İlgili Bazı Özellikler: -- Zedeleyici stimulusa hücresel yanıt, zedeleyicinin tipine, onun süresine ve şiddetine bağlı- dır. Bu nedenle düşük dozda toksinler veya iskeminin kısa sürmesi, reversibl (dönüşlü) hücre zedelenmelerine neden olur. Halbuki daha büyük toksin dozları veya daha uzun süreli iskemik aralar, irreversibl (dönüşsüz) zedelenme ile sonuçlanır ve hücre ölüme gider. -- Tüm stresler ve zararlı etkenler, hücrede ilk etkilerini moleküler düzeyde yapar. Hücre ölü- münden çok önce, hücresel fonksiyonlar kaybolur ve hücre ölümünün morfolojik değişiklikle- ri, çok daha sonra ortaya çıkar. Histokimyasal veya ultrastrüktürel teknikler, iskemik zedelen- medeki değişiklikleri birkaç dakika ile birkaç saat içinde görülebilir hale getirir. Örneğin, myokardial hücreler iskemiden 1, 2 dk sonra, nonkontraktil (kasılamama) olur. İskeminin 20- 30 dk’sına kadar, ölüm meydana gelmez. Ölümden sonraki değişikliklerin, ultrastrüktürel dü-zeyde değerlendirilmesi için, 2- 3 saat, ışık mikroskobu ile görülebilme düzeyine gelebilmele-ri için (örn. nekroz), 6- 12 saat geçmesi gerekir. Morfolojik değişikliklerin çıplak gözle görü-lebilir hale gelmesi, daha da uzun bir zaman alır. -- Zedeleyici stimulusun sonuçları; zedelenen hücre tipine, hücrenin uyum yeteneğine ve ge-netik yapısına bağlı olarak da farklılıklar gösterir. Örneğin, bacaktaki çizgili iskelet kası, 2- 3 saatlik iskemileri tolere edebilir. Fibroblastlar da dirençli hücrelerdir. Buna karşın kalb kası hücresi (myosit), yalnızca 20-30 dakikalık zaman içinde ölüme dayanabilir. Bu zaman, nöron- da 2- 3 dakikadır. -- Farklı zedeleyici etkenler, nekroz veya apoptoz şeklinde hücre ölümüne neden olur. ATP de kayıplar ve hücre zarı hasarları, nekrozla ilişkilidir. Apoptoz; aktif ve düzenli bir olaydır. Proğramlanmış bir hücre ölüm biçimidir ve burada ATP kayıpları yoktur. -- Hücre zedelenmesi hücre komponenetlerinden bir veya bir kaçında ortaya çıkan biyokimya-sal veya fonksiyonel bozukluklardan kaynaklanır. Zedeleyici stimulusun en önemli hedef nok-taları şunlardır: (a)Adenozin trifosfat (ATP) üretim yeri olan mitokondriler, (b)hücre ve organellerinin iyonik ve osmotik homeostazı için gerekli olan hücre membranı, (c)protein sentezi, (d)genetik apareyler (DNA iplikciğinin bütünlüğü) ve (e)hücre iskeleti çok önemlidir. Membran Permeabiltesindeki Defektler: Hücre membranı; iskemi, bazı bakteriyel tok-sinler, viral proteinler, kompleman komponentleri, sitolitik lenfositler veya birçok fiziksel- kimyasal etkenlerle direkt zarar görebilir. Ayrıca birçok biyokimyasal mekanizma, hücre membran hasarına etken olabilir. Kısaca gözden geçirelim. - Fosfolipid sentezinde azalma: Oksijendeki düşmeler ATP sentezinde azalmalara, ATP’nin azalması da fosfolipid sentezini düşürür. Fosfolipid kaybına bağlı olarak, membran hasarı meydana gelir. - Fosfolipid yıkımında artma: Hücre içi (sitozolik) kalsiyum artımı, fosfolipazları aktifleştirir. Bu da membran fosfolipidlerin parçalanmasını- yıkımını arttırır. - Lipid yıkım ürünlerinde artma: Fosfolipidlerin parçalanması, yıkılması, lipid yıkım ürünleri-ni arttırır. Bu ürünlerin birikimi, geçirgenliği bozarak zarar verir. - Reaktif oksijen türevleri (serbest radikaller): Hücre membranında lipid peroksidasyonuna neden olup, zarar verir. - Hücre iskelet anormallikleri: Hücre iskeleti iplikcikleri, hücre içini hücre zarına bağlayan ça-palar olarak görev yapar. Hücre içi kalsiyumun artması, proteazları aktifleştirerek hücre iske-leti proteinlerini parçalar, bu şekilde hücre zarını hasarlar. Hücre İskeleti: Sitoplazmik matriksde; mikrotübüller, ince aktin flamanlar, kalın flaman-lar ve değişik tiplerde ara flamanlardan oluşan, karmaşık bir ağ yapısı “hücre iskeleti” olarak tanımlanır. Bunlara ek olarak hücre iskeletinde, nonflamentös ve nonpolimerize proteinler de vardır. Bu yapısal proteinler sadece hücrenin şekil ve biçimini korumakla kalmaz, aynı za-manda hücre hareketinde de önemli bir rol oynar. Hücre iskelet bozuklukların da; hücre hare-keti ve intrasellüler organel hareketleri gibi, hücrelerde fonksiyon defektleri görülür. Ayrıca hücrenin fagositoz yetenekleri de kaybolur. Bunlar lökosit gibi özel hücreler ise, lökosit göçü ve fagositoz yeteneklerinde kayıplar ortaya çıkar. Mitokondriyal Zedelenme: Memeli hücrelerinin tümü, temelde oksidatif metabolizmaya bağlı olduğundan mitokondriyal bütünlük hücre yaşamı için, çok önemlidir. Mitokondri hüc-renin “enerji santralı” olarak bilinir. ATP hücredeki bütün intrasellüler metabolik reaksiyonlar için, gereken enerjiyi sağlar. Mitokondrilerde üretilen ATP deki enerji, hücrelerin yaşamı için elzemdir. Yine bu mitokondriler, hücre zedelenmesi ve ölümünde de çok önemli bir rol oynar. Mitokondriler sitozolik (hücre içi) kalsiyumun artmasıyla, serbest radikallerle (aktif oksijen türevleri), oksijen yokluğunda ve toksinlerle zedelenebilir. Mitokondriyal zedelenmenin iki ana sonucu vardır: 1)Oksidatif fosforilasyonun durmasıyla ATP nin progresif olarak düşmesi, hücre ölümüne götürür. 2)Aynı zamanda mitokondriler bir grup protein içerir. Bunlar içinde apoptotik yolu harekete geçiren protein (sitokrom c) de bulunur. Bu protein, mitokondride enerji üretimi ve hücrenin yaşamı için, önemli bir görev yapar. Eğer mitokondri dışına sitozo-le sızarsa, apoptozisle ölüme neden olur. Bazı nonletal patolojik durumlarda mitokondriaların sayılarında, boyutlarında, şekil ve fonksiyonlarında çeşitli değişiklikler olabilir. Örneğin hücresel hipertrofide, hücre içindeki mitokondri sayısında artma vardır. Buna karşın atrofide, mitokondri sayısında azalma görülür. ATP Tüketimi: Hücrelerin enerji deposu olarak bilinen ATP, adenozin difosfat (ADP) ve 1 fosfat (P1) ile mitokondride -üretilir- sentezlenir. Bu işlem oksidatif fosforilasyon olarak tanımlanır. Ayrıca oksijen yokluğunda glikolitik yol ile glukozu kullanarak ATP üretilebilir (anaerobik glikolizis). ATP, hücre içindeki tüm sentez ve parçalama işlemlerinde gereklidir. ATP, hücresel osmolaritenin korunması, membran geçirgenliği, protein sentezi ve temel metabolik işlevler gibi, hemen her olayda çok önemlidir. ATP kayıplarının başlıca nedenleri; iskemiye bağlı oksijen kayıpları ve besin alımında azalma, mitokondri hasarı ve siyanür gibi, bazı toksinlerin etkileri sayılabilir. Kalsiyum Dengesindeki Değişmeler: İskemi ve belli bazı toksinler, belirgin bir şekilde hücre dışı kalsiyumun plasma membranını geçerek hücre içi akışına yol açar. Bunu, hücre içi depolardan ( mitokondri, endoplazmik retikulum) kalsiyumun açığa çıkması izler. Bu hücre içi artan kalsiyum, sitoplazmada bulunana bazı enzimleri aktifleştirir. (1)Fosfolipazları aktive ederek, fosfolipid yıkımına neden olur. Fosfolipid azalması ve lipid yıkım ürünlerinin de açı-ğa çıkmasına neden olur. Bu katabolik (yıkım) ürünler, hücre membran zedelenmesine neden olur. (2)Proteazlarıx (protein parçalayan enzim) aktive ederek, hem membran hem hücre iske-leti proteinlerinin parçalanmasına neden olur. hücre iskeletinin hücre membranından ayrılma-sına ve böylelikle, membranda yırtılmalara neden olur. (3)Adenozin trifosfatazlara (ATPas) etki ederek adenozin trifosfat (ATP) azalmasını hızlandırır. (4)Endonükleazları aktive eder, DNA ve kromatin parçalanmasından sorumludur. Sonuç olarak intrasellüler kalsiyumun art-ması, hücrede bir dizi zedeleyici etki yaparak, hücre ölümüne sebebiyet veren en önemli et-kendir. Hücre Zedelenmesinde Serbest Radikallerin Rolü Hücre zedelenmesinde önemli mekanizmalardan birisi de, aktive edilmiş (reaktif) oksijen ürünlerine (serbest radikaller) bağlı zedelenmedir. Hücre membranına ve hücrenin diğer elemanlarına zarar verir. Serbest radikallerin sebep olduğu hasarlar; iskemi-reperfüzyon hasarıx, kimyasal (hava kir-liliği, sigara dumanı, bitki ilaçları gibi çevresel faktörler) ve radyasyon zedelenmesi, oksijenin ve diğer gazların toksisitesi, hücresel yaşlanma, savunma sisteminin fagositik hücrelerce mikropların öldürülmesi, iltihabi hücrelerin oluşturduğu hücre hasarı ve makrofajlarca yapılan tümör hücrelerinin destrüksiyonu şeklinde sıralanır. Serbest radikallerin hücrelerde yaptığı hasarlar: a)Lipidlerin peroksidasyonuna neden olarak hücre membran hasarı yapar. b)Protein hasarı yaparak, iyon (Na/K) pompası dengesini bozar. c)DNA yı haraplayarak, yetersiz prote- in sentezine neden olur. d)Mitokondrial hasar yaparak, ATP yokluğuna neden olup etkisini gösterir. Oksijen yaşamsal olarak çok gerekli bir molekül olmasına karşın, oksijenin aşırı miktarlar- da bulunduğu durumlar veya çeşitli kimyasal ajanlarla oluşturdukları oksidasyon reaksiyonları ile ortaya çıkan serbest oksijen radikallerinin, hücreye zarar verme riski vardır. Bunlar oksijen zararına örnektir. Paslanmanın bilimsel adı, oksitlenmedir. Vücudumuzdaki hücreler de oksit- lenir ve yaşlanır. Serbest radikallerin (bunlar oksidan moleküller, oksitleyiciler olarak da bili- nir) yıkımına karşı, hücrelerde harabiyeti önleyen, sınırlayan veya onaran gibi, pek çok koru- yucu mekanizma vardır. Bunlara “serbest radikal savaşcıları” (antioksidanlar- oksitlenmeyi önleyiciler) adı verilir. Bunları enzimatik ve nonenzimatik olarak iki ana grupta inceleyebili- riz. Bunların dışında serbest radikallerin, stabil olmadıklarından spontanöz (kendiliğinden) bozulmaları da söz konusudur. Enzimatik Antioksidanlar: Hücrede oluşan serbest radikallerin yok edilmeleri bir dizi enzi-matik olay ile gerçekleşir. Antioksidan enzimlerle yapılan savunmanın önemli bir bölümünü; süperoksit dismutaz, glutatyon peroksidaz ve katalaz oluşturur. Süperoksit radikali, süperoksit dismutasyonla; hidrojen peroksit ise, katalaz ve glutatyon peroksidaz enzimleri ile nötralize edilir. Hidrojen peroksitin parçalanmasında katalaz direkt etkilidir. Nonenzimatik Antioksidanlar: Bu savunma başlıca endogenös ve ekzogenös antioksidanlar tarafından sağlanır. Ekzogenöse örnek; vitamin E (tokoferoller), vitamin C (askorbik asid), beta karoten (A vitaminin yapı taşı) gibi vitaminlerdir. Ekstrasellüler antioksidan olarak serü-loplasmin sayılabilir. Vitamin C ve E’nin vücudu serbest radikallerin yıkıcı etkilerinden koru-duğu düşünülür. Bu antioksidanlar serbest radikallere kendi elektronlarından birini verip, elektron çalma reaksiyonunu sonlandırmasıyla nötralize eder. Antioksidan besinler elektron vermekle, kendileri serbest radikallere dönüşmez; çünki her iki şekilde de stabildir. Bunlar çöpcüler gibi hareket ederek hastalık oluşmasına neden olacak, hücre ve doku hasarlarını ön-ler. Antioksidan besinlere diğer örnekler; eser miktardaki mineraller bakır, çinko ve selen-yumdur. Bu mineraller bazı antioksidan enzimlerin gerekli komponentleri olduğundan, anti-oksidan görevi görür. Kimyasal (Toksik) Zedelenme: Kimyasal maddeler iki mekanizmadan birisiyle hücre zedelenmesine neden olur. (1)Bazı kimyasal maddeler, moleküler komponentlerle veya hüc-resel organellerle direkt birleşerek etki eder. Birçok antineoplastik kemoterapotik ajanlar, doğrudan sitotoksik etkileriyle hücre hasarlarına neden olur. (2)Diğer mekanizmada ise, bazı kimyasal maddeler, biyolojik olarak aktif değilken, toksik metabolitlere dönüştükten sonra, aktif olur ve hedef hücrelerde etkilerini gösterir. Burada indirekt etki söz konusudur. Bu tip değişme genellikle karaciğer hücrelerinde oluşur. x Kan akımının kesilmesiyle (iskemi) eğer hücreler reversibl olarak zedelenirse, kan akımının yeniden düzelme-siyle hücrelerde iyileşme görülür; fakat bazı durumlarda iskemiye uğramış bir dokuda, kan akımının yeniden sağlanmasına (reperfüzyon) rağmen, zedelenme giderek daha da kötüleşir. Buna “iskemi- reperfüzyon hasarı” (reperfüzyon nekrozu) adı verilir. Klinik olarak çok önemli olan, kalb ve beyin enfarktüslerindeki doku hasarla-rında bu şekilde bir zedelenmenin bariz katkısı vardır. Bu olayın nedeni, bölgede serbest radikallerin miktarının artması olabilir; çünki bu toksik oksijen ürünleri, reperfüzyon anında iskemik alana gelen lökositler tarafından bol miktarda ortama salınmıştır. İskemiye uğramış dokuda reperfüzyon oluşmasa bile, sonuçta bu bölgede letal iskemik hücre hasarı yine meydana gelecektir; fakat hasar, bu sefer serbest radikallerle değil, iskemik zedelen-me, hipoksi (oksijen yetersizliği) nedeniyle ortaya çıkacaktır. Serbest Radikaller: Serbest radikaller (oksidan ürünler) ile antioksidan etkileşimini anlamak için, ilk önce hücreler ve moleküller hakkında biraz bilgi sahibi olmak gerekir. İşte bu nedenle burada lise kimyasına kısaca bir göz atalım. İnsan vücudu pekçok farklı tip hücreden oluşmuştur. Hücreler de birçok değişik tip moleküllerden oluşmuştur. Mole- küller, bir veya daha fazla atomlardan, bir veya daha fazla elementlerin kimyasal bağlarla birleşmesinden mey-dana gelmiştir. Atomlar; tek bir nüve (çekirdek), nöronlar, protonlar ve elektronlanlardan oluşur. Atom çekirde- ğindeki protonların (pozitif yüklü parçacıklar) sayısı, atomu çevreleyen elektronların (negatif yüklü parçacıklar) sayısını belirler. Elektronlar kimyasal reaksiyonlarla ilgilidir ve molekül oluşturmak için, atomları birbirine bağ-layan maddedir. Elektronlar atomu yörünge biçiminde bir veya birkaç kat kabuk şeklinde çevreler. En içteki ka-buk iki elektrona sahip olduğunda dolar. İlk kabuk dolduğu zaman, elektronlar ikinci kabuğu doldurmaya başlar. Bir atomun kimyasal davranışını belirleyecek en önemli yapısal özellik, dış kabuktaki elektron sayısıdır. Dış ka-buğu tamamen dolu olan bir madde, kimyasal reaksiyonlara girme eğiliminde değildir, stabildir (hareketsiz). Atomlar maksimum stabiliteye ulaşmak için, dış kabuğunu dolu hale getirmeye çalışırlar. Atomlar genellikle di-ğer atomlarla elektronlarını paylaşarak dış kabuklarını doldurmaya çalışır. Serbest radikaller dış yörüngede eşleş-memiş (çiftlenmemiş) tek bir elektronu bulunan kimyasal moleküllerdir. Bu özellikleri nedeniyle son derece değişken- dengesiz yapıda olduğundan, kolayca inorganik ve organik kimyasallarla reaksiyona girer. Bunlar hem organik hem de inorganik moleküller halinde bulunur. Diğer bileşiklerle süratle reaksiyona girerek, stabilite kazanmak için, gerekli elektronu kazanmaya çalışır. İşte serbest radikaller en yakın stabil moleküle saldırarak o moleküllün elektronunu çalarak zararlı etkisini gösterir. Serbest radikal tarafından saldırılan molekül, elektro-nunu kaybedip serbest radikale dönüşür. Süreç bir kez başlayınca ardışık zincirleme olaylar, canlı hücrenin yaşa-mının bozulmasıyla sonuçlanır. Hücrelerde oluştuğu zaman, hücresel proteinler ve lipidler olduğu kadar nükleik asidlerle de süratle etkileşek onları parçalar. Buna ek olarak serbest radikaller otokatalitik reaksiyonları başlatır. Serbest radikallerle reaksiyona giren moleküller, yeni serbest reaksiyonlara dönüşerek zincirleme hasarlara yol açar. Hücre içinde pekçok reaksiyon, serbest radikallerin oluşumundan sorumludur. Çeşitli reaksiyonlar sonucu bunlar ortaya çıkar. Bunlar aşağıda özetlenmiştir. 1- Hücre içi metabolik olaylar sırasında oluşan redüksiyon- oksidasyon (redoks) reaksiyonlarında görülür. Bu olaylarda; süperoksit radikali (O2-), hidrojen peroksitx (H2O2) ve hidroksil radikali (OH) gibi, önemli serbest radikaller oluşur. Hücre içinde oluştuğunda süratle çeşitli membran molekülleri olduğu kadar, proteinleri ve nük-leik asidleri (DNA) de parçalayarak hasar verir. Böyle DNA hasarları; hücre ölümünde, yaşlanmada ve malig-niteye dönüşümde söz konusudur. Normal koşullarda bu serbest radikaller, antioksidanlarla yok edilebilir. Eğer antioksidanlar yoksa veya serbest radikal üretimi çok artarsa, hücrelerde hasar kaçınılmaz olacaktır. 2- Radyasyon enerjisinin (ultraviyole ışık, X- ışınları) absorbsiyonunda iyonize radyasyonun etkisiyle hücre içindeki su hidrolize olur. Suyun bu radyolizisi sonucu hidroksil (OH) ve hidrojen (H) serbest radikalleri ortaya çıkar. 3- Demir ve bakır gibi değişimli metaller, bazı hücre içi reaksiyonlarda elektron alıp verme özellikleri nede-niyle serbest radikaller ortaya çıkar. 4- Ekzogenös (dış kaynaklı) kimyasal maddelerin enzimatik metabolizması sonucu karbon tetraklorid (CCl4) den, karbon tetraklorür (CCl3) serbest radikali oluşur. 5- Nitrik oksit (NO), endotel hücreleri ve makrofaj gibi, bazı tip hücreler tarafından sentez edilen, serbest radikal gibi davranan önemli bir kimyasal medyatördür. Nitrik oksit oksijenle reaksiyona girdiğinde, NO2 ve NO3 gibi, diğer serbest radikalleri de oluşturur. x Hidrojen peroksit (H2O2), kendisi serbest radikal değildir, bu nedenle reaktif oksijen türevi olarak adlandırılır. STRESE KARŞI HÜCRESEL ADAPTASYON Normal bir hücre, değişen çevre şartlarına göre, yapı ve fonksiyonunu (işlevini) belirli ölçülerde değiştirerek yaşamını devam ettiren bir mikro evrendir. Bu oluşum, stresler çok ciddi olmadığı sürece, kendini koruma eğilimindedir. Eğer hücre, aşırı fizyolojik strese veya bazı patolojik stimulasyonlara (uyarılara) maruz kalırsa, stresin devam etmesine rağmen, adaptasyon (uyum) göstererek sağlığını korur. Hücresel adaptasyon, normal hücre ile zedelen- miş hücre arasında kalan bir durumdur. Hücresel adaptasyonlar başlıca atrofi, hipertrofi, hiperplazi ve metaplazidir. Hücre adaptif gücü aşıldığında veya hiç adaptif yanıt sağlanamadı- ğında hücre zedelenmesi ortaya çıkar. Hücre zedelenmesi bir noktaya kadar reversibldir (geri dönüşlü); fakat ciddi veya kalıcı streslerle irreversibl (geri dönüşsüz) hale gelir ve hücre so-nuçta ölüme gider. İrreversibl zedelenme, hücre ölümüne yol açan, kalıcı patolojik değişiklik- leri. ifade eder. Reversibl hasardan, irreversibl hasara ne zaman geçtiği kesin olarak bilinme- mektedir. Bu bölümde özellikle patolojik olaylarda, hücre büyüme ve farklılaşmasıyla (diferansiyas-yon) ortaya çıkan adaptif değişikliklere değineceğiz. Bunlar; atrofi (hücre boyutunun küçül-mesi), hipertrofi (hücre boyutunun büyümesi), hiperplazi (hücre sayısının artması) ve meta-plaziyi (hücre tipindeki değişiklik) içermektedir. Ayrıca displazi (hücrelerde şekil bozukluğu) hipoplazi, atrezi, agenezis ve aplazinin anlamlarını açıklayacağız. Atrofi: Hücrenin madde kaybına bağlı olarak hacmının küçülmesi “atrofi” olarak bilinir. Atrofi, adaptif yanıtın bir şeklidir. Yeterli sayıda hücre etkilendiğinde, tüm doku veya organ hacmında küçülme olur ve organ atrofik şekle dönüşür. Gerçi atrofik hücrelerde fonksiyon azalmıştır ama bu hücreler ölü değildir. Atrofik hücre daha az mitokondria, myoflament ve endoplazmik retikulum içerir. Birçok durumda atrofiye, artmış bir otofaji (kendini yiyen) eşlik eder. Atrofinin nedenleri şunlardır: (1)İnaktivite atrofisi; iş yükünün azalması söz konusudur. Çalışmayan, fonksiyon görmeyen organ veya doku atrofiye uğrar. Uzun süre alçıda kalan ekstremitelerde kas atrofisi görülebilir. Felçlilerde, felçli taraf kaslarında inaktivite nedeniyle atrofi olur. (2)İnnervasyon (sinir uyarı) kaybı; poliomyelitisde olduğu gibi, innervasyon kay-bına bağlı meydana gelen paralizilerde söz konusu kas dokularında atrofiler görülür. Burada da fonksiyon kaybı söz konusudur. (3)Kanlanmanın azalması, (4)yetersiz beslenme, (5)endo-krin stimülasyon (uyarı) kaybı; menoposda hormon kayıpları örnek verilebilir ve (6)yaşlan-maya bağlı atrofiler meydana gelir. İleri yaşlardaki kişilerin beyinlerinde görülen atrofilere “senil atrofi” denir. Senil atrofi ve menoposda hormon stimülasyon kayıpları, fizyolojik atro-fiye örnektir. Patolojik atrofiye, innervasyon kaybı örnek verilebilir. Hipertrofi: Hipertrofi, hücrelerin hacımlarının artmasını tarif eder ve böyle bir değişiklik- te organın hacmı da büyüyecektir. Bu nedenle hipertrofiye organda yeni hücreler yoktur, yal- nızca büyük ve iri hücreler vardır. Hücre hacmının artımı, sıvı alımının artımı ile ilgili değil- dir. Sıvı alımıyla ilgili olanı, hücre şişmesi veya ödem olarak adlandırılır; fakat hipertrofide daha çok ultrastrüktürel komponentlerin (proteinler ve organeller) sentezinde bir artım söz konusudur. Hipertrofi, fizyolojik veya patolojik olabilir ve organdaki fonksiyonel artım veya spesifik hormonal stimülasyon, bunun oluşmasına neden olabilir. Gebelik anında, uterusun büyümesi, fizyolojik bir olaydır. Uterus düz kas hücrelerinde oluşan artım, hem hipertrofi ve hem de hiperplazi nedeniyledir. Patolojik hücresel hipertrofiye örnek, hipertansiyon veya aortik valvül hastalığı sonucu ortaya çıkan kardiyak büyüme gösterilebilir. Her bir myokard lifi hipertrofiye olarak, hücre büyümesi ve hacım artışı göstererek, bu artan yüke karşı, kalbin daha fazla bir güç ile pompalamasını sağlar. Kas kitlesinin büyümesi, bir sınıra ulaştıktan sonra, artan yükü kompanse edemez ve kalb yetmezliği ortaya çıkar. Bu safhada myokardiyal liflerde bir dizi dejeneratif değişiklikler ve hücre ölümü ortaya çıkar. Kalb ve iskelet kasında-ki çizgili kas hücreleri, en fazla hipertrofi gösterebilme yeteneğinde olan hücrelerdir. Belki de bu, hücrelerin artan metabolik gereksinimlere mitotik bölünme ve yeni hücre şekillenmesiyle 8 yanıt veremediğindendir. Hipertrofinin kesin mekanizması ne olursa olsun, Bunların en önem-lisi myofibriler kontraktif elemanlarının erimesi ve kaybıdır. Hiperplazi: Hiperplazi, bir doku veya organda hücre sayısındaki artışı belirtir ve böylelik- le volüm olarak da artış vardır. Hücreler, fonksiyonel gereksinim artmasına bir yanıt olarak nasıl hipertrofiye olursa, aynı şekilde stress altında kalınca veya stimüle edilince, mitotik bölünerek çoğalırlar. Bu şekilde organ veya dokuda hücre sayısının artmasına “hiperplazi” adı verilir. Hücre sayısı artması ile, organ veya dokunun büyümesi söz konusudur. Hiperplazi gösteren hücrelerin fonksiyonlarında artma olur. Özellikle bu, iç salgı gudde hücrelerinde belirgindir. Vücuttaki her hücre tipinin hiperplazik kapasitesi yoktur. Örnek; kalb ve iskelet kası ile sinir hücreleridir. Epidermis, intestinal epitel, hepatositler, fibroblastlar ve kemik iliği hücreleri hiperplaziye uğrar. Hiperplazi; fizyolojik ve patolojik olarak ikiye bölünebilir. Fizyolojik Hiperplazi: Fizyolojik hiperplazi de ikiye ayrılır. (1)Hormonal hiperplazi; en iyi örnek puberte (ergenlik) ve gebelikte; meme glandüler epitel proliferasyonu ve ayrıca gebelikte uterusda kas hücrelerinde hiperplazi ve hipertrofi görülür. Menstrüel siklusdaki “proliferatif faz” (endometrial proliferasyon) fizyolojik bir hiperplazidir. (2)Kompensatuvar hiperplazi; parsiyel hepatotektomi yaparak, karaciğer dokusunun bir parçasının çıkarılmasın-dan sonra, karaciğerin rejenerasyon kapasitesi ile yeni karaciğer hücreleri yapılır. Patolojik Hiperplazi: Patolojik hiperplazinin pek çok şeklinde, aşırı hormonal veya büyü-me faktörü stimülasyonu vardır. Normal menstrüel perioddan sonra, endometrial doku gudde-lerinde aşırı proliferasyon görülür. Bu endometrial proliferasyon esasda fizyolojik bir hiper-plazidir; fakat hormonal dengelerin bozulduğu bazı durumlarda (östrojen ve progesteron ara-sındaki balans) östrojenin artması durumunda, endometrium guddelerinde aşırı bir hücre artı-mı ortaya çıkar. Bu endometrial hiperplazi sonrası, kanser sürpriz olmamalıdır; çünki endo-metrial hiperplazilerde kanser riski vardır. Ayrıca, endometrial hiperplazi, anormal menstrüel kanamaların başlıca nedenidir. Prostat kanseri tedavisi için, östrojen hormonu verildiğinde veya karaciğer sirozunda oldu-ğu gibi, östrojenin inaktivite edilemediği durumlarda, hastalarda hiperöstrinizm (östrojen fazlalığı) ortaya çıkar. Bu gibi, erkek hastaların memelerinde büyümeler (jinekomasti) meyda- na gelir. Kanın kalsiyum düzeyindeki uzun süreli düşmeler, paratiroid salgılıklar üzerine uyarıcı etki yapar, paratiroid hiperplazisi (sekonder hiperparatiroidizm) saptanır. ACTH veril- mesi sonucu, sürrenal korteks hiperplazisi gelişir (Cushing sendromu)x. Patolojik hiperplaziye örnek olarak iltihabi iritasyon ve enfeksiyon hiperplazisini göstere- biliriz. Kötü yapılmış bir protez, alttaki dokuda epitel ve bağ dokusu olmak üzere hücre proli- ferasyonlarına neden olur. Bunlara “iltihapsal fibröz hiperplazi” denir. Protez vuruğu hiper- plazisi veya epulis fissuratum olarak adlandırılır. Hiperplazi, yara iyileşmesindeki bağ dokusu hücrelerinin verdiği önemli bir yanıt olabilir. Prolifere olan fibroblast ve kan damarı hücreleri bir onarım işlemine yol açarak bir granulasyon dokusunu oluşturur. Bu hücreler, fibroblast ve endotel hücreleri, büyüme faktörlerinin stimülasyonu (uyarısı) ile prolifere olarak hiperplazi- ye neden olur. Büyüme faktörlerinin stimülasyonu, keza human papilloma virus gibi bazı viral enfeksiyonlarda da hiperplazilere neden olarak karşımıza çıkabilir. Bu tür lezyonlara örnek, deride görülen bildiğimiz deri siğilleridir (verruka vulgaris). Gerçi hipertrofi ve hiperplazi tanımlamada iki farklı olaylarsa da, aynı mekanizma tarafından başlatılır ve pek çok durumda beraber oluşur. x Cushing Sendromu : Adrenokortikal hiperfonksiyonu, Cushing sendromuna neden olur. Bu fazlalığın nedenleri (1)adrenal bezinde (salgılığında) hiperplazi, (2)adenoma veya karsinoma gibi, tümörler (3)hastanın ağızdan uzun süre kortizon alması ve (4)hipofiz hiperfonksiyonu (ACTH hipersekresyonu) dur. Bütün bunlar, adrenal salgılığına aşırı salgı yaptırır. Klinik olarak, Buffalo tipi şişmanlık, düşük omuz, kalın boyun, aydede yüz hastalığın özelliğidir. Karın derisinde çizgilenme, akne, osteoporoz, hipertansiyon görülür. Kadınlarda hirsutizm (kıllanma) amenore ve mental bozukluk, diğer özelliklerdir. Metaplazi: Metaplazi adült (matür= erişkin) bir hücre tipinin (epitelyal veya mezanşimal) yerini, diğer bir adült hücrenin alması şeklinde olan reversibl bir değişikliktir. Olumsuz çevre koşullarına karşı dayanabilmek için, strese duyarlı hücrelerin daha dirençli hücre tipine dönü-şerek gösterdiği adaptif cevaptır. Bu tür adaptif metaplaziye en güzel örnek, “skuamoz meta-plazi” dir. Sigara (içme gibi, kötü) alışkanlığı olan kişilerde solunum yollarındaki (trakea ve bronş epiteli) silli- silendirik epitel yerini, stratifiye skuamoz epitel hücrelerinin almasıdır. Tükrük salgılığı kanalı ve safra kesesi kanalı taşlarının varlığında olan kronik iritasyon, bura-lardaki sekretuvar silendrik epitelin yerini nonfonksiyonel stratifiye skuamoz epitel alabilir. A vitamini yetersizliği de, solunum yolu epitelini skuamoz metaplaziye uğratır. “Müköz meta-plazi” kronik bronşitte psödostratifiye silli solunum yolu epiteli, mukus salgılayan basit silen-dirik epitele dönüşebilir. Metaplazi mekanizması, adaptif bir yanıt olarak, mezankim hücrele-rinde de oluşur. Fibroblastlar kemik ve kıkırdak yapan osteoblast veya kondroblastlara dönü-şebilir. Örneğin; osteoid ve kemik dokusu yumuşak dokuda özellikle zedelenme alanında nadiren oluşur, buna “osseöz metaplazi” denir. Hipoplazi: Özel yapısı aynı kalmakla beraber, normal boyutuna ulaşamayan organlar için kullanılan bir terimdir. Bu bir eksik gelişmedir. Organın görünümü normal, fakat hacım bakı- mından küçüktür. Beyinin tam gelişemeyerek küçük kalmasına “mikrosefali” adı verilir, bu hipoplaziye bir örnektir. Gelişmesini tamamlamamış ve küçük kalmış bir diş, hipoplazik diş olarak adlandırılır. Aplazi: Tam gelişememiş bir organı tarif eder. Bir organın çok küçük ve biçimsiz olması durumudur. Bir taraftaki böbreğin taslak halinde bulunmasıdır. Agenezi: Bir organ veya dokunun konjenital bir bozukluk nedeniyle taslak halinde bile bulunmamasına “agenezis” denir. Bir organa ait doku kalıntılarının olmaması durumudur. Dental agenez olarak, çok nadir de olsa rastladığımız lateral veya üçüncü molar dişlerdeki hiç gelişememe örnekleri vardır. Atrezi: Barsak karaciğer ve safra kanalı gibi, duktal veya lümenli organların kanal açıklı-ğının olmamasıdır. REVERSİBL VE İRREVERSİBL HÜCRE ZEDELENMESİNDE IŞIK MİKROSKOBİK DEĞİŞİKLİKLER Klasik patolojide öldürücü olmayan (nonletal) zedelenme sonucu ortaya çıkan morfolojik (yapısal- biçimsel) değişikliklere “dejenerasyon (yozlaşma)” olarak söz edilirdi; fakat bugün bunlara daha basit olarak, reversibl (geri dönüşlü) değişiklik adı verilmektedir. İki ana mor-folojik değişiklik şeklinde karşımıza çıkar: (1)Hücresel şişme ve (2)yağlanma. Hücresel Şişme: Hücre içi sıvı ve iyon dengesinin bozulduğunda görülür. Hidropik de-ğişme veya vakuoler dejenerasyon olarak da adlandırılan hücresel şişme, hücrede hemen her tip hasarın ilk göstergesi ekstrasellüler suyun, hücre içine geçmesi neticesi olan hücredeki büyüme “hücresel şişme” olarak bilinir. Hücre şişmesi, reversibl bir olaydır ve hafif hasarın (zedelenmenin) işaretidir. Makroskopik olarak hücresel şişmede organlar büyümüştür; sert ve soluk görünümlü olup, ağırlıkları artmıştır. Mikroskopik olarak hücre sitoplasması bulanık, nükleus (nüve= çekirdek) ise soluk görünümlüdür. Yağlı Değişme (Yağlanma- Steatozis): Yağlı değişme parankimal hücrelerde anormal yağ (trigliseritler, kolesterol ve kolesterol esterleri) birikimini belirtir. Yağlanma ise, daha az görülen bir reaksiyondur. Hücre içindeki küçük ve büyük vakuoller, hücrede lipid artışını gösterir. Yağlı değişme öldürücü olmayan (reversibl) zedelenmenin belirtisidir; fakat etken ortadan kaldırılmazsa, bazen öldürücü olabilir. Yağ metabolizmasının ana organı olması nede-niyle yağlı değişme, en sık karaciğer dokusunda görülür; fakat kalb, böbrek, kas ve diğer organlarda da oluşabilir. Karaciğerdeki yağlı değişmenin en önemli nedeni, alkol bağımlılığı-dır. Alkol bir hepatotoksiktir. Yağlı karaciğer daha sonra, siroz olarak adlandırılan ilerleyici karaciğer fibrozisine yol açabilir. Yağlı karaciğere neden olan diğer etkenler; obesite, toksin-ler, protein malnutrisyonu, diyabetes mellitus ve anoksidir. İskemik ve Hipoksik Zedelenme İskemi veya dokudaki kan akımı azalması, klinik tıpta hücre zedelenmesinin en yaygın görülen nedenidir. Hipoksinin ilk etkilediği yer, hücrenin solunum merkezidir (aerobik solu-numu) ki burası, mitokondrilerdeki oksidatif fosforilasyonun olduğu yerdir. Oksijen basıncı düştükçe ATP nin hücre içi yapımı, bariz bir şekilde azalır ve durur. ATP kaybı, hücrede genel olarak bir çok sistemi etkiler. Hücre dışı kalsiyumun, hücre içi girişine neden olur. Hipoksi ve ATP azalmasının en erken sonuçlarından birisi, hücresel şişmedir (hücresel ödem). Protein normalde hücre içinde daha fazla olduğu için, hücre içi osmotik kolloidal basınç yük-sektir. Diğer taraftan sodyum (Na) ve diğer bazı iyonların konsantrasyonu dış ortama göre, hücre içinde daha düşüktür. İntrasellüler sodyumun azlığı, hücre membranında ATP enerjisine dayanan “sodyum pompası” ile sağlanır. Potasyum (K) konsantrasyonu ise, dış ortama göre hücre içinde daha yüksektir. ATP azalmasıyla bu sistem bozulur. Potasyum dışarı çıkmaya, sodyum hücre içine girmeye başlar. Sodyum ile birlikte hücre içine su girişi olur. Sonuçta iç ve dış ortam dengeye vardığında, hücre içinde normalden çok fazla su bulunacaktır ve hücre şişecektir. Hücresel Yaşlanma: Bu deyim; hemen daima subletal (reversibl) zedelenmenin progresif (ilerleyici) birikimleri, hücresel fonksiyonla uyum içinde davranır ve hücre ölümüne yol açabilir veya en azından hücrenin bir zedelenmeye karşı verdiği yanıt kapasitesindeki azalma- yı anlatır. Yaş ile pekçok hücre fonksiyonu progresif olarak azalır. Mitokondrial oksidatif Fosforilasyon (aerobik solunum), strüktürel, enzimatik ve reseptör proteinlerinin sentezindeki gibi, giderek azalır. Yaşlanan hücrelerde besin alımlarında ve kromozomal hasarların onarı-mında belirgin azalmalar görülür. Yaşlı hücrelerin ultrastrüktürel yapılarında da morfolojik değişiklikler gözlenir. Şekil bozukluğu gösteren nüveler, pleomorfik vaküollü mitokondriler, endoplazmik retikulumda azalma ve lipofussin pigment birikimi vardır. Hücresel yaşlanmada serbest radikal hasarı, önemli hipotezlerden birisidir. İyonizan radyasyon olarak tekrarlayan çevresel etkilenme, antioksidan savunma mekanizmalarının (örn vitamin E, glutatyon peroksi- daz) progresif bir şekilde azalması veya her ikisi birden beraberce etki ederek serbest radikal hasarı oluşturur. Lipofussin birikimi yaşlanmış hücrelerde bu tür hasarın açıklayıcı bir göster- gesidir; fakat pigmentin kendisinin hücreye toksik olduğuna dair deliller yoktur. Serbest radi- kaller mitokondrial ve nükleer DNA hasarını harekete geçirebilir. Zedelenmeye Karşı Hücre İçi Yanıtlar Lizozomal Katabolizma (Parçalama): Primer lizozomlar esas fonksiyonu sitoplazma içi sindirim olan, çok sayıda ve çeşitte sindirici (hidrolitik) enzim içeren, membranla çevrili vezi- küllerdir. Her hücrede bulunursa da özellikle fagositik aktivite gösteren hücrelerde (makrofaj, lökosit) bol miktarda bulunur. Bugüne kadar 50’den fazla hidrolitik (parçalayıcı) enzim tanımlanmıştır. Lizozomal örneklerden bazıları; asid hidrolaz (organik materyale örn. Bakteri-ye karşı rol oynar), lizozim (lökositlerde olduğu kadar makrofajlarda da bulunur. Mikroorga-nizmaların hidrolizinde rol oynar), proteaz (proteinlerin parçalanmasına neden olur; elastin, kollagen ve bazal membranda bulunan proteini yıkar) ve diğerleri asit fosfataz, glukoronidaz, sülfataz, ribonükleaz, deoksiribonükleaz, elastaz, kollagenaz ve lipaz’dır. Lizozomlar tarafın-dan parçalanma şu iki yoldan birisiyle oluşur. Otofaji: Hücrenin kendi içeriğinin (komponentler), yine hücrenin kendi lizozomları tara-fından sindirilmesidir. Kendini yeme anlamındadır. Pekçok durumda mitokondri ve endoplaz-mik retikulum gibi, hücre organalleri zedelenmeye maruz kalırsa hücre normal fonksiyonları-nı koruyabilmek için, bunları yok edebilmelidir. Zedelenmiş veya yaşlanmış organellerin belli bir düzen içinde yok edilmesi bir hücresel yenilenmedir. Ayrıca besinsiz kalan hücrenin kendi öz içeriğini yemek suretiyle kendi yaşamını sürdürmesi olayıdır. Otofaji, özellikle atrofiye giden hücrelerde belirgindir. Heterofaji: Bir hücrenin özellikle makrofajın, dış ortamdan hücre içine aldıkları maddeleri sindirmesi olayına, heterofaji denir ve otofajinin karşıtıdır. Bir materyalin dış çevreden alın-ması olayı, genelde “endositozis” olarak adlandırılır. Büyükçe partiküler materyal için, “fago-sitozis” ve küçük solubl (eriyebilir) makromoleküller için de “pinositozis” terimi kullanılır. Dış ortamdan alınan partikül hücre içine girdiğinde, vakuolle çevrilir. Bunlar fagozom (fago-sitik vakuol) olarak adlandırılır. Bu fagozomlar, primer lizozomlarla kaynaşır, artık sekonder lizozom (fagolizozom) dur. Heterofaji, genelde “profesyonel fagositler” olarak bilinen lökosit (PNL -mikrofaj) ve makrofajlarca (histiosit) yapılır. Lökositler bakterileri, makrofajlar da hücre debrilerini sindirir. Sindirilmiş atıkların hücreden dışarı atılma olayına “ekzositozis” denir. N E K R O Z İ S Canlı organizmada (doku ve organ) ışık mikroskopi ile saptanan, hücre ölümü sonucu ortaya çıkan morfolojik değişikliklere “nekroz” denir. Nekrozis, Yunan dilinde ölüm anla-mındadır. Kan gereksinimi kesintilerinde (iskemik zedelenme) veya belli bazı toksinlerle karşılaşılması durumunda ortaya nekroz çıkar. Nekrozdaki morfolojik görünüm, aslında aynı anda oluşan iki olayın sonucu olabilir: (1)Hücrenin enzimatik yıkımı (organellerin parçalan-ması) ve (2)makromoleküllerin denaturasyonu (proteinlerde yapı değişiklikleri). Bir hücrenin enzimatik sindirimi, kendi lizozomal enzimlerinden kaynaklanıyorsa “otoliz” olarak tanımla-nır. Hücre kendi- kendini sindirir. Otosindirimde nekroz meydana gelir. Postmortem otoliz, tüm organizma öldükten sonra oluşur ve bu bir nekroz değildir. Çevreye gelen bakteri ve lökosit lizozomlarından türeyen hidrolitik (katalitik) enzimlerle olan sindirime de “heteroliz” adı verilir. Bu şekilde de hücre dıştan gelen enzimatik etki ile nekrotik olur. Biyopsi ve rezek-siyon gibi, cerrahi işlemlerle vücuttan alınıp fiksatife (%10’luk formalin) konulan doku parça-sındaki hücreler de ölüdür; fakat nekrotik değildir. Fiksatifler dokuların yapısal bütünlüğünü (morfolojiyi) korur. Hücre ölümünün temel işaretleri nüvede bulunur. Ölüme giden hücrelerde nüve değişiklik- leri şu üç görünümden birisini gösterir. Bunların hepsi kromatin ve DNA nın parçalanmasına bağlıdır. Nüve büzüşür ve küçülür, kromatin yoğunluğu artmıştır. Bazofilik nüve olarak söz edilir, (1)piknozis olarak adlandırılır. Piknozis apoptotik hücre ölümünde de görülür. Zaman içersinde piknotik nüvede parçalanma olayı meydana gelir. Nüve küçük düzensiz parçacıklara bölünmüştür (2)karyorekzis olarak adlandırılır ve (3)karyolizis olarak bilinen nükleer mater-yallerin çözülme ve erimesi söz konusudur. Kromatinin bazofilliği solabilir. Sonuçta, nekrotik hücrede nüve tümüyle kaybolur. Bu arada sitoplazmik değişiklikler de görülür. Sitoplazmada homojenizasyon ve belirgin eosinofili artışı vardır. Artık bu safhada nekrotik hücre; çekirdeği olmayan asidofilik bir atığa dönmüştür. Geleneksel olarak birçok farklı tiplerde nekrotik doku görünümleri tarif edilmiştir. Koagülasyon Nekrozu: En çok görülen nekroz tipi, koagülasyon nekrozudur. Genel ola-rak doku yapısı korunmuştur. Nekrotik doku içinde, hücre elemanları hayalet hücre şeklinde görüntü verir, hücrelerin dış hatları seçilebilir. Nekrotik alan asidofilik opak görünümlüdür. Bu nekroz tipi, daha çok kan akımının kesilmesiyle iskemi (hipoksi) sonucu ortaya çıkan enfarktlarda oluşur. Bakteriyel toksinler, viruslar ve iyonize radyasyon gibi, pek çok etken de neden olabilir. Bu tip nekroz iltihabi yanıtı harekete geçirir. Hasarlı doku fagositler tarafından ortadan kaldırılır ve bölge onarım veya rejenerasyona uğrar. Kalb (myokard enfarktüsü) ve böbrek gibi, organlarda daha sık görülür. Kazeifikasyon Nekrozu: Bu nekroz, farklı- özel bir nekroz tipidir. Başlıca tüberküloz enfeksiyonlarında oluşur. Bu nekroz tipinin karakteristik makroskopik yapısı, bir çeşit peyniri hatırlatan yumuşak, parçalanabilir gri- beyaz görünümde olmasıdır. Bu görünümü nedeniyle “kazeös” terimi kullanılır. Mikroskopik olarak hiçbir hücre detayı görülmez, dokunun yapı özellikleri tamamen silinmiştir. Yerine amorfös, granüler ve eosinofilik bir doku geçmiştir. Likefaksiyon Nekrozu: Bu tip nekroz, iki durumda karşımıza çıkar. Bunlardan biri enzim sindiriminin baskın olduğu durumlarda söz konusudur. Güçlü hidrolitik enzimlerin aksiyonu sonucu oluşur. Başlıca fokal bakteri (özellikle pyojenik mikroorganizmalar) enfeksiyonların- da görülür. Dokuda belirgin yumuşama ve likefaksiyon vardır; abse buna bir örnektir. Hücre ölümü sonrası bölgede bulunan bakteri ve lökositlerin hidrolitik enzimleri ile çevre doku hüc- relerinin otolizi ve heterolizisi sonucu ortaya çıkar. Lökositlerle dolu abse kavitesi oluşturarak doku defekti meydana getirir. Püy’ün oluşmasıyla karakterli süpüratif enfeksiyondur. Diğeri, santral sinir sisteminde iskemi sonucu oluşan hücre ölümü, likefaksiyon nekrozudur. Hemorajik Nekroz: Venöz drenajda blokaj olduğu dokularda ekstravaze kırmızı kan hücrelerinin çevreyi kaplaması sonucu, dokuların nekroze olmasıdır. Gangrenöz Nekroz: Çoğunlukla diyabetli kişilerde, özellikle alt ekstremitelerde ayak ve ayak parmaklarında görülür. Dokuda iskemik hücre ölümü ile ortaya çıkan koagülasyon nek- rozunun özel bir formudur. Bölgede mevcut bakterilerin ve çevreden gelen lökositlerin like- faktif aksiyonunun oluşur. Koagülasyon nekrozu ön planda olduğu zaman, bu olay gelişir. İskemiye neden olan damar tıkanıklığı, lökosit göçünü engellerse, nekroza uğrayan hücrelerin parçalanması önlenir ve ortadan kaldırılmayan nekrotik hücreler mumyalaşır. Buna “kuru gangren” denir. Salim doku ile sınırı belirgindir. Nekrotik bölgeye bakteri invazyonu ve löko- sit göçü olursa, likefaksiyon nekrozu gelişir, “yaş gangren” terimi kulanılır. Yaş gangrene, putrefaksiyon (kokuşma) nekrozu da denir.Vincent spiroketleri, fusiform basiller ve daha bazı mikroorganizmaların eklenmeleri söz konusudur. Beslenme defektli direnci düşük çocuklarda orafasiyal dokularda ortaya çıkan “noma” (gangrenöz stomatit) olarak adlandırılan lezyon da bir çeşit yaş gangrendir. Noma (Gangrenöz Stomatitis- Şankrum Oris): Oral ve fasial dokularda destrüktif yapısı ile karakterize, süratle yayılan daha çok 2- 5 yaşlardaki beslenme defektli veya debilite (yıkıcı) sistemik hastalıklara sahip çocuklarda görülen nadir bir hastalıktır. Kişinin genel sağlığıyla belirgin bir uyum gösteren doku nekrozu, başlangıçta fuziform basiller ve Vincent spiroketleri gibi, anaerobik bakterilerin invazyonu ve sonrasında stafilokokus aureus, streptokokus pyo-gens gibi, diğer çeşitli mikroorganizmalar tarafından invazyona uğrayan spesifik bir enfeksi-yondur. Gerçi pnömoni, sifiliz, tüberküloz, lösemi ve sepsis gibi, zayıf düşürücü sistemik has-talıklar yanısıra malnütrisyon, en sık görülen predispozan faktörlerdir. Noma çok nadir görülür. Gelişmemiş ülkelerde, özellikle malnütrisyon veya protein defek- ti gösteren durumlarda ortaya çıkar. Lezyon özellikle gingival mukozada küçük ağrılı bir ülser şeklinde başlar. Çevre dokuya süratle yayılır. Alttaki yumuşak dokuya penetre olan, sonunda yüz derisini perfore eden akut gangrenöz bir hastalıktır. Nekrozlara bağlı olarak meydana ge- len doku kayıpları sonucu, kemik dokusu ve dişler açığa çıkar. Etkilenen bölgede dişler dökü- lür. Noma, çok sınırlı ve daha benign yapıda olan “akut nekrotizan ülseratif gingivitis”e (ANUG) bir çok özellikleriyle benzemektedir. Her ikisinde de etken aynı mikroorganizmalar-dır ve olay, doku nekrozu ile sonuçlanır. Ayrıca her iki lezyonda da bağışıklık yönünden düşük (immünosüprese) kişiler söz konusudur. Gerçi nadir de olsa, ANUG’dan noma’ya dönüşen olgular da vardır. Son zamanlarda yapılan araştırmalarda, HIV/AIDS’li hastalarda noma’nın görülme sıklığının artmış olduğu gözlenmiştir. Mikroskopi; nonspesifik yoğun nek-roz ve belirgin yaygın bir iltihabi hücre reaksiyon gösterir. Tedavi; enfeksiyonun kendisi kadar, hastalığa neden olan predispozan faktörlerin de yok edilmesini içermelidir. Uygulanan antibiyotik tedavisi yanında, hastanın sıvı- elektrolit denge- sinin ve beslenmesinin sağlanması gerekir. Eğer çevre dokuda yoğun destrüksiyon varsa, do- kudaki nekrotik debrilerin temizlenmesi gerekir. Noma’da mortalite; antibiyotiklerden önce yaklaşık %75 idi. Gerçi bu lezyon hala ciddi bir problemdir. “Gazlı gangren”; özellikle Clostrdium welchii’nin etken olduğu, sporlu anaerobik Clostri-dia grubunun yaptığı spesifik bir enfeksiyondur. Klostiridya sporlarının bulaştığı delici yara-lanmalarda, güçlü ekzotoksinler ile proteolitik enzimler çevre dokuyu haraplar, hatta fatal (öldürücü) olabilir. Yağ Nekrozu: Yağ dokusu hasarı iki şekilde oluşur. 1)Travmatik yağ nekrozu; meme gibi yağ içeren dokularda oluşan şiddetli zedelenme sonucu ortaya çıkar. 2)Enzimatik yağ nekrozu (lipolizis); pankreasdaki ağır bir iltihabın sonucu ortaya çıkan, akut hemorajik pankreatitisin komplikasyonudur. Proteolitik ve lipolitik pankreatik enzimlerinin aksiyonu sonucu, yağ do-kusunda ortaya çıkan bir tip nekrozdur. Fibrinoid Nekroz: Bu gerçek bir nekroz özelliği göstermez. Bazı hipersensitivite (aşırı duyarlık) reaksiyonlarında görülür. Genellikle immünolojik olarak zedelenen damar duvar- larında koyu eosinofilik boyanan fibrine- benzer homojen görünümlü bir madde birikimiyle karakterlidir. Bu birikim; fibrin, immünoglobulin ve plasma proteinlerinden oluşur. A P O P T O Z İ S Apoptozis, köken olarak apo (ayrı), ptozis (düşen) kelimelerinden oluşmuştur. Apoptoz (kopma, düşme) sonbaharda yaprak dökümünü tanımlayan bir kelimedir. Farklı ve önemli bir hücre ölümü biçimi olan apoptoz, proğramlanmış veya seçici hücre ölümüdür, hücre intiharı ile eş anlamlı olarak kullanılmaktadır. Bir grup içinde belli bazı hücrelerin kendi- kendilerini yok ettikleri proğramlı bu ölüm biçimi, diğer bir hücre ölümü olan nekrozdan farklı olduğu bilinmelidir. Nekroz, yalnızca patolojik durumlarda ortaya çıkar ve iltihabi reaksiyon mevcut-tur. Apoptoz, hiçbir zaman iltihabi reaksiyona neden olmaz. Organizmanın dengeli yaşamını sağlayan apoptoz, fizyolojik olduğu kadar patolojik olaylarda da rol oynamaktadır. Önemi, biyolojik olaylarda gereksiz ve zararlı hücrelerin yok edilişini sağlamasından, organizmanın kendi iç dengesinin devamlılığına katkıda bulunmasından ileri gelmektedir. Apoptoz, fizyolojik ve patolojik olmak üzere pek çok durumda karşımıza çıkar. Fizyolojik Apoptoz : 1-Embriyogenezis sırasında aşırı yapılmış hücrelerin proğramlı olarak ortadan kaldırılması olayında görülür. 2-Erişkinlerde hormon bağımlı dokuların gerilemesinde (involüsyon═ organ atrofisi) görü-lür: Postlaktasyonel (sütten kesilmiş) meme salgı hücrelerinde regresyon, menopozda ovarian follikül atrofisi, menstrüel siklusda endometrium hücrelerindeki ölüm, örnektir. 3-Prolifere hücre topluluklarındaki hücre kayıpları; buna örnek barsak kriptlerindeki epitel hücre sayılarının sabit tutulmaları için, hücre ölümü örnek verilebilir. 4-İltihabi yanıtın sonlandırılması; ekstravazasyondan sonra, iltihabi dokuda görevini ta-mamlamış lökositlerin ölümü, apoptozis ile olmaktadır. 5-Sitotoksik T lenfositler tarafından oluşturulan hücre ölümü: Virus ve tümör hücrelerine karşı oluşturulan bir savunma mekanizmasıdır. Bunların öldürülerek elimine edilmelerini sağ- lar. Patolojik Apoptoz : 1-DNA hasarı: Radyasyon, sitotoksik antikanser ilaçları, aşırı ısı (soğuk, sıcak) ve hipoksi, gibi, nekroz oluşturan bu etkenler, düşük dozlarda uygulandığı zaman hücre intiharını tetikler. DNA, direkt olarak veya serbest radikaller aracılığıyla zedelenebilir. Eğer hasar onarılamazsa, interensek (içsel) mekanizmalar tetiklenerek apoptoz indüke edilir. DNA daki mutasyonların malign değişme riski bulunduğu için, bu durumdaki hücrelerin apoptoz ile yok edilmeleri bir kazançtır. Apoptozda, tümör süpresör (baskılayıcı) gen olan TP53 (p53) ün aracılığı söz konu-sudur. Bir antionkogen olan bu genin (TP53), apoptozu harekete geçiriçi bir etkisi vardır. 2-Hatalı sarmalanmış proteinlerin birikimi. Gen mutasyonları ve serbest radikaller sonucu ortaya çıkan bu proteinler, endoplasmik retikulumda aşırı birikir ve hücrenin apoptotik ölü-müne neden olur. 3-Hücre zedelenmesine neden olan bazı infeksiyonlar, özellikle viruslar, apoptotik ölüme neden olur. 4-Paranşimal organlarda (pankreas, tükrük salgılığı ve böbrek) kanal tıkanmalarından son-ra ortaya çıkan patolojik atrofi. Apoptoz Mekanizması ve Morfolojisi Bu tip hücre ölümünün morfolojik yapısı, koagülasyon nekrozundan farklıdır. Apoptoz da gözlenen başlıca morfolojik değişiklikler, en iyi biçimde elektronmikroskopi ile gözlenebi- lir. Hücre, su ve elektrolit kaybı ile birlikte yapısal elementlerinin yoğunlaşması sonucu dansi-tesinde artma meydana gelir ve volümlerinin yarısını kaybeder ve hacım olarak küçülür. Apoptoz ışık mikroskobunda tanınabilir. Histolojik olarak tek hücre veya hücre gruplarında hematoksilen- eosin ile boyanmış kesitlerde yoğun eosinofilik sitoplazma içinde, yoğun nük- leer kromatin parçalarına sahip, yuvarlak veya oval kitleler olarak görülür. Nüve kromatini yoğundur (piknotik) ve sonuçta karyoreksiz oluşur. Bu sırada hücre süratle büzüşür, önce sito- plazmik tomurcuklar sonra, parçacıklar şeklinde beliren “apoptotik cisimcikler” oluşur. Bun-lar membranla çevrili nükleer ve sitoplazmik organeller içeren parçacıklardır. Bunlar süratle makrofajlar ve komşu doku hücreleri tarafindan fagosite edilir. HÜCRE İÇİ BİRİKİMLER Bazı koşullar altında normal hücreler, anormal miktarlarda çeşitli maddeler biriktirebilir. Bu maddelerin birikimi geçiçi veya kalıcı olabilir. Bunlar hücreye zarar vermeyebilir veya bazen toksik olabilir ve hücrede ciddi zedelenme yapabilir. Maddelerin birikim yeri sitoplaz- ma veya nüvedir; sitoplazmada en çok lisosomlardadır. Bu intrasellüler birikimler üç grupta incelenir: (1)Normal endogenös madde, normal miktarlarda üretilir; fakat bunu kullanacak metobolizma hızı yeterli değildir (normal bir maddenin çok fazla birikmesi). Buna örnek “karaciğer hücrelerinde görülen yağlı değişme” verilebilir. Ayrıca hücre içinde su, glikojen ve protein birikimleri, örnek verilebilir. (2)Anormal endogenös madde birikir; çünki bu endoge- nös maddeyi metabolize edebilecek enzimlerde defekt söz konusudur. Bunun önemli nedeni doğuştan varolan genetik enzimatik defektir ve bu metabolitin parçalanmasında yetersiz olur. Sonuçta hücre içi birikimler ortaya çıkar. Bunlar, “depo hastalıkları” olarak tanımlanır. Tay- Sacks hastalığında gangliosid, Gaucher hastalığında glukoserebrosid ve Niemann- Pick hasta-lığında da sfingomyelin birikimleri, örnek verilebilir. (3)Hücreye dışarıdan alınan anormal ekzojen madde depolanmasıdır. Bunları parçalayıp yok edecek yeterli metabolizma yoktur ve diğer alanlara da taşınamadığı için, bu birikimler ortaya çıkar. Solunum yoluyla alınan kar-bon- kömür veya silika partiküllerinin akciğerde birikimi ve tatuaj (döğme) pigmentleri buna verilebilecek en güzel örnekleridir. Bu pigmentler makrofajlardaki fagolisosomlarda dekatlar-ca kalabilir. Lipidler: Sayfa 11 de yağlı değişmeyi (yağlanma) tekrar okuyunuz. Kolesterol: Makrofajlar, iltihabi bir alandaki nekrotik hücrelerin lipid artıklarını fagositik aktiviteleri ile tutarlar. Bu da bir çeşit hücre içi lipid birikimidir. Bu hücrelerin sitoplazmaları, küçük lipid vakuolleri ile dolar ve köpüksü bir görünüm alır. Bunlara “köpük hücreleri” adı verilir. Aterosklerozda düz kas hücreleri ve makrofaj sitoplazmaları, lipid vakuolleri (koleste- rol) ile doludur. Bunlara aterosklerotik plak denir. Proteinler: Lipid birikimine oranla çok daha nadir görülür. Hücreler içindeki protein fazlalığı, morfolojik olarak sitoplazmada görülebilen pembe renkli hyalin damlacıklar şeklin-dedir. Hücre içindeki protein birikimi; (a)hücrenin aşırı proteine maruz kalıp, hücreye alınma-sı şeklinde olur veya (b)hücrede protein sentezinin aşırı yapılması şeklindedir. Bu birikim şe-killerine örnek vermek istersek; böbrek, albumini glomerüllerden filtre ederken, proksimal tüplerden az bir kısmını tekrar geri emer. Aşırı proteinüriye (idrarda fazla protein kaybı) neden olan böbrek hastalıklarında (glomerülonefritler), haliyle protein daha fazla miktarda reabsorbsiyona uğrayacaktır. Bu protein reabsorbsiyonu nedeniyle tüp epitel hücrelerinde aşırı birikme meydana gelir. Plasma hücrelerinde muhtemelen antijen uyarılarına yanıt olarak gra-nüllü endoplasmik retikulumda sentezlenen immünoglobulin birikimi olursa, “Russell cisim-ciği” olarak adlandırılan homojen eosinofilik inklüzyonlar (cisimcikler) görülür. Glikojen: Glikoz veya glikojen metabolizma bozukluğu olan hastalıklarda hücre içinde aşırı miktarda glikojen birikimi görülür. Glikojen birikimini, su veya yağ vakuollerinden ayır- mak gerekir. Glikojen, sitoplazmada PAS pozitif şeffaf (saydam) vaküoller şeklinde görülür. Diyabetes mellitus (şeker hastalığı), glikoz metabolizma bozukluğunun başlıca örneğidir. Bu hastalıkta glikojen; karaciğer hücreleri, pankreasdaki Langerhans adacıklarındaki beta hücre-leri ve kalb kası hücrelerinde (kardiyak myosit) olduğu kadar, böbrek tüp epitellerinde de biri- kir. Ayrıca “glikojen depo hastalıkları” veya “glikogenoz”lar olarak adlandırılan, birbiriyle yakın ilişkili bir grup genetik hastalıklarda hücre içinde glikojen aşırı birikir. Bu hastalıklarda glikojenin, yapım ve yıkımıyla ilgili enzim defekti nedeniyle metabolize edilemez ve aşırı birikim nedeniyle, sekonder hücre zedelenmesi ve hücre ölümü ortaya çıkar. Hyalin Değişiklik Hyalin terimi; hücre içi birikimin veya hücre incinmesinin spesifik işeretinden daha çok, tarif edici bir terim olarak kullanılır. Hücre içinde veya ekstra boşluklarda hyalin olarak tanımlanan değişiklikler hematoksilen- eosin ile boyanan rutin histolojik kesitlerdeki homoje- nös, camsı, saydamsı pembe görünümde madde birikimleridir. Bunlar intrasellüler birikimler veya ekstrasellüler depositler olarak tarif edilir. İntrasellüler hyalini değişikliklere örnekler şunlardır: (1)Aşırı proteinüri de, böbrek tüp epitel hücrelerinde geri emilen protein, hyalin damlacıklar şeklinde görülür. (2)Plasma hücrelerinde küresel hyalin depositler şeklinde immunoglobulin birikimleri olur (Russell cisimcikleri). (3)Bir çok viral enfeksiyonda, nüve veya sitoplazmada hyalin inklüzyonlar görünümünde oluşumlar vardır. Bunların bir kısmı, viral nükleoprotein birikimleridir. “İnklüzyon cisimcikler”i olarak adlandırılır. (4)Alkoliklerin karaciğer hücrelerinde “alkolik hyalin” denilen hyalin inklüzyonlar görülür. Ekstrasellüler hyalini analiz etmek bir dereceye kadar güçtür. Eski skar (nedbe) yerindeki kollagen fibröz doku, hyalinize bir görünüm alır. Uzun süren hipertansiyonda ve diyabetes mellitusda damar duvarları özellikle böbrek, hyalinize bir şekil alır. Ekstrasellüler hyaline diğer bir örnek, kronik haraplanmaya neden olan böbrek glomerüllerindeki hyalindir. Amiloid de Hematok-silen- eosin boyasında, hyalini bir görünüm verir. Görüldüğü gibi, çok sayıda ve birbirinden farklı mekanizmalar bu değişikliğe neden olabilir. Hyalini değişiklik görüldüğünde, etyoloji-deki farklı patolojik durumlar nedeniyle lezyonun tanımlanması önem arzeder. PİGMENTLER Pigmentler renkli maddelerdir, Latince boya- renk anlamına gelir. Melanin gibi, hücrenin normal içeriği olabilir, hücrenin içinde sentez edilir (endojen pigment). Diğer bir bölümde ise, bazı durumlarda organizmaya dış çevreden gelen birikimlerdir (ekzojen pigment). En sık görülen ekzojen pigment, karbon veya kömür tozudur. Bunlar medeni yaşamın en önemli hava kirliliği etkenleridir. Büyük sanayi şehirlerinde yaşayanlarda görülebildiği gibi, asıl kö- mür madenlerinde çalışan işçilerde çok belirgindir. Solunumla alındığında alveolar makrofaj- lar tarafindan tutulup, bölgesel trakeo- bronşial lenfatik kanallardan lenf düğümlerine taşınır. Akciğer dokusunun bu pigment birikimi ile kararması “antrakozis” olarak adlandırılır. Kömür tozu birikimleri, fibroblastik reaksiyona neden olarak anfizem ve hatta ciddi bir akciğer toz hastalığı olan “kömür işçisi pnömokonyozu” adı verilen akciğer patolojilerine neden olur. İnhalasyonla alınan İnorganik tozların cinsine göre; antrakozis dışında asbestozis (amyant) ve silikozis de örnek verilebilir. Bunlar, “pnömokonyoz” lar olarak adlandırılan, çevresel hasta-lıklardır. Bunların içersinde en zararsızı antrakozisdir. Metal, cam ve taş partiküllerine silika tozları denir. Bu alanlarda çalışan silika tozları etkisi altında kalan işçilerde, silikozis görülür. Asbestozisde, asbest tozlarının inhalasyonu söz konusudur. Diffüz interstisyel fibrozise neden olur ve bronkojenik karsinoma ile malign mezotelyoma gelişme riski vardır. HÜCRE ZEDELENMESİ, ADAPTASYON ve HÜCRE ÖLÜMÜ Tatuaj (Döğme) : Dekoratif amaçla vücudun değişik bölgelerindeki deriye boyalı şimik maddelerle değişik resimler yapılmasıdır. Deriye ekzojenös metalik veya bitkisel pigment verilmesi sonucu oluşur. İnoküle pigmentler, dermal makrofajlar tarafından fagosite edilir. Bu pigment herhangi bir iltihabi yanıt oluşturmaz ve zararsızdır; fakat kullanılan bu maddeye karşı allerjisi olanlarda reaksiyonlar gelişir. Ayrıca kullanılan malzeme aracılığıyla AIDS, he-patit B ve C’ye yakalanma riski olabilir. Amalgam Tatuaj : Dental dolgu yapımı sırasında amalgam parçacıklarının oral yumuşak doku içine implante olması durumunda, söz konusu olur. Klinik olarak mavi- kahverenkte ve hatta bazen siyah renkte pigmentasyon görülür. Mikroskopik düzeyde, dev hücre oluşumları gösteren bir reaksiyon vardır. Ayırıcı tanı için, hematom ve nevusu düşünmeliyiz. Endojen Pigmentler : Bu grupta lipofuskin ve melanin pigmentleri ile hemoglobin türev-leri olan hemosiderin ve bilirubin gibi, pigmentler vardır. Lipofuskin : Latince "kahverengi lipid" anlamına gelen sarı- kahverenk'de, ince granüler sitoplazmik bir pigmenttir. Yaşlı kişilerde, ciddi malnütrisyon ve kanser kaşeksisinde, özellik- le kalb ve karaciğer hücrelerinde görülür. Bu organlarda hacım küçülmesiyle beraber görüldü- ğünden “brown atrofi” olarak da bilinen bu yıpranma pigmenti, hücre içi sindirilmemiş mater- yale örnek verilebilir. Serbest radikal hasarı, lipofuskin birikimine neden olabilir. Antioksidan savunma mekanizmalarının kaybına yol açan çevresel etkenlerle oluşabilir. E vitamini gibi, antioksidanların eksik olduğu durumlarda karşımıza çıkmaktadır. Bu pigmentin hiçbir önemi yoktur. Lipofuskinin kendisi hücre ve fonksiyonlarına bir zarar vermez. Sadece fizyolojik ve patolojik atrofi veya kronik zedelenme gibi, regresif değişiklikleri işaret eder. Melanin : Melanin, tirozinin enzimatik oksidasyonu ile üretilen bir pigmenttir. Melanin sentezi, epidermisin bazal tabakasında bulunan melanositlerde yapılır. Kahverengi-siyah renk- te olan bu pigmentin adı Yunanca siyah anlamına gelen "melas" kelimesinden türemiştir. Melanositlerin prekürsörleri (öncüleri) olan melanoblastların, embriyonik gelişim devresinde nöral kristadan göç ederek son bulundukları yer olan bölgeye geldikleri düşünülür. Bu hücre-lerin yuvarlak gövdeleri bu gövdeden uzanan düzensiz uzantıları vardır. Bunlar epidermis içine doğru dallanarak, bazal ve spinal tabakadaki hücreler arasına uzanır. Melanin melano-sitlerde sentezlenir. Bu işlem tirozinaz enziminin varlığında olur. Tirozinaz aktivitesiyle tiro-zin önce dihydroxyphenylalanine (DOPA) oluşturur ve daha sonra bir dizi dönüşüm işlemi ile melanin ortaya çıkar. Ultrastrüktürel düzeyde tirozinaz, granüler endoplazmik retikulumda sentezlenir ve Golgi kompleksinin veziküllerinde biriktirilir. Membranla çevrili bu küçük organellere "melanozom" adı verilir. Bunlar ışık mikroskobunda görülebilen pigment granül-lerini oluşturur. Melanositlerin normalde görüldüğü yerler; deri, kıl follikülleri, retina pigment epiteli, lep-tomeninks ve iç kulak bölgesidir. Derimiz bu pigment sayesinde renk kazanır. Güneş ışınları-nın (ultraviyole)x etkisiyle derideki melaninin miktarı artar, derinin esmerleşmesi olarak kendini belli eder. Melanin ve melanositler birçok yönden öneme sahiptir. Melaninin fonksi-yonu koruyuculuktur. Bu pigment sayesinde deri ve göz, güneş ışığının zararlı etkisine karşı daha iyi korunur. Melanin pigmenti az olan beyaz derili kişiler, güneşin zararlı etkilerine karşı daha hassasdır. Güneş altında uzun süre çalışan beyaz derili çiftçilerde ve gemicilerde deri kanseri görülme oranı, kapalı yerlerde çalışanlara oranla çok daha yüksektir. Fazla güneşte kalan insanda, melanin pigmentasyonu artar. Kişi koyu renk alır, bronzlaşır. Bu bronzlaşma ile vücut kendini güneşin zararlı ışınlarından korumaya çalışır. Bir zaman sonra, pigment artımı deriyi korumak için yeterli olmaz. Vücut derisi kendini korumak için, bu sefer kalın-laşmaya başlar, hiperplazi gelişir. Sayıca artan hücrelerde dejenerasyon ve de mutasyonun oluşumuyla kansere dönüşme riski ortaya çıkar. Melanogenesisin lokal artması, çoğu kişilerde görülen ve halk arasında "ben" adı verilen, melanositlerin proliferatif lezyonlarını (pigmentli nevusları) ortaya çıkarır. Bunlar deride çok yaygın olarak bulunan siyah- kahverenkte hafif kabarık oluşumlardır. Benign bir lezyon olan nevus'un malign karşıtı, kanserin oldukça öldürücü bir tipi olan, malign melanomadır (mela-no karsinoma). Dermis, ağız mukozası, retina ve çok nadir olarak da, leptomeninks’den geli- şen malign melanoma olguları vardır. Melanin sentezi, adrenalxx (sürrenal) ve hipofizin kontrolü altındadır. Hipofizden adreno- kortikotropik hormon (ACTH) yanısıra, melanosit stimüle eden hormon (MSH) da salgılanır. Adrenal korteksden salgılanan glikokortikoid (kortizol, kortikosteron, kortizon gibi, bir grup hormonu kapsar) ler ve mineralokortikoidler (aldosteron), feed-back regülasyonu ile hipofiz üzerinde ACTH salgılanmasını kontrol eder. ACTH ve MSH düzeyindeki artmalar, melanin pigmentasyonunda da artmalara neden olur. Addison hastalığıxxx (ki bunda primer adrenokor-tikal yetmezlik -hipoadrenalizm- söz konusudur) buna güzel bir örnektir. Hipoadrenalizmde, adrenal korteksden salgılanan ACTH antagonistleri olan adrenokortikal hormon (örneğin kortizol salgısı baskılandığı zaman) oluşamayacağı için, hipofiz üzerindeki feed-back frenleyi ci etkisi de ortadan kalkar. Adrenal korteksin hipofiz üzerindeki kontrolü yok olduğundan, haliyle kompensatuvar olarak hipofiz daha fazla ACTH ve MSH salgılayacaktır. Bunların aşırı salgılanmaları da, deri ve mukozalarda pigmentasyon artımına neden olur. x Ultraviyole (morötesi); çok kısa, enfraruj (kızılötesi); çok uzun dalga boyuna sahip, güneşin zararlı ışınlarıdır. xx Adrenal: ad- ek + renal Surrenal: sur(supra)- üst + renal xxxAddison Hastalığı(Kronik Adrenal Korteks Yetmezliği): Adrenal yetmezlik (hipoadrenalizm) primerdir; sürre-nalin kendisinde bir lezyon vardır veya hipofizin ACTH salgılanmasında bir yetersizlik söz konusudur ve sekon-der hipoadrenalizm olarak adlandırılır. Primer hipoadrenalizm, Addison hastalığı olarak da bilinir. Bunda böbrek üstü bezi hasarlanmıştır. Addison hastalığı, adrenal korteksin progresif destrüksiyonuna bağlı olarak ortaya çıkan, çok nadir rastladığımız bir hastalıktır. Klinik belirtilerin ortaya çıkması için, salgılığın % 90’ının harab olması gerekir. Bu genelde iki şekilde karşımıza çıkar. Otoimmün adrenalitis; olguların % 60-70’sini oluşturur. Enfeksiyonlar; Tuberküloza bağlı hasar en çok rastlanılan bir nedendir. Özellikle tuberküloz adrenalitis’i iltihabi olguların % 90’ını oluşturur. Klinik olarak, deride ve ağız mukozasında melanin pigmentasyonunda artma, hipo-tansiyon şiddetli anemi, halsizlik, kas zayıflığı, kilo kaybı, anoreksi (iştahsızlık) ve gastroentestinal semptomlar (kusma, diyare) görülür. Mineralokortikoid (aldosteron) yetmezliği nedeniyle, başta sodyum (Na) iyonları kaybı ve buna bağlı olarak su kaybı meydana gelecektir. Bu durum, kan hacmı azlığını ve hipotansiyon belirtilerini doğuracaktır. Aynı zamanda potasyum (K) iyonları retansiyonu (hiperpotasemi-hiperkalemi) görülür. Önemli tehlike, hipotansiyonun daha sonra, “kardiovasküler şok” tablosunu meydana getirmesidir. Hasta tedavisi, aldosteron ve tuz verilerek yapılır. -- Pigmentasyon artımı “hiperpigmentasyon” olarak adlandırılır. Aşağıdaki şu lezyonlar-da melanin artımı söz konusudur. Addison Hastalığı (Kronik Adrenal Korteks Yetmezliği): Multipl Nörofibromalar (Nörofibromatozis): Periferal sinirlerden kökenli değişik bü-yüklüklerde ve çok sayıda (multipl) nörofibromlar vardır. Bununla beraber, deride ve ağız mukozasında sütlü-kahve lekeleri (cafe-au-lait) halinde melanin pigmentasyonu görülür. Oto-zomal dominant geçişli bir hastalıktır. İki tipi vardır. Nörofibromatozis tip1 (von Recklingha-usen hastalığı) de, az da olsa malignleşme olasılığı vardır. Nörofibromatozis tip 2, bilateral akustik (vestibüler) schwannoma ve diğer beyin tümörleriyle beraber görülür. Bu her iki has-talık genetik ve klinik olarak birbirinden farklıdır. Olguların % 90 ı tip 1 dir. Tip 2, çok daha nadir görülür. Peutz- Jeghers Sendromu : İnce barsaklarda multipl polipozis ile beraber ağız mukoza- sında ve dudakta melanin pigmentli lekeler vardır. McCune-Albrigt Sendromu : Kemiklerde multipl odaklar halinde fibröz displazi ile bera- ber, deride ve ağız mukozasında melanin lekeleri vardır. Bunlara “cafe- au- lait (kahve) leke-leri denir. -- Deride melanin pigmentasyonunun azalmasına “hipopigmentasyon” denir ve görüldü-ğü durumlar: Skatris (Nedbe) Yerleri : Cerrahi işlem veya travmalar sonucu ortaya çıkan skatris yerle-rinde, lepra hastalarında lezyonların bulunduğu alanlardaki skatris yerlerinde pigment yoktur. Hormonal Nedenler : Kastre (hadım) erkeklerde ve ayrıca hipofiz hipofonksiyonunda vücuttaki pigment miktarı azalır. Albinolar : Bu tip kişilerde kalıtsal tirozinaz enzim defekti vardır. Bu enzim yokluğunda, tirozinin DOPA ya dönüşme yetersizliği söz konusudur. Bu nedenle albinolar, melanin sentez edemez, derileri ve kılları çok açık renktedir. Bu kişiler güneş ışığına ileri derecede duyarlıdır Vitiligo : Deride leke tarzında pigmentsiz alanların bulunmasıdır ve bu edinsel (kazanılmış akkiz, sonradan oluşan) bir lezyondur. Lezyonların dağılımı ve boyutları çeşitlilik gösterebilir. Bu hastalığın nedeni son araştırmalara göre, daha çok otoimmün bir bozukluk olduğu yönün- dedir. Hemosiderin : Hemoglobinden türeyen hemosiderin, altın sarısından- kahverengine kadar değişen renklerde görülen bir pigmenttir. Demirin hücre içinde birikme şekline örnektir. Kanamanın doğal sonucu hemosiderin pigmenti oluşur. Hücre içinde demir, apoferritin adı verilen proteine bağlı ferritin miçelleri şeklinde depolanır. Hücre ve doku içinde biriken demir histokimyasal olarak Berlin Mavisi denilen özel bir boya ile gösterilir. Makroskopik kanamalar veya yoğun vasküler konjesyonun neden olduğu mikroskopik ka-namalar, demirin lokal artımını ve bunu takiben hemosiderini ortaya çıkarır. Buna en iyi ör-nek, zedelenmeden sonra görülen çürüktür (ekimoz). Çürükler, lokalize hemosiderozisin en iyi örneğidir. Kanama bölgesindeki eritrositlerin yıkımıyla ortaya çıkan kırmızı kan hücre artıkları, makrofajlar tarafından fagoside edilir. Hemoglobin içeriği lisosomlar tarafından katalize edilir ve hemosiderine dönüştürülür. Çürükte görülen renk değişikliği, bu dönüşüm- deki aşamaları yansıtır. Kronik kalb yetmezliğinde uzun süreli staz nedeniyle oluşan konjesyon, akciğerde pig-mentasyon görülmesine neden olur. Akciğer alveollerinde kapillerlerin yırtılması ve geçirgen- liğinin artması nedeniyle eritrositler dışarı çıkar. Eritrositler alveolar makrofajlar tarafından fagosite edilir. Sonuçta hemosiderin oluşur. Akciğer alveollerinde bulunan hemosiderinle yüklü bu tür makrofajlara “kalb hatası hücreleri” adı verilir. Nedeni ne olursa olsun, demirin sistemik yüklenmesi, çeşitli organ ve dokularda hemosiderin birikimine neden olur. Bu şekle “hemosiderosis” adı verilir. Sistemik hemosiderozisin birçok şeklinde, intrasellüler pigment birikimi çoğu durumlarda paranşimal hücrelere zarar vermez veya organ fonksiyonunu boz- maz. Hemosiderozisi meydana getiren pigment birikimi; (1)besinlerle alınan demirin emili- mindeki artım ve kontrolsüz kan yapıcı tabletlerin alımı (2)demirin kullanımındaki yetersiz- lik, (3)hemolitik anemiler ve (4)kan nakillerinde (kırmızı kan hücre transfüzyonları), ekzoje- nöz demir yüklenmesine neden olur. Demirin normalden çok fazla (yoğun) birikimi “hemo-kromatozis” olarak bilinir. Biriken demir, çeşitli organlarda disfonksiyona ve hücre ölümleri-ne neden olur. Kalb yetmezliği (kardiyomyopati), siroz (kronik karaciğer hastalığı) ve diyabe-tes mellitusu (pankreas adacık hücreleri ) içeren doku- organ zararları oluşabilir. Bilirubin : Bilirubin, safrada bulunan ve safranın sarı- yeşil rengini veren başlıca pig- menttir. Kırmızı kan hücrelerinin mononükleer fagositik sistemde parçalanmasıyla (karaciğer- deki kupffer hücrelerinde) serbestleşen hemoglobinden türemiştir; fakat demir içermez. Orga- nizmada normal yaşam sürelerini (100- 120 gün) tamamlayan bu eritrositlerin parçalanma- sıyla konjuge olmamış (ankonjuge) bilirubin meydana gelir. Bu ankonjuge bilirubin, kan pro- teinlerine (albumin) bağlanarak karaciğer parankim hücrelerine (hepatosit) taşınır ve burada işlenerek konjuge bilirubine çevrilir. Bu işlem spesifik bir enzim (bilirubin uridindifosfat glukuronosil transferas) ile oluşur. Daha sonra safra aracılığıyla bağırsağa dökülür. Bağır-saktaki bakteriyel enzimlerin etkisiyle “urobilinojen”e dönüştürülür. Bu pigmentin bir bölümü (% 20) tekrar barsaktan geri emilerek (reabsorbe olarak), karaciğere döner. Bunun bir bölümü de idrarla atılır. Barsaktaki urobilinojenin geri kalan bölümü, daha ileri bir işlemle “ürobilin” (stercobilin)’e dönüşür. Dışkının bilinen rengini (sarı- kahverengi) veren bu maddedir. Kan plasmasında total bilirubinin normal miktarı 100 ml’de 0.3- 1 mg’dır. Kandaki biliru-bin düzeyi (hem konjuge hem de ankonjuge) 2- 3 mg’ın üzerine çıktığında (bazı durumlarda 30- 40 lara çıkabilir), deri ve sklerada sarı bir renk oluşur. Bu renk değişikliği, dokuların safra pigmenti birikimine bağlı olarak, sarıya boyanmasından ileri gelmektedir. Klinik olarak “sarı-lık” (ikter) diye tarif edilir ve meydana geliş biçimlerine göre şöyle incelenebilir. (1)yoğun eritrosit yıkımı (hemoliz artması), (2)hepatosellüler disfonksiyon ve (3)intrahepatik veya eks-trahepatik safra obstrüksiyonu ile safranın tutulması (kolestaz) sonucu sarılık ortaya çıkar. Konjuge bilirubin; suda çözünür, nontoksiktir ve idrarla atılır. Ankonjuge bilirubin suda çö-zünmez, idrar ile atılmaz, toksiktir ve bilirubinin bilinen bütün toksik etkilerinin nedenidir. (1) Hemolitik (Prehepatik) Sarılık: Kırmızı hücre parçalanmasına bağlı bilirubin artı- mını yansıtır. Eritrosit yıkımının yoğun olduğu durumlarda sarılık görülür. Hemolitik anemi- lerde, ağır enfeksiyonlarda, yılan zehiri gibi, dolaşımdaki toksik maddelerin neden olduğu eritrosit destrüksiyonlarında ve kan transfüzyon uyuşmazlıklarında bilirubin miktarı aşırı artar. Bu bilirubin, ankonjuge bilirubindir. Yeni doğanlarda fizyolojik olarak hemoliz fazladır. Ayrıca, karaciğerde bilirubin konju-gasyonu ve atılımını sağlayan hepatik mekanizmalar, hayatın ilk iki haftasına kadar tam ola-rak gelişmediğinden, bütün yenidoğanlarda geçici (2- 4 gün), hafif bir ankonjuge hiperbiliru-binemi ortaya çıkar. Buna yenidoğanın fizyolojik sarılığı (neonatal sarılık) adı verilir. Bu durum tehlikesizdir. Bebeklerde görülen diğer bir tehlikesiz olan sarılık, maternal (anneye ait) serum sarılığıdır. Anne sütü ile beslenen bazı bebeklerde muhtemelen anne sütündeki beta glukuronidazlar nedeniyle oluşur. Tehlikeli olanı, Rh uyuşmazlığı gibi nedenlerle karşımıza çıkanıdır. Rh uyuşmazlığında, aşırı hemoliz olduğundan, ankonjuge bilirubin düzeyi çok yükselir ve “yenidoğanın hemolitik sarılığı” (eritroblastosis fetalis)x gelişir. Bu hastalık nedeniyle meydana gelen yoğun eritrosit yıkımına bağlı olarak ortaya çıkan bilirubin, yeni doğanların kapiller damarlarının geçirgenliği fazla olduğundan beyin dokusuna geçerek, doğumdan sonra “kernikterus” (bilirubin ansefalopatisi) adı verilen ağır nörolojik hasara yol açarak, sekeller bırakabilir veya bebeğin ölümüne yol açar. Adültlerde ankonjuge bilirubin seviyesi yüksek olsa bile, kan- beyin bariyeri nedeniyle kernikterus oluşmaz. (2) Hepatosellüler (Hepatik) Sarılık: Karaciğer hücre hasarı olan yoğun hepatosellüler nekroz ve siroz gibi, durumlarda görülür. Fazla bilirubin konjuge ve ankonjuge olmak üzere karışıktır. Karaciğer hücresinin fonksiyon bozukluklarında, bilirubinin alımında azalma ola-bildiği gibi, karaciğer hücresinde yetersiz konjugasyon da söz konusu olabilir. Karaciğer parankim hücrelerinin zedelenmeleri sonucu, bilirubin salgılanmasında intrahepatik blokaj da olabilir. Karaciğer hücresine verilen zarar, enzim sistemini etkilemiş olabilir. Örneğin viral hepatitis, kimyasal veya ilaç toksisitesi yanısıra karaciğerin mikrobiyolojik enfeksiyonları, konjugasyonu ve safra ekskresyonunu (ifrazat) bloke edebilir. Bu şekilde dolaşımdaki biliru-binin miktarı artmış olur. (3) Obstrüktif (Posthepatik) Sarılık: Bu grupta genellikle safra kanalı obstrüksiyonu söz konusudur. Ekstrahepatik tıkanmaların başlıca nedeni; safra kanalı ve pankreas karsinomaları ile safra kanalı taşlarıdır. Bu tıkanmalar uzarsa, hepatositlerde nekrozlar ortaya çıkar ve “bili- er siroz” meydana gelebilir. Çok nadiren de yenidoğanlarda bir anomali olarak, intrahepatik ve ekstrahepatik obstruksiyon, hepatositlerdeki primer defekt veya safra duktuslarının atrezisi ve agenezisi şeklinde karşımıza çıkabilir. Karaciğerdeki konjuge bilirubin, safra yollarındaki tıkanma nedeniyle bağırsağa akamaz ise, bağırsakta safra pigmenti olmayacağı için, feçes açık renkte olur. Ayrıca bağırsakta safra eksikliği nedeniyle, K vitamini sentezi yapılamaz (Vita- min K; endojen olarak E. coli varlığında barsakda sentezlenmekteydi). Vitamin K eksikliği veya diffüz karaciğer hastalıklarında, hepatositlerdeki disfonksiyonun etkisiyle, vitamin K’ya bağlı koagülasyon faktörlerin (protrombin ve diğer pıhtılaşma faktörleri) sentezinde meydana gelen azalmayla koagülopati meydana gelir, hemorajik diatez’e (anormal kanamalar) neden olur. Bu spontanös kanama sonucu hematomlar, hematüri, melena, ekimozlar ve dişeti kana- maları görülür. Azalmış safra akışının diğer sonuçları; yağda eriyen A, D ve K vitaminlerinin yetersiz absorbsiyonudur. x Eritroblastosis Fetalis: Maternal ve fetal kan grubu uyuşmazlığı sonucu annede oluşmuş olan antikorların, fetus’da neden olduğu bir hemolitik anemidir. Rh(-) bir annenin fetusu, babanın ki gibi Rh(+) olursa, anne ve onun bebeği arasında Rhesus (Rh) uyuşmazlığı meydana gelebilir.Anne; Rh antijeninden yoksun (Rh-) ise, fetusda mevcut olan Rh antijenlerine (Rh+) karşı antikorlar üretir. Rh(-) anne eritrositleri, Rh(+) fetus eritrositle- ri tarafından sensitize edilmiştir. Fetal eritrositler gebelik boyunca plasentadan sızarak annenin dolaşımına katı- lır. En büyük geçiş, doğum esnasında olur. Oluşan bu antikorlar, sonraki gebeliklerde plasenta yolu ile fetusa geçerek, fetusa ait kırmızı hücrelerin destrüksiyonuna (lizise, hemoliz) neden olur. Ortaya çıkan sendrom, “eritroblastosis fetalis” olarak bilinir. Yenidoğanın bu hemolitik hastalığında meydana gelen anemi, uterus içinde fetal ölüme yol açabilecek kadar şiddetli de olabilir. Anemiye reaksiyon olarak fetal kemik iliği, olgunlaşmamış eritrositleri (eritroblastları) fetusun dolaşımına katar. Eritroblastosis fetalis terimi; oluşan eritrosit destrüksiyo- nunu kompanse etmek için, fetal dokulardaki kırmızı kan hücre prekürsörlerinin (hematopoesis) aşırı artmasını anlatır. Rh uyuşmazlığının patogenezindeki sensitizasyonun önemi anlaşıldıktan sonra, bu hastalık belirgin bir şekil- de kontrol altına alınmıştır. Rh sisteminin içerdiği pekçok antijenden yalnızca D antijeni, Rh uyuşmazlığının başlıca nedenidir. Rh(-) anneye, Rh(+) bebeğin doğumundan hemen sonra, anti- D globulin uygulanmaktadır. Anti- D antikorlar, doğum sırasında maternal dolaşıma sızan fetal eritrositlerdeki antijenik bölgeleri maskeleye- rek, Rh antijenlerine karşı olan duyarlılığı engeller. Eritroblastosis fetalis; belirtilerine göre üç sendroma ayrılabilir. Şiddetli komplikasyonlar olmadan yaşam mümkün olan, yalnızca hafif anemiyle seyreden “yeni doğanda konjenital anemi” olarak adlandırılır. Şiddetli hemoliz vakalarında anemiye bariz sarılık eşlik eder, “ikterus gravis” sendromu oluşur. Dolaşım bozukluğundan, anazarka denilebilecek kadar şiddetli bir ödemin ortaya çıkışı, buna eşlik eden sarılık, “hidrops fetalis” olarak adlandırılan bir klinik tabloyu da ortaya çıkarabilir. Hidrops Fetalis: Fetusdaki yaygın ödemi anlatmak için kullanılan bir terimdir. İntrauterin gelişim süresinde progresif sıvı birikimi sonucu oluşur, genellikle ölümle sonuçlanır. Geçmişte fetus ile anne arasındaki Rh uyuş- mazlığı sonucu ortaya çıkan hemolitik anemi, hidrops fetalisin en büyük nedeniydi. Bu tip, immun hidrops ola-rak bilinir. Gebelikdeki kan uyuşmazlığı tedavi edilebildiğinden, immun hidrops’un görülme sıklığı, zamanımız-da düşmüştür. Non- immun hidrops’un başlıca nedenleri ise; kardiovasküler defektler, kromozomal anomaliler ve fetal anemidir. Rh veya ABO uyuşmazlığı dışında başka nedenlerle de fetal anemi oluşur. Bu da hidrops feta-lis ile sonuçlanabilir. KARACİĞER Karaciğerin Normal Histolojik Yapısı Karaciğerin temel mimari yapı birimi, lobdur. Her lobun merkezinde, hepatik ven ağının uzantısı (santral ven) bulunur. Lobun periferinde, portal alan adı verilen bu bölgelerde fibröz doku içinde hepatik arter, portal ven dalları, sinir lifleri, safra kanalları ve lenfatik damarlar gibi, pek çok portal kanal bulunur. İki karaciğer hücresi arasında intralobüler safra kanalikül-leri denilen ince tübüler yapılar bulunur. Bunların içindeki safra, kan akımının ters yönünde, yani lobülün merkezinden portal alanlardaki safra kanallarına akar. Lobüller içindeki hepatositler ışınsal olarak dizilmiş ve bir duvarın tuğlalarına benzer biçimde düzenlenmiştir. Karaciğer hücrelerinin yaptığı bu tabakalar arasındaki boşluklara, karaciğer sinuzoidleri adı verilir. Bunlar labirent şeklinde ve sünger benzeri bir yapı oluştura- cak biçimde serbestçe anastomozlaşırlar. Bu sinuzoidal kapillerler, pencereli endotel tabakala- rından oluşan damarlardır. Endotel hücreleri ile alttaki hepatositler arasında kalan aralığa, Disse aralığı adı verilir. Endotel hücrelerine ek olarak, sinuzoidler Kupffer hücreleri adı veri- len makrofajları da içerir. Bu fagositik hücrelerin başlıca fonksiyonları; yaşlı eritrositleri me-tabolize etmek, hemoglobini sindirmek, immunolojik olaylarla ilgili proteinleri salgılamak ve kalın barsaktan portal dolaşıma geçen bakterileri ortadan kaldırmaktır. Karaciğere kan, iki farklı kaynaktan gelir: (a)Kanın %60- 70’i abdominal (pankreas ve da-lak) organlardan gelen oksijenden fakir, bağırsaklardan emilen besinleri içeren (besinden zen-gin) kanı taşıyan portal ven’den gelir; (b)%30- 40’ı ise, oksijenden zengin kanı sağlayan he-patik arter’ den gelir. Portal alana gelen arter ve ven kanı, karaciğer lobülünün çevresinden merkeze doğru sinuzoidler boyunca akar. Sinuzoidlerde karışan bu kan, vena santralis ve daha sonra da hepatik venlerle vena kava inferiyora akar. Karaciğerin vücudun metabolik dengesini sağlamak için, çok büyük ve önemli işlevleri vardır. Karaciğer dokusu; (1)besinlerle alınan proteinler, karbonhidratlar, yağlar ve vitaminle-rin metabolize edilmesi (işlenmesi) ve depolanması, (2)plasma proteinlerin ve enzimlerin sen-tezi, (3)pek çok endogen atık ürünlerin ve ekzogen toksinlerin detoksifikasyonu ve bunların safra ile atılması gibi, pek çok fizyolojik fonksiyona sahiptir. Çoğu ilaç, karaciğer tarafından metabolize edilir. Anlaşılacağı gibi, karaciğer dokusu; metabolik, toksik, mikrobiyal ve dola-şım bozuklukları olmak üzere çeşitli etkilere açıktır. Bazı durumlarda hastalık, karaciğerin primer olayıdır. Bunun dışında karaciğeri sekonder olarak etkileyen kardiyak dekompansas-yon, diyabet ve ekstrahepatik infeksiyonlar gibi, çok sık görülen hastalıklar vardır. Karaciğer muazzam bir işlevsel kapasiteye sahiptir. hepsi olmasa da çoğu fulminant hepa-tik hastalıklar dışında rejenerasyon oluşur. Normal bir karaciğerin %60’ının cerrahi olarak çıkarılması durumunda minimal ve geçici bir karaciğer fonksiyon yetersizliği görülür. Karaci-ğer kitlesinin büyük bir bölümü 4- 6 hafta içinde rejenerasyonla yeniden oluşur. Masif hepa-tosellüler nekrozlu kişilerde, hepatik retikulin çatı harap edilmemişse, mükemmele yakın bir restorasyon oluşabilir. Kronik sağ ventriküler kalb yetmezliği, karaciğerde kronik pasif venöz konjesyona neden olur. Hepatik vendeki basıncın artmasına bağlı olarak intralobüler santral vendeki basınç da artar. Ortaya çıkan sinuzoidal dilatasyon ve konjesyon, santral ven çevresindeki hepatositlerde hipoksi ve iskemiye bağlı hasarlar ortaya çıkarır. Buna bağlı olarak bu karaciğer hücrelerinde dejenerasyon, yağlı değişme ve sonuçta nekroz meydana gelirken, buna tezat periferdeki he-patositler (portal alan çevresi) normal kalabilir. Hepatosellüler nekroz sonucu fibrozis meyda-na gelebilir. Karaciğerin temel yapısındaki bağ dokusu ağı haraplanmışsa, siroz ortaya çıkar. SİROZ Siroz, kronik karaciğer hastalıklarının irreversibl bir şeklidir ve “siroz” adı da bu hastalığı tanımlayan bir terimdir. Çeşitli kronik karaciğer hastalıklarının son döneminde ortaya çıkan bir sekeldir. Batı ülkelerinde ilk on içindeki ölüm nedenlerinden birisidir. Alttaki etiyolojiyi belirtmesinden başka, sirozun doyurucu bir sınıflaması yoktur. Sirozun etiyolojisinde pek çok etken rol oynar: (a)Aşırı alkol alımının bir sonucu olarak görülen sirozun diğer nedenleri ara-sında bazı ilaç ve kimyasal maddelerin uzun süreli alınması, (b)viral hepatitler, bilier obstrük-siyon (safra yolu hastalıkları), hemokromatozis (aşırı demir yüklenmesi), (c)kalb yetmezliğine bağlı, karaciğerde kronik pasif konjesyon (d)Wilson hastalığıx ve doğuştan olan bazı metabo-lik bozukluklar sayılabilir. Siroz gelişmesi için, uzun zaman periyodunda hücre ölümü, buna eşlik eden bir rejeneratif olay ve fibrozise gerek vardır. Başlıca üç patolojik mekanizma kombinasyonu, sirozu yaratır. (1)Karaciğer hücrelerinin progresif hücre incinmesine bağlı hepatosellüler (paranşimal) ölüm, (2)hepatosellüler hasara ve ölüme bağlı olarak ortaya çıkan rejenerasyon ve (3)buna eşlik eden kronik iltihabın stimüle ettiği progresif (ilerleyen) fibrozis bu hastalığı karekterize eden özelliklerdir. Rejenerasyon, hücre ölümünü kompanse etmek için, normalde verilen bir yanıt-tır. Normalde hepatositlerin proliferatif kapasitesi sirkülasyondaki büyüme faktörleri ile regü-le edilir. Hepatosit nekrozu sonucu açığa çıkan büyüme faktörleri hepatosit proliferasyonunu stimüle eder. Bu progresif olaylar sonucu karaciğerin normal lobüler yapısı ortadan kalkar. Fibrozis bu rejenere karaciğer dokusunu çevreleyerek sirozun karakteristik özelliği olan, değişik boylarda nodül yapılarının oluşmasına neden olur. Fibrozis, bir yara iyileşme reaksiyonudur. Zedelenme yalnızca paranşimi değil, destek bağ dokusunu da tuttuğu zaman skar oluşumuna neden olur. Normalde interstisyel kollagenler, portal alanlarda ve santral ven çevresinde ince bandlar şeklinde bulunurken, sirozda bu kolla-genler, lobülün tüm bölümlerini tutmuştur. Sirozda mikroskopik düzeyde karaciğerin normal arşitektürünün yerini, diffüz olarak kalın kollagen fibröz bandlarla separe edilmiş rejenere ka-raciğer hücre gruplarından oluşan nodüller yer almıştır. Karaciğerin normal yapısının değiş-mesi mikrosirkülasyonu bozar ve buna bağlı hastalığın klinik özellikleri ortaya çıkar. Çoğu sirozlu hastalardaki ölüm; (1)progresif karaciğer yetmezliği, (2)portal hipertansiyona bağlı komplikasyonlar ve (3)hepatosellüler karsinom gelişmesi sonucudur. Tüm siroz çeşitle-rinde hepatosellüler gelişme riski fazladır. Sirozların sınıflandırılmalarında bir konsensus yoktur. Yapılan morfolojik sınıflama ile sirozlar üçe ayrılmıştır: (1)Mikronodüler siroz (nodüllerin çapı 3 mm den daha küçüktür), (2)makronodüler siroz (nodül çapları 3 mm den büyüktür ve 2-3 cm ye ulaşabilir) ve (3)mikst olanda ise, mikro ve makro nodüller birarada bulunur. Etiyolojik nedenlere göre şu şekilde sınıflanabilir. Alkolik karaciğer hastalığı %60- 70; viral hepatitis %10; safra hastalıkları %5- 10; herediter hemokromatozis %5 vs. Siroz tiplerini; oluş biçimleri ve özelliklerine göre şu şekilde sıralayabiliriz. Alkolik (Beslenmeye Bağlı) Siroz: Alkolle ilgili olan ve çok sık görülen şekildir, Laennec siroz olarak da bilinir. Mikronodüler yapıdadır Postnekrotik (posthepatik) Siroz: Çoğunlukla viral etiyoloji (Hepatit B Virus ve Hepatit C Virus) etkendir. Makronodüler yapıdadır. Biliyer Siroz: 1)Primer biliyer siroz; otoimmun kökenli olduğu savunulur. 2)Sekonder biliyer siroz; uzun süreli ekstrahepatik safra kanalı obstrüksiyonu bunun nedenidir ve daha çok karşı-mıza çıkar. X Wilson Hastalığı: Bakır metabolizmasını otozomal resesif bir bozukluğudur. Bozukluklar karaciğer, böbrek ve beyinde anormal miktarlarda bakır birikimi meydana gelir. Hemokromatozis: (1)Herediter hemokromatozis; bağırsak mukozasında demir absorbsiyo-nunda (emiliminde) kalıtımsal bir defekt vardır; aşırı geri emilim görülür. (2)Sekonder hemo-kromatozis; aşırı demir yüklenmesi durumlarında sekonder olarak meydana gelir. Sirozda Klinik Özellikler: Fonksiyonel parankim kayıpları, sirozun başlıca şu klinik be-lirtilerini ortaya çıkarır. - Hepatosellüler hasar ve buna bağlı karaciğer yetmezliğiyle ilgili bulgular: a)Sarılık: Karaciğerin işlevlerinden birisi de safra üretimidir. Kandaki bilirubin (ankonjuge bilirubin) karaciğer hücrelerinde işlenir (konjuge edilir), safra yolları aracılığıyla barsağa dö-külür. Bu işlemin herhangi bir yerindeki aksama sonucu bilirubin kana karışırsa, sarılık (ikter) ortaya çıkar. Çoğunluğu karışık olmak üzere, konjuge ve ankonjuge bilirubin artımı söz konu-sudur. b)Hipoalbuminemi: Hepatosit hasarına bağlı albumin ve fibrinojen olmak üzere plasma protein sentezindeki azalma söz konusudur. c)Koagülasyon faktör eksiklikleri: Karaciğerde oluşan pıhtılaşma faktörlerinin sentezinde azalma ortaya çıkar. d)Hiperöstrinizm: Testikular atrofi, jinekomasti, palmar eritem (lokal vazodilatasyon) ve vücudun değişik kısımlarında, spider anjiomlar (örümcek şeklinde damarlanma). - Portal hipertansiyon: Portal akımla kan, batından vena kava inferiora döner. Portal kan akımındaki herhangi bir engelleme, portal venlerdeki hidrostatik basıncın artmasına neden olur. Üç farklı bölgedeki obstrüksiyona bağlı olarak ortaya çıkar. 1)Prehepatik: Portal vendeki tromboz nedeniyle oluşan obstrüksiyon, karaciğer içinde sinusoidlere dağılmadan öncedir. 2)İntrahepatik: Hepatik sinusoidlerdeki blokaj, bunun nedenidir. En önemli neden sirozdur, daha sonra yaygın karaciğer yağlanması gelir. 3)Posthepatik: Santral vendeki, hepatik vende-ki veya vena kavadaki blokaj nedendir. Bu, sağ kalb yetmezliği ve ağır perikardit gibi durum-larda karşımıza çıkar. Portal Hipertansiyona Bağlı Değişiklikler (Komplikasyonlar): Portal hipertansiyonun belli başlı bulguları; assit, venöz kollateraller (bazı bölgelerde venöz varisler), splenomegali (dalak büyümesi) ve bazen hepatik ansefalopatidir. - Assit (hidroperitoneum), hidrotoraks veya periferal ödem: Biriken kan geriye doğru ba-sınç yapar. Sirozdaki portal hipertansiyonun en önemli klinik sonuçlarından birisi, periton boşluğunda fazla sıvı birikimi (assit) oluşmasıdır: a)Portal vende hidrostatik basınç artımı, he-patik lenf sıvısı artımına neden olur. Bu sıvı peritona geçer. b)Hipoalbuminemiye bağlı olarak ortaya çıkan plasma onkotik (ödeme neden olan) basıncın düşmesi ve c)sodyum ve su tutulu-munun artması; Bu da hepatik hasara bağlı olarak aldosteronun karaciğerdeki yıkımının azal-ması (hiperaldosteronizm) ve renin- anjiyotensin sistem aktivasyonundaki artma, ödemi ve peritondaki sıvı birikimini açıklar. nedenidir. - Hepatik ansefalopati: Nöropsikiyatrik bir sendromdur. Karaciğer yetmezliklerinde ortaya çıkar. Normalde karaciğerde detoksifiye edilen amonyak ve nörotoksik maddelerin karaciğer-deki siroz gibi, bir defekt nedeniyle detoksifiye edilemeyen bu maddelerin doğrudan dolaşıma girmesi sonucu oluşur. Hafif konfüzyondan (bilinç kaybı) derin komaya kadar giden nörolojik belirtiler gösterir. Ölüm olağandır. x Etil alkol (etanol) - nontoksik Metil alkol (metanol) – toksik Alkolik Karaciğer Hastalığı Bu Karaciğer hastalığının başlıca nedeni, yoğun alkol (etanol)x alımıdır. Alkol alışkanlığı, ölüm nedenlerinin beşinci sırasında yer alır. Alkole bağlı siroz, ölümlerin önemli bir bölümü- nü oluşturur. Ölümlere neden olan diğer önemli bir neden ise, alkole bağlı otomobil kazaları sonucu meydana gelen ölümlerdir. Hastahanelerde yatan karaciğer hastalarının %20- 25 inde, alkol nedeniyle ortaya çıkan problemler vardır. Kronik alkol alımı birbiriyle bağlantılı üç farklı tipte karaciğer hastalıklarına neden olur. 1-Hepatik Steatoz (Yağlı Karaciğer): Hepatositler içinde önce küçük yağ damlacıkları biri-kir. Bunlar zamanla hücrenin içini tamamen doldurur, nüveyi kenara iter. Tamamen bir yağ hücresine döner. Bu değişme önce vena santralis çevresindedir, sonra perifere doğru yayılarak tüm lobülü tutar. Zamanla bu nekrotik parankimal hücreler yerini fibröz dokuya bırakır. Fib-rozis gelişmeden önce alkol alımı kesilirse, yağlı değişmeler gerileyebilir. 2- Alkolik Hepatitis: Hepatositler tek veya gruplar halinde şişer (balonlaşır) ve nekroza uğ-rar. Nekrotik ve dejenere hepatositlerin çevresinde polimorf nüveli lökositler birikir. Daha sonra lenfositler ve makrofajlar bölgeye gelir. Sonuçta belirgin bir fibrozis ortaya çıkar. 3- Siroz (Alkolik Siroz): Alkolik karaciğer hastalığının finali ve geri dönüşsüz şekli olan siroz, sinsidir ve yavaş gelişir. Karaciğerin makroskopik görünümü sarı- turuncu renktedir, yağlı ve büyümüştür, ağırlığı artmıştır. Oluşan fibröz septalar arasındaki parankimal hepato-sitlerin rejeneratif aktiviteleri, değişik büyüklükte nodüller oluşturur. İleri zamanlarda fibrozis geliştikçe karaciğer yağ kaybeder, progresif bir seyirle büzüşür, küçülür. Yağsız bir organ haline gelir. Organın ağırlığı düşmüştür ve sirozun karakteristiği olan değişik büyüklüklerde (mikro- makro) nodüller gelişir. PANKREAS : Pankreas, iki ayrı organın bir organda bulunma özelliğinde olan bir organımızdır. Yakla- şık %85-90 ekzokrin salgılıktır ve besinlerin sindirimi için, gerekli enzimleri salgılar. Geri kalan %10-15 endokrin salgılıktır ve insülin, glukagon ve diğer hormonları salgılayan Langer-hans adacıklarından oluşmuştur. Endokrin Pankreas : Endokrin pankreas Langerhans adacıkları adı verilen, bir milyon civarında mikroskopik hücre kümesinden oluşmuştur. Bu adacıklardaki hücrelerin tipleri, rutin hematoksilen- eosin boyası ile ayırt edilemez. Ancak bazı özel boyalarla elektron mik-roskobunda granüllerin şekillerinin görülmesiyle veya immunohistokimyasal yöntemle hücre tipi belirlenebilir.  (beta) hücreleri : Adacık hücre topluluğunun %70’ ini oluşturur. İnsülin hormonunu sentez eder ve salgılar. Hipoglisemik etkili hormondur.  (alfa) hücreleri : Adacık hücrelerinin %5- 20’sini temsil eder ve glukagon oluşturur. Kara-ciğerde glikojenolitik (glikojen parçalayan) etkinliği nedeniyle hiperglisemi oluşturur.  (delta) hücreleri: %5-10’luk bir bölümü oluşturur. İnsülin ve glukagon üretimini dengeleyen somatostatin hormonunu salgılar. PP (Pankreatik Polipeptit): %1-2 oranındadır ve yalnızca adacıklarda değil, pankreasın ekzo-krin bölümünden de salgılanır. Salgıladıkları polipeptidin, gastrik ve intestinal enzimlerin sal-gılanmasını uyarmak, intestinal hareketleri inhibe etmek gibi, etkileri bulunmaktadır. Adacık hücrelerinin önemli patolojik olaylarından birisi “Diyabetes Mellitus” dur. Diğeri “Adacık Hücre Tümörleri” dir. DİYABETES MELLİTUS Diyabet; insülinin yetersiz üretimi veya yetersiz işlevi nedeniyle ortaya çıkan hiperglisemi ile karakterize kronik, multisistemik bir hastalıktır. Karbonhidrat, yağ ve protein metaboliz-masını etkiler. Vücuttaki bütün hücrelerin glikoza (şeker molekülü- karbonhidrat) enerji kay-nağı olarak ihtiyacı vardır. Hücrelerin kandan şekeri alabilmeleri için, insülin hormonu şarttır. İnsülin, glikoz için regülatördür. Normalde kanda glikoz düzeyi yükselince insülin salgılanır. Tolere edilemeyen glikoz, hücre ölümlerine neden olur. Fazla glikoz, gerektiği zaman kan do-laşımına salınmak üzere, karaciğerde glikojen olarak depo edilir. İnsülin salgısının yokluğu (veya eksikliği) sonucu, glikozun kullanımında yetersizlikler meydana gelir. İnsülin salgısı duralarsa, kanda glikoz miktarı artar hiperglisemix durumu ortaya çıkar. Bu nedenle buna, halk arasında “şeker hastalığı” denir. Diyabetes mellitus hastalığında pankreasda yeteri kadar insülin üretilemiyordur veya vücut hücreleri bu insülinin etkisine karşı direnç geliştirmiştir. Her iki durumda da hücrelerin kan-dan glikozu almalarında problem vardır. Kan glikoz seviyesi yüksektir ve her ikisin de ortaya çıkan klinik sonuc aynıdır. Sınıflama ve Görülme Sıklığı Asıl özelliği hiperglisemi olan diyabetes mellitus, heterojen bir grup hastalıktır. Etyoloji-sine göre İki grup altında incelenir. Primer tip; en yaygın şeklidir (%95) ve insülin üretimin-deki veya işlevindeki bir defektten ortaya çıkar. Sekonder tip; infeksiyonlar (kronik pankrea-tit), herhangi bir nedenle pankreasın bir bölümünün cerrahi olarak çıkarılması, pankreas ada-cıklarının destrüksiyonuna neden olan bazı hastalıklar, aşırı demir yüklenmesi (hemokromato-zis), bazı genetik bozukluklar ve tümör gibi, pankreasın kendisini tutan lezyonlar yanısıra, in-sülinin antagonistleri olan hormonların hipersekresyonu söz konusudur. Akromegaliye neden olan aşırı büyüme hormonu (GH), Cushing sendromunda glukokortikoid artımı, feokromasito-mada (tümör) adrenalin artımı ve hipertiroidi gibi, bazı endokrin hastalıklar sonucu ortaya çı-kan diyabetes mellitusdur. Bu ikinci grup (sekonder tip) çok nadir görülür (%5). Diyabetes mellitusun en yaygın ve en önemli şekli, adacık hücresi insülin sinyali sisteminde primer bo-zukluğundan ortaya çıkanıdır. Bu primer diyabet; kalıtım özelliği, insüline verdiği yanıt ve köken olarak birbirinden farklı iki ana grupta (tip1 ve tip2) incelenir. Diyabetin iki ana tipinin farklı patogenetik mekanizmalara ve metabolik özelliklere sahip olmasına rağmen, kan da-marlarında, böbreklerde, gözlerde ve sinirlerde ortaya çıkan komplikasyonlar her iki tipte de mevcuttur. Bu hastalıktan meydana gelen ölümlerin en önemli nedenleridir. Patogenez : Önce insülin metobolizmasını kısaca gözden geçirelim. Normal İnsülin Fizyolojisi ve Glukoz Dengesi: Normal glikoz dengesi, birbiriyle ilişkili üç mekanizma ile sıkı bir şekilde denetlenir. Bunlar:(1)Karaciğerde glikoz üretimi, (2)glikozun çevre dokular tarafından (özellikle kas) alınması, kullanılması ve (3)insülin ve bunu den-geleyici karşıt hormonun (glukagon) salınımı. İnsülin salgılanması, glikoz üretimi ve kulanı-mını kan glikozun normal düzeyde kalacağı şekilde ayarlar. İnsülin pankreatik adacıkların beta hücre granüllerinde sentez edilir ve depolanır. Kan glikoz düzeyindeki yükselme, daha fazla insülin salımına neden olur. İnsülin sentezini ve salgılanmasını başlatan en önemli uya-ran glikozdur. İnsülin majör bir anabolik hormondur: İnsülinin en önemli metabolik etkisi, vü-cuttaki bazı hücre tiplerinde hücre içine glikoz girişini hızlandırmaktır. Bunlar myokordial hücreleri de içine alan çizgili kas, fibroblast ve yağ hücreleridir. Glikoz kas hücrelerinde gli-kojen olarak depolanır veya adenozin trifosfat (ATP) üretimi için oksitlenir. Glikoz yağ doku-sunda öncelikle lipid olarak depolanır. İnsülin, yağ hücrelerinde lipid üretimini (lipogenez) hızlandırırken diğer yandan da lipid parçalanmasını (lipoliz) inhibe eder. Aynı şekilde amino asid alımını ve protein sentezini hızlandırırken, diğer taraftan protein parçalanmasını durdu-rur. Böylelikle, insülinin etkileri anabolik olarak glikojen, lipid ve proteinin artan üretimi ve azalan parçalanması olarak özetlenebilir. x Yunanca; hiper- yüksek; glyk- şeker; emia- kan kelimelerinden köken alır. Açlık durumunda glikojen üretimi azaldığından (düşük insülin- yüksek glukagon durumu), karaciğerde glikoneojenezi (glikojen sentezi) ve glikojenolizi (yıkımı) arttırarak, hipoglisemi-yi önler. Bu nedenle açlık plasma glikoz düzeyi, karaciğerden salınan glikoz miktarı ile belir-lenir. İnsülin salınmasının başlıca tetikleyicisi, glikozun kendisidir. Salgılanan insülin, ilgili çevre dokularda insülin reseptörüne bağlanarak hücreiçi glikoz alımını tetikler. Böylelikle gli-koz dengesi kurulur. Tip1 Diyabetes Mellitus Patogenezi Tip1 Diyabet (İnsüline Bağımlı Diyabetes Mellitus): Tüm diyabet vakalarının %5-10 nu oluşturur. Çocuklukta gelişir, pubertede belirgin hale gelir ve şiddetlenir. Pankreasın insülin yapma özelliği kaybolmuştur. İnsülin sekresyonunda tam (veya tama yakın) yokluk söz konu-sudur. Hastaların hayatta kalmaları için, mutlak insüline gereksinim vardır. Bu nedenle “insü-lin bağımlı diyabet” olarak tanımlanır. Pankreas beta hücre antijenlerine karşı, T hücre lenfo-sitlerin oluşturduğu reaksiyon sonucu beta hücrelerinin destrüksiyona uğradığı otoimmun bir hastalıktır. Dışarıdan insülin alınmadığı takdirde diyabetik ketoasidoz ve koma gibi, ciddi metabolik komplikasyonlar gelişir. Beta hücre destrüksiyonuna iç- içe geçmiş pek çok meka-nizma katkıda bulunur: (1)Genetik eğilim, (2)otoimmünite ve (3)çevresel etkenler. Genetik Eğilim : Diyabetes mellitusun, ailesel özellik gösterdiği uzun zamandan beri bilin- mektedir. Genetik eğilimin kesin kalıtsal geçiş şekli tam olarak bilinmemektir. Tek yumurta ikizlerinin (eş ikizler) ikisinde birden görülme oranı yaklaşık %40’dır. Diyabetli ailelerde yaklaşık %6 sının çocuklarında bu hastalık gelişmektedir. Gerçi tip1 diyabet olgularının %80 inde ailevi bir hikaye yoktur. Otoimmünite : Tip1 diyabetin klinik başlangıcı ani olmasına rağmen, beta hücrelerine karşı olan kronik otoimmun atak, hastalığın başlamasından yıllar önce başlamıştır. Hastalığın klasik belirtileri olan hiperglisemi ve ketoz, beta hücrelerinin % 90 ından fazlası haraplandıktan son-ra, ortaya çıkar. Otoimmunitenin diyabet patogenezindeki rolü morfolojik, klinik ve deneysel birçok gözlemle desteklenmiştir: (1)Hastalığın erken dönemlerinde çoğu vakada adacıklarda hücre nekrozu ve lenfositten zengin iltihabi infiltrasyon (insülitis) gözlenir. (2)Diyabetli has-taların %80 inin kanlarında, beta hücre antijenlerine karşı oluşmuş antikorlar (otoantikor) gösterilmiştir. (3)T lenfositler beta hücre antijenlerine karşı reaksiyon gösterir ve hücre hasar-larına neden olur. (4)Sitokinler beta hücrelerini harplar. Çevresel Etkenler: Çevresel bozukluk beta hücrelere zarar vererek otoimmüniteyi tetikle-miş olabilir. Epidemiyolojik gözlemler, böyle bir tetiklemeyi virusların yaptığını düşündür-müştür. Tip2 Diyabetes Mellitus Patogenezi Tip2 Diyabet (İnsüline Bağımlı Olmayan Diyabetes Mellitus): Vakaların büyük bir çoğun-luğunu (%90) bu tip diyabet oluşturur. Hastalık olgun yaşlarda başlar ve daha çok 50-60 lı yaşlarda ortaya çıkar. Daha önceleri adult tipi diyabet olarak adlandırılırdı. Pankreas insülin üretir; fakat dokuların bu insülini kullanmasında problem vardır. Dokuların insüline karşı olan duyarlılığında azalma nedeniyle karbonhidrat, yağ ve protein metabolizmalarının bozukluğu ortaya çıkar. Dokuların insüline duyarlılığın azalmasına (azalmış duyarlılık) “insülin direnci (rezistansı)” denir. İnsülin direnci; glukoz alımında, metabolik işlevde veya depolanmasında, insülinin etkisine karşı bir direnç olarak tanımlanır. İnsülin direnci, tip2 diyabetli hastalarda görülen karakteristik bir özelliktir ve diyabetli bireylerde görülen obeslik, genel bir bulgudur. Tip2 diyabeti iki metabolik defekt karakterize eder. (1)Çevre doku hücrelerinde, insüline yanıt verme yeteneğinde azalma (insülin direnci) ve (2)bu insülin direnci ve hiperglisemiyi kom-panse etmek için, gerekli insülinin pankreas tarafından salgılanamaması. Bu patolojiye beta hücre disfonksiyonu adı verilir. Burada esas olay, insülin dirençidir. Tip2 diyabetli hastaların yaklaşık %80’i şişman kişilerdir. Patogenezde obesite söz konusu olduğundan, kişinin yaşam biçimi ve beslenme alışkanlıkları gibi, çevresel faktörlerin önemli bir rol oynadığı düşünülür. 27 Bir zamanlar adültlerin bir hastalığı olarak düşünülürdü. Şimdi obes çocuklarda da bu şeklin görülebildiği bilinmektedir. Obesite, insülin direnciyle ve böylelikle tip2 diyabetle, önemli bir ilişkiye sahiptir. Kilo verilmesi ve fizik ekzersiz, bu hastalarda glikoz tolerans bozukluğunu düzeltebilir. Tip2 diyabet çok daha fazla görülmesine karşın, patogenezi hakkında bilgi azdır. Otoim-mün mekanizmaya ait deliller yoktur. Bunun yerine göreceli olarak insülin yetmezliğiyle sonuçlanan, insülin direnci ve β hücre bozukluğu vardır. Hafifden tam’a kadar değişen bir in-sülin eksikliği söz konusudur ve tip1 diyabetten daha az şiddettedir. Tip2’de insülin yetmez-liğinin kesin sebebi bilinmemektedir. Tip1 diyabette olduğu gibi, beta hücrelerinde viral veya immün sistem kökenli zedelenmeyi gösterecek bir bulgu da yoktur. Genetik faktörler, Tip1 diyabete göre bu Tip2 de daha önemlidir. Tek yumurta ikizlerin ikisinde de birden görülme oranı %60-90 dır. Bu hastalığın görülme oranı tüm popülasyonda %5-7 iken, birinci derece akrabalarda hastalık gelişme riski %20-40 arasında değişmektedir. Diyabetes Mellitus Geç Komplikasyonlar ve Patogenezi İnsülin hormonunun bulunması ve bunun tedavide kullanıma başlanmasından sonra, hasta-ların ömrü uzamıştır; fakat bu hastalık tedavi edilememiştir Diyabet hastalığında, geç kompli-kasyonlar olarak adlandırılan hastalığın başlangıcından 10- 15 yıl sonra ortaya çıkan lezyonlar çok önemlidir. Hastalar arasında bu komplikasyonların çıkış zamanı, şiddeti ve tutulan organ-lar yönünden bariz farklar vardır. Pankreasda patolojik bulgular çok çeşitlidir ve mutlak dra-matik değildir. Komplikasyonların hemen tamamı damar lezyonlarına bağlıdır. Bugünün diya-betle ilişkili en önemli komplikasyonları; küçük damarların bazal membranlarında kalınlaşma (mikroanjiyopati), arterlerde (ateroskleroz), böbreklerde (diyabetik nefropati), retinada (reti-nopati), sinirlerde (nöropati) ve klinik olarak bütün bu organlarda disfonksiyonlar görülür. Yapılan gözlem ve çalışmalar, ortaya çıkan bu komplikasyonların doğrudan hiperglisemiye bağlı olduğunu düşündürmektedir. Buna ilaveten, diyabette hipertansiyonun varoluşu, atero-sklerozisi hızlandırır. En çok konuşulan bulgu, nondiyabetik donörlerden (verici) diyabetik hastalara yapılan böbrek transplantlarında 3- 5 yıl sonra, bu böbrekte diyabetik nefropatinin gelişmesidir. Buna tezat oluşturacak şekilde diyapatik nefropatili böbreklerin normal alıcılara transplante edildiği zaman, bu böbreklerde düzelmeler olduğu bilinir. Diyabette hayatı tehdit eden esas olay ateroskleroz ve mikroanjiyopati gibi, generalize vasküler hastalıktır. Ateroskleroz, diyabetin klinik seyrini hızlandırır; kalb, beyin ve böbrekde iskemik lezyonlar gelişir. Myokard infarktüsü, serebral infarktüs, renal yetmezlik ve alt eks- tremite gangrenleri diyabetlerde sık görülen lezyonlardır. Diyabetin patognomanik (tanı koy- durucu) ağız lezyonları (spesifik ağız yumuşak doku ve dental lezyonları ) yoktur. Diyabette Pankreas Değişiklikleri: Langerhans adacıklarında diyabetin etyolojisini ve pato-genezini açıklayacak spesifik bir patolojik lezyon gösterilememiştir. Pankreas lezyonları sabit ve patognomanik değildir. Tip1 deki değişiklikler, tip2 ye göre daha belirgindir. Gerçi diyabe-te eşlik eden, bazı morfolojik değişiklikler vardır. Adacıklar sayıca azalmıştır, buralarda fibro-zis ve lenfosit infiltrasyonu (insülitis) ve amiloid birikimi görülebilir. Amiloid birikimi za-manla hücrelerin atrofisine neden olabilir. Ayrıca beta hücrelerinde granül kayıpları dikkati çeker. Diyabetik Göz Komplikasyonları: Diyabetik retinopati olarak adlandırılan göz lezyonları, katarakt veya glakom (göz tansiyonu) gelişmesine bağlı olarak, görme bozuklukları ve körlü- ğe kadar gidebilen ağır lezyonlar gelişir. Retinada, düzensiz damar duvarı kalınlaşmaları ve mikroanevrizmalar sonucu lezyonlar ortaya çıkar. Diyabetik Nöropati: Geç komplikasyonlar olarak periferal sinirler, beyin ve omurilik hasar görebilir. Refleks bozuklukları, duyu kusurları, gelip- geçici ekstremite ağrılarına neden olur. Schwann hücre hasarı, myelin dejenerasyonu ve akson hasarı ile karakterlidir. Bu hücrelerde- ki hasarın primer hasar olduğu düşünülmektedir. Buna, intrasellüler hipergliseminin yol açtığına inanılır. Hem bu intrasellüler hiperglisemi ve hem de mikroanjiopati sonucu gelişen iske- minin beraberce nöropatiye neden olduğuna inanılır. Pelvik organların innervasyonu bozula- rak; seksüel impotans (ereksiyon problemi), mesane ve barsak disfonksiyonu ortaya çıkabilir. Diyabetik Böbrek Değişiklikleri (Diyabetik Nefropati): En ağır lezyon gösteren organlar-dan birisi böbrektir. Myokard infaktüsünden sonra görülen en sık ölüm nedenidir. Ölüm çoğu kez, mikroanjiopati sonucu gelişen böbrek yetersizliğine bağlıdır. Vasküler Sistem: Diyabet vasküler sisteme ağır zararlar verir. Her çaptaki damarlar (aort ve küçük damarlar) etkilenir. Koroner arterlerin aterosklerozu nedeniyle ortaya çıkan myo- kard enfarktüsü, diyabetiklerde görülen en sık ölüm nedenidir. Diyabette ateroskleroz daha erken yaşta ortaya çıkar ve daha ağır seyreder. Ateroskleroz oluşmasına yatkınlık, birden fazla faktöre bağlıdır. Hiperlipidemi ve trombositlerin yapışma özelliğinin artması, şişmanlık ve hipertansiyon gibi, aterosklerozda rol oynayan diğer risk faktörleri de vardır. Damarlarda ülserasyon, kalsifikasyon, ve trombüs gelişimi sıktır. Damarların daralmasına bağlı olarak myokard infarktüsü gibi klinik bulgular ortaya çıkar. Yırtılma riski olan anevrizmalar gelişir. Diyabetlilerde normalden 100 kat fazla olan, alt ekstremite gangrenleri gelişir. Diyabette Klinik Özellikler Tip1 diyabet, çoğu hastada 35 yaşın altında poliüri (çok idrara çıkma), polidipsi (çok su içme), polifaji (iştah artışı) ve ciddi olgularda ketoasidozis ile kendini göstererek başlar. Bun-ların tümü metabolik bozukluklardan meydana gelir; çünki insülin vücuttaki başlıca anabolik hormon olduğundan, İnsülin salgılanmasındaki bir yetersizlik, yalnızca glikoz metabolizma-sını etkilemez, yağ ve protein metabolizmasını da etkiler. İnsülin eksikliğinde, glikozun kas ve yağ dokusu tarafından emiliminde, bariz azalma (veya yokluğu) söz konusudur. Karaciğer ve kasdaki glikojen depoları azaldığı gibi, glikojenoliz nedeniyle yedek depolar da tükenir. Şiddetli bir açlık hiperglisemisi izler. Tip1 de iştah artmasına rağmen katabolik etkinin baskın olması, kilo kaybı ve kas zayıflığı ile sonuçlanır. Polifaji ve kilo kaybının beraberliği bir tezat oluşturur. Böyle kişilerde her zaman bir diyabet şüphesi akla gelmelidir. Kandaki glikoz seviyesi artarsa, glomerüllere fazla glikoz gider, “glikozüri” (idrarda şeke-rin çıkması) başlar. Glikozüri osmotik diürezi başlatır, poliüriye neden olur. Yoğun bir su ve elektrolit (Na+, K+, Mg++, PO4-) kaybı ortaya çıkar. Sonuç olarak dolaşımda sodyum, potas-yum kayıpları ve kandaki glukoz seviyesinin artmasına bağlı olarak ortaya çıkan serum os-molaritesindeki artma (hiperosmolarite) ile kombine renal su kaybı, hücreler içi ve hücreler arası su kaybına neden olarak beyinde susuzluk merkezi uyarılarak su içme isteği doğar (polidipsi). İnsülin eksikliğinde metabolik dengenin bozulması ve ayrıca yağ katabolizması (yıkımı) aşırı artması, serbest yağ asidi düzeyini yükseltir. Bu serbest yağ asitleri, karaci-ğerde oksitlenerek keton cisimleri meydana gelir. İdrarla keton atılımı azalırsa, ketoasidoz oluşur. Tip2 diyabetes mellitus, poliüri ve polidipsi gösterebilir; fakat tip1 den farklı olarak hasta-lar genellikle 40 yaş üzeridir ve şişmandır. KALSİYUM METABOLİZMASI VE BOZUKLUKLARI Kalsiyum ve fosfat (PO4)x metabolizması, birbirleriyle çok yakın bir ilişki içindedir. Hem kalsiyum hem de fosfat dengesinin düzenlenmesinde, büyük ölçüde dolaşımdaki paratiroid hormonu (PTH), vitamin D ve bunlar kadar olmasa da kalsitonin hormonunun etkileri vardır. Kalsiyum; kemik ve dişlerin şekillenmesi, kasların kasılması, kanın pıhtılaşması, sinir uyarıla- rının iletisi ve hormon salınması gibi, pekçok fizyolojik olayda anahtar rol oynar. Bu nedenle kalsiyum dengesinin korunması kritik önem taşır. Vücuttaki kalsiyum depoları (iskelet siste- mi) ve plazma kalsiyum konsantrasyonunun korunması; besinlerle kalsiyum alımına, gastroin- testinal kanaldan kalsiyum emilimine ve böbreklerden kalsiyum atılımına bağlıdır. Dengeli bir beslenmeyle günde yaklaşık 1000 mg kalsiyum alınır. Bu da sütün 1 litresindeki miktara eşit- tir. Kalsiyumun esas atılımı dışkı ve idrar ile olmaktadır. Bunun yanısıra, barsaktan geri emi- lim de olmaktadır. D vitamini, kalsiyumun barsaklardan emilimini arttırır. Böbreklerde aktif vitamin D sentezixx arttırılarak, barsaktan kalsiyum emilimi arttırılır. Böbreklerde bir hasar mevcutsa, D vitamini etkisinin büyük bir bölümünü kaybeder ve barsak emilimi de azalır. Paratiroid hormonu; kalsiyum ve fosfat’ın barsaklardan reabsorbsiyonunu, böbreklerden atılmalarını ve ekstrasellüler sıvı ile kemikler arasındaki değişimleri düzenleyen bir hormon- dur. Paratiroid salgılığı (bezi) aktivitesinin artması, kemikten kalsiyum tuzlarının hızla rezorb- siyonuna yol açarak, ekstrasellüler sıvıda hiperkalsemi oluşturur. Bunu osteoklast aktivasyonu ile kemik rezorbsiyonu yani kalsiyumun mobilizasyonu arttırarak yapar. Bunun aksine, parati- roid salgılıklarının hipofonksiyonu, hipokalsemiye neden olur. D vitamini, kemik rezobsiyonu (yıkımı) ve kemik depolanması (yapımı) yani remodelas-yon üzerinde önemli etkilere sahiptir. Aşırı miktarda vitamin D fazlalığında, kemiklerde re- zorbsiyon oluşur. D vitamini eksikliğinde, paratiroid hormonunun kemik rezorbsiyonu üzerine olan etkisi büyük ölçüde azalır. Hipokalseminin Başlıca Nedenleri: 1-Hipoparatiroidizm: Paratiroid hormonunun eksikliği veya yokluğu nedeniyle, hipopara- tiroidizm ortaya çıkar. Başlıca özellikleri hipokalsemi ve hiperfosfatemidir. Özellikle tiroidek- tomi sırasında paratiroid salgılıklarının kaza sonucu çıkarılması veya hasar görmesiyle hipo-paratiroidizm meydana gelir. PTH yeterince salgılanamayınca kemiklerde osteolitik rezorb- siyon azalır. Vücut sıvılarında da kalsiyum düzeyi düşer. Kemiklerden kalsiyum ve fosfat re- sorbsiyonu olmadığı için, kemikler dayanıklılığını kaybetmez. Kronik hipokalsemide deride kuruma ve pullanma, tırnaklarda çatlama ve kırılma ile saç-larda sertleşme görülebilir. Kalsiyum konsantrasyonu ileri derecede azaldığında, tetani belirti- leri ortaya çıkar. Özellikle larenks kasları tetanik spazma duyarlıdır ve bu kasların spazmı, solunumu engeller. Gerekli tedavi uygulanmazsa, ölüme yol açabilir. 2-Vitamin D Eksikliği: Besinlerle yeterince D vitamini alınamaması (malnutrisyon) yanı- sıra, hepatobilier hastalık (karaciğer hastalıkları vitamin A, D ve K nın sentezini düşürür), barsaklardaki emilim bozuklukları (intestinal malabsorpsiyon), renal hastalıklar, belli bazı ilaçların alımı ve derinin güneş ışığını yeterince alamaması (İngilteredeki Müslüman kadınlar) gibi durumlar, vitamin D eksikliğinin önemli nedenleridir. Vitamin D, güneş ışını aracılığıyla deride sentez edilir; eksikliği hipokalsemiye neden olur. Eksikliğine bağlı olarak, çocuklarda raşitizm ortaya çıkar. Erişkinlerde diyete bağlı D vitamini veya kalsiyum yetersizliği oldukça seyrektir; çünki kemik büyümesi çocuklardaki gibi, çok miktarda kalsiyum gerektirmez. x Fosfor, insan vücudunda en çok bulunan elementlerden biridir. Vücuttaki fosforun çoğu oksijen ile beraber, fosfat (PO4) şeklinde bileşik halinde bulunur. Vücuttaki fosfat’ın yaklaşık % 85 i kemiktedir ve burada hidroksi-apatit kristalinin önemli bir bileşenini oluşturur2. xx Böbreklerde 1-α hidroksilaz enzimi tarafından vitamin D’nin en aktif formu olan 1, 25-dihidroksikolekalsife- rol’e [1,25(OH2) D3] çevrilir. Bu madde [vitamin D3 (kolekalsiferol)] barsaklardan kalsiyum emilimini arttırır. Önemli miktardaki vitamin D eksikliklerinde, erişkinlerde osteomalasi’ye yol açar. Bu, nor- mal gelişimini yapmış kemiklerdeki eksik mineralizasyonu yansıtır. Raşitizm’de ise yetersiz mineralizasyon çocuklarda gelişmekte olan kemikleri tutar. 3- Böbrek Yetersizliği: Böbreklerde vitamin D, aktif şekli olan dihidroksikolekalsiferol’a çevrilir. Böbrek hücrelerinin direkt hasar görmesinden dolayı; (1) aktif vitamin D oluşumu- nun azalması ve ayrıca (2) lezyonlu böbreklerde meydana gelen anormal kalsiyum kayıpları, hipokalsemiye neden olur. Fosfat’ın böbreklerden atılımının azalmasına bağlı olarak gelişen hiperfosfatemi de, tam anlaşılamamış bazı mekanizmalar yoluyla hipokalsemiye neden ol-maktadır. Hiperkalseminin Başlıca Nedenleri: Hiperkalsemi, kemik rezorbsiyonunun aşırı olma-sından kaynaklanır. Nedenleri şöyle sıralanabilir. 1- Primer Hiperparatiroidizm: Popülasyonda en sık rastlanılan hiperkalsemi nedenidir. Paratiroid salgılığındaki (bezi) bir bozukluk nedeniyle aşırı miktarda hormon salgılanması so-nucu meydana gelir. Nedeni paratiroid salgılıklarındaki bir hiperplazi veya tümördür. Bu tü-mör benign (adenoma) veya malign (karsinoma) olabilir. Eksesif paratiroid hormonu yapımın-da (hiperparatiroidizm) kemiklerde osteoklastik aktivite ileri derecede artmıştır, kemiklerden kalsiyumun açığa çıkmasına neden olur. Bu durum dolaşımda kalsiyum konsantrasyonunu arttırır, serum kalsiyum seviyesi yükselir. Osteoklastik aktivasyon (rezorbsiyon), osteoblastik depolanmadan çok fazla olduğu için, kemik yıkımı fazladır. Bu tür hastalarda patolojik kırık-lara çok rastlanır. Osteoklastların yaptığı lakunar rezorbsiyon, kemiklerde defektlere neden olacaktır ve kistik kaviteler şeklinde belirecektir. Bu bulgular da, hormon fazlalığının radyolo-jik ve histopatolojik göstergesidir. Paratiroid hormonunun kronik artımı, tüm iskelet sistemin-de herhangi bir kemiği tutabildiği gibi, çene kemiklerini de tutabilir. Bu hastaların kemikle-rinin radyolojik incelemelerinde, aşırı dekalsifikasyon kemik yıkımı nedeniyle multipl kistik alanlar görülür. Bu kistik alanlarda fibröz doku ve osteoklast tipi dev hücreler yoğun bir şekil-de bulunur. Bu histolojik özellik, çene kemiklerinin özel bir lezyonu olan, santral dev hücreli granulomanın benzeridir. Hiperparatiroidizme bağlı bu tür kistik kemik hastalığına, “osteitis fibroza kistika” adı verilir. Bu lezyon bazen kitleler oluşturarak tümörlerle karışabilir. Bu nedenle bu lezyonlar, “hiperparatiroidizmin brown (kahverengi) tümörü” olarak da bilinir. Osteoblastlar aktive olduğu zaman, bol miktarda alkalen fosfat salgılar. Bu nedenle, önemli tanı bulgusu plasma alkalen fosfat düzeyinde artıştır. Bu hastalar böbrek taşı oluşumuna aşırı yatkın olurlar. Bunun nedeni hiperparatiroidizmde barsakdan absorbe edilen ve kemikten mo-bilize olan kalsiyum ve fosfatın, böbrekler tarafından atılması sırasında idrardaki konsantras-yonlarının çok artmasıdır. Sonuçta, kalsiyum fosfat kristalleri böbreklerde çökmeye başlar ve böylece kalsiyum fosfat taşları oluşur. 2- Sekonder Hiperparatiroidizm: Sekonder hiperparatiroidizmde paratiroid hormon artı- şı, paratiroid salgılığındaki primer bir bozukluk yerine, önceden var olan hipokalseminin kompansasyonu sonucu ortaya çıkar. Böbrek yetersizliği en önemli nedendir. Barsakda mal- absorbsiyon sendromu gibi olaylarda, vitamin D eksikliği ve yetersiz kalsiyum alımları, hipo- kalseminin nedenleri olabilir. Kronik hipokalsemi sonucu, paratiroid salgılanmasında bir artış belirir. Buna “sekonder hiperparatiroidizm” denir. 3- Vitamin D fazlalığı: Aşırı vitamin D’nin alımı, vitamin D’nin toksik etkisini ortaya çı-karabilir. D vitaminin fazlalığı, çocuklarda gelişim geriliğine neden olabilir; adültlerde hiper-kalsiüri, nefrokalsinozis ve böbrek taşına neden olur. Vitamin D fazlalığı; kalsiyumun bar-saklardan emilimini arttırdığı gibi, normalin üstünde kemik rezorbsiyonuna (yıkımına) neden olarak kan kalsiyum seviyesini yükselterek, hiperkalsemiye neden olur. 4- Destrüktif Kemik Tümörleri: Destrüktif kemik lezyonlarına neden olan multipl mye- loma veya metastatik kemik tümörlerini sayabiliriz. Multipl myeloma, skuamoz hücreli karsi- noma, böbrek karsinomu, meme- over kanseri hiperkalsemiye neden olur. 5- Süt- Alkali Sendromu: Genellikle peptik ülser tedavisi sırasında uzun müddet ve aşırı miktarda antiasit olarak, kalsiyum (kalsiyum karbonat) ve emilebilir alkali alınması sonucu, hiperkalsemi ortaya çıkar. Bu olaya “süt- alkali sendromu” denir. Gerçi bu sendrom, büyük miktarlarda süt alan hastalarda da tanımlandı. Bu sendrom hiperkalsemi, hiperkalsüri, metabo- lik alkaloz (plasma bikarbonat düzeyinin artması), nefrokalsinozis ve böbrek yetmezliğine neden olabilir. 6- Hipertiroidizm 7- Sarkoidozis: Akciğerleri tutan kronik granulomatöz bir iltihaptır. PATOLOJIK KALSİFİKASYON Kalsiyum tuzlarının kemik ve dişlerden başka dokularda birikmesine, patolojik kalsifikas- yon denir. Normalde kalsifikasyon yalnızca kemik ve dişlerde oluşur. Bunların dışında oluş- ması, heterotopik kalsifikasyon olarak yorumlanır. Heterotopik kalsifikasyon iki farklı tipte tanımlanır. 1)Distrofik Kalsifikasyon: Serum kalsiyum ve fosfor seviyesinin normal olması- na ve kalsiyum metabolizmasında bir bozukluk olmamasına rağmen görülür. Kalsiyum tuzları ölü ve dejenere hücre ve dokularda (tüberküloz nekrozu) birikir. Ayrıca atherosklerozisde aterom plaklarında ve hasarlı kalb kapakcıklarında oluşur. 2)Metastatik Kalsifikasyon: Kalsiyum metabolizmasında bir bozukluk söz konusudur. Hiperkalsemi olan her durumda, normal ve canlı dokularda kalsifikasyonun oluşması görülür. Hatta hiperkalsemi, distrofik kalsifikasyonu da arttırır. Metastatik kalsifikasyonda özellikle bazı dokulara nedeni bilinme- yen bir meyil vardır. Böbrek tübulusları, akciğer alveolleri, mide mukozası ve kan damarları- nın mediası sıkça etkilenen organlardır. Bu organlarda yetmezlikler nedenidir. Metastatik kalsifikasyona neden olan hiperkalseminin nedenlerini daha önce de değindi- ğimiz gibi, şu şekilde sıralayabiliriz; (1)aşırı paratiroid hormonu salgısına neden olan, parati-roid tümörleri ve primer hiperparatiroidizm gibi, endokrin bozukluklar, (2)kemik yıkımını arttıran multipl myeloma, metastatik kanserler ve lösemi gibi tümörler ve (3)vitamin D fazla-lığı (intoksikasyonu) ve süt- alkali sendromu ile sarkoidozdur. Hatta hiperkalsemi, (4)ileri saf-hadaki böbrek yetmezliğinde ortaya çıkan sekonder hiperparatiroidizm’e bağlı olarak da geli-şebilir. Histolojik olarak kalsifikasyon intrasellüler, ekstrasellüler veya her iki lokalizasyonda da depolanabilir. Bu birikim bazofilik, amorfös (şekilsiz) granüler görünümdedir. Kalsifikasyon odağında zaman içinde, kemik gelişebilir, buna “heterotopik kemik” denir. KEMİK HASTALIKLARIİnsan iskeleti kompleks bir sistemdir. Yapısal olarak destek oluşturmaya iyi ayarlanmıştır. İskelet kasının aktivitesini harekete dönüştürür ve hassas iç organlar için, koruyucu bir çevre oluşturur. Ayrıca vücudun kan oluşturan (hematopoetik) elemanları için, iskeletten bir yapı oluşturur ve kalsiyum ile diğer birçok hayati minerallerin ana deposu olarak görev yapar. Pek çok beslenme bozukluğu ile endokrin bozukluklar, iskelet sistemini etkiler. Beslenme bozuk-luklarının neden olduğu kemik hastalıkları; C vitamini eksikliklerinde, skorbüt ve D vitamini eksikliklerinde, raşitizm ile osteomalazi görülen hastalıklardır. Mineralizasyon kaybıyla ka-rakterli bir grup hastalık vardır. Bunlar “osteopenik hastalıklar” adı altında incelenir. Osteo-peni (kemik kaybı), radyolojik olarak mineralize kemik kitlesindeki kayba verilen genel bir terimdir. Bu kolaylaştırıcı bir kavram olup, bunlardaki radyolojik görüntüler, belirli bir patolojiyi işaret etmez. (1)Osteoporoz en sık görülen bir osteopenidir. (2)Osteomalazi ileri yaşlarda, (3)raşitizm çocuklarda görülen kemik matriksindeki mineralizasyon kaybını anla-tır. (4)Osteitis fibroza kistika, hiperparatiroidizmde görülen, kemik kayıpları gösteren bir lezyondur. Osteoklastik kemik rezorbsiyonunda artım vardır. Ortaya çıkmış olan kaviteleri dolduran fibröz doku proliferasyonları görülebilir. Fibröz dokunun tam doldurmadığı kavite-ler, kistik kaviteler olarak tanımlanır. Bazı (5)malign kemik lezyonlu osteopenik hastalarda kemiklerinde bir azalma görülür. Bu artan osteoklastik aktivitenin delilleri olmasına rağmen,bir kısmında anormal osteoklastik aktivite yoktur. Tümör hücrelerinin kendileri kemik rezorb-siyonundan sorumludur. Osteoporoz: Osteoporoz, kemik kitlesinin azalmasıyla mikro- yapı bozulmasına bağlı ola-rak ortaya çıkan kemik inceliği ve zayıflığına bağlı olarak kırık olasılığının arttığı bir kemik hastalığıdır. Burada hem kemik yapımı azalmıştır, hem de kemik yıkımı artmıştır. Kemik in-celiği lokalize olabildiği gibi, tüm iskelet sistemini de tutabilir. Osteoporoz terimi nitelendiril-meden kullanılırsa, primer senil ve postmenopozal şekli anlaşılır. Senil osteoporoz, yaşlılarda ve heriki cinsde şiddeti artarak görülür. Postmenopozal osteoporoz, menopoz sonrası kadın-larda görülür. Yaşlı kadınlardaki femur başı kırığın başlıca komplikasyondur. Primer osteopo-rozis ileri derecede yaygın olarak görülür. Osteoporozisle ilgili kırıklara bağlı ortaya çıkan morbidite ve mortalite analiz edilirse, yıllık maaliyetin çok yüksek olduğu görülür. Patogenezis: Erişkinlerde kemik oluşumu ve rezorbsiyonu arasında dinamik bir denge var-dır. Bu dengenin osteoklastların kemik yıkım tarafına kaydığında olay osteoporoz ile sonuçla-nır. Bu dengesizliğin oluşumu bir sırdır. Gerçi kemik gelişimi ve yeniden modelizasyon (yı-kım- yapım) kontrol mekanizmalarında heyecan verici önemli kavramlar vardır. Bunların merkezinde, tümör nekroz faktörü (TNF) ailesine ait yeni bir molekülün, keşfi vardır. Nükle-er Faktör kB nin Reseptör Aktivatörü (RANK) olarak adlandırılan bu molekülün, osteo-klast fonksiyonunu (işlevini) etkilediği anlaşılmıştır. Bunu, kemik stromal hücreler ile osteo-blastların sentezlediği ve hücrenin membranına yerleşik olduğu bugün artık bilinmektedir. Bu liganların reseptörü, makrofajlarda bulunmaktadır. RANK- sunan (tanıtan) hücreler bu makro-fajlar (böylelikle osteoklastlar) dır. Makrofajların osteoklastlara dönüşebilmeleri için, stromal hücreler veya osteoblastlarda bulunan bu RANK ligandının, makrofajlardaki RANK reseptö-rüne bağlanması gereklidir. Aynı zamanda osteoblastlar ve stromal hücreler, makrofaj koloni stimüle eden faktör (M- CSF) olarak adlandırılan bir sitokin üretir. Bu uyaran faktör, makro-faj yüzeyinde bulunan farklı bir reseptöre bağlanır. RANK ligandı ve makrofaj koloni –stimü-le eden (uyaran) faktör beraberce etki ederek makrofajları, kemik- yiyen osteoklastlara dönüş-türür. Bunun dışında stromal hücreler/osteoblastlar tarafından salgılanan ve osteoprotegerin (OPG) olarak adlandırılan molekül, tuzağa düşürücü “yem reseptör” dür. RANK ligandını kaplayarak, bunun makrofajdaki RANK reseptörüne bağlanmasını önler ve böylece yeni osteoklastların oluşumu ve kemik yıkımı kesintiye uğramış olur. Öyle görülüyor ki, osteoporoz tek bir hastalık olmaktan çok, total kemik kitlesinin ve yo-ğunluğunun azalması gibi, benzer morfolojik görüntüyü veren hastalıklar grubudur. Normal durumlarda bebeklik ve çocukluktan itibaren, kemik kitlesi devamlı artar, genç adült yaşların- da zirveye çıkar. Bunu büyük ölçülerde genetik faktörler belirler. Gerçi fiziksel aktivite, diyet ve hormonal durumlar gibi, eksternal (dış) faktörlerin de büyük rolü vardır. Yaş Faktörü: Kemik dansitesindeki (yoğunluğu) yaşa bağlı değişiklikler, her bireyde görü- lebilir. Kemik dinamik bir dokudur ve yaşam boyu devamlı bir yıkım- yapım şeklinde devam eder. Bu remodelizasyon (yıkım- yapım), kemik rezorbsiyonu ve yeni kemik yapımı değişik- likleriyle karakterizedir. Maksimum kemik yoğunluğuna yaşamın üçüncü on yılında ulaşılır. Bundan sonra dansite giderek azalır. En büyük kayıplar, yoğun süngersi (trabeküler) kemikle- rin olduğu omurga ve femur boynunda ortaya çıkar. Bu nedenle osteoporozlu kişilerde kırıklar bu bölgelerde çok sık görülür. Yaşlı hanımlarda kalça kırıkları kayda değer sayılardadır. Bu tür kırıklardaki tedavide, yaşlı insanların uzun periyodlarda hareketsiz yatmaları gerektiğin- den, hareketsizliğe bağlı olarak pnömoni, akciğer ödemi ve pulmoner tromboembolizm gibi, komplikasyonlar çok sık görülür ve başlıca ölüm nedenidir. Mekanik Faktör: Özellikle beden ağırlığının taşınması normal yeni kemik yapımında önemli bir stimulusdur. Azalmış bir fiziksel aktivitenin, hızlanmış kemik kayıplarıyla yakın ilişkisi vardır. Bunun kötü örnekleri felçli veya hareketten yoksun ekstremiteler örnek verilir. Sıfır yerçekiminde bir müddet kalmış olan astronotlarda da kemik yoğunluğunda kayıplara rastlanır. Pekçok yaşlı insandaki yaşam biçimi, hiç şüphesiz osteoporozun ilerlemesinde kat-kısı olabilir. Diyet Faktörü: Osteoporozun oluşması, korunması ve tedavisinde, kalsiyum ve vitamin D nin alımını da içeren diyetin rolü, halen daha tam anlaşılamamıştır. Raşitizm ve Osteomalazi Raşitizm ve Osteomalazi, her ikisi de vitamin D eksikliğinin birer örneğidir. Başlıca deği- şiklik kemiğin mineralizasyonundaki eksikliktir ve buna bağlı olarak nonmineralize osteoid kitlesindeki artım ortaya çıkar. Kısaca, osteoid matriks kalsifikasyonundaki defekttir. Osteo- malazideki bu özellik, total kemik kitlesindeki azalmaya rağmen, kalan kemik kitlesinde mineralizasyonu normal olan, osteoporozise çelişki oluşturur. Osteoporozisde kemik kaybı vardır, mineralizasyon kaybı yoktur. Raşitizmde mineralizasyon defekti, çocuklarda gelişmekte olan kemiklerde ortaya çıkar. Osteomalazide ise, tamamen normal gelişimini tamamlamış kemikteki bozuk mineralizasyon tarif edilir. PROF. DR. Taha ÜNAL EGE ÜNİVERSİTESİ DİŞHEKİMLİĞİ FAKÜLTESİ 2011 ORJİNAL KAYNAK: dent.ege.edu.tr/dosyalar/kaynak/301_patoloji/11.pdf   documents/11.pdf

