Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 176 kayıt bulundu.

TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI

BİYOLOG MESLEĞİ, GÖREV ALANLARI, BİYOLOGLARIN YETKİ VE SORUMLULUKLARI İLE BİYOLOG ODALARI VE TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI Genel Gerekçe Türkiye Cumhuriyeti Anayasası'nın 135 inci maddesinin verdiği hak ve teşvikten yola çıkarak, Biyologların görev alanları, yetki ve sorumlulukları ile Türkiye Biyolog Odaları ve Biyologlar Birliği kanunlarının teklif edilmesi kararlaştırılmıştır. 1933 Üniversite reformu ile ilk defa İstanbul Üniversitesinde nebatat ve hayvanat kürsüsü olarak öğretime başlayan Biyoloji bölümleri ilk mezunlarını 1937de vermiştir. 68 yıldır kadrosu olan ama yetki ve sorumluluğu belli olmayan Biyologların yetki ve sorumluluklarının belirlenmesi için bu kanun tasarısı hazırlanmıştır. Biyoloji biliminin eğitimini alarak Biyolog unvanını kullanmaya hak kazanmış kişilerin; tüm bilimsel, hukuki ve çalışma alanlarındaki görev ve sorumluluklarını belirlemek, mesleki özlük haklarını korumak ve mesleki faaliyetlerini kolaylaştırmak, bu kanun teklifinin temel gerekçesini oluşturmaktadır. Biyoloji, canlı sistemlerin bilimidir. Biyologlar ise; canlılarla ilgili araştırma, (deney, gözlem, koleksiyon, istatistik, koruma, kontrol, inceleme, test, tanı ve değerlendirme) yapar. Canlıların gelişimi, evrimi, kalıtımı, fizyolojisi, ekolojisi, korunması, tanı ve sınıflandırılması, davranışlarını ve özelliklere etki eden faktörlerin neden ve sonuç ilişkilerini araştırır, tanımlar. Aynı zamanda Biyolog, Biyoloji yada Biyolojinin özelleşmiş alt dallarında laboratuar ve arazi çalışmaları yapar. Bu çalışmalarla ilgili yetki ve sorumlulukları taşır. Çalışmalarını yaparken çeşitli biyolojik, matematiksel, fiziksel ve kimyasal yöntemlerle, uygun araç ve gereçlerden yararlanır. Çalışma sonuçları çevre, sağlık, üretim, eğitim, teknoloji ve ekonomi gibi yaşamsal alanlarda uygulanır. Ülkemiz iklim koşulları, coğrafi konumu ve jeomorfolojik yapısı nedeniyle çok zengin ve kendisine özgü bir Biyolojik çeşitliliğe sahiptir. Avrupa'nın sahip olduğu tür sayısına yakın bir flora (bitkiler) ve fauna (hayvanlar) zenginliğine sahip ülkemizin bu biyolojik zenginliğinin korunması konularında dünya ülkeleri arasında hak ettiği yeri alması Biyologların bu tür çalışmalara etkin bir biçimde katılmasıyla mümkün olacaktır. Ülkemiz Biyolojik zenginliklerinin belirlenmesi, korunması Türkiye Büyük Millet Meclisi tarafından değerlendirilmiş 1996 yılında 96/8857 karar sayısı ile Milletlerarası Biyolojik Çeşitlilik sözleşmesi kabul edilerek Biyolojik çeşitlilik daha da önem kazanmıştır Biyolojik zenginliklerle, kalkınma arasında sıkı bir ilişki mevcuttur. Zira tüm ekonomik faaliyetler temelde doğal kaynaklara dayanmaktadır. Bu da biyolojik sistemlerin etkin bir biçimde araştırılması ve anlaşılmasına bağlıdır. Canlı doğal kaynaklarımızı akılcı bir biçimde değerlendirerek kendilerini yenileme, kapasitelerini yitirmeden gelecek kuşaklara aktarabilmek için Biyologlara ihtiyaç vardır ve her zaman olacaktır. Biyologlar,çevre, eğitim, tarım,orman,tıp, sağlık ve ekonomi gibi hayati konularda ülkemizde önemli sorumluluklar yüklenerek hizmet vermektedirler. Bu yüzyılın Biyoloji çağı olacağı göz önüne alınarak Biyologların görev, yetki ve sorumlulukları ile Biyolog Odaları ve Türkiye Biyologlar Birliği Kanun tasarısı hazırlanmıştır. Ulusal Programda Biyologların yeri; Ülkemizin hazırladığı AB'ye uyum için ulusal programda kısa ve orta vadede yer alan beşeri tıbbi ürünler ve gıdaların piyasa kontrolü başlığı altında yer alan uyum yasalarının hazırlanmasında ve uygulanmasında biyologların rolü kaçınılmaz olacaktır. Bilindiği gibi 560 sayılı KHK r0; Gıdaların Üretimi Tüketimi ve Denetlenmesine Dair Yönetmelikr1; te ülke mevzuatında yer almayan hususlarda Uluslar arası mevzuata uyumlu işlem yapılacağı belirtilmektedir. Bu mevzuatın içeriğini bilen ve yorumunu yapabilecek kabiliyetteki biyologların varlığı ülkemiz için bir avantajdır. AB için hazırlanan Ulusal Programda Beşeri Tıbbı Ürünler başlığı içerisinde yer alan biyolojik ürünlerin İyi Üretim Uygulamaları (GMP) na göre üretilmesi, etkili ve güvenli sunumu için yasal olarak görev ve sorumluluklarının belirlenmesi zorunlu olan biyologlarının katkısı büyük olacaktır. Ayrıca tıbbi cihazlar konusunda AB ülkelerinde eğitim almasını önerdiğimiz teknik personel içerisinde mesleki yatkınlıklarından dolayı biyologların olması ülkemiz lehine bir durum olacaktır. Ulusal Programda bitkisel ürünler başlığı altında; transgenik bitkilere ilişkin düzenlemelerde, arıcılığın geliştirilmesi maksadıyla flora çeşitleri, flora mevsimi ve kapasitelerinin haritalandırılması ve de arıcılık Araştırma Enstitülerinin tüm ülkeye etkin bir şekilde hizmet vermesinin sağlanacağı ifade edilmektedir. Genetik, entomoloji, bitki anatomisi,patolojisi ve fizyolojisi konularında yeterli eğitim almış biyologların bu gelişmelere sağlayacağı katkı yadsınamaz düzeyde olacaktır. Aynı zamanda yerli hayvan gen kaynaklarının korunacağı ve bu maksatla Hayvan Gen Bankasının kurulacağı ifade edilmektedir. Tüm dünyada olduğu gibi ülkemizde de bitki ve hayvan gen bankalarının kurulması biyologların işbirliği ile sağlanacaktır. Ormancılık alanında;yaklaşık yarısı verimli durumda olan 20,7 milyon hektarlık ormanlık alanın 1,8'i biyolojik çeşitlilik olmak üzere yüzde 17,5'i korunan alanlar Olarak değerlendirilmektedir. Ormanların ekosistem yaklaşım dahilinde, devamlılık, çok amaçlı yararlanma, biyolojik çeşitlilik ile su ve yaban hayatının korunması doğrultusunda; eko turizm, verimlilik, kirlenme, yangın-böcek-heyelan-kar-çığ-sel-don ve kuraklık gerçekleri ile ergonomik faktörler dikkate alınarak işletilmesi, korunması ve geliştirilmesi için biyologların görev ve sorumluluklarına ihtiyaç duyulacağı açık bir gerçektir. Ayrıca korunan alanlar ve nesli tehlikede olan yaban hayatı ile bitki türleri dikkate alınarak yeniden incelenmelidir. Yeşil ve yaşanabilir bir çevre yaratma konusunda gerekli toplumsal iradenin oluşturulması amacına katkı sağlayacak olan Biyolog Odaları ve Biyologlar Birliğine ait yasa Tasarısının desteklenmesi AB uyum sürecinde olan ülkemiz için bir avantaj olacaktır. AB ülkelerinin üçüncü ülkelerle olan ticaretlerinde Bitki Sağlığı Sertifikası geçerlidir. Üye uygulaması mevcut değildir. Bu uygulamanın yürürlüğe konabilmesi için bitki anatomisi,fizyolojisi, morfolojisi,taksonomi ve sistematiği konusunda birikimi ve terminoloji yatkınlığı olan ülkemiz biyologlarının değerlendirilmesi esas olmalıdır. AB ülkeleri ile Ortak Balıkçılık Politikasının Belirlenmesinde; etkin bir koruma ve kontrol sisteminin oluşturulması ile denizlerdeki ve iç sulardaki doğal ortamın korunması, kontrolü, ve geliştirilmesini sağlamak, kaynakların rasyonel kullanımı ile ilgili tedbirleri almak gerekecektir. Yetiştiricilikle; yapılan üretimin çevre, turizm, ulaştırma ve diğer ilgili sektörlerle etkileşimi dikkate alarak geliştirmeye ve yaygınlaştırmaya önem vermek gerekecektir. Ayrıca gerekli altyapı tamamlandıktan sonra açık deniz balıkçılığına geçmek gerekecektir. Ülke sularının ekolojik ve limnolojik özellikleri belirlenecek, ortama en uygun ve ekonomik değeri yüksek türlerin yetiştirilmesi için balıklandırma faaliyetlerine geçilerek teknik ve hijyenik şartların sağlanması gerekecektir. Yetiştiricilikten elde edilecek deniz ürünlerinin yaklaşık yüzde 80r17;inin AB ülkelerine ihraç edileceği planlanırken, bu çalışmalar içerisinde aktif olarak yer alan biyologlarla ilgili Oda ve Birlik yasasının kabul edilmesi ülkemiz biyologlarının bu çalışmalara arzu edilen katkıyı sağlayacağı anlamını taşır. Ülkemizin farklı ekolojik karakterdeki ekosistem mozaiği, binlerce hayvan ve bitki türü ile bunların ırk ve populasyonlarının barınmasına imkan sağlamıştır. Ülkemizde üç bine yakın endemik olmak üzere dokuz binin üzerinde bitki türü tespit edilmiştir. Hayvan türlerinin ise seksen bin olduğu tahmin edilmektedir. Ülkemiz aynı zamanda yeryüzünün en önemli gen merkezlerindendir. Biyolog Odaları ve Türkiye Biyologlar Birliğinin hazırlayacağı ve hazırlanacak olan koruma projelerine katılması ve giderek karar süreçlerinde etkili olması; Türkiye'nin AB' ye uyum sürecinde, uluslar arası ilişkilerin güçlenmesinde Doğa Koruma konusunda avantajlı duruma gelmesine katkı sağlayacaktır. Ulusal Politikamızın belirlenmesinde; yukarıda sözü edilen tüm konu ve kavramlara sahip çıkabilecek, onları zenginleştirecek, takipçisi olabilecek nitelikteki insan gücü olan biyologlara ve onların meslek birliği olan Biyolog Odaları ve Türkiye Biyologlar Birliğir17;ne şiddetle ihtiyaç duyulacağı göz önüne alınmalıdır. Uluslar arası sözleşmeler ve Biyologlar; Dünyada, biyolojik çeşitlilikle ilgili uluslararası sözleşmelerde fauna ve flora ile birlikte doğal kaynakların yönetimi ve yok edilişinin durdurulması çalışmalarında daha çok biyologlar sorumluluk almaktadır. Avrupa'nın Yaban Hayatı ve Yaşama Ortamlarını Koruma Sözleşmesi olarak bilinen Bern Sözleşmesi ile ilgili olarak fauna ve floranın korunarak gelecek nesillere aktarılması konularında; CITES Sözleşmesi olarak bilinen "nesli tehlikede olan yabani hayvan ve bitki türlerinin uluslararası ticaretine ilişkin sözleşme" gereği yabani türler ya da onların derileri ve trofelerinin ihracatı, transit ve ithalatı ile ilgili konularda; Sulak Alanlar Sözleşmesi olarak ifade edilen Ramsar Sözleşmesi ile sulak alan ekosistemlerindeki bitki ve hayvan toplulukları ve su kuşlarının biyolojisi, ekolojisi ve yayılışı konularında; Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesinde biyolojik çeşitliliğin korunmasında, biyolojik kaynaklardan özellikle genetik çeşitlilikten sağlanan faydanın eşit ve adil paylaşımı konularında biyologlar görev almak zorundadır. Birleşmiş Milletlerin kuraklık ve çölleşmeye maruz ülkeler kapsamına aldığı Türkiye'de de çölleşme ile mücadelede asıl görev alması gereken biyologlardır. Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesine ek Cartagena Biyogüvenlik Protokolü ile biyolojik çeşitlilik, transgenik canlılar, gen transferi ile ilgili konularda ve bu kapsamda taraf olacağımız diğer sözleşmelerin kapsamında olan alanlarda biyologların doğrudan görev, sorumluluk ve yetki almaları ulusal çıkarlar açısından çok önemlidir. Biyologların Şikayet ve İstekleri Türkiye'de biyologların çalışma yerlerinde konumları ile ilgili karşılaştıkları güçlükler son yıllarda aşılmaz hale gelmiştir. Bugün bu sorunlar biyologlarla ilgili gündemin ana konusunu teşkil etmektedir. Biyologların çalıştıkları sahalarda görev, sorumluluk ve yetkileri ile ilgili bir mevzuat yoktur. Ülkemizin doğal kaynaklarının korunmasında, temel tıpla ilgili uygulamalarda, ormancılık ve tarımla ilgili konularda doğrudan görev almaları gerekirken bu görevlerdeki biyologlara, araştırma, koordinasyon, inceleme, planlama, proje ve analiz aşamalarında bilfiil sorumluluk aldıkları halde yetki verilmemektedir. olarak çalışmaktadırlar. Avrupa birliğine tam üyelik aşamasında olan Türkiye'de bu yanlış uygulamalar Avrupa Birliği normlarına ve meslek standartlarına uymamaktadır. Bu nedenlerle demokratik bir ülke olan Türkiye'de biyologların hak ettikleri görev, sorumluluk ve yetkilerin tam olarak belirlenmesi ve bir mevzuat kapsamında görevlendirilmeleri bir zorunluluk haline gelmiştir. Düzenleyen karakecili Düzenleme Tarihi: 19/05/2008 Mehmet İPEK Eskişehir Osmangazi Üniversitesi Gokhan #2 Mesaj Tarihi 18/02/2008 Yönetici Mesaj Sayısı: 211 Katılım Tarihi: 07.02.08 Yasal girişimler 1991 yıllarda çok yoğunlaşmış. İlk yasa tasarısı çok yoğun tartışmalar sonucunda hazırlanmış kitap haline getirilmiş ve TBMM´ne Tınaz Titiz 'in bakanlığı döneminde verilmiştir. Meclis'de yoğun muhalefetle karşılaşılmış Tıp ve Ziraatçıların karşı çıkması ve meclisin tatile girmesi nedeniyle görüşülememiştir. Burada en önemli sorun odalaşmak isteyen meslektaşlarımızın etkin destek vermemeleridir. Bu 2007 yılına kadar böyle devam etti. Oda yasası 1995-1996 yıllarında yeniden güncellenerek TBMM için çalışmalara başlandı. Bu dönemde yasa, komisyonlarda görüşülmeye başlanmış Hükümet adına görüş otuşturmak üzere Sağlık Bakanlığı görevlendirilmiştir. Sağlık Bakanlığında yapılan toplantıya o dönemdeki yönetim ile birlikte Biyologlar Derneği danışmanı olarak üniversiteden hocalarımızda katılmıştır. Sağlık Bakanlığı, Meslek Yasası´nın çıkmasını ancak odalaşmanın karşısında olduğu konusunda bir görüş benimseyerek komisyona göndermiş ve yasanın çıkmasını engellemiştir. 2000 yılında 3. kez güncelenen yasa Osman Durmuş kanalıyla meclise gönderilmiş ama çıkarılamamıştır. 2005 yılında 4. güncellenen yasa tasarısı Kanunlar kararlar dairesine oradan da Salih Kapusuz'a verilmiş. Ne kadar haklı olursanız olun talep edenlerin hem örgütlülükleri hem de güç dengeleri üzerindeki etkinlikleri yasaların çıkması üzerinde çok etkilidir. Kanun yapma yetkisi siyasetin elindedir. Siyasetin zayıf noktası ise oy ve oy potansiyelidir. Eğer güç olamazsak hiç bir hak kazanamayız. Bunun için birlik olmalıyız ve dernek çatısı altında birleşmeliyiz. Şu anda resmi olarak kurulmuş iki dernek bulunmakta. En azından bunlardan her hangi birine üye olmalıyız ki sayı gücümüz olsun. Aksi taktirde değil meslek odası, ekmek yiyeceğimiz iş sahası bile bulamayız. Düzenleyen Gokhan Düzenleme Tarihi: 18/02/2008 BİYOLOGLAR BİRLİĞİ DERNEĞİ Genel Sekreter Gökhan KAVUNCUOĞLU Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/turkiye-biyologlar-birligi-kanun-tasarisi