http://www.biyologlar.com/hucre-zedelenmesinin-nedenleri-ve-zedelenmeye-karsi-hucrenin-verdigi-uyum-yanitlari-nelerdir-hasara-ugrayan-dokunun-onarilmasi-nasil-gerceklesir

Kuşların Kökeni ve Evrimi

Yeryüzünde bizimkine nazaran çok uzun bir geçmişe sahip olan kuşlara, insanlık tarihi boyunca mitolojik figür, sanat esini, barış, güç, bilgelik sembolü olarak rastlamamız, kuşların insanlar için salt besin kaynağı olmamış olduğuna işaret eder. Ikarus’u hatırlarsak, kuşların birçok hikâyenin kaynağında yer almalarının nedeni belki de insanlığa hayranlık veren uçma yetenekleridir. Yine de kuşlarla ilgili en sürükleyici hikâyenin, zaman tünelinde milyonlarca yıl geriye giderek kuşların ve uçuşun kökenine dair ipuçları arayan paleontologlarca yaşandığını söylemek herhalde abartılı olmaz. Canlıların kökenine, birbirleriyle olan evrimsel akrabalıklarına ilişkin bilimsel çalışmalar çok sayıda fosilin incelenmesini gerektirir. Bu nedenle, kuşlara özgü yapılar olan tüylere ve içi boş, süngerimsi dokusu olan hassas kemiklere fosil kayıtlarında nadiren rastlanabilmesi, bu uzun ve karanlık tünelde cılız bir ışıkla çalışmak anlamına gelmiş çoğu kez. Uçuşun son derece sınırlayıcı fizyolojik ve anatomik talepleri olması sonucunda kuşlar, çok yüksek bir metabolizmaya ve çok sınırlı bir aerodinamik morfolojiye sahip olacak şekilde evrimleşmişlerdir. Tüylerinin altında anatomik olarak çok benzerlik gösteren kuşların sınıflandırılmasının ancak bir ya da birkaç belirleyici özelliğe dayanması, benzeştiren evrimin belki de en büyük yanıltmacalarını uçmanın getirdiği bu kısıtlamalar içinde yaratmış olmasıyla birleşince, kırlangıçlar ve ebabiller örneğindeki gibi birçok yanlış sınıflandırmayla karşılaşılmış. Tüm bunlara bir de sistematik çalışmalardaki yöntembilim farklılıkları eklenirse, kuşların kökenleri ve evrimlerinin aydınlatılabilmesi için ipuçlarının doğru değerlendirilmelerinin de bulunmaları kadar önemli olduğu anlaşılır. Kuşların yaklaşık 150-200 milyon yıl önce, Mesozoic çağda sürüngen atalardan evrimleşmiş olduğu tüm bilim dünyasınca kabul edilse de, tam olarak hangi dönemde ve hangi sürüngen kolundan evrimleştikleri günümüzde internet tartışma gruplarının bile konusu olan bir soru işareti. Münih yakınlarındaki Bavyera Bölgesinde bulunan ince taneli kireçtaşı, tarih sayfaları boyunca karşımıza ilk olarak banyolardan, çatı döşemelerine kadar birçok yerde kullanılmak üzere, özellikle ortaçağ boyunca yoğun şekilde çıkarılan değerli bir ihracat maddesi olarak çıkıyor. Ayasofya camiinin mozaiklerinde bile yer alan bu kireçtaşı, 1793’te litografi tekniğinin bulunmasından sonraki daha dikkatli ve ayrıntılı kazılar sırasında içinde tek bir tüy fosiline rastlanmasıyla birlikte bu kez bilim dünyası için önem taşımaya başlıyor. Kireçtaşına da ismini veren Solnhofen köyündeki taşocağında Jurassic döneme ait kireçtaşında tek bir uçuş tüyü fosilinin bulunduğu haberinin 1861 yılında Hermann von Meyertarafindan duyurulmasıyla, evrim biyolojisi alanının belki de en hararetli günleri başlamış oldu. Yaklaşık 6 cm boyundaki bu tek tüy, Sürüngenlerin hâkim olduğu dönemde kuşların yaşadığına dair bir kanıttı ve üstelik asimetrik yapısıyla modern zaman kuşlarının uçuş tüyleriyle benzerlik gösteriyordu. Bu fosil tüyün bulunuşunun üzerinden daha birkaç ay geçmemişti ki Hermann von Meyer bu kez tüyleri olan, sürüngenvari bir hayvanın iskeletinin eksiksiz bir fosilinin bulunduğunu bildirdi şaşkınlığı dinmemiş biyoloji çevrelerine. Bu fosil de yine aynı bölgede bulunmuştu ve yine Jurassic dönemine aitti. Hem sürüngen hem de kuş özellikleri taşıyan bu fosil, Meyer’in Archaeopteryxlithographica (litografi taşındaki eskil kanat) olarak adlandıracağı evrim biyolojisinin ünlü ikonasından başkası değildi. Bölgenin fosilleri, Taş Devri’nden beri önceleri süs eşyası, sonraları da para olarak o bölgede yaşayan insanlar tarafından değerli sayılmıştı. Bu fosillerin büyük koleksiyoncularından birisi de, muayene karşılığı bu fosilleri kabul eden Dr. C.F.Häberlein’di ve bu çok önemli Archaeopteryx fosili onun koleksiyonunda yer alıyordu. Önceleri resmedilmesine bile izin vermediği Archaeopteryx fosilini ancak 3 ay sonra açık arttırmaya çıkaran Häberlein, çılgın bir kapışma içinde geçen satış sonrasında bu önemli fosille birlikte koleksiyonundaki yüzlerce fosili İngiliz müzesine satarak çocuklarına yetecek büyüklükte bir servete sahip olmuş oldu. Müzenin iki yıllık bütçesini bu fosil koleksiyonu için harcamasına neden olan kişinin amansız bir evrim karşıtı olan anatomist Sir Richard Owen olması ise,Archaeopteryx’in ne denli önemli bir doğa tarihi fosili olduğunun bir kanıtıydı. Bir karga büyüklüğündeki Archaeopteryx fosili, uzun, kemikli sürüngenvari kuyruğundan çıkan tüyleri, uzamış ön uzuvları, asimetrik tüylerle kaplı kanatları, 3 hareketli, kıvrık parmağı, köprücük kemiklerinin birleşmesinden oluşmuş lades kemiği ve dişleriyle iki yüksek hayvan grubunun, sürüngenlerin ve kuşların arasındaki bir ara forma, dolayısıyla evrime işaret ediyordu. Zaten Charles Darwin de, sadece iki sene önce basılmış olan ve “doğal seçilim yoluyla evrim”i anlattığı “Türlerin Kökeni” adlı kitabında tam da böylesi ara formların var olduğunu varsayıyordu. Böylelikle Archaeopteryx, zincirin kayıp halkalarından biri olarak bir yandan Darwin’in “doğal seçilim yoluyla evrim” teorisinin kabul görmesini sağlarken, bir yandan da kuşların ve uçuşun kökenine ilişkin halen sürmekte olan tartışmalarının merkezine yerleşmiş oldu. Yine de o yıllarda Archaeopteryx’in bir ara form olarak kabul edilmesi bilim dünyasında bile çok çabuk gerçekleşmemiş, fosilin ortaya çıkmasıyla birlikte Darwin yanlısı, yaratılışçı, evrim yanlısı ama Darwin karşıtı birçok görüş ve iddia ortaya atılmıştı. Fosili hiç görmedikleri halde tüylendirilmiş bir sürüngen fosili olduğu iddiasını ortaya atan evrim karşıtı zooloji profesörleri ve yaratılışa tamamen sırtını dönmeden evrimin farklı bir biçimde gerçekleşebileceğini savunan anatomi uzmanları arasında dikkati çeken kişiyse, Darwin’in ve evrim teorisinin en büyük savunucusu, doğa bilimci Sir Thomas Henry Huxley olmuştu. Kuşların kökeni üzerine 1868 yılında yayınladığı makalelerle evrimi kanıtlama işine soyunan Huxley’e göre Archaeopteryx, sürüngen ve kuş arası özellikleriyle evrimi kanıtlayan mükemmel bir ara form örneğiydi. Gerçekten de iskeletin tüyleri bölgeye özgü ince taneli kireçtaşı tarafından hapsedilmese hiç kuşkusuz bir sürüngen fosiliyle karşılaştıklarını sanacak olan bilim insanları, şimdi kuşların kökenine ışık tutabilecek bir fosille karşı karşıyaydılar. Huxley’inArchaeopteryx’i ilk gerçek kuş olarak tanımlamakla kalmayıp, aynı bölgeden çıkarılan ve tavuk büyüklüğündeki bir teropod dinozoru olan Compsognatusfosiliyle karşılaştırarak benzerlikler bulması ise, kuşların atası olarak sürüngenlerin kabul edilmesini belki de pekiştirirken, kuşların atasının dinozorların bir kolu olduğunu savunan görüşü de doğurmuş oldu. Huxley bu küçük, iki ayaklı dinozorun tavuk benzeri leğen kemiği ve arka uzvu gibi kuşlara benzeyen özelliklerini göstererek aslında en başta Darwin’in evrim teorisinin bilim dünyasında kabul edilmesini sağlamış oldu. Huxley’in Archaeopteryx ve Compsognatus fosillerinden yola çıkarak kuşlara benzeyen sürüngenlerin ve sürüngenlere benzeyen kuşların varlığına dikkat çekmesiyle birlikte, Amerikalı profesörler de dâhil olmak üzere birçok bilim insanı önceleri benimsemedikleri evrim düşüncesine sahip çıkmaya başladılar. 1877 yılında, tüm dünyadaki bilim insanları hala Londra’daki Archaeopteryxfosiliyle ilgili tartışmalarını sürdürürken yeni bir Archaeopteryx fosili bulunduğu haberi yayıldı. Önceki fosilin bulunduğu yerden yalnızca 30 kilometre uzakta, Eichstatt yakınlarındaki bir taşocağında bulunan bu yeni Archaeopteryx fosili de yine bir fosil koleksiyoncusunun ellerindeydi ve bu koleksiyoncu da Doktor Haberlein’in oğlundan başkası değildi. İlk fosili İngilizlere kaptırmanın utancı içindeki Almanlar bu kez fosili almakta kararlıydılar ve uzun süren görüşmeler sonunda bu ikinci Archaeopteryx fosili Berlin’deki Humboldt Doğa tarihi müzesinde sergilenmeye başladı. Londra fosiline kıyasla daha eksiksiz olan bu yeni fosil örneği ayrıca, kanatları açık ve başı geriye doğru fosilleştiği için sürüngen-kuş arası özelliklerini de çok etkileyici ve belirgin bir biçimde gözler önüne seriyordu. Böylelikle Berlin’dekiArchaeopteryx fosili, bu çarpıcı hatlarıyla, en çok bilinen, çizimi yapılan fosil hayvan olmanın yanısıra en önemli doğa tarihi örneklerinden biri olarak kabul edildi. Birbiri ardına açığa çıkan bu iki Archaeopteryx fosilini bir üçüncünün izlemesiyse uzun bir süre sonra, 1956’da oldu. Londra fosilinin çıkarıldığı taşocağında bulunan bu üçüncü fosilde tüy izlerini ve birleşmiş bazı ayak kemiklerini görmek mümkün olduysa da, öncekilerden daha kötü bir şekilde günümüze ulaştığından tanımlanması iki yılı buldu. Bir süre Solnhofen yakınlarındaki, Maxberg müzesinde sergilendikten sonra Eduard Opitsh’in evinde tuttuğu fosil, Opitsh 1991’de öldüğünde mirasçılarınca bulunamayınca, fosilin çalınmış olduğu sonucuna varıldı. Halen Yale Üniversitesi bünyesinde çalışmalarını sürdüren ve kuşların dinozorlardan geldiği yolundaki teorinin doğru olduğunu düşünen ünlü paleontolog John Ostrom’un, 1970 yılında Avrupa’da pterosaur fosillerini çalışırken pterosaur olarak sergilenen bir Archaeopteryx fosiliyle karşılaşmasıyla, dördüncü Archaeopteryx fosili de gün ışığına çıkmış oldu. Aslında ilk tüy veArchaeopteryx fosilinden de önce, 1855 yılında diğer fosillerin bulunduğu bölgenin oldukça doğusundaki bir büyük taşocağında bulunmuş olan bu fosili, 1857’de uçan sürüngen pterosaur olarak adlandıran ise, ne ilginçtir ki, Hermann von Meyer olmuştu. 1860 yılından beri Hollanda’daki Teyler müzesinde sergilenmekte olan bu fosilin gövdesini çevreleyen silik tüy izlerinin farkına varan Ostrom, böylelikle daha uzun yıllar sürebilecek bir yanlışlığı önlemiş oldu. TeylerArchaeopteryx’inde araştırmacıların dikkatini çeken en ilginç nokta ise, bir tırnağın, üzerini kaplayan boynuzsu kılıfla birlikte mükemmel bir şekilde korunmuş olarak fosilleşmesi olmuştur. 1973 yılında Jura Müzesi kurucularından F.X.Mayr’ın bildirdiği, oldukça iyi bir şekilde fosilleşmiş olan bir diğer Archaeopteryx fosili de yine ilk başta yanlış tanımlanmış fosillere bir örnek oluşturuyordu. 1951 yılında Eichstatt’ın kuzeyindeki bir taşocağından çıkarılmış olan bu fosil genç bir Compsognatusdinozoru olarak tanımlanmıştı önceleri. Mayr’ın yirmi yıl sonraki incelemesinde ortaya çıkardığı silik tüy izleri, Archaeopteryx fosili sayısını beşe çıkarıyordu böylelikle. Mükemmel bir şekilde korunmuş kemikleri ve kafatasıyla buArchaeopteryx fosili Londra örneğinin üçte biri büyüklüğündeydi ve kimilerince bu farklılık fosilin ayrı bir cinsi temsil ettiği anlamına geliyordu. Eichstatt örneği olarak anılan bu fosil de Jura Müzesinde sergilenmeye başladı. Kasım 1987’de yine Jura Müzesi’nden Günter Viohl’un Solnhofen eski belediye başkanının koleksiyonunda keşfettiği altıncı Archaeopteryx fosili, tüm fosiller arasında en büyük olanıydı ve iyi korunmuş iskeletteki tüy izleri net olarak görülebiliyordu. Tam olarak nereden çıkarıldığı bilinmediği halde Solnhofen örneği olarak anılan bu fosil ise halen Solnhofen’deki Bürgermeister Müller Müzesi’nde sergilenmektedir. 1993 Nisan sonlarında, Peter Wellnhofer tarafından duyurulan yedinci ve şimdilik son Archaeopteryx fosili kaydı ise Londra ve Maxberg Archaeopteryxfosillerinin çıkarıldığı yerden geliyordu. Stratigrafi yöntemlerine göreArchaeopteryx fosilleri içinde en genci olan (en yaşlı olanı LondraArchaeopteryx’i) bu Archaeopteryx fosilinin en önemli özelliği ise diğer fosillerde karşılaşılmamış göğüs kemiğine sahip olmasıydı. Her ne kadar göğüs kemiği çıkıntılı bir yapı göstermese de, göğüs kemiğinde ilk defa kemikleşmeye rastlanmış olması bakımından bu bulgu Archaeopteryx fosillerinin uçuş yetenekleriyle ilgili çalışmalar için çok büyük önem taşıyordu. Teyler fosili kadar iyi korunmuş olan bu fosilin bir diğer özelliği ise alt bacağının (tibiası) ve arka ayaklarının diğer fosillere göre daha uzun olmasıydı. Bu özellikleri yüzünden fosil, Wellnhofer tarafından ayrı bir tür olarak kabul edildi ve Archaeopteryx bavarica olarak adlandırıldı. Son Archaeopteryx fosili dışındaki fosiller de kimi araştırmacılar tarafından, özellikle boyutlarındaki farklılıktan dolayı, ayrı tür olarak gösterilmişlerse de, milyonlarca yıl önce yaşamış kuşların tür ve cins sınırlarını belirlemenin güç olması nedeniyle bu görüşler genel olarak kabul edilmemiş ve günümüzde tümArchaeopteryx fosilleri bir cins altında ele alınarak tür bazındaki savlar soru işareti olarak kalmıştır. Solnhofen’in de içinde yer aldığı iç Avrupa, Jurassic dönemde palmiye tipi bitkilerin yer aldığı büyük, ılık deniz ve lagünlerle çevrili subtropikal bir bölgeydi. Archaeopteryx’in büyük olasılıkla lagünlerle çevrili adalarda yaşamış olması da, kimilerince, zaten fosillerde görülen dramatik büyüklük ve morfolojik farklılıkları açıklıyordu. Archaeopteryx fosillerinin bulunuş hikâyesi böyleyken, bu fosillere ilişkin olarak ortaya atılan ve yıllar içinde ortaya çıkan diğer bazı fosillerle de desteklenmeye çalışılan kuş-ata teorilerinin hikâyesi de, kuşlara biraz da soru sorarak bakmamızı sağlayacak kadar ilgi çekici. Özgür KEŞAPLI DIDRICKSON Kaynaklar : 1. Feduccia, A. 1999. The Origin and Evolution of Birds. Yale University . 2nd edition 2. Proctor, N.S.& Lynch, P.J. 1993. Manual of Ornithology, Avian Structure and Function. Yale University. 3. Feduccia, A. (2012). Riddle of the Feathered Dragons: Hidden Birds of China. Yale University Press, ISBN 0-300-16435-1, ISBN 978-0-300-16435-0 4. Foth, C. (2012). "On the identification of feather structures in stem-line representatives of birds: evidence from fossils and actuopalaeontology." Paläontologische Zeitschrift, 5. Owen, Richard. (1963). "On the Archeopteryx [sp] of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen [sp]". Philosophical Transactions of the Royal Society of London 153: 33–47. 6. Witmer, Lawrence M. (2009) "Feathered dinosaurs in a tangle"NATURE|Vol 461|1 October 2009 pg 601-602 7. Chiappe, Luis M. (2009). "Downsized Dinosaurs: The Evolutionary Transition to Modern Birds". Evolution: Education and Outreach 2 (2): 248–256. 8. Seeley, Harry G. (1901). Dragons of the Air: An Account of Extinct Flying Reptiles. London: Methuen & Co.. p. 239pp. 9. Nopcsa, Franz. (1907). "Ideas on the origin of flight". Proceedings of the Zoological Society of London: 223–238. 10. Camp, Charles L. (1936). "A new type of small theropod dinosaur from the Navajo Sandstone of Arizona". Bulletin of the University of California Department of Geological Sciences 24: 39–65.

http://www.biyologlar.com/kuslarin-kokeni-ve-evrimi

YILAN BALIĞI BİYOLOJİSİ VE YETİŞTİRİCİLİĞİ

Yılan balıkları eski yıllardan beri insanların ilgisini çekmiştir. Su bulunan bir çok yerde yılan balığına rastlandığı halde yumurtlama ve yavrulama sırasında izlenememesi, yumurtalı veya karnında yavru bulunan bir balığa rastlanamaması bu ilginin çok eskiden beri doğmasına neden olmuştur. Dünyadaki toplam yılan balığı istihsali; Avrupa yılan balığı (Anguilla anguilla ) (1990-1991) 23 950 ton, Japon yılan balığı ( Anguilla japonica ) 109 100 ton, Amerikan yılan balığı ( Angıilla rostrata ) 2 850 ton, diğer yılan balığı türleri ise 1 500 ton olup toplam 137 400 tondur. Dünya su ürünleri istihsalinde çok önemli bir yer tutan yılan balıkları ülkemizde yetiştiricilikte bir yer bulamamıştır. İç su ve dalyanlarımızdan 400 ton yılan balığı yakalanmıştır (DİE, 1997). Yılan balıklarının büyük bir ekonomik önemi vardır. Özellikle fümesi sevilerek yenmekte olduğundan Avrupa’ya ihraç edilmekte ve ülkemiz için önemli bir döviz kaynağı oluşturmaktadır. Bu çalışma, yılan balığı yetiştiriciliği için gerekli bilgilerin derlenmesi ile oluşturularak ülkemiz için konunun önemini açıklanmıştır. Bu bilgilerin ışığında hiç de azımsanmayacak potansiyele sahip olduğumuz yılan balığı yetiştiriciliği konusunda devlet desteği ile gerekli girişimlerin yapılması önem arz etmektedir. Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Coğrefik Dağılım Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Avrupa Yılan Balığının Yaşam Döngüsü Yılan balıklarının biyolojik döngüsünde başlıca üç nokta vardır. - Bu üç yılan balığının yaşam süresi oldukça uzundur(Avrupa yılan balığında 15 yıla kadar) - Yalnızca bir kez ürerler. - Hayatlarının büyük bir kısmı tatlı sularda geçer. Denizde uzun bir göç süresi vardır. Yumurtlama alanı Yılan balıklarının doğal ortamda üremesi gözlemlenememiştir. Ancak markalanan bireyler Atlantik okyanusunda takip edilmiştir (Tesch, 1973) ve pek çok avlama sahası ayrıntılı olarak incelenmiştir. Danimarkalı Schmidt 1904-22 yılları arasında yaptığı çalışmalar sırasında Avrupa yılan balığının yumurtalarını Meksika körfezine bıraktıklarını ispatlamıştır. İlk göç Avrupa yılan balıkları Bermuda adalarının güneydoğusunda tam olarak bilinmeyen bir derinlikte üremektedirler. En küçük larvalara (7 mm) 75 ile 300 metre derinlikler arasında rastlanmıştır. Leptosefalus larvaları ilk bahar başında yumurtadan çıkarlar ve Golfstrim akıntıları ile Avrupa kıyılarına doğru göç ederler. Bu sırada 75 mm boya sahip olan leptosefaluslar metamorfoz geçirirler ve söğüt veya defne yaprağı şeklinden yılan balığını andırır silindirik bir şekil alırlar. Başlangıçta şeffaf bir görünümde olan yılan balıklarında , 7-8 ay sonra pigmentleşme gerçekleşir ve akarsulara girerler. Hayatlarının ilk dönemine denizde başlarlar ve bu aşamada planktonik bir hayat sürerler. Yavrular su hareketlerine karşı direnç gösteremezler. Yanlardan yassılaşmış bir vücuda sahip olan leptosefalusler büyük gözlere ve büyük dişleri olan geniş bir ağza sahiptirler. Bu aşamada karnivordurlar ve besinlerini zooplanktonlardan sağlarlar. Larvalar gece gündüz periyodunda, farklı derinliklerde bulunurlar. Geceleri yüzeye yakın yerlerde (35-130 metre) yakalanırken gündüzleri 300-600 metre derinlikler arasında dağılım gösterirler. Leptosefaluslar Avrupa kıyılarına doğru yaklaştıkça büyümelerini tamamlamış olurlar. İlkbahardan yaza kadar İspanyanın kuzey kıyısından, Feroe adalarının batı kıyılarına kadar dağılım gösterirler. Metamorfozu başlamamış bireylere metamorfozu devam etmekte olan bireylerin bulunduğu kıyılardan çok daha uzakta rastlanmıştır. Genel olarak leptosefaluslerin kıta sahanlığına yaklaşmaları iki buçuk yıl sonra olur. Yumurtadan şeffaf elver konumuna yaklaşık üç yılda gelmektedirler ( Tesch, 1987). İlk Metamorfoz Larvaların büyük bir çoğunluğu metamorfoz sürecini kıta sahanlığında, ağustos-eylül aylarında tamamlarlar. Bu metamorfozda aşağıdaki değişikliklere rastlanmaktadır. - Ağırlık ve boyda meydana gelen bir azalma. Örneğin leptosefalus safhasında olan (tanesi yaklaşık 1,5 g) 75 mm boyundaki larvaların yaklaşık 700 tanesi 1 kg gelirken, elver haline geçmiş aynı boy larvaların yaklaşık on misli vücut ağırlıklarından kaybettikleri ve 7 000 tanesinin 1 kg geldiği görülür. - Morfolojik değişimi, Söğüt yaprağı şeklinde yassı olan leptosefaluslar silindirik bir yapıya ulaşırlar. Bu şekildeki yılan balığı yavrularına elver adı verilir. - Beslenme durur. Planktonik larvada bulunan dişler kaybolur. - Ağırlığı azalır ve sindirim organları kısalır. - Troid ve hipofiz etkinliğinin artması ile endokrin sistemin çalışmasının değişmesi, davranış değişikliğine, Gel-git akıntılarına ve tatlı sulara olan duyarlılığın artmasına ve iç sulara göç etmesine sebep olur. Tatlı suya ilk göç (anadrom göç) Şeffaf elverler su akıntılarını takip ederek kıyı sularında toplanırlar. Metamorfoz ergin yılan balığına benzeyinceye kadar devam eder. Pigmentasyon sonucunda sırt kısmı zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara “sarı” yılan balığı denir. Sarı yılan balıklarının tatlı suda büyümesi On dört on beş yıl kadar süren bu aşamada sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenmenin başlaması pigmentasyonun son safhasında ve ağırlık artışı başladığında ortaya çıkar. Beslenme karnivor olarak bentik omurgasızlarla ve belli bir boyu aştıktan sonra diğer balıklarla olmaktadır. Büyüme oldukça yavaştır. Yılan balığının gelişimi yaşadığı ortam şartlarına bağlıdır. Dişiler, erkek bireylerden boy olarak daha uzun olup, erkekler 50 cm den küçük, dişiler 45-150 cm arasında, nadiren 200 cm boy ve 4-6 kg ağırlığa kadar ulaşmaktadırlar. Buna rağmen çoğunlukla, yakalanan dişilerde ağırlık 250-400 gram ve boy 70-80 cm kadardır. Gonatların dişi yönünde gelişmeye başlaması 15-20 cm. den itibaren olmaktadır. Cinsel farklılaşmanın başlıca belirtileri cinsiyet organları üzerinde görülmez. Büyümedeki farklılaşma ve erkek bireylerin nehir ağızlarında kalırken dişi bireylerin kaynağa yakın yerlerde bulunması ile cinsiyet ayırt edilir. Göç etme eğilimindeki bu farklılaşma çok erken safhalarda, şeffaf elver yada elver aşamasında görülür. İkinci metamorfoz Deniz suyuna geçmek üzere ikinci kez ortam değiştirmeleri sırasında yılan balıklarında oluşan morfolojik değişiklikler beş başlık altında toplanabilir. - Kahve rengi ve zeytin yeşili olan vücut rengi değişir, karın gümüşi beyaza döner. Sırt ve yüzgeç rengi koyulaşır. Dalgalı renklenme kaybolur. Yılan balıklarının tüketici tarafından en çok talep edildiği şekli gümüşi yılan balığı safhasıdır. - Etlerindeki yağ oranı artarak vücut ağırlığının % 30’ unu geçebilir. Bu yağlanma yılan balığının Saragossa’ya doğru yaptığı uzun göçe dayanmasını sağlar. - Tesch’e göre göz çapı iki katı kadar artar. Bu sayede daha az riskli bir yolculuk yapar. Bununla birlikte ışıktan kaçma davranışı ortaya çıkar. - Pektoral yüzgeçler yuvarlak şekillerini kaybederek erken olgunluk döneminde sivrileşirler. - Son olarak olgunlaşmanın ilerlemesi ile cinsel organlar gelişir. Vücutlarında çok fazla yağ depolarlar. Diseksiyon yapılarak cinsiyet teşhis edilebilir. Gonatların gelişimi deniz ortamına geçtikten sonra gerçekleşir. İkinci göç ( katadrom göç) Bu, yılan balıklarının doğduğu yere geri döndüğü üreme göçü olup, Anguilla anguilla için 5000 km. dir. Gümüşi yılan balıkları sonbaharda, tatlı suları terk ettiklerinde gonatlar hala tam olarak olgunlaşmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Tatlı suda yakalanan örneklerde sindirim sisteminin köreldiği ve işlevini yitirdiği gözlenmiştir. Gümüşi yılan balıkları Saragossa’da ki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaştığı süreye kadar denizde beslenmeden hayatta kalabilmektedirler. Hayatlarında bir kez yaptıkları üreme sonucunda yaşam süreçleri son bulur. Yılan balıklarının bu göç sırasında yönlerini nasıl buldukları günümüzde hala bilinmemektedir. Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. · Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. · Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. · Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Durgun Su Yöntemi Japonya ve Tayvan’da kullanılan en eski ve yaygın olan metottur. Balıkların oksijen ihtiyaçlarını su içindeki fitoplanktonlar ile karşılanması bu yetiştirmenin temel prensiplerinden biridir. Geceleri oksijen miktarını çok dikkatli bir şekilde takip edilmesi gerekir. Özellikle fazla balığın stoklandığı, suyun sıcaklığının fazla olduğu dönemlerde, konunun önemi daha da artmaktadır. Suya oksijen kazandırmak için suyu karıştıran makineler yada basınçlı hava veren düzenek kullanılır. Bu yetiştirme yönteminde havuzlara çok az (%10) su verilir. Verilen suyun havuz suyunu karıştırmaması havuzun bir köşesinden girip, diğer köşesinden dışarı çıkması sağlanır. Böylece havuzdaki plankton varlığının korunması ve suyla sürüklenip gitmesi önlenmiş olur. Bu yetiştirme yönteminde metre karede 2- 4 kg balık yetiştirilebilir. Başarılı bir yetiştirme için su sıcaklığının 23-30 °C arasında olması gereklidir. Bu şartlarda iki yıl veya daha az sürede 150-200 grama ulaşması gerekir. Bu ağırlığa Tayvan’da 1,5 yılda , İngiltere’de 4 yılda, Japonya’da 2 yılda ulaşır. Güney Ege ve Akdeniz’de yılın 8-9 ayı su sıcaklığı 20 °C den yukarıda tutulabileceğinden yılan balığı yetiştiriciliği bu bölgelerimizde karlı olabilir. Yılan balıklarına 12 °C nin altında yem verilse dahi gelişme olmaz. Bu yetiştirme yönteminde havuz alanı 3-4 dekar arasında tutulur. Akarsu Yöntemi Akarsu yönteminde havuzların alanı 150-300 m² dir. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyunun olması gerekir. Birim sahada yetiştirilebilecek balık miktarı verilebilecek oksijene, dolayısıyla suya bağlı olarak değişir. Yöntemin başarılı olabilmesi için su sıcaklığının 23 °C üzerinde olması gerekir. Bu yetiştirme yönteminde üretime alınacak balıkların başlangıç olarak ağırlıklarının yaklaşık 30 g. olması tavsiye edilmektedir. Çünkü suyun hızla değiştiği ortamda yavrularda gelişme iyi olmamaktadır. Bu yöntemle yetiştiricilik yapan işletme sayısı oldukça azdır. Ağ Kafeslerde Yetiştirme Yöntemi Japonya’da ağ kafeslerde yapılan sazan ve alabalık yetiştiriciliğinin aynısıdır. Bu amaçla bu havuzlar iç sularda ve göllerde kullanılmaktadır. Japonya’da Şizouka balıkçılık deneme istasyonunda derinliği 1,5 m olan 8 mm göz açıklığında ağlar ile ağ havuzlarda yapılan deneme oldukça olumlu sonuçlar vermiştir. Bu denemede toplam 23,3 kg yılan balığı konulmuş, 38 gün sonra 38,6 kg balık, ortalama 180 g ağırlıkta hasat edilmiştir. Bu çalışmada dondurulmuş uskumru eti kullanılmış olup, yem dönüşüm katsayısı 7,35 bulunmuştur. Bu denemede ortalama su sıcaklığının 25,5 °C, tuzluluğun %0 21, birim alandaki verim 7,7 kg olarak tespit edilmiştir. Tünel Yöntemi Bu metotla ticari bir işletme kurulmamış olmakla beraber tünel yöntemi ile yılan balığı yetiştirilebileceği denemelerle gösterilmiştir. Bunda amaç, yılan balığının karanlık saklanacak yeri bulunan doğal ortamına benzeyen bir alanın sağlanmasıdır. Bunun için balıkların gündüz saklanmasının mümkün kılacak karanlık tüneller suya yerleştirilir. Havuzlarda ılık akarsu yöntemi kullanılmıştır. Sirkülasyon Yöntemi Devamlı olarak sirküle edilen suyun kullanılması, yetiştirme çalışmalarında olumlu sonuçlar alınmıştır. Bu tür bir çalışmada iki adet havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan su devamlı olarak bir motopomp vasıtası ile filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel temizlenmesinin yanı sıra biyolojik temizleme de gerçekleşir. Filtre kumu ve taşlarındaki bakteriler balıkların atıklarındaki nitrit, nitrat ve amonyak gibi toksik kimyasal bileşikleri azota kadar indirgeyerek zararsız hale getirirler. Bu tür bir çalışmanın başarılı olabilmesi için kullanılan havuzların kapasitesi, filitrasyon yüzeyi, filtre yapan temizleyici kütlenin kalınlığı, kullanılan pompaların kapasitesi, su kalitesi, sudaki oksijen miktarı, sıcaklık ve artık yemlerin temizlenmesi gibi pek çok konuyla ilgilidir. Bu tür bir yetiştirme yöntemi, ancak kullanılacak suyun kısıtlı olduğu yerlerde düşünülebilir. Bu yöntemle küçük bir alanda fazla miktarda balık üretimi mümkün kılınabilir. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: - Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. - Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. - Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. - Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. - Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. - Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. - Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. - Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. - Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; - Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7' nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme sırasında sık sık boylama yapılır. Bu şekilde büyüme daha iyi olur. Yetiştiriciliğin son safhası büyütme havuzlarında gerçekleşir. 660 m² havuza her biri 10 g olan ( 100 adedi 1 kg ) 300 kg balık yani m² ye 50-60 balık konur. Burada amaç 150-200 g ağırlığında pazarlanacak bireyler elde etmektedir. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. 30- 40 cm ye kadar erkek ve dişi bireyler arasında büyüme bakımından bir fark yoktur. Bu uzunluktan sonra özellikle avrupa yılan balığı erkek bireylerin büyümesinde bir düşüş görülür (Şekil x ). Erkekler en fazla 50 cm büyürler. Bu boydaki ağırlık 100-120 g dır. Dişi bireyler 50-70 cm ye kadar boya ve 300-500 g ağırlığa kadar büyüyebilirler. Erkek dişi arasındaki oran erkek lehine 20:1 dir. Cinsiyet farklılaşması 14-20 cm arasında olur. Bu boya kadar balık aynı zamanda hem erkek hem de dişi cinsiyet hücrelerini taşır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. KAYNAKLAR Alpbaz, A.,Hoşsucu, H., 1988, İç Su Balıkları Yetiştiriciliği, Ege Üniv. Su Ürünleri Y.O. Yay No:12, 1-98 s. İzmir. Anonim, 1985, Yılan Balığı, T.C. Ziraat Bankası Ege Bölge Müdürlüğü, Su Ürünleri Çalışmaları/1, (Çev) Hakkı Çakır, 62 s., İzmir. Çelikkale, M.,S., 1994, İç Su Balıkları ve Yetiştiriciliği, Cilt 1, 2. Baskı, Karadeniz teknik Üniv. Sürmene Den.Bil Fak. Yay NO: 2, 337-362 s Trabzon. DİE., 1991, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1583, Ankara 1995, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1995, Ankara 1997, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1995, Ankara Gault, J., 1986, L’élevage de l’anguille,(in) Aquaculture, (ed) Barnabe, G., Technique et Documantation-Lavoisier, 739-771 pp, Paris. Geldiay,R., Balık, S., 1996, E Ege Üniv. Su Ürünleri Fakültesi, Yay No:16, 2. Baskı, E.Ü. Basımevi, 204-209 s, İzmir. Tesch, F.,W., 1983, Der Aal, Biologie und Fischerei, Verlag Paul Parey, 340p, Hamburg und Berlin. Usui, A., 1974, Eel Culture, Fishing News (Books), Ltd.,186 p, England. Kaynak; tarim.gov.tr

http://www.biyologlar.com/yilan-baligi-biyolojisi-ve-yetistiriciligi

PALİNOLOJI NEDİR VE TATBİKATI

Henüz genç bir ilim olan Palinoloji dünyada günden güne ehemmiyet kazanmaktadır* Fakat Türkiye'de ancak birkaç palinolog tarafından tanınmaktadır. Biz burada, Palinolojiyi, jeolojik ve bilhassa stratigrafik ehemmiyetini belirterek, Türk jeologlarına da tanıtmak istedik, RÉSUMÉ» — La Palynologie est une jeune science qui prend d'importance de jour en jour dans le monde entier« Mais elle nfest connue en Turquie que par quelques palynologues« Nous avons voulu, ici5 la faire connaître aussi à tous les géologues turcs, en citant toute son importance dans le domaine géologique^ surtout stratigraphique. Palinoloji nedir Palinoloji ilk önceleri diğer ilimler gibi deskriptif bir ilim olarak doğmuş ve aktüel sporomorfların^ yani spor ve pollenlerin etüdünü bahis konusu etmesi sebebi ile tamamen botanik bir çehre almıştır. Fakat şu son zamanlarda jeolojik sedimaıılarm içinde Spor ve Pollenlerin bulunması bu ilme bambaşka bir yön vermiş ve kendisine tatbikî sahalar ve ufuklar açmıştır« Böylece Palinoloji deskriptif olmaktan kurtulmuş^ jeolojinin^ bilhassa Stratigrafinin önemli bir yardımcısı ve bilhassa kömür işletmeciliklerinde çok aranır bir ilim olmuştur. Sporomorfları inceliyen bu ilmin tatbikî alanda çok hızla ilerlemesi kendisini karakterize edecek bir terimle adlandırılması zaruretini doğurmuş ve H.A. HYDE ile D,A. WILLIAMS 1944 te Palinoloji terimini ortaya atmışlardır. Bu terim Yunancadan türemiş olupf PALINOS (toza bulamak) ve LOJI (ilim) kelimelerinin bileşiminden ibarettir. Tüm kelimenin anlamı ise3 jeolojik sedimanların içine taşınmış sporomorfların etüdüdür« Spor Te Pollen nedir Spor ve Pollenler bitkilerin üreme organlarıdır« Çiçekli bitkilerin üreme organlarına POLLEN ismi verilmektedir. Pollenlerin dağılımı böcekler tarafından (ANTOMOFİLt) veya rüzgarlarla (ANEMOFİLÎ) temin edilir* Antomofil Pollenlere sedimanlar arasında çok az raslanır* MOUSSE'larm ve CRYPTOGAME VASGULAIRE'lerin üreme organlarına SPOR ismi verilmektedir» Bazı bitkiler tek tip Spor üretirler (HOMOSPORE bitkiler). MfKROSPOR ismi verilen bu sporların boyu 10 ile 200 mikron arasında değişir« HETEROSPORE bitkiler ise MEGASPOR (boyları 200 mikronun üzerindedir) ve MÎKROSPOR olmak üzere iki tip spor üretirler* Spor ve pollenlerin büyük bir kısmı rüzgârlarla dağılmıya müsait olduğundan«, senenin muayyen zamanlarında^ muayyen miktarda spor ve pollen bitkiler tarafından dışarı atılınca, rüzgârların tesiri ile çok yüksek rakımlara ve çok uzaklara dağılırlar» Karalar ve denizler üzerine düşerek çok kereler hemen tahrip olurlar« Eğer oksijeni az yerlere (bataklık ve lagün gibi) düşerlerse^ fosilleşme imkânını bulurlar» Fosilleşme anında Spor veya Pollenin organik kısımları tahribolur. Fakat EXINE denen«, azotsuz bir kütinden ibaret olan kabuk çok dayanıklı olduğundan, milyonlarca sene sedimanlarm içinde Spor ve Pollenlerin saklanmasını sağlar. Şimdiye kadar içinde Spor ve Pollen bulunmuş en eski sediman Devonien yaştadır* Spor YÜ Pollenleri^ etüdlerinie yapılabilmesi için, içinde bulundukları sedimandan ayırma metodları, yanı maserasyon Spor ve Pollen muhafaza etmiye elverişli ve içinde en çok sayıda Spor ve Pollen bulunan tip sediman kömürdür. Fakat? yukarda bahsettiğimiz gibi3 büyük bir dağılma özelliğine sahip olan bu Spor ve Pollenlere karasal bütün formasyonlarda ve daha ender olarak denizel formasyonlarda da raslanmaktadır* Muhtelif tip sedimanlar içinde fosilleşmiş olan Spor ve Pollenleri etüd edebil» mek için maserasyona tabi tutmak5 yani kimyevi metodlarla numu« nenin mineral ve organik kısımlarını tahribedip^ EXINE3in asid ve bazlara dahi çok dayanıklı olmasından faydalanılarak Spor ve Pollenleri konsantre etmek lâzımdır. Maserasyon metodları sedimanm tipine göre değişir. Bu metodlar çok çeşitli olup.» hepsinin detaylı izahı burada çok yer tutacağından biz kısaca bahsetmekle yetineceğiz« Maserasyon metodlarında iki esas merhale vardır : 1. F i z i k s e l kısım: Numunenin öğütülerek 0.5 ile 2 mm lik parçalara ayrılması. PALÎNOLOJİ NEDİR VE TATBİKATI 2. Kimyasal kısım : Numunenin mineral ve organik unsurlarını kimyasal metodlarla solüsyon haline getirerek ve santrifüj ile yıkıyarak elimine edip, Spor ve Pollenlerin konsantre edilmesi. İkinci merhale maserasyonun en önemli noktası olup, kullanılan kimyasal maddeler, numunenin cinsine göre değişir. Aşağıdaki tablo maserasyon metodlarmı kısaca özetlemektedir : /. Mineral sedimanların solüsyon haline konulması KULLANILAN KİMYASAL MADDE 1. Karbonatlı sedimanlar — Çeşitli kalkerler, göl kalkerleri, tüf 1er . . . . . . KLORHÏDRÎK ASÎD (Bel) — Marnh kalkerler, marnlar KLORHİDRÎK ve FLÜORHÎDRÎK (HF) ASÎD 2. Silisli sedimanlar — Kum, kil, silt, şist FLÜORHÎDRÎK ASİD 3. Tuzlu sedimanlar — Kaya tuzu SU — Anhidrit HUSUSİ BİR TRETMANI VARDIR II. Spor ve pollenlerin organik olan EXINE'leri hariç, sedimandaki diğer organik maddelerin solüsyon haline konulması 1. Organik sedimanlar — Tufblar ve çok genç linyitler . . . . . . . POTASYUM HİDROKSİT (KOH) veya SODYUM HİDROKSİT (NaOH) ve PERBORAT (NaJBM karışımı veya POTASYUM HİDROKSİT SODYUM HİDROKSİT ve GLOBER TUZU (Na% SOş. 10 H20) karışımı — Linyitler NİTRİK ASİD (HNOS) veya SCHULZE SOLÜSYONU veya KLORASYON ve ASETOLİZ metodu veya OKSİJENLİ SU (Hs02) — Taşkömürler SCHULZE SOLÜSYONU veya 0K- ' SALÎT ASİD (H%CtOJ veya ZETZSCHE ve KALİN metodu veya KROMİK ASİD (H2Cr20,) veya DİAFANOL ÇEŞİTLERİ — Yağ, asfalt, bittim HUSUSİ SOLVANLAR (BENZEN v.s.) 2. Aktüel bitkiler KLORASYON ve ASETOLİZ 3. Atmosferdeki spor ve pollenler ASETOLİZ ve POTASYUM HİDROKSİT 66 Erol AKYOL Maserasyonu bitmiş bir numunenin Mtgasporları etüd edilecekse 3 numune binoküler altına konarak raslanan bütün Spor ve Pollenlerin tip ve espes tâyinleri yapılır. Tip ve espeslerin sayım ile yüzde oranlan bulunur. Eğer mikrosporları etüd edilecekse, maserasyonu yapılmış numuneden bir damla3 bir lâm üzerinde eritilmiş az miktarda jelâtinli gliserin içine katılarak^ üzeri bir lamelle örtülür« Sonra da binoküler mikroskop altında tip ve espes tâyinleri yapılıp3 yüzde oranları bulunur. Bulunan bu istatistik neticeler çok mühimdir. Palinolojinin botanik çehresi Spor ve Pollenlerin tâyininde tebarüz etmektedir. Fakat sayım yapılarak elde edilen istatistik sonuçlar,, stratigrafik birçok önemli problemlerin çözümüne yarayıp3 bilhassa kömür işletmeciliklerinde ve petrol jeolojisinde kıymetli neticeler vermektedir. Burada ise Palinoloji tamamen tatbikî bir yön kazanmaktadır. Fosilleşmiş Spor Te Pollenlerin botanik tâyinlerinde, Palinolojinin yaptığı bütün- ilerlemelere rağmen,- henüz önemli müşküllerle karşılaşılmaktadır » Bunun başlıca iki sebebi yardır ı — Aktüel Spor ve Pollenlerin etüdleri büyük sayıda literatüre konu olmuş ve gün geçtikçe daha çok sayıda Spor ve Pollenin morfolojisi (EXINE'in dış yapısı) tâyin ve tarif edilmiştir. Bu alanda bilhassa G9 ERDTMAN'm çalışmaları zikre değer. Bütün bu çalışmalara rağmen f yeryüzündeki bütün bitkilerin Spor ve Pollenlerinin etüdü bitmiş değildir» Bu sebepten fosil sporomorflarm aktüel sporomorflarla sıhhatli bir şekilde karşılaştırmalarının yapılması mevzuubahis olamaz, — Bilhassa Karboniferde yaşamış birçok bitki zamanımıza kadar devam edememişlerdir» Ancak fosillerinden tanınan bu bitkiler, çok ender olarak sporanjı daha üzerinden düşmeden fosilleşebilmislerdir. Sedimanlar içinde bitki ile bu bitkinin Spor veya Pollenine ayrı ayrı raslanmaktadır« Bir sediman içinde bulunan her hangi bir Spor veya Pollenin^ aynı sediman içinde bulunan fosil bitkilerinden hangisine ait olduğunu söyliyebilmek, yani bir sporomorf- bitki korelâsyonu yapmak imkânsızdır. Bu alanda yapılan çalışmalar şimdiye kadar tatmin edici bir netice vermemiştir. Bu sebeplerden dolayı, fosil Spor ve Pollenleri aktüel botanik sınıflandırma çerçevesi içinde etüd etmemek lâzımdır«, Spor ve PALlNOLOJÏ NEDİR VE TATBİKATI 67 Pollenlerin botanik etüdü, morfolojilerine dayanan bir sınıflandırma dahilinde mümkündür. Paleozoik, Mesozoik ve Tersiyerde bulunan Spor ve Pollenler çok çeşitli morfolojik şekiller arzettiğinden. Paleozoik, Mesozoik ve Tersiyer Spor ve Pollenlerinin ayrı ayrı sınıflandırmaları mevcuttur. Fakat şunu da söylemek icabeder ki, bu sınıflandırmalar yönünden Paleozoikin üst limiti Liasa ve Tersiyerin alt limiti Kretase, hattâ üst Jurasike kadar uzanabilir. Bu konuda zikredebileceğimiz dikkati en çok çeken çalışmalar R. POTONIÉ, İBRAHİM, LOOSE, R, P, WODEHOUSE, F. THIERGART, G. ERDTMAN, P*W. THOMSON ve H* PFLUG'un çalışmalarıdır. Palinoloj inin tatbikatı Bir numunenin palinolojik etüdü yapılırken, botanik determinasyonların yanında istatistik sayımların da yapıldığını belirtmiştik. Etüdü yapılması istenen bir jeolojik tabaka alttan üste doğru 10-20 veya 30 cm lik (linyit damarlarında bu rakam daha da büyüyebilir) seviyelere ayrılarak, her seviyeden bir numune alınır. Her seviyenin istatistik neticeleri elde edilir. Bir tek seviyenin istatistik tablosuna POLLÎNİK SPE TRA ismi verilmektedir. Birçok seviyeye bölünmüş bir tabakanın pollinik spektralarını üst üste koyarak o tabakanın POLLÎNÎK DİYAGRAM'! elde edilir. Bu diyagramlar sayesinde : A, Botanik — Floranın coğrafi dağılımı — Espeslerin migrasyonu — Floranın evolüsyonu — iklim hakkında fikir edinilebildiği gibi, B. Stratîgrafik yönden — Yaş tâyini —- Kömür damarının idantifikasyonu — Damar korelâsyonları G. Sedimanlarm etüdü yapılabilir. Yaş t â y i n i her Spor ve Pollen tip ve espesinin düşey dağılımlarının etüdü, KÖMÜR DAMARLARININ İDANTİFİKASYONU ise3 etüdü yapılan sahadaki3 gerek galeri ve gerek sondajlarla ula68 Erol AKYOL şılabilen bütün damarların pollinik diyagramlarının çıkarılması ile mümkündür. Damar korelâsyonları En sıhhatli damar korelâsyonları birbirine yatay uzaklıkları 5-6 km yi geçmiyen damarlar arasında yapılmış korelâsyonlardır. — Rüzgârlarla dağılan Spor ve Pollen tip ve espesleri birbirlerine iyice karıştığından, belli bir sedimanm, belli bir seviyesinden alınacak her numuneden elde edilen istatistik neticeler aynıdır. Meselâ, kalınlığı 1 metre olan bir kömür damarının 40 ve 50 nci santimetreleri arasında kalan 10 cm lik seviyesinin etüdünde elde edilen pollinik spektra, bu damarın yatay her noktasında, seviye değişmemek şartı ile, aynı kalır. Fakat yatay uzaklığın 5-6 km yi geçmemesi lâzımdır. — Spor ve Pollen tip ve espesleri bir evolüsyona tabi olduklarından, pollinik spektralar seviyeden seviyeye değişir. Damar korelâsyonlarında bu mühim noktalar gözönünde tutulur. Pollinik diyagramları birbirine uyan damarlar aynı zamanda teşekkül etmiş damarlardır. Sedimanlarm etüdü 1. Turblar, Kuaterner killer, göl kalkerleri. — Bu tip sedimanların palinolojik etüdü sayesinde Kuaternerde vâki olmuş iklim değişiklikleri ve bu değişikliklerin doğurduğu neticeler tesbit edilmiştir. 2. Buzullar. — Alp buzullarının palinolojik etüdleri, buzulların stratigrafisi yer değiştirmeleri ve taşıdıkları morenler hakkında kıymetli endisler verir. 3. Linyitler. — Linyit palinolojik etüdleri bilhassa Almanya'da çok ilerlemiş ve işletmecilikte çok kullanılmıya başlamıştır. Stratigrafik röper, damar tâyinleri ve korelâsyonlar, işletmede açılacak galerilerin randımana en elverişli bir şekilde çizilecek yönünü belirtmek bakımından çok ehemmiyetlidir. 4. Taşkömürleri. — Linyit işletmeciliğindeki problemler burada da tebarüz etmektedir. Karboniferdeki damar sayısının fazla olması, damar tâyin ve korelâsyonlarını güçleştirmekte, fakat bu alanda Palinolojinin çok büyük faydaları dokunmaktadır. PALİNOLOJt NEDİR VE TATBİKATI é9 5» Tuzlu sedirnanlar. — Tuzlu seclimanlarm etüdlerinde özel maserasyon metodları olması sebebi ile maserasyon tekniğİBİn bulunması gecikmiş ve bunda ancak 1953 yılında w» KLAUS muvaffak olmuştur. Bu sebepten dolayı, tuzlu sedimanlarm palinolo jik etüdleri ancak şu son yıllarda hızlanmjş«, Alp^lerdeki Trias formasyonları ile Alman ZECHSTEIN tuzlarının ve Hindistan ile Avustralya'daki GONDWANA formasyonlarının pollinik diyagramları birbirine benzer çıkmıştır. 6. Yağ, asfalt ve bitürnler» — w, KLAUS5un çalışmalarına göre3 bu tip sedimanlarm palinolojik etüdlerinden^ yaş tâyiıli problemi hariç, jenez, migrasyon, porozite, perméabilité j roblemleri çözüm bulmaktadır. BİBLİYOGRAFYA AKYOL, E. (1963) : Etude palynologique de cinq veines de Houille de Gelik et de deux veines de lignites de Soma, Thèse de 3g cycle, Université de Lille. ALPERN, B. (1959) : Contribution à l'étude palynologique et pétrographique des charbons français. Thèse d'Etal* Paris« ARTÜZ, S. (1957) : Zonguldak bölgesindeki Alimolla, Sulu ve Büyük kömür damarlarının sporolojik etüdü, İst. Üniv* Fen Fak. Monog^ İstanbul* DELGOURT; MULLENDERS & PIER ART (1959) : La préparation des spores et des grains de pollen actuels et fossiles. Soc. Nat» Belge? T6 40 3 Bruxelles» ERDTMAN, G. (1943) : An introduction to pollen analysis, Publ Chronica Botanika Company, U9S*Ae ERGÖNÜL, Y, (1960) : The palynological investigation of Garboniferous coal measures in the Amasra basin, M>T.A» Bulln no, 55, pp9 55-63, Ankara. İBRAHİM (1933) : Sporenformen des Agirhorizentes des Ruhrreviers, Diss* Berlin« KONYALI, Y. (1963) : Contribution à l'étude des Microspores du bassin houiller d*Amarra (Secteur Sud)« Thèse de 3e cycle^ Université de Lille« PONS : Le Pollen. Collection «Que sais-je?» No* 783, Presse Universitaire, Paris, POTONIÉ, R. (1956) : Synopsis der Gattungen der Sporae Dispersae. I. Beih Geol. Ja. 23, Hannover,, (1958) : Synopsis der Gattungen der Sporae Dispersae9 IL BeiL GeoL Jh, 31, Hannover, 70 Erol AKYOL POTONIÉ, R. (1960) % Syno sis der Gattungen der Sporae Dispersae, Beil. GeoL Jb. 39, Hannover. SITTLER, G. (1954) : Palynologie et Stratigraphie. Revue de VI.F.P., voL 9, pp. 367-375, Paris. (1955) : Méthodes et techniques physico-chimiques de préparation des sédiments en vue de leur analyse pollinique* Revue de VI.F.P*, vol. 10, pp. 103-114, Paris. THOMSON, P,Wa & PFLUG, H. (1953) : Pollen und Sporen des Mitteleuropäischen Tertiärs, Palaeontographica, Abt, B, Bd. 91, Stuttgart. YAHŞIMAN, K* (1961) ı Palinological study of Paleozoic coals in Turkey« CENTO, Symposium on Coal held in Zonguldak, pp. 133-139, Ankara

http://www.biyologlar.com/palinoloji-nedir-ve-tatbikati

Türkiye Florası ve Endemizm

Türkiye Florası Türkiye’deki floristik araştırmaların başlangıç tarihi olarak 18. yüzyılın başları kabul edilmektedir. Fransız botanikçi TOURNEFORT, 1700-1702 yıllarında, Doğu, Orta ve Kuzey Anadolu’ya yaptığı gezilerle bu araştırmaları başlatmıştır. Bitki toplama amacıyla yapılan araştırma gezileri, özellikle 19. yüzyılda ağırlık kazanmaya başlamış ve bu araştırmalar sonucunda toplanan materyal, İsviçre’li botanikçi E. BOISSIER tarafından 5 cilt ve bir ek ciltten meydana gelen, zamanının bitki sistematiği ve coğrafyası alanında en önemli eserlerden biri olan “Flora Orientalis” (Doğu Florası) adlı eserin yazılmasında kullanılmıştır. Yabancı botanikçilerin Türkiye florası ile ilgilenmeleri, geçen yüzyıllarda olduğu gibi, bu yüzyıl içinde de devam etmiştir. Zengin florası ile Türkiye 18. yüzyıldan itibaren yabancı botanikçilerin dikkatini çekmiştir. Çeşitli dönemlerde toplanan bitki örnekleri, Berlin, Paris, Viyana ve Londra gibi önemli merkezlerdeki herbaryumlara götürülmüş olup, 2. Dünya Savaşı sırasında tahrip edilen Berlin hariç, halen buralarda muhafaza edilmektedir. Oldukça uzun bir zaman dilimi içinde gittikçe zenginleşen bu kolleksiyonlar, Edinburgh Üniversitesi’nden Prof. Dr. P. H. DAVIS’in, ilki 1938 yılında olmak üzere, Türkiye’ye gelerek yaptığı toplamalar ile daha da zenginleşmiş ve nihayet Türkiye florası; “Flora of Turkey and The East Aegean Islands” (Türkiye ve Doğu Ege Adaları Florası) adıyla yayınlanmaya başlanmıştır. İlk cildi 1965 yılında yayınlanan ve 9 cilt ile 2 suplementerden oluşan bu eser Türk Botanikçilerininde katkılarıyla tamamlanmıştır. Türkiye’de yetişen eğrelti ve tohumlu bitkilerin yer aldığı bu toplu eserin 3. cildinin Leguminosae (Baklagiller), 5. cildi Compositae, 9. cildinin tamamı Gramineae familyalarına ayrılmıştır. Ancak eserin yayınlanmaya başladığı 1965 yılından sonra, çoğu Türk botanikçilerin gerçekleştirdikleri araştırmaların bir sonucu olarak basılmış olan 10. ve 11. ek ciltlerle beraber 10.000’e yakın türün varlığı bilinmektedir. Endemik Bitkiler Türkiye endemik bitkilerinin zenginliği bakımından dünyanın önemli ülkelerinden birisidir. Flora kayıtlarına göre Türkiye‘deki endemik bitki sayısı 3000 civarında olup, bunların floradaki bütün bitkilere oranı % 33’tür. Türkiye’deki endemik bitkilerin sayısı Avrupa ülkeleri ile kıyaslandığında bu oran oldukça yüksektir. Türkiye’de endemik türler ya çok dar alanlarda sınırlı kalmışlardır yada bölge veya ülke çapında geniş yayılışlıdırlar. Örneğin Hatay ilinde Amanos Dağları nisbeten dar yayılışlı endemik türler açısından zengin lokal bir dağ silsilesidir. Akdeniz bölgesinin batısı ve Ege bölgesinin güney ucunda yer alan dağlar; Uludağ, Kazdağı ve Erciyes Dağı endemizm açısından önemli diğer dağlardır. Trakya ve Karadeniz Bölgesi endemik tür bakımından en fakir bölgedir. Orta Toroslar, Doğu Anadolu’da özellikle Van, Bitlis, Siirt ve Hakkari dolaylarındaki jipsli topraklar, Rize-Artvin civarındaki yüksek dağlar, Ilgaz ve Küre Dağları, Tuz Gölü çevresi endemizm açısından dikkati çeken diğer bölgelerdir. Türkiye’de endemik bitkiler bakımından en zengin bölge, 631 tür ile Akdeniz Bölgesi’dir. Doğu Anadolu’da 371, Orta Anadolu’da 253, Karadeniz’de 203 ve Ege Bölgesi’nde ise 147 endemik tür bulunmaktadır. Marmara 67 ve Güneydoğu Anadolu Bölgesi 33 tür ile endemiklerce en fakir bölgelerdir. Geri kalan endemikler birden fazla bölgede yayılış göstermektedir ki, bunların sayısı yaklaşık 1000 kadardır. Bitki coğrafyası bölgeleri arasında İran-Turan Bölgesi 1181 endemik tür ile en çok endemik bitkiye sahip bölgedir. Bunu Akdeniz (946 tür), Avrupa-Sibirya (256 tür) bölgeleri izler.

http://www.biyologlar.com/turkiye-florasi-ve-endemizm

Arthropoda (eklembacaklılar)

Bugün; dünyada bilinen hayvan türlerinin yaklaşık 2/3'ni Arthropoda (eklembacaklılar) şubesi oluşturmaktadır. Artropodlar, dünyada yaşayan hayvanlar içinde tür bakımından olduğu gibi, birey sayısı bakımından da en zengin grubu oluşturur. Ayrıca, hayvanlar aleminde en fazla tür çeşitliliğine sahip böcekler (Classis: Insecta) de bu grupta yer almaktadır. Eklembacaklılar şubesinde yer alan Arachnida sınıfı, geniş bir spektruma sahip olup Örümcek (Araneae), Akrep (Scorpionida), Kamçılı akrep (Uropygi), Silindir örümcek (Solifugae), Kamçılı örümcek (Amblypygi), Ot biçen (Opilionida), Akar (Acarina), Yalancı akrep (Pseudoscorpionida), Kırbaçlı örümcek (Palpigradi), Kamçılı akrep (Uropygi), Kırbaçlı akrep (Schzomida) ve Ricinulei gibi çok sayıda farklı grupların birleşmesiyle oluşur ve Araknitler (Classis: Arachnida) olarak adlandırılırlar. Örümcekler her türlü habitat ve ekosistemde yaşayabilmektedir. Dünya üzerinde çok geniş bir yayılış alanına sahip olan örümcekler, kutuplardan kıta içlerine, deniz yüzeyinden 5000 m’ye ulaşan yükseltilere kadar yayılabilmektedir. Bunların çoğu karada, pek azı kıyılarda ya da tatlı suların yüzeyinde ve içinde yaşarlar. Genellikle bahçelerde, duvar üzerinde, saçak altında ağ gererek yaşayan hayvanlardır. Günümüzde örümcekler, karasal ekosistemlerde yaşayan başta böcekler olmak üzere birçok artropodların etkili predatörü olarak tanımlanmaktadır. MORFOLOJİ Prosoma ve opistosoma olarak iki kısma ayrılan vücut; pedisel denilen yapı ile birbirine bağlanmıştır. Prosoma bölgesinde yer alan ilk çift ekstremite keliserler olup bunların bağlandığı kısımda bir çift zehir bezi yer alır. Bezlere bağlı zehir kanalı keliserlerden, bunların ucunda bulunan ve sokma iğnesi olarak kullanılan kıskaçlara açılır. Zehir avın felç edilerek daha kolay yenmesini sağlar. İkinci ekstremiteler altı parçalı pedipalplerdir. Bunlardan sonra 7 parçalı dört çift yürüme bacakları yer alır. Bu segmentler kaideden uca doğru koksa, trohanter, femur, patella, tibia, metatarsus ve tarsus yer alır. Başın ön kısmında genellikle 8 (bazen 6) adet göz, iki veya 3 sıraya dizilmiş olabilir. Opistosoma farklı büyüklüklerde olmasına rağmen sistematikte önemli bir kriter sayılmaz. Dorsal kısımda kalp ya da yaprak şeklinde “folium” yer alır. Opistosomanın arka ucunda anüs, hemen altında ise üç çift ağ memeleri yer alır. Memelerden farklı yapılardan ağ çıkar ve bu değişiklik familyalara göre farklılık gösterir. Opistosomanın ventralinde, ön orta kısımda genital delik yer alır. Bundan başka solunum açıklığı olan boru trake stigmaları da örü memeciklerinin ön orta bölgesinde yer almıştır. Fenoloji Yumurtadan çıkan bir örümcek yavrusu, birkaç gün dişi örümcek tarafından bakıldıktan sonra yuvadan ayrılır ve belirli bir yere ağını kurduktan sonra burada yaşar. Bu da örümceklerin ergin hale geçmeden ağ örebilme kabiliyetinde olduğunu göstermektedir. Örümcekler ayrı eşeylidir. Erkeklerde opistosomanın her iki tarafında uzanan tüp şeklinde bir çift testis bulunur. Bu testisler epigastik çöküntünün arkasında tek bir eşeysel delikle dışarıya açılır. Erkeklerde kavuşma organı pedipalpuslardır. Dişi üreme sisteminde ise ovaryumlar, opistosomanın karın tarafından arkaya uzamış iki torba şeklindedir. Örümceklerde eşeysel dimorfizim görülür. Genellikle erkek dişiden küçüktür. Çiftleşme meydana gelmeden önce bir çok davranış gösteren türlerde kimyasal algılama ve dokunma organları iyi gelişmiştir. Cezbetme amacıyla salgılanan bu maddelere feromon denir. Bir defada 300-3000 yumurta bırakabilirler. Yumurtalar kokon içerisinde bazılarında anneye bağlı olarak taşınır. Yavrular ilk deri değiştirmeye kadar kokon içerisinde kalır. Yavrular kokondan çıktıktan sonra erginlere benzerler ve dolayısıyla larva devresi görülmez. Bir yavru örümcek ergin oluncaya kadar 6-8 kez gömlek değiştirir. Örümcekler yılın belli periyotlarında erginleşirler. Bu durum genellikle ilkbahar aylarında başlayıp sonbahara kadar sürmektedir. Bazı türler ise tüm yıl boyunca erginleşebilmektedir. Genel olarak Mayıs ve Haziran aylarında erginleşirler. Örümceklerde ömür uzunluğu 1-2 hatta 10 yıl sürebilmektedir. Uzun yaşayan örümcekler daha çok tropikal alanlarda yayılış göstermektedir. Genital yapı Örümcekler gelişme durumlarına göre Orthognatha ve Labidognatha olmak üzere iki alttakıma ayrılırlar. Orthognatlar ilkel yapılı olup tropikal ve çöl ekosistemlerinde yaşarlar. Gelişmiş örümceklerin içinde yer aldığı Labidognat örümcekler ise genital organlarının kompleks olup olmamasına göre Haplojin ve Entelejin örümcekler olarak iki gruba ayrılır. Genellikle altı gözlü olan Hoplojinlerde basit bir palp ve epijin bulunurken Entelejin örümceklerde ise palp ve epijin, ekstra kitinsi yapılar ile daha kompleks bir durum oluşturup tam bir kilit-anahtar özelliği kazanır. Erkek ve dişilerde opistosomanın ön orta kısmında akciğerlerin hemen gerisinde enine uzanan genital bir delik vardır. Erkek örümceklerde pedipalpler ampül şeklinde çiftleşme organı olarak görev yapar. Ayrıca femur, patella veya tibia ile pedipalpuslar uç kısmından öne doğru “apofiz” adı verilen kalınlık ve uzunluğu değişen bir uzantı yaparlar. FİZYOLOJİ Beslenme ve Sindirim Çoğu polifag olan örümceklerin besinini, diğer hayvanların ve özellikle böceklerin vücudundan emilen özsuları oluşturmaktadır. Sindirim sistemi ağızla başlar, bunu kısa bir farinks izler. Daha sonra emici mide ve orta barsak (gerçek mide) gelir. Orta barsakta keseler halinde kör barsaklar yer almaktadır. İnce barsak, opistosoma bölgesinde birkaç küçük kanalla karaciğere birleştiği yerde genişler ve sonra ince, düz bir boru halinde devam eder. Arka uca yakın bir yerde yeniden genişleyerek bir kese oluşturur ve anüsle dışarı açılır. Barsak opistosoma bölgesinde büyük sindirim bezleri ve karaciğerle sarılır. Solunum Solunum trakelerle ve kitap akciğerlerle yapılır. Kitap akciğerler genellikle iki kese halinde olup her birinde 15-20 tane yaprak şeklinde ve üzerinde ince damarlar bulunan lameller vardır. Dışarıya açılan deliklerden hava girer ve bu yolla kan temizlenir. Ayrıca trakeler de bulunabilmesine rağmen, böceklerde olduğu gibi vücudun bütün kısımlarında dallanma göstermezler. Özellikle opistosomaya yayılmışlardır. Sinir Sinir sistemi baş bölgesinde bulunan bir beyin (iki loblu bir ganglion) ile göğüs bölgesinde bulunan bir ganglion kümesi (subözefagial ganglion) ve bunlardan çıkan sinirlerden oluşmaktadır. Pedipalpuslarda ve yürüme bacakları üzerinde duygu kılları bulunmasına rağmen başlıca duyu organları gözler olarak kabul edilir. Genellikle büyüklükleri ve duruş biçimleri türden türe göre değişen sekiz tane göz bulunur. Örümcekler, objeleri ancak 10-15 cm uzaklıktan net olarak görebilirler. Dolaşım Dolaşım sistemi, opistosomanın dorsal bölgesinde üç veya dört ostiumlu kalp ile, atar ve toplar damarlar, bir seri vücut boşluğu veya sinüslerden oluşmuştur. Kalp, kastan yapılmış kontraktil bir tüp biçiminde olup perikardium denilen bir kılıf içinde bulunur. Kalpten perikardium boşluğuna ostium adı verilen üç veya dört çift delik açılır. Kalpten arkaya doğru bir atardamar uzanır, öne doğru bir aort açılır. Aorta kollara ayrılarak prosomadaki doku ve organlara gider. Renksiz olan örümcek kanında amoeboid hücreler bulunmaktadır. Vücut boşluklarını dolaşan kan, kitapsı akciğerlere giderek temizlenir; buradan toplar damarlarla perikardiuma gelir ve en sonunda ostiumlardan geçerek tekrar kalbe döner. Boşaltım Boşaltım organı olarak, ince barsağa açılan malpighi tüpleri ile dördüncü yürüme bacağının kaidesinden dışarı açılan iki koksal bez bulunur. Koksal bezlerin bazen köreldikleri görülmüştür. Bu nedenle bunların açıklıklarını bulmak oldukça güçtür. Koksal bezler, tatlı su istakozunda bulunan anten bezleri ile homolog organlardır. Bunlar annelidlerin nefridyumlarına benzeseler de nefrostomları ve kanalları içinde kirpik yoktur. GENEL ÖZELLİKLER Kamuflaj, Taklit ve Mimikri Örümceklerin değişen çevre koşullarına karşı yaptıkları adaptasyonlarından (uyma) daha etkili olan ve onları düşmanlarına karşı koruyan başka adaptasyonları da vardır. Bu koruyucu hareketler, basit kamuflaj renklerini kullanmaktan, taklit içeren kompleks davranışlara kadar uzanmaktadır. Çoğu örümcekler ölü (donuk) renge sahip olup çevrelerinde fazla dikkat çekmezler. Aksine çok belirgin yeşil renklerde olan Micrommata virescens veya Araniella cucurbitina türleri, yaprak üzerinde yaşadıkları için, bunları doğal ortamlarında seçebilmek oldukça zordur. Örümcekler yere düştüğünde çoğu kez bacaklarını vücuduna doğru çeker ve Katalepsi denen “ölüyü oynama” davranışını sergiler. Aynı zamanda, düşmandan korunma amaçlı olarak yapılan bu davranış; sadece örümceklerin taklit etmeleriyle değil böceklerin de örümcekleri taklit etmeleri yönüyle oldukça ilginçtir. Örneğin; bazı meyve sinekleri (Rhagoletis, Zonosemata) kanatlarında bazı zıplayan örümceklerin (Salticid, Phidippus) bacaklarını andıran belirgin koyu çizgiler taşırlar. Dolayısıyla kanatlarını kaldırıp indirdiklerinde hareket eden bir örümcek izlenimi verirler. Kışlama Örümcek faunasının %85’i kışı toprakta özellikle de soğuğa karşı iyi bir yalıtkan olan yaprak döküntüsünün içinde geçirir. Bu süre boyunca örümceklerin çoğunda, bacaklar vücuda sarılmış ve görünen vücut yüzeyi minimuma düşmüş durumdadır. Yaprak döküntülerinin altındaki mikrohabitat örümceği sadece aşırı sıcaklık değişimlerinden değil aynı zamanda kuraklıktan da korur. Ilıman bölgelerdeki “kışın-aktif” örümcekler, özellikle soğuğa karşı dirençli olmasalar da, diğer örümceklere nazaran çok düşük sıcaklıklarda daha aktiftirler. -4°C’nin altında diğer örümcekler gibi sabit dururlar ve -7°C’nin altında ölürler. Kışı pasif şekilde atlatan örümcekler soğuğa karşı daha dirençlidirler. Çoğu bahçe örümceği (Araneus sp.) korumasız yerlerde bile-20°C’ye dayanabilir. Örümceklerin bu soğuğa, nasıl dayanabildikleri ise henüz net olarak açıklanamamıştır. Fakat örümcek hemolenfinde antifiriz görevi gören gliserol varlığı ve oranının kış aylarında, yaza göre çok daha yüksek olması bu konuyu aydınlatmada bir giriş noktası oluşturmaktadır. Ancak bu konuda da bazı çıkmazlar dikkat çekmektedir. Adaptasyon Örümcekler soğuk, nemlilik, su baskını ve yiyecek sıkıntısı gibi olumsuz durumlara karşı çeşitli adaptasyonlar geliştirmişlerdir. Kışı aktif olarak geçiren örümcekler üzerine günümüzde kış ekolojisi ve bu hayvanların soğuğa karşı dirençleri araştırılmaktadır. Örümcekler uygun mikrohabitatlara sığınarak soğuğa karşı dirençlerini artırırlar. Metabolik oranlarını düşürür ve hazırlanırlar. Zehir ve Özellikleri Bütün örümceklerde bulunan zehir bezleri keliser içlerinde yer alır ve uçtaki kanca ile ava enjekte edilir. Zehirleri neurotoksik etkide olup solunum organlarında felçlere yol açar. Ölüm olayları genellikle çocuklarda ve solunum yetmezliğinde meydana gelir. Ilıman bölgede yayılış gösteren örümcekler az zehirli olup, insan için öldürücü bir etkiye sahip değildir. Ancak tropikal bölgelerde yaşayanlar çok zehirli olup insan için ciddi tehlikelere yol açabilir. İnsanlar için öldürücü etkiye sahip olan örümcekler çoğunlukla Araneidae, Agelenidae, Argiopidae, Clubionidae, Eresidae, Loxoscelidae, Lycosidae, Theridiidae familyalarına bağlı türlerdir. Tarantulalar büyük örümcekler olmalarına rağmen genel olarak düşünüldüğünden daha az tehlikelidirler. ZEHİRLENMELER Yeterli miktarda alındığında, vucudun kimyasal ve fizyolojik düzenine etki ederek, sonuçta ölüme yol açan maddelere toksin yada zehir denilir. Yeteri miktarda verildiğinde, zehir gibi davranabilecek bir kimyasal maddenin dokularda yol açtığı hasarın klinik belirtilerine de zehirlenme denilir. Zehirin etkisi dozuna ve alınış şekline bağlı olarak değişebilir. Zehirlenmede, zehirli maddenin molekül ağırlığı, proteinlere bağlanabilme gibi özellikleri ve de etkili olacakları yapıların özellikleri önemlidir. Zehirler, öncelikle merkezi sinir sistemine etki ederler. Bu etkiye bağlı olarak, zehirli maddenin özelliğine göre vucudun diğer sistemlerini bloke edebilirler. Akut zehirlenmelerde, irritabilite artışı, titreme, hallusinasyon ve koma görülebilir. Kronik zehirlenmede, organlarda duyu kayıpları gibi sinir sistemi üzerinde çeşitli bozukluklar ortaya çıkabilir. Zehirlenmeler üç yolla gerçekleşebilir: 1. Ağız yolu ile; Gıda zehirlenmeleri, ilaçlarla olan zehirlenmeler, kimyasa maddeler ile zehirlenmeler, alkol zehirlenmeleri. 2. Solunum yolu ile; Karbonmonoksit ve diğer zehirli gazlar ile olan zehirlenmeler. 3. Deri yolu ile; Zehirli gazların teması ile olan zehirlenmeler, böcek öldürücü ilaçların neden olduğu zehirlenmeler, yılan, akrep, örümcek ve diğer zehirli hayvanların sokmasıyla meydana gelen zehirlenmeler. Akut zehirlenmelerin ilk yardım ve tedavisinde, zehirlenen kişinin, zehiri ne zaman, ne miktarda ve ne şekilde alındığının bilinmesi hayati öneme sahiptir. Örümcek Sokması Örümcek türlerinde, keliserlerinin kaide kısmında büyük zehir bezleri bulunur. Bu sebeble bilinen 20.000 örümcek türünün hemen hemen hepsi zehirlidir. Bu bezler bir kanalla keliserlerin son segmentinden dışarı açılır. Hayvan, avını ısırdığında uç segment ava batar ve zehrini ava boşaltır. Zehrin ava akıtılmasında bezlerin çevresindeki kaslar etkilidirler. Çok az örümcek türü insan için tehlike oluşturur. Çünkü, etkili zehirlere sahip olan türlerin birçoğunun zehir dişleri insan derisine etki edemeyecek kadar kısa ve kırılgandır. Fakat çocuklar için ölümcül olabilirler. G.Amerika’da yaşayan Phoneutria cinsi örümcekler bilinen en güçlü nörotik zehire sahiptir ve insanlar için büyük tehlike oluşturular. Kara dul olarak bilinen Lactrodectus cinsine ait örümcekler de kas sinir iletimini bloke eden peptid yapıdaki zehirleriyle bir diğer zehirli grubu oluştururlar. Kahverengi örümcekler olarak adlandırılan Loxoceles cinsi örümcekler ve Argyronetidae familyasına ait su örümcekleride oldukca zehirli diğer türlerdir. Örümcek zehirlerinin hemen hemen hepsi nörotoksiktir. Bu zehirler sinir sistemine etki eder ve bağlantılı olarak kas kasılmaları ortaya çıkar ve sonuçta ölüm meydana gelebilir. Genel kanının aksine, küçük örümcekler büyük örümceklere göre daha güçlü zehirlere sahiptirler. Tarantulalar sanıldıkları kadar zehirli türler değildirler. Belirtiler Sokulan yerde şiddetli bir ağrı, yanma, şişme, kızarıklık ve karıncalanma meydana gelir. Sokulan bülgede iki adet diş izi görülebilir. Zehirlenen bireyin karın, göğüs, omuz ve sırt kısmında şiddetli kramplar meydana gelir. Görülebilecek diğer semptomlar, baş ağrısı, baş dönmesi, kaşıntı, titreme, göz kapağında şişme, bulantı ve kusma, özellikle ayaklarda uyuşmalardır. Örümcek sokmalarında, özellikle çocuklarda solunum yetmezliği sebebiyle ölümler meydana gelebilir. Ortaya çıkabilecek diğer bir önemli sorunda kangrendir. İlk Yardım Öncelikle ısrılan bölgenin hemen yukarısı, bir ip yada bezle, dolaşımı yavaşlatmak amacıyla sıkılır. Isırılan bölge su ve sabunla iyice yıkanmalıdır. Daha sonra bölgeye beze sarılı buz parçaları veya ıslatılmış bir bezle soğuk uygulanır. Özellikle çocuklarda enfeksiyonu önlemek amacıyla ısırılan kısma antibiyotik krem sürülülür. Aynı amaçla amonyak veya permanganat, karbonat eriği yada sirke kullanılabilir. Acıyı azalmak amcıyla asetominofen verilebilir. Daha sonra hasta, zehrin etkisine bağlı olarak gerekebilecek daha ileri tadaviler için acilen bir sağlık kuruluşuna götürülmelidir. Ağ Tüm örümcekler, türler arası farklılıkları yansıtacak şekillerde ipliğimsi ağ üretebilme yeteneğine sahiptirler. Bu nedenle sınıflandırmada kullanılan önemli bir kriterdir. Örümcekler ağlarını iki dal arasına, dal ile yapraklar arasına, çalı aralarına, yerdeki otsu bitki aralarına, toprak keseklerine, taş altlarına, evlerde duvarlara, bodrum katlarına örerler. Çok çeşitli şekillere sahip olan ağlar genellikle tekerlek gibi iç bükey çadır, dış bükey çadır, huni, düzensiz ve sık balıkçı ağlarını andırırlar. Örümceklerde ağlar, bir yayılma aracı olarak da kullanılır. Örümceklerin ürettikleri ipek, fibrion denilen yapısal bir proteindir. Opistosomanın son kısmında bulunan ağ memelerinden sıvı halde çıkan ipek hava ile temas edince yapışkan iplikçiklere dönüşür. Bu nedenle, havada uçan ufak bir böcek ağa dokunur dokunmaz yapışır. Kur yapma Örümcekler birbirleriyle iletişim kurmaları için çeşitli yollar geliştirmişlerdir. Kur yaparken, mekanik, kimyasal veya görsel işaretler önemli rol oynamaktadır. Özellikle ağ kenarından geçen titreşimler gibi çeşitli mekanik sinyalleri sezen, algılayan reseptörler de önemlidir. Ağ örümcekleri tarafından titreşimle yayılan sinyallerin bu türe özgü oldukları ve çiftleşme için yeterli oldukları kuvvetli bir ihtimaldir. Gezgin örümcekler de kur yapma döneminde titreşen sinyaller yaymaktadır. Titreşimlerini toprak veya yaprak gibi katı bir nesne aracılığıyla veya havada ses olarak aktarabilirler. Ses çıkarma Böceklerde olduğu gibi, örümceklerde ses çıkarırlarken esas olarak bacak veya karın gibi vücut kısımlarını kullanarak trompet gümletme sesi, stridülasyon organları kullanılarak bir eğeye sürtülen metal sesi, karın ve bacaklar titretilerek ses çıkarılır. Kur döneminde erkek kurt örümceklerinin gösterdiği davranışlara dişiler de aynı şekilde karşılık verdiklerinden bu vücut kısımlarının iletişimdeki fonksiyonları açıktır. Bu durum stridülasyon için oldukça karışıktır. Stridulasyon’da kullanılan organlar yapısal olarak iyi tanımlanmıştır. Fakat bunlara bağlı iletişim fonksiyonları net değildir. Ama ağ örümceği Steatoda bipunctata üzerinde yapılan incelemeler stridülasyonun hem kur yapma döneminde hem de şiddetli karşılaşmalarda kullanıldığını göstermiştir. S. bipunctata’larda sadece yetişkin erkek bireyler stridulasyon organlarını kullanırlar. Bunlar prosoma üzerinde, opisthosomaya yerleştirilmiş sırt sırta gelen (1 mm2) güçlü keskin uçlardan oluşurlar. Zirai Mücadele Tarımsal ekosistemlerdeki predatörlerin avlarının büyük bir kesimini Collembola, Diptera ve Afidler gibi yumuşak vücut yapılı böcekler oluşturmaktadır. Tarımsal ekosistemlerde örümceklerin bulunduğu iki katman vardır: Toprak yüzey zonu ve vejetasyon zonu. Her bir zonda farklı örümcek grupları yer alır. Zirai alanlara uygulanan bazı pestisidlerin örümcek populasyonlarında önemli kayıplara neden olmaktadır. Pestisitler, kültür bitkilerine zarar veren böcekler kadar predatörü olan örümceklerin de yok olmasına sebep olmaktadır. Kültürel ve kimyasal tekniklerin dikkatli seçimi ile örümceklerin tarımsal ortamlardaki etkinliğini korumak ve daha da arttırmak gereklidir. Düşmanları Omurgalılar içinde balıklar, iki yaşamlılar, sürüngenler, kuşlar ve özellikle kemiriciler içinde bir çok düşmanları vardır. Birçok balık, özellikle alabalık, su yüzeyine gelir ve örümcekleri avlayabilir. İki yaşamlılar arasında kara kurbağaların en çok örümceklerle beslendikleri tahmin edilmektedir. Sürüngenlerin de besin listesinde örümceklerin yer aldığı bilinir, fakat genel olarak sürüngenlerin örümcek nüfusu üzerinde çok az bir etkiye sahip oldukları düşünülmektedir. Örümceklerin düşmanlarından sadece bir kaçı memelidir. Örümcekler, örneğin köstebek, kirpi gibi böcekçil memeli besinlerinin % 1-2'sini oluşturur. Yarasalar da örümceklerle beslenir. Örümceklerin asıl düşmanları kendileridir. Bazı türler diğer örümcek türleri üzerinden beslenirler. Kannibalist canlılar olduklarından, tür içinde doğal bir dengeleme söz konusudur. KAYNAKLAR Brignoli, P. M., 1983. A Catalogue of the Araneae 1940-1981, Part I and II. Manchester University Press. Manchester. 754 p. Foelix, R. F., 1982. Biology of Spiders. Harvard University Press. Cambridge. 514 p. Nentwig, W., 1968. Non-webbuilding spiders: prey specialists or generalists. Oecologia (Berlin) 69: 571-576. Nentwig, W., 1987. Ecophysiology of spiders. Regensburg University, Institute of Zoology. Regensburg. 815 p. Tyschchenko, V. P., 1971, Identification Key to Spiders of the European USSR, Opred Faune USSR 105, Leningrad. 281 p. (in Russian).

http://www.biyologlar.com/arthropoda-eklembacaklilar

Mikroskop Çeşitleri

BİNOKÜLER Okülerler: 10x- 16x Açısal Ayarlı döner başlık Objektifler: Ach.4x, 10x, 40x ve 100x Toplam büyütme: 1600x Koaksiyel kaba-ince netlik ayar sistemi. Hareketli ve iris diyaframlı Abbe kondansör-filitreli C tipi gömme tip. Kayar yataklarda hareketli şaryo. Tabla kilitlenme sistemi ve hassa ayarlı sistem. Elektronik dimmer devreli 6V/20Watt Halojen aydınlatma 2 yıl garantili,Yedek ayna, maşa, toz örtüsü, 2 adet ampül ve sigorta TRİNOKULER Okülerler: 10x- 16x Açısal Ayarlı döner başlık Objektifler: SP.4x, 10x, 40x ve 100x Toplam büyütme: 1600x Koaksiyel kaba-ince netlik ayar sistemi. Hareketli ve iris diyaframlı Abbe kondansör-filitreli C tipi gömme tip. Kayar yataklarda hareketli şaryo. Tabla kilitlenme sistemi ve hassa ayarlı sistem. Elektronik dimmer devreli 6V/20Watt Halojen aydınlatma CE belgesi, 2 yıl garantili,Yedek toz örtüsü, 2 adet ampül ve sigorta İNVERT Okülerler: 10x-16x Objektifler: LD Planakromat 10x ve 25x 25x Faz kontrast objektif ve sürgüsü Max. Büyütme : 400x veta isteğe bağlı 640x Aydınlatma : 6V/15 Watt-Halojen Koaksiyel kaba-ince netlik ayar sistemi. Hareketli ve iris diyaframlı Abbe kondansör Faz kontrast ve aydınlık saha kondansatör İsteğe bağlı LD40x planakromat aydınlık saha objektifi MONOKULER Okülerler: WF 10x, 5x Hugens,16x Hugens 3 adet Objektifler : Ach.4x, 10x, 40x 3 adet Toplam büyütme : Max.640 Tabla limit ayar sistemli, mekanik hassas B tipi şaryolu 0.1 mm. Sabit tip diyaframlı filitre tutuculu kondansatör 220V / 20W Tungsten lamba aydınlatmalı ,gün ışığı filitresi Ampül yuvası içinde sabitlemiş, CE Belgesi, 2 yıl garantiYedek 1 adet ampül, toz örtüsü, maşa, sigorta STEREO ZOOM MİKROSKOP Okülerler: 15x- 20x Objektifler: 0.7 ile 4.5x zoom Toplam büyütme: 3.5x ile 45x Obsiyonel: Max. 180x Netlik ayar sistemi Stativ seçeneği Binoküler veya trinoküler seçeneği Baskı maşası alttan ve üstten aydınlatma Ayarlanabilen ışık şiddeti 220V / 2x15 W BİNOKÜLER METAL MİKROSKOBU Okülerler: 5x, 10x ve 12.5x Objektifler: Ach. 10x, 40x, 100x Toplam büyütme: 1250x 3 farklı taban taşıyıcı Hassas mekanik şaryo Elektronik dimmer devreli 6V / 20W Halojen aydınlatma Yedek ampül,toz örtüsü,sigorta ELEKTRON MİKROSKOBU Alm. Elektronen mikroskop (n), Fr. Microscope électronique, İng. Electron microscope. Bir cismin büyük görüntüsünü elde etmek için elektron kullanılan mikroskop. Bir cismi yaklaşık bir milyon defa büyütüp, bunu bir ekranda göstermek ve buradan fotoğrafını almak mümkündür. Meselâ, bu kadar büyütmeyle bir kristal şebekesindeki atomların dizilişindeki çarpılmaları görmek mümkündür. En iyi optik mikroskoplarda ise bu büyütme ancak birkaç bin defâ olmaktadır. Görüntü: Optik mikroskoplarda görüntünün elde edilmesinde ışık kullanılırken, elektron mikroskoplarında, ışık yerine elektron kullanılır. Elektronun dalga boyu, ışığa göre birkaç bin defa daha küçük olduğu için, bu mikroskopla daha ayrıntılı görüntüler elde etmek mümkündür. Bâzı elektron mikroskoplar, 0,2 nanometre (nm)lik cismi net gösterebilmekteyken, en iyi optik mikroskoplar 250 nm’lik bir güce sâhiptir. Bir nanometre, 10 Angstrom olup, 10-10 metreye karşı gelir. Kullanım yeri: En önemli kullanış yerleri; metallerdeki atom dizilerindeki çarpılmalar, virüs ve bakterilerin yapıları ve her türlü yüzeylerin incelenmesi olarak sayılabilir. Uygulamada bu mikroskoplar tam büyütme kapasiteleri ile nadiren kullanılır. Yeni gelişmelerle, 50 nm’lik bir bölgede, mevcut her kimyâsal elemanın yaydığı X ışınlarının ölçülmesi ile mikro kimyâsal analiz yapılabilmektedir. Bu suretle 10-16 gramlık bir miktar analiz için yeterli olmaktadır. Elektron mikroskoplarını çalışma prensibi yönünden ikiye ayırmak mümkündür. Bir türünde, görüntü, yansıyan elektron ışınlarından faydalanılarak elde edilirken, diğer türünde cisimden geçen ışınlar görüntüyü hâsıl eder. Târihî gelişim ve temel prensipler: Optik mikroskopların gelişmesi ile daha büyük görüntüler elde edilmiştir. Ancak optik mikroskopların, ışığın yarı dalga boyu olan 250 nm’den daha küçük ayrıntıyı göstermeleri mümkün değildir. Elektronlar, önceleri “katot ışınları” ismiyle kullanılmaktaydı. Bunlar vakum tüpleri içinde elde edilip, elektrik alanları içinde hızlandırılmaktaydı. Elektrik ve manyetik alanlar tarafından saptırılan bu ışınlar, bir ekranda görünür hâle getirilirdi. Bunun yanında, elektrik taşıyan bobin kullanılarak katot ışınlarını küçük bir alana odaklamak mümkün olmaktaydı. İlk defâ 1926’da Alman fizikçisi H. Busch teorik olarak optik merceğin ışığı bir odakta topladığı gibi, manyetik sargının, elektronları bir odakta toplayabileceğini göstermiştir. 1928’de Berlin Teknik Üniversitesinde Max Knoll ve Ernst Ruska tarafından yapılan deneylerle art arda büyütme kullanarak büyük görüntüler elde etmenin mümkün olduğu anlaşılmıştır. Konulan iki bobinle 13 defâ büyütmek mümkün olmuştu. İlk pratik elektron mikroskobunun 1933’te Ernst Ruska tarafından yapıldığı bilinmektedir. Elektron merceklerinde daha sonra yapılan gelişmelerle, manyetik bobin bir demir kap içine alınmış ve iç halkada küçük bir hava deliği bırakılmıştı. Esas olarak bu prensip günümüzde de kullanılmaktadır. Ernst Ruska ile elektron mikroskop, optik mikroskobun büyütme gücünü geride bırakmıştı. Geçirimli mikroskop: Bunlar optik mikroskoba benzer bir çalışma sistemine sâhiptirler. Tek fark, ışık ışını yerine elektron ışını kullanılmasıdır. Fizikî çalışma sistemi tamâmen farklı olmasına rağmen, burada optik mercekler yerine elektron mercekleri kullanılır. Görüntü bir ekranda veya fotografik levhada elde edilir. Elektronlar çok kolay yollarından sapabileceklerinden, bütün işlem ve görüntünün elde edilmesi tamamen bir vakum içerisinde gerçekleştirilir. Elektronlar, tungstenden akkor flamanlı elektrikle ısıtılan elektron tabancasından elde edilir. Anodla, flaman arasına 100.000 voltluk bir potansiyel farkı tatbik edilir. Flamandan yayılan elektronlar hızlandırılır ve ekranda yeterli bir görüntü elde etmek için kâfi bir güçte olması sağlanır. Bu safhada 500.000 defa büyük bir görüntü elde etmek mümkündür. Optik mikroskoptaki gibi ışınlandırma belirli bir bölgede yoğunlaştırılabilir. Ancak çok yoğunlaştırma polimerler ve biyolojik maddeler gibi cisimlerde zararlar doğurabilir. Cisme en yakın olan elektron merceği, âlette en önemli olanıdır. Bu mercek, 50-100 arasında ara bir büyütme elde eder. Büyütme işleminde, gelen ışın denemelerinin açısal genişliği küçüldüğü için, projektör sistemi bu büyütülmüş görüntüyü kolayca işler. Hemen hemen bütün elektron mikroskoplarında iki veya üç mercek mevcuttur. Bunlar 250-500.000 arasında bir büyütme sağlar. Taramalı mikroskop: Optik mikroskoptan daha çok kapalı devre televizyon sistemine benzer. İlk bölümde, televizyon kamerasına benzer bir şekilde, net olarak odaklandırılmış elektron merceği tarafından cisim üzerine odaklandırılır. Çarptığı yerden gelen elektronlar toplanır ve güçleri yükseltilir. Mikroskobun ikinci bölümü televizyon alıcısına benzer ve burada bir katot ışını tüpü mevcuttur. Böylece yüksek kaliteli televizyon resmine benzer bir görüntü elde edilir. Yapı olarak daha önceleri açıklanan tür gibidir. Sâdece düzeni farklıdır. Bu cins mikroskoplar taramalı olarak da kullanılır. Genel olarak sert yüzlerin 20-50 nm’lik hassaslıktaki incelenmesinde kullanılır. Odaklama ile çeşitli derinlikte görüntüler elde edilebildiğinden üç boyutlu hissi veren resimler elde etmek mümkün olmaktadır. Bâzı deneysel mikroskoplarla 3 nm’lik hassaslığa kadar inmek mümkün olmaktadır. Cisimden gelen elektronlar mikro elektrik ve manyetik alanları da hassas hâle getirebildiğinden, elektrik ve manyetik alanların görüntüsünü elde etmek mümkündür. Bundan faydalanılarak bilgisayar ve benzerlerindeki çok küçük elektronik devrelerin kontrolü yapılır. Elektronların yönlerini değiştirmesinden, bir cisimdeki mikro kristallerin dizilişini belirlemek mümkündür. Kullanılışı: Elektron mikroskobun kullanılışı zor değildir. Ancak âletin bakım ve temizliği büyük önem taşır. Diğer bir önemli nokta incelenecek nümûnenin hazırlanmasıdır. Taramalı mikroskopta örnek çok ince olmalıdır. Meselâ 100 kilovatlık bir âlette, bu 250 nm’den daha kalın olamaz. Eğer cismin kalınlığı fazla ise ve elektron ışını geçemiyorsa, cismin yüzeyi aseton ile nemlendirilmiş bir plastik yüzeye bastırılır. Daha sonra plastik tabaka buharlaştırılır. Sonucunda cismin yüzünün ince karbondan meydana gelen bir benzeri elde edilir. Metaller genellikle 200 nm’lik kalınlığa indirildikten sonra incelenir. Biyolojik maddeler ise, önce bir uygun epoksi reçinesine yerleştirilir. Daha sonra ince tabakalara kesilir. Bâzan cismi dondurup kesmek daha uygun olabilir. Elektron mikroskop altına konan cismin görüntüsü bir ekrana düşürüleceği gibi doğrudan doğruya fotoğrafı da çekilebilir. İleri gelişmeler: Elektron mikroskopta daha yüksek voltaj kullanılmak için çalışmalar yapılmaktadır. Bu sûretle elektronların daha kalın cisimlere nüfuz etmesi mümkün olmaktadır. Günümüzdeki âletler bir milyon elektron voltluk hızlandırma gücüne sâhiptir. Fransa ve Japonya’da daha fazla voltluk hızlandırma gücüne sâhip elektron mikroskopları üzerinde çalışmalar yapılmaktadır.