AMİNO ASİT TANIMA REAKSİYONLARI

Doğada 300’den fazla amino asit tanımlanmış olmasına rağmen memelilerde bunlardan yalnızca 20 tanesi proteinlerin yapısında yer almaktadır. Amino asitler prolin dışında aynı karbon üzerinde amino (-NH2) ve karboksil (-COOH) grubu bulundururlar. Prolin ise siklik bir yapıya sahiptir ve amino grubu yerine imino grubu taşır. Amino asitlerin genel gösterimleri R-CH-NH2-COOH şeklindedir. R grubu değişken gruptur. R grubunun değişmesiyle 20 çeşit primer veya standart amino asit meydana gelir. Bu 20 çeşit amino asitin değişik sayı ve sıra ile dizilimi çok sayıda proteinin ortaya çıkmasına yol açar. Glisin dışındaki tüm amino asitlerin en az bir tane asimetrik karbonu vardır ve optik olarak aktiftirler. Bunlar da D ve L olarak iki ayrı konfigürasyonda olabilirler. Ancak proteinlerin yapısında bulunan tüm amino asitler L konfigürasyonundadırlar. D amino asitler ise bazı antibiyotiklerde ve bakteriyel hücre duvarında bulunurlar.Amino asitler amfoterik moleküllerdir. Yani hem asidik hem de bazik gruplar içerirler. Monoaminomonokarboksilik asitler sulu çözeltilerde dipolar çözeltiler yani zwitterion şeklinde bulunurlar. a-karboksil grubu dissosiye ve negatif yüklüdür, a-amino grubu protonlanmış ve pozitif yüklüdür, yani molekül nötrdür. Asidik pH’da karboksil grubu bir proton alır ve molekülün net yükü pozitif olur. Bazik pH’da ise amino grubu proton kaybeder ve net yük negatif olur. Bir amino asidin net yükünün sıfır olduğu pH’a izoelektrik nokta denir. Amino asitler renksiz, suda tamamen, etil alkolde ise kısmen çözünmelerine karşılık, eterde hiç çözünme özellikleri olmayan organik bileşiklerdir. Amino asit çözeltilerinin görünür bölgede ışık absorblama özellikleri yoktur. Ancak UV bölgede (280 nm’de) tirozin, triptofan, fenilalanin ve histidin gibi halkalı yapıya sahip amino asitlerin ışık absorblama yetenekleri vardır. Bu özellik biyolojik sıvılardaki protein miktarının belirlenmesinde zaman zaman faydalanılabilen bir özelliktir.Amino amino asitler, bulundurduğu karboksil ve amino grupları, reaksiyon gücü oldukça yüksek fonksiyonel gruplar oldukları için bu grupların verdiği bütün reaksiyonları verirler. Amino asitlerin verdiği bu reaksiyonlar gerek biyolojik sıvılardaki serbest amino asitlerin cinsi ve miktarı, gerekse protein yapısına giren amino asitlerin miktarı, cinsi ve sırasını tespit etmede son derece önemlidir. I. Amino Asit Tayininin Klinik ÖnemiDolaşımdaki amino asitler böbrekte glomerüler membranlar tarafından filtre edilirler. Bu filtrattaki amino asit konsantrasyonu plazmadakine yakındır. Ancak filtrattaki amino asitlerin büyük bir kısmı tübüler sistemde özel transport sistemleri ile geri emilip dolaşıma verilirler. Çok az bir kısmı ise idrarla atılır. Normal yetişkin bir kişinin 24 saatlik idrar amino asit düzeyi 50-200 mg arasında değişir. Bu değişimde etkili faktör diyettin tabiatıdır. Kan amino asit seviyeleri yükseldiği zaman idrarla amino asit atılımında artış meydana gelir. Bu duruma aminoasidüri denir. İki tip aminoasidüriden bahsedilebilir. 1) Taşma tipi (overflow tipi) : Amino asit metabolizmasında rol oynayan enzimlerin eksik veya hatalı olması sonucu görülür. Böbrek eşik düzeylerinin aşılması sebebiyle böbrekler normal çalıştığı halde böbreğin reabsorbsiyon kapasitesi aşıldığından idrar amino asit düzeyi artar. Fenilketonüri, tirozinozis, alkaptonüri ve akçaağaç şurubu idrar hastalığı buna örnektir.2) Renal tip:Böbrek tubuluslarındaki bozukluk sonucu oluşan aminoasidüri türüdür. Bunu sebebi konjenital veya akkiz olabileceği gibi ağır metal zehirlenmeleri, fenol zehirlenmesi veya yanıklar da olabilir. Fankoni sendromu, sistinozis, Wilson hastalığı ve nefrotik sendrom gibi.II. Amino Asitlerin Kalitatif ve Kantitatif Tayininde Kullanılan MetotlarProteinlerin amino asit kompozisyonunu tespit belirlemek için kullanılan metotlar üç basamakta toplanır:1. Proteinlerin amino asitlerine hidrolizi (6N HCl, +110oC’de 24 saat ısıtma)2. Karışımdaki amino asitlerin ayırımı 3. Her bir amino asidin miktarının belirlenmesia) Ninhidrin Reaksiyonuα-amino grubunun en karakteristik reaksiyonu olan ninhidrin reaksiyonu amino asitlerin hem kalitatif hem de kantitatif tayininde sıklıkla kullanılan bir reaksiyondur. Bütün α-amino asitler ve peptidler bu renk reaksiyonunu verirler. Ancak bazı amino asitler mavi kompleks yerine değişik renklerle ortaya çıkarlar. Örneğin, prolin ve hidroksiprolin sarı, asparagin ise kahverengi renk oluşturur. Diğer amino asitler ise mavinin değişik tonları şeklinde kompleksler oluştururlar. b) Gazometrik ÖlçümAmino asitlerin α-amino grubu HNO2 (nitröz asit) ile reaksiyona girdiği zaman karboksilli asitlerin hidroksi türevlerini meydana getirir. Bu reaksiyon sırasında açığa çıkan N2 gazometrik olarak ölçülür. c) Kromatografik YöntemlerAmino asitleri ve peptidleri ayırmada kullanılan değişik kromatografik yöntemler vardır. Bunlar arasında kağıt kromatografisi, ince tabaka kromatografisi, iyon değiştirme kromatografisi, gaz kromatografisi ve yüksek basınçlı sıvı kromatografisi (HPLC) en sık kullanılanlardır. d) Elektroforetik YöntemlerYüksek elektrikli bir ortamda amino asitlerin yük ve büyüklük farklılıklarından faydalanılarak ayrılması tekniğidir. e) Amino Asit Sırası Tayinine Yönelik YöntemlerPeptid ve proteinlerin sırasının belirlenmesi birçok genetik kusurun ortaya çıkarılmasında faydalı olacaktır. Bir proteindeki amino asit sırasını belirlemek için N-terminal ya da C-terminal amino asit rezidülerine spesifik reaksiyonlar kullanılır. N-terminal amino asitlerin belirlenmesinde kullanılan yöntemler.Sanger YöntemiAlkali ortamda bir polipeptidin N-terminal amino asidinin amino grubu ile 2,4 dinitrofluorobenzen (DNF) reaksiyona girerek sarı renkli 2,4-dinitrofenol türevlerini meydana getirirler. Bu türevler elde mevcut olan amino asitlerin aynı reaktifle reaksiyona sokulmasıyla hazırlanmış olan standartları ile kağıt kromatografisi işlemine tabi tutulur. Kromatografi kağıdında elde edilen lekeler değerlendirilerek amino asidin cinsi tespit edilir. Dansil Klorür YöntemiBir polipeptidin N-terminal aminosidinin amino grubu ile floresans bir madde olan dansil klorür yüksek pH’da reaksiyona girer. Böylece dansil klorür ile işaretlenen amino asit florometrik olarak ölçülür. Bu metodla amino asit türevlerinin düşük miktarları (1 nM) bile belirlenir.Edman YöntemiEn önemli ve en çok kullanılan metoddur. Edman reaksiyonuyla sadece N-terminal ucu tanınmaz aynı zamanda bu reaksiyonun tekrarlanması ile uzun polipeptidlerin amino asit sırası tam olarak tespit edilir. Fenilizotiyosiyanat alkali ortamda peptidin N-terminal amino grubu ile reaksiyona girerek N-terminal amino asidin fenilizotiyosiyanat türevi oluşur. Sanger ve dansil klorür yöntemlerinden farklı olarak polipeptid parçalanmaz, sadece bir amino asit eksik polipeptid kalır. Daha sonra oluşan bu türev gaz kromotografisi ile tespit edilir.C-terminal amino asitlerinin belirlenmesinde kullanılan metodlarPolipeptidin C-terminal kalıntılarını tespit etmek için kullanılan metodlar N-terminali tespit etmek için kullanılanlar kadar kesin sonuç vermezler. Ancak bu amaç için kullanılan iki metod vardır.Hidrazinle parçalanma (Hidrazinoliz)Bu reaksiyon sırasında hidrazin ile C terminalindeki aminoasitler ayrılır. Karboksi peptidazla parçalanma Protein parçalayıcı bir enzim olan karboksipeptidaz bir proteindeki en son peptid bağına (C-terminal) etki ederek C-terminal amino asidinin koparılmasını sağlar. Elde edilen serbest amino asit, amino asitlere spesifik reaksiyonlarla tespit edilir. Bu işleme devam edilerek her defasında yeni bir C-terminal amino asit belirlenebilir. III. Kalitatif Amino Asit Tayin YöntemleriKalitatif amino asit tayini kan ve idrar örneklerinde yapılabilir. İdrar örnekleri günün herhangi bir saatinde alınan (rastgele) idrar örneği olabileceği gibi 24 saatlik idrar da olabilir. Hücre içi amino asit seviyesi kan dolaşımından (plazma) 10 kat daha yüksektir. Kan örneği alınırken bu özellik dikkate alınmalıdır. Amino asit seviyesine plazmada bakılır. Kan heparinize enjektörle alınmalıdır. Hemolizden sakınılmalıdır. Yapılacak DeneylerFenil Pirüvik Asit Deneyi4 ml idrar üzerine 1 ml magnezyum ayıracı (11 gr MgCl2, 14 gr NH4Cl ve 20 ml der-NH4OH/litre) konarak 5 dakika bekletilir, süzülür. Süzüntü 2 damla % 10’luk HCl ile asidik hale getirilir. 2 damla % 10’luk FeCl3 ilave edilir. Mavi-yeşil renk oluşursa deney pozitifdir. Fenilketonüride sıklıkla kullanılmaktadır. Triptofan Deneyi2 ml örnek üzerine 2 ml derişik CH3COOH ilave edilir. Bu karışımın üzerine damla damla tabaka oluşturacak şekilde tüp cidarından derişik H2SO4 sızdırılır. İki sıvının birleşme yerinde mor halkanın oluşumu örnekte triptofan bulunduğunu (pozitif reaksiyon) gösterir. (örnek: Hartnup hastalığı)Ninhidrin Deneyia) Deneyin PrensibiBu deneyde normalde sarı olan ninhidrin, amino asitlerle reaksiyona girerek mavi-menekşe rengine dönüşür ve bu metot bu renk oluşumunun tespitine dayanır.Bu reaksiyon sırasında 1. basamakta ninhidrin ile amino asit reaksiyona girerek amino asitten bir karbon eksik bir aldehit, redükte ninhidrin, NH3 ve CO2 meydana gelir. İkinci aşamada açığa çıkan NH3, bir mol okside ninhidrinle bir mol redükte ninhidrin arasında köprü kurarak mavi-mor renkli kompleks oluşturur.Ninhidrin NH2-C-COOH’daki serbest a-amino grubu ile reaksiyona girer. Bu grup tüm amino asitlerde, polipeptidlerde ya da proteinlerde bulunmaktadır. Dekarboksilasyon reaksiyonu serbest amino asitlerde meydana gelmekte iken, peptidlerde ve proteinlerde meydana gelmemektedir. Böylelikle teorik olarak yalnızca amino asitler renk değişimine neden olurlar. Ancak peptidler ya da proteinler her zaman için interferansa yol açabilirler.b) Reaktifler ve Malzemeler A. Malzemeler B. Reaktifler® Test tüpleri ® Ninhidrin Solüsyonu® Pipetler ° Ninhidrin: 0.35 g® Ocak ° 100 ml etanol® Spektrofotometre c) Deneyin Yapılışı1 ml ninhidrin solüsyonu (0.35 g ninhidrinin 100 ml etanole tamamlanması ile hazırlanır.) 5 ml numuneye (plazma) eklenir. Test tüpünün ağzı parafilm ile kapatılır. ( buharlaşmadan dolayı meydana gelebilecek kayıpları önlemek için) 2. Hafifçe karıştırılarak 4-7 dakika süreyle kaynatma işlemine tabi tutulur.3. Daha sonra soğuk su altında tutularak oda ısısına kadar soğutulur. Not: Isopropanol ya da 1/1 aseton/butanol karışımı ninhidrin solüsyonunun hazırlanmasında etanol yerine kullanılabilir.

http://www.biyologlar.com/amino-asit-tanima-reaksiyonlari-2


Biyoinformatik ve dna dizi analizi

DNA dizi analizi Dizi analizinde homoloji (benzerlik) araştırması; yeni bulunan bir dizinin bilinen tüm diğer dizilerle karşılaştırılması ve bunun sonucunda benzerlerdeki veritabanında ya da literatürde tanımlanmış bazı biyolojik işlevlerin yeni bulunan diziye yakıştırılması olarak tanımlanabilir. Bu yöntemi, genomik DNA içinden hızla ekson bulma çabasında olan pozisyonel klonlama yapan araştırma grupları tercih ederler. Bu yöntemle, dizi; benzerlikler ve protein kodlama potansiyeli yönünden araştırılarak genler belirlenir. Ve gendeki mutasyonlar ortaya konulur. İntrinsik dizi özelliklerinin araştırılması yaklaşımı ise en çok öncelikli hedefi genom dizilerini belirlemek ve üstüste çakışan dizileri (contig) birleştirmek olan dizi analizcileri tarafından kullanılır. Amaç çakışan dizilerin birleştirilmesiyle tüm gen yapısının modellenmesidir. Çoğu zaman her iki yaklaşım birlikte kullanılır. Benzerlik analizinde veritabanı araştırmaları ve dizi sıralamaları yapılırken, intrinsik analizde istatiksel özelliklerden yararlanarak eksonların belirlenmesinden protein yapısının ortaya konmasının ilk aşamalarına kadar geniş yelpazede bulgular elde edilir. Dizi bilgileri veritabanlarında iki formda bulunur Bunlardan birincisi; yazarlar/diziyi veritabanına ilk işleyenler, kaynak gösterimleri, biyolojik atıflar ve dizinin kendisiyle; intronlar, eksonlar, başlangıç ve bitiş kodonları vb bilgiyi içeren bir tablodan oluşan tam bilgi İkincisi ise; hızlı benzerlik araştırmaları için kullanılan ve sadece diziyi içeren FASTA formatıdır. Accession (ulaşma) numaraları, herbir diziyi belirleyen özgün kimliklerdir ve dizi veritabanına ilk kez girildiğinde verilir. Dizi bilgileri, patent ofisleri gibi çeşitli kaynaklardan veritabanına ulaştığından, örneğin, NCBI; non redundant (yinelenmeyen) nr (nükleotid/protein) verikümeleri oluşturmaktadır. BLAST program ailesi Veritabanlarında araştırma yapabilmek için tasarlanmış pekçok bilgisayar programı vardır. Bunlardan birisi de BLAST (Basic Local Aligment Search Tool) programıdır. Veritabanında homoloji araştırması için öncelikle uygun BLAST programının seçilmesi gerekir. BLASTN bir nükleotid dizisi ile komplementer diziyi ele alarak nükleotid dizisi veritabanlarıyla karşılaştırır. Hız amacıyla tasarlanmıştır. Yüksek duyarlılık aranan durumlar için uygun değildir. BLASTN ve BALSTX; EST verilerinin analizi, ekson yakalama yöntemi ve genomik dizi örneklemlerinin incelenmesinde kulanılır. NCBI’nın sunduğu diğer bir servis ENTREZ servisidir. ENTREZ servisinin en önemli özelliği veritabanları arasında çapraz gezinme olanağı sunmasıdır. Örneğin, bir dizi için BLAST araştırması yaptıktan sonra, ilgili gen ile ilgili literatür bilgileri MEDLINE’dan elde edilebilir. Daha sonra ilgili grafik programlarının yüklenmesi sonrasında protein yapısıyla ilgili veritabanları kullanılarak, proteinin iki veya üç boyutlu yapısı izlenebilir. Protein dizilerindeki işlevsel motifleri araştırmak amacıyla kullanılan bazı veritabanları ise PROSITE ve BLOCKS’tur. NCBI’nin bir başka alt hizmeti olan OMIM, genler ve genetik hastalıklarla ilgili ayrıntılı biyoteknolojik ve tıbbi bilgilerin bulunduğu servistir. Bu servis altında pekçok gende bugüne kadar tanımlanmış mutasyonlar ve ilgili klinik ilişkiler özetlendiğinden çok yararlıdır. Mikroarraylerle genomik yaklaşımlarda en kapsamlı proje ABD Ulusal İnsan Genom Araştırmaları Enstitüsünün Microarray projesidir (µAP). Microarray bulgularının yorumu da diğer yüksek çıktılı (highthroughput) genomik teknikler gibi biyoinformatik yöntemlerin kullanımına ihtiyaç yaratmıştır. Biyoinformatik Türkiye’de de yeni bir daldır. TUBITAK bünyesinde, Marmara Araştırma Merkezi (MAM) Gen Mühendisliği ve Biyoteknoloji Araştırma Enstitüsü diğer kuruluşlar ve uluslararası kuruluşlar arasında köprü görevi görerek ülkemizde biyoteknoloji alanında bir sanayi oluşmasına ve genişlemesine yardımcı olmaktadır.

http://www.biyologlar.com/biyoinformatik-ve-dna-dizi-analizi

BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER

Radyasyonun Biyolojik Etkileri Radyasyonun organizmaya olan etkileri akut ve kronik şekilde olmaktadır. Akut etkiler insanda radyasyona maruz kalındıktan kısa bir süre sonra klinik bulgular ile ortaya çıkmaktadırlar. Bunlar merkezi sinir sistemi (100 Sv ve üzeri), gastrointestinal (10-100 Sv) ve hemato­poietik (2-10 Sv) sendromlardır. Sendromların ortaya çıkışı absorbe edilen dozla ilişkilidir.4 Bu sendromlar bir süre sonra bireyi ölüme götürür. Radyasyonun kronik etkileri ise hücrenin ölümüne yol açmayan ancak genetik materyallerinde onarılamayan bozukluklara neden olan olaylar sonucunda ortaya çıkarlar. Kanser yapı­cı etkisi, genetik etkisi ve ömür kısaltıcı etkisi bunlara örnektir. Canlıların somatik ve genetik özellikleri kromozomlarda taşındığı için radyasyonun kromozomlarda meydana getirdiği zararlı etkiler günümüzde ve gelecekte toplum sağlığı açısından oldukça önemlidir. Dozimetri Çeşitleri ve Biyolojik Dozimetri Toplu halde veya bireysel olarak radyasyona maruz kalan bireylerin absorbe ettikleri radyasyon dozu; fiziksel veya biyolojik yöntemlerden biri ile yada her ikisiyle birlikte belirlenebilir. Bu işlem dozimetri olarak adlandırılır. Meslekleri gereği radyasyonla çalışanların fiziksel dozimetri çeşidi olan Film, Cep ve Termolüminesan dozimetrilerden birini taşımaları gerekir. Ancak fiziksel dozimetrenin vücut üzerindeki konumu nedeni ile yetersiz kalması, büyük kitlelerin zarar gördüğü toplumsal radyasyon kazalarında ise bireylerde fiziksel dozimetrenin bulunamaması ve biyolojik çeşitlilik nedeniyle kişilerin radyo duyarlılığının farklı olması biyolojik dozimetriye üstünlük sağlamakta bu nedenle de fiziksel ölçümlerin biyolojik metotlarla desteklenmesi gerekmektedir. Uluslararası Atom Enerjisi Ajansı(IAEA) radyasyon kazası durumlarında, fiziksel dozimetri ile birlikte biyolojik dozimetrinin de absorbe edilmiş dozun belirlenmesinde bağımsız olarak kullanılmasını önermiştir. Şekil 1’de dozimetri çeşitleri özetlenmiştir. Biyolojik dozimetri, genel anlamı ile kişilerin absorbe ettikleri radyasyon dozunun biyolojik indikatörler (belirleyiciler) kullanılarak ortaya çıkarılmasına denir. Biyolojik Dozimetri için ideal koşullar; 1-Dozları tahmin etmek için seçilen etkiler iyonizan radyasyonlara özgü olmalı (dientrik aberasyonları gibi), 2-Radyasyona maruz kalma sonucu oluşan etki kalıcı olmalı, eğer kalıcı değilse zamana bağlı olarak oluşan değişiklikler bilinmeli, 3-Oluşturulan kontrol doz-cevap eğrilerinde dozların aralığı mesleki ışınlamalarda olduğu gibi çok küçük dozları ve kaza durumlarında olduğu gibi birkaç Gy’e varan dozları da içermeli, 4-Farklı radyasyon kalitelerinde uygulanabilmeli (Co, X-ışını, nötron v.b), 5-Biyolojik materyal kolay elde edilebilmeli (kan gibi), 6-Ölçümler kolay ve hızlı olmalı kısa sürede sonuç elde edilmeli, 7-Kronik ve homojen olmayan ışınlamalara da uygun olmalı. Yukarıdaki özellikleri taşıyan ideal bir biyolojik dozimetri yöntemi bilinmemektedir. Fakat, insan periferal kanından lenfosit kültüründen kromozom analizinin yapılması bugün için bilinen en iyi biyolojik dozimetri yöntemidir. Biyolojik dozimetri çeşitlerinden olan kromozom dozimetrisi (sitogenetik dozimetri), kişilerin absorbe ettikleri radyasyon dozu ile insan lenfositlerinde oluşan kromozom aberasyonları arasındaki kantitatif ilişki esasına dayanır. İyonizan radyasyonların kromozomlarda oluşturdukları hasar 20.yy başlarından beri bilinmektedir. İlk olarak X-ışınlarının Drosophila'da kromozom aberasyonu oluşturduğunun bulunması ve takip eden yıllarda araştırıcıların yaptıkları çalışmalar sonucunda ilk olarak 1962 yılında kromozom aberasyonları, radyasyona maruz kalan bireylerde absorbe edilen radyasyon miktarını tespit etmek için kullanılmıştır. Kromozom aberasyonlarının absorbe radyasyon dozunun belirlenmesinde kantitatif biyolojik indikatör olarak kullanılmasından bu yana radyasyon kazaları sonunda absorbe edilmiş olan doz tayininde standartlaşmış bir yöntem olarak kullanılmaktadır. Radyasyonun canlılarda oluşturduğu etkileri değerlendirmek için başka biyolojik indikatör sistemler de geliştirilmiştir. Elekton spin rezonans, Biyokimyasal indikatörler (kıl, tükürük, saç, sperm vs), Retikülosit sayımı, Mutasyon noktalarının analizi, Monoklonal antibodyler vs. Bu tür sistemlerin çoğu örnek almadaki güçlükler, hücrelerin asenkron popülasyon (hücre siklusunun farklı evrelerinde) şeklinde bulunması ve hücrelerin yaşam sürelerinin kısa olması, yöntemin belli dozlarda etkili olması ve bazen de ışınlanma süresinin önemi nedeniyle dozimetri amacıyla rutin olarak kullanılamazlar. Biyolojik Dozimetri Amacıyla Kullanılan Kromozom Aberasyonları Unstabil (kalıcı olmayan) asimetrik kromozom aberasyonlarından olan disentrik aberasyonlar ve eşdeğerleri (trisentrik ve sentrik halka) absorbe radyasyon dozunun indikatörü olarak diğer aberasyonlara göre daha çok güvenilirdirler. Çünkü disentrik kromozom aberasyonları radyasyona özgüdürler yalnızca özel birkaç radiomimetik kimyasal (bleomisin, endoksan vs) tarafından oluşturulabilir. Doğal görülme sıklıkları (back-ground) düşüktür (1/2000) ve kolay belirlenirler. Bazı araştırıcılar doz tahminlerinde disentrik eşdeğeri kabul edilen sentrik halka (ring) kromozomları da disentriklerle birlikte kullanmaktadırlar. Sentrik halka oluşumu unstabil kromozomlarının oluşum yüzdesi içinde %5-10 civarında olduğundan doz hesaplamalarında kullanılmamaları önemli bir kayıp değildir. Serbest asentrikler, disentrik, trisentrik ve sentrik halka gibi kromozom aberasyonlarına eşlik etmez ve onlardan bağımsız olarak bulunurlar. Bu aberasyonlar radyasyon dışıetkenlerle de oluşturulabildikleri için tek başına doz tahmininde kullanılmamaktadırlar. Disentrik, trisentrik ve sentrik halka kromozom aberasyonlarının oluşumu Şekil 2’de şematize edilmiştir. Translokasyon olarak adlandırılan iki kro­mozom arasındaki simetrik değişimler de son yıllarda geliştirilen floresan boyama teknikleri (fluorescens in situ hybridisation; FISH) sayesinde biyolojik dozimetri amacıyla kullanılmaktadır. Kromatid tipi kırıklar büyük oranda kimyasal ajanlar tarafından oluşturulduğundan biyolojik dozimetri amacıyla kullanılmamaktadır. Son yıllarda yine insan periferal lenfositleri kullanılarak absorbe edilen radyasyon dozunun belirlenmesi amacıyla Mikronukleus testi çalışmaları yapılmaktadır. Mikronukleuslar sitoplazma içinde ana nukleusun dışında fakat nukleus ile şekil, yapı ve boyanma özellikleri bakımından aynı olan küçük küresel yapılardır. Radyasyona maruz kalmış lenfositlerde hasar gören kromozomlar ve onların asentrik parçaları veya mitotik iğdeki hatalar sonucu kromozomun tamamının kutuplara çekilememesi sonucu oluşurlar. Şekil 3 A’da bölünmekte olan binukleat bir hücrede kutuplara çekilemeyen bütün bir kromozom ve asentrik fragmentten mikronukleus, B’de ise yine binukleat bir hücrede disentrik köprüden nukleoplazmik köprü ve mikronukleus oluşumu şematize edilmiştir. Binukleat hücrelerdeki hücre başına düşen mikronukleus sıklığının mononukleat hücrelerdekinin iki kat olması nemlidir. Kromozom aberasyonlarının doğal oluşum sıklığı konusunda, farklı populasyonlar ile yapılan araştırmalarda özellikle disentrik sıklığında farklılıklar gözlenmiştir. Doğal disentrik oluşum sıklığının farklı bulunması, laboratuva koşulları, sayıcı ve değerlendiriciler arasındaki farklılıklar nedeniyle her biyolojik dozimetri laboratuarının kendi koşullarında, çeşitli radyasyon kalitelerinde ve farklı radyasyon dozlarında oluşturacakları kontrol doz-cevap eğrilerine sahip olmasını gerekli kılmıştır. Olası bir radyasyon kazasında alınacak radyas­yonun tipine göre, absorbe radyasyon dozunun miktarı o tipteki kontrol doz-cevap eğrilerin­den faydalanılarak bulunmaktadır. Kontrol doz-cevap eğrileri daha önce radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış sağlıklı bireyler­den alınan kanların akut ve homojen ışınlanmaları sonucunda oluşturulur. Biyolojik dozi­ metri amacıyla yapılan kontrol doz-cevap eğri­leri genellikle 50 mGy ile 4 Gy arasında yapılır. Eğriler oluşturulurken 0 ve 1 Gy arasında en az 5 doz noktasının olmasına özen gösterilir. Çünkü radyasyon kazaları genelde bu dozlar arasında meydana gelir.10 Standart eğri oluşturulurken çok küçük doz (<0.5 Gy) nokta­larında doz-cevap ilişkisini ortaya koymak için çok fazla hücre saymak gereklidir. Kalibras­yon eğrisini oluşturmak için toplam 10.000­15.000 hücre, bireysel doz tahmini yapmak için ise 500-1000 hücre saymak yeterli­dir. Elde edilen aberasyon verimi dikka­te alınarak %95 güvenilirlik sınırları içinde kontrol doz-cevap eğrisi çizilir. Aynı laboratuvar koşullarında 200 kV X-ışını ve Co­60 gamma radyasyonu ile ışınlanma sonucu oluşturulan kontrol doz-cevap eğrileri birlikte Şekil 4’de görülmektedir. GEREÇ VE YÖNTEMLER Materyalin Elde Edilmesi, Işınlanması Kontrol doz-cevap eğrilerini oluşturmak amacıyla elde edilen kan örnekleri genç, sağlıklı, sigara içmeyen, radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış bireylerden alınır. Kontrol grubu ve birinci mitozun (M1) ikinci mitoza (M2) oranını belirlemek için alınan kanlar ayrılır. Kan örnekleri steril, içleri heparin kaplı tüpler içine alınır. Eğriyi oluştururken, kullanılan doz noktalarına ait kan örnekleri radyasyon kalitesine uygun şekilde, doz hızı, dozun homojenitesi gibi kriterlere özen gösterilerek 370C’da ışınlanır. Kültür ve Tespit İşlemleri Kontrol doz-cevap eğrileri oluşturmak için ışınlanmış kan örnekleri ve radyasyona maruz kalmış bireylerde absorbe dozun tayini için alınan (~5 ml) kan örnekleri steril şartlarda, Moorhead ve arkadaşlarının mikrokültür tekniğine uygun olarak kültüre alınır. Bu yöntemde genellikle kültür stok medyumu olarak RPMI-1640+L-Glutamin, Penicilin ve Streptomicin kullanılır. Kültür ortamına mitojen olarak PHA (phytohemaglutinin) ve hücrelerin metafazda durmaları için Kolsemid kullanılır. Kültür süresi sonunda (toplam 48 saat) 0,075M KCL ile hipotonik şok uygulanır. Bu işlem sonunda 1:3 oranında asetik asit/metanol karışımı ile tespit işlemleri tamamlanır ve metafaz kromozomlarının lamlar üzerinde iyi bir şekilde dağılmaları sağlanır. % 5 Giemsa boyası ile boyanarak incelenecek duruma getirilir. Uygulanan kültür metodu Şekil 5’­de kısaca özetlenmiştir. M2/M1 Oranı ve Biyolojik Dozimetride Önemi İnsan vücudunda yaklaşık 5.2x1012 lenfosit dolaşır. Lenfositlerin % 70’i T- lenfositlerdir ve bunların yaklaşık %98’i ufak, hücre siklusunun bölünmeyen bir fazında (G0) bulunur. G0 fazında olmaları dolayısı ile biyolojik ömürleri uzundur. Metabolik olarak inaktiftirler. T-lenfositlerin kolay elde edilebilmeleri, radyasyona duyarlı olmaları, biyolojik ömürlerinin uzun olması (%90’nın yaşam süresi ortalama 3 yıl) (38) ve akut vücut ışınlamalarından 3 yıl sonra dahi lenfositlerdeki kromozom aberasyonlarının %50 sinin hala korunuyor olması, kaza üzerinden uzun yıllar geçse bile absorblanan dozun belirlenmesine olanak tanır. İnsan periferal kanında bulunan lenfositler stimüle edilerek G0 fazından çıkıp hücre siklusunda ilerlemeye başlarlar. Siklusta ilerleme hızı hücreler arasında farklılık gösterdiğinden periferal kanda senkronize olan lenfositler bölünmeye teşvik edildikleri invitro ortamda asenkron hücre popülasyonu haline gelirler. Bu yüzden bazı lenfositler M1 bölünmede iken siklusta hızlı ilerleyen bazı lenfo­sitler M2 da olurlar. Radyasyona maruz kalındıktan sonraki ilk bölünme (M1) de lenfositlerde oluşan disentrik kromozom aberasyonlarının %50’si kaybolur. Bu yüzden doz tahmini yapılırken, M1 lenfositlerde bulunan disentrik kromozom aberasyonlarının sayımı esas alınır. M2/M1 belirlenmesi için kültür ortamına BrdU (bromodeoksiüridin) ila­ve edilir. Timidin analogu olan BrdU, DNA replikasyonu esnasında timidinin yerini alır. DNA’nın yapısına girer. Floresan Plus Giemsa (FPG) boyama tekniği32 ile boyanan metafaz kromozomları Floresan mikroskopta incelenerek M2 ve M1’de olan hücreler ayırt edilir. Metodun iyi çalıştığının göstergesi olarak, M2 de olan hücreler M1den %10 daha az olmalıdır. Bu değerlerin üzerinde bulunduğunda absorbe radyasyon dozunun hesaplanmasında bazı düzeltme faktörleri kulanılır. Kültür ortamına BrdU ilave edildikten sonra DNA replikasyonu sırasında BrdU’nun DNA’nın yapısına girişi, M1 ve M2’deki hücrelerde BrdU almış kromozomların görünüşü Şekil 6’da gösterilmiştir. Kromozomların değerlendirilmesi Hazırlanan preparatlar değerlendirilirken kromozomları birbirinden belirgin olarak ayrılmış, görünüşleri düzgün ve iyi boyanmış diploid metafazlar dikkate alınır. Kromozomlar sayılırken sayıları 2n=46 ve üzeri olanlar değerlendirmeye alınır. Hücrede kararsız aberasyonlar (disentrik, sentrik halka ve serbest asentrik) bulunduğunda kromozom sayıları ile belirlenen aberasyonların birbirini dengelemesine özen gösterilir. Örneğin, hücrede bir disentrik aberasyonun varlığında ona eşlik eden bir asentrik ile sayının 46 da tutulması; bir sentrik halka bulunduğunda yine eşlik eden bir asentrik ile sayının 47 olması, bir trisentrik bulunduğunda ona eşlik eden 2 adet asentrik ile sayının 46 olması gibi durumlara dikkat edilir. Değerlendirmelerde bir trisentrik 2 disentriğe, bir sentrik halka bir disentriğe eşdeğer olarak kabul edilmektedir. 4 Gy 200 kv X-ışını uygulanan ve yukarıda anlatılan metoda uygun olarak hazırlanan ve değerlendirilen bir me­tafaz plağında disentrik ve asentrik kromozom aberasyonları Şekil 7’de görülmektedir. İstatistiksel ve Matematiksel Yöntemler Farklı iyonlaştırıcı radyasyonların eşit dozlarının birim uzaklıkta bıraktıkları enerjilerinin ve dolayısıyla oluşturdukları iyonlaşma yoğunluklarının farklı olması nedeniyle oluşturdukları kromozom aberasyonları verimleri de farklıdır. Düşük Lineer Enerji Transfer (LET)’li radyasyonların herhangi bir dozunda iyonizasyon rastgele dağılır. Kromozom hasarının da aynı olasılıkla ger­çekleştiği düşünülürse aberasyon dağılımı da rast gele olacaktır. Bu rast gele dağılımın düşük fre kanslarda meydana gelmesi Poisson dağılımı ile uygunluk gösterir. Bu bilgilere dayanarak X-ışınları ve γ gibi düşük LET’li radyasyon ile akut ve homojen ışınlanma sonucunda oluşan kromozom aberas­yonlarının Poisson dağılımına uygunluk gösterdiği belirlenmiştir. Yüksek LET’li radyasyonlarda ise iyonizasyon yoğunluğu fazla olduğundan iyonizasyon hücreler arasında rast gele dağılmaya­caktır. Yüksek LET’li radyasyonların absorblanması sonucu birbirine yakın hücrelerde birden fazla aberasyonlu hücre oluşacak ve bu oluşum Poisson dağılımından uzaklaşacaktır. Homojen olmayan ışınlamalarda ve kronik ışınlamalarda disentriklerin hücrelere dağılımlarının Poisson dağılımından sapmaları büyük olacağından Poisson’a uygunluk göstermez. Bu yüzden kontrol doz-cevap eğrileri oluşturulurken ışınlama homojenitesini kontrol etmek için disentriklerin Poisson dağılımına uygunluklarının belirlenmesi gerekir. Elde edilen aberasyon dağılımının (disentrik) Poisson'a uygunluğunu araştırmak için ilk önce her doz noktasına ait varyanslar (σ²) hesaplanır. Daha sonra varyansların aberasyon (disentrik) frekanslarına (Y) oranından elde edilen dağılım oranı (σ²/Y) bulunur. Bu dağılım oranları U testi formülünde yerine konularak her doz noktasına ait U değerleri hesaplanır. U testi sonuçlarının –1,96 ve +1,96 arasında olması dağılımların Poisson’a uygunluğunu ispatlar. Çoşkun M, Coşkun M. Biological dosimeter and related developments. Cerrahpaşa J Med 2003  

http://www.biyologlar.com/biyolojik-dozimetri-ve-ilgili-gelismeler

LİKENLERİN EKONOMİK ÖNEMLERİ

Likenler; parfümeri ve tıpta olduğu gibi ticari alanlarda yaygın olarak kullanılsa da önemleri insanlar tarafından büyük ölçüde bilinmemektedir. Geçmiş zamanlarda insanlar tarafından yemek ve boya maddesi olarak kullanılmıştırlar ancak bu kullanımlar günümüzde büyük ölçüde terk edilmiştir. Likenler otçul hayvanlar için besin zincirinde dolaylı yoldan ciddi öneme sahiptir, bunlara böcekleri içeren omurgasız hayvanlarda dahildir. Bununla birlikte likenler hava kirliliğinin önemli biyoindikatörleridirler. Bu çalışmamızda likenlerin ekonomik önemlerinden bahsederek Yerköy ilçesi civarındaki bazı liken türlerinin listesi verilmiştir. Ülkemiz liken florası henüz belirlenememiştir. Bununla birlikte ülkemizde likenler ile ilgili ilk çalışmalara 1800’lü yılların ortalarında yabancılar tarafından başlanmıştır. Bunlar tür listesi şeklindedir (1-5). Son yıllarda ise özellikle ülkemiz araştırmacılarının dikkatini çekmiş ve likenler ile ilgili çalışmalar günümüzde de çoğalarak devam etmektedir (6-15). Oldukça geniş ekonomik öneme sahip olmaları ve hava kirliliğinin belirlenmesinde biyoindikatör olarak kullanılabilmelerinden dolayı ülkemizin liken florasını belirlemek oldukça önemlidir. Arş.Gör. M. Gökhan HALICI & Doç. Dr. Ahmet Aksoy

http://www.biyologlar.com/likenlerin-ekonomik-onemleri

Çevre Kanunu (Bölüm-1)