http://www.biyologlar.com/mikroskop-cesitleri

GENEL BİYOLOJİ LABORATUAR RAPOR HAZIRLAMA FORMATI

Raporun ismi (Raporun ismi çok uzun olmamalı ve laboratuarı kısaca özetler nitelikte olmalı. İyi bir isim, içinde çalışılan konu ile ilgili anahtar kelimeleri barındıran isimdir.) Raporu hazırlayanın ismi (Raporu hazırlayan kişinin ismi Adı ve Soyadı açık olacak şekilde yazılmalı, kısaltma kullanılmamalıdır. Numara tam yazılmalı varsa email adresi eklenmelidir). Özet (Bir özetin amacı, okuyucunun raporun tamamını okumasının kendisine bir yararı olup olmadığını inandırmaktır. İyi bir özet 100-200 kelimeden oluşur. Özette raporun kısa olarak amacı, verilerin sunulması ve yazarın bu raporu yazmadaki asıl amaç(lar)ı vurgulanmalıdır.) 1 cümle özet olamaz. Giriş (Raporun amacını belirler. Giriş, bilimsel amaç(lar)ın ana hatlarını belirtmeli ve okuyucuya raporun geri kalanını anlayabilmesi için yeterli bir altyapısal bilgi sunmalıdır. İyi bir giriş aşağıdaki sorulara cevap vermelidir.Abartılı olmamalı çok uzun yazılmamalı. Bu çalışma neden yapılmıştır? Bu soruya vereceğiniz cevap laboratuardaki veya doğadaki gözlemlerinize ya da literatürdeki bilgilerle dayanabilir. Bu konu ile ilgili mevcut olan bilgiler nelerdir? Bu soruya vereceğiniz cevap literatürün incelenmesiyle, var olan bilgideki destekleyici verilerin, çatışmaların, ve eksikliklerin tarihsel gelişiminin gösterilmesinden oluşmalıdır. Bu çalışmayla ne gibi özel bir amaç güdülmüştür? Araştırma konusu özel hipotezler ile açıklanmaya çalışılmalıdır). Materyal ve Metod (Adından da anlaşılacağı gibi laboratuarda kullandığınız materyal ve metod raporda açıklanmalıdır. Bu bölümü yazarken en çok dikkat edilmesi gereken husus, okuyucuyu sıkmadan gerekli detayları vererek deneyin anlaşılmasını sağlamaktır. Eğer işlemler bir laboratuar kitabından veya başka bir kaynaktan takip edilmiş ise, metodu uzun uzun anlatmak yerine kaynak göstermeniz yeterlidir. Bununla birlikte laboratuarda kullandığınız aletleri ve deneyde kullandığınız genel teoriyi yine de vermeniz gerekmektedir. Bunu kısa bir paragraf ile ya da çizim ile deney düzeneği üzerinde gösterebilirsiniz. Bu bölümde aşağıdaki sorulara cevaplar verilmiş olunmalıdır. Hangi materyaller kullanıldı? Bu materyaller nerede kullanıldı? Sonuç (Bu bölümde deney sonuçları herhangi bir yorum yapılmadan verilmelidir. Sonuçlar tablo, çizim, grafik, fotoğraf ve bunun gibi şekillerde verilebilir. Fakat bir tablodaki veri çizimlerde veya grafiklerde sürekli yinelenmemelidir. Bütün tabloların, grafiklerin, çizimlerin açıklayıcı isimleri olmalı, sembol, kısaltma veya kullanılan özel yöntem var ise belirtilmelidir. Çizimler, tablolar, grafikler ayrı ayrı numaralandırılmalı ve her numara mutlaka rapor içinde belirtilmelidir. Örneğin: ........Çizim 1 deney başladıktan 5 dakika sonra aktivitenin düşüşünü göstermektedir. ........Deney başladıktan 5 dakika sonra aktivite düşmüştür (Çizim 1). Raporunuzun bu bölümü genel eğilimlere ve farklılıklara odaklanmalı ve gereksiz detay içermemelidir). Tartışma (Bu bölüm sonuçları yeniden içermemeli, verileri yorumlamalı ve varolan teori ve bilgiye dayanarak veriler arasında ilişkiler kurulmalıdır. Eğer deneyinizdeki sonuçlar uygun ise spekülasyonlar yapabilirsiniz. Deney tekniği veya düzeneği ile ilgili geliştirme önerileriniz de bu bölümde yer alabilir. Bu bölümde sizin hipotezinizin kabul edilmesi veya reddedilmesi için mantıklı açıklamalar yazmalısınız. Aynı zamanda sonuçlarınızdaki şüpheleri giderecek ileride yapılabilecek deneyleri de bu bölümde önerebilirsiniz). Kaynaklar (Literatür) (Bu bölümde raporunuzda atıfta bulunduğunuz tüm makale veya kitapların listesini vermelisiniz. Listeyi herhangi keyfi bir sıra ile hazırlamamalısınız. Liste ilk yazarın ismine göre alfabetik olmalıdır. Farklı literatürler farklı formatta yazılır. En yaygın literatür tipleri için format aşağıda verilmiştir. Dergilerde basılmış makaleler için: Fox, J.W. 1988. Nest-building behavior of the catbird, Dumetella carolinensis. Journal of Ecology 47: 113-17. Kitaplar için: Bird, W.Z. 1990. Ecological aspects of fox reproduction. Berlin: Guttenberg Press. Kitaplardaki bölümler için: Smith, C.J. 1989. Basal cell carcinomas. In Histological aspects of cancer, ed. C.D. Wilfred, pp. 278-91. Boston: Medical Press. İnternet sayfları için: www.biology.arizona.edu/cell_bio/tutorials/cells/cells2.html. (04 Ekim 2006) Eğer rapor içinde bir atıfta bulunacaksanız dipnot kullanmayınız. Onun yerine yazarın adını ve literatürün yayınlanış yılını belirtiniz. Örneğin: Fox 1988’de kuşlardaki yuva yapma davranışlarında hormonların etkisini araştırdı. Kuşların yuva yapma davranışları üzerinde hormonların etkileri olduğu bilinmektedir (Fox, 1988). Eğer atıfta bulunduğunuz literatür iki yazar isminden oluşuyor ise her iki isimde yazılmalıdır. Ancak üç veya daha fazla isimden oluşuyor ise ilk yazar adından sonra Latince karşılığı “ve diğerleri” olan “et al.” kısaltması kullanılır. Örneğin literatür Smith, Lynch, Merrill, and Beam tarafından 1989’da yayınlanmış ise raporunuzun metin kısmında şu şekilde kısaltmalısınız: Smith et al. 1989’da yaptıkları bir araştırmada .... Bu kısaltma sadece rapor metni içinde yapılmalıdır. Literatür listelenmesi kısmında tüm yazar isimleri yazılmalıdır. Örneğin: 1. Simth, S., Lynch, C., Merrill, A., Beam, Y. 1989. A experimental study of .... Rapor hazırlarken uyulması gereken genel kurallar 1-Tüm cins ve tür isimleri italik yazılmalıdır (Eğer el yazısı veya daktilo kullanıyorsanız altı çizilmelidir). 2-Ölçümlerinizde metrik sistem kullanılmalıdır. 3-Raporda birinci tekil şahıs ve çoğul şahıs kullanımından kaçınılmalıdır. İfadeler üçüncü şahıslar üzerinden kurulmalıdır. “Kurbağaları tarttık ve kavanozların içine koyduk” yerine “Kurbağalar tartılır ve kavanozların içlerine konur” ifadesi kullanılmalıdır. 4-Argo ifadelerden kaçınıldığı gibi sürekli aynı tarz ifadelerden de mümkün olduğunca kaçınılmalıdır. 5-Rapor yazdıktan sonra bir kez okunmalı, tutarsızlık veya eksiklikler var ise giderilmelidir. 6-Rapor hazırlarken sanki konu ile ilgili bilgisi olmayan birine hazırlıyormuş gibi dikkatli olunmalıdır. 7-Rapor mutlaka yukarıda verilen formata uygun bir şekilde hiçbir bölüm atlanmadan tüm bölümlerin gerektirdiği bilgiler verilerek hazırlanmalıdır. İyi bir rapor İçin: Başlık -Basit, kısa, ilginç olmalıdır. -4-5 kelimeyi geçmemelidir. -Göz alıcı olmalıdır. -Gramer olarak doğru olmalıdır. -Buyurucu olmamalıdır. -Çalışma amacı ile uyumlu olmalıdır. -Çalışma düzenine işaret etmelidir. -Raporun konusunu (sonuçlarını değil) yansıtmalıdır. -Genelde kabul görmeyen kısaltma içermemelidir. Özet -İyi bir özet, özgün, raporu temsil eden ve laboratuar için uygun bir şekilde düzenlenmiş olmalıdır. -Birinci cümlede problemin tanımı yapılır. Amaçlar yeterince ve basitçe tanımlanır. -Sonra çalışmanın nasıl yürütüldüğü ve son olarak da önemli sonuçlar ve en önemli olarak da çıkarımlar tanımlanır. -Kısa olmalıdır: 100 kelime az 150 kelimeden çok olmamalı -Özette makale içinde kullanılan cümleleri aynen kullanmaktan kaçınmalıdır. -Özetin içine kısaltma, referans, şekil, tablo ve sitasyon konulmamalıdır. -Sonuna 3-10 adet anahtar kelime (key words) eklenmelidir. Giriş -İyi bir rapor giriş bölümü, okuyucucuda uyandırmayı hedefleyen "gökgürültüsü" şiddetinde olmalıdır (çoğu hocanızın, raporu en uygunsuz saatte, bir iş gününün sonunda, canı sıkkın, ön yargılı ve hatta uykulu olarak okuduğunu unutmayın). -Tarz olarak hayalperest, duygusal ve heyecanlı olunmalı ancak abartılı ve taklitçi olunmamalıdır. -İlk cümle çok önemlidir. Okuyucuyu kavramalıdır. -Önce, makalenin işaret edeceği problemin tanımına genel ama kısa bir yaklaşım yapılmalıdır. -Sonraki cümlelerde problemi ele almaya yardımcı olacak daha önceki çalışmalar tanımlanmalıdır. Materyel ve Metod -Materyel ve Metod, yazılması en kolay bölümdür, çünkü araştırma protokolü kapsamında, çalışma süresince ne yapıldıysa o yazılacaktır. -Ancak ilginçtir ki, bir raporun reddinin en önemli sebebi de zayıf ve/veya yetersiz bir Material ve Metod bölümüdür. Alt başlıklar -Çalışma türü: Retrospektif-Prospektif, Değişkenlerin tanımlanması, Veri toplanması, Çalışma yeri ayrıntılı olarak verilmelidir. -Çalışmaya alınma kriterleri (Eligibility): Hasta kaynağı, Çalışmaya alınma ve çalışma dışı bırakılma kriterleri (inclusion-exclusion criteria), Çalışmanın başlama ve bitiş tarihi detaylı olarak yazılmalıdır. -Randomizasyon ve Körleme (Randomization & Blinding): Randomizasyon ve körleme uygulandıysa detaylı açıklama yapılmalı, bilgilendirilmiş olurun (informed consent) alınıp alınmadığı belirtilmelidir. -Müdahele ve Uyum: İlaç-müdahalenin detayları, ilaç üretici firmanın detayları, klinik testlerin detayları verilmelidir. -Hedeflerin tanımı ve değerlendirilme yöntemleri açıkça yazılmalıdır. -Denek büyüklüğü ve Güç (sample size ve power) hesaplamaları açıkça belirtilmelidir. -İstatistik analiz: Uygun analiz kullanılmalı, bias'dan kaçınılmalı, tüm istatistik yöntemler açıkça yazılmalı, yeterince detaylı ancak uzun olmadan, tekrarlanabilen (reproducible) ayrıntılar verilmelidir. Sonuçlar -Birinci cümlede "çalışmaya alınma kriterlerine" uyan ve çalışmada kullanılan obje hakkında bilgi verilmelidir. -Bulguların heyecanı olmalı, düz ve sıkıcı olmamalıdır. -Okuma kolaylığı açısından Sonuç bölümü alt başlıkları içermelidir. -Sonuçların verilme yeri Sonuç bölümüdür. Sonuçlarda bahsedilmeyen bir bulgu kesinlikle Tartışma da veya Özette verilmemelidir. -Önemli bulgular yazıya, sıkıcı ve yığın rakamlar, detaylar tabloya konmalıdır. -Basit, kolay okunabilen Tablo-Şekil kullanımı önemlidir. Rakam yığınları, tablolarda, ve ustaca düzenlenmiş, şık, anlaşılması kolay grafiklerde verilmelidir. -P değerlerinin mutlak değerleri verilmelidir (ör: p=0.043), p<0.05 ifadesini kullanmaktan kaçınılmalıdır. Eğer p değeri 0.001'den küçük ise p<0.001 olarak yazılabilir. -Sayısal ifadelerde virgülden sonra yazılacak anlamlı rakam sayısı belirlenmeli (1, 2 veya 3) ve tüm yazı boyunca aynı olmasına dikkat edilmelidir (ör: 7.4, 7.43 veya 7.429). Tablolar -Tablolar sayılarla dolu ve karışık olmamalı, basit ve kolay anlaşılır olmalıdır. -Yazı içinde ve Tablodaki veriler birbirini tekrarlamamalıdır. -Tablo açıklamaları uygun olmalıdır -Bağımlı değişkenler sütunlarda, bağımsız değişkenler satırlarda yer almalıdır. -Her değişken için birim tanımlanmış olmalıdır. -Değerlerin yuvarlanması (anlamlı rakam) uygun yapılmış olmalıdır. -Kesin p değerlerini içermelidir. -Tabloda kısaltma kullanmakdan kaçınılmalı, eğer muhakkak kullanılması gerekiyorsa dipnotta belirtilmelidir. -Dipnotlara işaretler belirli sırada konulmalıdır: *, †, ‡, §, ¦, , **, ††, ‡‡, §§, ¦¦, -Çift aralıklı olmalıdır. -Vertikal çizgi olmamalıdır. Şekil-Grafik -Çoğu okuyucu, sayfalarca yazı yerine öncelikle ve sadece Şekillere bakmayı tercih eder. Tüm alt yazılarda tür cins isimlerine gereken dikkat verilmelidir. -Şekiller de, Tablo'da olduğu gibi yazının içinde verilmemiş bilgiyi göstermelidir. -Hangi tip veriye hangi grafiğin uygun olacağının seçilmesi kritiktir. Sanatçı titizliği gerektirir. -Birçok çeşitli şekil vardır: Grafik, Diagram, Akış şeması, Fotoğraf, Radyolojik görüntü, Mikrografi, Anatomik çizimler, Aile ağacı v.b. -Grafik çizimler: Bar, Pie, Çizgi, Scatterplot, Histogram. Multivariate analizler için 2 boyutlu bar grafik, Etkileşim grafiği için 3 boyutlu etkileşim grafiği. -Akış şeması (flow-chart) çalışmanın yürütülmesini anlaşılır kılmak için yapılır. -Dağılım (scatter) grafiği iki sürekli değişkenin ilişkisini gösterir. -Histogram tek bir değişkenin dağılımını gösterir -X axis'de bağımsız, Y axis'de bağımlı değişken olmalıdır. -Kolay okunabilir olması için çizgiler kalın ve yazılar büyük puntoda olmalıdır. -Aks etiketi (axis label) anlaşılması kolay olmalıdır. -Şekil başlığı (figure legend) ayrıntılı, kolay anlaşılabilir olmalıdır. -Şekillerin arka sayfasına üst tarafı işaret eden "­ Top" ifadesi eklenmelidir. Tartışma -Giriş/Sonuç/Tartışma'da tekrardan kaçınılmalıdır. -Çalışmanın ön sonuç mu yoksa kesin sonuç mu olduğu ilk fırsatta belirtilmelidir. -Tartışma, yazının yeni bir bulgu sunduğuna dair bir cümle ile başlamalıdır. -Kesinlikle sıkıcı tarih dersi ile başlamamalıdır. -Tartışma, sonuçların yorumlandığı ve daha önce yayımlanan yayınlar ile karşılaştırıldığı yerdir. Sonuçlarda verilmeyen hiçbir bulgu Tartışmaya konmamalıdır. -Okuyucunun "bu yazıda yeni bir şey yok" demesine izin verilmemelidir. Orijinal olmayan, tahmin edilebilen ve bulgularla desteklenmeyen çıkarımlar, raporun değerini azaltır. -Okuyucu ile tartışıyor gibi yazılmalıdır. Hataları ve eksikleri kabul etmeye hazır olunmalı ve mütevazi olmaya özen gösterilmelidir. -Tartışma gereğinden fazla uzatılmamalıdır. Kelime salatasından kaçılmalıdır. -Şüpheli ifadeler içeren bölümler yazıdan çıkarılmalı. -Spekülasyondan kaçınılmalı, ancak yapılması gerekiyorsa zekice yapılmalıdır. -Sonuçlarına alternatif açıklamalar bulunmalıdır (şeytanın avukatlığı yapılmalıdır). Okuyucu kandırmaya çalışmamalı, ve gerekirse itirafda bulunulmalı (çalışmanın kısıtlılığı, henüz açık olmayan problemleri işaret eden yorumlar, v.b.) ancak teslim bayrağı da çekilmemelidir. -En büyük kozlardan biri daha önce yayınlanmış yazılardaki metodolojik hatalar, eksiklikler ve zaaflardır. Bunlar dikkatle bulunup tartışılmalıdır. Öngörülmeyen ama bulunan sürpriz sonuçların tartışılması unutulmamalıdır. -Çıkarımlar (Conclusions) -İyi bir araştırma makalesi "gökgürültüsü" ile başlayıp "şimşekle" bitmelidir. -Böylece, yazının sonunda okuyucunun kafasında ışıklar belirmesi sağlanmalıdır. Çıkarımlar açık, kesin, haddini aşmayan, sonuçlar ile tamamen uyumlu, ve çarpıcı olmalıdır. -Ancak unutmayın ki sonuçlar ile desteklenmeyen çıkarımlar, makalenin reddi için en önemli sebeplerinden biridir. -Okuyucunun her an "eee nolmuş yani" sorusu ile karşılaşacağınız unutulmamalıdır. -Bulduğunuz sonuçların ışığında ileri çalışmaların gerektiği durumlar sebepleri ile anlatılmalıdır. Kaynaklar -Referansların formata uygun olarak yazılması gereklidir. -Makale içi referans numaraları ile referansların sırasının kesinlikle tutarlı olması gerekir. Aksi durumda okuyucu raporunuz ve yazınız ile yeteri derece özenli olmadığınızı düşünebilirler. -İdeal referans sayısı 5-10 arasıdır. Çoğu zaman 5 üstünde referansı olmalıdır. Referansların sadece güncel olması değil o konuda yapılmış en önemli çalışmaları da (eski tarihli olsa da) içermesi gerektiğinden, kaynak seçiminin dikkatle yapılması gerekir. Referans sistemleri Referans çeşitleri Dergi makaleleri (Journal articles) -Standard dergi makalesi (journal article): Goate AM, Haynes IR, Owen MJ, et al. Predisposing locus for Alzheimer's disease on chromosome 2 Lancet 1989;1:352-5. Yazar bir kuruluş ise (organization as author): The Royal Marsden Hospital Bone Marrow Transplantation Team. Failure of syngeneic bone marrow graft without preconditioning in post hepatitis marrow aplasia. Lancet 1977;2:742-4. Yazar ismi verilmemişse (no author given): Coffee drinking and cancer for the pancreas (editorial). BMJ 1991;283:628. Yazı dergi ekinde (supplement) çıkmışsa: Magni F, Rossoni G, Berti F. BN-52021 protects guinea pig from heart anaphylaxis. Pharmacol Res Commun 1988;20 Suppl 5:75-8. Yazı dergi eki içeren bir sayıda çıkmışsa (issue with supplement): Gardos G, Cole JO, Haskell D, et al. The natural history of tardive dyskinesia. J Clin Psychopharmacol 1988;8(4 Suppl):31S-37S. Yazı bölümlü ciltte çıkmışsa (volume with part): Hanly C. Metaphysics and innateness: a psychoanalytic perspective. Int J Psychoanal 1988;69(Pt 3):389-99. Yazı bölümlü sayıda çıkmışsa (issue with part): Edwards L, Meyskens F, Levine N. Effect of oral isotretinoin on dysplastic nevi. J Am Acad Dermatol 1989;20(2 Pt 1):257-60. Yazı cilt numarası olmayan sayıda çıkmışsa (issue with no volume): Baumeister A. Origins and control of stereotyped movements. Monogr Am Assoc Ment Defic 1978;(3):353-84. Yazıda sayı ve cilt numarası yoksa (no issue or volume): Donoek K. Skiing in and through the history of medicine. Nord Medicinhist Arsb 1982;86-100. Kitap ve Diğer Monograflar (books and other monographs) Sadece yazar (personal authors): Colson JH, Armour WJ. Sports injuries and their treatment. 2nd rev. ed. London: S. Paul, 1986. Editör(ler)in yazar olması (editor(s), compiler as author): Diener HL, Wilkinson M, editors. Drug induced headache. New York: Springer-Verlag, 1988. Bir kuruluşun yazar ve basımcı olması (organization as author and publisher): Virginia Law Foundation. The medical and legal implications of AIDS. Charlottesville: The Foundation, 1987. Kitap bölümü (chapter in a book): Weinstein L, Swartz MN. Pathologic properties of invading microorganisms. In: Sodeman WA Jr. Sodeman WA, editors. Pathologic physiology: mechanisms of disease. Philadelphia: Saunders, 1974;457-72. Konferans tebliğleri (conference proceedings): Vivian VL, editor. Child abuse and neglect: a medical community response. Proceedings of the First AMA National Conference on Child Abuse and Neglect; 1984 Mar 30-31; Chicago.: American Medical Association, 1985. Konferans makalesi (conference paper): Harley NH. Comparing radon daughter dosimetric and risk models. In: Gammage RB, Kaye SV, editors. Indoor air and human health. Proceedings of the Seventh Life Sciences Symposium; 1984 Oct 29-31; Knoxville (TN). Chelsea (MI): Lewis, 1985;69-78. Bilimsel ve teknik rapor (scientific and technical report): Akutsu T. Total heart replacement device. Bethesda (MD): National Institutes of Health, National Heart and Lung Institute; 1974 Apr. Report No.: NIH-NHLI-69-2185-4. İnternet kaynakları 1. WWW (World Wide Web) sayfaları "www" kısaltması ile elde edilen dökümanlar özelliklerine göre aşağıdaki gibi refere edilirler: Dosya dökümanları; *yazar adı (eğer verilmişse) açık olarak verilir. *www ortamına giriliş tarihi ya da son revizyon tarihi (eğer verilmişse) parantez içinde verilir. *belgenin adı açık olarak verilir. *tüm çalışmanın adı (eğer veriliyorsa) altı çizilerek verilir. *URL (tüm adres) köşeli parantez "<" ve ">" içinde verilir. *belgenin kullanım tarihi (parantez içinde) verilir. Örnekler: Kişisel sayfalar: Pellegrino, J. (1997, September 24). Homepage. <www.english.eku.edu/PELLEGRI /personal.htm> (1997, November 12). Genel web sayfası: Harris, J. G. (1997, April 19). The return of the witch hunts. Witchhunt Information Page. <liquid2-sun.mit.edu/fells .short.html> (1997, November 19). Shade, L. R. (1994, February 14). Gender issues in computer networking. <www.mit.edu :8001/people/sorokin/women/lrs.html> (1997, November 26). Kitaplar Darwin, C. (1845; 1997, June). The voyage of the Beagle. Project Gutenberg. <ftp://uiarchive.cso.uiuc.edu/pub/etext /gutenberg/etext97/vbgle10.txt> (1997, October 1). Elektronik dergiden bir makale veya derleme (ejournal) Browning, T. (1997). Embedded visuals: Student design in Web spaces. Kairos: A Journal for Teachers of Writing in Webbed Environments, 3(1). <www.as.ttu.edu /kairos/2.1/features/browning/index.html> (1997, October 21). Elektronik magazinden bir makale veya derleme (ezine) Myhrvold, N. (1997, June 12). Confessions of a cybershaman. Slate. <www.slate.com /CriticalMass/97-06-12/CriticalMass.asp> (1997, October 19). Devlet yayın ve raporları Bush, G. (1989, April 12). Principles of ethical conduct for government officers and employees. Exec. Order No. 12674. Pt. 1. <www.usoge.gov/exorders/eo12674 .html> (1997, November 18). 2. e-mail mesajları Kişisel konuşma niteliğinde olan, dolayısı ile başka araştırıcılar tarafından elde edilmesi mümkün olmayan e-mail mesajlarının kaynaklar bölümünde verilmesine olumlu yaklaşılmamaktadır. Bunun yerine, bu tip mesajlardan elde edilen bilgiler kişisel konuşma olarak (pers. comm.) kaynaklar bölümünde verilmeden metin içinde sunulabilirler. Ancak, dünya genelinde, konularında otorite olan ve tanınan bilim adamları ile yapılan üst düzeyli e-mail görüşmelerinin kaynaklar bölümünde verilebilmesi mümkündür. Bu durumda, şu kurallara uyulmalıdır. *yazar adı (eğer biliniyorsa) *yazarın e-mail adresi, altı çizili olarak, köşeli parantezler içinde verilir. *yayın tarihi, parantezler içinde verilir. *mesajdaki "subject" satırı verilir. *iletişimin tipi verilir (kişisel e-mail mesajları, genel dağıtım sitesi e-mail mesajları, iş görüşmesi e-mail mesajları), kareli parantezler içinde verilir. *görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnekler Franke, N. <franke1@llnl.gov> (1996, April 29). SoundApp 2.0.2 [Personal email]. (1996, May 3). Robinette, D. <robinetted@ccmail.gate.eku.edu> (1996, April 30). Epiphany project [Office communication]. (1996, May 23). 3. "Web discussion forum" gönderimleri Web tartışma forumlarından gönderilen dökümanların kaynaklar bölümünde verilmesi için aşağıdaki bilgilerin sağlanması gereklidir. *yazar adı *yazarın e-mail adresi, altı çizili olarak, köşeli parantezler içinde verilir. *yayın tarihi, parantezler içinde verilmelidir. *mesajdaki "subject" satırı ya da postalamada kullanılan başlık (title) verilir. *mesajın tipi eğer uygunsa, kareli parantezler içinde verilir. *URL, altı çizili olarak, köşeli parantezler içinde verilir. *görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnekler LaLiberte, D. <liberte@ncsa.uiuc.edu> (1996, May 23). HyperNews instructions. < http://union .ncsa.uiuc.edu/HyperNews/get/hypernews /instructions.html > (1996, May 24). Saffran, A. <saffran@wisbar.org> (1996, January 5). It's not that hard [Reply to HyperNews instructions, by D. LaLiberte]. <http:// union.ncsa.uiuc.edu/HyperNews/get/hypernews /instructions/90/1/1.html> (1996, May 24). 4. Listserv mesajları Bir listserv mesajını dökümanlamak için şu bilgiler sağlanır. *yazar adı (eğer biliniyorsa) *yazarın e-mail adresi, altı çizilerek, köşeli parantezler içinde verilir. *yayın tarihi, parantezler içinde verilir. *mesajdaki "subject" satırı verilir. *listserv ın adresi, altı çizilerek, köşeli parantezler içinde verilir. * görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnek Parente, V. <vrparent@mailbox.syr.edu> (1996, May 27). On expectations of class participation. <philosed@sued.syr.edu> (1996, May 29). Bir "list server" ya da bir "web address" inden alınabilen bir dosyayı dokümanlamak için şu bilgilere gereksinim vardır. *listserv adresi, köşeli parantezler içinde verilir. *listenin yer aldığı arşiv için ya da URL için adres, köşeli parantezler içinde verilir. * görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnek Carbone, N. <nickc@english.umass.edu> (1996, January 26). NN 960126: Followup to Don's comments about citing URLs. <acw-l@uni corn.acs.ttu.edu> via <www.ttu .edu/lists/acw-l> (1996, February 17). 5. Haber grupları mesajı (newsgroup message) Bir haber grubu mesajından elde edilen bilginin dökümanlanması için şu bilgiler gereklidir. *yazar adı (eğer biliniyorsa) *yazarın e-mail adresi, altı çizilerek, köşeli parantezler içinde verilir. *yayın tarihi, parantezler içinde verilir. *mesajdaki "subject" satırı verilir. *haber grubunun adı, köşeli parantezler içinde verilir. * görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnek Slade, R. <res@maths.bath.ac.uk> (1996, March 26). UNIX made easy. <alt.books.reviews> (1996, March 31). Eğer, tüm çabalara rağmen yazarın adı temin edilemezse, yazarın e-mail adresi kullanılır. Bu durumda, kaynaklar bölümündeki alfabetik sıralamada yazarın e-mail adresindeki ilk harf esas alınır. Örnek <lrm583@aol.com> (1996, May 26). Thinking of adoption. <alt.adoption> (1996, May 29). 6. Anlık görüşme (real-time communication) MOO, MUD, IRC ve ICQ gibi bir karşılıklı anlık görüşme bilgisinin dökümanlanması için aşağıdaki bilgiler gereklidir. *Konuşmacı veya konuşmacıların isimleri (eğer biliniyorsa) ya da site adı. *konuşmanın tarihi, parantezler içinde verilir. *konuşmanın adı (eğer uygunsa). *bağlantını tipi (grup tartışması, kişisel görüş bildirimi) *URL yada komut satırı yönelimleri ile adres, açılı parantezler içinde verilir. * görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnekler LambdaMOO. (1996, May 28). Seminar discussion on netiquette. <telnet://lambda.parc .xerox.edu:8888> (1996, May 28). Harnack, A. (1996, April 4). Words. [Group discussion]. telnet moo.du.org/port=8888 (1996, April 5). 7. Telnet bildirimleri Bir telnet sitesinin ya da telnet'ten elde edilebilecek bir dosyanın döküman haline getirilebilmesi için, aşağıdaki bilgilere gerek vardır. * yazar adı (eğer biliniyorsa) verilir. *yayın tarihi (eğer biliniyorsa), parantezler içinde verilir. *dökümanın adı (eğer biliniyorsa) verilir.. *tüm çalışmanın adı.(eğer temin edilebiliyorsa) altı çizili (italik) olarak verilir. *telnet kelimesi verilir. *boşluk bırakmadan tüm telnet adresi verilir. *dökümanın kullanımındaki yönelimler verilir. * uygulamanın gerçekleşme tarihi, parantezler içinde verilir. Örnekler Aquatic Conservation Network. (n.d.). About the Aquatic Conservation Network. National Capital Freenet. telnet freenet.carleton .ca login as guest, go acn, press 1 (1996, May 28). California Department of Pesticide Regulation. (n.d.). Pest management information. CSU Fresno ATI-NET. telnet caticsuf.csufres no.edu login as super, press a, press k (1996, May 28). 8. FTP bildirimleri Dosya nakil protokolü (file transfer protocol) ile yüklenebilen dosyaların dökümanlanması için gerekli bilgiler aşağıdaki gibidir. * yazar adı (eğer biliniyorsa) verilir. *yayın tarihi (eğer biliniyorsa), parantezler içinde verilir. *dökümanın adı (eğer biliniyorsa) verilir.. *herhangi bir basılmış yayın bilgisi, altı çizilerek verilir. *ftp kısaltması verilir. *FTP sitesinin adresi verilir. *dökümanın bulunabilmesi için tüm geçilen yollar verilir. * uygulamanın gerçekleşme tarihi, parantezler içinde verilir Örnekler Altar, T. W. (1993, January 14). Vitamin B12 and vegans. ftp://wiretap.spies.com Library /Article/Food/b12.txt (1996, May 28). Fukuyama, F. (1993, May). Immigrants and family values. <ftp://heather.cs.ucdavis.edu/pub /Immigration/Index.html> (1997, November 19). U.S. Senate. (1997, January 21). Safe and Affordable Schools Act of 1997. Cong. Rec. <ftp://ftp.loc.gov/pub/thomas/c105/s1.is .txt> (1997, October 21. 9. Gopher bildirimleri Gopher araştırma protokolü (gopher search protocol) kullanılarak temin edilen bilgilerin dökümanlanması için aşağıdaki bilgiler gereklidir. * yazar adı (eğer biliniyorsa) verilir. *yayın tarihi (eğer biliniyorsa), parantezler içinde verilir. *dökümanın adı verilir.. *herhangi bir basılmış yayın bilgisi, altı çizilerek verilir. *URL, köşeli parantezler içinde verilir. * uygulamanın gerçekleşme tarihi, parantezler içinde verilir Örnek Smith, C. A. (1994). National extension model of critical parenting practices. <gopher://tinman.mes.umn.edu:4242/11/Other/Other/NEM_Parent> (1996, May 28). Gopher komutlarını kullanarak ulaşılan bir bilgi bölgesinin dökümanlanması için aşağıdaki bilgilerin temini gereklidir. *gopher kelimesi verilir. *site adı verilir *tüm menü seçimlerini içeren yollar ile ilgili komutlar bildirilir. Örnek Association for Progressive Communications. (1997, March). About the APC. <gopher://gopher/humanrights.org. About IGC Networks/Association for Progressive Communications/About the APC (1997, December 11). 10. Bağlantılı veri dökümantasyonu (Linkage data) Daha büyük bir web sayfasından bağlantı kurulan (links) başka sayfaların kaynaklarda kullanılması için aşağıdaki bilgiler gereklidir. * yazar adı (eğer biliniyorsa) verilir. *yayın tarihi (eğer biliniyorsa), parantezler içinde verilir. *dökümanın adı verilir.. *Bağlantının sağlandığı ana sayfanın adı lnk. ("linked from") kısaltması ile italik olarak verilir. *Dosyaya bağlanılan dökümanın başlığı verilir. *Ek bağlantı detayları (eğer mümkünse) verilir. *herhangi bir basılmış yayın bilgisi, altı çizilerek verilir. *URL, kaynak döküman için, köşeli parantezler içinde verilir. * uygulamanın gerçekleşme tarihi, parantezler içinde verilir Örnekler Miller, A. (n.d.). Allison Miller's home page. Lkd. EKU Honors Program Home Page, at "Personal Pages." <www.csc.eku .edu/honors> (1996, April 2). Teague, J. C. (1997, March 11). Frames in action. Lkd. Kairos: A Journal for Teachers of Writing in Webbed Environments at "Cover Web: Tenure and Techno-logy." <english.ttu.edu/kairos/2.1> (1997, November 19). Hazırlayan Arş. Gör. Dr. Utku Güner Trakya Üniversitesi Fen- Edebiyat Fakültesi Biyoloji Bölümü Kaynak: trakya.edu.tr

http://www.biyologlar.com/genel-biyoloji-laboratuar-rapor-hazirlama-formati

HERBARYUM TEKNİKLERİ

Herbaryum en kısa ve açık tanımı ile, sıkıştırılarak kurutulmuş bitki ömekleri kolleksiyonudur. Ancak bu ömeklerin, kabul edilmiş belli bir sınıflandırma sistemine göre düzenlenmiş ve bilimsel araştırmalara ışık tutucu olabilmesi için, belirli yöntemler ve tekniklere göre toplanmış olması gerekmektedir. Bu bilgilerin ışığı altında oluşturulmuş bir herbaryum biyoloji, tıp, eczacılık, ziraat ve daha değişik bir çok konularda çalışacaklara bir danışma, dökümantasyon merkezi olarak temel bir kaynak niteliğindedir. Bu nitelikteki herbaryumlar aynı zamanda öğretim ve araştırma merkezleri olarak görev yaparlar. Son kayıtlara göre, bitkilerin kuru örnekler olarak kartonlara yapıştırılıp saklanmasını ilk kez Lucca Ghini (1490-1556) uygulamıştır. Arber (1938) göre, Ghini herbaryum yapma tekniğini başlatan kişidir. Bu teknik Avrupa'ya öğrencileri tarafından yayılmıştır. Linneaus devrine kadar yapılmış olan herbaryumlar bir kartona yapıştırılır ve ciltlenerek raflarda dikey olarak saklanırlardı. Linneaus bu herbaryum yapma tekniğinden ayrılarak bitkilerin yapıştırıldığı kartonları tek tek ve yatay olarak saklanması yöntemini başlatmıştır. İlk araştırıcılar önce örnekleri kendi kolleksiyonlarında biriktirmeye başlamışlar ve bu birikimlerin sonucunda diğer herbaryum merkezleri ile örnek değişimlerine girişmişlerdir. Bu şekilde yapılan değiştirmeler, toplanan örneklerin değişik herbaryum merkezlerinde saklanmasını sağlamış ve bunun sonucunda yangın, böcek, bakımsızlık ve hatta savaş sonucunda bile olsa tüm örneklerin yok olması önlenerek, birçok degerli kolleksiyonun günümüze kadar ulaşması sagıanmıştır. Örnegin: Berlin-Dahlem herbaryumu 1943 yılında II.Dünya Savaşında müttefik kuvvetlerce bombalanrnış ve 4 milyondan fazla bitki örnegi büyük zarar görmüştür. Yalnızca degişime giden veya başka araştırma merkezlerinde üzerinde çalışılan herbaryum örnekleri kurtulabilmiştir. Herbaryumlar, kişisel, özel kuruluşlara veya araştırma enstitülerine, üniversitelere, doga tarihi müzeleri gibi devlet kurumlarına ait olabilirler. Ayrıca ulusal veya uluslararası nitelikte de olabilirler. Çok çeşitli olan bu herbaryumların degişik amaçları bulunmaktadır. Kişisel herbaryumlar bir merak nedeni ile başlayabildigi gibi, çok seyahat eden ve bir çok kimsenin gitmediği yerlere gidebilen bitkibilimci, yerbilimci, cografyacı, dağcı, denizci ve doğa sever kimselerin topladıkları örneklerden oluşmaktadır. Bu herbaryumlar ulusal herbaryumlara hediye edilerek, o herbaryumun içine yerleştirilmekte veya toplayan kişinin adı altında özel bir bölümde saklanmaktadırlar. Örnegin: Linne, Boissier, Huber-Morath herbaryumları gibi. Özel kuruluşlar ise yalnız çalıştıkları konu ile ilgili bitki örnekleri toplayıp herbaryumlarını kurarlar. Özellikle ham madde üreten ilaç ve kozmetik fabrikaları bu tip herbaryumlara sahiptirler. Araştırma enstitüleri çalışmalarının daha verimli olabilmesi için, konuları ile ilgili tüm örnekleri toplamaya ve herbaryumları kurmaya özen gösterirler. Örnegin: Ormancılık Araştırma Enstitüsü (ANKO), Şeker Pancarı Araştırma Enstitüsü (ANŞK) gibi. Üniversite herbaryumları değişik amaçlar için kurulabilir. Üniversitenin bulundugu bölgenin bitkilerini veya o üniversitenin araştırma yaptığı bir yörenin bitkilerini toplayarak herbaryumları kurabilirler. Önceleri yöresindeki bitkileri toplayarak herbaryumlarını kuran üniversiteler daha da genişleyerek tüm ülkenin bitkilerini kapsayan zengin bir herbaryuma sahip olabilirler. Ülkenin degişik bölgelerine dagılmış üniversitelerin kurmuş oldukları bu herbaryumlar ileride kurulacak ulusal bir herbaryumun temelini oluştururlar. Bunun yanında üniversitelerde konuları ile ilgili bitkileri toplayan değişik fakülte ve bölümlere ait herbaryumlar da bulunur. Orman fakültesinde ormanlarımızı oluşturan bitkilerin herbaryumu, Eczacılık fakültesinde tıbbi ve zehirli bitkiler herbaryumu, Deniz bilimleri bölümünde alg herbaryumu, Mikoloji bölümünde mantar herbaryumu gibi. Populasyon çalışması yapan araştırmacılar ise aynı bitki türünden çok sayıda örnek toplayarak herbaryum kurabilirler. Bu tip herbaryumlara Ekolojik Herbaryum adı verilir. Ulusal herbaryumlar kendi ülkelerinin tüm bitkilerini bulundurarak, o ülkede yapılan flora çalışmalarında baş vurulacak ana bilgi kaynagını oluştururlar. Uluslararası herbaryumlar ise bir kıt'a, bir cografik bölge veya tüm dünya bitkilerini kolleksiyorılarında bulundurma çalışması içindedirler. Bu nedenle diğer ülkelerin ulusal veya üniversite herbaryumları ile sıkı bir işbirliği içinde bulunurlar. Herbaryumlardaki bitki örneği sayısı çoğaldıkça, sorunlar da doğal olarak büyür. Örnekleri yerleştirileceği dolaplar, korunması yönünden uygulanacak yöntemler, tayinleri için yapılacak bilimsel çalışmalar, dış ülkelerdeki herbaryum merkezleri ile yapılacak örnek değişimleri gibi işleri yürütecek bilim adamlarına, uzman, teknisyen gibi elemanlara gereksinim vardır. Günümüzde çalışan herbaryumlara gelince, en eskilerinden biri 1588-1589 yılları arasında kurulan İsviçre, Basel Üniversitesi Botanik Enstitüsü Herbaryumudur. Paris Milli İlimler Müzesi 1635, Toriru Üniversitesi Botanik Enstitüsü Herbaryumu 1729, Viyana Tabii İlimler Müzesi Herbaryumu 1748 yıllannda kurulmuşlardır. Radford (1974) çeşitli enstitüler tarafından rapor edilen 148 milyon Herbaryum örneğine karşın bu sayının 250 milyon olabileceğini tahmin etmektedir. 70 milyonu Avrupa, 36 milyonu Kuzey Amerika herbaryumlannda, geri kalanların ise diğer ülkelerdeki herbaryumlarda olabileceği düşünülmektedir. İngiltere'nin Kew (Kodu K), S.S.C. Birliğinin Leningrad (Kodu LE). Fransa'nın Paris (Kodu P) ve Lyon (Kodu LY), İsviçre'nin Cenevre (Kodu G) herbaryumlan içerdikleri tür sayısı bakımından dünyanın en zengin herbaryumlan arasındadır. Yurdumuzda bulunan en eski herbaryumlar, yabancı okullar tarafından küçük müzeler halinde kurulmuşlardır. Istanbul Sankt Georg Avusturya Lisesi, Saint Benoit Fransız Erkek Lisesi ve Robert Koleji Herbaryumunu sayabiliriz. Bilimsel olarak herbaryum kurulması 1933 Üniversite reformu ile başlamıştır. İstanbul Üniversitesinde Prof. Dr. Alfred Heilbron ve Ankara'da Yüksek Ziraat Enstitüsünde Prof.Dr. Kurt Krause tarafından kurulan herbaryumlar bu konudaki çalışmaların başlangıcı sayılmaktadır. Yurdumuzdaki herbaryumlan iki grupta toplayabiliriz. Üniversiteye bağlı herbaryumlar Araştırma Kurumlarına bağlı herbaryumlar Üniversiteye bağlı çalışan herbaryumlar ve kodları: 1.1. İstanbul Üniv. Fen Fak. Herbaryumu (ISTF) 1.2. İstanbul Üniv. Ecz. Fak. Herbaryumu (ISTE) 1.3. İstanbul Üniv. Orman Fak. Herbaryumu (ISTO) 1.4. Ankara Üniv. Fen Fak. Herbaryumu (ANK) 1.5. Ege Üniv. Fen Fak. Herbaryumu (EGE) 1.6. Hacettepe Üniv. Fen Fak. Herbaryumu (HUB) 1.7. Atatürk Üniv. Fen Fak. Herbaryumu (ATA) 1.8. Selçuk Üniv. Fen-Edebiyat Fak. Herbaryumu 1.9. Karadeniz Teknik Üniv. Orman Fak. Herbaryumu 1.10. Fırat Üniv. Fen-Edebiyat Fak. Herbaryumu 1.11. Ege Üniv. Ecz.Fak. Herbaryumu (IZEF) Araştırma Kuruluşlanna Bağlı Herbaryumlar 2.1. Ankara Ormancılık Araştırma Enst. Herbaryumu (ANKO) 2.2. Ankara Şeker Pancan Araştırma Enst. Herbaryumu (ANKŞ) 2.3. Bornova Zirai Mücadele Enst. Herbaryumu. İzmir 2.4. Devlet Su İşleri (DSİ) Araştırma Merkezi Md.lüğü Herbaryumu. Ankara Tüm bu herbaryumlardaki bitki sayısı kesin olarak bilinmemekle beraber 200.000 kadar bitki örneği olduğu sanılmaktadır. 1. Çiçekli Bitkilerin Herbaryumu Herbaryuma girecek bitki örneklerini doğadan toplarken, bilimsel bir çalışmaya ve araştırmaya yararlı olabileceği düşünülerek, örnekler dikkatlice toplanmalıdır. Diğer önemli bir konu ise bu örneklerden uzun yıllar yararlanabilmek için, belirli yöntemler uygulanarak herbaryum merkezlerinde saklanmaları konusudur. Doğadan canlı olarak toplanan her bitki örneğinin bir hacmi vardır. Bu nedenle toplanan bitkiler belli bir teknik uygulanarak yassılaştınlır ve kurutulur. Kurutulan bu örnekler herbaryum kartonlarına yapıştınlır ve uzun yıllar yararlı olabilmeleri için dolaplarda korunmaya alınır. Her bölgenin kendine özgü doğal koşulları vardır. Deniz kıyısından başlayarak yükseklere doğru tırmanıldığında görüleceği gibi, her kuşak ayrı bir özellik gösterir. Bu doğa koşullarında bulunan bitki toplulukları da birbirlerinden farklı zamanlarda çiçeklenecekleri için, değişik bir görünüm içindedirler. Araştırıcılar ve doğa severler bu koşulları göz önünde tutarak, çalışma programlarını ona göre yapmalıdırlar. Örneğin: Akdeniz ikliminin egemen olduğu kıyı kesimlerde ilkbahar ve yaz başları bitki toplamak için en uygun zamanlardır. Yazın sıcak aylarında bitkiler kuruduğu için, flora geçmiş olacaktır. Ancak, bu sırada yüksek dağlardaki flora kar ve serin rüzgarların etkisi ile çok zengindir. İlkbaharın ilk aylannda çalışmaya deniz kıyısından başlayıp, yaz ortalarında yüksek dağlarda ve yaylalarda devam edilirse gelişmeleri daha iyi izlenebilir ve zengin bir bitki kolleksiyonuna sahip olunabilir. Çevremizde gözlediğimiz gibi, yerleşim merkezlerinin bulunduğu bölgelerde bitkiler genellikle değişik nedenlerle yok edilmişlerdir. Yerleşim merkezlerinden uzak, toprak ve coğrafik yapısı değişik olan bölgeler, yüksek dağlar ve yaylalar, dik yamaçlar, bataklıklar, göller, ekim-dikim yapılmamış kültür arazileri flora yönünden çok zengin oldukları için araştırıcıların ilgisini çekmişlerdir. Bu çalışma bölgelerine aynı mevsimin değişik zamanlarında ve ayrı mevsimlerde bir kaç kez gidilirse tüm bitkilerin toplanması mümkündür. Büyük topluluk meydana getiren bitkiler, o toplulukların altında yetişen tek yıllık otsu ve yarı çalımsı bitkiler ve çalışma bölgesindeki taşlık, çayır, yamaç, dere kenarı, su içi, orman altı, kumluk v.b. gibi değişik habitatlarda bulunan bitkilerin, o bölgenin florasının tanımlanması bakımından kesinlikle toplanması gerekmektedir. Bu çalışmaların sonucunda toplanan bitki örneklerinden bilimsel araştırmalara ve çalışmalara büyük katkıları olan herbaryum merkezleri kurulur. Her zaman yararlanabileceğimiz bir herbaryumun kurulabilmesi iki aşamada gerçekleşir. Bitkilerin, ileride yapılacak bilimsel çalışmalara yararlı olabilmesi için belli bilgilerin ışığı altında toplanması, kurutulması ve etiketlenmesi. Toplanan bu bitkilerden uzun yıllar yararlanmak ve varlıklarının sürekliliğini sağlamak için belli teknikler kullanılarak saklanması. 1.1. Bitki Toplanması, Kurutulması ve Etiketlenmesi Bitkilerin, gelecekte yapılacak bilimsel çalışmalara yararlı olabilmesi için toplanması, kurutulması ve etiketlenmesi aşamasını dört bölüm altında inceleyebiliriz. 1.1.1. Toplamada Gerekli Olan Malzemeler Arazide çalışma sırasında kullanacağımız, ortaboyda, sağlam ve kullanışlı bir not defteri. El büyüteci. x6 veya xl0 büyütmeli olanlar kullanışlıdır. Bir ipe geçirilmiş ve boynumuzda taşınabilecek büyüklükte (Şekil I.a). Topladığımız bitkileri içersine koyacağımız plastik torba veya metal çantalar (Şekil I.b). 45 x 30 cm. boyutlannda tahtadan veya metalden yapılmış değişik tipte presler. Kafes şeklinde ve sağlam olarak yapılmış ağaç presler hafif olduğu için daha kullanışlıdır (Şekil I.c.). Presleri sıkmak için örgü kemerler daha kullanışlıdır. Deri kemerler kuru ve sıcak havalarda çatlayacağı için kısa ömürlü olurlar. Bel kayışında kullanılan tipte olan tokalar arazide kırıldığı zaman onarılmaz ve bu nedenle kullanışsızdır. Aynı büyüklükte çelikten yapılmış iki halkayı kemerin uç kısmına dikerek çok kullanışlı bir kemer tokası yapılabilir (Şekil I.d.). Bitkileri topraktan sökmek için çelikten yapılmış zıpkın, çapa veya kazma kullanılır (Şekil I.e). Sert ve kuru topraklarda zıpkın pek kullanışlı değildir. Dağ kazması en kullanışlısıdır. Zıpkın 45 cm. Uzunluğunda, 2.94 cm. çapında ve 3 rnrn. kalınlığında bir borudan yapılabilir. Boru, boyuna olarak ortadan 30 cm. kesilir ve 15 cm.'de sap bırakılır. 45 cm. uzunluğundaki bir borudan iki zıpkın elde edilebilmektedir. Preste kurutma kağıdı olarak kullanılacak en iyi kağıt kaba samanlı beyaz kağıtdır. Ancak gazete kağıtlanda kullanılabilir. Kurutma kağıtlan (papya) ve gazete kağıtlan 44 x 28 cm. boyutlannda olup presten biraz küçük olmalıdırlar. Altimetre. Bitkilerin toplandığı yükseklikleri saptamak için gereklidir (Şekil I.f). Araştırmaya başlamadan önce altimetre yüksekligi bilinen bir yere göre ayarlanmalıdır ve araştırma boyunca doğruluğu sık sık kontrol edilmelidir. Ömeğin: Haritada yüksekliğini okuyabildiğimiz bir göl, karayolları trafık işaretleri veya tren istasyonlarındaki levhalardan okunabilir. Dürbün. Büyük ve ağır olmayan ancak büyütmesi iyi olan bir dürbün, bitki ömeklerini yamaçlarda ve vadilerde gözlemek ve tanımak bakımından toplamada zaman kazandıracağı için çok kullanışlıdır. Kaya yamaçlarından, ağaçlardan ve boyumuzun yetişemediği yerlerden bitki ömeklerini almak için çelikten yapılmış, eklenerek uzatılan ve ucunda kesici bulunan (çakı, bıçak v.b. gibi) bir alette kullanılabilir (Şekil I.g.). Plastik şişe veya kavanozlar. Toplanan tohumlan koyabileceğimiz kağıt zarflar. Çalışılacak bölgenin haritası. Pusula. Şekil 1: Bitki toplamada gerekli olan malzameler: a- el büyüteci, b- metal çanta, c- değişik tipte presler, d- kemer tokaları, e- zıpkın ve çapa, f- altimetre, g- dal kesme gereci. 1.1.2. Toplamada Bilinmesi Gereken Bilgiler ve Teknikler Bildiğimiz gibi doğada değişik özellikleri olan birçok familya ve bu familyalara ait değişik cins ve cinslerden çok sayıda türleri bulunmaktadır. Bitki örneklerinin tayin edilebilmesi için gerekli parçalannın toplanması ve bu toplama sırasında da bazı notların alınması gerekmektedir. Eksik toplanan ömekler kesinlikle tayin edilemez, yapılan bütün işler boşa gider ve örneklerde bir ot yığınından başka bir şey ifade etmezler. Bitki toplama sırasında hangi familyada hangi bitki kısımlarının toplanacağının bilinmesi ve bitki ömeklerinin bu bilgilerin ışığı altında toplanması gerekmektedir. Bu nederıle bitki toplayan kişinin bu bilgileri bilmesi veya yanında bu bilgileri kapsayan bir el kitabını bulundurması çok yararlıdır. Toplanacak ömeklerde kök, gövde, çiçek ve meyvanın bulunması en çok istenebilir bir olaydır. Ancak bir bitki üzerinde aynı anda meyva ve çiçek bulunmayabilir. Bu durumda çiçekli ve meyvalı bitkiler ayrı ayrı toplanırlar. Toplanacak bitkinin sağlam, yapraklarının tam, çiçeklerinin açmış ve zarar görmemiş, meyvalarının ve tohumlarının olgunlaşmış olması gerekmektedir. Tek yıllık otsu bitkiler çapa veya kazma yardımı ile topraktan rahatça sökülebilirler. Soganlı veya yumrulu bitkilerin bu toprak altı kısımları derinde olacağı ve toplama sırasında gövdeden kolaylıkla kınlıp ayrıabileceği için, bitkinin toprak altı kısmı görülünceye kadar tek bir taraftan kazılmaya başlanır ve toprak altı kısımları görülünce bitkinin gövdesi kazılmış tarafa dogru yatınlarak bitki topraktan çıkarılır. Çok yıllık otsu bitkilerde örnek büyük degilse, bitki kökü ile birlikte alınır. Eğer ömek büyük ise köke yakın bir yerinden kesilir ve koparılır. Örneğin büyük olması halinde ömek preste gazete kagıdı arasına sığamıyacağı için bitkinin alt yaprakları gövdenin yapraklı kısımlanndan 2-3 parça ve çiçek durumlarını gösteren çiçekli dallar kesilerek alınır. Bitkinin uzunluğu ve duruşu ile ilgili bilgiler arazi not defterine yazılır. Ağaçlardan toplama biraz daha degişiklik gösterir. Çiçek, meyva ve bazen de yaprak agaç üzerinde aynı anda bulunmayabilir. Bu nedenle degişik zamanlarda aynı ömeğin genç yaprakları, çiçekleri, çiçeklenme evresindeki yaprakları, meyvaları ve meyva evresindeki yaprakları toplanır. Ağacın dış görünümünü belirtmek için şekli çizilir veya fotoğrafı alınır. Orchidaceae familyasına ait türler topladıktan sonra şekillerinin bozulması. Preste renklerinin solması veya kararması nedeni ile tayin edilmeleri oldukça zorlaşır ve bu nedenle bitki toplanmadan önce fotograflarının çekilmesi tayini kolaylaştırdığı için son yıllarda uygulanan yeni bir yöntemdir. Toplanan bitki ömekleri naylon torba veya metal çantalar içine düzgün olarak yerleştirilir. Pres yapmak için torba veya çanta boşaltıldıgında ömekler rastgele yerleştirilmedigi için aynı türler yanyana bulunacak ve pres yapımı sırasında çok zaman kazandıracaktır. Her bitkiden 5-8 adet alınması yapılacak adlandırma çalışmaları sırasında yararlı olacak ve diger herbaryum merkezleri ile bitki degişimine yardımcı olacaktır. Bitki ömeklerinin toplanması sırasında üzerinde bulunması gereken kısımlar ve alınacak notlar aşağıda belirtilmiştir. Bu kısımların toplanmaması ve gerekli notların alınmaması durumunda bitkinin isimlendirilmesi çok güç ve bazende olanaksız olabilecektir. 1.1.3. Presleme ve Kurutma Bir bitkinin toplandıktan hemen sonra preslenmesi en arzu edilen bir durumdur. Bu şekilde preslenmiş olan bitki çiçekleri bozulmadan. yaprakları buruşmadan pres edilecegi için ömek isimlendirmeye elverişli olacak ve çalışmayı kolaylaştıracaktır. Ancak arazideki çalışma koşullan buna her zaman olanak tanımaz (zaman, yer ve hava koşulları). Bu durumda toplanan bitkiler presleme zamamna kadar bir torba içinde tutulmalı ve hava çok sıcak ise arada bir torba içine su serpilerek daha canlı durmaları sagıanmalıdır. Pres yapılacak bitkinin temiz, yabancı maddelerden arınmış ve kökündeki toprakları temizlenmiş olmalıdır. Preslenecek bitkinin tüm parçaları düzgün ve kolayca görülebilecek bir şekilde gazete kağıtları arasına yerleştirilmelidir. Bitkinin boyu kullandığımız gazete kağıdından daha uzun ise V ve N şeklinde kıvrılarak yerleştirilir. Bu kıvırmayı yapmadan önce gövdenin veya dalın kıvrılacak noktası parmak ile iyice bastırılarak ezilir ve kıvrılır. Bu işlem yapılmaz ise kıvrılan yerden genellikle kopacagı için örnek, parça parça olacaktır. Eger ömek çok uzun ve kalın ise gövdenin dip ve orta kısmından yapraklı bir parça kesilerek alınır ve pres yapılır. Soğanlı bitkilerin (Iridaceae ve Liliaceae gibi) toprak altı kısımları çakı ile ikiye bölünerek. Yumrulu olanlarda (Orchidaceae gibi) yumrular birkaç yerden iğne ile delinir veya kaynar suya batırılarak yumrudaki nişastanın dışarı çıkması sağlanır ve bitkinin preste kururken küflenmesi önlenir. Bitki pres edildiği zaman gazete kağıdı yaprak ve çiçeklerin üstüne tam olarak basmalıdır. Kalın gövdeli bitkilerde bu basma tam olmayabilir. Bu durumda kurutma kağıtları parçalar halinde kesilerek yaprak ve çiçeklerin üstüne yerleştirilir. Bitkinin gövdesi kalın yaprak ve çiçekler ince olduğu için gazete kağıdına tam değmez ve kuruma sırasında buruşurlar. Kesilen kurutma kağıtları ince kalan bu kısımlar üzerine yerleştirilerek, bu boşluk doldurulur ve buruşmadan kurumaları sağlanır (Şekil 2.a). Eğer çiçekler zorunlu olarak üst üste geliyorlar ise, çiçeklerin birbirlerine degmemesi ve kururken bozulmamaları için kesilmiş kurutma kagıtları iki çiçek arasına yerleştirilir. Pres edilen bitkinin dalları ve çiçekleri gazete kagıdının kenarlarından dışarıya taşmamalıdır. İçine bitki konmuş gazete kagıdı kapatılır. Üstüne bir kurutma kağıdı konur ve tekrar bir gazete kagıdı açılarak içine bitki yerleştirilir ve bu işlem her bitki için tekrarlanır. Eğer mümkün ise 2-5 bitkide bir kurutma kağıtları arasına oluklu mukavva veya oluklu metalden yapılmış sert malzeme konularak bitkiler arasından hava akımı sağlanır ve kurumaları kolaylaştınlır. Pres belli bir yüksekliğe geldiği zaman tahta ve metal preslere yerleştirilerek kolonlar gerektiğince sıkılır. Kurutma kağıtları her gün bir kez değiştirilir ve bu işlem bitkiler kuruyuncaya kadar tekrarlanır. Etli ve sucul bitkilerin kurutma kağıtları çok çabuk ıslanacağından ilk günler günde 2 kez degiştirilir. Eğer mümkün ise bu tip bitkiler ayrı bir preste toplanır veya presin dış kısımlarına gelecek şekilde yerleştirilir. Kurutma kağıtlarının ilk değiştirilmesi sırasında gazete kagıtları açılarak preslenmiş bitki örneklerine bakılır ve kıvrılmış, katlanmış olan parçalar bitki daha kurumadığı için rahatlıkla düzeltilerek örneklerin en iyi bir şekilde preslenmeleri sağlanır. Presler genellikle yan gölge ve hava akımının oldugu bir yere kurumaya bırakılır. Çok sıcak havalarda ve ögle saatlerinde presleri gölgeli yerlere koymak doğrudan güneş altında bırakmaktan çok iyidir. Güneş altına bırakılan preslerdeki bitkilerin yapraklannda ve çiçeklerinde hatalı yerleştirmelerden veya presin tam sıkılamamasından dolayı buruşmalar olacağı için, o parçalarda kınlmalar kolaylaşacak ve şekilleri bozulacaktır. Bu da istenmeyen bir durumdur. Yukarıda anlatılan presleme ve kurutma yöntemi atmosferdeki nem oranı çok yüksek olmayan yerlerde uygulanır. Fakat soğuk ve nemli iklimlerde, subtropik ve tropik bölgelerde kuruma sırasında preslerdeki suyun dışarı çıkması çok yavaş olacağı için bakteri ve mantarlardan etkilenmesi ve çürümesi çok çabuk olur. Bu durumda örneklerin çabuk kurutulması gerekmektedir. Bunun için özel yapılmış sephalar üzerine presler dik olarak yerleştirilir ve çevresi kenevir çuval (veya bez) ile kapatılır ve alttan yapay bir ısı kaynağı ile ısıtılarak bitkilerin kuruması çabuklaştınlır (Şekil 2.d). Bu şekildeki kurutmada kağıtların yanmaması ve kurumanın çabuk olması nedeni ile bitkilerin bozulmasına ve preslerin gevşememesine dikkat edilmelidir. İlk saatlerde presler kontrol edilerek gevşeyen preslerin kemerleri sıkılır. 1.1.4. Arazide Gerekli Notları Alma ve Etiketleme Arazide gerekli notları alma için her toplayıcının kendine ait bir arazi defteri olması gerekir. Bu defter sağlam ve kullanışlı olmalı ve yazı için de kurşun kalem kullanılmalıdır. Arazi defterinde aşağıdaki notlar bulunmalıdır: Bitkilerin numaraları: Her bitkiye ayn bir numara verilir. Bu numara bitki toplayıcısının kendi numarasıdır. Deftere yazılan numaranın karşısına gerekli notlar yazılır (il, ilçe, mevkii, yükseklik, tarih v.b.). Aynı numara bitkinin yerleştirildiği gazete kağıdının bir köşesine veya ayrı bir kağıda yazılarak bitkinin yanına konur. Mevkii: Topladığımız mevkiinin adı haritada yazılan şekilde veya haritada adı yoksa haritadaki en yakın yere göre uzaklık verilerek yazılır. Örnek : İzmir, Menemen, Seyrek köyü 2 km. batısı. Armutağacı mevkii. Habitat: Bitkinin toplandığı ana kaya, toprak cinsi, bulunduğu ortam (orman içi, makilik, step, su kenarı, bataklık, kayalık, taşlık yamaç v.b. gibi) dikkatlice gözlenerek yazılmalıdır. Yükseklik: Topladığımız yerin yüksekliği altimetreden okunarak yazılmalıdır. Önemli notlar: Bitkiler toplandlktan ve kurutulduktan yıllar sonra tayin edilebilirler. Bu nederıle tayinde yardımcı olacak bilgiler not edilmelidir (tek yıllık, çok yıllık, petal rengi, bitkinin duruşu gibi). Toplama tarihi: Bitkinin toplandığı tarih yazılır. Arazi defterinde yer alan tüm bu özellikler aynı şekilde herbaryum etiketlerine yazılır ve herbaryum kartonunun uygun yerine yapıştırılır. 1.2. Bitkilerin Korunması ve Saklanması Toplanan bitkilerden uzun yıllar yararlanmak ve varlıklarının sürekliliğini sağlamak için belli teknikler kullanılarak saklanması aşamasını da şu bölümler altında inceleyebiliriz. 1.2.1. Yapıştırma Kurutulmuş bitkilerden uzun yıllar yararlanabilmek için bunların düzgün ve özenli bir şekilde herbaryum kartonlarına yapıştırılmaları gerekir. Herbaryum kartonu 30 ile 43 cm. uzunluğunda, 26 ile 28 cm. genişliğinde, bitkinin iyi görülebilmesi için beyaz renkte olmalıdır. Kartonun sağ alt veya sol alt köşesi hangi herbaryuma ait ise o herbaryumun özel damgasını taşır. Bu amblem yuvarlak, elips, üçgen veya düz yazı şeklinde olabilir. Yapıştırılacak bitki ömeği düzgün bir şekilde herbaryum kartonu üzerine yerleştirilir. Gövde, dal ve çiçek sapı üzerinden kendinden zamklı beyaz kağıt bant ile bantlanır. Kağıt bant, bantlanacak parçanın kalınlığı kadar olmalı ve parçayı tüm saracak şekilde yapıştırılmalıdır (Şekil 2.b). Kalın gövdelerde metalden yapılmış çatallı raptiyeler kullanılabilir (Şekil 2.c). Selefon bantın yapışkanlığı uzun ömürlü olmadığı için kullanışlı değildir. Bantlama kesinlikle yaprak ve çiçek üzerinden yapılmamalıdır. Herbaryum kartonuna bitkiyi yapıştırmada kullanılan diğer bir yöntem şudur: genellikle tek yıllık ve ince yapıda olan bitkiler bu pens yardımı ile tutularak cam üzerine önceden sürülmüş tutkala sürtülür ve sonra herbaryum kartonu üstüne düzgün bir şekil verilerek yapıştırılır. Bu yöntemde zamklı kağıt bant kullanılmaz. Herbaryum kartonuna yapıştırılacak olan özel yapılmış herbaryum etiketleri değişik tiplerde olabilir (Şekil 3). Boyutları genellikle 7-11 cm.'dir. Büyük olanlar fazla yer tutacağı için pek kullanışlı değildir. Etiketin üst kısrnında o herbaryumun uluslararası adı basılmıştır. Eğer bitki bir bölge veya ülke florası çalışması için toplanmış ise çalışılan bölge veya ülkenin adı etiketin üstüne yazılabilir (Batı Anadolu Florası, Gökçeadası Florası, Finlandiya Florası gibi). Etiketler herbaryum kartonunun sağ veya sol alt köşesine yapıştırılır. Eğer bitki tip (Typus) bitki ise (Holotypus, Isotypus, Syntypus, Paratypus v.b. gibi) kırmızı renkli tip etiketi yazılarak herbaryum kartonuna yapıştırılır. 1.2.2. Zehirleme Herbaryum merkezlerinde bulunan bitki ömekleri bazen böcekler tarafından yenilerek bozulabilirler. Bunlar tütün veya sigara böceği (Lasioderma serricorne), eczane böceği (Stegobium paniceum) ve kitap biti (Atropos divinatoria)'dır. Bu zararlı böcekler tüm hayat devrelerini herbaryum örnekleri arasında tamamlayabilirler. Bu nedenle bitkilerin belirli zamanlarda ve belirli yöntemler veya ilaçlarla özel imal edilmiş zehir sandıkları veya odalarında zehirlenmeleri gerekmektedir. En geçerli ve saglıklı olan yöntem bitki toplanıp kurutulduktan hemen sonra zehirlemektedir. Bu yöntem ile dışarıdan zararlı böceklerin herbaryum merkezlerine girmesi önlenmiş olur. Kolleksiyondaki bitkilerin zehirlenme işlemleri 1 veya 2 yılda bir yapılabilir. Zehirleme yapılması için özel imal edilmiş dolaplar kullanılır (Şekil 4.a). Şekilde görüldügü gibi kanala konulan su kapak kapatıldıktan sonra zehirli gazların dışarı çıkmasına engel olacak ve zehirlemenin zararsızca yapılmasını sağlayacaktır. Zehirleme için çeşitli teknikler ve zehirleyici maddeler kullanılır. Bunlardan bazıları aşagıda verilmiştir. Siyanür gazı: En etkili zehirlerden biridir. Bitkiler özel yapışmış, sızdırmaz metal dolaplar içine yerleştirilir. Siyanür küçük parçalar halinde kırılarak bir kap içersine konmuş suyun içine bırakılır ve dolap sıkıca kapatılır. Siyanürün suda çözülürken çıkardığı gaz ile böcekler ölürler. Siyanür gazı tüm canlılar için tehlikeli olduğu için uygulama, bu konuda yetişmiş uzmanlar tarafından yapılmalıdır. Paradiklorobenzen: Paradiklorobenzen toz halinde olup, bezdan yapılmış torbalar içine yeter ölçüde konularak herbaryum dolaplarına yerleştirilir. Kristalleri normal oda sıcaklığında buharlaşır. Çoğunlukla herbaryumlarda böcekleri uzaklaştırıcı olarak kullanılır. İnsanlar için tehlikeli olduğundan pek kullanışlı değildir. Karbonsülfür: Herbaryum merkezlerinde en çok kullanılan bir zehirdir ve oda sıcaklığında buharlaşır. Aleve karşı duyarlı olup patlayıcı özelliği vardır. Zehirleme sızdırmaz metal dolaplarda yapılır. Karbonsülfür bir kap içine yeterli miktarda konur kap dolap içine yerleştirilir ve dolap kapatılır, 36 saat bekletildikten sonra dolap açılarak havalandınlır ve bitkiler çıkanlır. Metal dolaba karbonsülfür gazı konurken ve dolap havalandırma için açıldığında çok dikkatli olmalı, soluk alıp verilmemeli veya özel gaz maskeleri kullanılmalıdır. Etilendiklorid-Karbon tetraklorid-Karbonsülfür: Bu madde, 3 kısım etilendiklorid ile 1 kısım karbon tetraklorid ve karbonsülfür karıştırılarak elde edilir. Aynı karbonsülfür etkisi gösterdiği gibi etllendiklorid'in patlayıcı özelliği olmaması nedeni ile emniyetli kullanılabilir. Cıva biklorid: Buna biklorid süblime de derıir. Tüm canlı varlıklar için zehirleyici ve öldürücüdür. Uygulama, kurutulmuş bitki ömeklerirıi eriyik içine batırarak ve bir fırça ile üstüne sürerek yapılır. Cıva biklorid, %95 alkol içine kristal veya toz halinde atılarak eritilir ve doyurulur. Hazırlanan bu eriyik stok olarak kullanılır. Uygulama yapılacağı zarnan stokdan alınan 1 kısım eriyiğe 9 kısım alkol katılarak cam veya plastik bir kapta karıştınlır. Kurutulmuş bitki örnekleri bu solüsyon içine batırılır veya bir fırça ile solüsyon bitki üzerine sürülür. Zehir sürülmüş olan bitkiler tekrar preslere konularak 24 saat bekletilir. Cıva biklorid kalıcı bir zehir değildir. Yıllar geçtikçe etkisini kaybeder. Bazı zehirlenmelere neden olduğu için zehirleme çalışmaları ve isimlendirme çalışmaları sırasında bitkiler el ile tutulacağı için çok dikkatli olmak gerekir. DDT: Bitkiler presten çıktıktan hemen sorıra toz halinde üstlerine serpilerek veya eriyik hazırlanarak cıva biklorid yönteminde olduğu gibi uygulanır. Isı şoku: Bitkiler içinde ısıtıcı bulunan metalden yapılmış bir dolap içine yerleştirilir. Otomatik bir düzerıleyici ile sıcaklık 75-80°C'de sabit tutulur. Bu sıcaklıkta 24 saat bırakılır. Metal dolabın, sıcaklığı dışarıya vermemesi için özel bir madde ile korunması yapılmalıdır. Soğuk şoku: Bitkiler dondurucu içine yerleştlrilerek –8°C'de 2 gün bekletilir. Piyasada satılan tlcari dondurucular en kullanışlı olanlarıdır. Bu yöntem son yıllarda uygulamaya konulmuştur. Kısa dalga şoku: Özel imal edilmiş mikrodalga fırırılarına yerleştlrilen bitkiler sarıiyede 2450 mHz mikrodalgaya tutulurlar. Mikrodalgalar böcek hücrelerindeki su ve/veya yağ moleküllerirıi sallarlar. Bu sallanmanın neden olduğu sürtünme ile meydana gelen ısı böceklerin hayat devresinin tüm evrelerinde öldürücü etki yapar. Bitkiler kuru olduğu için yapılarında su bulunmayacağından ısınmazlar. Mİkrodalgaya tutma zamanı paket kalınlığına göre değişmektedir. 2.5-5 cm. için 75 saniye, 8-8 cm. için 95 saniye, 15 cm. için 120 saniyedir. Bu yöntem uygulandıktan sonra dolaplara yerleştlrilen bitkilerin yanına bez torbalar içinde Paradiklorobenzen konularak böceklerin gelmeleri önlenir. Yukarıda belirttiğimiz kimyasal maddeler ile zehirleme insan sağlığı için oldukça tehlikeli olduğundan ısı şoku, soğuk şoku ve kısa dalga şoku yöntemleri son yıllarda uygulanmaya başlayan en geçerli yöntemlerdir. 1.2.3. Herbaryum Dolapları Eski herbaryum merkezlerinde tahta veya daha değişik yapıdaki dolaplar kullanılmasına karşın bugünkü herbaryumlarda saçtan yapılmış dolaplar kullanılmaktadır (Şekil 4.b). Bu dolapların yangına karşı emniyetli olmalarının yanında kapaklarına yerleştirilen lastik contalar ile toz geçirmezliği de sağlanmaktadır. Bu dolapların yüksekliği kullanılan salona göre düzenlenebilir. Bitkilerin konulduğu rafların yüksekliği, eni ve derinliği bitkinin yapıştınldığı herbaryum kartonundan 57 cm. büyük olmalı ve paket dolap gözlerine rahat girip çlkmalıdır. 20 cm. Yükseklik, 35 cm. genişlik ve 47 cm. derinlik gözler için en uygun ölçülerdir. Göz yüksekliğinin fazla olması durumunda alttaki bitkilerin kınlma ve bozulma olasılığı fazla olacak, geniş olması durumunda ise malzeme ve yer kaybedilecektir. 1.2.4. Kartoteks Seneler önce kurulmuş ve çok sayıda bitki örnekleri bulunan herbaryum merkezlerinde bu uygulamayı yapmak oldukça güç ve belkide olanaksızdır. Ancak yeni kurulan veya bitki sayısı az olan herbaryum merkezlerinde bu uygulama yapılabilir. Bitkiler herbaryum dolaplarına yerleştirilmeden önce bitki etiketinin üzerindeki tüm bilgiler bir karta yazılıp alınır. Özel yapılmış dolaplara (Şekil 4.c) il, ilçe ve köylere göre alfabetik olarak düzenlenir. Eğer istenirse etiketteki tüm bilgileri kapsayan ikinci bir kart yazılarak cinslere göre yine alfabetik olarak düzenlenebilir. Bu yöntemle belirli bir bölgede çalışacak bir araştıncı bu bölgeye gitmeden önce bölgeden toplanmış örneklerin listesini çıkanr ve çalışmasını planlar. 1.2.5. Bitkilerin Dolaplara Yerleştirilmesi İsimlendirilen bitkiler benimsenen belli bir sınıflandırma sistemine göre dolaplara yerleştirilir. Ulusal herbaryumlarda o ülkenin bitkileri ile dış ülkelerden değişim yolu ile gelen bitkiler ayrı ayrı dolaplarda bulunurlar. Tüm dünya bitkilerini herbaryumlarında bulundurmaya çalışan uluslararası herbaryum merkezleri bitkilerini ülkeler ve coğrafik bölgelere göre düzenleyebilirler. İsimlendirilmiş, kartona yapışmış, etiketleri yazılmış ve cinsleri içinde türlerine göre ayrılmış örnekler eğer çok ise 5-10 tanesi iki yapraklı bir koruyucu içine konulur. Koruyucunun dışını sağ veya sol alt köşesine bitkinin tür ismi yazılır. Aynı cinsten değişik türleri bu şekilde bir koruyucu içine alındıktan sonra, hepsi birden tekrar bir koruyucu içine yerleştirilir ve sağ veya sol üst köşesine cins ismi yazılır. Her cinsin ilk paketi üstüne o cinsin tüm türlerini kapsayan bir liste konur ve kolleksiyonda bulunan türlerin altı çizilerek herbaryumda bulunan türler belirlenir. Cinsler de familyaları içinde benimsenmiş bir sisteme göre yerleştirilir. Her familyanın başında o familyaya ait cinslerin bir listesi bulunur. 1.2.6. Değiştirme, Ödünç Verme ve Tayine Gönderme Toplanmış örneklerden fazla olanlar diger herbaryum merkezleri ile degiştirilebilir. Bu durumda toplanamıyan bir çok örnek kolleksiyona girmiş olur. İsimlendirme çalışmaları sırasında isimlendirilemiyen bazı örnekler dışarıya gönderilebilir. Ancak örnek tek ise ödünç olarak gönderilir. Herbaryumda kalan ve gönderilen örneklerin etiketleri ve numaraları aynı olur ve gönderilen örnek orada kalır. İsimlendirmeyi yapan Uzman veya araştıncı numaraların karşısına bitki isimleri yazılı listeyi geri gönderir. Bu gönderme işlemleri için özel hazırlanmış gönderme formları doldurulur. İsimlendirilmiş ömeklerde çalışmalar için diğer herbaryum merkezlerine gönderilebilir. Dışarıya gönderilen veya dışardan gelen bu örneklerin kayıtları özel hazırlanmış kartlara işlenerek izlenir ve düzenlenir. Bir herbaryum merkezinde tüm bu işlerin aynı anda birden fazla merkez ile yapıldığı düşünülürse çok dikkatli ve düzenli çalışmak gerekmektedir. 1.3. Bazı Özel Grupların Herbaryumu Çiçekli bitkilerin tümüne uygulanan bilgi ve teknikler yukarıda verilmeye çalışılmıştır. Ancak çok geniş ve üyeleri arasında çok farklılıklar gösteren bu bitkilerin bazı grupları için yukarıdaki tekniklerde bazı degişiklikler ve eklemeler yapma zorunluluğunu doğurmaktadır. Bu nedenle bu grupların, herbaryumlarının yapılmalarını ayrı ayrı almakta yarar görülmüştür. 1.3.1. Açık Tohumluların (Gymnospermae) Harbaryumu Açık tohumlu bitkilerin kozalaklılar grubunda, özellikle çamlarda, kurutulan örneklerde iğne yapraklar çok çabuk dökülürler ve zamanla sadece çıplak dal parçalarına dönüşürler. Ömekler toplandıktan sonra, düzgün bir şekil alması için kurutma kağıdı arasına konarak preslenir ve bir gün bekletilir. Sonra örnek pres'ten alınarak herbaryum kartonu büyüklügünde ve 1.5-2 cm. kalınlıgında yün-pamuk tabakası üzerine konur. Bunun üzeri de ağır selluloid bir tabaka ile örtülür ve tümü beraberce sıkıştırılır. Selluloid tabakanın örnek üzerinde durması, tel raptiyeler ile saglanır. Bu yöntemle yaprakların örnek üzerinde düşmeden durması sağlanabilir. 1.3.2. Sukkulent (Crassulaceae, Aizoaceae) ve Dikenli Bitkilerin (Cactaceae) Herbaryumu Gövdeleri hacimli ve yapılarında su bulundurdukları için toplanmaları ve kurutulmaları değişik yöntemlerle olur. Tüm bitkiyi preslemek olanaksız olduğu için çabuk kuruması bakımından gövde boyuna veya enine dilim dilim kesilir. Bu durumda dikenlerinin dizilişleri, gövde üzerindeki kanallar ve diğer şekiller daha iyi gözlenebilir. Diğer bir yöntem ise gövdeden kesilen parçaların alkol içine konularak saklanmasıdır. Herbaryum kartonuna sığabilecek örnekler istenirse bir kaç dakika kaynar su içine atılarak bekletilir ve sonra kurutmak için preslere konulur ve suni kurutma yöntemi ile (bir ısıtıcı v.b.) kurutulur. Kaktüslerin çiçekleri gövdeden koparılarak ayrı preslenmelidir. Çiçekler bu şekilde preslenmezlerse, hacimli olan gövde çiçeklerin kurutma kağıdına değmesine engel olacak ve çiçekler kuruma sırasında buruşacaklardır. Etli meyvalar da kurutmada sorunlar yaratabilir. Meyvalar ortadan kesilerek etli kısım çıkanlır ve kabuğu filitre kağıdı pamuk kanşımı ile doldurularak saklanabilir. Pamuklann iki üç kez değiştirilmesi kuruması bakımından gereklidir. Bu yöntemle kurutulmuş meyvanın içi doldurulup sıkı bir şekilde paketlenirse meyvanın şekli ve dış özellikleri iyi korunmuş olur. Küçük olan meyvalarda kabuk birkaç yerinden soyularak kurutma hızlandırılır. Meyvadan yavaşça dışarıya çıkan sıvı kurutma kağıdı tarafından emilir. Eğer pres çok sıkılırsa meyva patlar ve ezilir. 1.3.3. Sucul Bitkilerin (Potamogetonaceae, Najadeceae, Hydrocharitaceae) Herbaryumu Bu bitkiler göl, bataklık, sulama kanalları ve su birikintilerinde, derelerin yavaş aktığı kısımlarda suya batık halde veya su yüzeyinde bulunurlar. Sucul bitkileri toplamak için şimdiye kadar kullandığımız gereçlere ek olarak lastik çizme (olabilirse kasık çizmesi), lastik eldiven ve derin sularda çalışabilmek için şişirilebilir lastik bot kullanılır. Toplanacak örneklerin meyvalı olanlan seçilmeli, bunun yanında rizomları, su yüzeyinde ve suya batık bulunan yaprakları da toplanmalıdır. Derin sularda çalışırken sağlam bir ipin ucuna bağlanmış ucu kancalı gereçte çok kullanışlıdır (Şekil 5.a). Bu gereçle toplamada nazik ve ince yapılı örnekler biraz parçalansa da dipteki yumru ve vejetatif organları toplamak için oldukça yararlıdır. Yaprakları ince ve zarsı yapıda olan örnekler pres yapılıncaya kadar naylon torbalara konulmalı veya ıslatılmış gazete kağıtlarına sarılmalıdır. Örneklerden ince yapıda olanlar özel bir kap içinde Su Yosunlarına uygulanan yöntem ile beyaz kağıt üzerine alınırlar ve bir zarf içine konularak herbaryum kartonlanna yapıştırılır. Örneklerin hangi sulardan toplandığı (tatlı, acı, tuzlu, kükürtlü v.b.) not edilmelidir. 1.3.4. Palmiyelerin (Arecaceae) Herbaryumu Bu bitkilerin boyunun uzun ve yapraklannın çok büyük olması, toplayıcılar için çeşitli sorunlar yaratır. Ağacın gövde çapı ve duruşu not edildikten sonra, yaprağın iyi bir şekilde ömeklenebilmesi için tüm yaprak sapının (petiolün) alınması gerekir. Hatta 1-2 metre olanlar bile herbaryum kartonuna sığabilecek boylarda kesilirler. Yapraklar da ayni şekilde kesilerek parçalanır ve alınırlar. Ancak yaprak parçalanmadan önce yaprağın tüm özellikleri not edilmelidir (pinna oluşu, yaprakcıklann düzenlenişi gibi). Şekil 5. Alg ve Mantar Toplama Malzemeleri: a) Alg ternizleme ve kağıt üzerine alma kabı, b) Alg toplama gereci, c) Değişik tipte plankton kepçeleri, d) Mantar toplama kabı. (Orijinal) 2. Çiçeksiz Bitkilerin Herbaryumu Çiçeksiz bitkiler, bitkiler aleminin büyük ve önemli bİr bölümünü oluştururlar. Bu bitkiler fitoplanktonlar, deniz ve tatlı su yosunları (alg'leri), mantarlar, likenler, karayosunları ve eğrelti grupları üyeleridirler. Bu bitkilerden bazılarına bir önceki bölümde anlattığımız Çiçekli Bitkilerin Herbaryumları yöntemleri uygulandığı gibi, diğer bazılarına ise herbiri için ayrı, kendine özgü yöntemler de uygulanmaktadır. Aşağıda bazı gruplar için uygulanmakta olan yöntemler verilmiştir. 2.1. Su Yosunlarının Herbaryumu Yosunlar genellikle tatlı ve tuzlu, durgun veya yavaş akan sularda bulunurlar. Fitoplarıkton'lar, mavi-yeşil su yosunları, diatome'ler, yeşil, esmer ve kırmızı su yosunları en önemli gruplannı oluştururlar. 2.1.1. Plankton'ların (Chlorococcales, Volvocales) Herbaryumu Planktonlar deniz, göl, havuz ve nehir gibi ortamlarda su içinde serbestçe yaşayan küçük mikroskobik yosun ve hayvanlardır. Yosun kısmı fito-plankton olarak adlandırılır. Bir çembere geçirilen ipekten yapılmış ince ağ şeklindeki torbaların su içinde yavaşça çekilmesi ile toplanırlar (Şekil 5.b). Torbanın uç kısmında metalden yapılmış koni şeklinde bir kap bulunur. Koni şeklindeki kabın ucunda bir musluk vardır ve çekme sırasında kapalıdır. Çekme sırasında koni şeklindeki kabın içine toplanan planktonlar musluk açılarak bir tübe alınırlar. Ağın delikleri en küçük flitoplanktonları bile içeriye süzdürebilecek küçüklükte olmalıdır. Toplanan fitoplanktonlar dibe çöktükten sonra üstteki fazla su alınır ve tatlı su yosunlarında verdiğimiz formülle hazırlanan eriyik içine konurlar. 2.1.2. Mavi-Yeşil Alglerin (Cyanophyta) Herbaryumu Mavi-yeşil alg'ler kimyasal test yapılarak tayin edilirler. Ancak bu tayin için örneklerin kurumamış olması gerekmektedir. Bunun için tatlı su yosunlarını koruduğumuz eriyik içinde saklanabilirler. Tatlı su ve deniz yosunları toplanırken rastlanılan mavi-yeşil yosunlarda toplanırlar. Toplanan bu yosunlar kağıt ve küçük mika parçaları üzerine alınarak kurutulurlar. Mavi-yeşil yosunları tanımak oldukça güç olduğu için botanik bilgisine ve deneyime gereksinim vardır. Yine de bir yol gösterici olarak bu yosunların cıvık ve kaygan bir yapıda olduğu ve isimlerinin renkleri ile uygunluk göstermediği bilinmelidir. Mavimsi-yeşil olabildikleri gibi eflatun, kırmızımtırak, siyahımsı-yeşil veya diğer renklerde olabilirler. Fakat hiç bir zaman çayır yeşili renginde olmazlar. Bu nedenle renkleri dikkatlice gözlenerek not edilmelidir. 2.1.3. Diyatomelerin (Chrysophyta) Herbaryumu Bu mikroskobik yosunların isimlendirilmeleri için silisyumdan yapılmış bir iskeletlerinin olması gerekir. Yalnız bu tip iskeleti olan diyatomeler toplanmış ise, örnekler havada veya bir pres içinde kurutulabilir veya formol içinde saklanabilirler. Diyatomeler deniz ve tatlı su planktonları içinde bulunurlar. Tatlı sularda ve tatlı su yosunlarının bulunduğu her ortamda diyatomelerin bulunabileceği ve toplanabileceği düşünülebilir. Sarımsı-kahverengi, zeytin yeşili ve grimsi-yeşil renklerde olabilirler. Deniz yosunlarına yapışmış olarak bulunabildikleri gibi kayaların yüzeylerinde, gel-git olayının olduğu yerlerdeki kum ve çamurlarda da bulunurlar. Çamur yüzeyinde bulunanlar bir pipet yardımı ile toplanabilir. Kumda bulunanlar, kum ile birlikte alınarak bir kap içine konulur. Kum dibe çöktükten sonra üstte kalan su başka bir kaba aktarılır ve bir iki saat bekledikten sonra dibe çöken Diyatomeler ayrı bir kap içine alınarak saklanırlar. Kahverengimsi-gri-yeşil ve yapışkan olan türleri liman ve dalgakıran duvarlannda bulunabilirler. Diğer bir ortamda kabuklu deniz hayvanları ve bunların yaşadıkları yerlerdir. Deniz hıyarı (Holothuria)'nın midesi diyatome bakımından oldukça zengin bir kaynaktır. 2.1.4. Deniz Yosunlannın (Chlorophyta, Phaeophyta, Rhodophyta) Herbaryumu Toplayıcı, aynı ortamdan ve aynı derinlikten toplanan yosunları en küçük örneğe kadar aynı naylon torbaya koymalıdır. Eğer daha aynntılı bir toplama gerekiyorsa küçük ve narin örnekler, plastik tüplere veya küçük kavanozlara, büyük örnekler ise gazete kağıtlan arasına, büyük naylon torbalara veya sepetlere konulur. Kayalık bir ortamda çalışılıyorsa cam kavanoz ve benzeri cam eşya kullanmak çalışma güvenliği bakımından kullanışsızdır. Toplanan örneğin olgunlaşmış olması, adlandırma çalışmalarında çok önemlidir. Genç örneklerin adlandınlması olanaksızdır. Deniz yosunları bulundukları derinliklere göre değişik toplama araçlan ve yöntemleri ile toplanırlar. Derinliği az olan kıyı bölgelerinde taşlık ve kayalık ortamlarda toplama yapılıyor ise lastik ayakkabı veya çizmeye gereksinim olabilir. Yosunlar bıçak veya kesici bir alet yardımı ile tutundukları ortamdan dikkatlice alınırlar. Bir jeoloji çekici tutundukları ana kayayı kırmak için çok yararlıdır. Su derinliğinin fazla olduğu yerlerde dalışlar yapılarak alg'ler toplanırlar. Bu toplama sırasında balıkadam gözlüğü kullanmak alg'leri iyice görmek için gereklidir. Örnekler naylon torbalara konularak suyun içinde rahatlıkla taşınabilirler. Çok derin sulardaki alg'leri toplamak için balık avlamada kullanılan Trol ağlarından ve sünger toplamada kullanılan Kangava ağlanndan yararlamlır. Toplama işi bittikten sonra örnekler 3 yöntemle saklanabilirler. Koruyucu bir eriyik içinde, Pres yapılarak, Havada kurutulup, büzülmeye bırakılarak. 1. Koruyucu bir eriyik içinde saklama: Kullanılacak eriyik deniz suyuna %5'lik formol konulması ile elde edilir. Sıcak iklimlerde bu eriyiğin yarısı alkol yarısı formol olarak hazırlanmalıdır. %5'lik formolün hazır olmadığı durumlarda, çalışma ve malzeme taşıma güçlüğü olan ortamlarda çalışırken plastik kapta taşınan %40'lık formol kavanoza konan deniz suyuna burnumuza formol kokusu gelinceye kadar damlatılır. Elde edilen karışım yosunları korumaya yeterlidir. 2. Preste kurutularak saklama: Bu yöntemle kurutmada; pres, kurutma kağıdı, oluklu mukavva, orta kalınlıkta ve düzgün yüzeyli temiz kağıt, kurutma kağıdı boyutlarında kesilmiş beyaz havsız bez veya yağlı kağıt, paslanmaması için çinkodan yapılmış bir küvet, iğne, pens, delikli ince çinkodan yapılmış bir levha veya kalın camdan levha gereklidir. Toplanan yosunlar deniz suyu veya tatlı suya konularak üzerindeki kum veya diğer yabancı maddelerden iyice temizlenir. Temizlenmiş ve presi yapılacak örnek özel yapılmış kap içine yerleştirilir (Şekil 5.c). Genellikle ince yapılı yosunların su içinde doğal görünüşleri bozulabilir ve tallusları üst üste gelebilir. Bu şekilde kağıt üzerine alınarak pres yapılması, adlandırma çalışmaları sırasında yosunu iyi gözleyemediğimiz için iyi değildir. Bu nedenle pens ve iğne yardımı ile yosunun doğal görünümü verilmeye çalışılmalıdır. Sonra uygun büyüklükte beyaz bir kağıt kabın eğimli kısmından dikkatlice yosunun altına sürülür ve beyaz kağıt altına da delikli çinko veya cam levha yerleştirilir. Beyaz kağıt levha ile birlikte kabın eğimli kısmından yavaş yavaş dışarı çekilirken iğne ve pens yardımı ile yosun kağıt üzerine tüm özellikleri gösterecek şekilde yerleştirilmeye çalışılır. Bu işlemin yapılması sırasında özen gösterilmesi adlandırma çalışmaları sırasında yosunu iyi gözleyebilmemiz için çok gereklidir. Kabın içinden çıkarılan ve üzerinde yosun bulunan beyaz kağıt dik tutularak suyun süzülmesi sağlanır. Sonra kurutma kağıdı (papya) üzerine konulur ve üstüne bez ve yağlı kağıt yerleştirilir. Bez ve yağlı kağıt yosunun kurutma kağıdına yapışmamasını sağlar. Bu işlem her yosun için tekrarlanarak örnekler üst üste konulur ve preslenir. Sıcak iklimlerde yosunlar preste çürümeye başlayabilir. Bunu önlemek için %50 alkol, %5 formülden oluşan koruyucu eriyikte kağıt üzerine alınmadan 2-3 gün bekletilir. Presten çıktıktan sonra alkolde eritilmiş % 1 cıva klorür ile boyanabilir veya %1.8 hidroksi-quinolin sulfat ile muamele edilerek tekrar prese alınıp kurutulurlar. 3. Havada kurutulup büzülmeye bırakılarak saklama: Çalışma sırasında presler yanımızda bulunmuyorsa, toplanan yosunlar gazete kağıtları içine sarılır ve açıkta kurutmaya bırakılır. Ancak doğrudan güneş ışığı altına bırakılmamalıdır. Bu şekilde kurutulan yosunların laboratuvara veya herbaryum merkezlerine getirilirken kırılmamaları için dikkat edilmelidir. Çalışma merkezlerine gelince su içine konularak yumuşatılır. Bir önceki yöntemde olduğu gibi beyaz kağıt üzerine alınarak preslenir ve kurutulurlar. 2.1.5. Tatlı Su Yosunlannm (Chlorophyceae, Conjagatophyceae, Characeae) Herbaryumu Bu yosunlar, nemin çok yüksek olduğu yerlerde, göllerde, hareketsiz ve durgun sulardaki yüksek bitkiler arasında, akıcı ve durgun akan sularda yeşil veya kahverengi renkleri ile göze çarparlar. Bu yosunların arasında mikroskobik yosunlar da bulunabilir. Bu mikroskobik yosunları toplamak için toplayıcının bir kaşık kullanması ve topladığı örnekleri bir kavanoz veya tüpe koyması gerekmektedir. Toplanan bu örnekleri koruyucu eriyik içinde saklamak adlandırma çalışmaları sırasında büyük kolaylıklar sağlayacaktır. Bu nedenle örnekler aşağıda verilmiş formüle göre hazırlanan eriyik içinde de korunurlar. İyot 0.5gr. Potasyum iyodür 1.0 gr. Glasial asetik asit 4 cc. Formol 24 cc. Su 400 cc., Su olarak yosunlann toplandığı ortamdaki (göl, dere, havuz gibi) su kullanılabilir. Tatiı sularda bol olarak görülen Characeae üyelerinin toplanması için en uygun yöntem tırmık veya ucunda değişik yönlere bakan uçları olan kancalardır (Şekil 5.a). Sığ ve kıyıya yakın yerlerde çalışırken elle veya sopa ile toplamalarda örneklerin köklü alınmasına dikkat edilmelidir. Daha derin sularda tırmık veya ipin ucuna bağlanrnış kanca ile toplama yapıldığında örnekler bazen zorunlu olarak parçalı halde toplanacaktır. Dioik türlerde her iki eşeyden de örnek alınmasına dikkat edilmelidir. Bir çok Characeae üyelerinde üreme organları yaz aylarında, çok az üyelerinde ise ilkbahar aylarında olgunlaşırlar. Toplanan örnekler eğer o anda prese konmayacak ise çift kat gazete kağıdına rulo halinde sarılarak pres yapılacak yere kadar veya bir gün boyunca saklanabilirler. Ancak sıcak havalarda gazete kağıdını nemli tutmak örneğin kuruyup kırılmaması ve parçalanmaması için çok önemlidir. Toplanan örnekleri naylon torbalar veya taşıma kutuları içine rastgele koymak örneklerin birbirleri ile karışmasına neden olacaktır. Characeae türlerinden bazıları eğer dikkatlice herbaryumu yapılırsa ve özenle kurutma kağıtları arasına yerleştirilirse diğerlerinden çok daha iyi herbaryum örneği olurlar. Eğer örnekler kötü kurutulmuş ve özenle preslenmemişlerse görünüşleri çok kötü olur ve bu örnekler ilmi çalışmalar için yararlı olmazlar. Characeae familyasından Nitella cinsi yosunlara uygulanan yöntem ile kurutulur. Characeae türlerinin herbaryum yapılırken gazete kağıdının çift kat kullanılması yararlıdır. Ancak yosunlar da olduğu gibi üzerine bez konularak pres yapılmalıdır. Üreme organları bulunan örneklerden bir kaç tanesi koruyucu eriyik içine konulmalıdır. 2.2. Mantarların Herbaryumu 2.2.1. Mantarların Toplanması Toplama yöntemi toplanacak mantarın cinsine göre değişir. Ağaç kabuk veya toprak üzerinde bulunan mantarlar yani kolayca pres olmayanlar toplandıktan sonra gazete kağıdı veya plastik kaplara konulur. Şapkalı mantarlar ise gazete kağıdı veya yağlı kağıda ayrı ayrı sarıldıktan sonra göz göz ayrılmış özel tahta veya metal kutulara (Şekil 5.d) veya plastik kaplara yerleştirilir. Yapraklar veya otsu bitkiler üzerinde bulunan parazit mantarlar, üzerinde bulundugu çiçekli bitki ile beraber toplanır ve bitkiler çiçekli bitkiler herbaryum yöntemi uygulanılarak pres edilirler. Mantar toplanmasında gerekli olan malzemeler: Metal kutu, sepet veya plastik kap. Çakı, budama makası, küçük testere gibi kesiciler Gazete kagıdı veya yaglı kagıt. Toprak mantarları için kagıt zarflar. Cam kavanozlar (alkol veya formolde saklamak için), Pres ve kurutma kagıt1arı, Arazi not defteri, Boyuna asılabilecek küçük bir büyüteç. 2.2.2. Mantarlann Korunması Çalışmalar için degişik mevsimlerde toplanan mantarların korunması genel olarak bir sıvı içinde yapılır. Bu koruyucu sıvı %40'lık formolden %5. glasial asitten %5, %70'lik alkolden %90 koyarak hazırlanır. 2.2.2.1. Renkli Mantarlann Korunması Bu tür mantarların korunabilmesi için özel hazırlanmış eriyikler içinde saklanması gerekmektedir. Renkleri suda kaybolmayan mantarlar için; Cıva asetat 10 gr. Glasial asetik asit 5 cc. Su 1 000 cc. şeklinde hazırlanır. Renkleri suda kaybolan mantarlar için; Cıva asetat 1 gr. Dogal kurşun asetat 10 cc. Glasial asetik asit 10 gr. Alkol (%90) 1000 cc. şeklinde hazırlanır. Çinko sülfürlü koruyucu; Çinko sülfür 25 gr. Formol (%40) 10 cc. Su 1000cc. şeklinde hazırlanır. 2.2.2.2. Yeşil Bitkilerin Parazitik Mantarlar ile Birlikte Korunması Parazit mantarları taşıyan bitkilerin yeşil renkleri ile korunması arzu edilir. Bunun için yeşil bitkiler 4 oran suyu 1 oran doymuş glasial asetik asit ile bakır asetat kristalleri konularak hazırlanmış eriyik içinde kaynatılırlar. Bu kaynatma işlemi, bakır asetatın bitkideki klorofil çözüp yerine geçinceye kadar devam eder. Bu şekilde işlem görmüş ömekler %5'lik formol içinde saklanırlar. Daha iyi bir yöntem ise ömekler %5'lik bakır sülfat içinde en az bir saat yıkanırlar. Yıkanan örnekler 1000 ml.saf suya %5-6'lık kükürt dioksit eriyiğinden 15 ml. konularak hazırlanmış karışımın içine konularak kapalı bir kapta saklanırlar. Meyvalar için eriyik içine 20-30 rnl. beyaz gliserin ilave edilmelidir. 2.2.2.3. Kültür Mantarlarının Stoklarda Saklanması Stoklarda canlı olarak saklanması istenilen mantarlar agar-agar üzerine –20°C'de ortalama 6 ay ile en çok 1 yıl arasında tutulurlar. Bu zaman içinde ölmemeleri için tekrar kültür yapılması gerekmektedir. Diğer bir yöntem ise sterilize mineral yağının içine atılarak (yağ içinde devamlı batık duracağı için) senelerce saklanması söz konusudur. En iyi yöntem olarak sporların liofil ile muamele görmesi veya kuru olarak dondurulup saklanmasıdır. Bu yöntem ile en az 20 yıl kültüre alınmadan saklanması mümkündür. 2.2.2.4. Mantarlann Kuru Olarak Saklanması Mantarlar kuru olarak çok uzun yıllar saklanabilirler. Otsu bitkilerin üzerinde, yapraklarında bulunan parazit mantarlar, o bitkilerin preslerde kurutulması ile uzun yıllar saklanabilir. Şapkalı mantarlar toplandıktan sonra tahta veya metal kutular içinde kurutulmaya bırakırlar. Kurutulmuş mantarlar, büyüklüklerine göre yapılmış gözlerin içine konularak saklanırlar. Böceklerden korunmaları için paradiklorobenzen ile zehirlenirler. 2.3. Likenlerin Herbaryumu 2.3.1. Likenlerin Toplanması Likenler kaya, taş, ağaç, odun, ağaç kabuğu, sürgün, yaprak, çürümüş ağaç gövdesi üzerinde, yosunlar arasında ve seyrek olarakta kemik, cam ve deri parçaları üzerinde yetişebilirler. Bu çok değişik ortamlarda yetişmeleri nedeni ile farklı toplama yöntemleri uygulanır. Likerıin toplandığı ortamın tam olarak tanımlanması gerekir. Ömeğin: kayanın cinsi, üzerinden toplandığı ağacın cins ismi, gölge ve nem durumu tam olarak not edilmelidir. Bu bilgiler likenlerin adlandırılması için çok önemlidir. Toplama için gerekli olan gereçler şunlardır. Bir jeolog çekici. Kısa uçlu bir keski, sert keskin bir çakı (gerektiğinde çekiç vuruşlarına dayanıklı olrnalı), budama makası (sürgünler için) gibi kesiciler, Arazi not defteri, Pres, kurutma ve gazete kağıtları, Gazete kağıtlarından hazırlanmış değişik boyda zarflar Boyunda taşınabilecek bir büyüteç Likenler vejetatif şekillerine göre şu başlıklar altında toplanabilir. Kabuksu (Krustaseus) Likenler Bu likenlerin tallusları ağaçlar, topraklar ve kayalar üzerinde az veya çok gelişmiş bir kabuk oluştururlar. Liken bulunduğu ortama çok yakındır ve bazen tamamen gömülmüştür. Likenleri toplarken bağlı bulunduğu ortamdan kopanlmaya çalışılırsa, adlandırmada çok önemli olan likenin kenarları bozulacağı için kesinlikle adlandırılamazlar. Bu şekilde toplanan örneklerin hiç bir ilmi değeri yoktur. Bir çok tür ise sarı-kahverengi renkte olduğu için bu renk tonları çok iyi gözlenmeli ve değişik türlerin toplanılmasına çalışılmalıdır. Kabuklar ve odunlar üzerinde bulunan likenler genellikle bir çakı yardımı ile likenin hemen altından kabuk veya ağaçtan bir parça kesilerek alınırlar. Sürgünlerde bulunanlar ise bağ makası ile kesilerek alınır. Karayosunları ve topraklar üzerinde bulunanlar genellikle çok narindir ve dikkatlice toplanmalıdır. En iyi yöntem, liken bir çakı yardımı ile hemen altından alınmalı ve kütle halinde bir kutuya konulmalıdır. Eğer kutu yoksa kalınca kağıttan yapılmış bir zarf içine konularak düz bir durumda tutulmalı, sallama ve titremelerden korunmalıdır. Kayalar üzerindeki likenleri toplarken, likenlerin üzerinde geliştikleri kayadan büyükçe bir parça koparılarak alınır. Üzerinde değişik türlerin bulunduğu büyük kaya parçalarını koparmak, tek bir liken türünün bulunduğu küçük parçaları koparmaktan daha iyidir. Bu şekilde toplanan kaya likenleri bir kağıda sanlır ve çantada birbirlerine sürterek örneklerin bozulmamaları için kalın kağıtdan yapılmış zarflar içine yerleştirilirler. Kaya likenlerini bir çakı yardımı ile kayalar üzerinden sağlam bir şekilde sıyırarak almak olanaksızdır ve örnekler alınırken bozulurlar. Yapraksı (Follos) Likenler Kabuksu likenlerde uygulanan yöntemin aynısı uygulanır. Likenin tam olarak toplanılmasına hatta örnek büyük olsa bile dikkat edilmelidir. Likenler içinde renklerini en fazla değiştiren yapraksı likenlerdir. Bunun için toplandığı andaki rengi adlandırma çalışmalarında çok önemli olduğu için kesinlikle not edilmelidir. Dalsı (Fruticos) Likenler Toplanması oldukça kolay olan örneklerdir. Toplanma sırasında kaide diskleri bağlı bulundukları ortamdan kolaylıkla ayrılmazlar. O nedenle dikkatlice kaide diskinin likenle beraber alınmasına çalışılmalıdır. Bağlı bulundukları ortamın özelliklerinin not edilmesi çok önemlidir. Özellikle Usnea cinsinde. 2.3.2. Likenlerin Saklanması ve Etiketlenmesi Likenler çok yavaş kurutulmaya bırakıldıkları zaman üzerlerinde pas ve mantarlar kolaylıkla gelişebilir. Bunun için kesinlikle çok iyi kurutulmalıdırlar. Kabuklu likenler güneş ışığı altında veya orta sıcaklıktaki bir odada 24-46 saat kurutulmaya bırakılırlar. Yapraksı ve çalımsı likenler kurutma kağıtları arasında kurutulmalı ancak pres içinde sıkıştınlmamalıdırlar. Kurutma kağıtlarının ağırlığı yeterince baskı yapacağı için sıkıştırmaya gerek yoktur. Çalımsı likenler taze iken pres edilmelidirler. Dikkat edilecek nokta adlandırma çalışmalannın rahat yapılabilmesi için tallusları düzgünce açılarak iyi görünmeleri sağlanmalıdır. Örnekler kurumuş ise nemlendirilerek gevşetilir ve sonra pres edilirler. Bu yöntem Usnea cinsi için kolaylıkla uygulanabilir. Örnekler kurutulduktan sonra kalın kağıttan yapılmış zarflar içine yerleştirilir. Külah veya şapka şeklinde olan zarflar en kullanışlı olanlandır. Külahın tepe kısmı katlanarak ek bir kapak da oluşturulabilir. Eğer normal zarflar kullanılıyorsa zarfın zamklı kısmının likene değmemesine dikkat edilir. Bu şekildeki içinde liken ömekleri bulunan zarflar herbaryum kartonlanna zarfın altına zamk sürülerek yapıştınlır. Kaya likenleri ise kaya parçası ile bir fılitre kağıdına sanlarak zarfın içine yerleştirilir. Tüm bilgiler herbaryum merkezinin özel etiketi üzerine yazılarak, etlket zarfın üstüne yapıştınlır. 2.4. Ciğerotları Karayosunlarının Herbaryumu Ciğerotları ve Karayosunları, ağaç kabukları, toprak ve kayalar üzerinde, çok nemli olan kaya oyuklarında, eğreltl otu rizomlan, su serpintilerinin çarptığı kayalarda ve bazı türler ise durgun veya akan sularda batık olarak bulunurlar. Likenlerin toplanmasında kullanılan gereçler (budama makası hariç) kullanılır. Doğada çok karmaşık ve iç içe bulunduklarından arazide türlere ayrılarak toplanmaları oldukça zordur ve özellikle küçük örnekler toplama sırasında gözden kaçabilir. Özel olarak bir grup ile çalışan toplayıcılar arazide ömekleri tanıyıp sınıflandırabilirler. Ancak tüm ömeklerin toplanması yapılıyor ise o zaman bazen bir zarf içine birden fazla tür girebilir. Bu türlerde adlandırma sırasında ayrılarak ayrı ayrı zarfların içine konulur ve toplama numarasına a. b. c diye ayrılarak numaralanır (Ömek: 3253-a. 3253-b. 3253-c gibi). Ağaç kabukları üzerinde bulunanlar çakı ile sıyrııarak kabukla beraber, kayalar üzerinde bulunanlar ise kaya çekici ile kınlarak örneğe zarar vermeden alınırlar. Toprak üzerinde bulunanlar çakı yardımıyla ince bir toprak tabakası ile beraber alınmalıdır. Toplanacak karayosunlarının kapsüllü olmasına dikkat edilmelidir. Kapsüllü durumuna her zaman rastlanmaz. O zaman vejetatif kısımları alınır. Bu durum gözönünde tutularak karayosunları adlandırma anahtarları vejetatif karakterlere göre de yapılmıştır. Gerçekte, bazı karayosunlarının kapsülleri bile bilinmemektedir. Bu nedenle kapsüllü örnekler toplanırken, steril (kapsülsüz) örneklerden de alınmalıdır. Toplanan örnekler önceden hazırlanmış gazete kağıtlarından yapılmış zarfların içine konulur ve zarfın üstüne toplama numarası yazılarak, aynı numara deftere yazılır ve karşısına da toplandığı ortam (kaya, ağaç, toprak, su v.b.) ve toplandığı ağacın türü yazılır. Eğer ağacın tür ismi bilinmiyorsa, sonradan adlandırmak için ağaçtan örnek alınır. Bu şektide zarflara konulmuş örnekler kurutma kağıtları arasına yerleştlrilerek kurutulur, ancak presin sıkılması gerekmez. Örnekler üst üste konulduğundan kendi ağırlıkları yeterlidir. Adlandırma çalışmaları sırasında kurumuş örneğin kapsüllü ve vejetatif kısımlarından parça koparı