ÇEVRE KANUNU (1) (2) Kanun Numarası : 2872 Kabul Tarihi : 9/8/1983 Yayımlandığı R.Gazete : Tarih : 11/8/1983 Sayı : 18132 Yayımlandığı Düstur Tertip : 5 Cilt : 22 Sayfa : 499 BİRİNCİ BÖLÜM Amaç, Tanımlar ve İlkeler Amaç: Madde 1 – (Değişik: 26/4/2006 – 5491/1 md.) Bu Kanunun amacı, bütün canlıların ortak varlığı olan çevrenin, sürdürülebilir çevre ve sürdürülebilir kalkınma ilkeleri doğrultusunda korunmasını sağlamaktır. Tanımlar: Madde 2 – (Değişik: 26/4/2006 – 5491/2 md.) Bu Kanunda geçen terimlerden; Çevre: Canlıların yaşamları boyunca ilişkilerini sürdürdükleri ve karşılıklı olarak etkileşim içinde bulundukları biyolojik, fiziksel, sosyal, ekonomik ve kültürel ortamı, Çevre korunması: Çevresel değerlerin ve ekolojik dengenin tahribini, bozulmasını ve yok olmasını önlemeye, mevcut bozulmaları gidermeye, çevreyi iyileştirmeye ve geliştirmeye, çevre kirliliğini önlemeye yönelik çalışmaların bütününü, Çevre kirliliği: Çevrede meydana gelen ve canlıların sağlığını, çevresel değerleri ve ekolojik dengeyi bozabilecek her türlü olumsuz etkiyi, Sürdürülebilir çevre: Gelecek kuşakların ihtiyaç duyacağı kaynakların varlığını ve kalitesini tehlikeye atmadan, hem bugünün hem de gelecek kuşakların çevresini oluşturan tüm çevresel değerlerin her alanda (sosyal, ekonomik, fizikî vb.) ıslahı, korunması ve geliştirilmesi sürecini, Sürdürülebilir kalkınma: Bugünkü ve gelecek kuşakların, sağlıklı bir çevrede yaşamasını güvence altına alan çevresel, ekonomik ve sosyal hedefler arasında denge kurulması esasına dayalı kalkınma ve gelişmeyi, Alıcı ortam: Hava, su, toprak ortamları ile bu ortamlarla ilişkili ekosistemleri, Doğal varlık: Bütün bitki, hayvan, mikroorganizmalar ile bunların yaşama ortamlarını, Doğal kaynak: Hava, su, toprak ve doğada bulunan cansız varlıkları, (1)19/10/1989 tarih ve 383 sayılı KHK'nin 25 inci maddesi; bu Kanun ile Çevre Müsteşarlığına verilen yetkilerin, Özel Çevre Koruma Kurumu Başkanlığına geçeceğini hüküm altına almıştır. (2)9/8/1991 tarih ve 443 sayılı KHK'nin geçici 1 inci maddesi ile çeşitli mevzuatta geçen "Çevre Müsteşarlığı" ve "Çevreden Sorumlu Devlet Bakanlığı" ibareleri "Çevre Bakanlığı", "Çevreden Sorumlu Devlet Bakanı" ve "Çevre Müsteşarı" ibareleri "Çevre Bakanı" olarak değiştirilmiştir. Kirleten: Faaliyetleri sırasında veya sonrasında doğrudan veya dolaylı olarak çevre kirliliğine, ekolojik dengenin ve çevrenin bozulmasına neden olan gerçek ve tüzel kişileri, Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, Atıksu: Evsel, endüstriyel, tarımsal ve diğer kullanımlar sonucunda kirlenmiş veya özellikleri kısmen veya tamamen değişmiş suları, Atıksu altyapı tesisleri: Evsel ve/veya endüstriyel atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve alıcı ortama verilmesinin sağlandığı sistem ve tesislerin tamamını, Arıtma tesisi: Her türlü faaliyet sonucu oluşan katı, sıvı ve gaz halindeki atıkların yönetmeliklerde belirlenen standartları sağlayacak şekilde arıtıldığı tesisleri, Ekolojik denge: İnsan ve diğer canlıların varlık ve gelişmelerini doğal yapılarına uygun bir şekilde sürdürebilmeleri için gerekli olan şartların bütününü, Sulak alan: Doğal veya yapay, devamlı veya geçici, suları durgun veya akıntılı, tatlı, acı veya tuzlu, denizlerin gelgit hareketlerinin çekilme devresinde altı metreyi geçmeyen derinlikleri kapsayan, başta su kuşları olmak üzere canlıların yaşama ortamı olarak önem taşıyan bütün sular, bataklık, sazlık ve turbiyeler ile bu alanların kıyı kenar çizgisinden itibaren kara tarafına doğru ekolojik açıdan sulak alan kalan yerleri, Biyolojik çeşitlilik: Ekosistemlerin, türlerin, genlerin ve bunlar arasındaki ilişkilerin tamamını, Atık: Herhangi bir faaliyet sonucunda oluşan, çevreye atılan veya bırakılan her türlü maddeyi, Katı atık: Üreticisi tarafından atılmak istenen ve toplumun huzuru ile özellikle çevrenin korunması bakımından, düzenli bir şekilde bertaraf edilmesi gereken katı atık maddeleri, Evsel katı atık: Tehlikeli ve zararlı atık kapsamına girmeyen konut, sanayi, işyeri, piknik alanları gibi yerlerden gelen katı atıkları, Tehlikeli atık: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan atıklar ve bu atıklarla kirlenmiş maddeleri, Tehlikeli kimyasallar: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan her türlü kimyasal madde ve ürünleri, Kirli balast: Duran veya seyir halindeki tankerden, gemiden veya diğer deniz araçlarından su üzerine bırakıldığında; su üstünde veya bitişik sahil hattında petrol, petrol türevi veya yağ izlerinin görülmesine neden olan veya su üstünde ya da su altında renk değişikliği oluşturan veya askıda katı madde/emülsiyon halinde maddelerin birikmesine yol açan balast suyunu, Çevresel etki değerlendirmesi: Gerçekleştirilmesi plânlanan projelerin çevreye olabilecek olumlu ve olumsuz etkilerinin belirlenmesinde, olumsuz yöndeki etkilerin önlenmesi ya da çevreye zarar vermeyecek ölçüde en aza indirilmesi için alınacak önlemlerin, seçilen yer ile teknoloji alternatiflerinin belirlenerek değerlendirilmesinde ve projelerin uygulanmasının izlenmesi ve kontrolünde sürdürülecek çalışmaları, Proje tanıtım dosyası: Gerçekleşmesi plânlanan projenin yerini, özelliklerini, olası olumsuz etkilerini ve öngörülen önlemleri içeren, projeyi genel boyutları ile tanıtan bilgi ve belgeleri içeren dosyayı, Stratejik çevresel değerlendirme: Onaya tâbi plân ya da programın onayından önce plânlama veya programlama sürecinin başlangıcından itibaren, çevresel değerlerin plân ve programa entegre edilmesini sağlamak, plân ya da programın olası çevresel etkilerini en aza indirmek ve karar vericilere yardımcı olmak üzere katılımcı bir yaklaşımla sürdürülen ve yazılı bir raporu da içeren çevresel değerlendirme çalışmalarını, Çevre yönetimi: İdarî, teknik, hukukî, politik, ekonomik, sosyal ve kültürel araçları kullanarak doğal ve yapay çevre unsurlarının sürdürülebilir kullanımını ve gelişmesini sağlamak üzere yerel, bölgesel, ulusal ve küresel düzeyde belirlenen politika ve stratejilerin uygulanmasını, Çevre yönetim birimi/Çevre görevlisi: Bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemeler uyarınca denetime tâbi tesislerin faaliyetlerinin mevzuata uygunluğunu, alınan tedbirlerin etkili olarak uygulanıp uygulanmadığını değerlendiren, tesis içi yıllık denetim programları düzenleyen birim ya da görevliyi, Çevre gönüllüsü: Bakanlıkça, uygun niteliklere sahip kişiler arasından seçilen ve bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemelere aykırı faaliyetleri Bakanlığa iletmekle görevli ve yetkili kişiyi, Hassas alan: Ötrofikasyon riski yüksek olan ve Bakanlıkça belirlenecek kıyı ve iç su alanlarını, Çevreye ilişkin bilgi: Su, hava, toprak, bitki ve hayvan varlığı ile bunları olumsuz olarak etkileyen veya etkileme ihtimali bulunan faaliyetler ve alınan idarî ve teknik önlemlere ilişkin olarak mevcut bulunan her türlü yazılı, sözlü veya görüntülü bilgi veya veriyi, İş termin plânı: Atıksu ve evsel nitelikli katı atık kaynaklarının yönetmelikte belirtilen alıcı ortam deşarj standartlarını sağlamak için yapmaları gereken atıksu arıtma tesisi ve/veya kanalizasyon gibi altyapı tesisleri ile katı atık bertaraf tesislerinin gerçekleştirilmesi sürecinde yer alan yer seçimi, proje, ihale, inşaat, işletmeye alma gibi işlerin zamanlamasını gösteren plânı, Risk değerlendirmesi: Belirli kimyasal madde ya da maddelerin potansiyel tehlikelerinin belirlenmesi ve sonuçlarının hesaplanması yönünde kullanılan yöntemler bütününü, İyonlaştırıcı olmayan radyasyon: İyonlaşmaya neden olmayan elektromanyetik dalgaları, Elektromanyetik alan: Elektrik ve manyetik alan bileşenleri olan dalgaların oluşturduğu alanı, Koku: İnsanda koku alma duygusunu harekete geçiren ve kokunun algılanmasına neden olan uçucu maddelerin yarattığı etkiyi, Hava kalitesi: İnsan ve çevresi üzerine etki eden hava kirliliğinin göstergesi olan, çevre havasında mevcut hava kirleticilerin artan miktarıyla azalan kalitelerini, Bakanlık: Çevre ve Orman Bakanlığını, ifade eder. İlkeler: Madde 3 –(Değişik: 26/4/2006 – 5491/3 md.) Çevrenin korunmasına, iyileştirilmesine ve kirliliğinin önlenmesine ilişkin genel ilkeler şunlardır: a) Başta idare, meslek odaları, birlikler ve sivil toplum kuruluşları olmak üzere herkes, çevrenin korunması ve kirliliğin önlenmesi ile görevli olup bu konuda alınacak tedbirlere ve belirlenen esaslara uymakla yükümlüdürler. b) Çevrenin korunması, çevrenin bozulmasının önlenmesi ve kirliliğin giderilmesi alanlarındaki her türlü faaliyette; Bakanlık ve yerel yönetimler, gerekli hallerde meslek odaları, birlikler ve sivil toplum kuruluşları ile işbirliği yaparlar. c) Arazi ve kaynak kullanım kararlarını veren ve proje değerlendirmesi yapan yetkili kuruluşlar, karar alma süreçlerinde sürdürülebilir kalkınma ilkesini gözetirler. d) Yapılacak ekonomik faaliyetlerin faydası ile doğal kaynaklar üzerindeki etkisi sürdürülebilir kalkınma ilkesi çerçevesinde uzun dönemli olarak değerlendirilir. e) Çevre politikalarının oluşmasında katılım hakkı esastır. Bakanlık ve yerel yönetimler; meslek odaları, birlikler, sivil toplum kuruluşları ve vatandaşların çevre hakkını kullanacakları katılım ortamını yaratmakla yükümlüdür. f) Her türlü faaliyet sırasında doğal kaynakların ve enerjinin verimli bir şekilde kullanılması amacıyla atık oluşumunu kaynağında azaltan ve atıkların geri kazanılmasını sağlayan çevre ile uyumlu teknolojilerin kullanılması esastır. g) Kirlenme ve bozulmanın önlenmesi, sınırlandırılması, giderilmesi ve çevrenin iyileştirilmesi için yapılan harcamalar kirleten veya bozulmaya neden olan tarafından karşılanır. Kirletenin kirlenmeyi veya bozulmayı durdurmak, gidermek veya azaltmak için gerekli önlemleri almaması veya bu önlemlerin yetkili makamlarca doğrudan alınması nedeniyle kamu kurum ve kuruluşlarınca yapılan gerekli harcamalar 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre kirletenden tahsil edilir. h) Çevrenin korunması, çevre kirliliğinin önlenmesi ve giderilmesi için uyulması zorunlu standartlar ile vergi, harç, katılma payı, yenilenebilir enerji kaynaklarının ve temiz teknolojilerin teşviki, emisyon ücreti ve kirletme bedeli alınması, karbon ticareti gibi piyasaya dayalı mekanizmalar ile ekonomik araçlar ve teşvikler kullanılır. ı) Bölgesel ve küresel çevre sorunlarının çözümüne yönelik olarak taraf olduğumuz uluslararası anlaşmalar sonucu ortaya çıkan ulusal hak ve yükümlülüklerin yerine getirilmesi için gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. Gerçek ve tüzel kişiler, bu düzenlemeler sonucu ortaya çıkabilecek maliyetleri karşılamakla yükümlüdür. j) Çevrenin korunması, çevre kirliliğinin önlenmesi ve çevre sorunlarının çözümüne yönelik gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. 2690 sayılı Türkiye Atom Enerjisi Kurumu Kanunu kapsamındaki konular Türkiye Atom Enerjisi Kurumu tarafından yürütülür. İKİNCİ BÖLÜM Yüksek Çevre Kurulu ve Görevleri(1) Yüksek Çevre Kurulu(1) Madde 4 – (Mülga: 9/8/1991 - KHK - 443/43 md.; Yeniden düzenleme: 26/4/2006 – 5491/4 md.) Başbakanın başkanlığında, Başbakanın bulunmadığı zamanlarda Çevre ve Orman Bakanının başkanlığında, Başbakanın belirleyeceği sayıda bakan ile Bakanlık Müsteşarından oluşan Yüksek Çevre Kurulu kurulmuştur. Diğer bakanlar gündeme göre Kurul toplantılarına başkan tarafından çağrılabilir. Kurul yılda en az bir defa toplanır. Kurulun sekretarya hizmetleri Bakanlıkça yürütülür. Kurulun çalışmaları ile ilgili konularda ön hazırlık ve değerlendirme yapmak üzere, Bakanlık Müsteşarının başkanlığında ilgili bakanlık müsteşarları, diğer kurum ve kuruluşların en üst düzey yetkili amirlerinin katılımı ile toplantılar düzenlenir. Bu toplantılara gündeme göre ilgili kamu kurumu niteliğindeki kuruluşların birlik temsilcileri, meslek kuruluşları, sivil toplum kuruluşları, yerel yönetim temsilcileri, üniversite temsilcileri ve bilimsel kuruluşların temsilcileri davet edilir. Kurulun çalışma usûl ve esasları ile diğer hususlar yönetmelikle belirlenir. Yüksek Çevre Kurulunun görevleri(1) Madde 5 – (Mülga: 13/3/1990 - KHK - 409/12 md.; Yeniden düzenleme: 26/4/2006 – 5491/5 md.) Yüksek Çevre Kurulunun görevleri şunlardır: a) Etkin bir çevre yönetiminin sağlanması için hedef, politika ve strateji belirlemek. b) Sürdürülebilir kalkınma ilkesi çerçevesinde ekonomik kararlara çevre boyutunun dahil edilmesine imkân veren hukukî ve idarî tedbirleri belirlemek. c) Birden fazla bakanlık ve kuruluşu ilgilendiren çevre konularına ilişkin uyuşmazlıklarda nihai kararı vermek. Madde 6 – 7 – (Mülga: 8/6/1984 - KHK 222/30 md.) ÜÇÜNCÜ BÖLÜM Çevre Korunmasına İlişkin Önlemler ve Yasaklar Kirletme yasağı: Madde 8 – Her türlü atık ve artığı, çevreye zarar verecek şekilde, ilgili yönetmeliklerde belirlenen standartlara ve yöntemlere aykırı olarak doğrudan ve dolaylı biçimde alıcı ortama vermek, depolamak, taşımak, uzaklaştırmak ve benzeri faaliyetlerde bulunmak yasaktır. Kirlenme ihtimalinin bulunduğu durumlarda ilgililer kirlenmeyi önlemekle; kirlenmenin meydana geldiği hallerde kirleten, kirlenmeyi durdurmak, kirlenmenin etkilerini gidermek veya azaltmak için gerekli tedbirleri almakla yükümlüdürler. ______________________________ (1) 26/4/2006 tarihli ve 5491 sayılı Kanunun 4 üncü maddesiyle ikinci bölüm başlığı “Merkezi ve Mahalli İdari Bölümleri ve Görevleri”, 4 üncü madde başlığı “Merkez Çevre Kurulu” iken metne işlendiği şekilde değiştirilmiştir. Çevrenin korunması(1) Madde 9 – (Değişik: 26/4/2006 – 5491/6 md.) Çevrenin korunması amacıyla; a) Doğal çevreyi oluşturan biyolojik çeşitlilik ile bu çeşitliliği barındıran ekosistemin korunması esastır. Biyolojik çeşitliliği koruma ve kullanım esasları, yerel yönetimlerin, üniversitelerin, sivil toplum kuruluşlarının ve ilgili diğer kuruluşların görüşleri alınarak belirlenir. b) Ülke fizikî mekânında, sürdürülebilir kalkınma ilkesi doğrultusunda, koruma-kullanma dengesi gözetilerek kentsel ve kırsal nüfusun barınma, çalışma, dinlenme, ulaşım gibi ihtiyaçların karşılanması sonucu oluşabilecek çevre kirliliğini önlemek amacıyla nazım ve uygulama imar plânlarına esas teşkil etmek üzere bölge ve havza bazında 1/50.000-1/100.000 ölçekli çevre düzeni plânları Bakanlıkça yapılır, yaptırılır ve onaylanır. Bölge ve havza bazında çevre düzeni plânlarının yapılmasına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. c) Ulusal mevzuat ve taraf olduğumuz uluslararası sözleşmeler ile koruma altına alınarak koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan hassas alanların her tür ölçekteki plânlarda gösterilmesi zorunludur. Koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan alanlar, plân kararı dışında kullanılamaz. d) Ülke ve dünya ölçeğinde ekolojik önemi olan, çevre kirlenmeleri ve bozulmalarına duyarlı toprak ve su alanlarını, biyolojik çeşitliliğin, doğal kaynakların ve bunlarla ilgili kültürel kaynakların gelecek kuşaklara ulaşmasını emniyet altına almak üzere gerekli düzenlemelerin yapılabilmesi amacıyla, Özel Çevre Koruma Bölgesi olarak tespit ve ilan etmeye, bu alanlarda uygulanacak koruma ve kullanma esasları ile plân ve projelerin hangi bakanlıkça hazırlanıp yürütüleceğini belirlemeye Bakanlar Kurulu yetkilidir. Bu bölgelere ilişkin plân ve projelerde; 3/5/1985 tarihli ve 3194 sayılı İmar Kanununun 9 uncu maddesi, 4/4/1990 tarihli ve 3621 sayılı Kıyı Kanununun plân onama yetkisini düzenleyen hükümleri, 21/7/1983 tarihli ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun 8 inci maddesinin tabiat varlıkları, doğal sit alanları ve bunların korunma alanlarının tespit ve tescili dışında kalan yetkileri düzenleyen hükümleri ile aynı Kanunun 17 nci maddesinin (a) bendi hükümleri uygulanmaz. e) Sulak alanların doğal yapılarının ve ekolojik dengelerinin korunması esastır. Sulak alanların doldurulması ve kurutulması yolu ile arazi kazanılamaz. Bu hükme aykırı olarak arazi kazanılması halinde söz konusu alan faaliyet sahibince eski haline getirilir. Sulak alanların korunması ve yönetimine ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. f) Biyolojik çeşitliliğin sürdürülebilirliliğinin sağlanması bakımından nesli tehdit veya tehlike altında olanlar ile nadir bitki ve hayvan türlerinin korunması esas olup, mevzuata aykırı biçimde ticarete konu edilmeleri yasaktır. g) Doğal kaynakların ve varlıkların korunması, kirliliğinin ve tahribatının önlenmesi ve kalitesinin iyileştirilmesi için gerekli idarî, hukukî ve teknik esaslar Bakanlık tarafından belirlenir. h) Ülkenin deniz, yeraltı ve yerüstü su kaynaklarının ve su ürünleri istihsal alanlarının korunarak kullanılmasının sağlanması ve kirlenmeye karşı korunması esastır. Atıksu yönetimi ile ilgili politikaların oluşturulması ve koordinasyonunun sağlanması Bakanlığın sorumluluğundadır. Su ürünleri istihsal alanları ile ilgili alıcı ortam standartları Tarım ve Köyişleri Bakanlığınca belirlenir. Denizlerde yapılacak balık çiftlikleri, hassas alan niteliğindeki kapalı koy ve körfezler ile doğal ve arkeolojik sit alanlarında kurulamaz. Alıcı su ortamlarına atıksu deşarjlarına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. ı) Çevrenin korunması ve kamuoyunda çevre bilincinin geliştirilmesi amacıyla, okul öncesi eğitimden başlanarak Millî Eğitim Bakanlığına bağlı örgün eğitim kurumlarının öğretim programlarında çevre ile ilgili konulara yer verilmesi esastır. –––––––––––––––––––– (1) Bu madde başlığı “Çevre Korunması” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 6 ncı maddesiyle metne işlendiği şekilde değiştirilmiştir. Yaygın eğitime yönelik olarak, radyo ve televizyon programlarında da çevrenin önemine ve çevre bilincinin geliştirilmesine yönelik programlara yer verilmesi esastır. Türkiye Radyo - Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20’sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu, görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. j) Çevre ile ilgili olarak toplanan her türlü kaynak ve gelir, tahsisi mahiyette olup, öncelikle çevrenin korunması, geliştirilmesi, ıslahı ve kirliliğin önlenmesi için kullanılır. Çevresel etki değerlendirilmesi: Madde 10 – (Değişik: 26/4/2006 – 5491/7 md.) Gerçekleştirmeyi plânladıkları faaliyetleri sonucu çevre sorunlarına yol açabilecek kurum, kuruluş ve işletmeler, Çevresel Etki Değerlendirmesi Raporu veya proje tanıtım dosyası hazırlamakla yükümlüdürler. Çevresel Etki Değerlendirmesi Olumlu Kararı veya Çevresel Etki Değerlendirmesi Gerekli Değildir Kararı alınmadıkça bu projelerle ilgili onay, izin, teşvik, yapı ve kullanım ruhsatı verilemez; proje için yatırıma başlanamaz ve ihale edilemez. Petrol, jeotermal kaynaklar ve maden arama faaliyetleri, Çevresel Etki Değerlendirmesi kapsamı dışındadır. Çevresel Etki Değerlendirmesine tâbi projeler ve Stratejik Çevresel Değerlendirmeye tâbi plân ve programlar ve konuya ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. İzin alma, arıtma ve bertaraf etme yükümlülüğü (1) Madde 11 – (Değişik: 26/4/2006 – 5491/8 md.) Üretim, tüketim ve hizmet faaliyetleri sonucunda oluşan atıklarını alıcı ortamlara doğrudan veya dolaylı vermeleri uygun görülmeyen tesis ve işletmeler ile yerleşim birimleri atıklarını yönetmeliklerde belirlenen standart ve yöntemlere uygun olarak arıtmak ve bertaraf etmekle veya ettirmekle ve öngörülen izinleri almakla yükümlüdürler. Birinci fıkrada belirtilen yükümlülüğü bulunan tesis ve işletmeler ile yerleşim birimlerine; 1) İnşaat ruhsatı aşamasında bu yükümlülüğünü yerine getireceğini gösterir proje ve belgeleri ilgili kuruma sunmadıkça inşaat ruhsatı verilmez. 2) İnşaatı bitmiş olanlardan, bu yükümlülüğü yerine getirmeyenlere işletme ruhsatı ve/veya yapı kullanma ruhsatı verilmez. 3) İnşaat ruhsatına, yapı kullanma veya işletme ruhsatını haiz olmakla birlikte arıtma ve bertaraf yükümlülüklerini yerine getirmemeleri halinde, verilmiş yapı kullanma izni veya işletme izni iptal edilir. Faaliyetlerinde değişiklik yapmayı ve/veya tesislerini büyütmeyi plânlayan gerçek ve tüzel kişiler yönetmelikle belirlenen usûl ve esaslar çerçevesinde atıklarını arıtma veya bertaraf etme yükümlülüğünü yerine getirmek zorundadırlar. Atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve arıtılmış atıksuların bertarafının sağlandığı atıksu altyapı sistemlerinin kurulması, bakımı, onarımı, ıslahı ve işletilmesinden; büyükşehirlerde 20/11/1981 tarihli ve 2560 sayılı İstanbul Su ve Kanalizasyon İdaresi Genel Müdürlüğü Kuruluş ve Görevleri Hakkında Kanunla belirlenen kuruluşlar, belediye ve mücavir alan sınırları içinde belediyeler, bunların dışında iskâna konu her türlü kullanım alanında valiliğin denetiminde bu alanları kullananlar sorumludur. Serbest ve/veya endüstri bölgelerinde bölge müdürlükleri, kültür ve turizm koruma ve gelişme bölgelerinde, turizm merkezlerinde Kültür ve Turizm Bakanlığı veya yetkili kıldığı birimler, organize sanayi bölgelerinde organize sanayi bölgesi yönetimi, küçük sanayi sitelerinde kooperatif başkanlıkları, mevcut yerleşim alanlarından kopuk olarak münferit yapılmış tatil köyü, tatil sitesi, turizm tesis alanları vb. kullanım alanlarında ise site yönetimleri veya tesis işletmecileri atıksu altyapı sistemlerinin kurulması, bakımı, onarımı ve işletilmesinden sorumludurlar. ––––––––––––––––––––– (1) Bu madde başlığı "İşletme izni ve haber verme yükümlülüğü:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 8 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. Atıksu altyapı sistemlerini kullanan ve/veya kullanacaklar, bağlantı sistemlerinin olup olmadığına bakılmaksızın, arıtma sistemlerinden sorumlu yönetimlerin yapacağı her türlü yatırım, işletme, bakım, onarım, ıslah ve temizleme harcamalarının tamamına kirlilik yükü ve atıksu miktarı oranında katılmak zorundadırlar. Bu hizmetlerden yararlananlardan, belediye meclisince ve bu maddede sorumluluk verilen diğer idarelerce belirlenecek tarifeye göre atıksu toplama, arıtma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, atıksu ile ilgili hizmetler dışında kullanılamaz. Atıksu toplama havzasının birden fazla belediye veya kurumun yetki sahasında olması halinde; atıksu arıtma tesisini işleten kurum, atıksu ile ilgili yatırım ve harcama giderlerini kirletenlerden kirlilik yükü ve atıksu miktarı nispetinde tahsil eder. Atık üreticileri uygun metot ve teknolojiler ile atıklarını en az düzeye düşürecek tedbirleri almak zorundadırlar. Atıkların üretiminin ve zararlarının önlenmesi veya azaltılması ile atıkların geri kazanılması ve geri kazanılabilen atıkların kaynağında ayrı toplanması esastır. Atık yönetim plânlarının hazırlanmasına ilişkin esaslar, Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Geri kazanım imkânı olmayan atıklar, yönetmeliklerle belirlenen uygun yöntemlerle bertaraf edilir. Büyükşehir belediyeleri ve belediyeler evsel katı atık bertaraf tesislerini kurmak, kurdurmak, işletmek veya işlettirmekle yükümlüdürler. Bu hizmetten yararlanan ve/veya yararlanacaklar, sorumlu yönetimlerin yapacağı yatırım, işletme, bakım, onarım ve ıslah harcamalarına katılmakla yükümlüdür. Bu hizmetten yararlananlardan, belediye meclisince belirlenecek tarifeye göre katı atık toplama, taşıma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, katı atıkla ilgili hizmetler dışında kullanılamaz. Üretici, ithalatçı ve piyasaya sürenlerin sorumluluğu kapsamında yükümlülük getirilen üreticiler, ithalatçılar ve piyasaya sürenler, ürünlerinin faydalı kullanım ömrü sonucunda oluşan atıklarının toplanması, taşınması, geri kazanımı, geri dönüşümü ve bertaraf edilmelerine dair yükümlülüklerinin yerine getirilmesi ve bunlara yönelik gerekli harcamalarının karşılanması, eğitim faaliyetlerinin gerçekleştirilmesi amacıyla Bakanlığın koordinasyonunda bir araya gelerek tüzel kişiliği haiz birlikler oluştururlar. Bu kapsamda yükümlülük getirilen kurum ve kuruluşların sorumluluklarının bu birliklere devrine ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Tehlikeli atık üreticileri, yönetmelikle belirlenecek esaslara göre atıklarını bertaraf etmek veya ettirmekle yükümlüdürler. Atık geri kazanım, geri dönüşüm ve bertaraf tesislerini kurmak ve işletmek isteyen gerçek ve/veya tüzel kişiler, yönetmelikle belirlenen esaslar doğrultusunda, ürün standardı, ürünlerinin satışa uygunluğu ve piyasadaki denetimi ile ilgili izni, ilgili kurumlardan almak kaydı ile Bakanlıktan lisans almakla yükümlüdür. Evsel atıklar hariç olmak üzere, atık taşıma ve/veya toplama işlerini yapan kurum veya kuruluşlar Bakanlıktan lisans almak zorundadır. Evsel atıkların taşıma ve toplama işlerini yapan kurum ve kuruluşlar Bakanlıkça kayıt altına alınır. Atıksu arıtımı, atık bertarafı ve atık geri kazanım tesisleri yapmak amacıyla belediyelerin hizmet birlikleri kurmaları halinde, bu hizmet birliklerine araştırma, etüt ve proje konularında Bakanlıkça teknik ve malî yardım yapılır. Tesis yapım projeleri ise bu Kanunun 18 inci maddesi çerçevesinde kredi veya yardım ile desteklenebilir. Kredi borcunun geri ödenmemesi durumunda 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre takip yapılır ve öncelikle 2380 sayılı Belediyelere ve İl Özel İdarelerine Genel Bütçe Vergi Gelirlerinden Pay Verilmesi Hakkında Kanunun ek 4 üncü maddesi hükümleri çerçevesinde ilgili belediyelerin İller Bankasındaki paylarından tahsil olunur. Arıtma ve bertaraf etme yükümlülüğüne tâbi tesis ve işletmeler ile yerleşim birimleri, bu yükümlülüğe istinaden kurulması zorunlu olan arıtma ve bertaraf sistemleri, atıksu arıtma ve ön arıtma sistemleri ile atıksu altyapı sistemlerinin kurulması, onarımı, ıslahı, işletilmesi ve harcamalara katkı paylarının belirlenmesi ile ilgili usûl ve esaslar Bakanlıkça yönetmeliklerle düzenlenir. Bu konuda diğer kanunlarla verilen yetkiler saklıdır. Bu Kanunun uygulanmasını sağlamak üzere alınması gereken izinler ve bu izinlerin tâbi olacağı usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Faaliyetleri nedeniyle çevreye olumsuz etkileri olabilecek kurum, kuruluş ve işletmeler tarafından, faaliyetlerine ilişkin olası bir kaza durumunda, kazanın çevreye olumsuz etkilerini kontrol altına almak ve azaltmak üzere uygulanacak acil durum plânları hazırlanması zorunludur. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Bu plânlar dikkate alınarak Bakanlığın koordinasyonunda ilgili kurum ve kuruluşlarca yerel, bölgesel ve ulusal acil durum plânları hazırlanır. Liman, tersane, gemi bakım-onarım, gemi söküm, marina gibi kıyı tesisleri; kendi tesislerinde ve gemi ve diğer deniz araçlarında oluşan petrollü, yağlı katı atıklar ve sintine, kirli balast, slaç, slop gibi sıvı atıklar ile evsel atıksu ve katı atıkların alınması, depolanması, taşınması ve bertarafı ile ilgili işlemleri ve tesisleri yapmak veya yaptırmakla yükümlüdürler. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Denetim, bilgi verme ve bildirim yükümlülüğü(1) Madde 12 – (Değişik: 26/4/2006 – 5491/9 md.) Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki, Bakanlıkça; il özel idarelerine, çevre denetim birimlerini kuran belediye başkanlıklarına, Denizcilik Müsteşarlığına, Sahil Güvenlik Komutanlığına, 13/10/1983 tarihli ve 2918 sayılı Karayolları Trafik Kanununa göre belirlenen denetleme görevlilerine veya Bakanlıkça uygun görülen diğer kurum ve kuruluşlara devredilir. Denetimler, Bakanlığın belirlediği denetim usûl ve esasları çerçevesinde yapılır. Askerî işyerleri, askerî bölgeler ve tatbikatların bu Kanun çerçevesindeki denetimi ve neticelerine ait işlemler; Genelkurmay Başkanlığı, Millî Savunma Bakanlığı, İçişleri Bakanlığı ve Bakanlık tarafından müştereken hazırlanacak yönetmeliğe göre yürütülür. İlgililer, Bakanlığın veya denetimle yetkili diğer mercilerin isteyecekleri bilgi ve belgeleri vermek, yetkililerin yaptıracakları analiz ve ölçümlerin giderlerini karşılamak, denetim esnasında her türlü kolaylığı göstermek zorundadırlar. İlgililer, çevre kirliliğine neden olabilecek faaliyetleri ile ilgili olarak, kullandıkları hammadde, yakıt, çıkardıkları ürün ve atıklar ile üretim şemalarını, acil durum plânlarını, izleme sistemleri ve kirlilik raporları ile diğer bilgi ve belgeleri talep edilmesi halinde Bakanlığa veya yetkili denetim birimine vermek zorundadırlar. Denetim, bilgi verme ve bildirim yükümlülüğüne ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Tehlikeli kimyasallar ve atıklar(2) Madde 13 – (Değişik: 26/4/2006 – 5491/10 md.) Tehlikeli kimyasalların belirlenmesi, üretimi, ithalatı, atık konumuna gelinceye kadar geçen süreçte kullanım alanları ve miktarları, etiketlenmesi, ambalajlanması, sınıflandırılması, depolanması, risk değerlendirilmesi, taşınması ile ihracatına ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yönetmelik hükümlerine aykırı olarak piyasaya sürüldüğü tespit edilen tehlikeli kimyasallar ile bu kimyasalları içeren eşya, bunları satış ve kullanım amacıyla piyasaya süren kurum, kuruluş ve işletmelere toplattırılır ve imha ettirilir. Nakil ve imha için gereken masraflar ilgililerince karşılanır. Bu yükümlülüğün yerine getirilmemesi halinde bu masraflar, ilgili kurum, kuruluş ve işletmelerden 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Başbakanlık Dış Ticaret Müsteşarlığı bazı yakıtların, maddelerin, atıkların, tehlikeli kimyasallar ile bu kimyasalları içeren eşyaların ithalini, Bakanlığın görüşünü alarak yasaklayabilir veya kontrole tâbi tutabilir. Tehlikeli atıkların ithalatı yasaktır. Tehlikeli atıkların tanımı ile tehlikeli atıkların oluşum aşamasından itibaren toplanması, ayrılması, geçici ve ara depolanması, geri kazanılması, yeniden kullanılması, taşınması, bertarafı, bertaraf sonrası kontrolü, ihracatı, transit geçişi, ambalajlanması, etiketlenmesi, denetimi ve atık yönetim plânlarının hazırlanması ile ilgili usûl ve esaslar Bakanlıkça yayımlanacak yönetmelikle belirlenir. Tehlikeli kimyasalların üretimi, satışı, depolanması, kullanılması ve taşınması faaliyetleri ile tehlikeli atıkların toplanması, taşınması, geçici ve ara depolanması, geri kazanımı, yeniden kullanılması ve bertarafı faaliyetlerinde bulunanlar, bu Kanun ile getirilen yükümlülükler açısından müteselsilen sorumludurlar. Sorumlular bu Kanunda belirtilen meslekî faaliyetleri nedeniyle oluşacak bir kaza dolayısıyla üçüncü şahıslara verebilecekleri zararlara karşı tehlikeli kimyasal ve tehlikeli atık malî sorumluluk sigortası yaptırmak zorunda olup, faaliyetlerine başlamadan önce Bakanlıktan gerekli izni alırlar. Sigorta yaptırma zorunluluğuna uymayan kurum, kuruluş ve işletmelere bu faaliyetler için izin verilmez. –––––––––––––––––––– (1) Bu madde başlığı "Denetim" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 9 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. (2) Bu madde başlığı”Zararlı kimyasal maddeler:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 10 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. Bu maddede öngörülen zorunlu malî sorumluluk sigortası, malî yeterliliklerine göre, Hazine Müsteşarlığınca belirlenen sigorta şirketleri tarafından ya da bağlı olduğu Bakanın onayı ile Hazine Müsteşarlığınca çıkarılacak bir yönetmelikle oluşturulacak bir havuz tarafından temin edilir. Havuzun yönetim ve işleyişi ile ilgili usûl ve esaslar da aynı yönetmelikle belirlenir. Havuz, sigorta ve/veya reasürans havuzu şeklinde oluşturulur. Kamu adına havuzda belirli bir payın korunmasına karar verilmesi hususunda Hazine Müsteşarlığının bağlı bulunduğu Bakan yetkilidir. Havuzun başlangıç giderleri için geri ödenmek üzere Hazine Müsteşarlığı bütçesinden avans kullandırılabilir. Havuzun yükümlülükleri; prim gelirleri ve bunların getirileri, piyasalardan sağlayacağı reasürans ve benzeri korumalar ve ödeme gücüyle sınırlıdır. Bakanlık, Hazine Müsteşarlığının uygun görüşünü almak kaydıyla, tehlikeli kimyasallar ve tehlikeli atıklarla ilgili faaliyetlerde bulunanların malî sorumluluk sigortası yaptırma zorunluluğunu, bu sigortaya ilişkin genel şartlar ile tarife ve talimatların yürürlüğe girmesinden itibaren en çok bir yıl ertelemeye yetkilidir. Her bir sorumlu tarafından yaptırılacak malî sorumluluk sigortasına ilişkin sigorta genel şartları Hazine Müsteşarlığınca onaylanır. Malî sorumluluk sigortası tarife ve talimatları Hazine Müsteşarlığının bağlı olduğu Bakan tarafından tespit edilir. Hazine Müsteşarlığının bağlı olduğu Bakan tarifeyi serbest bırakmaya yetkilidir. Gürültü: Madde 14 – (Değişik: 26/4/2006 – 5491/11 md.) Kişilerin huzur ve sükununu, beden ve ruh sağlığını bozacak şekilde ilgili yönetmeliklerle belirlenen standartlar üzerinde gürültü ve titreşim oluşturulması yasaktır. Ulaşım araçları, şantiye, fabrika, atölye, işyeri, eğlence yeri, hizmet binaları ve konutlardan kaynaklanan gürültü ve titreşimin yönetmeliklerle belirlenen standartlara indirilmesi için faaliyet sahipleri tarafından gerekli tedbirler alınır. Faaliyetlerin durdurulması: Madde 15 – (Değişik: 26/4/2006 – 5491/12 md.) Bu Kanun ve bu Kanun uyarınca yayımlanan yönetmeliklere aykırı davrananlara söz konusu aykırı faaliyeti düzeltmek üzere Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından bir defaya mahsus olmak üzere esasları yönetmelikle belirlenen ve bir yılı aşmamak üzere süre verilebilir. Faaliyet; süre verilmemesi halinde derhal, süre verilmesi durumunda, bu süre sonunda aykırılık düzeltilmez ise Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından kısmen veya tamamen, süreli veya süresiz olarak durdurulur. Çevre ve insan sağlığı yönünden tehlike yaratan faaliyetler süre verilmeksizin durdurulur. Çevresel Etki Değerlendirmesi incelemesi yapılmaksızın başlanan faaliyetler Bakanlıkça, proje tanıtım dosyası hazırlanmaksızın başlanan faaliyetler ise mahallin en büyük mülkî amiri tarafından süre verilmeksizin durdurulur. Süre verilmesi ve faaliyetin durdurulması, bu Kanunda öngörülen cezaların uygulanmasına engel teşkil etmez. Tehlikeli hallerde faaliyetin durdurulması: Madde 16 – (Mülga: 26/4/2006 – 5491/24 md.) DÖRDÜNCÜ BÖLÜM (1) Çevre Kirliliğini Önleme Fonu Fonun kurulması ve fondan yararlanma: Madde 17 – (Mülga: 21/2/2001 - 4629/6 md.) Çevre katkı payı alınması, diğer gelirler ve bütçe ödenekleri(2) Madde 18 – (Mülga: 21/2/2001 - 4629/6 md.; Yeniden düzenleme: 26/4/2006-5491/13 md.) Çevre kirliliğinin önlenmesi, çevrenin iyileştirilmesi ve çevre ile ilgili yatırımların desteklenmesi amacıyla; a) İthaline izin verilen kontrole tâbi yakıt ve atıkların CIF bedelinin yüzde biri ile hurdaların CIF bedelinin binde beşi oranında alınacak miktar, b) Büyükşehir belediyeleri su ve kanalizasyon idarelerince tahsil edilen su ve kullanılmış suları uzaklaştırma bedelinin yüzde biri, çevre katkı payı olarak tahsil edilir. Tahsil edilen bu tutarlar, ilgililerce en geç ertesi ayın onbeşine kadar ilgili mal saymanlıkları hesaplarına aktarılır ve bütçeye gelir kaydedilir. Ayrıca, yurt içi ve yurt dışından temin edilecek her türlü hibe, yardım ve bağışlar ile kredi anapara geri dönüşleri ve kredi faizleri de tahsil edilerek, Çevre ve Orman Bakanlığı Merkez Saymanlık Müdürlüğü hesabına yatırılır ve bütçeye gelir kaydedilir. Bu maddede sayılan gelirlerin tahsilatında 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümleri uygulanır. Bakanlar Kurulu (a) ve (b) bentlerinde yer alan oranları ayrı ayrı veya topluca sıfıra kadar indirmeye veya kanunî oranına kadar yükseltmeye yetkilidir. Atıksu arıtımı, atık bertarafı ve katı atık geri kazanım tesislerinin gözetim, fizibilite, etüt, proje ve inşaat işlerinin kredi veya yardım suretiyle desteklenmesi ile çevre düzeni plânlarının yapımı, hava, su ve toprak kalitesinin ölçüm ve izleme ağının oluşturulması, gürültünün önlenmesi ile ilgili etüt ve projelerin desteklenmesi, acil müdahale plânlarının hazırlanması, Çevresel Etki Değerlendirmesi faaliyetleri, havza koruma plânı çalışmaları, biyolojik çeşitliliğin korunması, çölleşme ve iklim değişikliği ile mücadele çalışmaları, stratejik çevresel değerlendirme, nesli tehlikede olan bitki ve hayvan türleri ile yaşama ortamlarının korunması, uluslararası sözleşmelerden kaynaklanan yükümlülüklerin karşılanması, çevre eğitimi ve yayını ile ilgili faaliyetler ve ihtisas komisyonları için yapılan harcamalar ile çevre kirliliğinin giderilmesi çalışmaları için Bakanlık bütçesine, yılı bütçe gelirleri içerisinde tahmin edilen yukarıdaki gelirler karşılığı ödenek öngörülür. Yukarıda sayılan gelirlerin tahsili ve bütçede öngörülen ödeneklerin kullanımı ile ilgili usûl ve esaslar, Maliye Bakanlığının uygun görüşü üzerine Bakanlıkça çıkarılacak yönetmelikle belirlenir. Fonun kullanılması: Madde 19 – (Mülga: 21/2/2001 - 4629/6 md.) –––––––––––––––––––– (1)“Dördüncü Bölüm” başlığı 21/2/2001 tarih ve 4629 sayılı Kanunun 6 ncı maddesiyle yürürlükten kaldırılmıştır. (2) Bu madde başlığı "Fonun gelirleri" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 13 üncü maddesiyle metne işlendiği şekilde değiştirilmiştir.