http://www.biyologlar.com/herbaryum-teknikleri-1

Restriksiyon enzimi

Restriksiyon enzimi veya restriksiyon endonükleazı çift zincirli DNA moleküllerindeki belli nükleotit dizilerini tanıyan ve her iki zinciri birlikte kesen bir enzim türüdür.[1][2][3] Bu özel enzimler, bakteri ve arkelerde bulunurlar ve virüslere karşı bir savunma mekanizmasına aittirler. [4][5] Konak bakteri hücresinde restriksiyon enzimleri seçici olarak yabancı DNA'ları keserler; konak DNA'yı restriksiyon enziminin etkinliğinden korunmak için bir değiştirme (modifikasyon) enzimi (bir metilaz) tarafından metillenir. Bu iki süreç toplu olarak restriksiyon modifikasyon sistemi olarak adlandırılır.[6] Bir restriksiyon enzimi DNA'yı kesmek için DNA çift sarmalının her şeker-fosfat omurgasından (yani her zincirden) birer kere olmak üzere iki kesme yapar. Keşifleri İlk restriksiyon enzimi HindIII'ün saflaştırılmasını[7] takiben pekçok başka restriksiyon enzimi keşfedilmiş ve karakterize edilmiştir.[8] 1978'de Daniel Nathans, Werner Arber ve Hamilton Smith restriksiyon enzimini keşiflerinden dolayı Nobel Tıp Ödülünü almışlardır. [9] Bu keşifleri rekombinant DNA teknolojisinin gelişimine öncülük etmiş, bunun sayesinde örneğin insülinin büyük miktarlarda üretimi için E. coli bakterisi kullanılabilmiştir.[10] 3000 üzerinde restriksiyon enzimi detaylı olarak çalışılmıştır, bunlardan 600'den fazlası ticari olarak elde edilebilir.[11] Bu enzimler laboratuvarlarda DNA modifikasyon ve maniplasyonlarında rutin olarak kullanılmaktadırlar.[12][13][14] Tanıma bölgesi Restriksiyon enzimleri spesifik bir nükleotit dizisi tanır [2] ve DNA'da çift zincirli bir kesik oluşturur. Tanıma dizilerinin uzunluğu 4 ila 8 nükleotit olup, çoğu palindromiktir, yani DNA'daki azotlu bazların dizisi ileri ve geri aynı okunur.[15] Teorik olarak DNA'da iki çeşit palindromik dizi olabilir. Yansımalı palindrom normal metinlerdeki gibi olur, aynı DNA dizisi üzerindeki dizinin normal ve tersten okunuşu aynı olur (örneğin GTAATG gibi). Evirtik (İng. inverted) tekrarlı palindrom da iki yönden aynı okunur ama ileri ve geri diziler komplemanter dizilerde yer alır. Örneğin GTATAC dizisinde olduğu gibi, bu dizinin komplemanter dizisi tersten okununca CATATG elde edilir.[16] Evirtik tekrarlar restriksiyon enzimlerinde daha yaygındır ve yansımalı palindromik dizilerden daha önemli biyolojik role sahiptir. EcoRI retriksiyon enziminin yaptığı kesme "yapışkan" uçlar üretir, EcoRI restriction enzyme recognition site.svg buna karşın SmaI retriksiyon enziminin yaptığı kesme "küt" uçlar üretir SmaI restriction enzyme recognition site.svg Her restriksiyon enzimi için DNA'daki tanıma bölgeleri farklıdır, kesim sonucu meydana gelen yapışkan ucun iplik uzantısının uzunluğu, dizisi ve zincir yönü (5' veya 3' yönünde) farklılıklar üretir. [17] Aynı diziyi tanıyan farklı tanıma enzimleri neoşimerler olarak bilinir. Bunlar çoğunlukla diziyi iki farklı yerden keserler; eğer hem tanıma dizileri hem de kesme yerleri aynıysa bu enzimler izoşizomer olarak adalandırılır. Bakteriler ürettikleri restriksiyon enzimlerinin kendi DNA'larını kesmemesi için, DNA metilazasyonu yoluyla nükleotitlerini değiştirerek (modifiye ederek) korurlar.[4] Tipler Restriksiyon endonükleazlar üç[18][19] veya dört[20][21][22] genel grupta kategorize edilirler (Tip I, II ve III), bileşenleri, enzim kofaktör gereksinimleri, hedef dizilerinin özellikleri ve DNA kesim yerinin hedef diziyle ilişkisine bağlı olarak. Tip I İlk keşfedilen restriksiyon enzimleri Tip I restriksiyon enzimleri olmuştur ve bunlar E. colinin iki farklı suşuna (K-12 ve B) özgüdürler.[23] Bu enzimler tanıma bölgelerinden en azından 1000 baz çifti uzaklıktaki farklı bölgeleri keserler. Tanıma bölgesi asimetriktir ve 6-8 nükleotitlik bir boşlukla ayrılan iki kısımdan oluşur, biri 3-4 nükleotit içeren ve diğeri 4-5 nükleotit içeren. S-Adenozil metyonin (AdoMet), adenozin trifosfat (ATP) ve magnezyum iyonları (Mg2+) gibi birkaç enzim kofaktörü bu enzimlerin etkinliği için gereklidir. Tip I restriksiyon enzimleri, HsdR, HsdM ve HsdS olarak adlandırılan üç altbirime sahiptirler; HsdR kesme için; HsdM konağın DNAsına metil grupları eklemek için; ve HsdS metiltransferaz etkinliğine ek olarak, tanıma bölgesinin kesim özgüllüğü için gereklidirler.[18][23] Tip II Tip II enzimler tip I enzimlerden birkaç yönden farklıdır. Tek tip proteinden oluşmuş dimer yapıya sahiptirler; tanıma bölgeleri genelde bölünmüş değildir, palindromiktir ve 4-8 nükleotit uzunluktadır; DNA'yı tanıdıkları ve kestikleri yer aynıdır; etkinlikleri için ATP veya AdoMet'e gerek göstermezler, kofaktör olarak genelde sadece Mg2+ gereksinimleri vardır. 1990'lar ve 2000'lerde bu enzim sınıfının tüm özelliklerin taşımayan yeni enzimler keşfedildiği için bu büyük enzim ailesini alt sınıflara ayıran yeni bir adlandırma sistemi geliştirildi.[15] Bu altgruplar bir sonek harf ile belirtilir. Tip IIB restriksiyon enzimleri (örneğin BcgI and BplI) mültimeriktir, yani birden çok altbirimden oluşur.[15] DNA'yı tanıma dizisinin iki tarafından kesip çıkarırlar. Kofaktör olarak hem AdoMet hem de Mg2+ gereksinirler. Tip IIE restriksiyon endonükleazları (örneğin NaeI) tanıma dizilerinden iki kopyası ile etkileştikten sonra DNA'yı keserler.[15] Bir tanıma dizisi kesme hedefi olarak etkir, öbürü ie enzimin kesme verimini artıran, yani hızlandıran bir alosterik unsur olarak etkir. Tip IIF enzimler (örneğin NgoMIV) Tip IIE enzimlere benzer, onlar da tanıma dizilerinin iki kopyası ile etkileşir, ama ikisi birden keser.[15] Tip IIG enzimler (Eco57I gibi) tek bir altbirime sahiptir, klasik Tip II restriksiyon enzimleri gibi, ama etkin olmak için AdoMet kofaktörüne gerek duyarlar.[15] Tip IIM restriksiyon endonükleazları, DpnI gibi, metillenmiş DNA'yı tanıyıp kesebilirler.[15] Tip IIS restriksiyon enzimleri (FokI gibi) palindromik olmayan asimetrik tanıma dizilerinden beli bir uzaklıkta keserler.[15] Bu enzimler dimer olarak çalışabilir. Benzer olarak, Tip IIT restriksiyon enzimleri (örneğin Bpu10I ve BslI) iki farklı altbirimden oluşur. Bazıları palindromik dizileri tanır, bazılarının tanıma dizileri ise asimetriktir.[15] Tip III Tip III restriksiyon enzimleri (örneğin EcoP15) birbirine dönük olan iki ayrı, palindromik olmayan dizi tanırlar. DNA'yı tanıma yerinden 20-30 baz uzakta keserler.[25] Bu enzimler birden çok altbirime sahiptir; DNA metilasyonu ve restriksiyonu için, sırasıyla, AdoMet ve ATP kofaktörlerine gerek duyarlar.[26] Tip IV Tip IV restriksiyon enzimleri metillenmiş DNA'yı keser. Bunlar iki farklı altbirimden oluşur. DNA kesimi için Mg2 ve GTP kofaktör olarak gereklidir. Tanıma yeri iki parçalıdır. Metillenmiş bazlar arasında birden fazla kesim olur.[21] Yapay Restriksiyon Enzimleri Yapay restriksiyon enzimleri üretmek için doğal ve tasarımlı bir DNA bağlayıcı bölge ile bir nükleaz bölgesi (genelde FokI restriksiyon enziminin kesme bölgesi) birleştirilir.[27] Bu tür yapay restriksiyon enzimleri arzu edilen DNA dizilerini tanıyabilecek şekilde tasarlanabilir, ayrıca tanıma bölgelerinin uzunluğu 36 baz çifti uzunluğa varabilir.[28] Çinko parmak nükleazlar yapay restriksiyon enzimlerinin en yaygın kulanılanlarıdır, genelde genetik mühendislik[29][30][31][32] ve standart gen klonlama uygulamalarında da[33] Other artificial restriction enzymes are based on the DNA binding domain of TAL effectors.[34][35] kullanılırlar. 1970'lerde keşfedilmelerinden beri çeşitli bakterilerde yüzlerce restriksiyon enzimi tespit edilmiştir. Her enzim elde edildiği bakteriye göre adlandırılır, bakterinin cinsi, türü ve suşuna dayalı bir adlandırma sistemine göre.[36][37] Örneğin EcoRI restriksiyon enziminin adı yandaki kutuda açıklandığı şekilde türetilmiştir. Uygulamalar Saflaştırılmış restriksiyon enzimleri çeşitli bilimsel uygulamalardaki DNA manipülasyonlarında kullanılır. restriksiyon enzimleri gen klonlaması ve protein ifadesi deneylerinde, Plazmit vektörlerlerin içine genler sokmak için kullanilirlar. Gen klonlama deneylerinde kullanılan plazmitlerde genelde kısa bir "çoklu bağlayıcı" dizi (İng. polylinker; çoklu klonlama yeri) bulunur. Gen parçalarını plazmit vektörün içine sokarken bu diziler kolaylık sağlar; genin içinde doğal olarak bulunan restriksiyon yerleri DNA'yı kesmek için kullanılacak endonükleaz seçimini etkiler, çünkü arzu edilen DNA'ya zarar vermeden onun uçlarının kesilmesi gerekmektedir. Bir gen parçasının bir vektörün içine klonlamak için hem plazmit DNA'sı hem de gen parçası aynı restriksiyon enzimi ile kesilir, sonra bunlar DNA ligaz olarak adlandırılan bir enzimle birbirlerine yapıştırılır.[38][39] Restriksiyon enzimleri DNA'da bulunan tek baz değişikliklerini (tek nükleotit polimorfizmleri, veya "SNP"leri) spesifik olarak tanıyarak gen alellerini ayırdetmekte kullanılırlar.[40][41] Bunun için o alelde bulunan bir restriksiyon yerinin bir SNP tarafından değişikliğe uğraması gerekmektedir. Bu yöntemle, bir DNA numunesini dizilemeden, bir retriksiyon enzimi ile onu genotiplemek mümkün olur. Numune önce DNA parçaları oluşturacak şekilde restrilksiyon enzimi ile sindirilir, sonra farklı büyüklükteki parçalar jel elektroforezi ile ayrıştırılır. Genelde, doğru restriksiyon yerine sahip olan aleller jelde iki görünür bant meydana getirir, değişlikliğe uğramış restriksiyon yeri olan parçalar ise kesilmezler ve sadece bir bant oluştururlar. Bant sayısı kişinin genotipini gösterir. Bu işlem bir restriksiyon haritalaması örneğidir. Benzer şekilde, restriksiyon enzimleri Southern blot yöntemiyle genomik DNA'nın kesilmesinde kullanılır. Bu yöntem ile, bir kişinin genomunda bir genin kaç kopyası (veya paralogu) olduğu belirlenebilir. Bu yöntemin bir diğer uygulamasında belli bir toplulukta kaç tane gen mutasyonu (polimofizmi) olduğu belirlenebilir, buna restriksiyon parçası uzunluk polimorfizmi (İng. restriction fragment length polymorphism, RFLP) denir.[42] ^ Roberts RJ (November 1976). "Restriction endonucleases". CRC Crit. Rev. Biochem. 4 (2): 123–64. PMID 795607. ^ a b Kessler C, Manta V (August 1990). "Specificity of restriction endonucleases and DNA modification methyltransferases a review (Edition 3)". Gene 92 (1-2): 1–248. doi:10.1016/0378-1119(90)90486-B. PMID 2172084. ^ Pingoud A, Alves J, Geiger R (1993). "Chapter 8: Restriction Enzymes". Burrell, Michael. Enzymes of Molecular Biology. 16. Totowa, NJ: Humana Press. ss. pages 107-200. ISBN 0-89603-234-5. ^ a b Arber W, Linn S (1969). "DNA modification and restriction". Annu. Rev. Biochem. 38: 467–500. doi:10.1146/annurev.bi.38.070169.002343. PMID 4897066. ^ Krüger DH, Bickle TA (September 1983). "Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts". Microbiol. Rev. 47 (3): 345–60. PMC =pmcentrez 281580. PMID 6314109. ^ Kobayashi I (September 2001). "Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution". Nucleic Acids Res. 29 (18): 3742–56. doi:10.1093/nar/29.18.3742. PMC =pmcentrez 55917. PMID 11557807. ^ Roberts RJ (April 2005). "How restriction enzymes became the workhorses of molecular biology". Proc. Natl. Acad. Sci. U.S.A. 102 (17): 5905–8. doi:10.1073/pnas.0500923102. PMC =pmcentrez 1087929. PMID 15840723. ^ Danna K, Nathans D (December 1971). "Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae". Proc. Natl. Acad. Sci. U.S.A. 68 (12): 2913–7. doi:10.1073/pnas.68.12.2913. PMC =pmcentrez 389558. PMID 4332003. ^ "The Nobel Prize in Physiology or Medicine". The Nobel Foundation. 1978. Erişim tarihi: 2008-06-07. ^ Villa-Komaroff L, Efstratiadis A, Broome S, Lomedico P, Tizard R, Naber SP, Chick WL, Gilbert W. (August 1978). "A bacterial clone synthesizing proinsulin". Proc. Natl. Acad. Sci. U.S.A. 75 (8): 3727–31. PMC =pmcentrez 392859. PMID 358198. ^ Roberts RJ, Vincze T, Posfai J, Macelis D. (2007). "REBASE--enzymes and genes for DNA restriction and modification". Nucleic Acids Res 35 (Database issue): D269-70. doi:10.1093/nar/gkl891. PMID 17202163. ^ Primrose, Sandy B.; Old, R. W. (1994). Principles of gene manipulation: an introduction to genetic engineering. Oxford: Blackwell Scientific. ISBN 0-632-03712-1. ^ Micklos, David A.; Bloom, Mark V.; Freyer, Greg A. (1996). Laboratory DNA science: an introduction to recombinant DNA techniques and methods of genome analysis. Menlo Park, Calif: Benjamin/Cummings Pub. Co. ISBN 0-8053-3040-2. ^ Adrianne Massey; Helen Kreuzer (2001). Recombinant DNA and Biotechnology: A Guide for Students. Washington, D.C: ASM Press. ISBN 1-55581-176-0. ^ a b c d e f g h i Pingoud A, Jeltsch A (September 2001). "Structure and function of type II restriction endonucleases". Nucleic Acids Res. 29 (18): 3705–27. doi:10.1093/nar/29.18.3705. PMC =pmcentrez 55916. PMID 11557805. ^ Molecular Biology: Understanding the Genetic Revolution, by David P. Clark. Elsevier Academic Press, 2005. ISBN 0-12-175551-7. ^ Goodsell DS (2002). "The molecular perspective: restriction endonucleases". Stem Cells 20 (2): 190–1. PMID 11897876. ^ a b Bickle TA, Krüger DH (June 1993). "Biology of DNA restriction". Microbiol. Rev. 57 (2): 434–50. PMC =pmcentrez 372918. PMID 8336674. ^ Boyer HW (1971). "DNA restriction and modification mechanisms in bacteria". Annu. Rev. Microbiol. 25: 153–76. doi:10.1146/annurev.mi.25.100171.001101. PMID 4949033. ^ Yuan R (1981). "Structure and mechanism of multifunctional restriction endonucleases". Annu. Rev. Biochem. 50: 285–319. doi:10.1146/annurev.bi.50.070181.001441. PMID 6267988. ^ a b Rao DN, Sistla S (2004). "S-Adenosyl-L-methionine-dependent restriction enzymes". Crit. Rev. Biochem. Mol. Biol. 39 (1): -. doi:10.1080/10409230490440532. PMID 15121719. ^ Williams RJ (2003). "Restriction endonucleases: classification, properties, and applications". Mol. Biotechnol. 23 (3): -. PMID 12665693. ^ a b Murray NE (June 2000). "Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle)". Microbiol. Mol. Biol. Rev. 64 (2): 412–34. PMC =pmcentrez 98998. PMID 10839821. ^ PDB 1qps Gigorescu A, Morvath M, Wilkosz PA, Chandrasekhar K, Rosenberg JM (2004). "The integration of recognition and cleavage: X-ray structures of pre-transition state complex, post-reactive complex, and the DNA-free endonuclease". Alfred M. Pingoud. Restriction Endonucleases (Nucleic Acids and Molecular Biology, Volume 14). Berlin: Springer. ss. 137–178. ISBN 3-540-20502-0. ^ Dryden DT, Murray NE, Rao DN (September 2001). "Nucleoside triphosphate-dependent restriction enzymes". Nucleic Acids Res. 29 (18): 3728–41. doi:10.1093/nar/29.18.3728. PMC =pmcentrez 55918. PMID 11557806. ^ Meisel A, Bickle TA, Krüger DH, Schroeder C (January 1992). "Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage". Nature 355 (6359): 467–9. doi:10.1038/355467a0. PMID 1734285. ^ Kim YG, Cha J, Chandrasegaran S (February 1996). "Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain". Proc. Natl. Acad. Sci. U.S.A. 93 (3): 1156–60. doi:10.1073/pnas.93.3.1156. PMC =pmcentrez 40048. PMID 8577732. ^ Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (September 2010). "Genome editing with engineered zinc finger nucleases". Nat. Rev. Genet. 11 (9): 636–46. doi:10.1038/nrg2842. PMID 20717154. ^ Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (May 2009). "High-frequency modification of plant genes using engineered zinc-finger nucleases". Nature 459 (7245): 442–5. doi:10.1038/nature07845. PMC =pmcentrez 2743854. PMID 19404258. ^ Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (May 2009). "Precise genome modification in the crop species Zea mays using zinc-finger nucleases". Nature 459 (7245): 437–41. doi:10.1038/nature07992. PMID 19404259. ^ Ekker SC (2008). "Zinc finger-based knockout punches for zebrafish genes". Zebrafish 5 (2): 121–3. doi:10.1089/zeb.2008.9988. PMC =pmcentrez 2849655. PMID 18554175. ^ Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (July 2009). "Knockout rats via embryo microinjection of zinc-finger nucleases". Science 325 (5939): 433. doi:10.1126/science.1172447. PMC =pmcentrez 2831805. PMID 19628861. ^ Tovkach A, Zeevi V, Tzfira T (October 2010). "Expression, purification and characterization of cloning-grade zinc finger nuclease". J Biotechnol. doi:10.1016/j.jbiotec.2010.10.071. PMID 21029755. ^ Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (October 2010). "Targeting DNA double-strand breaks with TAL effector nucleases". Genetics 186 (2): 757–61. doi:10.1534/genetics.110.120717. PMC =pmcentrez 2942870. PMID 20660643. ^ Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (August 2010). "TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain". Nucleic Acids Res. doi:10.1093/nar/gkq704. PMID 20699274. ^ Smith HO, Nathans D (December 1973). "Letter: A suggested nomenclature for bacterial host modification and restriction systems and their enzymes". J. Mol. Biol. 81 (3): 419–23. doi:10.1016/0022-2836(73)90152-6. PMID 4588280. ^ Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev SKh, Dryden DT, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR, Kobayashi I, Kong H, Krüger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowicz A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin VE, Selker EU, Shaw PC, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Van Etten JL, Vitor JM, Wilson GG, Xu SY (April 2003). "A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes". Nucleic Acids Res. 31 (7): 1805–12. doi:10.1093/nar/gkg274. PMC =pmcentrez 152790. PMID 12654995. ^ Geerlof A. "Cloning using restriction enzymes". European Molecular Biology Laboratory - Hamburg. Erişim tarihi: 2008-06-07. [ölü/kırık bağlantı] ^ Russell, David W.; Sambrook, Joseph (2001). Molecular cloning: a laboratory manual. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory. ISBN 0-87969-576-5. ^ Wolff JN, Gemmell NJ (February 2008). "Combining allele-specific fluorescent probes and restriction assay in real-time PCR to achieve SNP scoring beyond allele ratios of 1:1000". BioTechniques 44 (2): 193–4, 196, 199. doi:10.2144/000112719. PMID 18330346. ^ Zhang R, Zhu Z, Zhu H, Nguyen T, Yao F, Xia K, Liang D, Liu C (July 2005). "SNP Cutter: a comprehensive tool for SNP PCR-RFLP assay design". Nucleic Acids Res. 33 (Web Server issue): W489–92. doi:10.1093/nar/gki358. PMC =pmcentrez 1160119. PMID 15980518. ^ Stryer, Lubert; Berg, Jeremy Mark; Tymoczko, John L. (2002). Biochemistry. San Francisco: W.H. Freeman. ss. 122. ISBN 0-7167-4684-0. ^ Roberts RJ (January 1980). "Restriction and modification enzymes and their recognition sequences". Nucleic Acids Res. 8 (1): r63–r80. doi:10.1093/nar/8.1.197-d. PMC =pmcentrez 327257. PMID 6243774. ^ R.J Roberts, 1988, Nucl Acids Res. 16(suppl):271 From p.213 Molecular Cell Biology 4th Edition by Lodish, Berk, Zipursky, Matsudaira, Baltimore and Darnell. ^ a b c d e f g Monty Krieger; Matthew P Scott; Matsudaira, Paul T.; Lodish, Harvey F.; Darnell, James E.; Lawrence Zipursky; Kaiser, Chris; Arnold Berk (2004). Molecular Cell Biology. New York: W.H. Freeman and Company. ISBN 0-7167-4366-3. ^ "Stu I from Streptomyces tubercidicus". Sigma-Aldrich. Erişim tarihi: 2008-06-07. ^ Shimotsu H, Takahashi H, Saito H (November 1980). "A new site-specific endonuclease StuI from Streptomyces tubercidicus". Gene 11 (3-4): 219–25. doi:10.1016/0378-1119(80)90062-1. PMID 6260571.

http://www.biyologlar.com/restriksiyon-enzimi

Hücre görüntüleme teknikleri

Temel tıp bilimleri ve biyolojide sistem, organ ve doku fonksiyonu hakkında bugün eriştiğimiz bilgi düzeyinin temeli, fonksiyonel birim olan hücre ve yapıları hakkındaki bilgilerimiz nedeniyledir. Bu nedenle bilim insanları tarih boyunca, gözle göremedikleri bu mikro evrendeki yapıları görünür hale getirip, deneysel bilgiler toplayabilmek için farklı büyütme araçları, mikroskoplar üretme çabasında olmuşlardır. Her ne kadar Janssen’in 16. yüzyılda ürettiği bileşik mikroskop ilk olsa da, tarihte bu girişimlerin başlangıcı Hooke’un çalışmaları olarak kabul edilir. Hooke Şekil 1’de gösterildiği üzere, bir boru içine yerleştirdiği merceği ve oküleri, bir yağ lambası(ışık kaynağı) ve su dolu küre (kondensör) yardımıyla, ince kesilmiş şişe mantarı dilimleri üzerine odaklayarak gördüğü yapıyı çizdi. Mantar diliminin delikli yapısını tanımlamak üzere Hooke ilk defa hücre terimini kullandı. Hooke’un mikroskobu ile bugünkü modern mikroskopların arasında görüntü itibariyle çok büyük farklar olmasına rağmen görüntülemenin temel prensibini oluşturan fizik kanunları aynıdır. Bugün laboratuvarlarda görüntüleme maksadıyla en sık ışık, elektron demeti ve ultrases kullanan mikroskoplardan yararlanılmaktadır. Ultrases mikroskopları kısıtlı olarak kullanılmaktadır, elektron mikroskopi tekniği ise ancak fikse edilmiş metal kaplanmış hücrelere (dokulara) uygulanabildiğinden, bu makalenin kalan kısmında canlı hücrelere uygulanabilen ışık mikroskopi tekniklerine yer verilmiştir [1-4]. Beyaz ışık, elektromanyetik dalga spektrumun gözümüzün görebildiği 400-800 nm arasındaki kısmına karşılık gelmektedir. Görünebilir spektrumdan daha küçük dalga boyundaki ışık ışını ultraviyole, daha büyük dalga boyundaki ise infra-red spektrumunda yer alır. Farklı maksatlarla tüm bu dalga spektrumlarının seçilmiş bir bandı veya tek dalga boyuna sahip ışık ışınları kullanılmaktadır. Büyütmenin en bilinen aracı büyüteçtir. Burada objeden yansıyan paralel ışık ışınları lensten geçerek odak noktasına kırılır ve retinada görüntü oluşur. Görüntünün boyu lensin arkasında oluşan büyütülmüş sanal görüntüye ait olduğundan büyütme gerçekleşmiş olur (Şekil 2A). Mikroskoptaki fizik prensipler özünde büyüteçtekine benzemekle birlikte bazı farklar arz eder. Mikroskopta ambient ışık yerine belli bir ışık kaynağı kullanılır. Aydınlatma ışığı bir kondensör (yoğunlaştırıcı) lens yardımıyla numuneye odaklanır. Numuneden geçen ışık ışınları (transmitted light) objektif lens tarafından birinci defa büyütülür. Oluşan görüntü paralel ışık demetleri halinde mikroskop tüpünden okülere ulaştıktan sonra ikinci büyütmeye uğrar, odağa kırılan ışık demetleri gözlem planında final görüntüyü oluşturur (Şekil 2B). Oluşan görüntü aslında iki kez büyütülmüş sanal görüntüye ait olduğundan numunenin yeterince büyük bir görüntüsünü gözlemek mümkündür. Bu yöntemle numunenin ≅ 1,000 kez büyütülmüş görüntülerini elde etmek mümkündür. Klasik ışık mikroskobu ile şiddet kontrastı, faz kontrastı, modülasyon kontrastı, interferans kontrastı yöntemleri ile örneğin farklı vasıflarını ön plana çıkartan görüntülerini elde etmek mümkündür. Bilinen parlak alan mikroskopisi ile, numunenin görme alanına giren kısmının ışığı geçirme özelliklerinden yararlanılır. Bu yöntemle numunenin bir kısmına ait spesifik görüntüleme elde etmek mümkün değildir. Numuneden spesifik görüntü veya sinyal almak için floresan mikroskopi yöntemi geliştirilmiştir. Floresan prensip temel seviyedeki (ground state) bir elektronun eksternal enerji ile uyarılarak bir üst seviyeye yükseltilmesi ve bu seviyede labil olan elektronun tekrar temel seviyeye dönerken spesifik bir dalga boyunda ışıma yapması şeklinde özetlenebilir (Şekil 3A). Eğer uyarı enerjisi bir ışık kaynağıysa buna uyarı (excitation) ışığı, geri dönüşte yayılan ışığa da emisyon (emission) denir. Bazı moleküllerin floresan vasıfları daha etkindir, belli bir dalga boyunda uyarıldığında stabil olarak başka bir dalga boyunda orantılı bir ışıma yaparlar, bunlara da floresan madde veya florofor denir. Floresan prensibin mikroskopideki uygulaması Şekil 3B ve 3C’de gösterildiği gibidir. Burada ışık kaynağından optik filtreler yardımıyla uyarı ışığı süzülerek numuneye yönlendirilir, numunenin çıkarttığı emisyon bariyer filtreden geçirilerek uyarı ışığından arındırılır ve göze (veya fotoğraf makinesine) düşürülerek görüntülenir. Bu sayede numunenin kendi yaydığı spesifik floresan emisyon görüntülenmektedir. Eğer, numunenin belli bir kısmının floresan olarak işaretlendiğini düşünürsek sadece bu kısımlar spesifik olarak işaretlenecektir. Resim 1’de bir mikroelektrotla floresan boya doldurulmuş bir nörona ait görüntü gösterilmiştir. Bu sayede nöronun ince dendritleri en ince ayrıntılarına kadar görüntülenebilirken, diğer yapılar elimine edilmiştir. Görüldüğü gibi floresan mikroskopi en temel olarak spesifik yapıların morfolojisinin araştırılmasında kullanılmaktadır [1]. Ancak bazı floresan boyaların yaydığı emisyon, ortamdaki değişikliklerden etkilenmektedir. Örneğin, kalsiyum, sodyum, potasyum ve pH değişiklikleri spesifik floroforun yaydığı emisyonu etkiler. Bu sayede uygun floresan boya seçilerek hücre içi iyon konsantrasyonu değişiklikleri gerçek zamanlı tespit edilebilir. Ancak fotoğraflama işlemi ile bu sinyalleri takip etmek mümkün değildir. Bu yüzden fotoğraf makinelerinin yerine foton sayıcı cihazlar, foto-diod kullanılmaktadır. Bir foto-diodda elektrik potansiyeli altında labil hale getirilen katot bulunur ve buraya düşen her foton bir grup elektronu kopartıp uçurarak anotta bir akım oluşturur. Anadol akım foton sayısı ile orantılı olduğundan floresan emisyonun kuantitasyonu mümkün olur. Uygulanan voltaj değiştirilerek foto-diodun hassasiyeti ayarlanabilir. Fotometri denen bu yöntem basit ve ucuz bir yöntemdir, ancak görme alanının tamamından alınan sinyalin tümünü tek okuma halinde verir, dolayısıyla XY ve Z ekseninde bir çözünürlükten bahsetmek mümkün değildir. Bu sıkıntıya çözüm bulmak için CCD kameralar kullanılarak imaging tekniği geliştirilmiştir. Bu teknikte mikroskopta oluşan görüntü her pikselinde bir fotonsayıcı-kaydedicisi bulunan bir plakanın üzerine düşürülür. Bu sayede birim zamanda her pikseldeki sayaca düşen foton sayısı ayrı ayrı kaydedilir ve bir voltaj sinyali olarak okunarak dijital veri haline dönüştürülür. Daha sonra bu veriden, numunenin XY planındaki görüntüsü dijital olarak oluşturulur. Böylece floresan sinyaldeki topografik değişiklikler takip edilebilir [3]. Örneğin kalsiyum konsantrasyonunun miyositte nasıl yayıldığı, nöronda belli bölgelerin, örneğin; dendrit uçlarında konsantrasyonun daha fazla mı değiştiği gibi, topografik çözünürlük gerektiren problemlere direkt çözümler bulunabilir (Resim 2A). Resim 2B’de sodyuma hassas bir boya ile doldurulmuş bir nöron hücre gövdesine yerleştirilmiş bir elektrotla uyarılmış ve oluşan hücre içi sodyum iyonu değişiklikleri farklı alanlarda takip edilmiştir. Maksimum değişiklik hücre gövdesinde saptandığından buranın en çok sodyum kanalı içerdiği sonucuna ulaşılmıştır. Bu tür yöntemlerin bir diğer uygulama alanı ise potansiyele hassas boyaların kullanıldığı araştırmalardır. Nöronal membran potansiyeli membran içine yerleşik floresan boyanın emisyonunu etkiler. Bu sayede nöral aktivite artışı emisyon artışı ile korele olduğundan membran potansiyeli değişiklikleri saptanabilir. Bu yöntem hızlı foton sayıcılar (diod-array) kullanılarak beyin kesitlerinde nöral aktivitenin topografik takibinde kullanılmaktadır [3]. Ancak voltaj boyaları diğerlerine göre daha kısıtlı (100 mV için maksimum %20) emisyon değişiklikleri verdiklerinden uygulaması en zor olanlardır. Imaging tipi yöntemle XY planında çözünürlük sağlansa da Z ekseninde herhangi bir çözünürlükten bahsetmek mümkün değildir. Z eksenini kontrol etmek için modülasyon kontrastı gibi bazı ışık mikroskopi teknikleri geliştirilmiş olsa da bunlar tamamen illüzyonlara dayanmaktadır. Gerçek anlamda Z ekseninin kontrolü ancak konfokal mikroskopi tekniğiyle mümkün olmuştur [2]. Şekil 4A’da şematik olarak gösterildiği üzere, konfokal mikroskopta ince bir lazer ışını objektif üzerinden floresan işaretli numunenin üzerine düşürülür. Bu ışın numuneyi geçer ve yolu boyunca var olan floroforları uyarır. Tüm bu yapılar emisyon yayar. Odak planındaki yapıdan yayılan emisyon dikroik aynadan yansıyıp bir ışık geçirmez plaka üzerindeki küçük delik (pin-hole) içinden geçip foton çarpıcı-sayıcıya (photomultiplier) ulaşıp voltaj sinyali olarak saklanır. Buna karşın odak planının altındaki ve üstündeki yapılardan kaynaklanan emisyon küçük deliğin altına ve üstüne geleceğinden sayaca ulaşamaz ve kaydedilemez. Bu yöntemle tüm katmanlar uyarılmasına rağmen sadece odak planından kaynaklanan emisyon süzülüp kaydedilmiş olur. Görme alanı piksellere ayrılır, lazer ışığı her piksele sırasıyla yönlendirilmek suretiyle bu işlem tekrarlanarak tüm görme alanı taranır. Böylece fokal planın tümünden kaynaklanan emisyon sinyali potansiyel sinyaline dönüştürülmüş olur (Şekil 4B,4C). Bilgisayar yardımıyla bu kayıtlardan fokal planın görüntüsü dijital olarak oluşturulur. Mikroskop (objektif), cismin Z ekseni üzerinde belli aralıklarla farklı seviyelere odaklanır. Her seviyeye ait fokal düzlem görüntülenerek resim takımı oluşturulur. Bunlar, numunenin gerçek optik kesitleridir. Fizik bir manipülasyon kullanıldığından numune kesilip hasara uğratılmamıştır. Bu yöntemle alınabilecek kesit aralığı (bu objektife bağlıdır) 1 μm veya daha küçük olabilir. Klasik yöntemlerle karşılaştırıldığında oldukça iyi bir değerdir. Ayrıca, canlı hücrelere uygulanabilir olması tamamen bir üstünlük teşkil eder. Bu şekilde alınmış Z-görüntü kesitlerinden dijital algoritmalar kullanarak, cismin projeksiyon ve (dichotic) stereo görüntülerini va açısal dönüşüm resimlerini hesaplamak mümkün olur (Resim 3). Ayrıca, noninvaziv olan bu yöntemle bir canlı hücreden optik kesit aldığınızda, uygun planı bulursak hücre içi yapıları gözleme imkanımız olur. Örneğin; hücre çekirdeği, mitokondri, vakuol, endoplazmik retikulum gibi yapılar morfolojik ve fonksiyonel olarak görüntülenebilir (Resim 4). Ayrıca, yukarıda bahsedilen floresan tekniklerin tamamı konfokal mikroskop ile uygulanabilir. Z-görüntü takımı alındıktan sonra görüntülenen yapının morfolojik ölçümleri hesaplanabilir. Bu sayede, hücre veya kısımlarının hacmini, yüzey alanını en kesin bir biçimde hesaplamak mümkündür. Bu bilgiler örneğin uyarılabilir bir hücrenin yapı fonksiyon ilişkisinin belirlenmesi için çok önemlidir. Konfokal teknikle hacim kontrolü mümkün olduğundan canlı bir hücrenin istenen bir bölgesinden kayıt yapılabilir. Yani hücre (veya organel)içinde XYZ eksenlerinde tanımlanmış kısıtlı bir hacim içinde numunenin kalsiyum değişimi kaydedilebilir. Resim 5’te miyosit içine bir bölge hedeflenerek linescan modunda endoplazmik retikulumundan salınan kuantal kalsiyum transientleri kaydedilmiştir. Konfokal mikroskopi hücre araştırmaları için ideal bir araştırma yöntemidir. Ancak doku parçalarında kullanımı nispeten kısıtlıdır. Uyarı ışığının derindeki hücreye penetrasyonu ve floresan emisyonun dokuda yayılımı zor olduğundan yüksek enerji kullanılması gerekir. Yüksek enerji doku ve hücreye zarar vereceğinden canlı yapılarda uygun değildir. Bu sorunları aşmak için multi-foton tekniği geliştirilmiştir. Bu yöntemin bilinen konfokal teknikten farkı özel bir lazer kullanılmasıdır. “Power Spread Function (PSF)” dağılımına göre odak noktasının parlaklığı karanlık kısma göre 105 kez daha fazladır. Dolayısıyla iki PSF çarpılması sağlanarak mikroskop konfokal hale getirilebilir. Yeterince parlak bir ışık kaynağı bir noktaya odaklandığında bir ya da iki fotonu hemen eşzamanlı olarak aynı noktada buluşturabilir. Bu örnekten yola çıkarak floroforun spesifik uyarılma dalga boyunun iki katı uzunluktaki lazer ışığı kullanılmak suretiyle iki fotonun hemen eşzamanlı ulaşması sağlanırsa fokal plandaki floroforlar spesifik olarak uyarılabilirler. Bu yöntemle uyarılma ışığı daha az enerjili olacağından yüksek enerji sadece odak noktasında oluşacak, bu sayede doku penetrasyonu daha etkili olurken doku hasarı azaltılacaktır. Ayrıca, uyarılma sadece fokal planla sınırlı olduğundan pin hole kullanımı gerekmeyecektir. Bu vasıfları nedeniyle multi-foton tekniği doku parçalarından yapılacak ölçümler için ideal bir yöntemdir. Ancak konfokal metoduna oranla elde edilen görüntülerin çözünürlüğü daha kötüdür, her amaca uygun florofor bulmak zordur, kullanılan lazerler ve kontrol sistemleri çok daha pahalıdır [2,3]. Sonuç olarak; günümüz laboratuvarlarında optik yöntemler kullanarak hücre yapı ve fonksiyonu hakkında canlı hücrelerde invaziv olmayan araştırmalar yapmak ve fizyolojik cevapları kaydetmek mümkündür. Bu tür tekniklerin kullanıldığı metotlar genel olarak opto-fizyoloji terimi adı altında toplanmaktadır. Bu makalede verilen şekil ve resimlerin tamamı anabilim dalımızda kurulu hücresel elektro-fizyoloji ve opto-fizyoloji laboratuvarında gerçekleştirilmiştir. Diyagramatik gösterimler farklı kaynaklardan altta yatan fizik kavramları vurgulamak maksadıyla aslına uygun olarak yeniden üretilmiştir [4]. Anabilim dalımızda verilmekte olan lisans üstü derste bu makalede verilen kavramsal içerik ötesinde, ölçme ve analiz yöntemleri de verilmekte, öğrencilere uygulama imkanları sağlanmaktadır. Ayrıca, bu kapsamda 2004 yılı güz döneminde uluslararası katılımlı bir eğitim kursu düzenlenecektir. Kaynaklar 1. Herman B. Fluorecence microscopy. New York, Berlin, Heidelberg: Springer Verlag, 1998. 2. Paddock S. Confocal microscopy (methods in molecuar biology Volume 122). Humana Press, 1998. 3. Murphy DB. Fundamentals of light microscopy and electronic imaging. John Wiley and Sons, Inc., 2001. 4. www.fsu.edu Hacettepe Tıp Dergisi 2004; 35:107-113 Nuhan Pural›

http://www.biyologlar.com/hucre-goruntuleme-teknikleri

GEN HARİTALAMA STRATEJİLERİ

Genetik haritalama temelde, William Bateson ve Reginald Punnett tarafından yürütülmüş genetik bağlantı çalışmalarına dayanmaktadır. 1911’de Thomas Hunt Morgan’ın Drosophila ile yaptığı bağlantı çalışmalarında, bağlantılı genler arasında krossingover oranının farklı olduğunun gözlemi, krossingover sıklığının kromozom üzerindeki genleri arasındaki uzaklığı belirttiği fikrini meydana getirmiştir. İlk genetik haritalama, Morgan’ın öğrencisi Alfred Sturtevant tarafindan geliştirilmiştir. Sturtevant iki bağlantılı gen arasındaki mesafe ne kadar çoksa, bu iki gen arasındaki bölgede bir krosingsover olma olasılığının da o derece yüksek olacağını öne sürmüştür. Rekombinasyon olaylarını hesaplayarak, genler arasındaki uzaklığı ölçmenin mümkün olabileceği gösterilmiştir (1,2). Genetik haritalama, 1950’ye kadar insanlarda uygulanmaya başlayamamıştır. 1980’de RFLP’lerin (Restriction Fragment Length Polymorphism) ilk kez açıklanması ile, tüm kromozom haritaları oluşturulmaya çalışılmıştır. Kromozom parçaları ve bir kaç markır içeren bu ilk haritalar, 1980’lerin başlarında yapılmıştır. Tüm kromozom haritaları ancak 1980’lerin sonunda oluşturulmuştur. 1990’ların ortalarına gelindiğinde, araştırma ekiplerinin yeteneklerinin ve istatistiksel analiz yöntemlerinin geliştirilmesi ile, bir takım tüm-genom genetik haritaları oluşturulmuştur. Bu haritalar güncellenip geliştirilerek internet ortamına sunulmuştur (3). Genetik haritalama, genlerin lokalizasyonları ve fonksiyonlarını arasında bağlantı kurmak için kullanılan istatistiksel bir yöntemdir. Genetik haritalamanın üç temel kuralı vardır: Rekombinasyon genetik haritalamanın temelini oluşturur. Kromozom üzerindeki komşu genler nesillere aktarılırken birlikte aktarılırlar. Hastalık yeni nesillerde her zaman markır gen ile birlikte bulunuyorsa, hastalık geni markır gen ile yakın yerleşimlidir (4). Temel olarak gen haritalama disiplininde iki strateji vardır. Parametrik metodlar: Bağlantı analizi olarak bilinen bu metodda, lokalizasyonu bulunmak istenen bir genin, herhangi bir kromozomda bulunması olasılığının, o kromozomda bulunmaması olasılığına oranının logaritması (Logarithm of Odds ratio, LOD Score) alınarak hesaplanır. Bağlantı analizinde başarı sağlanabilmesi için, hastalığın kalıtım kalıbının kesin olarak bilinmesi, markır alleli ile hastalık allelinin, birarada kalıtılıp kalıtılmadığının segregasyonunun yeterince gözlenebileceği üç ve daha fazla kuşaklı büyük aileler tercih edilmesi, kalıtım kalıbına göre örnek to- plama startejisinin geliştirilmesi, ailelerde fenokopi ve hastalık penetransının iyi ayrımlanması önemlidir. Bağlantı analizinde kalıtım kalıbının doğru saptanması çok önemlidir. Sonuçta hesaplanan olasılık örneğin analiz sırasında ilgili hastalığın hangi kromozomda bulunduğu, otozomal dominant kalıtım kalıbı varsayımı altında sorguladığında kalıtım kalıbının hatalı olarak tahmin edilmiş olması, sonucun da hatalı olmasına neden olacaktır. Bu nedenle kalıtım kalıbının tam olarak belirlenemediği durumlarda, istatistik analizler, aynı aile için ya farklı kalıtım kalıbı modelleri varsayılarak tekrarlanır ya da parametrik olmayan hesaplamalar kurgulanır (5,6). Parametrik olmayan metodlar: Hastalık şartlarının, Mendelyan kurallarının uygulanabilmesı için yetersiz olduğu durumlarda tam bir genetik model belirleme zorunluluğu ciddi bir problemdir. Davranış genetikçileri kompleks hastalıklarda yaşadıkları sıkıntılardan sonra yanlış kalıtım modeli ile çalışmaktan endişe duymaktadırlar. Özellikle şizofreni, bipolar bozukluk gibi hastalıklarda bu problemi çözmenin yollarından birisi modelsizyani parametrik olmayan bağlantı analizleridir. Genel olarak ilişkilendirme analizleri olarak bilinirler. İlişkilendirme çalışmaları için farklı istatistikî analizler önerilmişse de bunların hemen hepsinde hastalıktan etkilenmemiş bireyler dikkate alınmaz, fakat etkilenen bireylerde tespit edilen aynı kromozom segmenti diğer bireylerde de kromozomun hangi bölgesinde olduğunun olasılığını verecek bir değerdir. Bu analiz sonucunda hastalığa neden olan gen mutasyonu ya da bölgenin fiziksel özellikleri hakkında bir bilgi edinilmez. Bu nedenle belli bir bölge saptandığı andayapılacak işlem bölgelere haplotip analizi uygulayarak en olası bölgenin sınırlarını saptamaktır. Bu işleme “fine mapping” işlemi denir. Genellikle tek bir birim olarak kalıtımla geçen, birbirleriyle yakın bağlantılı gen gruplarının allel dizisine haplotip adı verilir. Haplotip ise yukarıdan aşağıya her bir kromozom üzerindeki birden fazla markıra ait dizilenmeyi ifade eder. İlişkilendirme analizleri genellikle vakalar ve kontroller kullanılarak yapıldığı ve çalışmalarda anne-babalar genotiplendirilmemiş oldukları için, haplotip analizi yapmak çok zordur ve bir dizi matematiksel algoritma uygulamasına dayanmaktadır. Sonuçta her durumda tahmini haplotiplerle sonlanılır. Birkaç ku- şaklı ailelerin varlığı kritik bölgelerin daraltılmasına yönelik olarak haplotip oluşturmada bulunmaz bir fırsattır. Haplotip analizleri SNP (Single Nucleotide Polymorphism) markırları kullanılarak yapılmakta ise de daha çok allel içeren kısa nükleotid tekrarları kullanılarak da yapılabilir. Haplotip analizi yapılırken pedigrinin kurucuları olan anne ve baba alınır. Hasta çocuklardan rastgele seçilen biri anne-baba ile karşılaştırılarak anneden ve babadan kalıtılan allelleri belirlenerek haplotip oluş- turulur. Diğer kardeşlerin haplotipi bu vaka ile karşılaştırılarak hastaların aynı kromozomu paylaşıp paylaşmadığı, sağlam kardeşlerinde diğer kromozomu alıp almadığı belirlenir. Haplotip analizi daima kalıtım kalıbı varsayımı altında yapılır (8-10). Genetik markırlar Gen haritalama metodunda, kromozom lokalizasyonu hakkında hiçbir ön bilgiye sahip olmadığımız bir hastalığın lokalizasyonunun tahmin edilmesi hedeflenmektedir. Bu tahmin için her şeyden önce, hangi kromozomda lokalize olduğunu kesin olarak bildiğimiz genetik markırlar kullanmaya ihtiyacımız vardır. Bu genetik markırlar doğrudan genlerin içinde olduğu gibi, genlerle hiç ilgisi olmayan DNA parçaları üzerinde de olabilir. Ancak her iki durumda da ortak nokta markırların polimorfik nitelik taşımalarıdır. Gen haritalamasında bu “polimorfik markırlar” kullanılmaktadır. İnsan haritalama çalışmalarında iki genel yaklaşım mevcuttur: 1- Hastalık-markır haritalaması: Hastalık genlerinin yerlerinin belirlenmesi için kullanılır. 2- Markır-markır haritalaması: Temel markır haritalarının yapılması için uygulanır. Bu haritalar yüksek çözünürlüklü hastalık-markır haritalarının yapımında, genetik ve fiziksel haritaların ilişkilendirilmesinde yardımcı olmaktadır. Genetik markırlar Mendelyan karakterler olup seçilen herhangi bir bireyin büyük bir olasılıkla heterozigot olmasını sağlayacak kadar da polimorfiktirler. Polimorfik özellikleri (PIC) polymorphism information content - polimorfizm enformasyon içeriği belirler. Polimorfik bir markır kullanıldığında uygun aileler bağlantı analizi için seçilebilirler. Bu aileler ya ilginç bir hastalık taşımaktadır veya haritalama için uygun bir aile kompozisyonuna sahiptirler (11,12). Oluş mekanizmalarına ve bulundukları yerlere göre markır olarak kullanılan polimorfizmler 4 ana grupta incelenebilir: Kısa DNA baz tekrarları (Short Tandem Repeat Polymorphism, STRP, mikrosatellit): İnsan genom projesi çalışmaları sırasında genom içerisinde iki baz (CACACACA... gibi) yada dört bazlık (GATAGATA... gibi) tekrar bölgeleri olduğu saptanmıştır. İşlevsel önemi bilinmeyen bu bölgeler- deki baz tekrar sayılarının farklı olması kişilerin DNA’larını birbirinden farklı kılar. Bireyin DNA’sı PCR (Polymerase Chain Reaction) ile çoğaltılarak jel üzerinde yüksek elektrik akımı altında yürütülecek olursa tekrar sayılarının farklı olmasına bağlı olarak jel üzerinde farklı bantlanma meydana gelecektir. Tekrar sayısı fazla olan genom parça yavaş ilerleyecek, tekrar sayısı az olan parça ise hızlı ilerleyecektir. Buna bağlı olarak jel üzerinde farklı bantlanma oluşacaktır. Anne, baba ve çocuktan alınan örnekler yan yana yürütüldüğünde çocuğun hangi alleli kimden aldığını tespit etmek mümkün olacaktır. Gen haritalama çalışmalarında yaygın olarak STRP’ler kullanılmaktadır. İnsan genom projesi kapsamında bu özelliğe sahip olan bölgeler saptanmış ve bu bölgelerin PCR ile araştırılır. Bu metodda, markır ve örnek sayısı çok olmalı, kontrol bireyler iyi belirlenmelidir (5,7). Gerek ilişkilendirme gerekse bağlantı analizleri sonucunda elde edilen bilgi bir hastalığın belli bir çoğaltılmasına olanak sağlayan bölgeye özgü primerler ve bunların yerleri yayınlanmıştır (Şekil 1). Uzun DNA baz tekrarları (Variable Number Tandem Repeats, VNTR, minisatellit): DNA’nın bazı bölgelerinde blok halinde 9-70 baz çifti ve daha uzun bölgelerin birkaç kopya halinde tekrarladığı görülmüştür. Restriksiyon enzimleri ile kesilen bu bölgeler Southern blot yöntemi ile görünür hale getirildiklerinde bireyler arasındaki farklılıklar ve allellerin aktarılma şekli tespit edilmiş olur. VNTR’ler günümüzde adli tıpta oldukça yaygın olarak kullanılmaktadır (Şekil 2). DNA’yı kesen enzimlerin oluşturduğu uzunluk polimorfizmleri (RFLP): Restriksiyon endonükleazları olarak bilinen enzimler DNA’yı 4-6 baz çiftinden oluşan tanıma bölgelerini kullanarak keserler. Enzim tanıma bölgesinde oluşan bir değişiklik, bölgenin enzimlerce tanınmamasına ve kesmeişleminin gerçekleşmemesine sebep olur. DNA’nın tek bir bazındaki değişiklikler (SNP): Burada genomda tek bir bazın bir başkası ile yer değiştirmesi söz konusudur. Genomun kodlanmayan yerlerinde meydana geldiklerinde tıpkı diğer polimorfizmlerde olduğu gibi farklılıklar oluşturur. Ancak tek bir baz diğeri ile yer değiştirdiğinden tespit edilmeleri diğer polimorfizm türlerinde olduğu gibi olamayacaktır (Şekil 4). SNP’ler son yıllarda oldukça güncel hale gelmiştir. Günümüzde üzerinde 1.000.000 polimorfizmin yer aldığı arrayler üretilmiştir. Bu arrayler genomun hızlı ve yüksek çözünürlüklü taranmasına imkân vermektedir (11,13,14). Bu polimorfik bölgeler, insan genom projesi kapsamında klonlanmış ve kromozom lokalizasyonları, İnsan Polimorfizmlerini Araştırma Merkezi(İPAM) tarafından bir araya getirilen 3 kuşaklı Centre d’Etudes du Polymorphisme Humaine (CEPH) ailelerin kullanılmasıyla belirlenmiştir. Bu bilgilerle oluşturulan haritalar kullanılarak (Marsfield, CHLC-Cooperative Human Linkage Center, deCODE, Genethon Map, Rutgers Combined Linkage ikinci kuşak genetik haritalar) hangi genetik markırların, gen haritalama çalışmasında kullanılacağına karar verilir (15,16). Markır haritalarındaki bilgiler kullanılarak yapılacak bir gen haritalaması için başlıca 4 yol seçilebilir: Aday yerleşim yaklaşımı: Bu yaklaşımda ilgili hastalıktan ya da malformasyondan sorumlu olduğu düşünülen aday bölgeler saptanmaya çalışılır. Daha önce hastalıkla bağlantılı olduğu gösterilen kromozom bölgeleri, fonksiyon açısından hastalığın oluşumunda rol alabileceği düşünülen gen bölgeleri, kromozom anomalileri ile birlikte hastalık fenotipinin gözlendiği bölgeler, farklı türlerde benzer fenotipin gözlenmesi ve fare-insan homoloji haritalarının kullanımı ile insanda ilgili geni barındıran bölgeler aday gen yaklaşımı altında seçilen bölgeleri oluşturur. Daha sonra bu aday gen bölgelerine isabet eden DNA markırları belirlenir. Bu amaçla genetik haritalar kullanılır. Harita bilgilerinden bu markırların birbirlerine göre kromozom üzerindeki sıralanışları, pozisyonları ve aralarındaki uzaklıklar elde edilerek aday olarak seçilen bölgeyi tam olarak tarayacak bir markır haritası hazırlanır. Daha sonra bu polimorfik DNA bölgelerine özgü PCR analizleri ve genotipleme yapılarak hastalık ile markır allel arasında bağlantı analizi uygulanır. Aday bölgelerin taranması bittiğinde herhangi bir lokalizasyon saptanamazsa tüm genomun taranmasına geçilir (17,18). Genom-boyu analiz: Tüm genomu belli aralıklarla tarayan hazır polimorfik markır setleri kullanarak sadece aday bölgeyi değil genomun tamamını araştırma işlemidir. Bu amaçla genomu 5-10 c Maralıklarla tarayan ve kısa tekrar dizlerine yönelik markır panelleri mevcut olduğu gibi son yıllarda geliştirilen array teknolojisi ile genomu çok sık aralıklarla tarama kapasitesine sahip SNP markır panelleri mevcuttur (19). Homozigotluk Haritalaması (Otozigot Haritalama): Otozigotluk, homolog kromozomların her ikisinin de aynı orijinden kaynaklanması durumunu ifade eden bir terimdir. Akraba evliliği yapan ailelerde resesif bir hastalık taşıyan bireyler hastalık lokusu ile bağlantılı olan markırlar açısından büyük bir olasılıkla otozigottur. Bu metod, lokus heterojenitesi nedeniyle başka türlü çözülmesi neredeyse imkansız olan otozomal resesif hatalıkların tesbitinde başarılı bir şekilde uygulanmıştır. Model gerektirmeyen bu teknikte hiç bir ön varsayıma ihtiyaç yoktur. Bu yöntem, haritalamada istatistiksel analizin gücünü arttırmakta ve küçük aileler de bile yüksek LOD skor değerlerinin elde edilmesini olası kılmaktadır (20,21). İstatistiksel analizler: Bağlantı analizi için LOD Skor analizi uygulanır. LOD Skor; aranılan genin, test edilen kromozom lokusunda olması olasılığının, ilgili lokusta bulunmaması olasılığına oranının logaritmik olarak ifade biçimidir. Analiz sonucunda LOD Skor’un 3 ve üstü olduğu değerler bağlantıyı desteklemesi açısından anlamlı kabul edilirken, 2 ve giderek negatifleşen değerler ise kesin olarak bağlantı yokluğunu destekler. Aradaki değerlerde lokusun ispatlanabilmesi için bir dizi farklı işlem yapılması gerekir. Burada önemli nokta, sonuçta bu analiz ile bulunan bir olasılık değeridir ve saptanan lokus gerçek lokus olmayabilir. Hastalıktan sorumlu gen ve gen içi mutasyon gösterilinceye kadar lokus informasyonu yanıltıcı olabilir (22). LOD Skor analizleri için yaygın olarak kullanılan program Elston Stewart Algoritmasını kullanan LINKAGE paket programıdır. Bu program LINKMAP, MLINK, ILINK ve LODSCORE alt programlarından oluşur. LINKMAP ise çok noktalı bağlantı analizinde kullanılan alt programdır. İki lokusun birbirine göre analiz edilmesi için MLINK alt program kullanılmaktadır. Polimorfik markırların birbirlerine göre yerleşim ve sıralarının saptanmasında ILINK programı kullanılırken, LOD-SCORE maksimum olasılıkların hesaplanmasında uygulanan parogramdır. LINKAGE programı, özellikle geniş genom boyu verilerinin analizinde ve aynı anda çok sayıda markırın hastalıkla ilişkilendirilmesine yönelik çok noktalı bağlantı analizinde yetersiz kalmaktadır. Bu nedenle farklı algoritmalar ve programlar geliştirilmiştir (22,23) Lander-Green Algoritması ile çalışan MERLIN, ALLEGRO, GENEHUNTER gibi programlar bu amaca yönelik geliştirilmiş olan programlardır (24) (Tablo I). Bu programların tamamı birbirine benzer giriş dosyaları oluşturularak çalıştırılır. Bu veriler, pedigri verilerini içeren pedigri dosyası, kalıtım bilgileri, gen frekansları ve markır allel frekanslarının tanıtıldığı bir parametre dosyasından oluşmaktadır. LINKAGE programı bir indeks vaka üzerinden ailedeki bütün akrabalık ilişkilerinin birbirine göre tanımlandığı ek bir dosya daha kullanmaktadır. Analizlerde farklı programların aynı genotip verilerinin analizine yönelik olarak kullanılması veri güvenliğini arttırıcı bir unsurdur (23,24). KAYNAKLAR 1. Griffiths G, Anthony JF, Miller M, Jeffrey H,Suzuki, David T, Lewontin RC, and Gelbart WM. An Introduction to Genetic Analysis. (5th Ed.), W.H. Freeman and Company, New York 1993; Chap. 5. 2. Kong X, Murphy K, Raj T, et al. A combined linkage-physical map of the human genome. Am J Hum Genet 2004; 75:1143-1148. 3. History of genetic mapping. Erişim: [medicine.jrank.org/pages/2486/Mapping-Hi...Genetic-Mapping.html], ErisimTarihi: 14.10.2010. 4. Gyapay G, Morissette J, Vignal A, et al. The 1993-94 Genethon human genetic linkage map. Nat Genet 1994; 2:246-339. 5. Kruglyak L, Daly MJ, Reeve-Daly MP, et al.Parametric and nonparametric linkage analysis: A Unified Multipoint Approach. Am J HumGenet 1996; 58:1347-1363. 6. Ott J. Analysis of Human Genetic Linkage.Johns Hopkins University, Baltimore 1991; pp129-139. 7. Gershon ES, De Lisi LE, Hamovit J, et al. A controlled family study of chronic psyhoses, schizophrenia, and schizoaffective disorder. Arch Gen Psychiatry 1988; 45:328-336. 8.Terwilliger JD and Ott J. Handbook of Human Genetic Linkage. Johns Hopkins University, Baltimore 1994; pp 148. 9. Ott J. Analysis of Human Genetic Linkage (3rd Ed.). The John Hopkins University Press, New York 1999; pp60-64. 10. Leal SM, Müller-Myhsok B, and Nothnagel M.Basic gene mapping linkage analysis course. Max Delbrück Centre for Molecular Medicine, Berlin, Germany 4-8 July 2005; pp15. 11. Dib C, Faure S, Fizames C, et al. Comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 1996;380:152-154. 12. Donis-Keller H, Green P, Helms C, et al. Agenetic linkage map of the human genome. Cell 1987; 51:319-337. 13. Sheffield VC, Weber JL, Buetow KH, et al. Acollection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet 1995; 4:1837-1844. 14. Korn JM, Kuruvilla FG, McCarroll SA, et al.Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 2008;40:1253-1260. 15. Gyapay G, Morissette J, Vignal A, et al. The 1993-94 Genethon human genetic linkagemap. Nat Genet 1994; 2:246-339. 16. Weissenbach J, Gyapay G, Dib C, et al. Second generation linkage map of the human genome. Nature 1992; 359:794-801. 17. Kong X, Murphy K, Raj T, et al. A combined linkage-physical map of the human genome. Am J Hum Genet 2004; 75:1143-1148. 18. Broman KW, Murray CJ, Sheffield RL, et al.Comprehensive human genetic maps: Individual and sex-specific variation in recombination. Am J Hum Genet 1998; 63:861-869 19. Davies JL, Kawaguchi Y, Bennt ST, et al. A genome-wide search for human type I diabetes susceptibility genes. Nature 1994; 371:130-136. 20. Forshew T and Johnson CA. SCAMP: Aspreadsheet to collate autozygosity mapping projects. J Med Genet 2004; 41:125. 21. Woods CG, Valente EM, Bond J, et al. A new method for autozygosity mapping using single nucleotide polymorphisms (SNPs) and EX-CLUDEAR. J Med Genet 2004; 41:101. 22. Akarsu AN, and Lüleci G. Gen haritalaması: Ne demek, haritalar nasıl oluşturuluyor, neler içeriyor, nasıl yorumlanıyor? Dokuz Eylül Tıp Dergisi 2002; (İnsan genomu projesi-özel sayı): 29-39. 23. Lindner TH and Hoffmann K. Manual – easy-LINKAGE Plus v5.05, Germany 2004. 24. North Shore LIJ Research Institute (2006). Analphabetic list of genetic analysis software. Erişim: [ linkage.rockefeller.edu/soft/],Erisim Tarihi: 14.10.2010. Seda ÖRENAY BOYACIOĞLU Munis DÜNDAR

http://www.biyologlar.com/gen-haritalama-stratejileri

Pembe Sütlü Su Aygırları

Pembe Sütlü Su Aygırları

Su aygırı (Hippopotamus amphibius), Nil aygırı olarak da bilinmektedir. Su aygırıgiller (Hippopotamidae) familyasındandır. Büyük bir cüsseye sahip olan su aygırları, Afrika’’nın en büyük cüsseli hayvanları arasında yerini almaktadır. Otobur olarak yaşamlarını sürdürürler ve beslenmeleri özellikle geceleri su kenarlarında olan bitkileri otlamak şeklinde gerçekleşir. Bilimsel ismi olan Hippopotamus, hippos – At ve potamos – nehir kelimelerinin birleşiminden gelmektedir. Balinalara ve yunuslara daha yakın akraba olan su aygırları, doğada kendine önemli bir yer bulmuştur.Geçmişten günümüze gelen yaşam alanları açısından, Afrika’ da Sahara’ nın güney kesimlerinin yanında, Nil bölgesinde yaşamış olan su aygırlarının bir diğer adı da Nil aygırıdır. Bu adı da, su aygırlarının ilk olarak Nil kıyılarında keşfedilmiş olmasına dayanmaktadır. Yetişkin bir su aygırının omuz yüksekliği 1.50 m, vücudu 4.50 m uzunluğundadır. Bu hayvanların gövdeleri oldukça büyük olması ve kuyruk kısmının gövdeye bağlanma noktasından bile 50 cm civarı olması, görsel olarak ne kadar büyük bir cüssede olduklarını kanıtlar niteliktedir. Su aygırı 2700 ile 4500 kg ağırlığındadır. Bu da bize, gergedanlarla birlikte, fillerden sonraki en büyük ikinci kara hayvanı olduğunu göstermektedir. Cüsselerine göre aslında oldukça hızlı hareket edebilme kabiliyetleri vardır. Gerekli durumlarda saatte 48 km/sa hıza ulaşabilirler. Geniş cüsseleriyle orantılı olarak, kafaları da oldukça büyüktür. Geniş olan kulaklar, gözler ve burun delikleri kafanın üst tarafına toplanmış bir kafa yapısına sahiptir. Bu şekilde olması, yaşamsal faaliyetlerini sürdürmelerine olanak sağlamaktadır. Bir su aygırı kafası 450 kg’a kadar ulaşan ağırlığa sahiptir.Su aygırlarında 44 adet diş bulunmaktadır. Her iki yanda da 3 kesici diş, bir köpek dişi, dört öğütücü azı ve üç azı dişi bulunur. Kesici dişlerin oldukça büyük tehdit oluşturması da, dişlerin yüzeye paralel olarak yatay konumudur.Oldukça büyük bir cüsseye sahip olan bu hayvanların bacakları şaşırtıcı derecede kısadır. Gövdesi fıçı şeklindedir ve neredeyse tamamen çıplaktır. Gri-siyah deri rengine sahip olan bu hayvanların, göz, kulak bölgesi çevresinde pembeleşen deri rengine sahiptirler. Vahşi doğada ve vahşi yapıda olan bu hayvanların görüntülerine güzellik katmakta ve sert görünüşlerini yumuşatmaktadır.Su aygırları yavaş akan, kıyı şeridine sahip ve kumsalı olan her büyüklükte akarsularda, ısısı 18 ve 35 °C aralığında sularda bulunur. Su onların habitatlarının önemli bir bölümünü temsil eder. Otlamak için, akarsuyun yakın çevresinde otluk alan olmasına ihtiyaçları vardır. Otobur olduklarından, otlamak yaşam zorunluluklarıdır. Genelde geceleri otlarlar ve günlük karşılamak zorunda oldukları ot miktarı 50 kg civarındadır. Su hayatına oldukça iyi uyum sağlayan su aygırlarının, aslında kötü yüzücüler oldukları bilinmektedir. Genel olarak, ya akarsuyun zemininde yürürler, ya da kendilerini suya taşıtma yoluyla hareket ederler. Su dışında oldukça terlemeleri, onların vücut yüzeylerinde güneş yanıklarının oluşmasına sebebiyet vermektedir.Su aygırları 20′ ye kadar hayvandan oluşan sürüler halinde yaşarlar. Kendi sınırlarını belirledikleri alanlar içinde yaşamlarını sürdürürler. Güçlü olanın hayatta kaldığı doğa şartlarında sınır belirleme işi, erkek su aygırlarına aittir. Dışkılarını dairesel kuyruk hareketi ile fırlatmasıyla o bölgeyi işaretlemiş olur ve hakimiyetlerini kurduklarını belli ederler. Doğadaki hayvan gruplarında görüldüğü üzere, su aygırlarında da gruba liderliği genel olarak yaşlı erkekler yapar. Gruplar dişi, yavrular ve zaman zaman da genç erkeklerden oluşur. Sınırları belirlemiş olan erkekler, birbirlerine üstünlükleri ciddi şekilde savunurlar. Alanlarını koruma pahasına oldukça sert şekilde kavgalar yapabilmektedirler. Döllenme su içerisinde gerçekleşir. Döllenme sırasında dişi suda yaşar ve sadece hava almak için yüzeye çıkar. 8 aylık bir gebelik süreci yaşarlar. Su aygırlarının çiftleşme zamanları kuraklık başlangıcında olur. Gebelikleri yağmur zamanı tek bir yavrunun doğumuyla sonlanır. Doğum olayı da döllenme gibi su içinde gerçekleşir. Yavrular, ortalama 30 ile 50 kilo arasında doğarlar. Önemli bir özelliği, doğar doğmaz yürüyebiliyor oluşlarıdır. Bu, doğduktan sonra anne su aygırı otlamaya giderken, takip etmesi için gereklidir. İçgüdüsel olarak gerçekleşen bu durum, doğduktan sonra hayata tutunma açısından gerçekleşen eşsiz bir reaksiyondur. Yaklaşık 30-40 yıl yaşamlarını devam ettirirler. Fakat, nadir görülen bir durum olmasından dolayı belirtilen su aygırı Bulette, Berlin Hayvanat Bahçesi’nde 53 yıl yaşamıştır.Genel anlamda barışçıl gibi bir algı oluştursalar da, aslında oldukça vahşi hayvan grubuna girmektedir. Ölüm vakalarına sebep olma açısından yüksek bir yüzdeye sahiptirler. Fakat, bu vahşi hayvanların, hiç de yaratılış doğasıyla örtüşmeyeceğini düşündüğümüz bir özelliğe sahiptir. Su aygırlarının sütü, alışılanın aksine beyaz renkte değil, pembedir. Su aygırının sütü, oldukça çekici bir görüntü oluşturmaktadır. Sütün renginin pembe olmasının sebebi ise suaygırlarının Hipposudoric acid ve Norhipposudoric acid adlı iki farklı vücut salgısından kaynaklanmaktadır. Hipposudoric acid açık kırmızı ve Norhipposudoric acid açık turuncu renktedir ve vücuttaki bakteri gelişimini engelledikleri belirtilmektedir. Sütün renginin pembe olmasının sebebi bu salgıların belli bir oranda süte karışıyor olmasıdır. Yoksa, normal şartlarda, her canlı gibi su aygırlarının da sütünün rengi özünde beyaz renktedir.Bu renkte sütlerinin olması, su aygırlarını diğer canlılardan oldukça ayırmaktadır. Sütlerinin yararları olması durumunda, sütü sevmeyen çocuklar için bir alternatif oluşturabilecek olması da belki mümkün olabilir.Doğadaki canlıların her birinin kendine özgü güzellikleri ve birbirinden hoş farklılıklarının olduğunu bilmekteyiz. Doğa, hem onlara yaşamlarını sürdürebilmek için hem kendilerini güvende tutabilmek için hem de güzellik katabilmek için böyle özellikler sunmuştur. Biz insanoğluna da bu güzellikleri ve farklılıkları görerek hayranlık duymak kalmaktadır.Yazar: Gökçe Cömerthttp://www.bilgiustam.com

http://www.biyologlar.com/pembe-sutlu-su-aygirlari

HİRUDOTERAPİ

Hirudo medicinalis'ten (Tıbbi Sülük) eski tıp metinlerinde söz edilir ve binlerce yıldır uygulanır. 19. yüzyılda çok yaygın olan sülük kullanımı, 20. yüzyıl başında modern tıp dünyasınca tamamen terkedilmiş, 1950'li yılların ardından bazı olgularda uygulanarak yeniden güncellik kazanmıştır. Halen örnek klinik çalışmalara konu olmakla önemini tekrar kazanmaktadır. Sülük, pek çok değişik hastalıgın tedavisinde yüz yıllardır kullanılmaktadır. ingilizce, sülük 'leech" eski ingilizcedeki 'leace' 'tabib' kelimesinden gelir. Sülükle yapılan tedaviye de leechtherapy veya hirudotherapy denir. Sülüğün tıbbi kullanımı, eski Anadolu uygarlıkların dan İyonya'da Kolofon'lu (İzmir Değirmendere yakınlarında) Nicader tarafından M.Ö 200'de ilk kez kaydedilmiştir.Bundan birkaç yüzyıl sonra Galen (M.S 129-199), hastalıkların salgısal (humoral) teorisini ortaya koydu; buna göre insan vücudu dört salgı içermekteydi: kan, balgam, sarı safra ve siyah safra. Bu sıvıların dengesindeki değişimlerin hastalıklarla sonuçlandığı, sülüklerin fazla kanı uzaklaştırmakla bu dengeyi yeniden oluşturmaya yardım ettikleri düşünülmüştü. 1820-30'larda, anestezi, antisepsi ve antibiyotik uygulamalarının gelişiminden çok önceleri, Berlin'de Johann Frederick Diffenbach (1792-1847), sülüğü, o zaman için karmaşık sayılabilecek plastik cerrahi uygulamalarına yardımcı olarak başarılı bir şekilde kullanmıştır. 19. yüzyılın sonuna gelindiğinde, sülüğün tıbbi kullanımı azalmaya başlamıştı. Bu tedavi usulü gelişmekte ve büyümekte olan modern tıp kavramları ile uyuşmamaktaydı. Hatta sülük kullanımı diplomasız ve yerleşik tıp dışında çalışan tedavi edicilere yakıştırılmaya ve şarlatanlık olarak görülmeye başlandı. Haycraft, 1884'de sülüklerin tükürüğünde bulunan antikoagülan bir maddeyi izole ederek sülüğün Latince adı hirudo medicinalis'e atfen 'hirudin' adını verdi. 1955' de bu madde her yönüyle tanımlandı. Derganc ve Zdravic, iki Slovenyalı cerrah, 1960'da "Sülük kullanımıyla tedavi edilen venöz flep konjestiyo-nu" isimli makale ile dikkat çektiler. 1976 ve 1981'de Fransız cerrahlar flap doku cerrahisinde ve distal parmak replantasyonlarında başarılı kullanımlarıyla sülüğü yeniden gündeme getirdiler. Sülüğün Özellikleri Helmintlerin Annelida şubesinin Hirudinea sınıfından sülük, konağa büyük kuyruk emicisiyle yapışır ve küçük baş emicisiyle ısır. Üç küçük çenesi konak üzerinde üç çizgi şeklinde ısırıga yol açar. Bu ısırığın şekli Mercedes Benz sembolünü andırır. Sülüğün çektiği kan miktarı sülük sayasına ve bir sülüğün ne kadar kan emdiğine bağlıdır. Sülük, ağırlığının 10 katı kadar kan emebilir ve bir kez doyunca 1 yıl kadar hiç beslenmeden yaşayabilir. Emdiği kan miktarı 5-15 ml kadardır. Tedavi edici etki emilen kan miktarı ile değil, ısırıkytan sonra devam eden kan miktarıyla ilgili olabilir; sülük karını doyurduktan sonra ısırdıgı yerden kan sızıntısı devam eder. Sülügün tükürügündeki kimyasal maddeler bu canlı tıbbi açıdan değerli kılar. Hirudin, 9000 molekül ağırlıgında bir polipeptiddir. Trombin ile enzim inhibe edici kompleks oluştururak fibrinojenin fibrine dönüşümünü engeller. Heparinin aksine hirudin aktivitesi için antit-rombin III gerekmez ve koagülasyon esnasında salgılanan trombosit faktör-4 (heparini nötralize eder) tarafın-dan da inaktive edilmez. Pıhtılaşma faktörlerinin biyosentezi ile etkileşmez. Lipoproteinlipaz gibi kandaki diğer enzim sistemlerini etkilemez. Sülük tarafından salgılanan diğer aktif maddeler, hiyalüronidaz (antikoagülan maddelerin yara içine yayılımını sağlar) ve bir kısım proteinaz inhibitörleri'dir. Antihistamin ve vazodilatör bir madde sülük ısırıgında kanamanın uzamasına katkıda bulunur. Apyrase (adenosine 5'-triphosphate diphospho hydrolase) enzimi, trombosit agregasyonunun nonspesi-fik inhibitörüdür. Trombosit aktive edici faktör antagonisti ve koagülasyon faktörü X a inhibitörü tanımlanmış ve izole edilmiştir. Sülüğün tükürük bezi salgılarında lo-kal anestezik bir maddenin varlığı üzerinde de durulmaktadır. Sülük Uygulaması Sülük kullanımından önce hastanın korkularını yatıştırmak için ayrıntılı bir görüşme yapmak gerekebilir. Sülük uygulanacak bölge suyla iyice temizlenmelidir. Aksi halde sülük yapışlamaz. Uygulama alanının çevresi 10 x 10 cm'lik spançlarla örtülmelidir. Sülüğün yapışlması istenen bölge enjektör ucuyla hafifçe çizilebilir. Sülük forseps yardımıyla kavanozundan çıkarılıp istenen bölgeye bırakılır. Eıer yerine tutunamazsa başka bir yere yönlendirilebilir. Sülük yapışmazsa iki sebep düşünülmelidir: Ya sülük doymuştur ya da venöz konjestiyon değil, arter yetersizliği vardır. Sülük, genellikle 10-20 dakikada doyar ve konaktan ayrılır. Uzun bir süre geçmesine rağmen sülüğün ayrılmaması da arteryel yetersizliği düşündürür. Böyle bir durumda sülük tutunduğu yerden çekilmemelidir. Aksi halde dişleri sökülüp ısırık yerinde kalabilir ve enfeksiyona yol açabilir. Sülük, kokain solüsyonu kullanılarak paralize edilir ve tutunduğu yerden kolaylıkla uzaklaştırılır. Alkol veya hipertonik sodyum klorür so-lüsyonu kullanılırsa, sülük emdiği kanı konaga geri verir ve ısırık yerini kendi bakteriyel florası ile enfekte edebilir. Doymuş sülük %70'lik alkol solüsyonuna konarak öldürülür. Isırık yeri saatte bir uygulanacak heparin ile temizlenir ve kanamanın sürmesi sağlanır. Sülük tedavisi ağrısızdır; belirgin bir skar dokusu bırakmaz. Sülük Tedavisinin Uygulandığı Alanlar 1.Serbest doku transferlerinde ve pediküllü flep uygulamalarında gelişen venöz yetersizlikler.8 Post-operatif venöz problemler, özellikle serbest flep uygulamalarında arteryel problemlere oranla çok daha sık görülmektedir; (parmak,1,9 kulak,10,11 saçlı deri12 replantasyonları,serbest fleple meme rekonstrüksiyonu,13 dudak14 rekonstrüksiyonu gibi). Sülük uygulaması, venöz yetersizlik tedavisinde cerrahi eksplorasyona iyi bir alternatif oluşturmaktadır. 2.Yenidoğanlardaki akut damar yaralanmaları, bacaklardaki phlegmasia cerulea dolens,15 3.Bebeklerde bacaklar ve penisteki post-operatif akut venöz konjestiyon,16,17 4.Komplike variköz venler,18 5.Post-flebitik sendrom,19 6.Periferik arteryel oklüzyonda, sülükten elde edilenantikoagülanlar,20 7.Enfeksiyöz miyokarditte, sülükten elde edilen antikoagülanlar,21 8.Periorbital hematom ve kulak kepçesi hematomu,22 9.Ekimozlar,23 10.Purpura fulminans.24 Sülük kullanımının muhtemel komplikasyonları Sülük tedavisini takiben uzamış kanama görülebilir. Bu durum topikal trombin ve basınç uygulayarak kolayca tedavi edilebilir. Sülüğün tükürüğüne karşı anafilaksi ve lokal alerjik reaksiyonlar tarif edilmiştir.Sülüklerin tekrar kullanımına bağlı enfeksiyon, aşırı kullanımına bağlı skarlaşma görülebilir.Sülük ağız boşluğu ve bronşlara ulaşıp hemoptizi ve lober çökmelere (kollaps) sebep olabilir. Sülük hastanın sindirim ve genito-üriner sistemine kaçabilir. En kaygı verici komplikasyon aeromonas hydrophila enfeksiyonudur. Toprakta ve taze su kaynaklarında yaygın olarak bulunan bu gram negatif çubuk sülüğün sindirim florasında bulunur ve normal flartlarda insanda patojen değildir. Sülük emdiği kandaki kırmızı küreleri sindirmek için gerekli enzim sistemlerine sahip olmadığından A. hydrophila'nın salgıladığı enzimlere bağımlıdır. Sülüğe bağlı enfeksiyonlar genel olarak sellülit veya lokal abse fleklindedir, insidansı %0-20 arasında değişir. Miyonekroz ve gaz oluşumu görülebilir. A. hydrophila'ya etkili antibiyotikleri alan hastalarda kullanılan sülüklerin sindirim içeriklerinde ölçülebilir düzeyde antibiyotik varlığı gösterilmiştir.Betalaktamaz üretebilen bu organizma kuşlak sefalosporinlere ve penisilinlere duyarsızdır. Kuşak sefalosporinlerin çoğuna, aminoglikozidlere ve kloramfenikole duyarlıdır. Ancak tobramisine dirençli bir olgu tarif edilmiştir. Bir başka çalışmada, Hirudo medicinalis'in ve aynı sınıftan Hirudinaria manillensis'in yüzey florasının sefalosporinlere karşı dirençli, karbapenem, aminoglikozidler ve ofloksasine karşı duyarlı olduğu belirtilmiştir.