http://www.biyologlar.com/cevre-kanunu-bolum-1


Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Bio-Der Kanun Taslağı

KANUN TEKLİFİ TASLAĞI 657 SAYILI DEVLET MEMURLARI KANUNUNDA BİYOLOGLARIN SAĞLIK HİZMETLERİ SINIFINDAN TEKNİK HİZMETLER SINIFINA GEÇİRİLMESİ YÖNÜNDE DEĞİŞİKLİK YAPILMASINA İLİŞKİN KANUN TASARISI Madde 1. 14.07.1995 Tarih ve 657 sayılı Devlet Memurları Kanunun 36. Maddesi aşağıdaki şekilde değiştirilmiştir. II. TEKNİK HİZMETLER SINIFI Bu kanunun kapsamına giren kurumlarda meslekleriyle ilgili görevleri fiilen ifa eden ve meri hükümlere göre yüksek mühendis, mühendis, yüksek mimar, mimar sıfatını almış olanlar ile bunlardan öğretmenlik hizmetinde çalışanlar, Erkek Teknik Yüksek Öğretmen Okulu, Erkek Teknik Öğretmen Okulu ve Devlet Tatbiki Güzel Sanatlar Yüksek Okulu mezunları, İstanbul Devlet Güzel Sanatlar Akademisi ile uygulamalı Endüstri Sanatları Yüksek Okulu mezunları, Teknik Eğitim Fakültesi (Yüksek Teknik Öğretmen Okulu ve Güzel Sanatlar Fakültesi, İstanbul Devlet Tatbiki Güzel Sanatlar Yüksek Okulu), jeolog, jeofizikçi, hidrojeolog, hidrolog, jeomorfolog, kimyager, fizikçi, matematikçi, istatikçi, yöneylemci (hareket araştırmacısı), matematiksel iktisatçı (Ekonometrici), Erkek Teknik Öğretmen Okulu mezunları, fen memurları, teknikerler ve yüksek teknikerler, tütün ve müskirat eksperleri, Tarım Alet ve Makineleri Uzmanlık Yüksek Okulu mezunları ile benzeri fen bilimleri ve teknik bilimler lisansiyerleri, Mimarlık ve Mühendislik Fakültesi veya Bölümlerinden mezun olan şehir plancısı, yüksek şehir plancısı, yüksek bölge plancısı. Gazi Üniversitesi Mesleki Eğitim Fakültesi Teknoloji Bölömü İş ve Teknik Anabilim Dalı mezunları, Ankara Üniversitesi Ziraat Fakültesi Ev Ekonomisi Yüksek Okulu mezunları, üniversitelerin Arkeoloji ve Sanat Tarihi Bölümlerinin Prehistorya, Protohistorya ve Ön Aysa Arkeolojisi, Klasik Arkeoloji Anabilim Dallarından mezun olanlar üniversitelerin Fen, Fen-Edebiyat ve Mühendislik Fakültelerinden mezun BİYOLOGLAR (Biyolog, Biyoteknolog, Botanikçi, Ekolog, Entomolog, Genetikçi, Hidrobiyolog, Limnolog, Deniz Biyoloğu, Moleküler Biyolog, Mikrobiyolog, Ornitolog, Zoolog, Yaban Hayatı Biyoloğu) ibaresi eklenmiştir. Madde 2: III. SAĞLIK HİZMETLERİ VE YARDIMCI SAĞLIK HİZMETLERİ SINIFI Sağlık hizmetlerinde (Hayvan sağlığı dahil) mesleki eğitim görerek yetişmiş olan tabip, diş tabibi, eczacı, veteriner hekim gibi memurlar ile bu hizmet sahasında çalışan yüksek öğrenim görmüş fizikoterapist, tıp teknoloğu, sağlık memuru, sosyal hizmetler mütehassısı, psikolog, diyetçi, sağlık mühendisi, sağlık fizikçisi, sağlık idarecisi ile ebe ve hemşire, hemşire yardımcısı, (Fizik tedavi, laboratuvar, eczacı, diş anestezi, röntgen teknisyenleri ve yardımcıları, çevre sağlığı ve toplum sağlığı teknisyeni dahil) sağlık savaş memuru, hayvan sağlık memuru ve benzeri sağlık personelini kapsar. Biyolog ibaresi çıkarılmıştır. Madde 3: Bu kanun yayımı tarihinde yürürlüğe girer.Madde 4: Bu kanun hükümlerini Bakanlar Kurulu Yürütür. GEREKÇE: Bilindiği üzere sağlık hizmetleri sınıfında yer alan Biyologlar Sağlık Kurumlarının yanı sıra Çevre ve Orman Bakanlığı, Tarım ve Köy İşleri Bakanlığı, Bayındırlık Bakanlığı, Enerji ve Tabii Kaynaklar Bakanlığı, Adalet Bakanlığı, İçişleri Bakanlığı, Kültür ve Turizm Bakanlığı, Çalışma ve Sosyal Güvenlik Bakanlığı, Maliye Bakanlığı, Ulaştırma Bakanlığı, Başbakanlık ve Başbakanlığa bağlı kamu, kurum ve kuruluşlarda ve Denizcilik Müsteşarlığı’nda v.b kurum/kuruluşlarda aşağıdaki görevleri yapmaktadır. Biyologların Çalışma Alanları; 1. Sağlık hizmetleri veren kurum ve kuruluşlarda her türlü tıbbi analizlerin yapılmasında, tıbbi araştırma ve destek ünitelerinde, 2. Çevre koruma, kontrol ve ekolojik planlama ile ilgili alanlarda, 3. Biyoteknolojik çalışma yapan kurum ve kuruluşlarda her türlü araştırma-geliştirme ve üretim faaliyetinde, 4. Hidrobiyoloji ve su ürünleri ile ilgili araştırma ve üretim faaliyetlerinde, 5. Milli Parklar, Doğa Koruma, Yaban Hayatı Koruma ve Özel Cevre Koruma alanlarında biyoçeşitlilik (fauna ve flora), ekoloji, doğa yönetimi ve yaban hayatı uzmanı olarak, 6. Biyoloji eğitim-öğretim faaliyetleri ve Biyoloji Programlarının geliştirilmesinde, 7. ÇED (Çevresel Etki Değerlendirmesi) Raporlarının hazırlanmasında, 8. Tarım ve Ormancılık alanlarında araştırma ve geliştirme faaliyetlerinde, 9. Gıda Kontrol Laboratuvarlarında, 10. Arıtma tesislerinde, 11. Biyolojik Ürünlerle ilgili standartların belirlenmesinde, 12. Kriminoloji Laboratuvarları ve Adli Tıp ile ilgili alanlarda, 13. Gümrük Biyologu olarak, 14. Biyomedikal çalışma alanlarında, 15. İlaç ve hammaddelerinin, kozmetik ürünlerinin üretimi, kalite kontrolünde, araştırma ve geliştirme çalışmalarında, 16. Pest ve vektör canlıların kontrolüne yönelik faaliyetlerde, yerleşkelerdeki haşere mücadelesinin planlanması ve yürütülmesinde, 17. Nükleer tesisler ve radyasyon kullanılan isletmelerde, 18. Hayvanat bahçelerinde, yaban hayvanı rehabilitasyon ve barındırma tesislerinde ve petshop işletmelerinde, 19. Arberatumlar, Botanik Bahçeleri, yabani bitki türlerinin depolandığı ve işlendiği merkezlerde GEREKÇEYE ESAS YÖNETMELİKLER VE BU YÖNETMELİKLERDE BİYOLOGLARIN YETKİ TANIMLARI GIDA ve GIDA İLE TEMAS EDEN MADDE ve MALZEMELERİ ÜRETEN İŞ YERLERİNİN ÇALIŞMA İZNİ ve GIDA SİCİLİ ve ÜRETİM İZNİ İŞLEMLERİ İLE SORUMLU YÖNETİCİ İSTİHDAMI HAKKINDA YÖNETMELİK, Yetki Kanunu:5179, Yayımlandığı R.Gazete: 27.08.2004-25566 EK: 7/A (www.kkgm.gov.tr/yonetmelik/sorumlu_yonetici.html) Gıda İsletmelerinde Üretimin Niteliğine Göre Sorumlu Yönetici Olarak İstihdam Edilecek Meslek Mensupları; 5- Meyve/Sebze Ambalajlayan İş Yerleri (taze/kurutulmuş): Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Kimya Mühendisi, Kimyager, Biyolog. 7- Unlu Mamüller (simit-yufka-kadayıf-galeta...vb.), Ekmek ve Ekmek Çeşitleri, Pastacılık Ürünleri, Un, Bulgur ve Makarna Üreten İş Yerleri ile Hububat ve Bakliyat İsleyen İş Yerleri: Ziraat Mühendisi (tüm bolümler), Gıda Mühendisi, Kimya Mühendisi, Kimyager, Biyolog.13- Baharat ve Kuru Yemiş İşleyen İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Kimya Mühendisi, Kimyager, Biyolog. 17- Maya, Fermente ve Salamura Ürünleri Üreten İş Yerleri (sirke-yaprak-turşu, zeytin vb.): Ziraat Mühendisi (Gıda+Sut+Bahçe Bitkileri), Gıda Mühendisi, Biyolog.19- Su Ürünleri İşleyen İş Yerleri: Su Ürünleri Mühendisi, Ziraat Mühendisi (Gıda +Su Ürünleri+Zootekni), Gıda Mühendisi, Veteriner Hekim, Biyolog. 20- Yumurta Ambalajlayan İş Yerleri: Ziraat Mühendisi (tüm bolümler), Gıda Mühendisi, Veteriner Hekim, Biyolog, Kimya Mühendisi, Kimyager. 21- Soğuk Hava Depoları, Sade Buz Üreten İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Veteriner Hekim, Kimya Mühendisi, Kimyager, Biyolog. 23- Sadece Gıda Maddelerini Ambalajlayan İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Biyolog, Kimya Mühendisi, Kimyager. HALK SAĞLIĞI ALANINDA HAŞERELERE KARŞI İLAÇLAMA USUL VE ESASLARI HAKKINDA YÖNETMELİK, RESMİ GAZETE:27 OCAK 2005, SAYI:25709, (www.saglik.gov.tr/) Mesul müdür Madde 8- İşyeri faaliyette olduğu sürelerde bir mesul müdür bulunması zorunludur. Mesul müdür sadece bir işyerinde mesul müdürlük görevini üstlenebilir. Mesul müdürlük için Hekim, Veteriner Hekim, Eczacı, Tıbbi Teknolog, Ziraat Mühendisi, Biyolog ünvanına sahip veya entomoloji, toksikoloji alanında yüksek lisans, çevre sağlığı ve toplum sağlığı bölümü en az önlisans diplomasına sahip olunması zorunludur. Bu diplomaya sahip kişiler Bakanlık tarafından belirlenecek eğitim programına katılarak sertifika almak zorundadırlar. Mesul müdür, idari işlerden bizzat, diğer işlemlerden ise ekip sorumluları ile birlikte sorumludur. Mesul müdürün idari işlerinden, işleyişten ve sunulan hizmetin gerektirdiği alt yapı olanaklarının sağlanmasından işyeri sahipleri de bizzat sorumludurlar. ÇEVRESEL ETKİ DEĞERLENDİRME (ÇED) RAPORU HAZIRLAMADA VE ÇED BÜROSU AÇMAK İÇİN GEREKLİ YETERLİLİK ŞARTLARI HAKKINDAKİ YÖNETMELİK (www.cevreorman.gov.tr/yasa/t/25383.doc) Yeterlik Belgesi Başvurularında Aranacak Koşullar Madde 5 — Yeterlik belgesi almak isteyen kurum ve kuruluşların aşağıdaki koşulları sağlamaları zorunludur: a) Kamu veya özel sektörde mesleği ile ilgili olarak en az iki yıl çalışmış bir çevre mühendisini sürekli olarak istihdam etmeleri, b) Mühendislik ve Mimarlık Fakülteleri, Fen-Edebiyat Fakültelerinin Fizik, Kimya, Biyoloji Bölümleri ile Jeoloji, Hidrojeoloji, Zooloji, Arkeoloji, Veteriner Hekim, Kamu Yönetimi, İşletme, Ekonomi, Maliye, İktisat, Sosyoloji Bölümleri Lisans Mezunlarından farklı meslek grubundan kamu veya özel sektörde mesleği ile ilgili olarak en az iki yıl çalışmış iki personeli sürekli olarak istihdam etmeleri, c) (a) ve (b) bentlerinde belirtilen meslek dallarından; raporu hazırlayacak kurum/kuruluşların Raporunun hazırlanması, incelenmesi veya denetiminde en az üç yıl çalışmış bir personeli rapor koordinatörü olarak ÇED sürecinde görevlendirmeleri, Bu yönetmeliklerden de anlaşılacağı gibi biyologların sağlık sektörü dışında çevrenin korunmasına yönelik her türlü çalışmada Çevre mühendisleri, İnşaat mühendisleri, Şehir plancıları, Mimarlar, Jeoloji mühendisleri, Kimya mühendisleri, Kimyagerler, Ziraat mühendisleri, Gıda mühendisleri ve benzeri meslek grupları ile birlikte teknik hizmet vermektedirler. Yukarıda saydığımız meslek gruplarıyla aynı koşullarda aynı işleri (Ekolojik planlama, Ekosistem yönetimi, CED raporu hazırlama, Haşere mücadelesi, ve Biyoçeşitliliğin saptanması gibi birçok alanda arazi ve laboratuar çalışmalarına fiilen katılmaktadırlar) yapmaktadırlar. Zira Yönetmeliklerle Belirlenen Yetkilerden ve Biyologların çalışma alanlarından da anlaşılacağı üzere aynı ortamlarda aynı yetkileri paylaşan ve aynı işleri yapan mühendis, yüksek mimar, mimar, jeolog, hidrojeolog, hidrolog, jeofizikçi, fizikçi, kimyager, matematikçi, istatistikçi, yöneylemci (Hareket araştırmacısı), matematiksel iktisatçı, ekonomici ve benzeri ile teknik öğretmen okullarından mezun olup da, öğretmenlik mesleği dışında teknik hizmetlerde çalışanlar, Mimarlık ve Mühendislik Fakültesi veya Bölümlerinden mezun şehir plancısı, yüksek şehir plancısı, v.b meslek grupları, Biyologlar dışındaki meslek gruplarının Teknik Hizmetler Sınıfında, Biyologların ise (Teknik Hizmet Üretmesine rağmen) Sağlık Hizmetleri Sınıfında olması anlaşılır değildir. Çevre koruma, kontrol ve ekolojik planlama ile ilgili arazi şartlarında; biyoteknolojik çalışma yapan kurum ve kuruluşlarda her türlü araştırma-geliştirme ve üretim faaliyetinde, Hidrobiyoloji ve Su ürünleri ile ilgili araştırma ve üretim faaliyetlerinde, Milli Parklar, Doğa Koruma, Yaban Hayatı Koruma ve Özel Cevre Koruma alanlarında biyoçesitlilik (fauna ve flora), ekoloji, doğa yönetimi ve yaban hayatı uzmanı olarak, Biyoloji eğitim-öğretim faaliyetleri ve Biyoloji programlarının geliştirilmesinde, ÇED (Çevresel Etki Değerlendirmesi) raporlarının hazırlanmasında, Tarım ve Ormancılık alanlarında araştırma ve geliştirme faaliyetleri, arıtma tesislerinde çalışan Biyologların sağlık sektörü dışında birçok sektörde de yer aldıkları açıkça görülmektedir. Ayrıca Biyologlar üniversitelerin Fen, Fen-Edebiyat ve Mühendislik Fakültelerinin Biyoloji Bölümlerinden mezun olup, Fizik, Kimya, Matematik, Biyoloji ağırlıklı dersler almışlardır, Kimyager, Fizik, Matematikçi, İstatistikçi gibi birçok meslek grubuyla aynı Fakültelerden ve 4 yıllık bir eğitimle mezun olmuşlardır. EŞİT İŞE EŞİT ÜCRET POLİTİKASI VE BİYOLOGLARIN MAĞDURİYETİ Sağlık Bakanlığı dışında diğer bakanlıklar ve kamu kurum kuruluşlarında çalışan Biyologlar döner sermaye almamakta, arazi koşullarında çalışmalarına rağmen arazi tazminatından faydalanamamaktır. Bilindiği gibi 21.03.2006 tarih ve 5473 sayılı Resmi Gazetede yayımlanan “Değişik Adlar Altında İlave Ödemesi Bulunmayan Memurlara ve Sözleşmeli Personele Ek Ödeme yapılması İle Bazı Kanun ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile kimi kamu personelinin almakta olduğu aylık ücretlere değişik adlar altında iyileştirmeler yapılmış ancak burada BİYOLOGLAR yer almamış ve mağdur edilmiştir. Bakanlar Kurulu’nun 2006/10344 sayılı söz konusu Kararı, Anayasa’ya ve hukuka açıkça aykırıdır. Aynı süreçte “Biyologlar” tarafından Bakanlar Kurulu’nun 2006/10344 sayılı kararına itirazlarda bulunulmuş, Devlet Personel Başkanlığı, Maliye Bakanlığı ve ilgili kurumlara bildirilmiş gelen cevabi yazı da “Eşit işe eşit ücret” politikası kapsamında söz konusu kanuna atıfta bulunularak yapılacak düzenleme kapsamında denge tazminatı ile durumun düzeltileceği belirtilmesine rağmen yeni düzenleme ile aradaki ücret dengesizliği daha da artmış ve “Eşit ise eşit ücret” politikasına uygun olmayan şekilde meslek grubumuz mağdur edilmiştir. SONUÇ OLARAK; Çevre ve Orman Bakanlığında, Tarım ve Köy işleri Bakanlığında, Kültür ve Turizm Bakanlığı, Denizcilik Müsteşarlığı, DSİ v.b kurumlarda görev yapan tüm Biyologlar teknik uzman olarak çalışmakta olmasına rağmen EN DÜŞÜK DEVLET MEMURU MAAŞINA YAKIN MAAŞ ALMAKTA OLUP, BU DURUM “Eşit işe eşit ücret” politikası İLE BAĞDAŞMAMAKTA VE BİYOLOGLAR MAĞDUR EDİLMEKTEDİRLER. Yeni düzenlemeden önce, Çevre ve Orman Bakanlığında çalışan Biyologlar, Mühendis, Veteriner Hekim, Şehir plancısı, Mimar, Jeolog, Kimyager v.b. meslek gruplarından 300,00-350,00 TL az maaş alırlarken yeni düzenleme ile (Denge Tazminatı) birlikte aynı ortamda, benzer işleri yapan hatta aynı Fakülteden mezun ve aldıkları derslerin neredeyse üçte biri ortak olan Kimyagerlerden 500,00-700,00 TL daha az ücret alır hale gelmişlerdir. Sonuçta 1250,00 ila 1400,00 TL arasında maaş almakta olan biyologlar EN DÜŞÜK DEVLET MEMURU MAAŞINA YAKIN MAAŞ ALMAKTADIRLAR. Bu nedenle Biyologların Teknik Hizmet üretmesi nedeniyle TEKNİK HİZMETLER SINIFINA DAHİL EDİLMESİ HUSUSUNDA GEREKLİ YASAL DEĞİŞİKLİKLERİN YAPILMASINI, TÜM HAKLARIMIZ SAKLI KALMAK ÜZERE ARZ VE TALEP EDERİZ. TÜRKİYE BİYOLOGLAR DERNEĞİ