http://www.biyologlar.com/hirudoterapi

Lipid peroksidasyonu

Lipid peroksidasyonu, yağların yükseltgenmesi sonucu bozulması. Yağların genel bozulma biçimi, bileşimlerindeki doymamış moleküllerin oksijenle yükseltgenmesi olup bunun sonucu aldehit, keton, hidroksi asitler, keto asitler, alkoller ve daha küçük moleküllü yağ asitleri meydana gelir. Bu çeşit bozulmaya peroksidasyon denir ve yükseltgenme ile meydana gelir. Linoleik asidin yükseltgenmesi daha az hoşa gitmeyen koku verir. Linoleik asidin yükseltgenmesinde ise pek az hoşa gitmeyen koku duyulur. Bu şekildeki yükseltgenerek bozulmayı ışık, ısı, nem ve bazı metaller katalize eder. Doymamış asil lipidlerin peroksidasyonu Oleik, linoleik ve linolenik asid gibi asil lipid konstituentleri bir veya daha fazla asil grubuna maliktir ve böylece kolaylıkla hidroperoksitlere oksitlenir. Onu takip eden reaksiyonlar sonucunda çok sayıda öteki bileşikler meydana gelir. Bu yüzden gıdaların normal depolandığı şartlarda doymamış yağ asidleri dayanıklı gıda konstituentleri olarak sayılamaz. Otoksidasyon, lipoksijenazın katalizlediği ve lipid peroksidasyonu olarak adlandırılan prosesten ayrılmalıdır. Her iki oksidasyon hidroperoksidleri üretir. Fakat ikincisi yalnız enzim varlığında meydana gelir. Lipid peroksidasyonu ile çok sayıda uçucu olan ve uçucu olmayan bileşikler meydana gelir. Uçucu olanlar özel kokulu bileşikler olduklarından doymamış asil lipidlerini az miktarda içeren gıdalarda veya az miktarda lipidlerin oksidasyona uğraması halinde de lipid peroksidasyonu derhal farkedilebilir. Gıda aromasında meydana gelen bu değişmeler tüketiciler tarafından acımış, balık kokusu, metalik veya mukavva tadında, bayat tat şeklinde tabirlerle tanımlanır. Öte yandan belli miktarın altındaki bazı uçucu bileşikler birçok sebze-meyve ve yağ içeren gıdalarda hoş tada neden olur. Kaynaklar Prof. Dr. Halit Keskin; Besin Kimyası (I-II), İ.Ü. Yayınları, (İstanbul, 1987) H.D. Belitz, W. Grosch; Food Chemistry, Springer Verlag (Berlin, Heidelberg, New York, Paris, London, Tokyo, 1987) Richard A. Larson; Naturally Occuring Antioxidants, Boca Raton (Lewis Publishers, 1997) Fereidoon Shahidi; Natural Antioxidant: Chemistry, Health Effects and Applications, Champaigh, III (AOCS Press, 1997) Andreas M. Papas; Antioxidant STATUS, Diet, Nutrition and Health, Boca Raton (CRC Press, 1999) Özgür Mahmure; Türev Spektrofotometrik Yöntem ile Askorbik Asit Tayini, Yıldız T. Üniv. (İstanbul, 1992) Association of Official Analytical Chemists, sayfa:1076 (Fifteenth edition, 1990, Arlington, Virginia 22201 ABD)

http://www.biyologlar.com/lipid-peroksidasyonu

Prof Dr. Hulusi Behçet

Prof Dr. Hulusi Behçet

Hulusi Behçet, 20 Şubat 1889 tarihinde İstanbul'da doğmuştur. Tıp öğrenimini 1910 senesinde tamamlamış ve 1914 Temmuzuna kadar Gülhane Dermatoloji Kliniğinde Eşref Ruşen, Talat Çamlı ve bakteriyolog Reşat Rıza hocaların yanında asistan olarak çalışmıştır. 1914 Temmuzunda Kırklareli Askeri Hastanesi başhekim muavinliğine tayin edilmiş ve daha sonra 1918'e kadar Edirne Askeri Hastanesinde dermatoloji uzmanı olarak çalışmıştır. 1918 Ağustosunda evvela Budapeşte'de, sonra Berlin'de Charité Hastanesinde çalışmış ve 1919 Ekiminde yurda dönmüştür.1 Hulusi Behçet, bir müddet serbest çalıştıktan sonra 1923'te Hasköy Zührevi Hastalıklar Hastanesi Başhekimliğine tayin edilmiş, 6 ay kadar burada çalıştıktan sonra Guraba Hastanesi dermatoloji uzmanlığına nakledilmiştir. Türkiye Cumhuriyeti kurulduktan ve soyadı kanunu kabul edildikten sonra, Cumhuriyetin kurucusu M. Kemal Atatürk'ün arkadaşlarından olan babası Ahmet Behçet'in, parlak ve çok zeki anlamına gelen ve adı olan Behçet'i soyadı olarak almıştır. 1933 senesinde Üniversite Reformunda Deri Hastalıkları ve Frengi Kliniğine profesör seçilmiştir. Hulusi Behçet, Türk akademisinde profesör unvanını alan ilk kişidir. dermatolojide bir çok konuyu ayrıntılı bir şekilde incelemiştir. 1920 yılından itibaren çeşitli dernek toplantılarında ve bazı yazılarında deri layşmanyazında (şark çıbanı) çivi belirtisi bulunduğundan bahsetmeye başlamıştır. O dönemin önde gelen deri hastalıkları uzmanlarından biri olan Dr. Abimelek,3 Hulusi Behçet'in çivi belirtisi tanımını şöyle nakletmektedir: "Önce bir nodül ortaya çıkar. Bu nodül ülserleşirse üzerinde bir krut gelişir. Bu krut altına sıkı bir şekilde yapışık olup, kaldırılması güçtür. Kaldırıldığı zaman zemininde aynen diskoid lupus eritematozusta olduğu gibi kruta dik olarak çıkan veya kopan, her biri yaklaşık olarak 2 mm çapında çivi şeklindeki uzantılar görülür. Çivi belirtisi klinik tablonun patognomonik bulgularıdır ve histolojik tabloya da yansır. " Bu dönemde deri layşmanyazında Kyrle ve Reenstierna histolojik çalışmalar yapmışlarsa da, Hulusi Behçet'in ısrarla üzerinde durduğu çivi belirtisinden bahsetmemişlerdir.3,4 Bunun dışında, yine o yıllarda, ülkemizdeki arpa uyuzları konusunda çok sayıda yazı yazmıştır. Hatta yurdumuza ait parazitlerin tür ve cinslerini de saptamıştır.1 Karadeniz kıyılarında arpa çuvallarını taşıyan hamalların arpa uyuzuna yakalanmamak veya tedavi amacıyla sık sık denize girdikleri şeklindeki gözlemini sonraki yıllarda yazdığı ders kitabında belirtmiştir. 1930'da davetli olarak Kopenhag'da yapılan dermatoloji kongresine katılan Hulusi Behçet, yine 1930'lu yıllarda incir dermatitleri üzerinde durmaya başlamıştır. Senelerce ham incir dermatiti üzerine çalışmak ve yazı yazmak suretiyle bu dermatozun Balkanlarda ve nihayet Fransa ve Amerika'da tanınmasını sağlamıştır. İstanbul'da ilkbahar ve yaz aylarında incir ve incir yaprakları ile ilgilenen şahıslarda, sonbaharda ise incir ürünleriyle ilgilenen kişilerde meydana gelen, biri diğerinden farklı iki klinik tabloyu senelerce gözlemiştir. Bir çok klinik tabloyla karışabileceği için incir dermatitlerini, ülkemizde tanınması için önce 1933 yılında Pratik Doktor adlı dergide yayınlamıştır. Daha sonra çeşitli olguları dermatoloji derneği toplantılarında sunmuş,5 en sonunda da Fransız Dermatoloji Derneği Bülteninde yayınlamıştır.6 Sağdaki resimde Hulusi Behçet 1934 yılında bir Kongre için gittiği Nice'te görülmektedir. Bu tarihte Behçet sendromu henüz tanımlanmamıştır ama Hulusi Behçet'in kendinden emin, büyük işler başarmış hali açıkça görülmektedir.7 Bu tarihten iki yıl sonra, Behçet hocayı zamanın en önemli dermatoloji dergilerinden biri olan "Dermatologische Wochenschrift"in yazı kurulunda görüyoruz. Aynı yıl Medizinische Welt'in yazı kuruluna da seçilmiştir. Bu önemli görevlere bilgisi ve güvenilirliği sayesinde geldiği herhalde tartışılamaz. Hulusi Behçet, 21, 7 ve 3 yıl takip ettiği üç hastada ağız ve genital bölgede aftöz belirtiler, gözde de çeşitli bulgular bulunduğunu gözler ve bunun yeni bir hastalık olduğuna inanır. 1937'de bu görüşlerini "Dermatologische Wochenschrift" de yazar ve aynı yıl Paris'te Dermatoloji toplantısında sunar. Bu toplantıda hastalığın etyolojisinde, dental bir infeksiyonun da neden olabileceğini bildirir. 1938'de bu konuyla ilgili daha detaylı bir yazıyı yine aynı dergide yayınlar. Aynı yıl Dr. Niyazi Gözcü ve Prof. Frank benzer semptomları içeren iki olgu daha yayınlarlar. Arkasından Avrupa'dan yeni bildiriler de gelir. Böylece Avrupalı doktorlar yeni bir hastalığın varlığına karar verirler. Oftalmologlar Behçet hastalığını kabul etmeye başlarlar, ancak dermatologlar bu yeni hastalığı ısrarla inkar ederler. Bu tablonun pemfigus, ulkus vulva akutum, dermatomiyozit, Neumann'ın aftozisi, eritema eksudativum multiforme ve benzerlerinin semptomları olduğunda üstelerler. Bu olaylar sürerken Dünyanın diğer yörelerinden bazı yeni olgular daha bildirilir. Bu yayınların sonucunda bütün dünya yeni bir hastalıkla yüzleştiğini en sonunda kabul etmek zorunda kalır. 1947'de Zürih Tıp Fakültesinden Prof. Mischner'in Uluslararası Cenevre Tıp Kongresinde yaptığı bir öneriyle, Dr. Behçet'in bu buluşu "Morbus Behçet" olarak adlandırılır. Böylece daha başlangıçta Behçet Sendromu, Trisymptom Behçet, Morbus Behçet adlandırmalar ortaya çıkar. Bu hastalığın tıp literatürüne geçmesine katkısı olanlar arasında Niyazi Gözcü, Iggescheimer, Murad Rahmi, İrfan Başar, Naci Bengisu, Marchionini, Braun, Obendorfer, Weekers, Reginster, Franchescetti, Jensen Tage, Sulzberger ve Wise gibi isimleri unutmamak gerekir. Onun araştırma, yazma ve tartışmaya olan merakı entelektüel bir karakter olmasını sağlamıştır. Uzmanlığın ilk yıllarından başlayarak bir çok ulusal ve uluslararası kongrelere orijinal makaleleriyle katılmış, ülkemizde ve yurtdışında bir çok makalesi de yayınlanmıştır. Ünlü Alman Patoloğu Prof. Schwartz, onu ülkesi haricinde her yerde bilinen birisi olarak tasvir ederken, onu asla Türkiye'de bulamazsınız çünkü araştırmalarını yurtdışında sunar demiştir.2 Deri Hastalıkları ve Frengi Kliniği Arşivi adındaki dergiyi ölüm tarihine kadar yayınlamıştır. Bu dergi 1934'ten 1947'ye kadar Türkiye'deki Dermatoloji organı görevini sürdürmüştür.1 En büyük Türk dermatoloğunun anlatmaya çalıştığım yaşam öyküsünden de anlaşıldığı üzere, Hulusi Behçet, Behçet hastalığının tanımlanmasından önce de Hulusi Behçet'ti. Kendisini saygıyla anıyoruz. Prof. Dr. Yalçın TÜZÜN İÜ Cerrahpaşa Tıp Fakültesi Dermatoloji Anabilim Dalı Öğretim Üyesi Kaynaklar Yemni O. Ord. Prof. Dr. Hulusi Behçet. Deri Hast Frengi Arş 1964; 1: 58-59. Saylan T. Life story of the Dr. Hulusi Behçet. Yonsei Med J 1997; 38: 327-332. Abimelek. Cilt leischmaniose'ları hakkında münakaşa münasebetile. Deri Hast Frengi Kl Arş 1934; 1: 283-284. Nuri K. 42 adet Wright çıbanını hamil bir vak'a münasebetile Wright çıbanlarında muafiyet ve bazı mülahazalar. Deri Hast Frengi Kl Arş 1934; 1: 297-299. Behçet H. İncir dermatitleri hakkında. Deri Hast Frengi Kl Arş 1934; 1: 300-302. Behçet H. Dermatite de Figue et Figuier. Bull Soc Fran Derm Syph 1933; 40; 787-792. Yazıcı H. Hulusi Behçet Yağmacı Değildi. Cumhuriyet Bilim Teknik 2 Ocak 1993.

http://www.biyologlar.com/prof-dr-hulusi-behcet

Prof.Dr. Fatma Melahat ÇAĞLAR

Prof.Dr. Fatma Melahat ÇAĞLAR - Türkiye'de Mammaloji'nin duayen ismi Türkiye'de Mammaloji'nin duayen ismi Prof.Dr. Fatma Melâhat ÇAĞLAR 1909'da Rodos'ta doğan Fatma Melâhat Lütfi Hanım, Ömer Lütfi Bey'in kızıdır. İlk okulu Rodos'ta, orta öğrenimini Erenköy Kız Lisesi'nde yapmış ve bu okuldan 1929'da mezun olmuştur. Türkiye Cumhuriyeti Hükümeti'nin o dönem verdiği burslarla yüksek tahsil (üniversite) için Bonn ve Berlin üniversitelerinin Tabiiye bölümlerine devam etmiştir. Melâhat Lutfi, 1936 yılında Berlin Üniversitesi'nden "Das Thermotaktische Verhalten einiger Reptilien" başlıklı tezi ile "doktor" ünvanı ile mezun olmuştur. Günümüz Türkçesi'ne çevirirsek; "Bazı Sürüngenlerin Termotaktik Davranışları" diyebileceğimiz bu doktora tezinin tez hali 54 sayfa, kitap hali 36 sayfa olup kitap versiyonunun, Google Kitaplar gibi pek çok internet sitesinde 76 yıl sonra hala bulunuyor olmasından memnuniyetimi belirtmek isterim. Aynı yıl Türkiye'ye dönen Fatma Melâhat Lütfi Hanım, 29 Mayıs 1936 tarihli karar ile Hayvanat [Zooloji] Enstitüsü'nde çalışmak üzere, İstanbul Üniversitesi Fen Fakültesi Antropoloji asistanlığına tayin edilmiştir. 24 Kasım 1937'de ise Hayvanat Enstitüsü asistanlığına naklen tayin edilmiştir. 24 Ekim 1948'de asistanlık görevleri devam etmek şartıyla eylemsiz doçentliğe yükseltilmiştir. Ocak 1952'de eylemli doçentliğe, 14 Mayıs 1965'te de kadroya bağlı olmaksızın ve doçentlik kadrosundan maaş almak üzere eylemsiz profesörlüğe tayin edilmiştir. 25 Kasım 1970'de de eylemli profesörlüğe yükseltilmiştir. Prof.Dr. Melâhat ÇAĞLAR, 13 Temmuz 1979'da yaş haddinden emekliğe ayrılmıştır. Trakya Üniversitesi'nin ilk hocalarından olan ve Biyoloji Bölümü'nden emekli olan Prof.Dr. Cengiz KURTONUR Hoca, Melâhat Çağlar'ın yetiştirdiği ve doktora yaptırdığı talebesidir. Cengiz Hoca'dan 7 yıl önce öğrendiğim kadarıyla İstanbul'da bir yaşlılar evinde kalmaktadır. Hayatta ise kendisine uzun ömürler diliyorum. 1941'de Ord.Prof.Dr. Curt KOSSWIG'in yazdığı Genel Zooloji kitabını Saadet ERGENE ile birlikte Almanca'dan tercüme ederek; Türkiye'deki ilk Türkçe Genel Zooloji kitabının çıkmasına katkı sağlamıştır. KOSSWIG, C. 1941: Umumi Zoologi (Çev. Dr. Melâhat ÇAĞLAR, Dr. Saadet ERGENE), İst. Üniv. Yay. No: 142, İstanbul. 1950'li yılların sonuna doğru çalışma alanı mammalojiye kaymış; Türkiye'deki ilk yarasa (Chiroptera) araştırmalarını yapmış; aynı zamanda ilk Biyospeleoloji uzmanlarımızdan olan M. ÇAĞLAR, aynı dönemlerde Ankara Üniversitesi Biyoloji Bölümü'nde kemiriciler üzerinde çalışmakta olan Prof.Dr. Bahtiye MURSALOĞLU (1918-1999) ile birlikte Türkiye'de Mammaloji çalışmalarını temellerini atan biliminsanıdır. Bu alandaki ilk çalışmalarından birkaçını Alman Mammalog, Hermann KAHMANN ile birlikte çalışmalar yapmıştır. Yayınlarından bazıları şunlardır: Çağlar, M., 1948, Eine neue Haplophtalmus-Art und Bemerkungen über ihre Augen, İ.Ü. Fen Fak. Mec., B, 13: 161-169. Çağlar, M., 1954, Mytilus galloprovincialis kabuklarında yaşayan oyucu bir Polydora türü, Hidrobiology Mec., 2: 67-73. Çağlar, M., 1957, Fethiye civarının bazı memeli hayvanları hakkında, Biologi, 7: 72-76. Çağlar, M., 1961a, Küçük nalburunlu yarasa (Rhinolophus hipposideros) hakkında, Türk Biol. Derg., 11. 11-13. Çağlar, M., 1961b, Uzun ayaklı yarasa, Myotis (Leuconoe) capaccinii hakkında, Türk Biol. Derg., 11: 35-37. Çağlar, M., 1961c, Türkiye’de bulunduğu tespit edilen bir Myotis türü hakkında. -Myotis e.emerginatus (Geoffroy, 1806), in der europäischen Türkei, İ.Ü. Fen Fak. Mec., B, 26: 107-109. Çağlar, M., 1962a, Dryomys nitedula phrygius’un Anadolu’da yeni tespit edilen yaşama yerleri, İ.Ü. Fen Fak. Mec., B, 27: 17-18. Çağlar, M., 1962b, Erster Nachweis der Gartenspitzmaus, Crocidura suaveolens mimula Miller 1901, für die Türkei. –Crocidura suaveolens mimula’nın Türkiye’de ilk bulunuşu, İ.Ü. Fen Fak. Mec., B, 27: 25-27. Çağlar, M., 1963, Felis caracal schmitzi (Matschie, 1912) in Anatolien. -Felis caracal schmitzi’nin Anadolu’da ilk bulunuşu, İ.Ü. Fen Fak. Mec., B, 28: 51-54. Çağlar, M., 1965, Chiropterenfauna der Türkei. -Türkiye’nin Chiroptera favnası, İ.Ü. Fen Fak. Mec., B, 30 (3-4): 125-134. Çağlar, M., 1967, Türkiye’nin Gömülgen fare (Microtin)leri, Türk Biol. Derg., 17 (4): 103-118. Çağlar, M., 1968, Türkiye’nin Yarasaları I, Türk Biol. Derg., 18 (1): 5-18. Çağlar, M., 1969, Türkiye’nin Yarasaları II (Bats of Turkey II), Türk Biol. Derg., 19 (2-4): 88-106. Çağlar, M., 1971, Türkiyenin Köstebek (Talpa) türleri. -Mole (Talpa) species of Turkey, Türk Biyoloji Derg., 21 (1-4): 123-126. Kahmann, H. und Çağlar, M., 1960b, Beiträge zur Säugetierkunde der Türkei 1-Fledermaeuse aus der Landschaft Hatay (Eine vorlaeufige Mitteilung), İ.Ü. Fen Fak. Mec., B, 25 (1-2): 1-21+1 pl. Kahmann, H. ve Çağlar, M., 1960a, Türkiyede memeli hayvanlar araştırımı sahasında yeni buluşlar, Türk Biol. Derg., 10 (3): 119-126. Kaynaklar: İshakoğlu-Kadıoğlu, S., 1998: İstanbul Üniversitesi Fen Fakültesi Tarihçesi (1900-1946), İ.Ü. Yay. No: 4106, İstanbul, s. 191-192. Karataş, A., 2012: Türkiye Fauna Bibliyografyası (Kişisel Arşiv) ve Wikipedia (Türkçe) Melahat Çağlar maddesi. HAZIRLAYAN : Prof Dr. Ahmet KARATAŞ

http://www.biyologlar.com/prof-dr-fatma-melahat-caglar

Ord.Prof.Dr. Curt KOSSWIG

Ord.Prof.Dr. Curt KOSSWIG

Hayatı dizilere, bir filme konu olacak kadar ilginçtir Curt Kosswig'in. Çok akıllı, sabırlı, çalışmayı çok seven, doğa aşığı, Türk insanıyla çok iyi kaynaşmış bir halk adamıydı. 30 Ekim 1903'te Berlin'de doğan Curt Kosswig, 2. Dünya Savaşı sırasındaki Nazi zulmünden kaçarak, 1933 İstanbul Üniversitesi Reformu sayesinde Türkiye'ye geldi. Gelmesinden sadece 2 sene sonra derslerini Türkçe olarak vermeye başlayan Kosswig, bazı fiziksel özellikleriyle Atatürk'e benzetildiğinde gururlanırdı ve Hamburg Üniversitesi’nde çalışırken, Anadolu gezilerine getirdiği öğrencileriyle Anıtkabir’e de uğrardı. 1949'da "Türk Biyoloji Derneği"ni kurmuştur. Daha önce Balta Limanında Profesör Hovasse tarafından meydana getirilen ve sonraları ihmal edilen Hidrobiyoloji Enstitüsünü 1950'de genişletip ihyâ etmiş ve Enstitünün yaşamasını temin etmek amacı ile Üniversite dışından Et ve Balık Kurumu, Devlet Su işleri ile yurt dışında FAO, Akdeniz Uluslararası İlmi Araştırmalar Konseyi ve Akdeniz Balıkçılık Araştırmaları Komitesi gibi kuruluşlar ile ilmi işbirliği yapmış, Balıkçılığın Türkiye bakımından önemini belirtmek için büyük gayretler sarf etmiştir. 1 Nisan 1938 Manyas Kuş Cenneti'nin keşfeden Kosswig, eşi Leonore ve fotoğrafçısı Cafer Tayyar Türkmen'le birlikte Anadolu'nun her yerini karış karış gezdi. 20'nin üzerinde Kosswig'in adı verilen tür vardır (bkz. aşağıdaki liste). Cafer Tayyar Türkmen'le birlikte Türkiye Deniz Balıkları Takvimini hazırladı. Birecik'e giderek nesli tehlikedeki Kelaynak'lara sahip çıktı ve kolonilerin tanıtımında, ulusal bir değer olmaları yönünde çalışmalar yaparak, bunların yokolma tehtidine karşı uluslararası platformda Türkiye'nin tanıtımında önemli olacağını farkederek, Kelaynak kuşlarının Birecik (Urfa)'te incelenmeleri ve korunmalarıyla ilgili çalışmaları da başlattı. Kosswig, Türkiye'de kaldığı 17 yıl boyunca eleman yetiştirme ve Zooloji bilimin gelişmesinde büyük rol oynamıştır. Eşi Leonore, 23 Temmuz 1974'de öldü. Curt Kosswig 29 Mart 1982'de 79 yaşında Hamburg'ta öldü. Cenazesi uçakla getirildi ve eşi ile yanyana İstanbul'daki Aşiyan mezarlığına gömüldü. Meryln Solakhan ve Manfred Blank tarafından çalışmalarıyla ilgili "Exile on Bosphorus" isminde bir belgesel hazırlanmıştır. Danışmanlığını yaptığı son doktora öğrencisi Nihat Aktaç, "Son 10 yılında Curt Kosswig" isimli bir yazı hazırladı. Kosswig, Kurt, Klaus ve Christian adlı üç erkek çocuk babasıdır. Türkiye'de bilime hizmet etmiş büyük bir bilimadamı ve doğa insanıdır. Curt KOSSWIG’e atfen adlandırılan ve bilimdünyasına tanıtılan taksonlar: ARTHROPODA o Anadrymedusa kosswigi Karabağ o Armadillidium peraccai kosswigi Verhoeff o Brachyiulus kosswigi Verhoeff o Cryptops kosswigi Chamberlin o Cylisticus kosswigi Strouhal o Hessebius kosswigi Verhoeff o Hipparchia fatua kosswigi de Lattin o Isophya kosswigi Demirsoy o Kosswigia insularis Jeannel o Kosswigius bilselii Jeannel o Kosswigius de lattini Verhoeff o Lysiopetalum kosswigi Verhoeff o Mesoiulus kosswigi Verhoeff o Neobisium (Blothrus) kosswigi Beie o Oromania kosswigi Verhoeff o Paranothrotes kosswigi Demirsoy o Parapholidoptera kosswigi Karabağ o Parnassius kosswigi de Lattin o Platyarthrus kosswigi Verhoeff o Pseudisolabis kosswigi Burr o Scolopendra claviceps kosswigi Verhoeff o Eulalia (Phyllotethys) kosswigi Greca o Acaeroplastes kosswigi Verhoeff o Acanthomyops kosswigi Donisthorpe o Camponotus kosswigi Donisthorpe o Irakoniscus kosswigi Vandel o Kosswigibius polenezenus Chamberlin o Lithobius kosswigi Chamberlin o Pholidoptera kosswigi Karabağ o Polydesmus koswigi Hofmann & Lohmander o Tracheoniscus kosswigi Verhoeff PISCES: Cyprinidae o Alburnus kosswigi Battalgil o Barbus plejebus kosswigi Karaman o Capoeta capoeta kosswigi Karaman o Kosswigichthys asquamatus Sözer o Kosswigobarbus kosswigi Ladiges o Leucalburnus kosswigi Karaman o Cyclocheilichthys kosswigi Ladiges Cobitidae o Turcinemacheilus kosswigi Banarescu & Nalbant o Orthrias angorae kosswigi Erk’akan & Kuru Gobiidae o Bubyr caucasicus kosswigi Sözer AMPHIBIA: Salamandridae o Triturus vulgaris kosswigi Freytag KAYNAK: egefish.ege.edu.tr/Kosswig egefish.ege.edu.tr/Kosswig/biyografi.html Sayfa ve bağlantıları Dr. Levent YURGA (Ege Üniversitesi, Su Ürünleri Fakültesi) tarafından hazırlanmıştır. Prof.Dr. Mustafa KURU Hoca (Başkent Üniv.)'nın hocası KOSSWIG'i anlattığı sunum.

http://www.biyologlar.com/ord-prof-dr-curt-kosswig

Küresel Isınma

Yerküremizdeki hayatın devamlılığının güneş ışınları sayesinde olduğu herkes tarafından bilinen bir gerçek. Dünyamız, güneşten aldığı ışık enerjisinin önemli bir bölümünü ısı enerjisi olarak tekrar atmosfere yollar. Atmosferde, en önemli iki ana bileşen olan azot ve oksijenin az miktarda da olsa su buharı, karbondioksit, metan, azot oksit, ozon ve kloroflorokarbonlar gibi başka bileşenler de vardır. Bunlar düşük oranda olmakla birlikte, etkileri çok büyüktür. Bu gazlar atmosferde olmasaydı, yerkürenin ortalama sıcaklığı canlı yaşamının olası olmadığı –18 derece gibi bir değerde olurdu. Oysa bu gazların atmosferdeki varlıkları sayesinde, yerkürenin ortalama sıcaklığı 15 derece dir. Yerküre güneşten gelen ışınları atmosfere geri yollarken bu gazlar devreye girip bu ışınları soğurur ve ısı olarak yeniden atmosfere yayarlar. Bu durum 19.yy başlarında Fransız fizikçi Jean Fourier’in dikkatini çekmiş olmalı ki, atmosferdeki bu etkinin tıpkı bir seradaki gibi olduğunu düşünmüş ve bu etkiye sera etkisi adını vermiş. Sera gazlarının canlıları koruyucu bu etkisine karşın bu gazların artışına bağlı olarak iklim sistemlerinin dengesinin bozulması ise insanlığın sonunun getirebilecek küresel ısınmaya yol açmaktadır. 19.yy sonlarında İsveçli kimyacı Svante Arrhenius, ilk defa kömür gibi fosil yakıtların yakılmasının ve yerleşim yeri ya da tarım arazisi açmak için ormanların yok edilmesinin, karbondioksit ve metan gibi sera gazlarının atmosferdeki miktarını arttırdığını dile getirdi. Arrhenius, aynı zamanda karbondioksit miktarındaki artışların, yerkürenin sıcaklığında da bir artışa neden olduğuna dikkat çekti ve ilk defe küresel ısınma tehditini tanımladı. Sonuç olarak, günümüzde insanların çeşitli aktiviteleri nedeniyle bu sera gazlarının miktarındaki artışa paralel olarak yeryüzü sıcaklığının da yapay olarak artması KÜRESEL ISINMA olarak adlandırılmaktadır. Kısaca, dünya genelinde ortalama sıcaklıkların artması olarak da tanımlanabilir. Doğal olaylar ve insan aktiviteleri sonucunda bu sıcaklık artışı gerçekleşir ve her geçen gün de giderek artmaktadır. Doğal olarak dünyadaki bu sıcaklık artışının olası birçok etkisi vardır. Bu ısınmanın sonucunda oluşan hızlı sıcaklık değişimleri, düzensiz iklim koşullarına, büyük kasırga ve fırtınalar gibi felaketlere yol açmaktadır. Ayrıca çevre koşullarının çok hızlı değişimi, canlı hayatının uyum gösterememesine ve giderek azalmasına veya yok olmasına neden olmaktadır. Buzulların erimesi ve denizlerin yükselmesi de birçok toprak parçasının sular altında kalmasına ve sellere neden olacaktır. Zararlıların ve hastalıkların büyük ölçüde artacağı tahmin edilmektedir ve tarımın da bundan büyük ölçüde zarar göreceği düşünüldüğünde büyük kıtlıkların yaşanacağı ortadadır. Son yıllarda insan etkinlikleri ile küresel ısınma arasında doğrudan bir ilişkinin varlığını kanıtlamaya yönelik birçok araştırma yapılıyor. İnsanların çeşitli faaliyetlerinin küresel ısınmaya katkısı ise şöyle hesaplandı: Enerji kullanımı %49, Endüstrileşme %24, Ormansızlaşma %14, Tarım %13. Dünya Meteroloji Örgütü’nce 1979’da düzenlenen Birinci Dünya İklim Konferansı belki de bu hassas konuya uluslararası düzeyde dikkat çeken ilk toplantı oldu. Bunu birçok toplantı ve konferans izledi. 1992’de Rio’da gerçekleştirilen yerküre zirvesindeyse iklim değişikliklerine neden olan sera gazları salınımını azaltmaya yönelik eylem stratejilerini ve yükümlülüklerini düzenleyen BM İklim Değişikliği Çerçeve Sözleşmesi (İDÇS) imzaya açıldı ve sözleşme 184 ülkenin katılımıyla 1994’de yürürlüğe girdi. Küresel sera gazları salınımı 2000 sonrasında azaltmaya yönelik yasal yükümlülük girişimleri ve hedefleriyse, İDÇS Taraflar Konferansının 1995’te Berlin’de ve 1997’de Kyoto’da yapılan toplantılarında gündeme geldi. Kyoto Protokolü’ne göre, İDÇS’ye taraf gelişmiş ülkeler, insan kaynaklı karbondioksit eşdeğer sera gazı salınımlarını 2008-2012 döneminde 1990’daki düzeylerin ortalama %5 altına indirmeyi kabul ettiler. ABD için belirlenen salınım azaltma yükümlülüğü %7 idi. Dünya nüfusunun yirmide birini oluşturan ABD, her yıl atmosfere yayılan karbondioksitin dörtte birinden fazlasından sorumlu. Ne var ki, ABD daha sonra, ülke ekonomisinin çıkarlarına zarar vereceğini öne sürerek protokole taraf olmayacağını bildirdi. Şubat 2005’te Rusya Federasyonu’nun da onaylamasıyla Kyoto Protokolü yürürlüğe girdi. Aralık 2005’te Kanada’nın Montreal kentinde iki hafta süren ve iklim değişikliğiyle mücadeleye 2012’den sonra da edilmesi için anlaşma sağlamayı hedefleyen BM Koferansı’nda, ABD’nin katılımı olmaksızın bu yönde garı resmi bir anlaşma sağlandı. Dünya nüfusunun yaklaşık üçte biri deniz kıyılarındaki 60 km’lik alanda yaşıyor. Yapılan bazı tahminlere göre 2100 yılına kadar deniz su seviyelerindeki artış 40 ile 65 cm arasında olacaktır. Bu durumda adalarda, kıyı şeritlerinde, kıyı nehirlerinde ve nehir yataklarında yaşayanlar ile birlikte balıkçılık ve kıyılarda turizim tesisi işleten ve tarım yaparak geçimini sağlayanlar, yerleşim ve geçim alanlarını kaybedeceklerdir. Bengaldeş, Hollanda ve Mısır gibi ülkeler büyük zarar görecek ülkelerin başında yer almaktadır. Tabii ki Kıbrıs’ın da bundan etkilenmesi kaçınılmazdır. Küresel ısınmaya etkimiz çok minimum düzeyde olsa da bu global felaketin önemli ölçüde etkileyeceği ülkelerden birisiyiz. Artık kendi çevresel sorunlarımızı bir kenara bırakarak tüm çabamızı küresel ısınmadan nasıl korunacağımıza yöneltmemiz gerekiyor. Birçok dünya ülkesi küresel ısınmanın kaçınılmaz olduğunu kavrayarak, bu durumdan en az etkilenmenin nasıl mümkün olacağının hesaplarını yaparken, bizler de bir ada ülkesi olarak bu felaketten en fazla etkilenecek ülkelerden birisi olarak bu konuda gerekli tedbirleri almalıyız. Küresel ısınmanın etkileri ülkemizde her geçen yıl daha fazla hissedilirken, bizler yatırımları kıyı bölgelerinden uzaklaştırmanın yollarını aramalıyız. Özellikle Annan planı ile birlikte artan inşşat sektörünün kıyı bölgelerinde yerleşimi artırdığı düşünüldüğünde ve nüfusumuzun büyük kısmının kıyı bölgelerde yaşadığı, en önemli tesislerimizin bu alanlarda yer aldığı düşünüldüğünde tablo bizler için kararmaktadır.

http://www.biyologlar.com/kuresel-isinma

Lepus europaeus (yaban tavşanı) hakkında bilgiye ihtiyacım var

Türkiye Yaban Tavşanının Bugünkü Durumu Türkiye zoocoğrafik konumundan dolayı palearktik bölgenin biyoçeşitlilik açısından en zengin ülkelerinden biridir. Türkiye’de böcekçiller (Insectivora), yarasalar (Chiroptera), tavşanlar (Lagomorpha), kemiriciler (Rodentia), deniz memelileri (Cetacea), yırtıcılar (Carnivora), tek toynaklılar (Perissodactyla) ve çift toynaklılar (Artiodactyla) takımına mensup 161 memeli türünün yaşadığı kaydedilmiştir [3,8]. Lagomorpha (Tavşanlar) takımı mensupları bugün dünyada Ochotonidae (Pikalar) ve Leporidae (Ada tavşanları ve yaban tavşanları) familyalarına ait 12 cins ve 91 tür ile temsil edilmektedir [4]. Dünya'daki 91 tavşan türünden 32’si yaban tavşanlarına aittir [4]. "Yaban tavşanı" terimi precocial (doğuştan tamamen kürklü, gözleri açık ve kendi başına hareket edebilen) yavrulara sahip tavşan türleri için kullanılır. Ülkemizde yaban tavşanları tek bir tür, Lepus europaeus(Avrupa kahverengi yaban tavşanı) ile temsil edilmektedir [5]. Yüksek uyum kabiliyeti ve bazı fizyolojik özellikleri nedeniyle yaban tavşanı karasal ekosistemlerde başarı ile yaşayabilmektedir [6,7] Vücut büyüklüğü ve birey sayısı bolluğu yaban tavşanını predatörlerin temel avı haline getirmiştir. Yaban hayatı elemanlarından sansar, gelincik, çakal, samur, kedigiller, tilki ve bazı yırtıcı kuş türleri yaban tavşanı ile beslenir [4]. Yaban tavşanı zookori yoluyla bitki yayılışında önemli rol oynar. Bu sayede Kenya’da 17 bitki türünün yayılış imkânı bulduğu kaydedilmiştir [1]. Yaban tavşanı en önemli av hayvanlarından biridir. Polonya'da her yıl 3.2 milyon olarak tahmin edilen populasyondan yaklaşık 700 bininin avlandığı kaydedilmiştir. Ayrıca yaban tavşanlarının bazen ekinlere, meyve bahçelerine ve genç orman ağaçlarına zarar verdiği kaydedilmektedir [10]. Avrupa’da Lepus europaeus populasyonlarının zayıfladığı ve populasyon yoğunluğunun çeşitli ekosistemlerde 0.1/ha’dan 3.4/ha’a kadar değiştiği belirtilmiştir [6]. Bu tür Dünya Doğayı Koruma Birliği (IUCN) kırmızı listesinde asgari endişe (LC) tür kategorisinde yer alan yaygın bir tür olmasına karşın son zamanlarda Avrupa’da populasyonların giderek azalması yaban tavşanının Bern Sözleşmesi (Avrupa'nın Yaban Hayatı ve Yaşama Ortamlarını Koruma Sözleşmesi)’nde Ek Liste III (Korunan Fauna Türleri )’e alınmasını gerektirmiştir. Yaban tavşanı, Lepus europaeus Norveç, Almanya, Avusturya ve İsviçre'nin Kırmızı Listelerinde tehlike altında veya tehlikeye yakın tür statüsünde yer almaktadır [11]. Bu türü tehdit eden faktörler arasında tarımsal alanların genişletilmesiyle meydana gelen habitat kayıpları, çeşitli salgın hastalıklar ve aşırı avlanma başta gelmektedir [2,13]. Türkiye’de populayonları giderek azalan yaban tavşanı için koruma ve yönetim planını ortaya koymak üzere bazı ekolojik özelliklerinin belirlenmesi bu araştırmanın esas amacını oluşturmaktadır. MATERYAL VE YÖNTEM Bu araştırma, Türkiye’nin çeşitli lokalitelerinde 2006 2011 yılları arasında yaban tavşanı ile ilgili yapılan gözlemlere ve bazı ekolojik kayıtlara dayanmaktadır. Arazide yaban tavşanı varlığını belirlemek için projeksiyon sayım metodundan yararlanılmıştır [9]. Bu metot gece araçtan projektör ile aydınlatılan alanda tavşanların çıplak gözle sayılması esasına dayanmaktadır. Sayımlar yaklaşık 50 ha'lık çalışma alanlarında gerçekleştirilmiştir. Arazide dışkı, yuva, ayak izi ile avcıların verdikleri bilgiler doğrultusunda tavşan varlığı tespit edilmiştir. BULGULAR VE TARTIŞMA Türkiye’de 2006-2011 yılları arasında gerçekleştirilen arazi çalışmaları ile elde edilen ekolojik veriler değerlendirilmiştir. Gece sayımlarında Düzce, Hendek (Sakarya), Mengen (Bolu), Trabzon, Giresun, Ordu, Bandırma (Balıkesir), Eşme (Kütahya), Akseki (Antalya), İmamoğlu (Adana), Kırıkhan ve Reyhanlı (Hatay)’da bir gecede en fazla bir yaban tavşanı görülebilmiştir. Ayrıca bu bölgelerde yaban tavşanı ile ilgili dışkı, yuva ve ayak izine nadiren rastlanmıştır (Şekil 2). Karadeniz'in bazı bölgelerinde (Akçakoca, Mengen, Korgan, Trabzon, Giresun) tarım arazilerinde kullanılan çeşitli kimyasallardan dolayı tavşan populasyonlarının önemli ölçüde zayıfladığı ve son yıllarda tavşana az rastlandığı tespit edilmiştir. Bu yüzden Doğu Karadeniz Bölgesinde Trabzon ve Artvin’in Şavşat ilçesinde yaban tavşanı avı tamamen yasaklanmıştır. SONUÇ VE ÖNERİLER Türkiye'de yaban tavşanının yok olma nedenleri bilinçsiz avcılık ve habitat daralmasıdır. Yüksek üreme potansiyelleri olsa da yaban tavşanları artık nadir olarak görülmektedir. Avcılara göre Türkiye’de son 10-15 yıl içerisinde yaban tavşanı sayısında belirgin bir azalma olmuştur. Tarım ürünleri için kullanılan katı gübre, pestisit ve herbisit ile tarım zararlısı olarak bakılan yaban domuzu ve porsuk gibi hayvanlarla mücadelede kullanılan kimyasalların (temik ve enderin gibi zehirler) yaban tavşanı populasyonlarının azalmasında doğrudan veya dolaylı olarak etkili olduğu düşünülmektedir. Özellikle yaban tavşanının çok nadir görüldüğü Akseki, Akçakoca ve Mengen'de ot ve böcek ilaçları ile zehirlerin aşırı şekilde kullanıldığı belirlenmiştir. Tarım alanlarını genişletme çalışmalarıyla meydana gelen habitat kayıpları da yaban tavşanı populasyonlarını olumsuz şekilde etkilemektedir. Biyolojik çeşitlilik açısından Türkiye’deki yaban tavşanının ve diğer yaban hayatı elemanlarının korunması için bazı önlemlerin alınması gerekmektedir. Bunun için türün habitatıyla birlikte korunması ekosistem bütünlüğü bakımından önemlidir. Türkiye’de av yasağına rağmen kaçak avlanmanın önüne geçilememiştir. Bununla ilgili denetimin daha etkili olarak yapılması gerekmektedir. Herbisit ve pestisitlerin yeterli dozlarda kullanılması ve gereksiz kimyasalların kullanımına izin verilmemesi çevre kirliliği açısından önemlidir. Türkiye’de yaban hayatı için son derece önemli olan ve Avrupa ile Afrika’da tavşan ölümlerine neden olan Tularemi’nin Türkiye’deki durumu öncelikli araştırma konularından biri olmalıdır. Tavşan populasyonlarının hangi olumsuz etkilerden hangi oranlarda nasıl etkilendiğinin bilimsel olarak tespit edilmesinden sonra daha sağlıklı bir koruma ve yönetim planının hazırlanması mümkün olacaktır.İnsan aktivitesi nedeni ile hızla azalan ve önemli gen kaynaklarımızdan biri olan yaban tavşanında genotiplendirme çalışmalarına başlanmıştır. Bu çalışmalar Türkiye yaban tavşanının filogenisi ve populasyon genetiği hakkındaki bilgi noksanını gidereceği gibi türün taksonomik durumuna açıklık getirmeye de imkân verecektir. KAYNAKLAR [1] Agnew ADQ, Flux C. 1970. Plant Dispersal by Hares (Lepus capensis L.) in Kenya. Ecology. 51 (4): 735-737. [2] Alves PC, Ferrand N, Hackländer K. 2008. Lagomorpha Biology. Springer-Verlag Berlin Heidelberg, Hollanda. [3] Bora MM. 2005. Sürdürülebilir Avcılık İçin Temel Eğitim Kitabı 1. Cilt. Eğitim Yayınları. Ankara. [4] Chapman JA, Flux JEC. 2008 Lagomorpha Biology: Evolution, Ecology, and Conservation. Springer-Verlag Berlin Heidelberg. [5] Demirbaş Y, Aşan N, Albayrak İ. 2010. Cytogenetic study on the European brown hare (Lepus europaeus Pallas, 1778) (Mammalia: Lagomorpha) in Turkey.Turk. J. Biol. 34: 247-252. [6] Flux JEC, Angermann R. 1990. The hares and jackrabbits. 61-94, in: Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan, IUCN/SSC Lagomorph Specialist Group (Ed: by Chapman JA. Flux JEC). Gland, Switzerland, 1-168. [7] Hirakawa H. 2001. Coprophagy in leporids and other mammalian herbivores. Mammal Rev. 31 (1): 61–80. [8] Kiziroğlu İ, Turan L, Adızel Ö, Sertoğlu M, Erdoğan A, Sert H. 2010. Ekolojik Avcılık (Fotosafari) Eğitimi. Gökçe Matbaacılık. Ankara. [9] Klansek E, Vavra I. 1993. Besatzermittlung und Bejagungsplan beim Feldhasen. ÖsterreichsWeidwerk. 93: 48-49. [10] Nowak R. 1999. Walker's Mammals of the World. Sixth Edition. The Johns Hopkins University Press, Baltimore and London. [11] Reichlin T, Klansek E, Hackländer K. 2006. Diet selection by hares (Lepus europaeus) in arable land and itsimplications for habitat management. Eur. J. Wild Res. 52: 109-118. [12] Sert H, Suchentrunk F, Erdoğan A. 2005. Genetic diversity within Anatolian brown hares (Lepus europaeusPallas, 1778) and differentiation among Anatolian and European populations. Mammalian Biology. 70 (3): 171-186. [13] Smith RK, Jennings NV, Harris SA. 2005. Quantitative analysis of the abundance and demography of European hares (Lepus europaeus) in relation to habitat type, intensity of agriculture and climate. Mammal Review. 35 (1): 1-24. [14] www.iucnredlist.org/apps/redlist (2010).   Alem: Animalia (Hayvanlar) Şube: Chordata (Kordalılar) Sınıf: Mammalia (Memeliler) Takım: Lagomorpha(Tavşanımsılar) Familya: Leporidae(Tavşangiller) Cins: Lepus Tür: L. europaeus Bayağı tavşan (Lepus europaeus), tavşangiller (Leporidae) familyasından boyu 70 cm'ye varabilen ve kısa mesafede çok hızlı koşabilen bir tavşan türü. Ağırlığı 2-7 kg. arasında değişir. 10 cm. kadar bir kuyruğu olur. Türkiye’deki bayağı tavşanlar, Avrupa’dakilerden biraz daha küçüktür. Kulakları çoğu kez arka ayakları kadar, bazen daha uzundur. Kulaklarını etrafa çevirebilirler. Yılda iki kez kıl değiştirirler. Yazın kahverengi ya da kahverengimsi gri, kışın daha açık ya da beyaz olurlar. Ortalama ömürleri 10-12 yıl kadardır. Otluk, ormanlık ve açık arazilik yerlerde, bataklık çevrelerinde ve 1500 m.’ye kadar dağlarda yaşarlar. Küçük toprak oyukları ve çalıların altına yerleşirler. Orta ve (İber Yarımadası hariç) Güney Avrupa’dan, Çin’e kadar görülebilen bayağı tavşan, Türkiye’nin her bölgesinde boldur. Ancak kısa aralıklarla (ve gözleri açık olarak) uyurlar. Genelde yalnız yaşamakla birlikte hem cinslerine karşı hoşgörülü davranırlar. Sürekli kullandıkları patikaları yanak ve anal bölgelerindeki salgı bezlerini kullanarak işaretlerler. Yazın yeşil bitkiler, mantarlar, meyveler, kışın ağaç kabukları ve kuru bitkileri yerler.Genellikle bitki kökleri ve bitki yumruları ile beslenirler.Ayrıca karpuz kavun gibi meyveleri ve köklerini çok severler.Ve de taze ot ve bitkilerle beslenirler. Hamilelik süreleri 40 gündür. Yılda en az 2-3 en fazla 5-6 defa dogururlar. İlk dogruşların da 1 ayda doğranlarda vardır. Yavru dogduktan sonra ilk 1 hafta insan eliyle ellenirse annesi kıskanır ve öldürür 1 haftayı tamamlayan yavrular ele alına bilir. Tavşanlar genellikle ot yer ama agaç yaprakları agaç kabuğuda yerler. Ayrıca yerlerinin sıcak olması, temiz olması, yaşadıkları alanın büyük olması, yiyeceğin bol olması gibi etmenler sağlıklarında ve doğurğanlıklarında etkili olur. Yavru sayıları doğum yıllarına paralel artış gösterir. Yavrular gözleri kapalı ve tüysüz doğarlar. 4.günde tüylenmeye başlarlar. 1.haftası doldurduğunda gözleri açılmaya başlar ve gözlerinin tamanen açılması 12.gününü bulur. Yuvadan dışarıya çıkmaya 3.haftadan sonra başlarlar. Anne yavrularını göz önünde emzirmemeye dikkat eder. Doğumdan önce birkez daha çiftleşen dişilerde, üst üste gebelik görülür. Erkekler, dişiler için kavga ederler. Yaban tavşanı evcillere göre çok daha saglıklı ve dayanıklıdır, evciller hazır beslenip bütün gün kafeste dururken, yaban tavşanı tam bir atlet ve bir maraton koşucusu gibidir, çünkü doğa ona bu kabiliyeti (koşuculuğu) vermiş Tavşan yumuşak postunun altında kaslarla örgülüdür Yetişkin tavşanın uzunluğu 70-75 cm, ağırlığı da 6 kg kadar ulaşırBu hayvanın en belirgin uzvu kulaklarıdır 10-14 cm kadar ulaşırlar ve gayet haraketlidirler Kulaklar dıştan ince bir tüy, içten ise daha ince bir tüy örtüsü ile kaplıdır, taa ki sade deri kalana kadar Kulak rengi tavşanın rengiyle aynidir, kış günleri biraz daha gri olur Kafatası biraz uzun ve yanlardan hafif dar, gözler biraz büyük , biraz çıkık, kadın blüzunun düğmeleri gibi, ve biraz yanda bulunurlarGöz rengi kahvarengi sarı, turuncumsu Bazı araştırmacılara göre tavşanın gözleri, yan tarafını çok iyi görebilir, hareketli nesneleri de iyi görebilir, hatta hava kararırken de iyi görür ama tam direkt, önünü pek iyi göremez İşitme duyusu mükemmeldir Tavşanda, sanki bunun bilincinde, sık, sık, durur ve seslenirBöyle zamanlarda kafasını kaldırır, kulakları diker ve donup kalır Çok endişeliyse arka ayak üzerine kalkar ve yüksekten dinler, kafasını çevirerek Tavşanın mükemmel kulakları sadece ses algılamak için değil, ayni zamanda Afrika filinin kulaklarının görevini de yaparlarKulaklar kılcal damarlarla donatılmıştır ve çok şıcak havalarda onları hafif dik tutarBöylelikle kulaklar, araba radyatörünün gördüğü görevi görürlerÇok hızlı koşarken de kulaklar ayni görevi görürler, tavşanı, hararet yapmaktan korurlarÖn ayakalrı arkalara göre, kısa ve patilerinde 5 (parmak) vardır, arka ayaklarında ise 4 (parmak) vardır, ön ayak izleri arkalardan 3-4 kat daha küçüktür Koşma esnasında tavşanın güçlü arka ayakları ön ayakların önüne geçip büyük bir güçle onun ileri zıplatabiliyorTavşan mükemel bir hızla koşabilir, bu hız saatte 60-70 km kadar çıkabilir Genelde sırt rengi grı ve ya kahverengi sarıdır Tüy altta gridir ve ucuna dogru sararır gibiEn alttaki tüy gridirKarın altı beyaz ve ya kirşi beyazdır Yaz günlerinde rengi daha çok kurumuş otlara benzeyip daha sarıya bakar, kış günlerinde ise daha gridirTavşanlar senede iki kez tüy değiştirir, ilkbaharda ve sonbaharda Kuyruğu çok kısadır -10cm altında, puftur, üstten siyah, alttan beyazdır Yaban tavşanı poligamdır Çiftleşme zamanında büyük gruplarda toplanırlar ve erkekler, aralarında acımasız savaşlar verirler dişiler için Arka ayak üzerine kalkıp biri birine patilerinle ve tırnaklarıyla vurarlar, bu çekişmelerde ağır yaralı ve ya ölü olmaz Tavşanlar , çftleşmeden, 45-48 gün sonra doğururlar , yavrular doğar doğmaz, koşabilir, işitirler, buna karşın, evcil tavşanlar doğar doğmaz duymaz görmez, koşamaz Yaban tavşanı senede dört kereye kadar yavrulayabilir, bir seferde 2-3 ve ya 3-5 bazen daha da fazla yavrularlarYumuşak kış aylarında, çiftleşme maratonu ocak ortasında dahi başlayabilir Yavrular çok dikatlidirlerGün boyu, içgüdüsel olarak yatarlar ve kıpırdamazlar, böylelikle yırtıcı hayvanlar onları daha zor bulabilirlerÇabuk büyürler ve 6- aydan sonra çiftleşmeye hazırdırlar Böylelikle bu hayvan hayatta kalabiliyor, çok düşmanı olmasına rağmen Yaban tavşanı bu gün bütün Avrupa kıtasında bulunur, kuzeyde taa kutuplara kadar bulunur Güneyde, Kuzey Afrikaya kadar bulunurlarAsya Kıtasında Kazakistana kadar bulunurlar Tavşan akşamları aktiftir,sabaha karşı yatar ve bütün gün dinlenirBu gizlenmeler tavşanlar için olağandır ve onların yaşama şansını büyük ölçüde artırırYatağı birkaç santimetre derin olmasına rağmen, tavşan orada çok iyi gizlenirKedi gibi kendini bu çukura bırakır, bu (akıllının) kulakları sırtına dogru yaslıdır ve sadece tehlike anında onları dikerBu pozisyonda ayakları altına topludur ve onu bu şekildeyken, kopoy bile kokusunu zor alır Sırtı gri sarı ve yapraklarla güzel birleştiği için, yırtıcı kuşlardan da korunabiliyorlar Tavşan yalnız yaşar ve bölgeyi çok iyi tanır,bu bölgede birkaç tane yatak yapar ve tehlike anında ondan, onda değişir. Yağmurlu havalarda tavşanlar ormana ve ya çalılıklar arasına saklanırlar, orada kuruluğa yatarlar ve yağmurun dinmesini beklerler, ondan sonra eski yerlerine dönerler Yaban tavşanı vejetaryandır Onun yiyecek mönüsünde otlar, yonca ve yeni bitmiş buğday vardırYulafa , yere düşmüş meyvelere baylırlarAkşamları tavşan yemek bulmak için, belirlenmiş patikaları kullanır , sabah geri dönüşte ayni yolu kullanır ama yatmadan önce birkaç var gel yapar ki, onu izleyenler olursa onu bulamasın Yeterince taze ot bulamazsa tavşan yaprak, taze filiz ve çalılıklardan da otlayabilirKış aylarında ağaç kabuklarını da kemirirler, hayatta kalabilmek için Tavşanın her yerde bulunduğu için onun yatacağı yeri kestirmek zor, yine de tarlada yatacağı yerler, otlu, rüzgar almayan, küçük çalılıklar, ekili bağ araları, gibi yerlerde onu bulabiliriz Yaban tavşanı yaban besin tablosunda neyazık ki en altta yer alıyorHavadan onun düşmanları baykuşlar, atmacalar, doğanlar ve şahinlerKaradan ,kurtlar genelde kış aylarında karın çok olduğunda onları rahatlıkla yakalayabilirler, tilkiler, çakallar, yaban kedileri ve porsuklar Bir yaban tavşan yavrusu eğer sağ kalır ve onu bir yırtıcı hayvan parçalamaz, bir avcı vurmaz,bir biçerdöver onu yutmaz ise bu tavşan 10 yaşına kadar yaşayabilir ama bu olasılık binde birdir

http://www.biyologlar.com/lepus-europaeus-yaban-tavsani-hakkinda-bilgiye-ihtiyacim-var

Gözün evrimi, gözün evrim aşamaları

TÜM HAYVANLARIN kendi dünyalarıyla ve dünyalarının içindeki nesnelerle baş etmeleri gerekir. Söz konusu bu nesnelerin üzerinde yürürler, altında sürünürler, onlara çarpmaktan kaçınırlar; bu nesneleri alırlar, yerler, onlarla çiftleşirler ve onlardan kaçarlar. Evrimin genç olduğu yerbilimsel şafakta, hayvanların, nesnelerin orada olduklarını anlamadan önce, onlarla fiziksel temas kurmaları gerekiyordu. Uzaktan algılama teknolojisini geliştirecek ilk hayvanı ne kadar da büyük faydalar bekliyordu, yani ona çarpmadan önce bir engelin, yakalanmadan önce bir avcının, ulaşma mesafesinde olmayan ama çevrede herhangi bir yerde olabilecek yiyeceğin varlığından haberdar olma teknolojisi. Bu teknoloji ne olabilirdi?  Güneş; sadece, yaşamın kimyasal çarklarını döndürmekte kullanılan enerjiyi temin etmekle kalmadı. Aynı zamanda uzaktan yönlendirme teknolojisi fırsatını da sundu. Güneş, dünya yüzeyinin her milimetrekaresini bir foton kümesiyle vurdu. Fotonlar, düz bir çizgide, evrenin imkân verdiği en yüksek hızda hareket eden; dünya üzerindeki delik ve çatlaklardan içeri girip oradan oraya sekerek girilmedik bir kuytu, bulunmadık bir yarık bırakmayan minik parçacıklardır. Fotonlar, düz hatlarda büyük bir hızla ilerledikleri için, bazı maddeler tarafından diğer maddelere kıyasla daha çok emildikleri ve bazı maddeler tarafından diğer maddelere kıyasla daha fazla yansıtıldıkları için ve her zaman çok sayıda olup sürekli yayıldıkları için, muazzam kesinlik ve kuvvete sahip olan algılama teknolojileri için fırsat sağladılar. Sadece fotonları saptamak ve (daha zor bir şekilde) fotonların geldiği yönü tayin etmek gerekiyordu. Bu fırsat kullanılabilecek miydi? Üç milyar yıldan sonra cevabın ne olduğunu biliyorsunuz, ne de olsa bu sözcükleri görebiliyorsunuz.  Darwin, bilindiği üzere, "aşırı derecede mükemmel ve karmaşık organlar" konulu tartışmasına gözü örnek vererek başlamıştır: “Gözün, odağı farklı uzaklıklara ayarlamak, farklı miktarlarda ışığı içeri almak, küresel ve kromatik sapmayı düzeltmek için kullandığı eşsiz düzenekleriyle beraber doğal seçilim tarafından şekillendirildiğini varsaymak, açıkça itiraf ediyorum ki son derece gülünç gözüküyor.”Darwin, eşi Emma tarafından ortaya konan problemlerden etkilenmiş olabilir. Darwin, Türlerin Kökeni eserinden on beş yıl önce, doğal seçilimli evrim teorisinin ana hatlarını çizen uzun bir makale yazmıştı. Ölmesi durumunda, eşi Emma'dan bu makaleyi yayınlamasını istemiş, Emma'nın makaleyi okumasına izin vermişti. Emma'nın makalenin kenarlarına aldığı notlar günümüzde hala durmaktadır ve Emma'nın, özellikle Darwin'in insan gözünün "küçük ama her seferinde faydalı sapmaların aşamalı olarak seçilimiyle elde edilmiş olması olasıdır" şeklindeki önermesini işaretlemiş olması ilginçtir. Emma'nın buradaki notu şu şekilde: "Büyük bir varsayım / E.D." Türlerin Kökeninin yayınlanmasından çok sonra Darwin, Amerikalı bir meslektaşına yazdığı bir mektupta şöyle bir itirafta bulunmuştur: "Göz, bugün hala tüylerimi ürpertiyor ama iyi bilinen ara kademeleri düşününce, mantığım bana bu ürpertiyi ortadan kaldırmam gerektiğini söylüyor." Darwin'in bu ara sıra ortaya çıkan şüpheleri galiba, 3. bölümün başında alıntısını yaptığım fizikçinin şüphelerine benziyordu. Fakat Darwin bu şüphelerini, pes etmek için hoş bir bahane olarak değil, üzerinde düşünmeye devam edilecek bir zorluk olarak görmüştü.  Bu arada, "göz"den bahsettiğimizde, soruna adil yaklaşmış olmuyoruz. Gözlerin, hayvanlar âleminin farklı bölümlerinde en az kırk defa ve muhtemelen altmıştan fazla birbirlerinden bağımsız olarak evrimleştiği şüpheye yer bırakmayacak şekilde hesaplanmıştır. Bazı vakalarda bu gözler oldukça farklı prensipler üzerine kuruludur. Birbirinden bağımsız bir şekilde evrimleşmiş olan kırk ila altmış gözde, dokuz farklı ilke belirlenmiştir. Devam ettikçe, bu temel dokuz göz türünün bazılarından (ki biz bunları Olasılıksızlık Dağının kapladığı alanda farklı yerlerde bulunan dokuz ayrı zirve olarak düşünebiliriz) söz edeceğim.  Bu arada, bir şeyin iki farklı hayvan grubunda, birbirlerinden bağımsız bir şekilde evrimleştiğini nasıl anlıyoruz? Sözgelimi, yarasa ve kuşların kanatlarını birbirlerinden bağımsız olarak geliştirdiklerini nasıl anlıyoruz? Yarasalar, gerçek kanatlarıyla memeliler arasında eşsizdirler. Teoride, memelilerin atalarının kanatlı olması ve yarasalar dışında diğer tüm memelilerin sonradan bu kanatları kaybetmiş olmaları mümkündür. Fakat bunun olması için gerçekçi olamayacak kadar çok bağımsız kanat kaybının meydana gelmiş olması gerekir ve kanıtlar, öyle bir şeyin olmadığını gösterip sağduyuyu destekliyor. Atasal memeliler ön uzuvlarını uçmak için değil, çoğu torununun hâlâ yaptığı gibi yürümek için kullanıyorlardı. İnsan da, gözün hayvanlar âleminde birbirinden bağımsız bir şekilde pek çok kez geliştiğini benzer bir mantık yürütmeyle anlamıştır. Buna ek olarak, gözün embriyodaki gelişimi gibi detayları da kullanabiliriz. Örnek olarak, hem kurbağaların hem de mürekkep balıklarının kamera benzeri iyi gözleri vardır fakat bu gözler iki farklı embriyoda o kadar farklı yollarla ortaya çıkarlar ki, birbirlerinden bağımsız bir şekilde evrimleştiklerine emin olabiliriz. Bu, kurbağa ve mürekkep balığının ortak atasının bir tür göze sahip olmadığı anlamına gelmiyor. Eğer günümüzde yaşayan tüm hayvanların (belki de bir milyar yıl önce yaşamış olan) ortak atası göze sahip olsaydı, buna şaşırmazdım. Belki de ışığa duyarlı pigmentlerden oluşan bir tür ilkel dokuya sahipti ve sadece geceyle gündüzü ayırt edebiliyordu. Ancak gelişmiş seviye bir görüntü şekillendirme aracı olarak gözler, bazen benzer tasarımlara yakınsanarak, bazı zamanlarda da oldukça farklı tasarımlar ortaya koyarak, bağımsız bir şekilde pek çok kez evrimleşmiştir. Oldukça yakın bir zaman önce, gözün hayvanlar âleminin farklı bölümlerindeki bağımsız evrimini aydınlatan heyecan verici yeni kanıtlar bulunmuştur. Bölümün sonunda bu konuya döneceğim.  Hayvan gözlerinin çeşitliliğini incelerken, her göz tipinin Olasılıksızlık Dağının yamaçlarında nerede bulunduğundan bahsedeceğim sıklıkla. Fakat bu gözlerin hep modern hayvanlara ait olduğunu, gerçek atalara ait olmadığını unutmayın. Bu gözlerin, atalarda bulunan göz türleriyle ilgili bazı ipuçları verebileceğini düşünmek işe yarayacaktır. En azından, Olasılıksızlık Dağının ortasında yer aldığını düşündüğümüz göz türlerinin esasında işe yarayabileceklerini gösterecektir. Bu, gerçekten önemli bir konu, çünkü daha önce de ifade ettiğim gibi, hiçbir hayvan yaşamını evrimsel bir yoldaki ara geçiş formu olarak idame ettirmemiştir. Daha iyileşmiş bir göze doğru giden bir patikada yer alan bir istasyon olarak düşünebileceğimiz bir göz, o hayvan için en önemli organ olabilir ve kuvvetle muhtemel o hayvanın yaşam biçimi için ideal gözdür. Sözgelimi yüksek çözünürlüğe sahip görüntü oluşturan gözler çok küçük hayvanlar için uygun değildir. Yüksek kaliteye sahip olan gözler belli bir büyüklükten (hayvanın vücuduna kıyasla göreceli bir büyüklük değil, mutlak bir büyüklük) fazla olmalılar ve gözler ne kadar büyükse o kadar iyi olurlar. Mutlak büyüklüğü fazla olan bir göz, büyük ihtimalle küçük bir hayvanın edinemeyeceği kadar masraflı ve taşıyamayacağı kadar hantal olurdu. İnsanınki gibi bir görme şekline sahip olan bir salyangozun gözleri oldukça komik gözükürdü (şekil 5.1). Ortalamadan biraz daha büyük olan gözleri geliştiren salyangozlar diğerlerine kıyasla daha iyi görebilirler. Fakat daha büyük bir ağırlığı taşımanın da faturasını ödemek zorunda kalırlardı ve böylelikle hayatta kalma şansları düşerdi. Bu arada, kaydedilen en büyük göz 37 santimetre çapındadır. Böyle bir gözü taşıyabilen deniz canavarı, 10 metrelik dokunaçlarıyla dev bir mürekkep balığıdır.  Olasılıksızlık Dağı benzetmesinin sınırlamalarını kabul ederek, görme ile ilgili olan yokuşun en dibine inelim. Burada, aşırı derecede sade oldukları için neredeyse göz olarak anılmayı bile hak etmeyecek gözler görüyoruz. Genel vücut yüzeyinin ışığa biraz duyarlı olduğunu söylemek daha doğru olacaktır. Bu, bazı tek hücreli organizmalar, bazı denizanaları, denizyıldızları, sülükler ve diğer birçok kurtçuk türü için geçerlidir. Böyle hayvanlar görüntü oluşturma veya ışığın hangi yönden geldiğini ayırt etme yetisinden bile yoksundurlar. Algılayabildikleri (belirsiz bir biçimde) tek şey, etraftaki (parlak) ışığın varlığıdır. Tuhaf bir biçimde, hem erkek hem de dişi kelebeklerin üreme organlarında ışığa duyarlı hücreler olduğuna dair sağlam kanıtlar vardır. Bunlar görüntü oluşturan hücreler değildirler ama ışık ve karanlık arasındaki ayrımı fark edebilirler ve gözün uzak evrimsel kökeninden konuşurken bahsettiğimiz başlangıç noktasını temsil ediyor olabilirler. Kelebeklerin bu hücreleri nasıl kullandığını kimse bilmiyor gibi, benim bu konuda kaynak olarak başvurduğum eğlenceli kitap olan Eşeysel Seçilim ve Hayvan Üreme Organı (Sexual Selection and Animal Genitalia) adlı kitabın yazarı William Eberhard bile buna dâhil.  Olasılıksızlık Dağının altındaki ovanın ışıktan hiç etkilenmeyen atasal hayvanlar tarafından mesken tutulduğunu düşünürsek, denizyıldızlarının ve sülüklerin (ve kelebek üreme organlarının) yön belirleyici olmayan ışığa duyarlı derileri, dağ patikasının başladığı, alt yamaçlarda yukarıya doğru giden yollardır. Esasında ışığa karşı tamamen duyarsızlık "ovası" her zaman küçük olmuş olabilir. Belki de canlı hücreler öyle ya da böyle ışıktan etkileniyorlardır; ki bu şekilde kelebeklerin ışığa duyarlı üreme organları da daha az tuhaf görünebilir. Bir ışık ışını, doğrusal bir foton demetinden oluşur. Bir foton, renkli bir madde molekülüne çarptığı zaman tutulabilir ve molekül, aynı molekülün farklı bir formuna dönüşebilir. Böyle bir şey olduğunda bir miktar enerji açığa çıkar. Yeşil bitkilerde ve yeşil bakterilerde bu enerji, fotosentez adı verilen süreç yoluyla yiyecek molekülleri elde etmek için kullanılır. Hayvanlarda bu enerji, herhangi bir sinirde herhangi bir tepkimeyi tetikleyebilir ve bu, bizim göz diyebileceğimiz gözlere sahip olmayan hayvanlarda bile, görme olarak adlandırılan sürecin ilk adımını teşkil eder. Geniş bir çeşitliliğe sahip olan renkli pigmentlerden herhangi biri, ilkel bir seviyede iş görecektir. Bunun gibi pigmentlerden çok vardır ve ışığı tutma dışında her türlü amaç için kullanılırlar. Olasılıksızlık Dağının yamaçlarından yukarı doğru çıkan endişeli ilk adımlar, pigment moleküllerinin aşamalı olarak iyileştirilmesinden ortaya çıktı. Sığ, devamlı ve küçük adımlarla tırmanılması kolay olan bir iyileşme yokuşu vardır.  Bu az eğimli yokuş; bir pigmente sahip olan fotonları tutmada ve onların etkilerini sinir uyarılarına dönüştürmede uzmanlaşmış olan fotoselin canlılardaki eşdeğerinin evrimine doğru giden yolu hızlandırdı. Retinada bulunan ve fotonları yakalamakta uzmanlaşmış hücreleri adlandırmak için fotosel kelimesini kullanmaya devam edeceğim (biz insanlarda, bunlar ışığa duyarlı çubuk ve koni hücreleri olarak adlandırılır). Tamamının kullandığı yöntem, foton yakalamada kullanılacak mevcut pigment katmanlarının sayısını arttırmaktır. Bu önemli bir şeydir zira bir fotonun, herhangi bir katmanın bir yüzünden girip diğer yüzünden hasarsız bir şekilde çıkması oldukça muhtemeldir. Ne kadar çok pigment katmanına sahipseniz, fotonları yakalama olasılığınız o kadar büyüktür. Kaç fotonun tutulup, kaçının kaçıp gittiği neden önemli olsun ki? Her zaman bolca foton yok mu? Hayır. Bu konu, gözün tasarımını kavramamız için büyük bir öneme sahiptir. Bir tür foton ekonomisi vardır, bu foton ekonomisi, parasal insan ekonomisi gibi kötü karakterli ve kaçınılmaz değişinimler içeren bir ekonomidir.  Daha ilginç ekonomik ödünleşmelere geçmeden önce, fotonların bazı zamanlar (mutlak veriler ışığında) az bulunduğu şüphesizdir. 1986 senesinde, soğuk ve yıldızlı bir gecede, iki yaşındaki kızım Juliet'i uyandırıp battaniyeye sardım ve kucağıma alıp bahçeye kadar taşıdım. Uykulu yüzünü, Halley kuyrukluyıldızının olduğu ifade edilen yöne doğru döndürdüm. Söylediklerimi anlamıyordu ama ben ısrarla kulağına kuyruklu yıldızın öyküsünü ve benim kuyrukluyıldızı bir daha kesinlikle göremeyeceğimi fakat onun yetmiş sekiz yaşına geldiğinde tekrar görebileceğini fısıldadım. 2062 yılında torunlarına kuyruklu yıldızı daha önce de görmüş olduğunu söyleyebilsin diye uyandırdığımı ve böylece babasını, kuyrukluyıldızı görmesi için onu gecenin karanlığına taşıyan hayalperest hevesiyle belki de hatırlayabileceğini ifade ettim.  1986 senesindeki o gece, Halley kuyrukluyıldızından çıkan birkaç foton gerçekten de muhtemelen Juliet'in retinasına temas etmiştir fakat itiraf etmek gerekirse ben kendimi kuyrukluyıldızı gördüğüme ikna etmekte zorlandım. Bazen aşağı yukarı doğru yerde, soluk, griye çalan bir leke görür gibi oluyordum. Sonra ise leke kayboluyordu. Buradaki sorun, retinalarımıza düşen fotonların sayısının sıfıra yakın olmasıydı. Fotonlar, yağmur damlaları gibi rastgele zamanlarda gelirler. Yağmur yağarken bu durumdan şüphe etmeyiz ve şemsiyemizin çalınmamış olmasını dileriz. Ama yağmur yavaş yavaş atıştırırken, yağmurun kesin olarak ne zaman başladığını nasıl bilebiliriz? Tek bir yağmur damlasını hissedince, ikinci veya üçüncü yağmur damlası gelene kadar emin olamayarak, merakla yukarı bakarız. Yağmur böyle yavaş atıştırırken, birisi yağmurun yağdığını söylerse arkadaşı bunu kabul etmeyebilir. Yağmur damlaları, diğer arkadaşa ilk kez düşmeden bir dakika önce ilkinin üzerine düşecek kadar seyrek olabilir. Işığın var olduğunu kabul edebilmek için, fotonların retinamıza fark edilebilecek kadar sık düşmesi gerekir. Juliet ve ben, Halley kuyruklu yıldızının olduğu yöne bakarken, kuyruklu yıldızdan gelmekte olan fotonlar retinalarımızdaki fotosellere büyük ihtimalle kırk dakikada bir gibi aşırı derecede düşük bir sıklıkla temas ediyorlardı! Bu, şöyle bir anlama geliyor: Fotosellerden biri, "evet orada ışık var" diyorduysa da, komşusu olan fotosellerin büyük bir çoğunluğu böyle demiyordu. Benim kuyrukluyıldız şeklindeki bir nesneyi algılamamın tek sebebi beynimin, yüzlerce fotoselin kararlarını bir araya getiriyor olmasıydı. İki fotosel bir fotosel den daha çok foton yakalar. Üç fotosel iki fotoselden daha çok yakalar ve bu şekilde Olasılıksızlık Dağının yokuşlarını tırmanmaya devam eder. İnsan gözü gibi gelişmiş gözlerde, halıya işlenmiş nakışlar gibi yoğun bir şekilde doldurulmuş milyonlarca fotosel vardır ve bu fotosellerin her biri mümkün olduğu kadar çok sayıda fotonu yakalayacak şekilde ayarlanmıştır. Şekil 5.2 insanda bulunan tipik bir gelişmiş fotoseldir fakat diğer hayvanlardaki fotoseller de büyük ölçüde aynıdır. Resmin ortasında, kurtçuk kolonisi gibi gözüken şeyler mitokondrilerdir. Bunlar hücrelerin içinde yaşayan küçük canlılardır. İlk olarak parazit bakterilerinden ortaya çıkmışlardır ama enerji üretimi için kendilerini tüm hücrelerimizde vazgeçilmez bir konuma getirmişlerdir. Fotoselin sinirsel bağlayıcı teli, resmin sol tarafında başlamaktadır. Resmin sağında askeri katılıkta hizalanmış dikdörtgen biçimindeki hassas zar dizileri, fotonların tutuldukları yerdir. Her katmanın içinde, hayati önemde olan foton tutucu pigmentin molekülleri vardır. Ben bu resimde doksan bir tane zar katmanı sayıyorum. Kesin sayı çok önemli değil, foton tutmak söz konusu olduğunda sayıları ne kadar fazla olursa o kadar iyi olur, ama bu kez de çok fazla katman sahibi olmayı önleyecek genel masraflar olacaktır. Buradaki önemli nokta, doksan bir zar, fotonları tutma konusunda doksan zardan daha etkilidir, doksan zar seksen dokuz zardan daha etkilidir ve bu şekilde devam eder. Bu yolla tek bir zara kadar ulaşabiliriz, o da sıfır zardan daha etkilidir. Olasılıksızlık Dağının üst noktalarına gitmeyi sağlayan hafif bir yokuş var ve kastettiğim şey bu. Sözgelimi, kırk beşten fazla zar oldukça etkiliyken kırk beşten az sayıda olanlar oldukça etkisiz olsaydı, sarp bir uçurumla karşı karşıya kalırdık. Ne sağduyu ne de kanıtlar bizi böyle bir süreksizliğin varlığından şüpheye yönlendiriyor. Gördüğümüz gibi mürekkep balıkları, omurgalılardan bağımsız olarak onlarla benzer gözler evrimleştirmişlerdir. Fotoselleri bile büyük ölçüde benzerdir. Ana fark, mürekkep balığındaki katmanların, disk şeklinde toplanmak yerine içi boş bir tüpün etrafında toplanmış halkalar gibi olmasıdır. (Evrimde bu tür yüzeysel farklılıklar görülür, sözgelimi İngiliz elektrik anahtarının aşağı, Amerikan elektrik anahtarının ise yukarı basılınca ışığı yakmasıyla benzer önemsiz sebepten dolayı.) Gelişmiş hayvan fotosellerinin tümü, aynı metodun (fotonun, tutulmadan kaçması durumuna karşı, içinden geçmesi gereken pigmente sahip zar katmanlarının sayısını arttırma) farklı çeşitlerini uygulamaktadırlar. Olasılıksızlık Dağının bakış açısından bakıldığında, buradaki önemli olan şey, hâlihazırda kaç tane katman olursa olsun, bir fazla sayıda katmanın fotonların tutulma olasılığını az da olsa arttıracak olmasıdır. En nihayetinde, fotonların çoğu tutulduğunda daha fazla katmanın getireceği artan masraf için azalan getiri kanunu olacaktır.  Vahşi hayatta elbette, gözardı edilebilecek kadar az sayıda foton yansıtarak yetmiş altı yılda bir geri dönen Halley kuyruklu yıldızını tespit etmeye pek gerek yoktur. Fakat ay ışığında (hatta bir baykuşsanız yıldız ışığında) görebilecek kadar hassas gözlere sahip olmak oldukça faydalıdır. Normal bir gecede herhangi bir fotoselimize saniyede yaklaşık bir foton gelebilir. Bunun sıklığının kuyruklu yıldıza kıyasla daha yüksek olduğunu ama yine de gelen olası her fotonu yakalamayı hayati kılacak kadar az olduğunu kabul etmek gerekir. Ancak fotonların acımasız ekonomisinden konuşurken, bu acımasızlığın geceyle sınırlı olduğunu düşünmek yanlış olacaktır. Parlak gün ışığında fotonlar retinamıza sağanak yağmur gibi düşebilirler ama bunda da bir sorun vardır. Örüntülü bir imgeyi görmenin esası, retinanın farklı kısımlarındaki fotosellerin farklı ışık yoğunluklarını bildirmesidir ve bu da foton yağmurunun farklı yerlerindeki yağış sıklığını ayırt etmek anlamına gelir. Manzaranın farklı yerlerindeki ince detaylardan gelen fotonların sınıflandırılması sırasında bazı yerel bölgelerde fotonlar açısından fakirlik oluşabilir, bu fakirlik geceleyin fotonların nadirliği kadar ciddidir. Şimdi bunlara bakacağız.  Tek başlarına fotoseller hayvana sadece ışığın olup olmadığını söylerler. Hayvan geceyle gündüzü ve avcının varlığına işaret edebilecek bir gölgenin üzerine düşüp düşmediğini ayırt edebilir. İyileştirme bağlamında bir sonraki adım, ışığın ve (örneğin tehlikeli bir gölgenin neden olduğu) hareketin yönüne karşı ilkel bir duyarlılığın edinilmesi olmuş olmalıdır. Bunu elde etmenin asgari bir yolu, fotosellerin yalnızca bir yanına karanlık bir perde yerleştirmektir. Karanlık bir perdeye sahip olmayan şeffaf bir fotosel her yönden ışık alır ve ışığın nereden geldiğini ayırt edemez. Başında sadece tek bir fotoseli olan bir hayvan, fotoselinin arkasında bir perde olması durumunda ışığa doğru veya tam tersi yönde ilerleyebilir. Bunu yapmanın basit bir yolu kafayı bir sarkaç gibi yanlara sallamaktır: eğer iki yandaki ışığın yoğunluğu eşit değilse, eşitlenene kadar yönünü değiştirir. Işığın tam ters yönüne kaçmak için bu yöntemi kullanan kurtçuklar vardır.  Fakat kafanızı iki yana sallamak, ışığın yönünü tespit etmek için kullanılan ilkel bir yöntemdir. Olasılıksızlık Dağının en alçak yokuşlarında bulunur. Daha iyi bir yöntem, her birinin arkasına karanlık bir perde yerleştirilmiş, farklı yönlere bakan birden çok fotosele sahip olmaktır. Sonrasında farklı iki hücrenin üzerine düşen foton yağmurunun sıklığını kıyaslayarak ışığın yönü hakkında tahminler yapabilirsiniz. Daha iyi bir yol, eğer üzerine fotosel döşenmiş bir zemininiz varsa, zemini bir eğri oluşturacak şekilde (perdesiyle beraber) eğmek olacaktır. Böylece eğrinin farklı yerlerindeki fotoseller sistematik bir şekilde farklı yönlere bakacaktır. Dışbükey bir eğri, bir süre sonra böceklerin sahip olduğu türden "bileşik gözü" beraberinde getirebilir. Bu konuya tekrar döneceğim. İçbükey bir eğri kâse gibidir ve diğer ana göz türü olan ve bizim de sahip olduğumuz kamera tipi gözü beraberinde getirir. Kâsenin farklı yerlerindeki fotoseller, ışık farklı yönlerden geldiğinde tetiklenecek ve hücre sayısı ne kadar fazlaysa ayrım o kadar hassas olacaktır.  Işık ışınları (oklara sahip olan paralel beyaz çizgiler) kasenin arkasındaki kalın siyah perde tarafından engellenir (şekil 5.3). Beyin hangi fotosellerin tetiklenip hangilerinin tetiklenmediğinin kaydını tutarak ışığın hangi yönden geldiğini tespit edebilir. Olasılıksızlık Dağına tırmanma bakımından önemli olan, fotosellerle döşenmiş düz bir zemin sahibi olan hayvanlarla kâseli hayvanları birbirine bağlayan, sürerlilik arz eden aşamalı bir evrimsel geçişin (dağın yukarılarına tırmanan hafif bir eğimin) olmasıdır. Kâseler sürerlilik oluşturan küçük aşamalarla adım adım derinleşebilir veya sığlaşabilir. Kâse ne kadar derinse, gözün farklı yönlerden gelen ışığı ayırt etme yeteneği o kadar fazlalaşacaktır.  Bunun gibi kâse gözler hayvanlar âleminde yaygındır. Şekil 5.4, deniz minaresi, tüplü kurt, deniz tarağı ve yassı kurdun gözlerini göstermektedir. Bu gözler, bu kâse şekillerini büyük olasılıkla birbirlerinden bağımsız olarak evrimleştirmişlerdir. Bu durum, özellikle fotosellerini kâsenin içinde muhafaza ederek ayrı kökenini açığa vuran yassı kurt örneğinde açıktır. Görünüşte bu, garip bir düzen gibi durur (ışık ışınlarının fotosellere çarpmadan önce bir bağlantı kablosu yığınının içinden geçmesi gerekir). Ama bu konuda kendini beğenmişlik yapmayalım çünkü aynı kötü tasarımdan bizim çok daha gelişmiş olan gözlerimiz de etkilenmiştir. Bu konuya daha sonra geri dönerek esasında o kadar da kötü bir fikir olmadığını göstereceğim.  Her halükarda bir kâse göz tek başına, kusursuz gözlerimizle biz insanların doğru dürüst bir görüntü olarak nitelendireceği görüntüyü oluşturma yetisine sahip olmaktan çok uzaktadır. Bizim (mercek ilkesine dayanan) görüntü oluşturma yöntemimizin biraz açıklanması gerekiyor. Problemi, sadece fotosellerden oluşan bir zeminin veya sığ bir kâsenin, sözgelimi, bir yunusun görüntüsünü, yunus gözünün önünde bariz bir şekilde bulunurken bile niçin göremeyeceğini sorarak ele alacağız.  Eğer ışık ışınları şekil 5.5'teki gibi davransalardı, her şey çok kolay olurdu ve yunusun görüntüsü retinada (ters değil düz bir şekilde) belirirdi. Maalesef bu şekilde davranmıyorlar. Daha açıklayıcı olmak adına, benim aynen resimde çizdiğimi yapan ışınlar vardır. Sorun şu ki bu ışınlar, aynı anda diğer her yönde ilerleyen sayısız ışının arasında kaybolur. Yunusun her parçası retinanın her noktasına bir ışın gönderir. Yalnızca yunusun her parçası da değil, arka planın ve manzaradaki diğer her şeyin her parçası da gönderir. Sonuç olarak ortaya çıkan şeyi, kâsenin yüzeyinde mümkün olan her pozisyonda ve mümkün olan her yöne bakan sonsuz sayıda yunus görüntüsü olarak düşünebilirsiniz. Elbette bu da görüntü elde edilememesi ve ışığın yüzeyin tamamı boyunca pürüzsüzce yayılması anlamına gelir (şekil 5.6).  Sorunun teşhisini koyduk. Göz çok fazla şey görmektedir yani tek bir tane yerine sonsuz sayıda yunusu. Net çözüm eksiltme yapmaktır yani biri hariç tüm yunusları çıkarmak. Hangisinin kaldığı önemli değil, ama geri kalanlardan nasıl kurtulunacak? Bir çözüm yolu, Olasılıksızlık Dağının bize kâseyi sunan yokuşuna yavaşça tırmandığımızda olduğu gibi, kâseyi sürekli derinleştirip ağzım kapatarak, ağız açıklığı bir iğne deliği kadar daralana dek yine yavaşça tırmanmayı sürdürmektir. Artık ışınların çok büyük bir bölümünün kâseye girişi engellenmiştir. Geriye kalan azınlık yalnızca, yunusun az sayıdaki benzer resimlerinin (baş aşağı olacak şekilde) görüntüsüdür (şekil 5.7). İğne deliği aşırı derecede küçülürse bulanıklık yok olur ve geriye yunusun tek bir keskin resmi kalır (aslında aşırı derecede küçük iğne delikleri yeni bir tür bulanıklığa sebep olurlar ama biz şimdilik bunu görmezden gelelim). İğne deliğini, bir tanesi hariç baş döndürücü görsel yunus ahenksizliğinin tamamını ayıklayan bir görüntü filtresi olarak düşünebilirsiniz. İğne deliği etkisi, daha önce ışığın yönünü tayin etme aracı olarak karşılaştığımız kâse etkisinin aşırı bir versiyonudur. İğne deliği göz, Olasılıksızlık Dağının aynı yokuşunun çok az daha yukarılarında yer alır ve aralarında herhangi bir keskin uçurum yoktur. İğne deliği gözün kâse gözden evrilmesinde bir zorluk yoktur ve kâse gözün, fotosellerden oluşan düz bir zeminden evrilmesinde de bir zorluk yoktur. Düz zeminden iğne deliğine çıkan yokuş kademelidir ve yolun tamamı boyunca kolayca tırmanılabilir. Bu yokuşu tırmanmak, birbiriyle çelişen görüntüleri ilerlemeli olarak yalnızca bir tanesi kalana kadar elemeyi temsil eder. İğne deliği gözler gerçekten de (değişik seviyelerde) hayvanlar âleminin çeşitli yerlerine yayılmıştır. En kusursuz iğne deliği gözü, soyu tükenmiş ammonitlerle akraba olan (ve sarmal şeklinde bir kabuğu olması haricinde ahtapotların daha da uzak akrabası olan) esrarengiz yumuşakça Nautüus'a aittir (şekil 5.8 a). Şekil 5.8 b'deki deniz salyangozununki gibi diğer gözleri belki de gerçek anlamda bir iğne deliği yerine derin kâseler olarak nitelemek daha doğru olacaktır. Bunlar Olasılıksızlık Dağına tırmanan bu özellikli yokuşun pürüzsüzlüğünü gözler önüne sermektedir. İlk bakışta, iğne deliğini yeterince küçük kılmanız kaydıyla, iğne deliği gözün oldukça iyi işlemesi gerektiği düşünülebilir. İğne deliğini son derece küçük yaparsanız, birbiriyle rekabet halinde olan ve karışan görüntülerin büyük çoğunluğundan kurtularak son derece mükemmel bir görüntü elde edebileceğinizi düşünebilirsiniz. Ama bu noktada iki sorun baş gösterir ve bunların ilki kırınımdır. Bundan bahsetmeyi az önce ertelemiştim. Bu, ışığın dalga gibi (ki dalgalar birbirleriyle karışabilirler) davranması gerçeğinden kaynaklanan bir bulanıklaşma problemidir. İğne deliği çok küçük olduğunda bu bulanıklaşma da artar. Küçük bir iğne deliğinin getirdiği diğer sorun "foton ekonomimizin" katı ödünleşimlerini konu alır. İğne deliği keskin bir görüntü elde edecek kadar küçük olduğunda, zorunlu olarak şöyle bir sonuç ortaya çıkar: delikten o kadar az ışık geçer ki, ancak neredeyse elde edilemez parlaklıktaki bir ışık kaynağı tarafından aydınlatılırsa nesneyi görebilirsiniz. Normal aydınlatma seviyelerinde iğne deliğinin içine, gözün gördüğü şeyin ne olduğundan emin olmasını sağlamaya yetecek kadar foton girmez. Minnacık bir iğne deliğimiz varken, Halley kuyruklu yıldızı sorununun bir versiyonuyla karşı karşıya oluruz. Bu sorunla iğne deliğini yeniden büyüterek baş edebilirsiniz. Ama o zaman da başladığınız nokta olan birbiriyle rekabet halindeki "yunus" keşmekeşine geri dönersiniz. Foton ekonomisi bizi Olasılıksızlık Dağının bu eteğinde bir açmaza sürüklemiştir. İğne deliği tasarımıyla ya keskinimsi ama karanlık, ya da parlak ama bulanık bir görüntü elde edebilirsiniz. İkisini birden elde edemezsiniz. Bu tür ödünleşimler ekonomistlerin oldukça hoşuna gider ki ben de fotonların ekonomisi kavramını bu yüzden kullanıyorum. Peki parlak ve aynı zamanda keskin bir görüntü elde etmenin hiçbir yolu yok mu? Neyse ki var.  Öncelikle sorunu bir hesaplama problemi olarak düşünün. İçine bolca ışık alacak şekilde iğne deliğini genişlettiğimizi hayal edin. Ama deliğin ağzını bomboş bırakmaktansa buraya "sihirli bir pencere" yerleştirelim (şekil 5.9). Son teknoloji ürünü elektronik bir alet olan bu pencere, cama yerleştirilmiş ve bir bilgisayara bağlanmış olsun. Bilgisayar tarafından kontrol edilen bu pencerenin özelliği şu: ışık ışınları camın içinden doğrudan düz bir şekilde geçmektense kurnazca ayarlanmış bir açı ile kırılırlar. Bir noktadan (örneğin yunusun burnundan) gelen tüm ışınların, retinada ilgili tek bir noktada birleşmesi için kıracak bu açıyı bilgisayar dikkatlice hesaplamaktadır. Ben burada sadece yunusun burnundan gelen ışınları resmettim ama elbette sihirli perdenin herhangi bir noktayı kayırması için bir sebebi yok ve hesaplamayı diğer tüm noktalar için de yapacaktır. Yunusun kuyruğundan gelen tüm ışınlar, retinadaki ilgili bir kuyruk noktasında birleşecek şekilde kırılırlar vs. Sihirli pencere sayesinde retinada mükemmel bir yunus resmi belirecektir. Ama bu, minik iğne deliğinde olduğu gibi karanlık bir görüntü değildir çünkü çok sayıda ışın (diğer bir deyişle bir foton seli) yunusun burnundan, çok sayıda ışın yunusun kuyruğundan ve çok sayıda ışın yunusun her noktasından gelip retinadaki kendilerine ait noktada birleşirler. Sihirli pencere, iğne deliğinin büyük dezavantajına sahip olmadan bütün avantajlarına sahiptir.  Böylesi bir "sihirli pencereyi" hayal etmek iyi hoş da, yapmak mümkün mü? Sihirli pencereye eklenmiş bilgisayarın nasıl da karmaşık bir hesaplama yaptığını bir düşünün. Dünyanın milyonlarca noktasından gelen milyonlarca ışık ışınını kabul etmektedir. Yunusun her noktası, sihirli pencerenin yüzeyinin farklı noktalarına milyonlarca farklı açıda milyonlarca ışın yollamaktadır. Işınlar birbirleriyle afallatıcı bir şekilde kesişmektedirler. Sihirli pencere, bilgisayarıyla birlikte, bu milyonlarca ışının tümüyle birden sırayla ilgilenip, her birinin kırılması gereken açının derecesini hesaplamak zorundadır. Bu muazzam bilgisayar (karmaşık bir mucizeden başka) nereden bulunabilir? Yolun sonuna geldiğimiz nokta burası mı? Olasılıksızlık Dağına tırmanışımızda karşımıza çıkan kaçınılmaz bir uçurum mu bu?  Cevap, ilginç bir şekilde hayırdır. Resimdeki bilgisayar sadece, tek yönlü bakacak olursanız, görevin aşikâr karmaşıklığını vurgulamak için çizilmiş bir hayal ürünüdür. Ama probleme farklı bir açıdan yaklaşırsanız çözümün gülünç derecede kolay olduğunu görürsünüz. Tam da bizim sihirli pencerelerimizin özelliklerine sahip olan ama ne bilgisayarı, ne elektronik mahareti, ne de herhangi bir karmaşıklığı olmayan akıl almaz basitlikte bir alet vardır. Bu alet, mercektir. Bir bilgisayara ihtiyaç duymazsınız çünkü hesaplamaların bilfiil yapılmasına gerek yoktur. Milyonlarca ışının açısının görünürde karmaşık olan hesaplamalarının icabına otomatik olarak ve kolayca, kavisli bir saydam materyal tarafından bakılır. Merceğin evriminin zor olmamış olması gerektiğini göstermeye giriş teşkil etmesi açısından merceklerin nasıl çalıştığını açıklamaya biraz zaman ayıracağım.  Işık ışınlarının bir saydam materyalden diğerine geçerken kırılmaları bir fizik yasasıdır (şekil 5.10). Kırılma açısı bu saydam maddelerin ne olduğuna bağlıdır çünkü bazılarının kırılma indisi (ışığı kırma gücünün bir ölçüsü) diğerlerininkinden daha büyüktür. Elimizde cam ve su varsa kırılma açısı küçük olacaktır çünkü suyun kırılma indisi camınkiyle hemen hemen aynıdır. Eğer maddeler cam ve hava ise ışık daha büyük bir açıyla kırılacaktır çünkü havanın görece düşük bir kırılma indisi vardır. Işık sudan havaya girdiğinde ise kırılma açısı, bir küreği eğrilmiş gösterecek kadar fazla olacaktır. Şekil 5.10, havadaki bir cam kütlesini temsil ediyor. Kalın çizgiyle gösterilen ışık ışını cama giriyor, camın içindeyken kırılıyor, daha sonra da diğer taraftan çıkarken orijinal açısına geri dönecek şekilde tekrar kırılıyor. Ama elbette saydam bir materyalin pürüzsüz paralel kenarları olmak zorunda değildir. Işın, materyalin yüzeyinin açısına bağlı olarak, dilediğiniz her yöne yönlendirilebilir. Ayrıca materyalin yüzeyi farklı açılardaki çok sayıda çıkıntıyla kaplıysa, ışın çok sayıda farklı yöne de yönlendirilebilir (şekil 5.11). Eğer materyalin bir veya her iki köşesi dışbükey olacak şekilde eğilmişse, materyal bir mercek olacaktır ki bu da bizim sihirli camımızın işleyen bir eşdeğeridir. Saydam materyaller doğada hiç de nadir bulunmazlar. Gezegenimizdeki en yaygın maddelerden ikisi olan hava ve su saydamdır. Diğer birçok sıvı da öyle. Keza, yüzeylerindeki sertliği ortadan kaldırmak için, yüzeyleri, örneğin denizdeki dalga hareketleriyle cilalanırsa, pek çok kristal de öyle. Kristal bir materyalden yapılmış ve dalgalar tarafından rastgele bir şekle sokulmuş bir çakıl taşını hayal edin. Tek bir kaynaktan gelen ışık ışınları çakıl taşı tarafından, çakıl taşının yüzeyinin açılarına bağlı olarak pek çok yönde kırılacaktır. Çakıl taşlarının boyutları çok çeşitlidir. Sıklıkla her iki köşeleri de dışbükeydir. Bu gerçek, örneğin ampul gibi bir kaynaktan gelen ışık ışınlarını nasıl etkiler?  Işınlar, kenarları hafifçe dışbükey olan bir çakıl taşından dışarı çıktıklarında, birleşme eğiliminde olacaklardır. Bu birleşme, hayali "sihirli penceremiz" gibi bir ışık kaynağının mükemmel imgesini oluşturacak şekilde düz, tek bir noktada olmayacaktır. Bunu ummak hayalperestlik olurdu. Ama burada kesinlikle doğru yöne doğru bir meyil vardır. Aşınım biçimi bir şekilde her iki kenarında da kıvrımlı hatlara sahip olacak şekilde gerçekleşmiş olan bir kuvars çakıl taşı, iyi bir "sihirli pencere" olarak iş görürdü: keskin olmaktan çok uzak olsalar da, iğne deliğinin üretebileceğinden çok daha parlak görüntüler oluşturma yeteneğine sahip gerçek bir mercek olarak iş görürler. Su tarafından aşındırılmış çakıl taşlarının genellikle her iki kenarı da dışbükeydir. Eğer saydam bir materyalden yapılmış olsalardı, çoğu, kaba da olsa oldukça kullanışlı mercekler teşkil ederlerdi.  Çakıl taşı, basit bir mercek olarak kullanılabilecek tesadüfi, tasarlanmamış nesnelere sadece bir örnektir. Başka örnekler de vardır. Bir yapraktan sarkan yağmur damlasının eğimli kenarları vardır. Başka türlü olması mümkün değil. Bizim tarafımızdan tasarımına katkıda bulunulmasına gerek duymadan, otomatik olarak ilkel bir mercek olarak iş görecektir. Sıvı ve jeller (yerçekimi gibi bunu aktif olarak engelleyen bir kuvvet olmadığı takdirde) otomatik olarak eğimli şekillere bürünürler. Bunun da anlamı, sıklıkla, mercek olarak iş görmekten başka çarelerinin olmadığıdır. Çoğu kez aynısı biyolojik materyaller için de geçerlidir. Genç bir denizanası hem mercek şeklindedir hem de hoş bir şekilde saydamdır. Her ne kadar merceklik özellikleri gerçek hayatta hiç kullanılmasa da ve doğal seçilimin onun mercek benzeri özelliklerini desteklediğini düşünmek için bir sebep yoksa da, idare eden bir mercek olarak iş görecektir. Denizanasının saydamlığı, muhtemelen, düşmanlarının onu görmesini zorlaştırdığı için, eğimli şekli ise merceklerle hiç alakası olmayan yapısal bir sebepten ötürü bir avantajdır.  Burada, kaba ve tasarlanmamış çeşitli görüntü oluşturma aletlerini kullanarak bir perdeye yansıttığım görüntüleri görüyorsunuz. Şekil 5.12 a'da, bir iğne deliği kameranın (tek tarafında delik olan kapalı bir mukavva kutu) arkasında duran kâğıda yansıtılmış haliyle büyük bir A harfini görüyorsunuz. Görüntüyü oluşturmak için çok parlak bir ışık kullanmış olmama rağmen, size orada ne yazdığını söylemeseydim muhtemelen A'yı okuyamazdınız. Harfi okunabilir kılacak kadar çok ışık alması için "iğne" deliğini oldukça büyütmek zorunda kaldım (çapı yaklaşık bir santimetre olacak şekilde). İğne deliğini küçülterek görüntüyü keskinleştirebilirdim ama o zaman da görüntü yok olurdu. Daha önce de tartıştığımız tanıdık ödünleşme bu. Şimdi kaba ve tasarlanmamış bir "merceğin" bile nasıl bir fark yarattığına bakın. Şekil 5.12 b için de aynı A harfi, aynı mukavva kutunun arka duvarındaki aynı delikten geçecek şekilde yansıtılmıştır. Ama bu sefer deliğin önüne içi su dolu polietilen bir torba astım. Torba pek de mercek şeklinde olmak üzere tasarlanmamıştı. Sadece, içini suyla doldurduğunuzda doğal olarak kıvrımlı bir şekle bürünerek asılı kalıyordu. Öyle sanıyorum ki, kırış kırış değil pürüzsüzce eğimli olması nedeniyle bir denizanası daha da iyi bir görüntü üretirdi. Şekil 5.12 c [resimdeki İngilizce "can you read this?" yazısı "bunu okuyabiliyor musunuz?" anlamına geliyor] aynı mukavva kutu ve delikle yapılmıştır ama deliğin önüne bu sefer sarkık bir torba yerine içi su dolu yuvarlak bir şarap kadehi yerleştirilmiştir. Kabul etmek gerekir ki kadeh, insan yapımı bir nesnedir ama tasarımcıları onun bir mercek olmasını amaçlamamışlardı ve şeklini farklı sebeplerden ötürü küresel yapmışlardı. Bir kez daha, mercek olması amacıyla tasarlanmamış olan bir nesnenin fena olmayan bir mercek olarak iş gördüğünü görüyoruz.  Elbette atasal hayvanlar polietilen torbalar ve şarap kadehleri kullanmıyorlardı. Gözün evriminin bir plastik torba aşamasından veya mukavva kutu aşamasından geçtiğini iddia etmiyorum. Polietilen torbayla vurgulamak istediğim nokta, bunun, tıpkı yağmur damlası, denizanası ve yuvarlatılmış kuvars kristali gibi mercek olarak tasarlanmamış olmasıdır. Mercek benzeri şekillerini, doğada etkili olan başka bir sebepten ötürü almışlardır.  O halde mercek benzeri ilkel bir nesnenin kendiliğinden oluşmasının zor olmadığını görüyoruz. Yarı yarıya saydam herhangi bir jel kütlesi iş görecektir, yeter ki eğimli bir şekle bürünüp (ki bürünmesi için pek çok sebep vardır) basit bir kâseye veya iğne deliğine kıyasla küçük de olsa bir iyileşmeye sebep olsun. Küçük iyileşmeler, Olasılıksızlık Dağının alçaktaki yokuşlarını yavaşça tırmanmak için gereken tek şeydir. Peki, ara kademeler neye benzerdi? Tekrar şekil 5.8'e bakalım. Bir kez daha vurgulamalıyım ki bu hayvanlar günümüze ait hayvanlardır ve gerçek bir atasal seri olarak düşünülmemelidirler. Şekil 5.8 b'deki (deniz salyangozuna ait) kâsenin, belki de görevi fotoselleri aralıktan kâseye doğru serbest bir şekilde akan saf deniz suyundan korumak olan "camsı kütle" olarak algılayabileceğimiz, şeffaf jelden oluşan bir astarı vardır. Tek işlevi koruma sağlamak olan bu sıvı, mercek için gereken özelliklerden birine yani saydamlığa sahiptir ama doğru eğime sahip değildir ve yoğunlaştırılması gerekmektedir. Şimdi de şekil 5.8 c, d ve e'deki iki kabuklu yumuşakça, denizkulağı ve kum kurdunun gözlerine bakın. Bunlar kâselere ve kâselerle iğne delikleri arasındaki kademelere daha da çok örnek teşkil etmekle kalmıyor, aynı zamanda tüm bu gözlerde göz içi sıvısının oldukça yoğunlaştığını da gösteriyor. Göz içi sıvıları hayvanlar âleminde, şekilsizlik dereceleri farklılık arz edecek şekilde oldukça yaygındır. Bir mercek olarak bu jel öbeklerinden hiçbiri Bay Zeiss veya Bay Nikon'u etkilemeyi başaramazdı. Yine de yüzeyi biraz da olsa dışbükeylik arz eden bir jel öbeği, açık bir iğne deliğine kıyasla kayda değer bir gelişme anlamına gelecektir. İyi bir mercekle, deniz kulağının göz içi sıvısı gibi bir şey arasındaki en büyük fark şudur: en iyi sonucu elde etmek için merceğin retinadan ayrılıp, ondan belli bir uzaklığa konması gerekmektedir. Aradaki boşluğun içinin boş olması gerekmez, burası daha da fazla göz içi sıvısıyla doldurulabilir. Gereken şey, merceğin, merceği retinadan ayıran maddeden daha büyük bir kırılma indisine sahip olmasıdır. Bunu elde etmenin (hiçbiri zor olmayan) pek çok yolu vardır. Ben burada sadece bir yolla ilgileneceğim. Bu yolda mercek, şekil 5.13'teki gibi bir göz içi sıvısının ön kısmındaki yerel bir bölgenin yoğunlaşmasıyla oluşmaktadır.  Öncelikle, her saydam maddenin bir kırılma indisine sahip olduğunu hatırlayın. Kırılma indisi, maddenin ışık ışınlarını kırma gücünün bir ölçütüdür. Mercek üreticileri normalde bir cam kütlesinin kırılma indisinin cam boyunca aynı olduğu varsayarlar. Bir ışık ışını belli bir cam merceğe girip, yönü buna bağlı olarak değiştiğinde, merceğin diğer tarafına çarpana kadar düz bir çizgide yol alacaktır. Mercekçinin sanatı, camın yüzeyini hassas şekillere sokacak şekilde ezip parlatmakta ve farklı mercekleri birbirlerine bağlamakta gizlidir.  Çeşitli kısımları farklı kırılma indisine sahip olan bileşik mercekler elde etmek için, farklı cam çeşitlerini karmaşık şekillerde birbirlerine yapıştırabilirsiniz. Örneğin şekil 5.13 a'daki merceğin merkezi çekirdeği, daha büyük kırılma indisi olan farklı tür bir camdan yapılmıştır. Ama yine de bir kırılma indisi diğerinden bir anda farklılaşmaktadır. Prensipte ise bir merceğin kırılma indisinin, merceğin içinde süreklilik arz edecek şekilde değişmemesi için bir sebep yoktur. Bu durum şekil 5.13 b'de resmedilmiştir. Böylesi "dereceli indisli mercekleri" elde etmek mercekçiler için, mercekleri camdan üretme yöntemleri sebebiyle zordur.1 (1 Bunu yazdıktan sonra, önceleri Cable and Wireless Şirketinde çalışan Howard Kleyn, bana insanların dereceli indisli merceklerin eşdeğerini yaptıklarını belirtti. Bu şey esasında bir dereceli indis mercek optik lifi. Tarif ettiğine göre, şu şekilde çalışıyor: İyi bir camdan yapılmış, yaklaşık bir metre uzunluğunda ve birkaç santimetre çapında içi boş bir tüple başlıyorsunuz ve tüpü ısıtıyorsunuz. Daha sonra tüpün içine toz haline getirilmiş olan camı üflüyorsunuz. Toz haline getirilmiş olan cam eriyerek tüpün astarına kaynıyor, bu şekilde tüpün astarını kalınlaştırırken iç çapını daraltıyor. Şimdi işin ilginç kısmına geçiyoruz. Bu süreç ilerledikçe, içeriye doğru üflenmiş olan tozun niteliği dereceli olarak değişiyor: özellikle de, dereceli olarak artarak ışığı kıran indisten oluşan camdan öğütülüyor. Boş oyuk neredeyse yok olana kadar, tüp, dış katmanlarına doğru, dereceli olarak azalan ışığı kırma indisine sahip olan merkezinde, ışığı oldukça çok kıran bir çubuğa dönüşüyor. Sonra çubuk yeniden ısıtılıyor, ince bir filamana yerleştiriliyor. Bu filaman da, kendisinden çekilen çubuk gibi, ufak çapta, merkezden dışa doğru aynı dereceli ışığı kırma indisini kaybetmiyor. Artık teknik olarak bu, dereceli bir indisli mercek, fakat çok ince ve uzun bir mercek. Mercek özelliği görüntüyü odaklamak için değil, ışık ışınının dağılmasına izin vermeyen bir kılavuz ışığı olarak görüntünün kalitesini artırmak için kullanılıyor. Bu filamanların birçoğu normalde çok telli optik lif kablosu imalatında kullanılır.) Ama canlı merceklerin bu şekilde yapılması kolaydır çünkü onlarda merceğin tamamı aynı anda yapılmaz: genç hayvanlar geliştikçe, önceleri küçük olan mercekler de gelişir. Hatta aslına bakarsanız kırılma indislerinin değişimi süreklilik arz eden mercekler, balıklar, ahtapotlar ve pek çok başka hayvanda bulunmaktadır. Şekil 5.8 e'ye dikkatlice bakarsanız, gözün açıklığının arkasındaki bölgede, kırılma indisinin farklılık arz ediyor olmasının gayet olası olduğu bir alan görürsünüz.  Ama ben daha merceklerin (gözün tamamını dolduran göz içi sıvısından) ilk olarak nasıl evrimleşmiş olabileceklerinin hikâyesini anlatmaya başlamak üzereydim. Bunun hangi prensiple ve hangi hızda gerçekleşmiş olabileceği, İsveçli biyologlar Dan Nilsson ve Susanne Pelger tarafından bir bilgisayar modeliyle güzel bir biçimde gösterilmiştir. Nilsson ve Pelger'in zarif bilgisayar modellerini biraz dolambaçlı bir yolla açıklayacağım. İkilinin ne yaptıklarını doğrudan anlatmak yerine Biyomorftan NetSpinner'a doğru giden bilgisayar programları dizisine geri dönüp, gözün evrimi için de benzer bir bilgisayar programı yazmaya ideal olarak nereden başlanabileceğini sorgulayacağım. Daha sonra bunun (her ne kadar onlar bu şekilde ifade etmemişlerse de) Nilsson ve Pelger'in yaptığı şeye denk olduğunu göstereceğim.  Biyomorfların yapay seçilimle evrildiğini hatırlayın: seçici etmen, insan beğenişiydi. Doğal seçilimi bu modele gerçekçi bir biçimde dâhil etmenin bir yolunu bulamadığımız için örümcek ağlarına yönelmiştik. Örümcek ağlarının avantajı, işlerini iki boyutlu bir düzlemde gördükleri için, sinek yakalamaktaki verimliliklerinin bilgisayar tarafından otomatik olarak hesaplanabilmesiydi. Keza ipek masrafları da öyle ve böylece model ağlar bir çeşit doğal seçilimle bilgisayar tarafından otomatik olarak "seçilebilirlerdi." Örümcek ağlarının bu açıdan istisnai olduklarında hemfikir olmuştuk: aynı şeyi, avlanan bir çitanın belkemiği veya yüzen bir balinanın kuyruğu için yapmayı ummak kolay değildi çünkü üç boyutlu bir organın verimliliğini hesaplarken dikkate alınması gereken fiziksel detaylar fazlasıyla karmaşıktı. Ama göz bu açıdan örümcek ağı gibidir. İki boyutta resmedilmiş model bir gözün verimliliği bilgisayar tarafından otomatik olarak hesaplanabilir. Gözün iki boyutlu bir yapı olduğunu ima etmiyorum, zira değil. Tek söylediğim, gözün tam karşıdan bakıldığında dairesel olduğunu varsayarsanız, üç boyuttaki verimliliğinin, gözün ortasından alınmış tek bir dikey kesitinin bilgisayar resmiyle hesaplanabileceğidir. Bilgisayar basit bir ışın izleme analizi yapıp, gözün tamamının oluşturacağı görüntünün keskinliğini hesaplayabilir. Böylesi bir kalite hesaplama yöntemi, NetSpinner'ın, bilgisayar örümcek ağlarının bilgisayar sineklerini yakalamaktaki verimliliğini hesaplamasına denktir.  Tıpkı NetSpinner programının evlat ağlar üretmesi gibi, biz de modelimizin, mutasyona uğramış evlat gözler üretmesini sağlayabiliriz. Her bir evlat gözün şekli ebeveyninkiyle hemen hemen aynı olacaktır, sadece şeklinin ufak bir kısmında küçük bir rastgele değişiklik meydana gelecektir. Elbette bu bilgisayar "gözlerinden" bazıları gerçek gözlerden, göz olarak adlandırılmayacak kadar farklı olacaklardır ama fark etmez. Onlar bile yeni yavrular üretebilirler ve bunlara da sayısal bir skor verilebilir (muhtemelen bunların skoru çok düşük olacaktır). Dolayısıyla, tıpkı NetSpinner programında yaptığımız gibi, bilgisayarda doğal seçilimle üst düzey gözleri evrimleştirebiliriz. Ya iyi bir gözle işe koyulup çok iyi bir göz evrimleştirebiliriz ya da işe çok kötü bir gözle, hatta hiç göz olmaksızın koyulabiliriz. İlkel bir başlangıç noktasından başlamasını sağlayıp nelere ulaşabileceğini görmek üzere NetSpinner programını gerçek bir evrim benzeşimi olarak çalıştırmak oldukça öğreticidir. Farklı denemelerde farklı doruk noktalarına bile ulaşabilirsiniz çünkü Olasılıksızlık Dağında erişilebilecek alternatif zirveler olabilir. Modelimizi evrim modunda da çalıştırabiliriz ve bu şık bir gösteri olurdu. Ama aslına bakarsanız, modelin kendi kendine evrilmesine izin vermekten ziyade Olasılıksızlık Dağının yokuş yukarı patikalarının nereye çıkacağını daha sistematik olarak araştırarak daha fazla şey öğrenebilirsiniz. Belli bir noktadan başlayan ve hiç aşağı gitmeden hep yukarı giden bir patika doğal seçilimin takip edeceği patika olacaktır. Eğer modeli evrimsel modda çalıştırırsanız, doğal seçilim bu patikayı takip edecektir. Dolayısıyla, kabul edilen başlangıç noktasından erişilebilen yokuş yukarı patikaları ve tepeleri sistematik olarak ararsak, bilgisayarın çalışma süresinden tasarruf edebiliriz. Burada önemli olan nokta, oyunun kurallarının yokuş aşağı gitmeyi yasaklıyor olmasıdır. Nilsson ve Pelger'in yaptığı şey de tam da böylesi yokuş yukarı patikaları arayan sistematik bir aramaydı ama onların bu çalışmasını neden (onlarla birlikte) NetSpinner tarzında bir evrim mizanseni planlıyormuşuz gibi sunmayı seçtiğimi görebiliyorsunuz.  Modelimizi ister "doğal seçilim" modunda, ister "dağın sistematik olarak araştırılması" modunda çalıştırmayı seçelim, bazı embriyoloji kuralları belirlememiz gerekir. Bunlar genlerin vücutların gelişimini nasıl kontrol edeceğini belirleyen kurallardır. Mutasyonlar şekillerin hangi yönlerini etkileyecek? Peki, mutasyonların kendisi ne kadar büyük veya küçük olacak? NetSpinner örneğinde mutasyonlar örümcek davranışlarının bilinen yönlerine etki ediyordu. Biyomorflar örneğinde mutasyonlar, büyümekte olan ağaçların dallarının uzunluk ve açıları üzerine etki ediyordu. Gözlerde ise Nilsson ve Pelger işe, tipik bir "kamera" gözde üç ana doku tipi olduğu gerçeğini kabul ederek başladılar. Kameranın, genellikle ışık geçirmeyen bir dış cephesi vardır. Işığa hassas bir "fotosel" katmanı vardır. Son olarak da, koruyucu bir pencere olarak kullanılabilecek veya kâsenin içindeki boşluğu doldurabilecek (tabi bu ikincisi bir kâse varsa mümkün olacaktır, zira benzeşimimizde hiçbir şeyin varlığını önceden varsaymıyoruz) saydam bir materyal vardır. Nilsson ve Pelger'in başlangıç noktası (yani dağın eteği), düz bir destekleyici zemin üzerinde duran (siyah) ve üstünde düz ve saydam bir doku katmanı bulunan (kirli beyaz) düz bir fotosel katmanıydı (şekil 5.14'te, gri renkli). Mutasyonların, bir şeyin büyüklüğünde küçük bir oranda değişikliğe neden olacağını varsaydılar: örneğin saydam katmanın kalınlığında küçük bir azalmaya veya saydam katmanın yerel bir yüzeyinin kırılma indisinde küçük bir artışa.  Sordukları soru aslında, dağın alçaklarında bulunan belli bir kamp yerinden başlayıp düzenli olarak yukarıya tırmanarak dağın neresine ulaşabileceğinizdir. Yukarıya tırmanmak, her seferinde küçük bir adım atarak mutasyona uğramak ve yalnızca optik performansı iyileştiren mutasyonları kabul etmek demektir.  Peki sonuçta neye varırız? Sevindirici şekilde, düzgün bir yokuş yukarı patikayı takip ederek, tanıdık balıkgözüne (merceğiyle birlikte) ulaşırız. Merceğin kırılma indisi merceğin her yerinde, insan yapımı sıradan bir mercekte olduğu gibi sabit değildir. Bu, tıpkı şekil 5.13 b'de karşılaştığımız mercek gibi dereceli indisli bir mercektir. Merceğin, mercek boyunca sürekli olarak değişiklik arz eden kırılma indisi, resimde grinin değişik tonlarıyla gösterilmiştir. Mercek, kırılma indisinde kademeli, adım adım değişikliklere sebep olarak, göz içi sıvısının "yoğunlaşmasıyla" meydana gelmiştir. Burada bir aldatmaca yok. Nilsson ve Pelger bilgisayarda simüle edilmiş göz içi sıvısını, ortaya çıkmayı bekleyen ilkel bir mercek sahibi olacak şekilde önceden programlamamışlardı. Yalnızca, saydam materyalin her noktasının kırılma indisinin, genetik kontrol altında çeşitlenmesine izin vermişlerdi. Saydam materyalin her bir parçası, sahip olduğu kırılma indisini rastgele herhangi bir yönde değiştirmekte özgürdü. Göz içi sıvısı, değişik kırılma indislerine sahip sonsuz sayıda kırılma indisine de sebep olabilirdi. Merceğin, mercek şeklinde oluşmasını sağlayan şey, en iyi gören gözü her nesilde seçici olarak ıslah etmenin eşdeğeri olan, kesintiye uğramamış yukarı yönlü devingenlikti.  Nilsson ve Pelger'in amacı sadece, bir düzlemsel göz olmayan şeyden iyi bir balıkgözüne giden pürüzsüz bir iyileştirme patikası bulunduğunu göstermek değildi. Aynı zamanda modellerini, bir gözün sıfırdan evrilmesinin ne kadar süreceğini hesaplamak için de kullanabilmişlerdi. Her adım bir şeyin büyüklüğünde yüzde birlik bir değişikliğe sebep olduğunda modellerinin attığı toplam adım sayısı 1.829 idi. Ama yüzde birin sihirli bir tarafı yok. Aynı değişim miktarı, yüzde 0,005'lik değişiklik oranıyla 363.992 adım sürerdi. Nilsson ve Pelger toplam değişim miktarını keyfi olmayan, gerçekçi birimler, yani genetik değişikliğin birimleri cinsinden yeniden ifade etmek zorunda kalmışlardır. Bunu yapmak için, bazı varsayımlarda bulunmak şarttı. Örneğin seçilimin şiddeti hakkında bir varsayımda bulundular. İkili, iyileşmiş göze sahip olarak hayatta kalan her 101 hayvana karşılık, iyileşmiş göze sahip olmayan 100 hayvanın hayatta kaldığını varsaymışlardır. Gördüğünüz gibi bu, sağduyuyla bakıldığında düşük bir seçilim şiddetidir: iyileşmiş bir göze sahip olmakla olmamak arasında fark yok gibidir. Nilsson ve Pelger kasıtlı olarak düşük, muhafazakâr veya "kötümser" bir değer seçmişlerdir çünkü evrim hızı tahminlerini olabildiğince yavaş kılabilmek için çaba gösteriyorlardı. Ayrıca iki tane daha varsayımda bulunmak zorundaydılar: "kalıtılabilirlik" ve "çeşitlilik katsayısı" hakkında. Çeşitlilik katsayısı, popülasyonda ne kadar çeşitlilik olduğunun bir ölçüsüdür. Doğal seçilim, işlemek için çeşitliliğe gerek duyar ve Nilsson ve Pelger bir kez daha kasıtlı olarak kötümser derecede düşük bir değer seçmişlerdir. Kalıtılabilirlik, popülasyonun sahip olduğu çeşitliliğin ne kadarının kalıtıldığının bir ölçüsüdür. Kalıtılabilirlik düşükse bunun anlamı popülasyondaki çeşitliliğin çoğunun çevresel nedenlere dayandığıdır ve doğal seçilimin, bireylerin hayatta kalıp kalmayacağını "seçmesine" rağmen, evrime çok az etkisinin olacağıdır. Eğer kalıtılabilirlik yüksekse, seçilimin gelecekteki nesiller üzerinde büyük bir etkisi olacaktır çünkü bireysel hayatta kalış gerçekten de genlerin hayatta kalımı anlamına gelecektir. Kalıtılabilirlikler sıklıkla yüzde 50'den daha büyük olurlar, dolayısıyla Nilsson ve Pelger'in karar kıldığı oran olan yüzde 50, kötümser bir varsayımdı. Son olarak da gözün farklı kısımlarının tek bir nesilde aynı anda değişemeyeceği şeklindeki kötümser bir varsayımda bulundular.  Tüm bu örneklerdeki "kötümser" kelimesinin anlamı, bir gözün evriminin ne kadar süreceğine dair nihayetinde elde edeceğimiz değerin muhtemelen, gerçek dünyadaki gerçek gözün evrimi için gerekmiş olan süreden daha fazla çıkacağıdır. Bulacağımız değerin, gerçek evrim için gerekmiş olan süreden fazla çıkmasına iyimser yerine kötümser dememizin sebebi ise şu. Emma Darwin gibi evrimin gücünden şüphe duyan birisi, göz gibi karmaşıklığı ve çok parçalılığıyla ün salmış bir organın evrilmesinin (o da eğer evrilebilirse) inanılmaz derecede uzun bir zaman alacağı görüşüne doğal olarak yatkın olacaktır. Nilsson ve Pelger'in bulduğu nihai değer ise insanı afallatacak kadar kısadır. Hesaplamalarının sonunda, mercekli iyi bir balıkgözünün evrilmesinin yalnızca yaklaşık 364.000 nesil alacağını bulmuşlardır. Daha iyimser (ki muhtemelen bunun da anlamı "daha gerçekçi"dir) varsayımlarda bulunsalardı bu süre daha da kısa olurdu.  364.000 nesil kaç yıla tekabül eder? Elbette bu nesil süresine bağlıdır. Bizim sözünü ettiğimiz hayvanlar, solucanlar, yumuşakçalar ve küçük balıklar gibi küçük deniz hayvanlarıdır. Onlar için bir nesil tipik olarak bir yıl ya da daha az sürer. Dolayısıyla Nilsson ve Pelger'in vardıkları sonuç, mercekli gözün evriminin yarım milyon yıldan daha kısa bir sürede elde edilmiş olabileceğidir. Ve bu yerbilimsel standartlara göre gerçekten de çok kısa bir süredir. Süre öylesine kısadır ki, bahsettiğimiz eski dönemlerin tabakaları arasında, aniden oluşan şeylerden ayırt edilemez olurlardı. Gözün evrilmesi için yeteri kadar zaman olmadığı iddiasının sadece yanlış değil, dramatik, kesin ve yüz kızartıcı olarak yanlış olduğu ortaya çıkmıştır.  Elbette tam anlamıyla gelişmiş bir gözün, Nilsson ve Pelger'in buraya kadar değinmedikleri bazı detayları vardır ve bu detayların evrilmeleri daha uzun sürebilir (gerçi ikili bunun doğru olduğunu düşünmüyor). Bunlardan biri, Nilsson ve Pelger'in, model evrim sistemlerinin başlamasından önce ortaya çıktığını varsaydıkları, ışığa hassas hücrelerin (benim fotosel olarak adlandırdığım şeylerin) evrimidir. Modern gözlerin, gözün odağını değiştirmek, göz bebeğinin büyüklüğünü değiştirmek ve gözü hareket ettirmek için mekanizmalar gibi başka ve daha gelişmiş özellikleri vardır. Ayrıca beyinde, gözden gelen bilgiyi işlemek için gerekli olan bir sürü sistem vardır. Gözü hareket ettirmek önemlidir ve yalnızca bariz sebepten ötürü değil: daha zaruri olarak, vücut hareket ederken bakışı sabit tutmak için. Kuşlar bunu, başın tamamını sabit tutması için boyun kaslarını kullanarak sağlarlar (vücutlarının geri kalanı ise fazlasıyla hareket edebilir). Bunu yapabilecek gelişmiş sistemler, oldukça incelikli beyin mekanizmaları gerektirir. Ama basit ve kusurlu ayarlamaların bile, hiç yoktan iyi olduğunu görmek kolaydır, dolayısıyla Olasılıksızlık Dağının pürüzsüz bir yokuşunu tırmanan atasal bir seri hayal etmekte hiçbir zorluk yoktur.  Çok uzak bir hedeften gelen ışınları odaklamak için, yakın bir hedeften gelen ışınları odaklamada kullanılacak olan mercekten daha zayıf bir merceğe ihtiyacınız vardır. Hem uzağı hem de yakını keskin bir şekilde odaklamak, bir canlının sahip olmadan yaşayabileceği bir lükstür fakat doğada hayatta kalma şansını artıracak her küçük ilerleme önemlidir ve gerçekten de farklı hayvan türleri merceğin odağını değiştirmek için çeşitli mekanizmalara sahipler. Biz memeliler bu işi merceği çekip şeklini biraz değiştiren kaslar aracılığıyla yapıyoruz. Kuşlar ve çoğu sürüngen de bu şekilde yapıyor. Bukalemunlar, yılanlar, balıklar ve kurbağalar bu işi kamera gibi merceği ileri geri hareket ettirerek yapıyor. Daha küçük gözlere sahip olan hayvanlar için bir sıkıntı yok. Onların gözü Box Brownie marka fotoğraf makinesi gibi: mükemmel olmasa da, yaklaşık olarak her türlü mesafede odak halinde. Bizler yaşlandıkça gözlerimiz maalesef daha çok Box Brownie marka fotoğraf makinesi gibi oluyor ve hem yakını hem de uzağı net görmek için çift odaklı gözlüklere ihtiyaç duyuyoruz.  Odak değiştirme mekanizmalarının aşamalı evrimini hayal etmek hiç de zor değil. Suyla doldurulmuş plastik torbayla olan deneyi yaparken, hemen fark ettim ki parmaklarımla torbayı dürterek odağın keskinliğini daha iyi (ya da daha kötü) hale getirmek mümkün. Torbanın şeklinin bilinçli bir şekilde farkında olmayarak, çantaya bile bakmadan gösterimdeki görüntünün kalitesine odaklanmış bir şekilde, görüntü daha iyi hale gelene kadar torbayı rastgele dürterek büzdüm. Camsı kütlenin civarındaki herhangi bir kas, başka bir amaç uğruna daraltma işleminin bir yan ürünü olarak tesadüfen merceğin odağını iyileştirebilir. Bu, memelilerin ya da bukalemunların kullandığı odak değiştirme gibi metoda neden olabilecek bir şekilde Olasılıksızlık Dağının yamaçlarından yukarıya doğru giden hassas iyileştirmelerin yer aldığı bir yol açmaktadır.  Açıklığı (ışığın içerisinden geçtiği deliğin boyutunu) değiştirmek birazcık daha zor olabilir ama çok zor değil. Bunun yapılmak istenilmesin nedeni fotoğraf makinesinde istenilen şeyle aynıdır. Filmin veya fotosellerin belirlenmiş herhangi bir duyarlılığı için, çok fazla (göz kamaşması) veya çok az ışığa sahip olmak mümkündür. Hatta, delik ne kadar küçükse, odak yoğunluğu (eşzamanlı bir şekilde odakta yer alan mesafeler dizisi) o kadar iyidir. Gelişmiş bir fotoğraf makinesinde, ya da gözde otomatik olarak, güneş çıktığı zaman mercek perdesini küçülten, güneş yokken mercek perdesini büyüten dâhili bir ışıkölçer bulunur. İnsandaki göz bebeği oldukça gelişmiş bir otomasyon teknolojisidir, Japon bir bilim insanının gurur duyabileceği türden bir şey.  Fakat bir kez daha belirtmek gerekirse, bu ileri mekanizmanın Olasılıksızlık Dağının aşağı yamaçlarında nasıl başladığını görmek zor değil. Gözbebeğinin şeklini yuvarlak olarak düşünürüz, ama öyle olmak zorunda değil. Koyunların ve sığırların uzun, yatay ve baklava dilimi şekilli gözbebekleri vardır. Ahtapotların ve bazı yılanların da öyle, ama diğer yılanlarınki dikeydir. Kedilerin gözbebekleri, yuvarlak gözbebeğinden dikey gözbebeğine kadar çeşitlilik gösterir (şekil 5.15) Prenses biliyor mu acaba, gözbebekleri, Değişimden değişime girecek, Hilalden dolunaya dolaşacak, Prenses yeşilliklerden süzülürken? Yalnız, ciddi ve bilge, Kaldırır değişen gözlerini Değişmekte olan aya bakar W.B. Yeats  Çoğu pahalı fotoğraf makinesinin bile kusursuz daireler yerine basit çokgenler olan gözbebekleri vardır. Tek mesele göze giren ışığın niceliğini kontrol etmektir. Bunu fark ettiğinizde, değişmekte olan gözbebeğinin erken dönemdeki evrimi bir problem olmaktan çıkıyor. Olasılıksızlık Dağının alçak yamaçlarından yukarıya doğru çıkmak için kullanılabilecek birçok zarif yol var. Bunları anlayınca artık iris diyaframı, anal büzücü kasından daha fazla anlaşılmaz bir engel değil. Belki de geliştirilmesi gereken en önemli nicelik gözbebeğinin yanıt verme hızıdır. Sinirleriniz olduğu sürece, onları hızlandırmak ve Olasılıksızlık Dağının yamaçlarından yukarıya doğru gitmek kolaydır. Aynada gözbebeğinize bakarken, gözünüze doğru bir el feneri tuttuğunuzda hemen fark edebileceğiniz gibi, insan gözbebeği hızlı yanıt verir (Eğer bir gözünüzdeki bebeğe bakarken diğer gözünüze feneri tutarsanız bu etkiyi en çarpıcı bir şekilde görürsünüz: çünkü iki göz birlikte hareket eder.)  Gördüğümüz gibi, Nilsson ve Pelger modeli insan yapımı merceklerden farklı olan, ama balıkların, mürekkep balıklarının ve diğer sualtı kameralarının merceklerine benzer olan bir dereceli indisli mercek geliştirdiler. Mercek, daha önceleri tekdüze şeffaf bir jel içerisinde bulunan, yerel olarak yüksek oranda ışık kıran indis bölgesinin yoğunlaşmasıyla yükseliyor.  Tüm mercekler jel kütlesinden yoğunlaşarak evrimleşmedi. Şekil 5.16 gözleri oldukça farklı şekillerde oluşmuş iki sineğe ait gözleri göstermektedir. Bunların ikisi de basit gözlerdir, birazdan bahsedeceğim bileşik gözlerle karıştırılmamaları gerekiyor. Bu basit gözlerin ilkinde (testere sineği larvasına ait), mercek, dış şeffaf katman olan korneayı kalınlaştırıyor. Mayıs sineğine ait olan ikincisinde kornea kalınlaştırılmıyor ve mercek renksiz, şeffaf hücrelerden oluşan bir yığın olarak gelişiyor. Bu mercek geliştirme metotlarından her ikisine de, Olasılıksızlık Dağında, camsı kütleli solucan gözde kullandığımız aynı yoldan tırmanılabilir. Gözlerin kendisi gibi mercek de birçok kez bağımsız olarak evrimleşmişe benziyor. Olasılıksızlık Dağı'nda pek çok doruk noktası ve tepecik vardır.  Retinalar da çeşitli formlarıyla türlü türlü kökenlerini açığa çıkartıyorlar. Şu ana kadar gösterdiğim gözlerin tamamının fotoselleri (tek bir istisnayla) onları beyine bağlayan sinirlerin önünde yer alıyor. Bu, bunu gerçekleştirmenin apaçık bir yolu, ancak evrensel bir yol değil. Şekil 5.4 a'daki yassısolucanın fotoselleri görünüşe göre bağlayıcı sinirlerin yanlış tarafında duruyor. Bizim kendi omurgalı gözümüz de öyle. Fotoseller ışıktan uzak bir konumda geriyi işaret ediyorlar. Bu kulağa geldiği kadar anlamsız değil. Çok küçük ve şeffaf oldukları için, işaret ettikleri nokta pek de önemli değil: fotonların çoğu doğrudan içinden geçecek ve daha sonra kendilerini yakalamayı bekleyen pigment yüklü bölmelerden oluşan zırha geçecekler. Omurgalı fotosellerinin geriyi işaret ettiğini söylerken anlamlı tek nokta onları beyne bağlayan "kabloların" (sinirlerin) beyne doğru değil de, ışığa doğru yanlış yönde yola çıkmaları. Daha sonra, retinanın ön yüzeyine, belirli bir yere hareket ediyorlar: "kör nokta" olarak anılan yere. Burada, retina boyunca optik sinire doğru dalışa geçiyorlar, bu sebeple retina bu noktada kör oluyor. Bu noktada hepimiz kör olmamıza rağmen, bunun farkında bile olmuyoruz, çünkü beyin eksik parçayı yeniden oluşturma konusunda oldukça zeki. Kör noktayı, ancak bağımsız kanıta sahip olduğumuz, küçük ve etrafından farklı bir nesnenin görüntüsü bu nokta üzerine hareket edince fark ediyoruz: daha sonra da, görünüşe göre bir ışık gibi sönüyor ve o noktadaki görüntü zeminin arka plandaki genel rengiyle yer değiştiriyor.  Retinanın geriden öne doğru olmasının pek fazla fark etmeyeceğini söylemiştim. Diğer tüm şeylerin mutlak olarak eşit olması suretiyle, retinalarımız doğru yönde yer alsaydı daha iyi olurdu denilebilir. Bu durum, Olasılıksızlık Dağının aralarında derin vadiler bulunan birden fazla doruk noktasına sahip olduğu gerçeğine güzel bir örnektir. Geriden öne doğru yer alan retinaya sahip iyi bir göz evrimleşmeye başladığında, yapılacak en iyi şey mevcut gözün tasarımını iyileştirmektir. Tamamen farklı bir tasarıma değiştirmek yokuş aşağı inmeyi, bunu yaparken de biraz değil, tamamen inmeyi içeriyor ve buna doğal seçilim izin vermiyor. Omurgalı retinası, embriyodaki gelişme şekli yüzünden izlediği yolla yüzleşiyor ve bu durum kesinlikle antik atalara kadar gidiyor. Birçok omurgasızın gözü farklı şekillerde gelişiyor ve retinaları sonuç olarak "doğru pozisyonda" yer alıyor. İlginç bir şekilde geriyi işaret etmelerini saymazsak, omurgalı retinası Olasılıksızlık Dağının en yüksek doruk noktalarını tırmanmaktadır. İnsan retinası çeşitli türlere ayrılmış yaklaşık 166 milyon fotoselden oluşur. Temel olarak çubuk hücrelerine (nispeten düşük ışıkta düşük hassasiyetteki renksiz görüntüler üzerine uzmanlaşmış) ve koni hücrelerine (parlak ışıkta yüksek hassasiyetteki renkli görüntüler üzerine uzmanlaşmış) ayrılmaktadır. Buradaki sözcükleri okurken, yalnızca koni hücrelerini kullanıyorsunuz. Eğer Juliet, Halley kuyrukluyıldızını görseydi, bu işi çubuk hücreleriyle yapacaktı. Koni hücreleri, çubuk hücrelerinin bulunmadığı, küçük merkezi bir alan olan göz çukuruna yoğunlaşırlar (göz çukurlarınızla okursunuz). İşte bu yüzden Halley kuyrukluyıldızı gibi bulanık bir nesneyi görmek istiyorsanız, gözlerinizi doğrudan o nesneye değil, biraz uzağına işaret etmelisiniz ki nesnenin yetersiz miktarda olan ışığı göz çukuruna gelsin. Fotosel sayıları ve fotosellerin birden fazla tipe ayrılması Olasılıksızlık Dağının bakış açısı yönünden bir sorun teşkil etmiyor. Her iki iyileştirme türü de apaçık bir şekilde dağın üst kısımlarına doğru hoş eğimler oluşturuyor.  Büyük retinalar küçük retinalardan daha iyi görür. Çünkü içine daha fazla fotosel sığar ve daha detaylı görür. Ancak, her zamanki gibi, burada da maliyetler vardır. Şekil 5.1'deki sürrealist salyangozu hatırlayın. Ama gerçekte, küçük bir hayvanın bedelini ödediğinden daha büyük bir retinaya sahip olmasının bir yolu var. Sussex Üniversitesi'nden Profesör Michael Land (ki kendisinin dünyadaki egzotik keşiflerle ilgili gıpta edilesi bir geçmişi vardır ve ben gözlerle ilgili bildiğim çoğu şeyi ondan öğrendim), sıçrayan örümceklerde harikulade bir örnek buldu. Örümceklerin hiçbirinde bileşik gözler yok: sıçrayan örümcekler kamera gözünü çarpıcı bir ekonomi doruğuna götürmüşler (şekil 5.17). Land'in keşfettiği şey sıra dışı bir retinaydı. Tam bir görüntünün üzerinde gösterilebileceği geniş bir tabaka olmak yerine, hassas bir görüntüye sahip olabilecek kadar geniş olmayan uzun, dikey bir şerit. Ancak örümcek retinasının darlığını ustaca bir çözümle telafi ediyor. Görüntünün oluşturulabileceği bir alanı "tarayarak" retinasını sistematik bir şekilde dolandırıyor. Etkili retinası böylelikle asıl retinasından daha geniş oluyor yani az çok bolas örümceğinin dönmekte olan tek bir lifle bile, tam bir ağın tutma alanına yaklaşmasına benzer bir prensiple. Sıçrayan örümceğin retinası uçan bir kuş ya da bir başka sıçrayan örümcek gibi ilgi çekici bir nesne bulduğunda, tarama hareketlerini tam de hedefin bulunduğu alana yoğunlaştırıyor. Bu, ona bir göz çukurunun dinamik eşdeğerini veriyor. Sıçrayan örümcekler bu zeki hileyi kullanarak, mercek gözü, Olasılıksızlık Dağındaki kendi yerel bölgelerinde hatırı sayılır küçük bir doruğa taşımışlardır.  Merceği, iğne deliğinin eksikliğine harikulade bir çözüm olarak sundum. Mercek tek çözüm değildir. Eğimli bir ayna mercekten daha farklı bir prensip teşkil ediyor ancak bir nesnenin üzerine her noktadan gelen fazlaca miktardaki ışığı toplayıp bir görüntü üzerinde tek bit noktaya ulaştırma sorununa iyi bir alternatiftir. Bazı amaçlar doğrultusunda, eğimli bir ayna probleme mercekten daha ekonomik bir çözüm olarak karşımıza çıkıyor ve dünyadaki en büyük optik teleskoplar hep aynalı yansıtıcılardır (şekil 5.18 a). Aynalı teleskopla ilgili küçük bir sorun vardır. Görüntü aynanın önünde oluşturulur, yani gelen ışınların yolunun üzerinde. Aynalı teleskopların genelde odaklanan görüntüyü bir göz merceğine ya da kameraya yansıtmak için kullandığı küçük bir aynası vardır. Küçük ayna görüntüyü bozacak kadar araya girmez. Küçük aynanın odaklanan görüntüsü görünmez: yalnızca, teleskopun arkasındaki büyük aynaya vuran toplam ışık miktarında küçük bir azalmaya sebep olur.  O halde eğimli ayna önemli bir probleme getirilmiş olan teoride işe yarayan fiziksel bir çözümdür. Hayvanlar âleminde eğimli ayna gözlere sahip olan hayvan var mıdır hiç? Bu doğrultudaki en eski önerme, Gigantocypris adı verilen ilginç bir derin deniz kabuklusuna ait olan resim üzerine yorum yapan ve benim Oxford'tan eski hocam olan Sör Alister Hardy tarafından ortaya kondu (şekil 5.18 b). Astronomlar Wilson Dağı ve Palomar'daki gibi gözlemevlerindeki devasa eğimli aynaları kullanarak uzak yıldızlardan gelen az sayıdaki fotonu yakalıyorlar.  Gigantocypris'in de okyanusun derinliğine sızan az sayıdaki fotonla aynı şeyi yaptığını düşünmek cezp edici, ama Michael Land tarafìndan yapılmış olan yeni araştırmalar detaylı bir şekilde herhangi bir benzerliğe imkân vermiyor. Gigantocypris'in nasıl gördüğü şu an için net değil. Fakat görüntü oluşturmak için gerçekten eğimli bir ayna kullanan bir hayvan türü daha vardır, fakat bu hayvanın da yardımcı bir merceği vardır. Bir kez daha, bu gerçek de hayvan gözü çalışmalarının Kral Midas'ı olan Michael Land tarafından keşfedildi. Şekil 5.18 c'deki fotoğraf bu çift kabuklu yumuşakçalardan birisinin boşluğunun küçük bir parçasının (enine iki kabuk-kıvrımı) büyültmüş halidir. Kabuk ve dokunaçların arasında düzinelerce küçük gözden oluşan bir dizi var. Her bir göz, retinanın arkasında yatan eğimli bir ayna kullanarak görüntü oluşturur. Her bir gözün küçücük mavi veya yeşil bir inci gibi parlamasına sebep olan şey bu aynadır. Kesiti alındığında, göz şekil 5.18 d'deki gibi gözüküyor. Belirttiğim gibi, aynayla beraber bir tane de mercek var, bu konuya daha sonra döneceğim. Retina, mercek ve eğimli ayna arasında bulunan grimsi bölgenin tamamıdır. Retinanın ayna tarafından yansıtılan keskin görüntüyü gören kısmı merceğin arka tarafına sıkıca bitişik olan bölümdür. O görüntü baş aşağıdır ve ayna tarafından geriye doğru yansıtılan ışınlar tarafından oluşturulmaktadır.  Peki, neden bir de mercek var? Bunun gibi küre şeklindeki aynalar küresel sapma olarak adlandırılan özel bir tür bozulmaya maruz kalırlar. Meşhur bir aynalı teleskop tasarımı olan Schmidt, bu sorunun üstesinden, mercek ve aynadan oluşan ilginç bir birleşimle gelir. Tarak gözleri, sorunu birazcık farklı bir şekilde çözmüşe benziyor. Küresel sapmanın üstesinden "Kartezyen oval" olarak adlandırılan bir şekle sahip olan özel bir tür mercek aracılığıyla gelinebilir. Şekil 5.18 e ideal bir kuramsal Kartezyen oval taslağıdır. Tarağa ait gözün yandan görünüşüne şimdi bir kez daha bakın (şekil 5.18 d). Çarpıcı benzerlikten esinlenerek, Profesör Land, merceğin orada ana görüntü oluşturucu aynanın küresel sapmasının düzelticisi olarak bulunduğunu öneriyor.  Dağda kendine ait bölgenin alçak yamaçlarında bulunan eğimli aynanın kökeniyle ilgili olarak ise bilgimize dayalı bir tahmin yürütebiliriz. Retinaların arkasında bulunan yansıtıcı tabakalar, hayvanlar âleminde yaygındır ama bulunuş amaçları taraklarda olduğu gibi görüntü oluşturmak değildir. Parlak bir spot ışığıyla ormanın derinliklerine doğru giderseniz, doğruca size doğru bakan sayısız birer çift parlaklık görürsünüz. Pek çok memeli, özellikle şekil 5.19 b'deki Batı Afrika'da yaşayan altın potto ya da angvvantibo gibi gece avlanan hayvanların retinalarının arkasında yansıtıcı tabaka olan tapetumları (guanin aynaları) vardır. Tapetumun yaptığı şey, fotosellerin durduramadığı fotonları yakalamak için ikinci bir yakalama fırsatı sunmaktır yani her bir foton, onu az önce yakalamakta başarısız olmuş fotosele geri yansıtılır ve böylelikle görüntü bozulmamış olur. Omurgalılar da tapetumu keşfetmişlerdir. Ormanda ateş yakmak belirli tür örümcekleri bulmak için mükemmel bir yoldur. Esasında, kurt örümceğinin yandan görünüşüne bakarak (şekil 5.19 a), yollarda işaret görevi gören "kedigözlerinin" neden "örümcek gözleri" olarak anılmadığını merak ediyor olabilirsiniz. Her fotonu yakalamada kullanılan tapetumlar atasal kâse gözlerin içinde merceklerden daha önce evrimleşmiş olabilir. Belki de, bazı izole canlılarda bir tür aynalı teleskop oluşturacak şekilde değişikliğe uğramış ön uyarlamadır. Ya da ayna başka bir kaynaktan ortaya çıkmış olabilir. Bu konuda emin olmak güç.  Mercek ve eğimli ayna bir görüntüyü keskin bir biçimde oluşturmanın iki yoludur. Her iki durumda da görüntü baş aşağı ve sağdan-sola ters çevrilmiş bir biçimdedir. Doğrudan bir görüntü üreten tamamıyla farklı bir göz türü de; böcekler, kabuklular, bazı solucanlar ve yumuşakçalar, kral yengeçleri (asıl yengeçlerden daha çok örümceklere yakın oldukları söylenen tuhaf deniz canlıları) ve günümüzde nesli tükenmiş olan trilobitlerden büyük bir grup tarafından tercih edilen bileşik gözlerdir. Aslında bileşik gözün birçok çeşidi vardır. En temel olanıyla başlayacağım yani apozisyon bileşik gözü adı verilen gözle. Apozisyon gözün nasıl çalıştığını anlamak için Olasılıksızlık Dağı'nın neredeyse en dibine geri dönüyoruz. Gördüğümüz gibi, bir gözün görüntü görmesini veya sadece ışığı ayırt etmekten daha fazlasını yapmasını istiyorsanız, bir fotoselden daha fazlasına ihtiyacınız var ve onların ışığı farklı yönlerden toplaması gerekiyor. Onları farklı yönlere konumlandırmanın bir yolu, onları mat bir ekranla desteklenen bir kâseye koymaktır. Şu ana kadar konuştuğumuz gözlerin tamamı bu içbükey kâse prensibinin soyundan gelen gözlerdi. Problemin belki de daha kesin bir çözümü, fotoselleri kâsenin dışbükey yüzeyine koymak ve böylelikle onların farklı yönlerde dışa doğru bakmalarını sağlamak. Bu en basit haliyle birleşik bir gözü ele almak için iyi bir yoldur.  Bir yunus görüntüsü oluşturma probleminden ilk bahsedişimi hatırlayın. Problemin çok fazla görüntüye sahip olma ile alakalı bir problem olduğunu söylemiştim. Retina üzerinde, her yönden gelen ve her noktada oluşan sonsuz sayıdaki "yunus" görüntüleri, hiçbir yunus görüntüsü olmaması anlamına geliyordu (şekil 5.20 a). İğne deliği göz işe yaramıştı çünkü ışınların neredeyse tamamını filtreleyip iğne deliği üzerinde sadece birbirleriyle kesişen azınlığı bırakarak yunusun tek bir baş aşağı görüntüsünü oluşturmuştu. Mercekten aynı prensibin biraz daha gelişmiş bir yöntemi olarak bahsetmiştik. Apozisyon bileşik gözü, sorunu daha da basit bir şekilde çözüyor.  Göz, bir kubbenin çatısından her doğrultuda yayılan, düz uzun tüplerden oluşan yoğun bir yığın gibi inşa edilmiştir. Her bir tüp, dünyanın sadece küçük bir kısmını kendi doğrusal ateş hattından gören bir silahın görüş açısı gibidir. Filtreleme benzetmemiz doğrultusunda, dünyanın diğer kısımlarından gelen ışınların fotosellerin olduğu tüpün arkasına vurmasının tüpün duvarları ve kubbenin desteği tarafından önlendiğini söyleyebiliriz. İşte apozisyon bileşik göz de bu şekilde çalışır. Pratikte, ommadityum adı verilen küçük tüpçüklerin her biri aslında bir tüpten daha fazlasıdır. Kendi özel merceğine ve genelde yarım düzine civarı olan "retinaya" ve fotosellere sahiptir. Her bir ommadityum dar tüpün dibinde bir görüntü oluşturduğu sürece, görüntü baş aşağı olmaktadır: ommadityum uzun ve düşük kaliteli bir kamera gözü gibi çalışmaktadır. Birbirinden ayrı ommadityum baş aşağı görüntüleri göz ardı ediliyor ve ommadityum, yalnızca tüpüne ne kadar ışığın geldiğini bildiriyor. Mercek sadece ommadityumun görüş açısında daha fazla ışık ışını toplama ve bu ışınları retinaya odaklama vazifesi görüyor. Ommadityumların tamamı bir arada tutulduğunda, özetlenmiş "görüntüleri" şekil 5.20 b'de gösterildiği gibi doğru yönde oluyor.  Her zaman olduğu gibi, "görüntü" biz insanların düşündüğü gibi bir görüntüyü ifade etmek zorunda değil: yani bir manzaranın bütününün tastamam, renkli bir algısı olmak zorunda değil. Daha ziyade, farklı yönlerde neler olduğunun ayrımına varmak için bir şekilde gözleri kullanma yetisinden bahsediyoruz. Sözgelimi, bazı böcekler bileşik gözlerini yalnızca hareket eden hedefleri izlemek için kullanıyor olabilirler. Olayın sabit görüntüsünü çıkaramayacak kadar kör olabilirler. Hayvanların bizim gördüğümüz şekilde görüp göremedikleri sorusu felsefi bir soru ve bu soruyu yanıtlamak beklenilmeyecek kadar zor olabilir.  Bileşik göz prensibi, örneğin hareket eden bir sinek üzerinde yoğunlaşmış olan bir yusufçuk için işe yarar fakat bileşik bir gözün bizimki kadar detaylı görebilmesi için bizim sahip olduğumuz basit kamera çeşidinden çok daha büyük olması gerekirdi. Bunun nedeni aşağı yukarı şöyledir: şurası kesin ki, tamamı birazcık farklı yönlere bakan ne kadar fazla ommadityumunuz varsa, o kadar fazla detayı görebilirsiniz. Bir yusufçuk 30.000 kadar ommadityuma sahip olabilir ve bu sayı böcekleri kanatlarından avlamak için oldukça iyidir (şekil 5.21). Ancak bizim kadar fazla detay görmesi için, milyonlarca ommadityuma ihtiyacı var. Milyonlarca ommadityumun da sığabilmesi için oldukça küçülmeleri gerekir. Maalesef bir omadityumun ne kadar küçük olabileceği konusunda bir sınır vardır. Bu sınır çok küçük iğne deliklerinden konuşurken bahsettiğimiz sınırla aynı ve buna kırınım sınırı adı veriliyor. Sonuç olarak denebilir ki, bileşik bir gözün insan kamera gözü kadar detaylı görmesini sağlayabilmek için bileşik gözün gülünç bir şekilde büyük olması gerekir yani çapının 24 metre olması gerekir. Alman bilim adamı Kuno Kirschfeld, bir insanın bileşik gözler kullanarak normal bir insan kadar detaylı görebilmesi için nasıl görünmesi gerekebileceğini çizmiştir (şekil 5.22). Çizimdeki petek deseni de oldukça empresyonist. Çizilmiş olan her altıgen yüzey gerçekte 10.000 ommadityuma tekabül ediyor. İnsan bileşik gözlerinin 24 metre değil de sadece bir metre olmasının nedeni Kirschfeld'in, biz insanların sadece retinamızın merkezinden detaylı görebildiğimizi hesaba katmış olmasıdır. Detaylı merkezi görüşümüzün ve retinamızın kenarlarına doğru oluşan çok daha az detaylı olan görüşümüzün ortalamasını alarak bir metrelik göz gösterimine karar verdi. Bir metre ya da 24 metre, dünyadaki görüntüleri detaylı olarak görmek istiyor sanız, bu büyüklükteki bir bileşik göz kullanışsız kalır.  Buradan çıkan sonuç, eğer dünyadaki görüntüler detaylı bir şekilde görülmek isteniyorsa, bileşik göz değil, bir tane iyi merceğe sahip olan basit kamera gözü kullanılmalıdır. Dan Nilsson bile bileşik gözlerden şöyle bahsediyor: "Evrimin, temelde felaket olan bir tasarımı iyileştirme çabasıyla umutsuz bir savaş verdiğini söylemek büyük bir abartı olmaz."  O halde, böcekler ve kabuklular neden bileşik gözü bırakıp onun yerine kamera gözü geliştirmiyorlar? Bu Olasılıksızlık Dağı kütlesinde bir vadinin yanlış tarafında tuzağa düşme vakalarından birisi olabilir. Bileşik gözü kamera göze değiştirmek için, işe yarayan ara formların, hiç durmayan, sürekli bir dizisi olması gerekir: daha yüksek bir doruğa tırmanmak için bir vadiden aşağı doğru inemezsiniz. Peki, bileşik göz ve kamera gözü arasındaki geçiş formları nasıl olurdu?  En azından akla oldukça çarpıcı bir güçlük geliyor. Bir kamera gözü baş aşağı görüntüler oluşturmaktadır. Bileşik gözün görüntüsüyse doğrudandır. Bu ikisi arasında bir orta yol bulmak oldukça zordur. Olası bir geçiş, hiç görüntü olmamasıdır. Derin denizlerde veya tamamen karanlıkta yaşayan bazı hayvanlar vardır ve bu hayvanların ilgilenebileceği o kadar az fotonları vardır ki görüntülerle uğraşmayı tamamen bırakmışlardır. Bilmeyi umdukları tek şey ışığın olup olmadığıdır. Böyle bir hayvan görüntü-işleme sinir aparatını tamamen kaybedebilir ve dağın tamamen farklı bir yamacından taze bir başlangıç yapabilir. Böylelikle bileşik gözden kamera gözüne giden yolda bir ara geçiş olabilir.  Bazı derin deniz kabuklularının bileşik gözleri vardır ama hiç mercekleri ya da optik aparatları yoktur. Bu hayvanların ommatidyumları tüplerini kaybetmiştir ve fotoselleri hangi yönden gelirse gelsin az sayıda olan fotonları topladıkları yer olan dış yüzeyde korumasız bir şekilde bulunmaktadır. Oradan bakınca şekil 5.23'teki ilgi çekici göze giden küçük bir adım olarak görünebilir. Bu göz, kabuklu bir hayvan olanAmpelisca'ya aittir. Bu hayvan çok da derinlerde yaşamıyor, muhtemelen derin-deniz atalarından sonra yeniden yukarıya doğru bir seyahatin içinde. Ampelisca'nın gözleri retinanın üzerinde baş aşağı bir görüntü oluşturan tek bir mercekle kamera gözü gibi çalışıyor. Ancak retinanın bileşik bir gözden türediği apaçıktır ve bu retina bir ommadityum kümesinin kalıntılarından oluşmaktadır. Bu, küçük bir adım olabilir, ama tamamen körlüğe yakınlaşan bir ara dönemde, beynin tersyüz olmayan görüntüyü işleme ile ilgili her şeyi "unutacak" yeterli evrimsel zamanı olmuştur.  Bu, bileşik gözden kamera göze giden evrime bir örnektir (ayrıca, gözün hayvanlar âlemi boyunca birbirinden bağımsız geliştiğine de bir örnektir). Ancak, bileşik göz ilk olarak nasıl evrimleşti? Olasılıksızlık Dağının bu doruğunun aşağı yamaçlarında neler buluyoruz?  Bir kez daha, modern hayvanlar âlemine bakmak bize yardımcı olabilir. Eklembacaklılar (böcekler, kabuklular ve onların akrabaları) dışında, bileşik gözlere sadece bazı deniz halkalı solucanlarında (kum kurdu ve tüp solucanı) ve bazı çift kabuklu yumuşakçalarda rastlanılmaktadır. Solucanlar ve yumuşakçalar evrimsel tarihçiler olarak bizlere yardımcı oluyorlar çünkü bu hayvanların içinde, Olasılıksızlık Dağının bileşik-göz doruğuna giden aşağı yamaçlarında sıralanmış makul ara geçişlere benzeyen bazı ilkel gözler bulunuyor. Şekil 5.24'teki gözler farklı solucan türlerine ait. Bir kez daha, bunlar ata türler değiller, günümüzde yaşayan türlerdirler ve muhtemelen doğru ara geçiş türlerinden bile gelmiyorlar. Ancak bize, sol taraftaki fotosel yığınları ve sağ taraftaki bileşik gözle, evrimsel ilerlemenin nasıl olduğuna dair bir fikir verebilirler. Şüphesiz bu eğim de, sıradan kamera göze ulaşırken kullandığımız eğim kadar hafiftir. Şu ana kadar tartıştığımız gibi, ommadityumlar, komşularından izole olmaktaki etkililiklerine bağlıdırlar. Yunusun kuyruk ucuna bakan görüş açısı, yunusun diğer kısımlarından gelen ışınları tutmamalıdır, aksi takdirde daha önce karşılaştığımız milyonlarca yunus görüntüsü sorunuyla tekrar göz göze gelebiliriz. Ommadityumların çoğu, izolasyonu tüpün etrafında karanlık bir pigment kılıfı oluşturarak sağlıyor. Ancak bazı zamanlar bunun yan etkileri oluyor. Bazı deniz canlıları kamuflajda şeffaflıktan yararlanırlar. Deniz suyunda yaşıyorlar ve deniz suyuna benziyorlar. Bu hayvanlarım kamuflajının esası fotonları durdurmamaktan geçiyor. Fakat ommadityumların etrafındaki karanlık perdelerin tek amacı fotonları durdurmaktır. Bu zalim çelişkiden nasıl kurtulunabilir?  Bu soruna becerikli bir şekilde çözüm üretmiş olan derin deniz canlıları vardır (şekil 5.25). Bu canlıların karartma pigmentleri yoktur ve bunların ommatidyumları bilindik manada tüpler değildir. Daha ziyade, insan yapımı optik lifler gibi çalışan şeffaf ışık kılavuzlarıdır. Her bir ışık kılavuzu, ön uç kısmından şişerek balıkgözü gibi çeşitli ışık kırıcı indislerde küçük birer lense dönüşür. Işık kılavuzu bir bütün olarak büyük miktardaki ışığı fotosellere yoğunlaştırır. Ancak bu yalnızca doğrudan görüş açısı doğrultusundan gelen ışığı içerir. Bir tüpün içerisine yanlamasına gelen ışınlar, bir pigment tarafından örtülmek yerine geri yansıtılır ve tüpün içine girmemiş olur.  Tüm bileşik gözler kendilerine gelen ışığın tamamını izole etmeye çalışmazlar bile. Bunu sadece apozisyon göz türü yapar. Çözümü daha zor olan bir şey yapan en az üç farklı "üstdüşüm" bileşik göz türü vardır. Tüpteki ışınları veya fiber optik ışık kılavuzlarını yakalamaktan çok uzak olmakla beraber, bir ommadityumun merceğinin içerisinden geçen ışınlara, komşu bir ommadityumun fotoselleri tarafından alınmak üzere izin veriyorlar. Tüm ommadityumlar tarafından paylaşılan boş, şeffaf bir bölge var. Tüm ommadityumların mercekleri, ortak bir retina üzerinde tek bir görüntü oluşturmak için birlik oluyorlar. Bu ortak retina ise tüm ommadityumların ışığa duyarlı hücreleri tarafından müştereken oluşturuluyor. Şekil 5.26 Michael Land'in yaptığı, bir ateşböceğinin üstdüşüm bileşik gözünün bileşik merceğinden görülen Charles Darwin resmi.  Görüntü, kamera gözden veya şekil 5.23'tekiAmpelisca'nm-kinden farklı olarak apozisyon bileşik gözde olduğu gibi düzdür. Üstdüşüm gözlerin apozisyon atasal gözlerden geldiğini düşünürsek zaten bu beklenilen bir durum. Tarihsel olarak anlam ifade ediyor ve beyin söz konusu olduğundan zahmetsiz bir geçiş için de anlam ifade etmiş olmalı. Ancak bu hala ilginç bir gerçek. Bu şekilde basit bir düz görüntü oluşturmanın fiziksel problemlerini düşünün. Apozisyon bir gözdeki her bir ommadityum önünde bir merceğe sahipse ve bu mercek bir şekilde bir görüntü oluşturuyorsa, o görüntü baş aşağı oluyor.  Apozisyon bir gözü üstdüşüm bir göze dönüştürmek için, her bir mercekten geçen ışınların bir şekilde düzleştirilmesi gerekiyor. Sadece bununla da kalmıyor, farklı merceklerin oluşturduğu bağımsız görüntülerin tamamının ortak bir görüntü için dikkatlice üst üste koyulması gerekiyor. Bunun avantajı da ortak görüntünün çok daha parlak olması. Ancak ışınları döndürme işinin fiziksel zorlukları muazzam. Ama ilginç bir şekilde bu problem evrimde çözülmekle kalmadı, en az üç defa birbirinden bağımsız bir şekilde çözüldü: iyi mercek kullanımı, iyi ayna kullanımı ve iyi sinir sistemi kullanımı. Detaylar o kadar karmaşık ki ayrıntılı bir biçimde bahsetmek hâlihazırda oldukça karmaşık olan bu bölümün dengesini iyice bozabilir. Bu yüzden bunlardan sadece kısaca bahsedeceğim.  Tek bir mercek görüntüyü baş aşağı çevirir. Aynı şekilde, arkada uygun bir mesafede bulunan başka bir mercek de görüntüyü tekrar düzleştirir. Bu kombinasyon Kepler teleskopu olarak anılan bir alette kullanılmaktadır. Eşdeğer etki, ışık kırıcı indisin işe yarar aşamalarını kullanarak tek bir karmaşık mercekte de sağlanabilir. Kepler teleskopu etkisini taklit eden bu yöntem, mayıs sinekleri, dantel kanatlılar, kınkanatlılar, güveler ve beş farklı kabuklu grubunun üyeleri tarafından kullanılmaktadır. Akrabalık mesafeleri, bu grupların en az bir kaçının aynı Kepler yöntemini birbirinden bağımsız olarak geliştirdiğini önermektedir. Eşdeğer bir yöntem de üç kabuklu grubu tarafından aynalarla yapılmaktadır. Bu üç gruptan ikisi aynı zamanda mercek yöntemini kullanan üyeleri de içeriyor. Daha ziyade, hangi hayvan türünün hangi farklı bileşik göz türünü benimsediğine bakacak olursanız, harikulade bir şey fark edersiniz. Sorunlara farklı çözümler her yerde ortaya çıkıyor ve bir kez daha hemen, hızlı bir şekilde evrimleştiklerini görüyoruz.  "Sinirsel üstdüşüm" veya "bağlı üstdüşüm" iki kanatlı böceklerin büyük ve önemli bir grubu olan sineklerde evrimleşmiştir. Benzer bir sistem de su kayıkçısı böceğinde gerçekleşmektedir ve öyle görünüyor ki bu da bağımsız olarak evrimleşmiştir. Sinirsel üstdüşüm şeytansı bir şekilde ustacadır. Buna üstdüşüm demek bir anlamda yanlıştır, çünkü buradaki ommadityumlar apozisyon gözlerdeki gibi izole olmuş tüplerdir. Ancak ommadityumların arkasındaki sinir hücrelerinin becerikli bir şekilde bağlanmasıyla üstdüşüm benzeri bir etki gerçekleştiriyorlar. Bunu da şöyle yapıyorlar: tek bir ommadityumun "retinasının" yaklaşık yarım düzine fotoselden oluştuğunu hatırlayacaksınız; sıradan apozisyon gözlerde, altı fotoselin tamamının ateşlenmesi basit bir şekilde toplanıyor, işte benim retinayı tırnak işareti içerisinde belirtmemin sebebi de bu. Hangi fotosele vururlarsa vursunlar, tüpe çarpan tüm fotonlar sayılıyor. Birçok fotosele sahip olmaktaki tek amaç, ışığa toplam duyarlılığı arttırmaktır. Bu sebepten dolayı, bir apozisyon ommadityumunun dibindeki küçücük bir görüntünün baş aşağı olması önemli değil.  Ancak bir sineğin gözündeki altı hücrenin çıkış noktaları birbirleriyle birleşmiyorlar. Daha ziyade, her birisi komşu ommadityumdan gelen belirli hücrelerin çıkış noktalarıyla birleşiyorlar (şekil 5.27). Daha net olmak gerekirse, bu şemadaki ölçek tamamen yanlıştır. Aynı sebepten dolayı, oklar (mercek tarafından kırılan) ışınları temsil etmiyor, yunus üzerindeki noktalardan tüplerin dibindeki noktalara olan eşlemeyi temsil ediyor. Şimdi bu planın vurucu marifetini fark edin. Esas fikir, bir ommadityumda yunusun kafasına bakan fotosellerin komşu ommadityumlardaki yunus kafalarına bakmalarıdır. Bir ommadityumdaki yunusun kuyruğuna bakan fotoseller komşu ommadityumlardaki yunus kuyruğuna bakan fotosellerle birleşmektedirler. Ve bu şekilde devam eder. Sonuç, yunusun her bir parçasının basit bir tüp düzeneğine sahip olan sıradan bir apozisyon gözde bulunacağından daha fazla sayıda foton tarafından işaret edilmesidir. Bu, bizim yunusumuzun üzerindeki bir noktadan gelmekte olan fotonların sayısını nasıl artıracağımızla ilgili olan önceki problemimize optik bir çözümden ziyade bir tür hesapsal çözüm getirmektedir.  Buna neden kesin olarak öyle olmasa bile üstdüşüm dendiğini anlayabilirsiniz. Gerçek üstdüşümde, cancanlı mercekler veya aynalar kullanılarak, komşu taraflardan gelen ışık üst üste koyulur böylelikle yunusun baş kısmından gelen fotonlar, baş kısımdan gelen diğer fotonlarla aynı yere gelmiş olur; aynı şekilde, yunusun kuyruğundan gelen fotonlar, kuyruk kısmından gelen diğer fotonlarla aynı yere gelmiş olur. Sinirsel üstdüşümde, apozisyon gözde olduğu gibi, fotonlar farklı yerlere gelmiş oluyorlar. Ancak o fotonlardan gelen sinyal, beyne giden tellerin ustaca örülmesiyle aynı yere gelir.  Nilsson'un, kamera gözün evriminin hızına dair tahmini, hatırlayacağınız üzere, yerbilimsel standartlarla az çok ani olduğu yönündeydi. Ara geçiş aşamalarını kaydeden fosilleri bulursanız şanslısınız. Bileşik gözler ya da gözün diğer tasarımları için kesin tahminler yapılmadı, ancak çok daha yavaş olduklarını sanmıyorum. Zaten fosillerde gözlerle ilgili çok fazla detay bulmak beklenmez çünkü gözler fosilleşemeyecek kadar yumuşaktır. Bileşik gözler bu noktada bir istisnadır çünkü detayların çoğunluğu dış yüzeyin üzerindeki aşağı yukarı dik olan yönlerin hassas kısmında görülebilmektedir. Şekil 5.28 yaklaşık 400 milyon yıl önceye denk gelen Devonyen dönemine ait bir trilobit gözü göstermektedir. Bir gözün evrimleşmesi için geçmesi gereken zaman yerbilimsel standartlarla göz ardı edilirse görmeyi beklediğimiz şey bu olur.  Bu bölümün ana mesajlarından biri gözlerin hızlı ve kolay bir şekilde evrimleştiğidir. Alanında uzman bir kişinin hayvanlar âleminin faklı kısımlarında gözün birbirinden bağımsız bir biçimde en az 40 defa evrimleştiğine dair ulaştığı sonucu alıntı yapmıştım. Öyle görünüyor ki, Profesör Walter Gehring ile özdeşleşmiş olan bir grup çalışan tarafından İsviçre'den bildirilen bir dizi ilginç deneyin sonucu, bu mesaja meydan okuyormuş gibi görünebilir. Ne bulduklarını ve bu bölümün ana fikrine neden meydan okumadığını kısaca açıklayayım. Başlamadan önce, genetikçilerin genlerin isimlendirilmesiyle ilgili anlamsız geleneklerinden dolayı özür dilemem gerekiyor. Meyve sineği Drosophila'daki eyeless (gözsüz) olarak adlandırılan gen esasında göz yapıyor! (Şahane, değil mi?) Bu kafa karıştırıcı terminolojinin sebebi oldukça basit, hatta ilgi çekici. Bir genin ne işe yaradığını, o gen hata yapınca bunu fark ederek öğreniyoruz. Hata yaptığında, sineklerin gözsüz olmasına neden olan bir gen var. Bu genin kromozom üzerindeki pozisyonu bu sebeple eyeless lokus (gözsüz yer) olarak adlandırılıyor ("locus" Latince'de yer anlamına gelen bir kelime ve genetikçiler bunu bir genin alternatif formlarının bir kromozom üzerinde bulundukları yeri ifade etmek için kullanıyorlar). Ancak biz eyeless adındaki lokustan bahsettiğimizde, aslında o lokus üzerindeki normal, zarar görmemiş geni kastediyoruz. Çelişki eyeless (gözsüz) bir genin göz yapıyor olmasında yatıyor. Bu, bir hoparlöre "sessiz cihaz" demek gibi bir şey, çünkü radyodan hoparlörü çıkarttığınızda, ses gidiyor. Bence böyle bir şeye gerek yok. Ben bu geni göz yapıcı olarak yeniden adlandırmak isterdim, ama bu da kafa karıştırıcı olurdu. Ama bu gene kesinlikle eyeless demeyeceğim, onun yerine bilindik olan ey kısaltmasını kullanacağım. Şimdi, her ne kadar bir hayvanın tüm genlerinin hayvanın tüm hücrelerinde bulunduğu genel bir gerçek olsa da, vücudun belirli bir kısmında bu genlerin sadece küçük bir kısmı açığa vuruluyor. İşte bu yüzden, her iki organda da aynı gen serisi bulunmasına rağmen, karaciğerler böbreklerden farklıdır. George Halder, Patrick Callaerds ve Walter Gehring ey İn vücudun farklı yerlerinde açığa vurulmasına sebep olan deneysel bir uygulamaya imza attılar. Drosophila larvalarında oldukça uzmanlaşarak ey geninin antenlerde, kanatlarda ve bacaklarda açığa vurulmasını başardılar. Şaşırtıcı bir biçimde, deneye tabi tutulan yetişkin sinekler kanatlarında, antenlerinde, bacaklarında ve vücutlarının başka yerlerinde gözleri olduğu halde geliştiler (şekil 5.29). Normal gözlerden biraz daha küçük olsalar da, bu "ektopik (normalde olmaması gereken bir yerde olan. çev.n)" gözler uygun bir şekilde bir araya getirilmiş bir dizi ommatidyumdan oluşan bileşik gözlerdir. Hatta bu gözler işlevseldir. Sineklerin bu gözlerle herhangi bir şey görüp göremediklerini bilmiyoruz ancak omma-dityumlardaki sinirlerden elde edilen elektronik kayıtlar bu gözlerin en azından ışığa duyarlı olduklarını gösteriyor.  Bu, birinci ilginç durumdu. İkinci durum ise daha da ilginç. Farelerde küçük göz adı verilen bir gen var, insanlarda da aniridi adı verilen bir gen var. Bu genlerin isimleri genetikçilerin olumsuz bir eğilimlerinden kaynaklanıyor: bu genlere verilen mutasyon hasarları, gözlerin veya gözlerin bazı kısımlarının küçülmesine ya da yok olmasına neden oluyor. İsviçre'de aynı laboratuarda çalışan Rebecca Quiring ve Uwe Waldorf bu belirli memeli genlerinin DNA dizilimleri bakımından Drosophila’daki ey genine neredeyse tıpatıp benzediğini buldular. Bu, aynı genin uzak atalardan bu yana, birbirlerine memeli ve böcek kadar uzak olan modern hayvanlara ulaştığı anlamına geliyor.  Dahası, hayvanlar âleminin bu her iki büyük sınıfında da bu genin gözlerle yakından ilgili olduğu görülüyor. Üçüncü ilginç durum ise oldukça şaşırtıcı. Halder, Callaerts ve Gehring, fare genini Drosophila embriyolarına aktarmayı başardılar. Dile kolay, fare geniDrosophila'daki ektopikgözleri uyardı. Şekil 5.29 (alt), ey geninin faredeki eşdeğeri olan gen tarafından meyve sineğinin bacağında uyarılmış küçük bir bileşik gözü gösteriyor. Dikkate değer bir şey var ki, o da sineğin bacağındaki gözün bir fare gözü değil, bileşik göz olmasıdır. Fare geni yalnızca Drosophila'mn göz yapıcı mekanizmasını aktif hale getirdi. Ey genininkine benzer DNA dizilimleri ayrıca yumuşakçalarda, nemertine adı verilen deniz solucanlarında ve bazı tunikatlarda da bulundu. Ey geni hayvanlar arasında evrensel bir gen bile olabilir ve hayvanlar âleminin herhangi bir yerindeki donörden alınan gen çeşidi, hayvanlar âleminin oldukça uzak bir bölümündeki alıcıda göz gelişmesini uyarabilir.  Bu harikulade deneyler dizisi, bizim bu bölüm ile ilgili ne gibi bir sonuç çıkarmamıza yardımcı oluyor? Gözlerin birbirinden bağımsız bir şekilde 40 defa evrimleştiğini söylediğimizde acaba yanılmış mıydık? Hiç sanmıyorum. En azından, gözlerin kolayca ve hızlıca evrimleştiği ifadesi hala geçerliliğini koruyor. Bu deneyler, muhtemelen farelerin, insanların, tunikatların vb. ortak atasının gözlere sahip olduğu anlamına geliyor. Uzak ortak atanın bir tür görme yetisi vardı ve nasıl bir formda olursa olsun, gözleri muhtemelen modern ey genininkine benzer bir DNA dizilimine sahipti. Ancak farklı göz çeşidi formları, retina detayları ile mercekler ve aynalar, bileşik veya basit göz tercihi, eğer bileşikse, apozisyon ve farklı üst düşüm çeşitleri arasındaki tercih, tüm bunlar bağımsız ve hızlı bir şekilde gelişiyor. Bu gerçeği hayvanlar âleminin çeşitli yerlerindeki bu çeşitli sistemlerin münferit değişken dağılımlarından biliyoruz. Özet olarak, hayvanların gözleri sıklıkla yakın kuzenlerinden daha ziyade uzak kuzenlerininkine benziyor. Tüm bu hayvanların ortak atalarının muhtemelen bir tür göze sahip olduğuna dair ulaştığımız sonuç halen sarsılmaz bir sonuçtur ve tüm gözlerdeki embriyonik gelişim aynı DNA dizilimi tarafından uyarılıyor gibi gözükmektedir.  Michael Land bu bölümün ilk taslağını okuyup bölümle ilgili eleştiri yaptığında, kendisinden Olasılıksızlık Dağı Yun göz ile ilgili olan bölgesinin görsel bir temsilini yapmasını istedim ve şekil 5.30 da onun ne çizdiğini gösteriyor. Metaforların belli amaçlara hizmet ederken diğer amaçlara hizmet etmemeleri onların doğasında vardır ve bizlerin bu metaforları değiştirmeye, hatta gerekirse tamamen atmaya hazırlıklı olmamız gerekir. Bu durum, okuyucunun her ne kadar Jungfrau Dağı gibi tekil bir isme sahip olsa da, Olasılıksızlık Dağının daha karmaşık bir şey olduğunu, birçok doruk noktasına sahip bir dağ olduğunu ilk fark edişi değildir.  Bu bölümü taslak halindeyken okuyanlardan birisi ve hayvan gözleri konusunda büyük bir otorite olan Dan Nilsson da dikkatimi bir gözün geçici ve faydacı evriminin belki de en ilginç örneğine çekerek ana mesajı özetledi. Üç farklı balık grubunda "dört göz" durumu olarak adlandırılan durum üç defa birbirinden bağımsız bir şekilde evrimleş-ti. Dört gözlü balıkların muhtemelen en çarpıcısı Bathylychnops exiüs (Şekil5.31). Olağan doğrultuda, dışarıya doğru bakan tipik balık gözüne sahip. Ancak ana göz duvarında konumlanmış bulunan ve doğruca aşağı doğru bakan bir ikincil gözü var. Kim bilir nereye bakıyor. Belki de Bathylychnopsaşağıdan saldırma alışkanlığına sahip olan bir avcıdan muzdariptir. Bizim bakış açımızdan ilginç olan şey bu. İkincil gözün embriyolojik gelişimi ana gözünkinden tamamen farklı, ancak bu gelişimin doğada ey geninin bir çeşidi tarafından uyarıldığı kanısına da varabiliriz. Özellikle, Dr. Nilsson'un bana yazdığı mektupta belirttiği gibi "Bu tür, daha öncesinde bir merceğe sahip olmasına rağmen, bir mercek daha yeniden icat etti. Bu, merceklerin evrimleşmesinin zor olmadığı görüşünü destekler nitelikte."  Hiçbir şeyin evrimleşmesi biz insanların hayal ettiği kadar zor değil. Darwin için konu üzerine çok fazla kafa yorup gözün evrimleşmesindeki zorluğu kabul etmek oldukça zor bir durumdu. Karısı için ise bu duruma şüpheci yaklaşmak kolaydı. Darwin ne yaptığını biliyordu. Yaradılışçılar, bu bölümün başında bahsettiğim alıntıyı çok severler, ama asla tamamlamazlar. Konuyla ilgili taviz verdikten sonra, Darwin şöyle devam etti:  "Güneşin sabit durduğu, dünyanın ise güneşin etrafında döndüğü ilk defa dile getirildiğinde, insanlığın sağduyusu bu doktrinin yanlış olduğunu söyledi; fakat halkın sözü, hakkın sözüdür deyişine bilimde her zaman güvenilemez. Mantığım bana diyor ki, eğer her bir aşaması sahibi için yararlı olacak şekilde, kusurlu, basit bir gözden kusursuz, karmaşık bir göze doğru giden sayısız aşamaların gerçekleşmiş olduğu gösterilebilirse, ki durum kesinlikle bu şekilde; eğer göz biraz da olsa değişikliğe uğrayabiliyor ve bu değişiklikler kalıtılabiliyorsa, ki durum kesinlikle bu şekilde; ve bu değişiklikler değişen yaşam koşullarında hayvanlara yarar sağlıyorsa, o halde kusursuz ve karmaşık bir gözün, her ne kadar bizim hayal gücümüz algılayamasa da, doğal seçilim yoluyla oluşabileceğine inanmakta çekilen zorluğun gerçekte var olduğu düşünülemez."  Prof. Richard Dawkins  Kaynak: Olasılıksızlık Dağına Tırmanmak / s. 157-212 Kuzey Yayınları / Baskı: Temmuz 2011 / ISNB: 978-9944-315-24-1 NOT: Kitabı Kuzey Yayınları'nın resmi sitesi üzerinden online olarak satın alabilirsiniz.  AYRINTI VE RESİMLER İÇİN richarddawkins-turkey.blogspot.com/2011/...iden-krk-asamal.html  Gözün evrimi  Gözün evriminin önemli aşamaları.Gözün evrimi, taksonlarda geniş ölçekte rastlanan özel bir homolog organ örneği olarak anlamlı bir çalışma konusudur. Gözün görsel pigmentler gibi bazı bileşenleri ortak bir atadan geliyor gibidir. Yani bu pigmentler, hayvanlar farklı dallara ayrılmadan evvel evrimlerini tamamlamıştır. Bununla birlikte görüntü oluşturma yeteneğine sahip, karmaşık gözler, aynı proteinler ve genetik malzeme kullanılarakLand, M.F. and Nilsson, D.-E., Animal Eyes, Oxford University Press, Oxford (2002). birbirinden bağımsız olarak 50 ila 100 kere evrimleşmiştir.Haszprunar (1995). "The mollusca: Coelomate turbellarians or mesenchymate annelids?". in Taylor. Origin and evolutionary radiation of the Mollusca : centenary symposium of the Malacological Society of London. Oxford: Oxford Univ. Press.Karmaşık gözler ilk kez birkaç milyon yıl önce Kambriyen patlaması olarak adlandırılan süratli türleşme döneminde evrilmiş görünmektedir. Kambriyen öncesinde gözlerin varlığına dair herhangi bir kanıt yoktur ancak Orta Kambriyen devrinde Burgess shale olarak bilinen fosil yatağında geniş bir çeşitlilik gözlendiği açıktır.Gözler, ait oldukları organizmaların ihtiyaçlarını karşılayan çok sayıda adaptasyon sergiler. Keskinlikleri, tespit edebildikleri dalgaboyu aralığı, az ışık seviyelerindeki hassasiyetleri, hareketi yakalama,nesneleri seçebilme ve renkleri ayırt etme becerileri bakımından farklılıklar gösterebilir.  Yaklaşımlar İnsan gözü, iris tabakası1802 yılından bu yana, göz gibi karmaşık bir yapının doğal seçilim yoluyla evrimini izah etmenin zor olduğu söylenegelmektedir. Charles Darwin de, Türlerin Kökeni’nde, doğal seçilim yoluyla gözün evriminin ilk bakışta “son derece saçma” geldiğini yazar. Ancak yine de bunu hayal etmenin güçlüğüne rağmen açıklamaya girişir, ki bu açıklama son derece makuldur: ...kusursuz ve karmaşık bir göz ile kusurlu ve basit bir göz arasında, her biri sahibine yarar sağlayan sayısız aşama bulunduğu; dahası gözün çok az bile olsa değiştiği ve bu değişimler sonraki kuşaklara miras kaldığı, ki zaten durum budur, ve organdaki herhangi bir değişim ya da modifikasyonun değişen yaşam koşulları altındaki bir hayvana fayda sağladığı gösterilirse, hayal gücümüz kabul etmekte ne kadar zorlanırsa zorlansın, kusursuz ve karmaşık bir gözün doğal seçilim tarafından biçimlendirilmiş olabileceğine inanmaktaki güçlük, geçerliliğini yitirir. Darwin, Charles (1859). Türlerin Kökeni. Halen mevcut olan ara evrim basamaklarından örnekler vererek “başka herhangi bir düzenek içermeyen, yalnızca pigmentle kaplı bir optik sinir”den “az çok yüksek bir kusursuzluk düzeyine” doğru bir değişim olduğunu ileri sürer.Darwin’in düşüncesi bir süre sonra doğrulanır. Mevcut çalışmalar, gözün gelişimi ve evriminden sorumlu genetik mekanizmaların araştırılması üzerinedir.  Evrim hızı  İlk göz fosilleri, bundan yaklaşık 540 milyon yıl önce, Kambriyen Devri’nin başlarında ortaya çıktı.Parker, Andrew R. (2009). "On the origin of optics". Optics & Laser Technology. Bu devirde, Kambriyen patlaması olarak adlandırılan gözle görünür hızlı bir evrimleşme süreci yaşandı. Bu çeşitlenmenin “nedenleri” için ileri sürülen pek çok hipotezden birisi de Andrew Parker’ın “Elektrik düğmesi” teorisidir. Bu teoriye göre gözün evrimi canlılar arasında bir silahlanma yarışını tetiklemiş, bu da hızlı bir evrimleşme sürecinin önünü açmıştır.Parker, Andrew (2003). In the Blink of an Eye: How Vision Sparked the Big Bang of Evolution. Cambridge, MA: Perseus Pub. Bundan önce organizmalar ışığa karşı duyarlılıktan yararlanmış olabilirler ancak görme duyusunu hızlı hareket ve yön bulma için kullandıklarına dair bir kanıt yoktur.Kambriyen Deviri’nin ilk dönemine dair fosit kayıtları son derece zayıf olduğu için gözün evrim hızını belirlemek zordur. Doğal seçilime maruz kalan küçük mutasyonlardan başka bir şey gerektirmeyen basit (bir) modelleme ilkel bir optik duyu organından insandaki gibi karmaşık bir gözün, birkaç yüz bin yılda evrilebileceğini göstermektedir.Nilsson, D-E; Pelger S (1994). "A pessimistic estimate of the time required for an eye to evolve". Proc R Soc Lond B 256: 53–58.  Köken sayısı Gözün bir kerede mi, yoksa birbirinden bağımsız bir çok soyoluş dalında mı evrildiği tartışma konusudur. Gözün gelişimine katılan genetik mekanizma göze sahip bütün organizmalarda ortaktır. Görme duyusu için organizmada hazır bulunması gereken tek şey görme pigmentindeki A vitaminine bağlı kromoforlardır ve bu molekül parçaları bakterilerde de bulunur. Fotoreseptör hücreler de, moleküler açıdan benzer kemoreseptörler ve muhtemelen Kambriyen patlamasından çok önceleri de varolan ışığa duyarlı hücrelerden birden fazla kere evrimleşmiş olabilir.Nilsson, D.E. (1996) Eye ancestry: old genes for new eyesIşığa duyarlı bütün organlar, opsinler olarak adlandırılan bir protein grubunu kullanan fotoreseptör sistemlerine dayalı olarak çalışır. Yedi opsin alt grubunun tümü, hayvanların son ortak atasında zaten bulunuyordu. Dahası, gözleri konumlandıran genetik malzeme bütün hayvanlarda ortaktır: Farelerden tutun insanlara ve meyve sineklerine varıncaya kadar bütün gözlü organizmalarda gözün gelişeceği yeri PAX6 geni kontrol eder.Halder, G., Callaerts, P. and Gehring, W.J. (1995). "New perspectives on eye evolution." Curr. Opin. Genet. Dev. 5 (pp. 602–609).Halder, G., Callaerts, P. and Gehring, W.J. (1995). "Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila". Science 267 (pp. 1788–1792).Tomarev, S.I., Callaerts, P., Kos, L., Zinovieva, R., Halder, G., Gehring, W., and Piatigorsky, J. (1997). "Squid PAX-6 and eye development." Proc. Natl. Acad. Sci. USA, 94 (pp. 2421–2426). Bununla birlikte bu ana kontrol genleri, modern hayvanlarda kontrol ettikleri yapıların çoğundan çok daha eski olsalar gerektir ve muhtemelen başka bir amaç için seçilmiştir.Duyu organları muhtemelen beyinden daha önce evrildi. Çünkü işleyecek bilgi olmadan bu bilgiyi işleyecek bir organa gerek yoktur.Gehring, W. J. (13 January 2005). New Perspectives on Eye Development and the Evolution of Eyes and Photoreceptors (Full text). Journal of Heredity (Oxford Journals) 96 (3): 171–184.  Gözün evriminin aşamaları Öglenada ışığa duyarlı beneği, stigma (2) gizler.Gözün en erken atası, tekhücreli organizmalarda bile bulunan gözbeneği denilen ışığa duyarlı fotoreseptör proteinlerdi. Gözbenekleri yalnızca çevredeki parlaklığı hissedebilir: Işığı karanlıktan ayırt edebilirler, ki bu fotoperiyodizm ve 24 saatlik tempoya bağlı günlük senkronizasyon için yeterlidir. Ancak şekilleri ayırt edemedikleri ve ışığın yönünü belirleyemedikleri için görme duyusu oluşturmakta yetersizdirler. Gözbenekleri hemen hemen tüm büyük hayvan gruplarında bulunur ve öglena dahil, tekhücreli organizmalarda ortaktır. Öglenanın göz bebeğine stigma denir ve hücrenin ön tarafında bulunur. Bu, bir dizi ışığa duyarlı kristalin üzerini örten kırmızı pigment içeren küçük bir benektir. Hareketi sağlayan kamçıyla birlikte gözbeneği, organizmanın ışığa göre konum alabilmesine olanak verir. Bu, genelde, fotosentezi kolaylaştımak için ışığa yönelim şeklindedir.M F Land; R D Fernald (1992). "The Evolution of Eyes". Annual Review of Neuroscience 15: 1–29. Gözbeneği gece ve gündüzü ayırt eder, ki bu 24 saatlik yaşam ritmi oluşturmadaki temel işlevdir. Daha karmaşık organizmalarda görsel pigmentler beyindedir ve yumurtlamayı ayın çevrimleriyle senkronize etmekte rol oynadıkları sanılmaktadır. Organizmalar, üreme oranını en üst düzeye çekebilmek için, sperm ve yumurta salımını gece vakti ışık miktarındaki küçük değişimleri tespit ederek senkronize ediyor olabilir.Görme duyusu, bütün gözlerde ortak olan temel bir biyokimyasal sürece dayanır. Bununla birlikte bir organizmanın çevresel özelliklerini yorumlamak için bu biyokimyasal mekanizmanın kullanılış biçimleri büyük farklılıklar gösterir: Gözler son derece farklı yapılarda ve farklı biçimlerdedir. Hepsi de mekanizmanın temelini oluşturan protein ve moleküllere kıyasla oldukça geç evrimleşmiştir. Hücresel düzeyde bakıldığında iki temel göz “tasarımı” var gibidir: ilkin ağızlıların ( yumuşakçalar, halkalı solucanlar ve eklem bacaklılar) gözleri ve ikincil ağızlıların ( omurgalılar ve derisi dikenliler) gözleri.Gözün işlevsel birimi, opsin proteinleri içeren ve sinirsel bir impuls başlatarak ışığa tepki veren reseptör hücredir. Işığa duyarlı opsinler, yüzey alanını maksimuma çıkarmak için tüysü bir katman üzerine borne. Bu “tüylerin” doğası üst şubelere göre farklılık gösterir: İlkin ağızlılarda hücre duvarının uzantısı, mikrovilüs şeklindedirler. Ancak ikincil ağızlılarda, bağımsız yapılar olan sillerden türemişlerdir.Bu bir tür sadeleşmeye benzemektedir zira bazı mikrovilüsler, sil benzeri oluşumlara sahiptir. Ancak başka gözlemler, ilkin ağızlılarla ikincil ağızlılar arasında kökten bir fark olduğu fikrini desteklemektedir. Bu hususlar hücrelerin ışığa verdiği tepki üzerine odaklanmaktadır. Sinirsel impulsu oluşturacak elektrik sinyalini tetiklemek için bazılarında sodyum, bazılarında da potasyum kullanmaktadır. Dahası, ilkin ağızlılar genel olarak, hücre duvarlarından daha fazla sodyumun geçmesine izin vererek sinyal oluşturur. İkincil ağızlılarsa daha azını geçirerek sinyal oluşturur.Buna göre, Prekambriyen devrinde iki dal birbirinden ayrıldığında, birbirinden bağımsız olarak daha karmaşık gözlere doğru gelişen son derece ilkel ışık reseptörlerine sahiplerdi. İlk gözler  Gözün temel ışık işleme birimi, ince bir zar içinde iki molekül barındıran özelleşmiş bir fotoreseptör hücredir. Bu moleküller kromoforu çevreleyen, ışığa duyarlı opsin proteini ve renkleri ayırt eden bir pigmenttir. Bu tip hücre gruplarına “gözbeneği” denir ve bu hücre grupları 40 ila 65 arası bir sayıyla ifade edilebilecek kere birbirlerinden bağımsız olarak evrimleşmiştir. Bu gözbenekleri, hayvanların, ışığın yönünü ve şiddetini son derece basit bir düzeyde algılamalarına imkân tanır. Bu algı, bir mağaranın içinde, güvende olduklarını bilmelerine yetecek, ancak nesneleri çevrelerinden ayırt etmeye yetmeyecek düzeydedir.Işığın yönünü yaklaşık olarak ayırt edebilecek optik bir sistem geliştirmek, çok daha zordur ve otuz küsür şubenin sadece altısında bu tip bir sistem vardır. Bununla birlikte, bu şubeler yaşayan canlıların % 96’sına karşılık gelir. Planaryalar, az da olsa ışığın yönünü ayırt edebilen, çanak şeklinde gözbeneklerine sahiptir.Bu karmaşık optik sistemler, çokhücreli göz lekeleri olarak yolculuklarına başlamış, daha sonra adım adım çanak şekli alacak biçimde içe göçmüştür. Bu sayede öncelikle parlaklığın yönünü belirleyebilme becerisini kazanmışlardır. Sonraları çukur derinleştikçe bu beceri gittikçe daha da sofistike hâle gelmiştir. Düz göz lekeleri ışığın yönünü belirlemede yetersizdi, zira bir ışık ışını, hangi yönden gelirse gelsin, aynı ışığa duyarlı hücre grubunu aktive edecektir. Öte yandan çukurlu gözlerin çanağa benzeyen biçimi, geliş açısına göre ışığın, üzerine düştüğü hücrelerin farklı olması sayesinde sınırlı da olsa yön tayini yapmaya izin verecekti. Kambriyen devrinde ortaya çıkan çukurlu gözler, o dönemki salyangozlarda görülmekteydi. Hâlâ varlıklarını sürdüren bazı salyangozlarda ve planaryalar gibi omurgasızlarda da mevcuttur. Planarya, çanak biçimindeki, bol pigmentli retina hücreleri yüzünden, ışın yönünü ve şiddetini çok az belirleyebilir. Bu hücreler, ışığın girmesi için sadece bir açıklık bırakacak şekilde ışığa duyarlı hücrelerin önünü kapatır. Bununa birlikte, bu proto-göz, daha çok ışığın yönünden ziyade varlığını ya da yokluğunu tespit etmede yararlıdır. Göz çukuru derinleşip fotoreseptör hücrelerin sayısı arttıkça bu durum daha kusursuz görsel bilgi elde etmeye doğru adım adım değişir. Eye-Evolution? Geliş açısına bağlı olarak ışık ışını göz çukurunda farklı hücreleri aktive eder.Bir foton, kromofor tarafından emildiğinde, kimyasal bir reaksiyon, fotonun enerjisinin elektrik enerjisine çevrilmesine ve yüksek hayvanlarda sinir sistemine aktarılmasını sağlar. Bu fotoreseptör hücreler, retinanın bir kısmını oluşturur. Bu kısım, görsel bilgiyiFernald, Russell D. (2001) The Evolution of Eyes: How Do Eyes Capture Photons? Karger Gazette 64: "The Eye in Focus"., bunun yanı sıra vücut saati için gerekli gün uzunluğu ve ışık bilgisini beyne ileten ince bir hücre tabakasıdır. Bununla birlikte Cladonema gibi bazı denizanalarının oldukça ayrıntılı gözleri vardır, ancak beyinleri yoktur. Bu canlılarda gözler, bilgiyi, herhangi bir ara işleme tabii tutmadan doğrudan kaslara gönderir.Kambriyen patlaması boyunca, gözün evrimi süratle ivme kazanmış ve görüntü işleme ve ışığın yönünü tespit etmede radikal gelişimler göstermiştir.Conway-Morris, S. (1998). The Crucible of Creation. Oxford: Oxford University Press İlkel notilus göz fonksiyonları, iğne deliği kameranınkine benzerİğne deliği kamera tipindeki göz, önce bir çanağa, ardından bir odacığa doğru derinleşen bir oyuk şeklinde gelişmiştir. Giriş açıklığının daralamasıyla birlikte organizma, temiz bir yön ve şekil algılamasına imkân veren gerçek bir görüntüleme becerisi edinmiştir. Korneadan ve mercekten yoksun olan bu tip gözler notiluslarda bulunur. Çözünürlükleri zayıftır, görüntü pusludur. Ama yine de gözbeneklerine göre çok daha gelişkindirler. Richard Dawkins 1986. Kör saatçiŞeffaf hücrelerin oluşturduğu şişkinlik organizmayı bulaşımdan ve parazit istilasından korur. Artık ayrı bir bölüm olan odacığın içinde kalanlar, yavaş yavaş, renk filtreleme, daha yüksek kırılma indisi, morötesi ışınımı bloke etmek veya su içinde ve dışında iş görebilme gibi optimizasyonlar için şeffaf bir salgı şekline özelleşebildi. Bazı sınıflarda, bu tabakanın organizmanın kabuk ya da deri değiştirme alışkanlıklarıyla ilgili olabileceği düşünülmektedir.Gözlerin, elektromanyetik tayftaki kısa dalgaboylarını algılayacak şekilde özelleşmelerinin sebebi, ışığa duyarlılık geliştiren ilk türlerin sucul olması ve görünür ışığın su içinde ilerleyebilen en belirgin dalgaboyu olması gibi görünmektedir. Suyun ışığı filtreleme özelliği bitkilerin ışığa duyarlılığını da etkilemiştir.Fernald, Russell D. (2001). The Evolution of Eyes: Why Do We See What We See? Karger Gazette 64: "The Eye in Focus".Fernald, Russell D. (1998). Aquatic Adaptations in Fish Eyes. New York, Springer.Fernald, RD. The evolution of eyes, Journal: Brain Behav. Evol., volume=50, issue=4, pages=253–9, 1997  Mercek oluşumu ve farklılaşma  merceğin eğriliğini değiştirmek suretiyle odaklanması.]]Canlılar dünyasında birbirinden bağımsız olarak evrilmiş bir dizi mercek tipi mevcuttur. Basit çukurlu gözlerde mercekler, muhtemelen retinaya düşen ışık miktarını arttırmak için gelişti. Mercekli basit gözlere sahip bir erken dönem lobopodunun odak uzaklığı görüntüyü retinanın arkasına odaklıyordu, bu nedenle görüntünün hiçbir kısmı odaklanamadığı için mevcut ışık yoğunluğu organizmaya yaşamak için daha derin (ve daha karanlık) suları seçme olanağı sağlamıştır. Schoenemann, 2008: "Merceğin kırınım indeksinde sonradan ortaya çıkan bir artış, muhtemelen odak içinde kalan bir görüntünün oluşmasıyla sonuçlandı."Kamera tipi gözlerin evrimi muhtemelen başka bir yörüngede cereyan etti. İğne deliği gözün üzerindeki şeffaf hücreler, aralarında bir sıvı bulunan iki katmana ayrıldı. Bu sıvı aslında, toplam kalınlığın artmasını ve böylece mekanik koruma da sağlayan; oksijen, besin maddeleri, atıklar ve bağışıklık fonksiyonları için kullanılan bir dolaşım sıvısı olarak iş görüyordu. Ayrıca katı ve sıvı maddeler arasındaki çoklu arayüzleri, daha geniş görüş açıları ve daha büyük çözünürlük sağlayarak optik gücü arttırmaktadır. Tabakaların ayrılması, deri değiştirmeyle alakalı olarak da ortaya çıkmış ve hücreler arası sıvı da ortaya çıkan bu boşluğu doldurmuş olabilir. Antartika krilinin bileşik gözü Omurgalılarda mercekler, yüksek yoğunlukta kristalin proteini içeren epitel hücrelerinden oluşur. Gelişimin embriyo basamağında mercek canlı bir dokudur. Ancak hücre mekanizması, şeffaf olmamasından ötürü, organizmanın görme becerisi kazanabilmesi için dışarı atılmalıdır. Mekanizmanın dışarı atılması demek, merceğin, organizmanın ömrü boyunca kullanılabilecek kadar kristalinle paketlenmiş ölü hücrelerden oluşması demektir. Merceği kullanılabilir kılan kırılma indisi gradienti, merceğin değişik parçalarının mevcut kristalin konsantrasyonundaki radyal değişim sayesindedir. Buradaki püf noktası kristalinin varlığı değil, merceği kullanılabilir yapan nispi dağılımıdır.Fernald, Russell D. (2001).  The Evolution of Eyes: Where Do Lenses Come From? Karger Gazette 64: "The Eye in Focus".Bir akıllı tasarım taraftarı olan David Berlinski, bu hesaplamaların dayandığı temeli sorgulamışBerlinski, David (April 2001). Commentary magazine ancak Berlinski'nin bu eleştirileri, hesaplamaların olduğu orijinal çalışmanın yazarı tarafından çürütülmüştür.Nilsson, Dan-E. Beware of Pseudo-science: a response to David Berlinski's attack on my calculation of how long it takes for an eye to evolve "Evolution of the Eye" on PBS    