http://www.biyologlar.com/bio-der-kanun-taslagi

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Hayır, bu bir fotoğraf hilesi değil. Bu gördüğünüz kedicik, aslında bir Kimer olmayan, ama bu yazıyı yazmak için bana esin kaynağı olan Venüs. (Kaynak: Facebook) Eğer benim gibi bir kedisever iseniz, son birkaç haftadır internette dolanan çok tuhaf bir kedi resmini görmüş olabilirsiniz. Ben, resmi ilk gördüğümde, bunun kesinlikle fotoğraf hilesi olduğunu düşünmüştüm. Ancak biraz araştırınca öğrendim ki, artık kendi facebook sayfası olan Venüs isimli bu kedi bir fotoşop hilesi değil, capcanlı bir kedi. İnanmıyorsanız kendi Youtube sayfasındaki videosunu görebilirsiniz. Venüs, bir internet fenomeni olduktan sonra yayınlanan pek çok blogda kendisinden ‘kimer‘ olarak bahsediliyor. Kimer, bu yazımızda bahsedeceğımız bir tür genetik fenomen aslında.  Venüs’ün  bir kimer olup olmadığını söylemek ise çok zor. Zira bir canlıya kimer tanısı koymak için oldukça detaylı genetik analizler yapmak gerekiyor. Kedilerdeki kürk renklerini belirleyen farklı mekanizmalar var. Venüs’ün desenlerinin çok daha sık görülen bu mekanizmalardan birine bağlı ortaya çıkmış olma olasığı, bir kimer olma ihtimalinden çok daha yüksek. Bu ihtimallerden yazımızın sonunda bahsedeceğiz, ama gelin önce bu genetik duruma ismini veren Kimera’dan bahsedelim. Homeros’tan Yanartaş’a Florence Arkeoloji Müzesi, 5. yy’dan bir Kimera keykeli. ( Kaynak: Britannica Ansiklopedisi) Kimera, mitolojide antik çağda bugünkü Güney Anadolu bölgesinde yaşamış olan Likya uygarlığına ait mitolojik bir figür. Ozan Homeros’un yazdıklarına göre,  bu yaratığın gövdesi pekçok hayvanın birleşmesinden oluşmuştu: başı bir aslana, arka ayakları bir keçiye, kuyruğu ise bir sürüngene aitti.  Ağzından bir ejder gibi alevler çıkaran bu canavarı,  epik kahraman Bellerophon üzerine bindiği kanaltı atı Pegasus yardımıyla öldürmüş.   Antalya’nın Çıralı beldesindeki sönmeyen volkanik  alevler, adlarını bu canavarın ağzından çıkan  alevlerden alıyor. Bu bölgeye Yanartaş ya da Kimera adı veriliyor. Biden fazla canlının kaynaşmasından oluşmuş bu ilginç mitolojik canlı, çok nadir görülen ve oldukça şaşırtıcı olan bir genetik duruma isim babalığı yapmış durumda: Kimerizm. Kimerizm 1998 yılında, 31 yaşındaki bir anne adayı ve 41 yaşındaki bir baba adayı, tüp bebek sahibi olmak için doktora başvururlar. Tüp bebek girişimi sırasında, annenin rahmine döllenmiş üç embriyo yerleştirilmesine rağmen, çoğu tüp bebekte denemesinde olduğu gibi embriyolardan sadece bir tanesi gelişimini tamamlar ve çift, gebelik süresinin sonunda, normal doğum ile 3.46 gramlık sağlıklı bir erkek bebek sahibi olur. Yeni doğan bebeğin, sağ testisi normal olup, sol testis torbasının içi boştur. Bu bebeklerde çok sık rastlanan bir durum olduğu için bir süre, sol testisin de yerine inmesi için beklenir. Bebek 15 aylıkken, bu durumun ameliyatla düzeltilmesine karar verilir. Ameliyat sırasında, bebeğin sol kasığnda bir fıtık olduğu ve fıtık içinde bozunmuş testis benzeri bir yapının olduğu fark edilir ve bu dokular ameliyat sırasında alınır. Daha sonra yapılan patolojik incelemede, bu dokuların aslında körelmiş bir rahim ve yumurtalık kanallarına ait dokular olduğu saptanır. İleri tetkiklerde, bebeğin kanındaki akyuvar hücrelerinde iki dizi hücre olduğu tespit edilir: kadınlara özgü 46, XX ile erkeklere özgü 46, XY. CSI dizisinin 4. sezon, 23. bölümünde, dedektiflerimiz bir tecavüz zanlısını dizinin başında kan ve sperm genetik analizi birbirini tutmadığı için salıverirler. Bir kimer olan suçluyu, kolundaki Kimera dövmesi ele verir. Gene aynı yıllarda, 26 yaşındayken çocuklarına bakamadığı gerekçesiyle devlet yardımına başvuran Lydia Fairchild, bu yardımı alması için çocukların biyolojik annesi olduğunu ispat edecek olan zorunlu olan genetik testleri yaptırır. Test sonuçlarını almak için başvurduğunda, Sosyal Yardım dairesi’ndeki görevliler onu bir odaya alırlar ve “Sen kimsin?”, ” Bu çocuklar kimin çocukları, onları nereden buldun?”, ” Bu çocukların gerçek annesi kim?” sorularıyla başlayan, uzun ve yıpratıcı bir süreçten geçer. Çocukların tamamının kendi çocuğu olduğunu iddia etmesine rağmen, ifadesine inanılmaz ve hakkında devleti dolandırmaya çalışmaktan işlem yapılmaya başlanır. Tekrarlanan testler aynı sonuçları vermektedir, bu testlere göre çocuklarının DNA’sı ile kendi DNA’sı uymamaktadır. Bu konuya anlam veremeyen ve çocuklarının hastanede başka bebeklerle karışmış olmasından şüphelenmeye başlayan Lydia, bu sırada dördüncü çocuğuna hamiledir. Avukatından, doğum sırasında şahitlik etmesini ve doğar doğmaz bebeğe tetkik yapılmasını ister. Bebek anne rahminden çıkar çıkmaz kan örnekleri alınır. Sonuç gene aynıdır, yapılan DNA testine göre Lydia çocuklarının genetik annesi değildir. Bu sırada, bir başka şehirde, Karen Keegan isimli bir hasta, son dönem böbrek yetmezliğinden muzdariptir ve böbrek nakli için sıra beklemektedir. Karen’in üç oğlu da, annelerine böbreklerini bağışlamak için gönüllü olurlar. Yapılan doku uygunluk tetkiklerinin sonucu tuhaftır. Testlere göre, Karen’in oğullarından sadece biri kendisine aittir. Diğer iki oğlunun genetik yapısı tamamen farklıdır. Bu tuhaf durumu çözmek isteyen doktorlar seferber olurlar, Karen’in hemen her dokusundan örnekler alınır, ama sonuç aynıdır. Daha sonra Karen, birkaç yıl önce ameliyatla çıkarılmış olan tiroid bezinin de test edilmesini ister. Yapılan incelemelerde, Karen’in iki oğlunun genetik yapısının kendisiyle olmasa bile, birkaç yıl önce aldırdığı tiroid  beziyle aynı olduğu saptanır. Bu birbirinden ilginç vakaların ortak özelliği, her birinin Tetragametik Kimerizm adı verilen nadir bir genetik fenomen olmaları. Tetragametik kimerizm, iki farklı yumurta hücresinin, iki farklı sperm tarafından döllenmesini takiben, oluşan blastosit evresindeki ikiz embryoların birbirileri ile kaynaşması sonucunda ortaya çıkan ilginç bir fenomen. Embriyo büyüdükçe, farklı embriyolardan gelen hücre grupları farklı organların oluşumunda yer almaya başlarlar. Bir kimerin karaciğerinin bir hücre grubundan, böbreğinin de diğer embroya ait hücre grubundan köken almış olması mümkündür. Bu durumda bu iki organın genetik yapıları birbirinden farklı olacaktır. Blaschko Çizgileri Çoğu kimer, bu örnekler kadar çarpıcı deneyimler yaşamaz. Eğer birbiriyle kaynaşan iki embriyonun cinsiyeti ve fiziksel özellikleri kodlayan genleri aynıysa, tetragametik bir kimer, hayat boyu bu özelliğinin farkına varmayabilir. Bazı kimselerde,  iki gözün renginin birbirinden farklı olması gibi küçük belirtiler olabilir. Nadir olarak buradaki örneklerdeki, farklı organların farklı genetik yapıya sahip olması gibi  kimerizm vakaları da olabilir. Çoğu kimerin cildinde, ancak UV ışık altında görülen Blaschko çizgileri mevcuttur. Bu çizgiler, iki ayrı ten rengi tonu kodlayan farklı  embriyo hücrelerinin rahim içindeki gelişimleri boyunca yaşadıkları hücre göçü nedeniyle ciltte farklı iki tonun girdap benzeri desenler oluşturmasından kaynaklanır. Blaschko çizgilerini çıplak gözle görmek zordur, genelde UV ışık altında belirgindirler. Kimerizm, ilginç bir konu olması nedeniyle popüler kültürde de sıklıkla yer buluyor. CSI dizisinin 4. sezoununun 23. bölümünde, kahramanlarımız bir tecavüz zanlısının peşindedirler. Zanlıdan alınan kan örnekleri, suç mahalindeki sperm örnekleri ile karşılaştırılır. Sonuç negatiftir, iki örneğin genetik yapısı farklıdır. Zanlı salıverilmesine rağmen, tüm şüpheler genetik tanı ile aklanan bu kişiyi göstermektedir. Kahramanlarımız, zanlının kolundaki mitolojik canavar Kimera dövmesini fark edince, bu dövmeden yola çıkarak olayı çözerler. Zanlının bu defa kan hücreleri değil, başka hücrelerinden örnekler alınır, sonuç sperm analiziyle uyumludur. Adalet bir kez daha yerini bulur. Stephen King’in aynı isimli romanında uyarlanan The Dark Half ( Hayatı Emen Karanlık) isimli film, kimer bir yazarın başından geçenleri anlatıyor. Bir başka kimera öyküsü ise ünlü korku yazarı Stephen King’den. Türkçeye Hayatı Emen karanlık diye çevrilen The Dark Half romanı ve aynı isimli filmde, bir yazarın beyninde ve bedenine yaşayan ikiz kardeşinin öyküsü anlatılmaktadır. Thad isimli kahramınımız, zaman zaman bilincini kaybetmekte, bu zamanlarda, masasının üzerinde Stark isimli gizemli birinden kendisine hitaben yazılmış notlar bulmaktadır. Kitabın ilerleyen bölümlerinde Stark’ın, anne karnındayken Thad ile bütünleşen kötücül ikizi olduğu anlaşılır. X Kromozom İnaktivasyonu Gelelim, yazımızın başında bahsettiğimiz, İnternet’te milyonlarca hayranı olan Venüs’e. Her ne kadar Venüs, internette “Kimer Kedi” olarak ünlü olmuş olsa da, gerçekte kimer olma ihtimali oldukça düşük. Kimerizm, çok nadir görülen bir durum. Oysa kedilerdeki bu tip renk örgülerine neden olan ve oldukça sık görülen bir başka nedeni var: X  Kromozom  İnaktivasyonu. Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Amnion sıvısından toplanan dişi hücrelerinin hücre çekirdekleri. Okla gösterilen leke, hücre çekirdeği içinde inaktif halde paketlenmiş Barr cismi. (Kaynak:  Journal of Cell Biology, Vol 135, 1427-1440. PMID:8978813)Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Genden fakir Y kromozomunun aksine, X kromozomunda her iki cinsiyetin de hücre gelişmesinde anahtar rol üstlenen binden fazla gen mevcuttur. Ancak iki set X kromozomu hücre fonksiyonları için  gerekli değildir. Bu nedenle, dişilerde X kromozomlarından biri inaktif hale getirilir ve paketli bir halde hücre çekirdeğinin bir köşesinde durur.  Bu paketlenmiş X kromozomuna Barr Cismi adı verilir. Keselilerde genelde babadan gelen X kromozomu inaktif hale getirilirken, memelilerde anne ve babadan gelen X kromozomları hücreden hücreye değişiklik gösterecek şekilde rastgele inaktive olurlar. Kediler de memeli hayvanlardır, bu nedenle aynı insanlardaki gibi dişi kedilerde de, hücreler içindeki X kromozomlarından biri rastgele inaktif hale gelir ve Barr cismi oluşturur. Kedilerde, tüy rengini belirleyen genlerden bir tanesi X kromozmunda yer alır. Bu genin iki varyasyonu vardır. Bir tanesi (XB), kedi tüylerinin sarı olmasını sağlarken, diğeri (Xb) siyah tüyleri kodlar. Sarı tüyleri kodlayan gen, siyah tüy genine göre daha baskındır. Normalde, bu durumda, ebeveynlerinden farklı genleri alan kedilerin (genotip XBXb) tüylerinin sarı olması beklenir. Ancak,  bu şekilde heterozigot genlere sahip olan dişi kediler (XBXb), gövdelerinin farklı yerlerinde hücrelerdeki X kromozomlarından birinin rastgele inaktif olması nedeniyle sarı ve siyah lekeli olarak doğarlar. Lekeleri yama şeklinde dağınık olan bu tip kedilere tortoiseshell kediler denir. Bu renk bir kedi gördüğünüzde, o kedinin çok yüksek ihtimalle dişi olduğunu söyleyebilirsiniz. Tortoiseshell kedilerin kürklerindeki renk örgülerinin nasıl oluştuğunu bu şemada görebilirsiniz. En üst satırda, kedilerin olası genetik kombinasyonu mevcut. Dişi kedilerde ( XX), hangi kromozomun Barr Cismi halinde geldiği, kedinin kürk renginin belirlenmesinde temel rolü oynuyor. Barr cismi halinde inaktif hale gelen kromozom, resimde U şeklinde gösterilmiş. ( Kaynak: Miami Univeersitesi Biyoloji Bölümü) Peki erkek tortoiseshell kediler yok mu?  Çok nadir olsa da var. Ancak bu desene sahip kedilerinin hepsinde genetik bir problem olduğunu, çoğunun XXY gibi bir kromozom anomalisine sahip olduklarını gönül rahatlığı ile söyleyebiliriz. (Bu tip erkek kediler, genetik problemleri nedeniyle genelde kısır oluyorlar.) Elbette, çok daha nadir olabilecek bir başka ihtimal daha var: o da bu erkek kedilerin kimer olması. Venüs kadar artistik olmasa da, bir başka dişi tortoiseshell kedi. Venüs’ e baktığımızda,  yüzündeki desen her ne kadar çok ilginç de olsa, dişi bir kedi olduğu için bu desenin büyük ihtimalle yukarıda X inaktivasyonu nedeniyle oluştuğunu söylemek daha olası bir iddia olacaktır. İnternette kısa bir araştırma yaparsanız, Venüs kadar artistik olmayan pekçok yamalı yüzlü tortoiseshell kedi bulmak olası. Kimer olsun veya olmasın, gene de çok şirinler ama değil mi?   Kaynaklar: Chimera. Theoi Greek Myhtology. A True Hermaphrodite Chimera Resulting from Embryo Amalgamation after in Vitro Fertilization. Strain L., Dean J., Hamilton M., Bonthron D.  New England Journal of Medicine. 1998. 166-169. Which half is Mommy?: Tetragametic Chimerism and Trans-Subjectivity . UC Davis, Project Muse. The Stranger Within. Kate Werk. New Scientists, vol 180, issue 2421 The Tech Museum: Chimeras, Mosaicism and other fun stuff. Silence of the Fathers. Early X İnactivation. Cheng M., Disteche C. Bioessays. 2004.  26:821-824 The Genetics of Calico Cats. University of Miami, Biology Department. Yazar hakkında: Işıl Arıcan http://www.acikbilim.com/2012/09/dosyalar/kimerler-kediler-tuhafliklar.html