http://www.biyologlar.com/gozun-evrimi-gozun-evrim-asamalari

Harvard Tıpta Mikrobiyota Alanında Doktora Sonrası Çalışmalarını Sürdüren Biyolog Deniz Ertürk

Harvard Tıpta Mikrobiyota Alanında Doktora Sonrası Çalışmalarını Sürdüren Biyolog Deniz Ertürk

Harvard Üniversitesi Tıp Fakültesinden Dennis Kasper’in laboratuvarında çalışmalarını sürdüren Biyolog Deniz Ertürk, mikrobiyotı ilgili çalışmaları  ve doktora sonrası araştırma yapmanın tüm yönleri hakkında bilgi verdi. Amerika’da Bacteroides fragilis’in önleyici ve tedavi edici etkileri gün geçtikçe daha da çok gündeme gelmeye başlıyor.  Deniz Ertürk, mikrobiyotayı oluşturan mikroorganizmaların sindirmeye yardımcı olmak ve bazı vitaminleri üretmek dışında, bağışıklık sitemini regüle ederek bazı hastalıklara direk etki ettikleri üzerine araştırmalarını sürdürüyor. Ne üzerine çalışıyorsunuz? Çalıştığım laboratuvarda genel olarak, mikrobiyota yani vücudumuzda yaşayan mikroorganizmalar ile bağışıklık sistemimiz arasındaki ilişkileri araştırıyoruz. Benim projem “Bacteroides fragilis” adı verilen kommensal (diğer bir organizmanın üzerinde veya içerisinde yaşayan ancak zarar vermeyen organizma) bir bakterinin bağışıklık sitemine etkileri üzerine. Bu bakterinin hücre zarında bulunan, Polisakkarid A isimli bir kommensal antijenin, bağırsaklarda bulunan bağışıklık hücrelerinde hangi sinyalleme yöntemlerini kullandığını anlamaya çalışıyorum. Hangi tip hastalıklarla ilgili? Bizim çalıştığımız bakteri, Bacteroides fragilis, normal şartlarda bağırsakta yaşayan ve hastalık yapmayan bir bakteri. Sadece bağırsak yaralanmaları sırasında karın boşluğuna sızarsa periton içi apse oluşumuna sebep olabiliyor. Bağırsak içinde ise bunun aksine olumlu etkileri var. Hem bağırsakla ilgili hem de bağırsak dışı birçok hastalığı önlemede önemli bir rol oynadığı gösterildi. Bacteroides fragilis’in önleyici ve tedavi edici etkileri, ülseratif kolit ve Crohn’s hastalığı gibi enflamasyonlu bağırsak hastalıklarında, alerji ve multipl skleroz gibi otoimmun hastalıklarda ve hatta otizm hastalığında gözlemlendi. Tabii bu çalışmalar genelde fare modelleri kullanılarak yapılıyor. İnsanlarda bu hastalıkların tedavisi için kullanılma potansiyeli var fakat henüz klinik denemelere başlanmadı. Bu hastalığın dünyada ve Türkiye'de görülme sıklığı nedir, bu konuda istatistikî bilgileri paylaşabilir misiniz? Burada rakamlardan daha önemli bir konu var ki bu hastalıkların görülme oranı Amerika, Kanada ve kuzey Avrupa ülkelerinde dünyanın geri kalan bölgelerinden daha fazla. Türkiye’de görülme sıklığı dünya ortalaması civarında. Gelişmiş ülkelerde bu hastalıkların daha fazla görülüyor olması David Strachan’in hijyen hipotezine bağlanıyor. Bu hipoteze göre, gelişmiş ülkelerde daha az çocuklu çekirdek ailelerde, daha hijyenik koşullarda, daha yüksek oranda antibiyotik kullanarak, doğadan ve hayvanlardan uzak büyüyen çocuklar, daha az mikropla karşılaşıyorlar ve çeşitliliği düşük bir mikrobiyotaya sahip oluyorlar. Bu durum, bağışıklık siteminin yeterince gelişmemesine ve dolayısıyla belirttiğimi hastalıklara neden oluyor. Kısaca kendinizden bahsedebilir misiniz? İstanbul’da doğdum ve üniversiteyi bitirene kadar orada yaşadım. Lise yıllarımdan itibaren biyoloji okumak istiyordum. Lisans eğitimimi Boğaziçi Üniversitesi Moleküler Biyoloji ve Genetik bölümünde yaptım. Yaz stajlarım sırasında Avrupa ve Amerika’daki laboratuvarlarda çalışma imkânı buldum ve doktoramı yurtdışında yapmaya karar verdim. 2001 yılında doktora yapmak üzere Amerika’ya geldim. Şu anda doktora sonraki çalışmalarımı sürdürüyorum. Bugüne kadar eğitim aldığınız ve çalıştığınız kurumlar hakkında bilgi verebilir misiniz? Şişli Terakki Lisesi’nden mezun oldum. Eski ve iyi bir okul olmasına rağmen, lisede iyi bir bilimsel eğitim aldığımızı söyleyemem. Türkiye’deki pek çok lise gibi, öğrencilere bilimsel düşünce yöntemlerini öğretmekten çok, üniversite sınavını kazandırmaya yönelik eğitim veriliyordu. Lisans eğitimimi Boğaziçi Üniversitesi Moleküler Biyoloji ve Genetik Bölümünde tamamladım. Teorik olarak sağlam bir temel almamıza rağmen çoğunlukla maddi sebeplerden pratik konularda çok iyi eğitim verilmiyordu. Birçoğumuz yaz stajlarıyla bu açığımızı kapatmaya çalıştık. Ben de Almanya’da Berlin Max Planck Enstitüsü’nde ve Amerika’da Pittsburgh Üniversitesi’nde yaz stajları yaptım. Doktoramı yurt dışında yapmaya karar verdikten sonra Amerika’da birçok okula başvurdum. Massachusetts Üniversitesi Tıp Fakültesine kabul edildim ve doktoramı Neal Silverman’in laboratuvarında meyve sineklerindeki antibakteriyel sinyalleme yolları üzerine tamamladım. Massachusetts Üniversitesi Tıp Fakültesi hızla büyüyen bir okul ve çok iyi bir kadrosu var. Tıp fakültesinde çalışmanın avantajı temel bilimler, uygulama ve klinik araştırmaları yapanların bir arada ve yakın ilişki içinde çalışıyor olmaları. Halen Harvard Üniversitesi Tıp Fakültesinden Dennis Kasper’in laboratuvarında çalışıyorum. Burası tabii ki dünyanın en iyi araştırma merkezlerinden biri fakat rekabet de fazla. UMASS’teki yakın ve ortak çalışma ortamını burada daha az hissediyorum. Eğitim aldığınız kurumların halen bulunduğunuz konuma gelmenizdeki katkıları nelerdir, şu anda çalıştığınız kurumu neden seçtiniz? Boğaziçi Üniversitesi’nde iyi bir teorik eğitim aldığımızı düşünüyorum, fakat benim okuduğum donemde pratik konularda çok iyi eğitilmiyorduk. Yurtdışında yaptığım yaz stajlarının bu konudaki eksikliklerimi kapatmakta çok faydası oldu. Ayrıca çalıştığım yaz projelerinden edindiğim deneyimler ve yayımladığımız makaleler doktoraya kabul edilmemde büyük katkı sağladı. Amerika’da doktora yapmamda Boğaziçi Üniversite’sinden hocam Nese Bilgin’in verdiği destek de çok önemlidir benim için. Massachusetts Üniversitesi tip fakültesinde doktoramı, kariyerine yeni başlayan hocam Neal Silverman’in ilk öğrencisi olarak yaptım. Motivasyonu yüksek, öğretmeyi çok seven ve öğrencilerinin kariyer planlarına büyük destek veren bir insanla çalıştığım için çok şanslıyım. Onun desteği ve yönlendirmeleriyle önce doktora sonrasında hangi konuda çalışmak istediğime karar verdim, sonra o konuda en iyi olan laboratuvarlarla görüşmeler yaptım. Doktora sonrası çalışmalarda, kurumdan çok çalışmak istediğiniz laboratuvar önemli. Ben, Dennis Kasper’in laboratuvarını hem bilimsel çalışmalar hem de insani ilişkiler bakımından çok güzel bir çalışma ortamı sağladığı için seçtim. Halen pratiğini yaptığınız branşın Türkiye ve ABD'deki durumunu karşılaştırabilir misiniz? Pubmed’de konumla ilgili araştırma yaparken, mikrobiyota alanında Türkiye’deki Tıp Fakültelerinin mikrobiyoloji bölümlerinden bazı klinik çalışmalara rastlıyorum. Maalesef Türkiye’de hangi konuların kimler tarafından çalışıldığını takip etmek çok kolay değil. Üniversitelerin web sitelerinde fakülte üyelerinin laboratuvarları, çalıştıkları konular ve son yayınları hakkında güncellenmiş bilgilere ulaşmak çoğunlukla mümkün olmuyor. Marmara Üniversite’sinden Güner Söyletir’in laboratuvarından bizim de çalıştığımız Bacteroides fragilis isimli bakteriyle ilgili yayınlar görmüştüm. Aslında mikrobiyota alanında yapılan çalışmalar Amerika’da da yeni sayılabilir. Bu konu 1950li yıllardan beri bilinmesine rağmen son yıllarda büyük bir ilgi odağı haline geldi. 2005 yılından beri bu konuda yapılan çalışmalarda patlama yaşandı diyebiliriz. Mikrobiyotamızı oluşturan mikroorganizmaların sindirmeye yardımcı olmak ve bazı vitaminleri üretmek dışında, bağışıklık sitemini regüle ederek bazı hastalıklara direk etki ettikleri anlaşıldı. Artık Clostridium difficile, enfeksiyonunda olduğu gibi, mikrobiyotanın kendisi bir tedavi yöntemi olarak kullanılmaya başlandı. Halen çalışmakta olduğunuz kurumu ya da çalışmış olduğunuz kurumları eğitim, araştırma ve sağlık hizmetleri konuları açısından Türkiye'de kurumlar ile karşılaştırabilir misiniz? Türkiye’deki kurumlar hakkında çok bilgi sahibi değilim ama duyduğum kadarıyla Türkiye’de de en az buradaki kadar kaliteli bir sağlık hizmeti veriliyormuş. Tabii en temel insan hakkı olan sağlıklı yasam hakkı ücretsiz olması gerekirken, hem Türkiye’de hem Amerika’da sağlık hizmetleri nüfusun çoğunluğu için hala çok pahalı. Bilimsel araştırmaları bakımından Türkiye’de gelişmeler olmakla birlikte hala dünyanın pek çok ülkesinden daha geride. Araştırma konusunda buradaki avantajlardan biri de ders yükünün Türkiye’dekinden az olması. Böylece hocalar vakitlerinin büyük bir kısmını araştırma yapmaya ayırabiliyorlar. Türkiye'de halen eğitim almakta olan biyoloji öğrencilerine ya da biyologlara neler önerirsiniz? Eğer araştırmacı olarak kalmak istiyorlarsa, tavsiyem bu işi yapan insanlarla mümkün olduğu kadar çok konuşup kendilerini nasıl bir hayatın beklediğini öğrenmeleri. Bu zor ve sabır isteyen bir iş. Geri dönüşümü ve ödülleri günlük değil, genelde çok uzun vadeli oluyor. Bazen günlerce uğraştığınız bir deney çıkmayabiliyor, makalenizi basmak için aylarca uğraşmanız gerekebiliyor. İşten çıkıp eve gittiğinizde bile işinizi kafanızdan çıkarmanız pek mümkün olmuyor. Hem aklı, hem bedeni yoran bir iş. Tabii ki her gün bulmaca çözer gibi, çıkmayan deneyleri yeniden dizayn etmek, aklına ilginç bir fikir geldiğinde mutlu olmak ve heyecanla araştırmaya başlamak, dünyanın dört bir yanından insanlarla ortak bir amaç için çalıştığını bilmek, insanlığa ufacık da olsa bir katkıda bulunduğunu hissetmek, makalen yayınlandığında duyduğun o gururla karışık sevinç bu işin güzel tarafları. Ama dediğim gibi herkese uygun olmayabilir, gerçekten bu işi yapmak istediklerine emin olsunlar. Hangi bilimsel dergileri takip ediyorsunuz? Düzenli olarak takip ettiğim 30 dergi var ama bu dergilerde çıkan makalelerin tamamını okumuyorum. “Old reader” adında bir RSS okuyucu programıyla bu dergilerde çıkan makalelerin baslıklarını ve abstractlarını anında takip edebiliyorum. İlgimi çekenleri ve detaylı okumak istediklerimi işaretleyip Mendeley adlı başka bir programa aktarıp kendi kütüphanemi oluşturuyorum. Benim çalıştığım konuyla ilgili makaleler genelde Science, Nature, Cell, Nature Immunology, Immunity, Cell Host Microbe, Plos Pathogens, PNAS gibi dergilerde çıkıyor. Mesleğinizle ilgili en çok ziyaret ettiğiniz 3 internet sitesi nedir? Literatürü takip etmek için pubmed ve google scholar, networking için linkedin en çok kullandığım siteler. Alanınızda araştırma yapanlara mutlaka okumalarını tavsiye ettiğiniz kitaplar hangileri? Kitaplar bir konuda temel kazanmak için önemli gerçekten ama son gelişmeleri takip etmek için iyi bir yol değil. Birçok okulda ders kitabı olarak okutulan “Janeway’s Immunobiology” ve hocam Dennis Kasper’in editörlüğünü yaptığı “Harrison’s Infectious Diseases” kitapları bağışıklık sistemi alanında çalışmak isteyenler için iyi birer başlangıç kitabı olabilir. Son gelişmeleri takip etmek için derleme makalesi türünde yayınlar daha faydalı bence. “Nature Reviews Immunology” ve “Current Opinion in Immunology” gibi dergileri takip edebilirler. Bilim ile uğraşan veya ilgilenen herkese mutlaka okumalarını tavsiye ettiğin bir kitaplar hangileri? Ayrıca yaptığınız spor, tavsiye edeceğiniz film, müzik nelerdir? Bulunduğunuz kurumun size sunduğu sosyal etkinlikler nelerdir? Ben kitap tavsiye etmek yerine, kaynak tavsiye edeyim. Science dergisinde “Books et al.” ve Nature dergisinde “Books and Arts” başlıklı bölümlerin altında yeni çıkan bilim kitapları tanıtılıyor. Buradan ilgilerini çekecek kitapları takip edebilirler. Ben şu anda Frans de Waal’ın “The Bonobo and the Atheist” kitabını okuyorum. Okumak istediğim bir sonraki kitap da Martin Blaser’in “Missing Microbes” isimli kitabı.  Düzenli olarak spor yaptığımı söyleyemem. 2-3 yıl yelken yaptım. Fırsat buldukça okulun havuzuna gidip yüzüyorum. Şehir içinde mümkün olduğunca bisiklet kullanmaya çalışıyorum.  Massachusetts’in çok güzel bir doğası var. Dağda, ormanda doğa yürüyüşleri yapmayı da çok seviyorum. Müzik konusunda çok bilgili değilim ama sinemayı takip etmeye çalışıyorum. Iran ve Kore sinemalarını özellikle seviyorum. Bahman Ghobadi ve Joon-ho Bong’un filmlerini tavsiye ederim. Okulun spor tesisleri ve havuzu çok iyi. Onun dışında akşam dersleri alabileceğiniz bir sürekli eğitim sistemi var. Harvard çalışanları bu sistemden ücretsiz ders alabiliyorlar. Ben de bir yıldır bu akşam okulundan İspanyolca dersleri alıyorum. Yurt dışında biyolog olmanın sıkıntıları nelerdir? Amerika’da biyologlara özel bir sıkıntı yaşamadım ama Amerika’daki çalışma sistemi genel olarak Avrupa’ya kıyasla daha acımasız. Özellikle doktora öğrencileri çok düşük maaşlarla çalışmak zorunda kalıyorlar. Tatil süresi ve sosyal haklar çok az. Sağlık ve emeklilik gibi hizmetler tamamen özelleştirilmiş durumda. Anne olmak isteyen kadınlar için şartlar daha da zor. Doğum izni sadece 8 hafta ve kreşler çok pahalı. Birçok kadın akademisyen doğurmak için kariyerinden fedakârlık yapmak zorunda kalıyor. Bu konuda Nature’da bir makale yayımlanmıştı. Biyoloji bölümlerinde kadın ve erkek öğrenci sayısı eşitken, tam zamanlı profesör pozisyonuna gelindiğinde erkeklerin sayıca çok daha fazla olduğu görülüyor. Amerika’daki sistem maalesef kadın akademisyenlerin hayatını kolaylaştıracak imkânları sunmuyor. Türkiye'de biyolojinin durumu nedir? Ülke dışında tahsil almak gerekli midir? Kimler için daha uygundur? Benim Türkiye’den ayrıldığım 2001 senesinden beri Türkiye’de biyoloji alanında büyük ilerleme olduğunu orada çalışan arkadaşlarımdan ve hocalarımdan duyuyorum. Fakat yine de bilimsel makale üretimi, kalitesi ve atıf sayısı bakımından dünya sıralamasında çok iyi durumda değiliz. Ülke dışında eğitim almak gerçekten çok faydalı ama gerekli olup olmadığı kişiye göre değişir. Yurt dışında yaşam özellikle ilk yıllarda, gittiğiniz ülkeye adapte olana kadar oldukça zor oluyor. Ayrıca aile olarak gelenler için durum daha da zor. Örneğin Amerika'da eşlere çalışma izni verilmiyor, bu da maddi ve manevi birçok soruna yol açıyor. Yeniliklere açık, değişik kültürlere meraklı, memleket hasretini kafaya takmayan biriyseniz yurt dışında tahsil almak ve yaşamak çoğaltıcı bir deneyim bence. ABD'deki kurumların yabancı biyologlara karşı özel bir tutumu var mıdır? Çalıştığım üniversitelerde ırkçılık ve ayrımcılığı önlemeye yönelik kâğıt üzerinde birçok kural olmasına rağmen olumsuz deneyimler yaşayanlar da vardır eminim. Kendi yaşadıklarım özelinde Türkiyeli olmamın bana avantaj veya dezavantaj sağladığı bir durumla karşılaşmadım. Özellikle tıp ve biyoloji alanlarında çok kültürlü bir ortamda çalıştığımızı söyleyebilirim. Örneğin bizim 13 kişilik laboratuvarımız 6 farklı ülkeden gelen insanlardan oluşuyor. Olumsuz bir durumla karşılaşmamış olmamın Massachusetts gibi görece daha liberal bir eyalette yaşıyor olmakla da alakası var. Muhafazakârlık ve milliyetçiliğin daha yüksek olduğu başka eyaletlerde olumsuz bir durumla karşılaşma ihtimaliniz de daha yüksek. ABD'deki ünlü araştırma merkezlerine eğitim amaçlı olarak girebilmek mümkün müdür? Benim gözlemlerime göre Boston civarındaki okullara Türkiye’den lisans ve lisansüstü eğitim için gelen öğrencilerin sayısında büyük artış var. Amerika’daki okullara kabul şartları genelde standarttır, o koşulları yerine getirdiğiniz sürece tabii ki girebilmek mümkündür. Araştırma ekibinizin bir rutin gününü anlatabilir misiniz? Aslında her gün birbirinde farklı geçiyor ama düzenli olarak yaptıklarımızdan bahsedeyim. Pazartesi sabahları laboratuvar toplantımız oluyor. Her hafta laboratuvardan bir kişi projesiyle ilgili sunum yapıyor, deney sonuçlarını ve planlarını anlatıyor, hep birlikte tartışıyoruz, önerilerde bulunuyoruz. Öğlen bölümde seminer varsa ona katılıyorum. Öğleden sonra büyümekte olan hücre kültürüm varsa onları kontrol ediyorum, gerekiyorsa medyumunu değiştiriyorum. Daha sonra farelerimi kontrol etmeye gidiyorum. Eğer kolit modeli gibi sürmekte olan bir deneyim varsa kilo değişikliklerini günlük olarak kaydetmemiz gerekiyor. Ayrıca fareleri çiftleştirmek, büyüyen yavruları annelerinden ayırmak gibi rutin işler de oluyor. Daha sonra haftanın geri kalanında yapmam gereken deneyleri planlıyorum, ısmarlamam gereken malzemeler varsa ısmarlıyorum. Kendi projemi tek başıma yürütüyorum ama takıldığım yerlerde laboratuvardaki diğer arkadaşlara danışıp fikir alışverişinde bulunduğum oluyor. Her cuma hocamla birebir toplantım var. O toplantıda da ona yaptığım deneyler hakkında düzenli olarak bilgi veriyorum, sonuçları ve yapacağım şeyleri birlikte tartışıyoruz. Deneylerden kalan zamanlar da yeni çıkan makaleleri takip etmekle geçiyor. http://fesraoz.blogspot.com.tr   ESRA ÖZ

http://www.biyologlar.com/harvard-tipta-mikrobiyota-alaninda-doktora-sonrasi-calismalarini-surduren-biyolog-deniz-erturk

305 Milyon Yaşında Araknid Fosili Keşfedildi

305 Milyon Yaşında Araknid Fosili Keşfedildi

Görsel : Garwood et al 2016 / Museum National d’Histoire Naturelle, Paris.

http://www.biyologlar.com/305-milyon-yasinda-araknid-fosili-kesfedildi

Restriksiyon enzimi veya estriksiyon endonükleazı hakkında bilgi

Restriksiyon enzimi veya estriksiyon endonükleazı hakkında bilgi

Restriksiyon enzimi veya restriksiyon endonükleazı çift zincirli DNA moleküllerindeki belli nükleotit dizilerini tanıyan ve her iki zinciri birlikte kesen bir enzim türüdür.

http://www.biyologlar.com/restriksiyon-enzimi-veya-estriksiyon-endonukleazi-hakkinda-bilgi

Genom üzerindeki patent savaşları

Genom üzerindeki patent savaşları

Yakın gelecekte marketlerdeki ürünlerin üzerinde GDOsuz etiketi yerine CRISPRsız etiketiyle karşılaşabiliriz.

http://www.biyologlar.com/genom-uzerindeki-patent-savaslari

Tehlike altındaki tatlı su türlerine kapsamlı koruma gerekiyor

Tehlike altındaki tatlı su türlerine kapsamlı koruma gerekiyor

Dünyanın en büyük tatlı su balıklarından biri olan Güney Amerika Arapayması (Arapaima gigas), koruma altındaki PANDALAR gibi aynı rolü üstlenebilecek etkileyici adaydan biridir. Credit: © thisisdraft / Fotolia

http://www.biyologlar.com/tehlike-altindaki-tatli-su-turlerine-kapsamli-koruma-gerekiyor

Mendel Genetiğinin Tam Anlamı

Mendel Genetiğinin Tam Anlamı

"Bu Fidan kök salmış ve önümüzdeki yıl çiçek açmalıdır. Melezin özelliklerini korumayacak ya da varyasyon gösterip göstermeyecekleri, gelecek yılın gözlemleriyle belirlenecek "(vurgu).

http://www.biyologlar.com/mendel-genetiginin-tam-anlami

Madagaskar'da Bulunan Yeni Cüce Lemur Türü : Cheirogaleus shethi

Madagaskar'da Bulunan Yeni Cüce Lemur Türü : Cheirogaleus shethi

Madagaskar Ankarana özel rezervi'ndeki dişi cüce lemuru (Cheirogaleus shethi). Resim: Richard Randriamampionona.

http://www.biyologlar.com/madagaskarda-bulunan-yeni-cuce-lemur-turu

Tatlısu pandalarını ararken

Tatlısu pandalarını ararken

Tıpkı "karizmatik" pandalar gibi sucul ekosistemler için tanımlanacak "bayrak şemsiye türler" tatlısu biyoçeşitliliğini korumak ve farkındalığı artırmak için destek olabilir. Arapaima gigas IGB/David Ausserhofer

http://www.biyologlar.com/tatlisu-pandalarini-ararken

Bakterileri öldüren antibiyotikler yeni nöronların üretimini durduruyor!

Bakterileri öldüren antibiyotikler yeni nöronların üretimini durduruyor!

Bakteri kökenli enfeksiyonlarda çoğumuz antibiyotiklere sarılırız. Hatta hiçbir işe yaramamasına rağmen virüs kökenli hastalıklarda bile gereksiz bir şekilde antibiyotik kullanıyoruz. Ülkemizde Sağlık Bakanlığı sürekli fazla antibiyotik kullanımının zararlarından bahsediyor.

http://www.biyologlar.com/bakterileri-olduren-antibiyotikler-yeni-noronlarin-uretimini-durduruyor

Çapkınlık Geni

Çapkınlık Geni

Tüm canlılarda çapkınlık, yani eş haricinde yabancı biriyle birlikte olmak çok yaygın görülen bir durumdur. Buna biz insanlarda dahiliz.

http://www.biyologlar.com/capkinlik-geni

Gama Radyasyonla Sterilizasyon ve Tıbbi Malzemeler

Gama Işını Nedir?Çekirdeklerinde proton ve nötron sayılarının dengesizliği sonucu, bir atomdan fazla olan enerjinin dışarıya elektromanyetik dalga tabiatında bırakılması sonucu oluşan ışımaya denir. Enerjisi α ve ß ışınlarına göre daha düşük olan ancak difüzyon yeteneği en fazla olan ışıma şeklidir (1,2).GAMA RADYASYONU ile STERİLİZASYONRadyasyonun  sterilizasyon  alanında  ilk  kez  kullanımı  l940’lı  yıllara  rastlamaktadır.  Farmasötik,  tıp  ve  gıda  alanındaki  mikroorganizmaların  sterilizasyonu/dekontaminasyonu çalışmalarında gama ışınlayıcılar ve elektron hızlandırıcılar kullanılmaktadır. Tıbbi  aletlerin  radyasyonla  sterilizasyonu  için  Uluslararası  Atom  Enerjisi Ajansı (IAEA)’nın önerdiği uygulama kuralları l967 yılında yayınlanmış olup, bu kurallar  l973’te  yeniden  gözden  geçirilmiştir  (3,4).  1992  yılı  itibariyle,  dünyada 200 kadar gama ışınlayıcı ve 800 kadar elektron hızlandırıcı bulunurken; bu sayı her yıl %l0 artmaktadır (5). Türkiye’de ise biri TAEK’e ait diğeri özel olan iki gama ışınlama tesisi bulunmaktadır (6). Gama  radyasyon  işlemi,  ürünün  kontrol  edilen  düzeylerde  iyonize  edici  radyasyona  tabi  tutulmasıdır.  Radyasyon  dozu  ise  radyasyonun  kontrol  edilmesi olup, en az hasarı verecek şekilde ürün üzerindeki mikrobiyal yükü istenen düzeye indirmektir.Gama  radyasyonu  ve  yüksek  enerjili  elektronlarla  sterilizasyon,  ilk  kez  İngiliz Farmakopesi (BP l963) ve Amerikan Farmakopesi (USP XVII)’nde yer almıştır (7,8).USP XXII: Gama radyasyonla tıbbi malzemeler, ilaç hammaddeleri ve bitmiş ürünler sterilize edilebilir. Sterilizasyon için gerekli dozu belirlemede “Assaciation for the Advancement of Medical Instrumentation (AAMI)”ın önerdiği yöntemler uygulanır. Gerekli olan radyasyon dozu ve absorbe olan doz kimyasal ve fiziksel dozimetreler ile belirtildikten sonra, radyasyonla sterilize edilen ürünün bütün sterilize temin işlemleri yapılmalıdır (9).B.P. l993: Bu Farmakopede gama radyasyonla sterilizasyon Appendix III’te verilmiştir.  Sterilizasyon  amaçlı  ışınlama  25  kGy  dozda  yapılabilir.  Valide  edilmek şartıyla diğer dozlar da kullanılabilir. 25 kGy’den düşük doz kullanıldıysa, ürünün ek bir yöntemle ışınlama öncesinde mikrobiyal yükünün izlenmesi gerekir (10).IAEA kataloğu (11): Bu kataloğun Tek Kullanımlık Tıbbi Ürünlerin endüstriyel radyasyonla sterilizasyonu için kayıtları şöyledir:• Ürün bu dozda stabil olmalıdır.• Işınlama öncesi ürün üzerindeki mikrobiyal yük bilinmiyorsa sterilite güvence düzeyi [Sterility Assurance Level (SAL)] l0-6’yı sağlayacak doz 25 kGy olmalıdır.• İstenen SAL’ı sağlayan doz 25 kGy’den daha az ise sterilizasyon dozunun belirlenmesinde AAMI guidelines’ın Bl ve B2 metotları kullanılmalıdır.• Veya, radyasyon dozunun seçiminde ISO l ve ISO 2 metotları kullanılmalıdır. Üretici firma bu yöntemle, sterilize edilmiş ürünü ancak, yukarıda bahsedilen yöntemlerle  mikrobiyolojik  çalışmaların  yapılması  ve  ürün  tarafından  absorbe edilen  radyasyon  dozunun  kalibre  edilmiş  dozimetreler  yardımıyla  ispatlanması şartıyla pazara verebilir.Gama Radyasyonun Mikroorganizmalar Üzerine EtkisiGama radyasyonun mikroorganizmalar üzerine etkisi direkt veya indirekt olarak oluşmaktadır:Direkt etki:Molekül, radyasyon enerjisini direkt olarak alıp; iyonize olmakta, uyanılmakta  veya  bağ  kırılmaları  yoluyla  yapısının  değişmesi  şeklinde  kendini göstermektedir.İndirekt etki:Diğer bir molekülden transfer edilen enerjiyle oluşmaktadır. Mikroorganizmaların da radyasyonla inaktivasyonu kısmen hücrelerin hassas bölgelerindeki etkileşimle direkt kısmen de hücre sıvısında meydana gelen yüksek oranda aktif kimyasal radikallerle olur. Mikroorganizmaların ölümünün hücrenin genetik bilgi taşıyıcısı olan DNA’daki hasar sonucu olduğu kabul edilir. DNA’da genellikle kırılmalar oluşur. Tek iplikçikte oluşan kırılmalar tamir edilebilir. Hasarların  çoğundan  OH  radikalleri  sorumludur.  Radyasyon  DNA’daki  baz  sıralamasını değiştirerek mutasyonlara neden olabilir. Mutasyonlar bükülme ve büzülme gibi şekil bozukluklarına yol açarak DNA replikasyonlarını engeller (12).Bazı araştırmacılar, DNA’ya etki yanı sıra hücre membranının da radyasyonla sterilizasyonda önemli bir yapı olduğunu ileri sürmektedir. Enzim kesesi olarak bilinen  lizozomlar,  membran  üzerinde  bulunmaktadır.  DNA  üreme  sırasında  hücre membranının  belirli  bir  kısmına  bağlanarak  replikasyona  başlamaktadır.  Membranda meydana gelen bozukluklar hücrenin solunum fonksiyonunu etkilemekte ve mitoz bozulmaktadır. Üremeyi engelleyerek ölüme neden olmaktadır (12).TIBBİ MALZEMELERDE UYGULAMATıbbi  malzeme  üretimindeki  teknolojik  gelişmeler,  malzemenin  efektif  ve  güvenilir bir şekilde sterilize edilmiş olması zorunluluğu, problem olarak ortaya çıkmıştır. Gama radyasyonla sterilizasyon, bitmiş ürünün son ambalajında sterilizasyonuna  olanak  verme  üstünlüğüne  sahiptir.  Ayrıca  seri  ve  güvenilir  bir  yöntem olup tıbbi malzeme sterilizasyonunda son derece geniş uygulama bulmuştur.Tek  kullanımlık  tıbbi  malzeme  üretiminde  kullanılan  plastik  maddeler,  genellikle radyasyona dirençli materyallerden seçilmekte olup, sterilizasyon sonrası mekanik, fiziksel ve kimyasal özelliklerinde anlamlı değişiklikler saptanmamaktadır.Gama radyasyonuyla sterilizasyonun ilk olarak kullanımı göz merhemlerinde olmuştur (13,14). Daha sonra cerrahi sütürler sterilize edilmiştir. Yapılan çalışmalarda materyalin 25-50 kGy’lik uygulamalarda en az hasara uğradığı saptanmıştır. Diğer yöntemlere göre daha üstün olduğu görülmüştür (15). Gama ışınıyla sterilize edilebilen tıbbi malzemeler şu şekilde sınıflandırılırlar (16):l. Tıbbi bakımda kullanılan malzemeler: Hava filtreleri, yüz maskeleri, galoşlar,  fırçalar,  aşı  taşıyıcıları,  petri  plakları,  idrar  analiz  tüpleri,  test  tüpleri  gibi malzemelerdir.2. Cerrahi işlemde kullanılan ya da hastayla direkt temasta bulunan malzemeler: Yapışkan  bantlar,  hava  tüpleri,  eldivenler,  drenler,  enjektörler,  petler,  spekulumlar, cerrahi setler, sütür materyalleri, klipler, hemodiyaliz setleri gibi malzemeler cerrahi işlem sırasında kullanılmaktadır.3. Geçici veya kalıcı implant ve cihazlar: Arteriyo-venöz şantlar, periton diyaliz  setleri,  kalp  kapakçıkları,  periferal  vasküler  protezler,  dental  implantlar,  yapay göz kapağı, eklem protezleri gibi malzemelerde geçici veya kalıcı implantlar ve cihazlardır.Gama radyasyonla sterilizasyon yöntemi ABD’de plastik enjektörler, iğneler ve eldivenler  gibi  en  çok  kullanılan  tıbbi malzemelerin  sterilizasyonunda  kullanılmaktadır.Radyosterilizasyon  uygulanan  tıbbi  malzeme,  mekanik,  fiziksel  ve  kimyasal değişiklikler yönünden uygun zaman aralıklarında kontrol edildikten sonra kullanılabilir.Plastik  tıbbi  malzemelerde  radyasyonla  sterilizasyon  sonrası  görünümde,  fiziksel, kimyasal ve mekanik özelliklerinde ise değişiklik olmaktadır. Görünümdeki değişiklik, renk değişikliği veya gaz oluşumu şeklinde kalıcı olabildiği gibi geçici değişiklikler de izlenebilir.Kimyasal  değişiklikler  hidrojen  ekstraksiyonu,  dehidroklorinasyon,  çift  bağ oluşumu, bağlarda kopma, çapraz bağlanma, oksidatif dejenerasyon, serbest radikal oluşumu, polimerizasyon, depolimerizasyon ve gaz oluşumudur. Fiziksel değişiklikler arasında viskozitenin, çözünürlüğün, iletkenliğin değişimi, kristal yapı ve floresan özellik kazanma sayılabilir. Mekanik özelliklerde ise gerginlikte değişim, sertlik, uzama, fleksibilite, plastik akışkanlık gibi değişiklikler izlenebilir (11).Bundan sonraki kısımda cerrahi operasyonlarda en çok kullanılan tıbbi malzemeler ve bunların gama radyasyonla sterilizasyonundan bahsedilecektir.I. Cerrahi İpliklerKurutulmuş, bükülmüş bağırsaklar (katgüt) ve ipek iplikler başta olmak üzere çeşitli iplikler cerrahi operasyonlarda yüzyıllardır kullanılmaktadır (17). Cerrahi iplikler, organizmada absorbe olup olmadıklarına göre iki gruba ayrılırlar:a. Rezorbe olan iplikler: Katgütler ve bazı sentetik poliglikolik asit türevlerinden yapılan ipliklerdir.b. Rezorbe olmayan iplikler: Pamuk, keten, ipek, çelik ve sentetik olarak hazırlanan poliamid, poliester ve polipropilen gibi ipliklerdir.a. Rezorbe Olan Cerrahi İpliklerKatgüt:Koyun bağırsağının submukozası veya inek bağırsağı serozasından yapılır. Kollajen doku yapısında olan bu doku, özellikle kuru halde çok dayanıklıdır. Dayanıklılığı çapraz bağlarla kuvvetlendirilmiş uzun zincirler halindeki molekül yapısına bağlıdır.Katgütler:  Yalın ve sertleştirilmiş (krome) katgütler olarak iki gruba ayrılırlar. Hazırlama sırasında krom bileşiklerinden yararlanarak dokudaki absorbsiyon süreleri uzatılabilir. Bunlara krome katgüt adı verilir.Katgüt bakteri kontaminasyonu için uygun bir ortamdır. Sterilizasyon işlemlerindeki son aşamalara kadar kimyasal ve kuru ısıyla sterilize edilmiştir. Kimyasal sterilizasyonda katgütlerin niteliklerini değiştirmeyen, iyot basınç altında kolayca buharlaşabilen organik halojen türevleri fenil merküri nitrat ve fenil merküri benzoat  kullanılmıştır  (17).  Kuru  ısı  yöntemi,  toluol  gibi  anhidr  bir  sıvıyla  ıslatılmış katgüt şeridinin l60°C’de ısıtılmasıyla sağlanır. Isıtma işlemi sırasında kuru katgüt kırılgan bir hal alır. Bu nedenle kullanımdan önce, etil alkol ve izopropil alkol gibi  antiseptik  bir  çözeltiyle  esneklik  kazandırılır.  Son  yıllarda  katgütlerin  sterilizasyonunda etilen oksit (EO) ve gama ışınları kullanılmaktadır (17,18).Katgütler, tek iplikler halinde kapalı ambalajlarda steril olarak bulunur. Ambalaj içinde uygun bakterisid veya koruyucu sıvı bulunur. Ambalajda ipliğin adı, seri numarası, uzunluğu, normal veya sertleşmiş olup olmadığı, sterilizasyon yöntemi, ambalajın ısıya maruz bırakılmaması, ambalaj içindeki sıvıda bulunan bakterisid maddenin adı ve yüzdesi, üretici firma adı ve son kullanma tarihi belirtilmelidir (19,20).Diğer cerrahi iplikler: Sığır tendonlarından kollajen ipliklerle sentetik olarak poliglikolik  asit  ve  poliglactin  9l0’dan  cerrahi  iplikler  üretilmektedir. Bağırsak mukozasının patojen mikroorganizma bulundurma olasılığı nedeniyle katgüte göre daha üstündürler (21).b. Rezorbe Olmayan Cerrahi İpliklerHayvansal, bitkisel veya sentetik kaynaklı olabilirler ve tek lifli veya çok lifli iplik demeti halinde bulunurlar. Kapiller veya nonkapiller yapıda olabilirler. Sterilizasyon ısısına dayanıklı irritan veya toksik olmayan boyalarla renklendirilebilirler. Çok lifliler, liflerin örülerek veya bükülerek bir araya getirilmesiyle oluşurlar. Uygulamada madeni, gözsüz iğneye takılı olarak “atravmatik iplikler” şeklinde  bulunabilirler.  Uygun  ambalajlarda  steril  veya  nonsteril  halde  satılırlar.  Ambalajlama  kuralları  katgütte  belirtildiği  gibidir.  Rezorbe  olmayan  iplikler  steril veya nonsteril halde pazarlanabilirler. Otoklav, EO veya gama radyasyonla sterilize edilebilirler(21).Değişik  farmakopeler  rezorbe  olmayan  cerrahi  iplikleri  genel  veya  ayrı  ayrı monograflar halinde inceler ve sınıflandırılmaları, özellikleri ve kontrol yöntemleri hakkında bilgi verirler (19,22). Türk Farmakopesi’nde bu konuda bilgi yoktur. Rezorbe olmayan cerrahi ipliklerden ipek iplikler yaygın olarak kullanılmaktadır. Çok lifli olduğundan infeksiyon riski yüksek olan bölgelerde kullanılmamalıdır. Kolay sterilize edilebilir, poliamid, polyester ve polipropilen gibi sentetik iplikler kendi kalınlıklarındaki rezorbe olan veya olmayan diğer ipliklere göre çok kuvvetli, sağlam ve dayanıklı olmaları nedeniyle tercih edilir (21). Cerrahi  ipliklerde  yapılan  kontroller  incelendiğinde,  değişik  farmakopelerin kabul ettiği cerrahi ipliklerin çaplarında farklılıklar gözlendiği gibi kalite kontrol parametreleri de değişiklik göstermektedir (19,22-4).II. Tek Kullanımlık Plastik EnjektörlerSteril  tek  kullanımlık  plastik  enjektörler,  enjekte  edilecek  preparatı  uygulamak  için  kullanılan  tıbbı  malzemedir.  Steril  ve  apirojenik  olup  tekrar  sterilize edilemez ve kullanılamaz. Enjektör gövdesi, piston ve iğneden oluşmuştur. Piston kauçuk halka içerebilir. Her enjektör, steril olarak paketlenmiştir. Enjektör gövdesi, enjekte edilecek preparatın içindeki hava kabarcıklarının ve yabancı partikülerin görülmesine izin vermeli şeffaf olmalıdır (25-27).Enjektör  yapımında  en  sık  kullanılan  plastikler  polipropilen  ve  polietilendir. Enjektörün içinde kayganlığı sağlamak için silikon yağı kullanılabilir. Tek kullanımlık plastik enjektörler, EO veya gama ışınları ile sterilize edilmektedir.  Avrupa  Farmakopesi,  enjektörlerin  kontrolünde  aşağıda  özetlenen  testleri önermektedir (27). • Çözelti S görünüşü:Yeterli miktarda enjektör kullanarak hazırlanan çözelti S, gözle incelendiğinde berrak, renksiz ve partikülsüz olmalıdır. • Asidite-alkalinite: pH nötr olmalıdır. • Absorbans:220-360 nm dalga boyunda 0.40’ü geçmemelidir.• EO kalıntısı: 10 ppm’yi geçmemelidir. • Slikon yağı: 0.25 mg.cm-2’yi geçmemelidir. • İndirgeyici maddeler: Farmakopede tanımlanan miktarı aşmamalıdır. III. Ameliyat Eldivenleri (AE), Ameliyat Giysileri (AG), Ameliyat Örtüleri (AÖ),Kepler (K) ve Maskeler (M)Tek kullanımlık cerrahi eldivenler, hasta veya kullanıcıyı çapraz kontaminasyondan korumak için tıbbi alanda kullanılan eldivenlerdir (28). Kauçuk veya sentetik materyalden yapılır. EO ve gama radyasyonla sterilize edilir.Cerrahi tek kullanımlık operasyon giysileri ve örtüleri üretimi son yıllarda gittikçe gelişen, postoperatif infeksiyon riskini en aza indirgemeye yönelik akımın endüstriyel uzantısıdır. Yakın zamanlara kadar hastayı operasyon sırasındaki kontaminasyondan koruma amaçlı olarak düşünülen cerrahi örtüler ve operasyon giysileri,  AIDS  gibi  operasyon  ekibine  bulaşabilecek  hastalık  riski  nedeni  ile  cerrahi ekip için önem kazanmıştır. Bu amaçla kan ve tüm sıvılara karşı dirençli olan tek kullanımlık ameliyat örtüleri, operasyon giysileri kullanımı yaygınlık kazanmaktadır. Bunların da sterilizasyonunda EO ve gama radyasyon yöntemleri kullanılır.Ameliyat  örtüleri,  önlükler,  kepler  ve  maskeler;  polipropilen,  polyester,  kauçuk, pamuk gibi ham maddelerden hazırlanmakta olup dokunmamış malzemelerdir. Farmakopelerde  bu  malzemelerin  kalite  kontrolleri  ile  ilgili  kayıt  bulunmamaktadır.MİKROBİYOLOJİK ÇALIŞMALARI. Gama Radyasyonla Sterilize Edilen Cerrahi İpliklerde Yapılan Mikrobiyolojik KontrollerSterilize edilecek ürünün temel olarak “Good Manufacturing Practice (GMR)” koşullarında üretilmiş olması istenir (9,10). 25 kGy’lik radyasyon dozu, gama ışınları  sterilizasyonunda  etkin  bir  sterilizasyon  dozu  olarak  kabul  görmektedir.  Bu dozun 10-6’lık SAL dozunu sağladığı kabul edilir. Ürün üzerindeki doğal mikrobiyal  yükün  radyasyon  direnci  hakkında  tespit  edilmiş  herhangi  bir  veri  yoksa minimum sterilizasyon dozu 25 kGy olarak kabul edilir. (9-11). Bu amaçla yapılan kontroller iki gurupta toplanır (28): 1. Sterilizasyon öncesi kontroller:Mikrobiyal yük tayini SAL dozu tayini.2. Sterilizasyon sonrası kontroller:Sterilize testi, sterilizasyon işlemenin validasyonu.Mikrobiyal  yükün  belirlenmesi:Mikrobiyal  yük,  ürün  veya  materyal  üzerinde bulunan  canlı  mikroorganizma  sayısıdır.  Medikal  aletler  üzerindeki  mikrobiyal yük saptanması şu aşamaları izler: • Medikal aletlerden mikroorganizmaların uzaklaştırılması,• Uygun besiyerlerine bu mikroorganizmaların aktarılması,• Mikroorganizmaların sayılması,• Mikrobiyal yük düzeltme faktörlerinin uygulanması.Mikrobiyal yük belirlerken, üç farklı üretim serisinden rastgele sterilize edilmemiş 10 örnek alınır. Örneklerin eğer mümkünse tamamı, değilse örneği temsil edecek kısmı mikrobiyal yük saptamak için kullanılır. Örnekten mikroorganizmalar ultrasonik yöntemlerle çalkalayarak veya yıkayarak elde edilir. Etiket olarak ringer, peptonlu su, sodyum klorür, su kullanılabilir. Etiket sıvısındaki mikroorganizmalar, membran filtrasyonu, plağa yayma gibi çeşitli yöntemlerle besiyerlerine aktarılır. Kullanılan besiyerleri ve inkübasyon koşulları Tablo 1’de gösterilmiştir (29).SAL  dozunun  belirlenmesi: Mikrobiyal  yükleri  belirlenen  örnekler,  SAL  l0-6 ’yı bulmak için daha önceden belirlenen radyasyon dozlarında ışınlandıktan sonra örnekler üzerindeki mikroorganizmaların ölüm oranları logaritmik olarak tespit edilir. Bunun için önce yukarıda anlatıldığı şekilde ışınlanmamış örneklerin mikroorganizma yükleri tespit edilir, sonra ışınlanmış örneklerin aynı şekilde sayımı yapılır.  Ardından  radyasyon  dozuna  karşı  logaritmik  mikroorganizma  ölüm  oranları grafiklenerek her bir örnek için SAL:l0-6 ’yı sağlayacak radyasyon dozu hesaplanır. Sterilite testi: Gama radyasyonla sterilizasyonu yapılmış örneklere uygulanır. Bu yöntemle sterilize edilen cerrahi ipliklerin steril olup olmadıklarını “Soy Bean Casein Digest Medium (SCDM)” ve “Fluid Thioglycolate Medium (FTM)” ortamları kullanarak USP XXIII ve EP l999’a uygunlukları saptanır (30,31).Sterilizasyon  işlemlerinin  validasyonu: Sterilizasyonda  kullanılan  işlemlerin geçerliliğini kanıtlamak için validasyon yapılır. Validasyon dozimetrik yolla yapılır ve örneklerin aldığı dozun, amaçlanan doz değerine uyup uymadığı kontrol etme amacını taşır. Örnekler ışınlanmaya hazırlanırken, ışımanın kaynağa en uzak olacak  noktasına  polimetilmetakrilat  (Gammex)  dozimetreler  konur.  Örnekler radyasyonla sterilize edildikten sonra, dozimetrelerin absorbansı spekrofotometr eyle ölçülerekA: Absorbansdenklemi yardımıyla örneklerin aldığı doz hesaplanır.II.  Gama  Radyasyonla  Sterilize  Edilen  Enjektörlerde  Yapılan  Mikrobiyolojik KontrollerTek kullanımlık enjektörlerin gama radyasyonla sterilizasyonu önce ve sonrası yapılan mikrobiyolojik kontroller, cerrahi ipliklerde anlatılanlar gibidir. Ayrıca,  enjektörlerin  dokuya  teması  nedeniyle  apirojen  olmaları  gerekir.  Bu  nedenle “Limulus Amebozit Lizat (LAL)” testi uygulanır (28).Pirojenite testi:  Enjektörlerin apirojen olup olmadığını anlamak için, enjeksiyonluk suyla çalkalanan enjektörlerden elde edilen içerik LAL testine tabi tutularak incelenir.III. Gama Radyasyonla Sterilize Edilen AE, AG, AÖ, K ve M’de Yapılan  Mikrobiyolojik KontrollerAE, AG, AÖ, K ve G’lerin gama radyasyonla sterilizasyonu önce ve sonrası yapılan mikrobiyolojik kontroller, cerrahi ipliklerde ve tek kullanımlık enjektörlerde yapılan mikrobiyolojik kontroller gibidir (28).Sonuç  olarak,  tek  kullanımlık  tıbbi  malzemelerin  sterilizasyonunda,  klasik sterilizasyon yöntemleri içerisinde yer alan nemli ısı, otoklavda sterilizasyon yöntemi,  düşük  erime  ısısı  plastiklerde  uygulanamamaktadır.  Sağlıklı  bir  yöntem olan EO gazı ile sterilizasyonda ise işlem gören ürünler üzerinde kalıntı bırakması, etkinliğinin basınç, sıcaklık, nem gibi birçok parametreye bağlı olması ve ayrıca çevre sorunları yaratması nedeniyle birçok ülkede kullanımı terk edilmiş veya yasal kısıtlamalar getirilmiştir.Gama radyasyonuyla sterilizasyonda ürünler üzerinde hiçbir kalıntı kalmadığı gibi çalışmalar için son derece yüksek güvenlik standartlarına ulaşmıştır. Ayrıca  işlemin  etkinliği,  sadece  doza  bağımlı  olması  bu  yöntemin  üstün  taraflarıdır.Bu nedenle tıbbi malzemelerin sterilizasyonunda EO strerilizasyonuna tercih edilebilecek çağdaş bir yöntemdir. KAYNAKLAR1.Olguner  G.  Sülfonamit  Grubu  İlaçların  Gama  Radyasyonla  Sterilizasyonu  ve  Diğer  Yöntemlerle Karşılaştırılması, Hacettepe Üniv, Sağlık Bilimleri Enst. Radyofarmasi Yüksek Lisans Tezi, Ankara, 2000.2.Naki N. Kozmetik Ürünlerin ve Kozmetik Hammaddelerinin Gama Radyasyonla Dekontaminasyonu/Sterilizasyonu  Üzerinde  Çalışmalar,  Hacettepe  Üniv,  Sağlık  Bilimleri  Enst.,Radyofarmasi Yüksek Lisans Tezi, Ankara, 2003.3.Radiosterilization of Medical Products, Pharmaceuticals and Bioproducts, IAEA-Tech Doc Series, No 72.4.Manual on Radiation Sterilization of Medical and Biological Materials, IAEA-Tech Doc Series, No 149, 1973.5.Stenger V. Classification and Description of Gamma Irradiators, IAEA Regional Workshop for Europe and The Middle East on Safe Operation of Industrial Radiation Facilities-Regulatory Responsibilities. Czechoslovakia, 1992:1-4.6.Siyakuş  G,  Tarakk  MD.  Gama  Işınlama  Teknolojisinde  Mevcut  Durum  ve  Amaçlananlar, Türkiye Atom Enerjisi Kurumu, Teknik Dökümanı, 1994.7.United States Pharmacopeia (USP XVII). Mack Publishing Co. Easton PA, USA, 1984:19.8.British Pharmacopeia, University Press, Cambridge, England, 1963:A198.9.United States Pharmacopeia, Mack Publishing Co., Easton PA, USA, 1990:1978.10.British Pharmacopeia, University Press, Cambridge, England, 1993:1271-80.11.Guidelines for Industrial Radiation Sterilization of Disposable Medical Products (Cobalt-60 Gamma Irradiation). IAEA Technical Document, 1990:539.12.Gazso LG, Fundementals of Radiation Microbiology, Process and Quality Control Sterility As-surance, National Training Course on Industrial Radiation Sterilization, Ankara, 1992:1-5.13.Hangay G, Hortobagy G, Muranyi Y. Sterilization of Hydrocortisone Eye Oinment by Gamma Radiation. I. Physical and Chemical Aspects. Radiation Sterilization of Medical Product. (Proc. Symp. Budapest, 1967), IAEA, Vienna, 1967:55-62.14.Hangay G, Hortobagy G, Muranyi Y. Sterilization of Hydrocortisone Eye Oinment by Gamma Radiation. I. Physical and Chemical Aspects. Radiation Sterilization of Medical Product. (Proc. Symp. Budapest, 1967), IAEA, Vienna, 1967:63-8.15.Hudemann H. Modern Methods for Sterilization of Catgut (Ed. Wiss Z.) di Humboldt, Univ. Berlin, 1987:16;225.16.Artandi C, Plastic and Rubber Instruments and Apparatus. Manual on Radiation Sterilization  of  Medical  and  Biological  Materials,  IAEA  Technical  Reports  Series  No:  149,  Vienna,1973:187-91.17. Fish  F,  Dawson  JO.  Surgical  D  ressing,  Ligatures  and  Sutures.  William  Heinemann  (eds). Londra, 1967.18.Artandi C, Sutures. Manual on Radiation Sterilization of Medical and Biological Materials, IAEA Technical Reports Series No: 149, Vienna, 1973:173-90.19.United States Pharmacopeia, Mack Publishing Co., Easton PA, USA, 1990:1007-9.20.Türk Farmakopesi 1974 (TF 1974). Milli Eğitim Basımevi, İstanbul, 1974.21. Bumin O. Cerrahide kullanılan dikiş materyalinin bugünkü durumu. AÜ Tıp Fak Mecmuası 1975:28;813.22.European Pharmacopeia (EP), Council of Europe, Strasbourg/Cedex, 1997:1567-76.23.Pharmacopee  Francaise  (ph.  France).  9th ed.  Association  pour  la  Lecherche  Aptiquee  a  la Pharmacopea, 1976.24.British Pharmacopeia, University Press, Cambridge, England, 1997:1271-80.25.Şırıngalar-Hipodermik-Bir  Kullanımlık,  Steril,  Bölüm  1.  Şırıngalar-Elle  Kullanım  için. Türk Standartları, Ankara, TSE, TS EN ISO 7884-1. Mart, 1984.26.British Pharmacopeia, University Press, Cambridge, England, 1993:212-4.27.Tıbbi Eldivenler-Tek Kullanımlık, Bölüm 2: Özel Nükleer ve Fiziksel Özelliklerin Denemesi. Türk Standartları Enst., Ankara, TSE, Ankara: TS 8385-2, EN 445-1996. 28.Berk  F.  Tek  Kullanımlık  Tıbbi  Malzemelerin  Gama  Radyasyon  ile  Sterilizasyonu  ve  Diğer Yöntemlerle Karşılaştırılması, Hacettepe Üniv., Sağlık Bilimleri Enst., Radyofarmasi Programı Yüksek Lisans Tezi, Ankara, 2002.29.Sterilization  of  Medical  Products-Microbiological  Methods.  I:  Estimation  of  Population  of Microorganisms on Products, ISO 11737-1, 1995.30.United States Pharmacopeia XXIII, Mack Publishing Co., Easton PA, USA, 1990:1686-90.31.European Pharmacopeia Supplement, Council of Europe, Strasbourg/Cedex, 1999. 73-7. 4. Ulusal Sterilizasyon Dezenfeksiyon Kongresi - 2005   s -200-229Prof. Dr. A. Yekta ÖZERHacettepe Üniversitesi Eczacılık Fakültesi, Eczacılık Teknolojisi Bölümü,Radyofarmasi Anabilim Dalı, ANKARA

http://www.biyologlar.com/gama-radyasyonla-sterilizasyon-ve-tibbi-malzemeler

 
3WTURK CMS v6.03WTURK CMS v6.0