http://www.biyologlar.com/kimerler-kediler-ve-diger-genetik-tuhafliklar

BİTKİ GENETİK KAYNAKLARININ TOPLANMASI

Dr. Ayfer TAN Dr. Tuncer TAŞKIN Uzm. Abdullah İNAL Bitki genetik kaynakları, çevresel ve diğer baskılarla genetik erozyona uğramaktadır. Bitki genetik kaynaklarındaki çeşitliliğin saptanması, toplanması ve korunması, bitkisel çeşitliliğin sürdürülebilirliği bakımından son derece önemlidir. Genetik çeşitlilik türlerin yerel çeşitlerinin, yabani akrabalarının ve geçit formlarının birlikte bulunduğu yerlerde yoğunlaşmıştır. Türler kendi içlerinde milyonlarca genotip içerir. Toplanan örnekler toplam varyasyonun çok küçük bir modelidir. Bu nedenle, bitki genetik kaynaklarının korunmasında en geniş varyasyonu temsil edecek örneklerin toplanması önemlidir. Bitki genetik kaynakları materyali tohumla ve vejetatif çoğaltılan türleri içerdiğinden toplama prensipleri farklı olacaktır. Toplamanın amacına göre ekipte genetik bilgi birikimine sahip botanikçi, ıslahçı, agronomist, ekolojist ve taksonomistin bulunması gerekebilir. Ekip en az iki uzman kişiden oluşmalıdır. Başarılı bir toplama yapmak için iyi bir planlama, yörenin özellikleri ve hedef türler hakkında bilgi toplamak gerekir. Gerekirse hedef yöre ve türler için daha detay bilgi edinebilmek için bir sörvey programı (inceleme gezisi) düzenlenmelidir. Toplama programında zamanlama önemlidir. Böylece aşağıdaki yararlar sağlanabilir: -Uygun süre içinde en geniş genetik varyasyon toplanabilir. -Hedef türlerin olgunluk zamanları yakalanabilir. -Aynı yörede pek çok duraktan örnek toplanabilir. -Tarlalarda veya tarla kenarlarında geçit formları gözlenebilir. -Hedef türlerin yakın akrabaları gözlenebilir. -Toprak, iklim, yükseklik ve kültürel uygulamalardaki varyasyon yakalanabilir. Gerekli Ekipman Toplama programı süresince kullanılması gerekli ekipman; toplanacak materyal, iklim, yöresel koşullar, seyahat biçimi gibi etkenlerle çok yakından ilişkilidir. Toplama ekipmanı: Bitki türüne göre değişik ölçülerde bez torba, naylon torba, tohum örneklerinin konulacağı sağlam kağıt zarflar, tohum paketlerinin konulacağı kutu veya çantalar, çakı, çapa, çepin, küçük el küreği, şaşula, not defteri, kalem, silgi, kalemtraş, lastik bant, ataç, ip, tel zımba, yapıştırıcı bant, etiket, makas, el çantası, herbaryum presi, kurutma kağıdı, gazete kağıtları. Bilimsel ekipman: Altimetre, GPS, kompas, pusula, padometre, klinometre, digital fotoğraf makinesi, fon için beyaz bez, higrometre, lup, maximum-minimum termometre, harita, pH indikatör kağıtları, flora kitapları ve monograflar. Ulaşım ekipmanı: Arazi aracı, arazi koşullarına uygun giyim (tercihen çok cepli tişört gömlek ve pantolonlar, yağmurluk, şapka, güneş gözlüğü, bot vb.). Genel İlkeler Toplama stratejisinin belirlenmesinde materyalin yabani ve geçit formu, ıslah edilmemiş çeşit/primitif kültür formu, yerel çeşit/ yerel tipler olacağı hususu göz önünde bulundurulmalıdır. Bitki genetik kaynakları materyali dört değişik kaynaktan (habitat) toplanabilir: -Dağlar, vadiler, nehir yatakları, deniz kıyıları ormanlar gibi doğal alanlar, -Kültür tarlaları, tarla kenarları, -Kapama bahçeler ve ev bahçeleri, -Üretici ambarları, yerel köy dükkanları, pazarlar, aktarlar, tohumcular. Örnekleme stratejisi: Bitki genetik kaynakları materyalinin toplanmasında iki farklı örnekleme yöntemi uygulanabilmektedir: Rastgele (random) örnekleme: Genelde rastgele örnekleme yöntemi kullanılır. Örneğin bulunduğu alanda ön yargısız olarak, tüm alanı temsil edebilecek ve geniş varyasyonu içerecek şekilde örnek (tohum, soğan , rizom, yumru, çelik, aşı gözü gibi) alınmalıdır. Kültür, yabani ve geçit formları için kullanılan bu yöntem, az zamanda geniş bir alandan örnek alabilmek ve toplayıcının tüm alanı görmesini sağlaması açısından avantajlıdır. Ön yargılı (biased) örnekleme: Bu yöntemde fenotipik özellikler göz önüne alınarak örnekleme yapılır. Fenotipik durum her zaman genotipik farklılığı göstermediği için ön yargılı örneklemeden dolayı bazı genotiplerin örnek içinde yer alması güçleşebilir. Bir populasyon örneğinin bulunduğu ve ekolojik özelliklerinin kayıt edildiği yere durak adı verilir. Örneklemede, bir duraktan alınacak bitki sayısı, durak sayısı ve durakların toplama bölgesindeki dağılımı konuları ayrı bir öneme sahiptir. Genellikle genetik varyasyonun yüksek olduğu yabani türler ve geçit formları toplanırken bir duraktan toplanacak örnek sayısının belirlenmesinde duraktaki maksimum varyasyonun sağlanmasına dikkat edilmelidir. Bu nedenle etkin populasyon büyüklüğünün dikkate alınması gereklidir. Türlerin toplanmasında durak sayısını doğru belirleme açısından toplayıcı, hedeflediği toplama alanının tümünü örnekleyebilecek vejetasyon bilgisine sahip olmalıdır. Eğer yabani türlerin ve geçit formlarının toplanması hedefleniyorsa durak sayısı populasyonun büyüklüğü ve vejetasyonun değişmesine bağlı olarak yapılmalıdır. Toplama durakları hedeflenen bölge içerisinde uygun olarak dağıtılmalıdır. Bu konuda iki farklı yöntem uygulanabilir: -Durakların hedeflenen bölgedeki dağılımı homojendir (tek yıllık kültür formları için daha uygundur), -Durakların beşerli gruplar halinde olmak üzere hedeflenen bölgeye dağılımı homojendir (yabani ve geçit türleri için daha uygundur). Toplanan örneklerin sağlıklı ve hasar görmemiş olması gerekir. Tohumlu Bitkilerin Toplanması Tohumlu bitkilerin toplanmasında genel ilkeler uygulanmakta yabani ve kültür formlarına has hususlar dikkate alınmalıdır. Yabani türler ve geçit formları: Yabani türler doğal habitatlardan, yabani karakterli geçit formları ise tarla içleri ve kenarları gibi ikincil habitatlardan toplanırlar. Yabani ve geçit türlerinde türler içi ve türler arası doğal melezleme olabileceği göz önüne alınmalıdır. Bu nedenle populasyonlardaki varyasyonu temsil edebilecek olası genotipleri yakalayabilecek yeterli örneğin alınabilmesini sağlamak amacıyla örneklenen bitki sayısı daha fazla olmalıdır. Durakta tek veya birkaç bitki görülmesi halinde bu durum kaydedilmeli, bu bitkilerden tohum alınmamalıdır. Durak sayısı populasyonun büyüklüğü ve vejetasyonun değişmesine bağlı olarak değişir. Kültür formları: Toplama alanları tarlalar, bahçeler üretici ambarları, yerel köy dükkanları ve pazarlar, aktarlar, tohumcular olabilir. Tek yıllık kültür formlarında, eğer üreticiler farklı tohum kaynağı kullanıyorlarsa hepsinden ayrı örnekler, aynı kaynaklı tohum kullanıyorlarsa örneklerin karışımı ile oluşturulan tek bir örnek alınmalıdır. Ayrıca farklı isimlere sahip yerel çeşitlerin toplanması sırasında bu yerel çeşitlere ait bilgi alarak örnekleme yapmak gerekir. Yerel çeşit ve primitif çeşitlerin toplanmasında da durak sayısı önemlidir. Tek yıllık bitkilerde üreticiler kendi tohumlarını kullanıyorlarsa her tarla veya her çiftlikte bir durak yapılmalıdır. Gerek yabani gerekse kültür formlarında toplayıcının bitkisini iyi tanımasını gerekir. Tohumlar meyve içerisinde ise örnekler meyve olarak (olgun ve iri meyveler) alınır, gazete kağıtlarına veya bez torbalara sarılır ve tohumlar daha sonra meyve etinden ayrılır. Meyvelerin tohumunu çıkarmada en uygun yol, meyvenin parçalanarak bir süzgeç içinde yıkanması ve süzülerek tohumların kurutma kağıdı ya da gazete kağıdı üzerine serilerek gölgede kurutulmasıdır. Alınacak meyve sayısı da meyvelerin içerdiği tohum sayısına göre değişir. Gen bankasında uzun süreli muhafaza prensipleri doğrultusunda örnekteki tohum sayısı yabancı döllenen bitkilerde 10000-12000, kendine döllenen bitkilerde ise 8000 olmalıdır. Bu nedenle üretim ve yenileme gerekiyor ise hemen programa alınmalıdır. Vejetatif Üretilen Bitkilerin Toplanması Vejetatif üretime kolaylıkla tepki vermeyen türlerde tohum toplanmalıdır. Ancak vejetatif üretilen materyalde de tohum toplanabilir. Bu durumda tohumla üretilen bitki türlerine ait toplama prensipleri uygulanmalıdır. Tohum meyve türlerinden toplanıyorsa ve çevrede bu tür ile gen alışverişi yapabilecek türler varsa bunlarla ilgili bilgiler dikkate alınmalıdır. Bazı durumlarda sörveyler sırasında da meyve tipleri hakkında ön bilgi edinebilmek amacıyla meyve toplanarak bunların tohumları da değerlendirilebilir. Genelde muhafaza amaçlı tohum toplanması, orman ağaçları, ağaççıkları ve çalı formlu bitkiler ile tohum veren soğanlı, rizomlu ve yumrulu bitkiler ile sınırlıdır. Vejetatif materyalin korunabilmesi için, bitki türüne de bağlı olarak, birçok değişik çoğaltım metodu vardır. Bu nedenle çoğaltım tekniğine ve toplanacak bitki türüne bağlı olarak farklı vejetatif materyal (çelik, aşı gözü, aşı kalemi, soğan, yumru, rizom, sürgünler, köklerdeki piçler gibi) toplanır. Toplanan vejetatif materyal uygun bir koruyucu malzemeye sarılarak buz kutusu içerisinde nemli ve soğuk ortamda korunabilir veya zaman kaybetmeden çoğaltılacak şekilde korumanın yapılacağı kuruluşa yollanır. Vejetatif üretilen türlerin kültür formlarında (yerel meyve tipleri, eski ev bahçelerinde halen ekilmekte olan süs bitkileri vb.) ve yabani türlerinde (meyve, süs bitkisi, tıbbi ve kokulu bitki türleri vb.) genel toplama ilkeleri dikkate alınmalıdır. Endemik ve tehdit altında olan türlerde toplama sırasında yerinde kayıplara sebebiyet vermeyecek önlemler alınmalıdır. Yerel tiplerin toplanması sırasında, toplama yöresindeki bir köyde yerel tipin tohumdan yetiştirildiği saptanmış ise o tip için tüm köy tek bir durak kabul edilerek rastgele örnekleme yapılmalıdır. Eğer ağaçların, özel olarak seçilmiş geleneksel tiplerden klonal olarak üretildiği belirlenmişse köydeki her bir farklı tipin toplanması ve her birinin ayrı bir örnek olarak korunması gerekir. Toplama Sırasında Tutulacak Kayıtlar Toplama sırasında gerek tohumlu bitkiler ve gerekse vejetatif üretilen bitkilerde toplanan türler, toplama ve pasaport bilgileri ile toplama yöresi ile ilgili bilgilerin standart olması iyi bir veri tabanı yönetimi için gereklidir. Bu nedenle veriler standart toplama formlarına dikkatli bir şekilde kaydedilmelidir. Kayıtlarda özetle aşağıdaki bilgiler yer almalıdır: -Toplama numarası (toplama ekibi, toplama tarihi, durak numarası, duraktaki örnek numarası), -Habitat ve kaynağı, -Bitkinin botanik adı (cins, tür, alt tür gibi) ve yöresel adı, -Yöre (il, ilçe, köy, yön, vb.), -Koordinatlar (enlem, boylam ve yükseklik), -Materyal tipi (tohum, vejetatif) ve durumu (yabani, geçit veya kültür formu), -Populasyonun yöredeki büyüklüğü, -Topografya bilgileri (toprak, arazinin durumu vb.), -Birlikte bulunduğu diğer türler, -Tanımlayıcı notlar (Bitki ve yöreye ait ek notlar). Muhafaza Öncesi İşlemler Toplanan materyal ivedilikle muhafazaya alınacak şekilde muhafaza öncesi işleme tabi tutulmalıdır. Bunların başında kayıt işlemi gelmektedir. Materyal tohum örneği ise ivedilikle temizlenmelidir. Miktarı kontrol edilmeli ve üretilmesi gerekiyorsa üretim programına dahil edilmeli ve bu örnekler toplama numarası ile geçici kayda alınmalıdır. Üretimi gerekmeyen örnekler Gen Bankasında muhafazaya alınmak üzere esas kayda alınmalı (ülke kodu ve ardışık numara, TR 35444 gibi) ve tüm toplama bilgileri veri tabanına yüklenmek üzere elektronik ortamda ve standart formlarda Dokümantasyon Birimine iletilmelidir. Vejetatif materyal ise çoğaltılıp, bitkinin gelişimini tamamlayarak muhafaza parsellerine geçirilecek duruma gelene dek (fidan, olgun ve adapte olmuş sağlıklı bitki) toplama numarası ile geçici kayda alınır. Muhafaza parsellerine aktarılan ve oraya adapte olan sağlıklı örnekler ise esas kayda alınmalıdır. Muhafaza parsellerindeki örnekler ile ilgili Vejetatif Materyal İzleme Raporu hazırlanarak muhafaza bilgileri güncelleştirilmelidir. Kaynak: www.etae.gov.tr

http://www.biyologlar.com/bitki-genetik-kaynaklarinin-toplanmasi

Besiyeri Çeşitleri

Besiyerleri farklı mantıklar altında gruplandırılabilir. Örneğin, besiyerleri fiziksel özelliklerine göre sıvı ve katı olmak üzere 2 gruba ayrılırken bir başka bakış açısı ile orijinlerine göre bitkisel, hayvansal, sentetik, türev, karışık vb şekillerde sınıflandırılabilirler. Besiyerlerinin kullanım amacına (=fonksiyonlarına) göre sınıflandırılması ise bir anlamda besiyerlerinin formülasyonları ile doğrudan ilgilidir ve sınıflandırmada en çok kullanılan şekildir.Besiyerlerinin kullanım amaçlarına göre sınıflandırılmalarında da farklı yaklaşımlar vardır. Bir kısım araştırıcıya/kullanıcıya göre belirli bir grupta yer alan bir besiyeri bir diğer kısmına göre ise başka bir grupta sınıflandırılmaktadır. Aşağıda, besiyerleri kullanım amacına göre en çok kabul gören sınıflandırma şekli ile gruplandırılmıştır. Bu sınıflama şeklinde besiyerleri öncelikle "genel besiyerleri" ve "özel besiyerleri" olarak 2 gruba ayrılmakta, özel besiyerleri ise kendi içinde alt gruplara ayrılmaktadır.1. Genel BesiyerleriHerhangi bir inhibitör madde içermeyen, besin maddelerince yeterli veya zengin, herhangi bir mikroorganizma grubunun gelişmesini özel olarak desteklemeyen, bazı zor gelişen (fastidious) mikroorganizmaların da dahil olduğu çok sayıda bakterinin gelişmesini sağlayan besiyerleridir.Genel besiyerleri başlıca, çeşitli örneklerdeki toplam mezofil aerob bakteri sayımı, toplam psikrofil aerob bakteri sayımı, bozulma/hastalık etmeninin ön izolasyonu amaçları ile kullanılır.- Başta gıda maddeleri olmak üzere pek çok örnekte "toplam mezofil aerob bakteri sayısı" ile "toplam psikrofil aerob bakteri sayısı" tayinleri önemli kalite kriterleridir. Toplam mezofil aerob bakteri sayısından kasıt 37 oC'da gelişebilen aerob bakterilerin sayısıdır. Kuşkusuz 37 oC'da gelişebilen aerob bakterilerin tümü bu tip besiyerlerinde gelişemez. Ancak pratik uygulamada genel besiyerlerinde gelişebilenler dikkate alınır.- Nedeni hakkında bir ön fikir edinilemeyen bozulma/hastalık etmeninin izolasyonu için yine genel besiyeri kullanılır. Burada amaç, "bozulma/hastalık etmeninin her ne olursa olsun öncelikle izole edilmesidir" ve genel bir besiyeri kullanmak bir anlamda zorunludur. Bozulma/hastalık etmeninin zor gelişen bir mikroorganizma olabileceği varsayımı ile bu tip izolasyonlarda zor gelişen mikroorganizmaların da gelişebileceği besiyerleri kullanmak daha doğru olur.Tüm bakterilerin geliştirilebileceği nitelikte bir genel besiyeri yoktur. Genel besiyerleri, zor gelişen bakterilerin sadece bir bölümünün gelişmesini sağlayabilir. İnkübasyon koşullarının değiştirilmesi ile psikrofillerin, mikroaerofillerin, aerotolerantların ve özel inkübasyon koşullarının sağlanması ile kısmen anaerobların geliştirilmesinde kullanılır.2. Özel BesiyerleriBir tarife göre genel besiyerleri dışında kalan tüm besiyerleri "özel besiyerleri" grubuna girer.2.1. Selektif BesiyerleriSelektif besiyerleri, karışık bir mikrobiyel floradan gelişmesi istenmeyenleri baskılamak ve inhibe etmek, ancak gelişmesi istenenler için herhangi bir olumsuz etki yapmamak üzere formülüze edilirler. Bu amaçla çeşitli inhibitör maddeler kullanılır.İnhibitör maddelerin konsantrasyonu ile inhibe edilmesi hedeflenen mikroorganizma(lar)ın cins ve türlerine göre değişmek üzere, selektif besiyerleri istenmeyen mikroorganizmalar için zayıf, orta veya yüksek selektivite gösterirler. Selektif besiyerleri, belirli bir grup hatta yüksek selektivite gösterenlerde tek bir cins/tür mikroorganizmanın gelişmesine izin vereceğinden bu besiyerleri selektif izolasyon, selektif sayım ve hatta ön identifikasyon amaçları ile kullanılır.Bir besiyerine selektivite kazandırılması her zaman inhibitör madde ilavesi ile yapılmaz. Geliştirilmesi istenilen mikroorganizmanın kullanabileceği, ancak refakatçi mikroflora tarafından kullanılamayan besin maddeleri besiyerine karbon ve azot kaynağı olarak verilerek selektivite sağlanabilir. Örneğin GSP Agar (Merck) besiyerinde glutamat ve nişastadan başka besin maddeleri yoktur. Nişasta ve glutamat Pseudomonas ve Aeromonas türleri tarafından besin maddesi olarak kullanılırken gıda maddeleri, atık sular ve gıda endüstrisi ekipmanında bu bakteriler ile birlikte bulunan bakteriler (=refakatçi mikroflora) bu maddeleri metabolize edemez ve dolayısıyla gelişemez ya da bu maddeleri çok kısıtlı olarak kullanabilenler ihmal edilebilecek kadar küçük koloni oluştururlar.2.2. Diferansiyel BesiyerleriSelektif besiyeri hazırlamak ve kullanmak; inhibitörlerin gelişmesi istenen mikroorganizmaya az da olsa bir miktar zarar verebilmesi, inhibitör kullanımı ile istenmeyen mikroorganizmaların inhibisyonun her zaman mümkün olmaması, bazı inhibitörlerin insan sağlığı için de zararlı olması vb nedenlerle her zaman istenilen sonucu vermemektedir. Mikrobiyolojide besiyeri olarak selektif ortamlar yerine diferansiyel besiyerlerinin hazırlanması ve kullanılması ile çoğu kez tatmin edici sonuçlar alınmaktadır.Diferansiyel besiyerlerinde gelişmesi istenen mikroorganizma yanında diğer mikroorganizmalar da gelişebilir, ancak başta koloni morfolojisi olmak üzere çeşitli farklılıklar ile hedef mikroorganizma diğerlerinden ayrılır.Bu tarif altında diferansiyel besiyerleri zayıf ve orta güçte selektivite gösteren selektif besiyerlerinin modifikasyonu olarak nitelendirilebilir.Ayırt edici (fark ettirici) koloni özelliği, çeşitli pH indikatörleri, boya maddeleri, indirgeyiciler, diğer indikatörler vb maddelerin besiyerine ilavesi ile yapılır. En basit olarak besiyeri bünyesine, ayırt edilmek istenen mikroorganizmanın kullanabileceği, ancak ortamda bulunan diğer bakterilerin yararlanamayacağı bir karbohidrat ilave edilir ve mikroorganizmanın bu karbohidratı kullandığı çeşitli indikatörlerle belirlenir. Örneğin koliform grup bakteriler için laktozdan gaz oluşturulması tipik bir ayırt edici özelliktir ve gaz oluşumu durham tüpleri kullanılarak belirlenir. Pek çok mikroorganizma belirli bir karbohidratı kullanırken asit oluşturur ve bu asitlik pH indikatörü ile rahatlıkla belirlenebilir. Tersine olarak gelişmesi istenen mikroorganizma besiyerine katılan bir maddeden alkali ürünler oluşturabilir. Bu durum yine pH indikatörleri ile belirlenebilir. Ya da mikroorganizmanın jelatinaz, lipaz, lesitinaz vb enzim aktiviteleri besiyerinde oluşan çeşitli berrak zonlar ile belirlenebilir.Diferansiyel besiyerinde gelişen mikroorganizmaların ayrımı koloni morfolojisi, enzimatik aktivitelerin belirlenmesi, gaz oluşumunun izlenmesi vb çıplak gözle yapılabileceği gibi bunlara ilave olarak fluoresansa dayalı olarak da yapılabilmektedir. MUG ilave edilmiş besiyerleri E. coli için yaygın bir şekilde kullanılırken, setrimid (=cetrimide) katılmış besiyerlerinde Pseudomonas aeruginosa yine UV ile ayırt edilmektedir.Diferansiyel besiyerleri sadece selektif besiyerlerinin bir modifikasyonu değildir. Çeşitli genel besiyerlerine ilave edilen özel bazı katkılar bu besiyerlerine diferansiyel bir nitelik kazandırabilir. Hemoliz reaksiyonları için kullanılan kanlı agar besiyeri buna en tipik örnektir. CASO Agar (Merck) besiyerine MUG ilave edilerek yapılan besiyerinde toplam mezofil aerob bakteri sayımı yanında E. coli sayımı da fluoresans ile yapılabilmektedir.Diferansiyel besiyerleri, amaca göre selektif izolasyon, selektif sayım ve ön identifikasyon amaçları ile kullanılmaktadır.2.3. Zenginleştirme BesiyerleriKarışık bir mikroflora içinde hedeflenen bir mikroorganizmayı geliştirmek, sayısını artırmak vb amaçlarla kullanılan zenginleştirme besiyerleri, önzenginleştirme besiyerleri ve selektif zenginleştirme besiyerleri olarak 2 alt gruba ayrılırlar.Önzenginleştirme besiyerleri genel olarak hasar görmüş (= injured = yaralanmış) mikroorganizmaların aktivitelerini kazanmaları için kullanılan, bileşiminde inhibitör içermeyen ve dolayısı ile aktivite kazanması istenen mikroorganizma yanında refakatçi mikrofloranın da gelişmesini sağlayan sıvı besiyerleridir ve bu tarif altında "özel amaçla kullanılan genel besiyerleri" olarak nitelendirilebilir. Önzenginleştirmede kullanılan besiyerlerine en tipik örnek gıdalarda Salmonella aranmasına yönelik çalışmaların ilk aşaması olan "önzenginleştirme" amacıyla kullanılan Tamponlanmış Peptonlu Su besiyeridir. Bileşiminde litrede 10 g et peptonu, 5 g NaCl ve 10 g fosfat tampon olan bu besiyerinde Salmonella yanında ortamdaki diğer bakteriler de gelişebilmektedir.Selektif zenginleştirme besiyerleri ise özel amaçla kullanılan selektif sıvı besiyerleridir. Bunlara en tipik örnekler ise Listeria ve Salmonella aranmasında kullanılan besiyerleridir. Selektif zenginleştirme aşamasında karışık kültür olarak bulunan bakterilerden gelişmesi istenmeyenler çeşitli selektif inhibitörler ile engellenir. Selektif zenginleştirme aşamasını genellikle selektif bir katı besiyerine sürme yapılarak aranan bakterinin selektif izolasyonu aşaması izler. Bu çerçevede selektif zenginleştirmenin amacı, selektif izolasyonda başarı şansını artırmak için aranan mikroorganizmanın karışık kültür içindeki sayısını artırmaktır.Selektif zenginleştirme aşaması her zaman önzenginleştirme aşamasını izlemez. Gıda maddelerinde Salmonella aranırken yukarıda da belirtildiği gibi işlem sırası önzenginleştirme/selektif zenginleştirme/selektif katı besiyerine sürme şeklinde iken Salmonella 'dan şüphe edilen gayta (=dışkı) örnekleri doğrudan selektif zenginleştirme /selektif katı besiyerine sürme aşamalarını izler. 2 farklı örneğe farklı işlem uygulanmasının nedeni gayta örneğinde aktif ve yüksek sayıda Salmonella olmasıdır. Gıda maddesi ise önzenginleştirme aşamasından geçirilerek bir anlamda önzenginleştirme kültürü Salmonella sayısı ve aktivitesi açısından gayta örneğine benzer bir hale getirilir.2.4. İdentifikasyon BesiyerleriTam selektif ve diferansiyel besiyerlerinin ön identifikasyonda kullanılabileceğine yukarıda değinilmiş idi.Tam selektif bir besiyerinde gelişen bir mikroorganizmanın identifikasyonu cins ve hatta bazı durumlarda tür bazında tamamlanabilir. Diferansiyel besiyerlerinde de aynı durum geçerlidir.Bir mikroorganizma izolatının identifikasyonu için en çok kullanılan testler biyokimyasal nitelikli olanlardır. İdentifikasyon besiyerleri, mikroorganizmanın belirli bir besin maddesini (genellikle karbohidratlar) kullanıp/kullanmadığının saptanması, belirli bir besin maddesinden metabolizma sonunda tayin edilebilecek metabolitleri (örneğin triptofandan indol) oluşturup/oluşturmadığının belirlenmesi vb amaçlar ile kullanılır. Bakterinin hareketli olup olmadığının saptanması amacıyla kullanılan yarı katı (semi solid) besiyerleri de identifikasyon besiyerleri grubuna katılmaktadır.3. Diğer BesiyerleriAntimikrobiyel duyarlık testlerinde kullanılan agar disk difüzyon besiyerleri ile minimal inhibisyon konsantrasyonu testlerinde kullanılan sıvı ve katı besiyerleri, vitaminlerin ve amino asitlerin mikrobiyel yolla belirlenmesinde kullanılan besiyerleri, saf kültürlerin korunması (=kolleksiyonu) amacıyla kullanılan besiyerleri gibi özel amaçlara yönelik olarak kullanılan çeşitli besiyerleri de vardır.BESİ YERİ AYRINTILI BİLGİ İÇİN http://www.orlab.net/mikrobiyoloji/942300030.pdf TIKLAYIN

http://www.biyologlar.com/besiyeri-cesitleri

Davranışta kalıtımın rolü

İnsan davranışının ortaya çıkması için gerekli alt-yapının hazırlanmasında ve işleyişinde büyük bir öneme sahip oldukları artık kabul edilmekle birlikte, genlerin insanın toplumsal davranışının belirlenmesinde ne gibi bir rol üstlendikleri henüz yeterince bilinmemektedir. Maymunlarda yapılan bir çalışmada, yeni doğan maymunlar, annelerinden ve diğer maymunlardan ayrılmışlar ve verecekleri tepkileri ölçmek üzere, onlara birçok fotoğraf gösterilmiştir. İlginç olan, yeni doğan maymunların yalnızca maymun içeren fotoğraflara yoğun ilgi göstermeleridir. Yeni doğan maymunlar, on haftalık olduklarında, korkutucu maymun resimlerine bile yoğun ilgilerini sürdürmekte ama yaşları daha da büyüdüğünde korkutucu maymun resimlerinden rahatsız olmaktadırlar. Bu deneyden çıkan sonuç, maymun türlerinde doğuştan gelen ama sonradan serbest bırakılan bazı davranış kalıplarının olduğudur. Genetik donanımın insanın davranışlarındaki rolünün bilinememesinde işte bu tür hayvanlarda yapılan cinsten deneyler yapma imkanının bulunmamasıdır. Bu nedenle, genetik yönden ayrıntılı çalışmalar yapılmadığı halde, kültürden kültüre farklılıklar gösteren evlilik, din ve bağlılık, biçimleri gibi davranışların öğrenilmiş ve kültüre özgü oldukları genel kabul görmüştür. Genetikçileri hem çileden çıkaran hem de yeni araştırmalar için güdüleyen, insan araştırmalarının sınırlılığı ve bu tip kültürcü önyargılardır. Çünkü onlar, her şeye rağmen insan davranışında doğuştan gelen kalıtsal kalıpların rolüne işaret eden bazı gözlemler olduğu kanaatindedirler. Bu gözlemler, bazı insan davranışlarının evrensel olması, hangi kültürde olursa olsun her insanda aynı kalıpta ifade edilmesi; maymun deneyinde olduğu gibi insanlarda da, özgül bir uyarana aynı tekrarlayan davranış kalıplarının bulunması; insanlarda da öğrenilme şansı olmayan motor tekrarlayıcı davranışların olması gibi gözlemlerdir. Örneğin doğuştan kör bebeklerde yapılan gözlemlerde bu bebeklerin mimikleri öğrenme şansının çok çok az olduğu göz önüne alındığında şu sonuçlara varılmıştır. Bu bebeklerin mimikleri normaldir. Ayrıca kör bebeklerin gören bebekler gibi gülümsemeyle karşılık verdikleri sesin kaynağına doğru baş ve gözlerini çevirmeleri doğuştan gelen bu davranışların öğrenmeden çok az etkilendiğini düşündürmektedir. Yine örneğin, derin tendon refleksleri, göz kırpma refleksi gibi motor davranışlar; açlık, susuzluk, seks gibi güdüsel davranışlar tüm insanlarda evrenseldir. Kültürden kültüre şiddeti değişmekle birlikte tüm insanlar sosyal ilişki ve duygusal tatmin ararlar. Kızgınlık, sevinç, üzüntü gibi duygusal tepkilerin mimiklerle anlatımı evrensel özellikler taşır. Büyük olasılıkla bunlar doğuştan getirdiğimiz, genetik olarak programlı davranışlardır. İnsanda da sabit hareket dizeleri şeklinde tekrarlayıcı davranışlar vardır. Korkma, gülme, bu gibi davranışlara örnektir. Yeni doğan bebeklerde gülme davranışının erken dönemlerde bir çift göz imgesine karşı oluşan, özgül uyarana karşılık olarak yapılan, tekrarlayıcı ve aynı kalıbı gösteren davranışlar olduğu saptanmıştır. Çocuk büyüdükçe yüzün diğer detaylarına karşı da gülme davranışı oluşmaktadır. Tüm bunlar, insan davranışında genetik geçişin varlığını destekleyen gözlemlerdir. Ama her şeyden önce, bu gözlemleri pekiştiren, yukarıda sunduğumuz davranışın genetik alt-yapısı alanındaki bilimsel bilgimiz, yani zihin ve davranışın beynin bir ürünü olarak ortaya çıkmasının, beynin işleyişinin de genetik faktörlerden etkilenmesinin kaçınılmaz olduğunun bilinmesi, genetik araştırmalar için tetikleyici etmenlerdir. Ahlaki engeller yüzünden insan davranışının genetik nedenleri konusunda ayrıntılı ve sistemli araştırmalar yapılamaması bir bilimsel bilgi boşluğu yaratmakta, bu boşluk hem kültürcü hem genetikçi aşırı fikirler tarafından doldurulmaktadır. Bu ahlaki engellerin kaldırılıp kaldırılmaması, bir başka tartışma konusudur ancak açık olan durum, insan davranışının kalıtımsal yönleri konusundaki bilgi boşluğunun ve ideolojik önyargıların ortaya çıkmasında bu engellerden kaynaklanan bilgi boşluğunun çok önemli bir yeri olduğudur. İnsanın toplumsal davranışının genetik belirleyenlerini bilimsel olarak saptama olanağı olmayınca, bu tartışmanın sürdürülebileceği en verimli alan olarak karşımıza insan davranışının bir biçimde ve belli ölçülerde bozulduğu ruhsal rahatsızlıklar çıkmaktadır. Çünkü ruhsal rahatsızlıklar sırasında şöyle ya da böyle beynin zihni ve davranışı düzenleyici işlevleri bozulmakta, şüphesiz bu işlevlerin ortaya çıkmasında, insanın genetik donanımı önemli rol oynamaktadır.

http://www.biyologlar.com/davranista-kalitimin-rolu

MİLLİ PARKLAR YÖNETMELİĞİ

Tarım Orman ve Köyişleri Bakanlığından: R.G. Tarihi: 12/12/1986 R.G. Sayısı: 19309 BİRİNCİ BÖLÜM : Amaç, Kapsam ve Tanımlar Amaç Madde 1 - Bu Yönetmeliğin amacı, 2873 sayılı Milli Parklar Kanunu ile 6831 sayılı Orman Kanununun 25 inci maddesinin uygulanmasını düzenlemektir. Kapsam Madde 2 - Bu Yönetmelik, 2873 sayılı Milli Parklar Kanununun 22 nci maddesi ile 2896 sayılı Kanunla 6831 sayılı Orman Kanununa eklenen EK 5 inci maddesine göre hazırlanmış olup; Milli Parkların, Tabiat Parklarının, Tabiat Anıtlarının, Tabiatı Koruma Sahalarının ve Orman İçi Dinlenme Yerlerinin ayrılması, planlanması, geliştirilmesi, korunması, yönetilmesi ve tanıtılmasına ilişkin iş ve işlemleri kapsar. Kısaltmalar Madde 3 - Bu Yönetmelikte yer alan; a) Kanun: 2873 sayılı Milli Parklar Kanununu, b) Bakanlık: Tarım Orman ve Köyişleri Bakanlığını, c) Genel Müdürlük: Orman Genel Müdürlüğünü, d) Daire Başkanlığı: Milli Parklar Dairesi Başkanlığını, e) Müdürlük: Milli Parklar Müdürlüğünü, f) Fon: Milli Parklar Fonu'nu, ifade eder. Tanımlar Madde 4 - Bu Yönetmelikte yer alan; a) Milli Parklar, Tabiat Parkı, Tabiat Anıtı ve Tabiatı Koruma Alanı; Kanunun 2 nci maddesinde tarif edilen tabiat parçalarını, b) Ekosistem; belli bir yaşama muhiti içindeki canlı organizmalar ile cansız çevrenin meydana getirdiği karakteristik bir ekolojik sistemi, c) Tabii Kaynak; biyolojik tabii değerler; flora, fauna, habitatlar, ekosistemler, tabiat tarihinin ve tabii mirasın müstesna özellikleri ve bunlara dair ilmi değerler ile fiziki tabii değerler; coğrafi konum, jeolojik ve jeomorfolojik teşekküller, hidrolojik ve limnolojik özellikler, klimatik özellikler ve bunlara dair ilmi değerleri, d) Estetik Kaynak; insanın psikolojik yapısına ve bedii zevklerine hitap eden üstün, bakir ve tabii manzara özelliklerini, e) Kültürel Kaynak; tarihi, arkeolojik, mitolojik, antropolojik, etnografik, sosyolojik olayları belgeleyen ve bu olayların izlerini taşıyan sitler ve yöreler ile tarihteki büyük olayların ve kişilerin izlerini ve hatıralarını taşıyan, mimarlık ve güzel sanatların örneklerini bünyesinde toplayan yerler objeler ve kültürel mirasın olağanüstü örnekleri ve bunlarla ilgili ilmi değerleri, f) Teknik İzahname; bu yönetmeliğin uygulanmasına açıklık getiren, Yönetmelikte yer almayan hususları ihtiva eden Bakanlık emrini, g) Rekreasyonel Kaynak; tabii ve kültürel çevrenin, özellikle açık hava rekreasyonu yönünden potansiyeli, taşıma kapasitesi ve hitap ettiği demografik çevreyi, h) Rekreasyon; insanın eğlenme, dinlenme, kendini yenileme fonksiyonunu, ı) Orman İçi Dinlenme Yeri (Orman Mesire Yeri); rekreasyonel ve estetik kaynak değerlerine sahip ormanlık alanı, ifade eder. İKİNCİ BÖLÜM : Temel İlkeler ve Kriterler Temel İlkeler Madde 5 - Bu yönetmeliğin uygulandığı yerlerde; A) Genel olarak; 1 - Kanunun 14 üncü maddesi ile yasaklanan faaliyetler yapılamaz. 2 - Kaynak değerleri ile koruma ve kullanma esaslarının belirlenmesinde, ilmi ve teknik araştırmalara en geniş ölçüde yer verilir. 3 - Kaynakların tabii karakterinin mutlak korunması ve devamlılığı sağlanır. 4 - Tabii kaynakların işletilmesi yasaktır. 5 - Tabii denge ve manzara bütünlüğünü bozacak ve tabii çevrenin bakir karakteri ile bağdaşmayacak hiçbir faaliyete izin verilmez. 6 - Bu yerler sadece koruma, yönetim, araştırma, ziyaretçi, tanıtım tesis ve hizmetleri ile donatılır; bu tesisler ile kaynak amenajmanı ve restorasyon esasları planlarında belirtilir. 7 - Kullanma ve yararlanma şartları ve seviyesi idarece belirlenir ve taşıma kapasitesinin dışına çıkılmaz. 8 - Tabii ve kültürel kaynaklara, kaynak değerini bozmayacak, ancak tamamlayıcı ve restorasyon amaçlı müdahalelerde bulunulabilir. 9 - Tabiatı mutlak koruma zonlarında, tabii kaynaklar insan etkisi olmaksızın tabii haline bırakılır. 10 - Devlet mülkiyeti ve yönetimi ile kaynak, manzara, mülkiyet ve yönetim bütünlüğü esastır. Ancak milli parklarda devlet mülkiyeti aranmayabilir. 11 - Kamulaştırma ve Tahsisler Kanunun 5 inci ve 6 ncı maddelerine göre yapılır. 12 - Planların gerektirdiği her türlü yapı, tesis, hizmet ve faaliyetlerin yapılması, yönetilmesi ve işletilmesi Kanunun 12 nci maddesine göre düzenlenir.   B) Özel hallerde; 1 - Düzenli tarım ve mevcut iskan alanları ile bunları çevreleyen kırsal manzara dokusu, kültürel ve tabii kaynakların korunması ve değerlendirilmesinde tezat teşkil etmemesi halinde bu arazi kullanımlarının devamlılıklarını temin etmek üzere planlarında gerekli hükümler getirilir ve bu hükümlere göre özel mülkiyet tasarruflarına izin verilebilir. 2 - Milli parklar ve tabiat parklarında gerçek ve tüzel kişiler lehine verilecek izinlere dair esaslar, bu Yönetmeliğin 22 inci maddesinde belirtilmiştir. 3 - Üretim, otlatma ve avlanma faaliyetlerine ve kaynakların korunması geliştirilmesi ve devamlılığını sağlayacak teknik faaliyetlere, Kanunun 13 üncü maddesinde belirtilen esaslar dahilinde ve mutlak koruma zonları dışında izin verilebilir. 4 - Kamu yararı açısından vazgeçilmez ve kesin bir mecburiyet doğması halinde, planda yer almayan herhangi bir yatırım projesinin uygulanmasına, projenin çevreye yapacağı tesir etüd edilerek, çevre ve kaynak koruma politikalarıyla kabul edilemez bir tezat teşkil etmeyeceğinin tespit edilmesi halinde, planda gerekli değişiklikler yapıldıktan sonra Bakanlıkça izin verilebilir. Milli Park ve Tabiat Parkı Kriterleri Madde 6 - A) Milli Park olarak ayrılacak yerlerde; 1 - Tabii ve kültürel kaynak değeri ile rekreasyonel potansiyeli, milli ve milletlerarası seviyede özellik ve önem taşımalıdır. 2 - Kaynak değerleri, gelecek nesillerin miras olarak devralacakları ve sahip olmaktan gurur duyacakları seviyede önemli olmalıdır. 3 - Kaynak değerleri tahrip olmamış veya teknik ve idari müdahalelerle ıslah edilebilir durumda olmalıdır. 4 - Saha büyüklüğü, kaynak değerleri kesafeti yönünden, özel haller ve adalar dışında, en az 1000 hektar olmalı ve bu alan bütünüyle koruma ağırlıklı zonlardan meydana gelmelidir. İdari ve turistik amaçlı geliştirme alanları bu asgari saha büyüklüğünün dışındadır. B) Tabiat parkı olarak ayrılacak yerlerde; 1 - Milli veya bölge seviyesinde üstün tabii fizyocoğrafik yapıya, bitki örtüsü ve yaban hayatı özelliklerine ve manzara güzellikleri ile rekreasyon potansiyeline sahip olmalıdır. 2 - Kaynak ve manzara bütünlüğünü sağlayacak yeterli büyüklükte olmalıdır. 3 - Bilhassa açık hava rekreasyonu yönünden farklı ve zengin bir potansiyele sahip olmalıdır. 4 - Mahalli örf ve adetlerin, geleneksel arazi kullanma düzeninin ve kültürel manzaraların ilgi çeken örneklerini de ihtiva edebilmelidir. 5 - Devletin mülkiyetinde olmalıdır. Tabiat Anıtı ve Tabiatı Koruma Alanı Kriterleri Madde 7 - A) Tabiat anıtı olarak ayrılacak yerler ve tabii objeler; 1 - Tabiat ve tabiat olaylarının meydana getirdiği tek veya nadir olmaları sebebiyle ilmi ve estetik yönden milli öneme sahip, bir veya bir kaç jeolojik ve jeomorfolojik formasyon ve bitki türleri gibi müstesna değerleri barındırmalıdır. 2 - Özellikle insan faaliyetlerinden çok az zarar görmüş veya hiç zarar görmemiş olmalıdır. 3 - Saha büyüklüğü milli parkları küçük, fakat koruma yönünden bütünlüğü sağlayacak yeterlikte olmalıdır. 4 - Devletin mülkiyetinde olmalıdır. B) Tabiatı koruma alanı olarak ayrılacak yerler; 1 - Milli veya milletlerarası seviyede tipik, emsalsiz, nadir, tehlikeye maruz veya kaybolmaya yüz tutmuş ekosistemler, türler ve tabii olayların meydana getirdiği veya gizlediği tabii ve geleneksel arazi kullanım şekillerine ait örnekleri barındırmalıdır. 2 - Genellikle hassas ekosistemlere, habitatlara veya hayat şekillerine, biyolojik veya jeolojik önemli çeşitliliklere, zengin genetik kaynaklara sahip olmalıdır. 3 - Bu özellikleri ve farklılıkları; bilim, eğitim, araştırma kurumları veya ilgili kuruluşlar tarafından tesbit edilmiş olmalıdır. 4 - Saha büyüklüğü, korunması gerekli değerlerin hayatlarını uzun süreli olarak devam ettirmelerine yeterli olmalıdır. 5 - Devletin mülkiyetinde olmalıdır. Orman İçi Dinlenme Yeri Kriterleri Madde 8 - Orman içi dinlenme yeri olarak ayrılacak yerler; a) Mahalli seviyede açıkhava rekreasyonu yönünden değişik ve zengin özelliklere sahip olmalıdır. b) Alt yapı imkanlarına sahip olmalıdır. c) Kaynak bütünlüğünü sağlayacak büyüklükte olmalıdır. d) Orman rejimine tabi olmalıdır. ÜÇÜNCÜ BÖLÜM : Tayin, Tesbit ve Planlama Tayin ve Tesbit Madde 9 - Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları Kanunun 3 üncü maddesinde açıklanan esaslara göre tayin ve tesbit edilen yer ve yörelere dair uygulama statüleri ve sınırları mahallen duyurulur. Orman İçi Dinlenme Yeri Kriterlerine sahip olduğu tesbit edilen sahalar; 2896 sayılı Kanunla değişik 6831 sayılı Orman Kanununun 25 inci maddesi hükümlerine göre, Genel Müdürlüğün onayı ile orman içi dinlenme yeri olarak belirlenir. Planlama Esasları Madde 10 - Bu yönetmeliğin uygulanacağı yerlerin; etüd, envanter ve araştırması ile Milli Park Planlaması ve kaynak amenajmanı planlarıyla ilgili usul ve esaslar teknik izahnamede açıklanır. Uzun Devreli Gelişme Planları Madde 11 - Milli Park uzun devreli gelişme planları, ilgili Bakanlıkların olumlu görüşleri ve gerektiğinde fiili katkılarıyla hazırlanır. Bakanlıkça onaylanarak yürürlüğe konur. İmar Uygulama Planları Madde 12 - Milli Park uzun devreli gelişme planı uyarınca iskan ve yapılaşmaya konu olan yerler için, mahalli gelişme planı karakterindeki, imar mevzuatına uygun imar uygulama planları, milli park uzun devreli gelişme planı hüküm ve kararlarına uygun olarak, hazırlanır veya hazırlattırılır, Bayındırlık ve İskan Bakanlığının onayı ile yürürlüğe girer. Tabiat Parkı, Tabiat Anıtı, Tabiatı Koruma Alanı ve Orman İçi Dinlenme Yeri Planları Madde 13 - Tabiat parkı, tabiat anıtı ve tabiatı koruma alanı olarak tesbit edilmiş yerler için hazırlanacak planlar; milli park planlama usul ve teknikleriyle, uygulanan statünün amaçları, kriterleri, genel politika ve ilkeler ile uyumlu olarak ve planlanan sahanın kaynak değerleri ve özellikleri gözönünde bulundurularak, Kültür ve Turizm Bakanlığının görüşü alınarak hazırlanır ve Bakanlıkça onaylanarak yürürlüğe konur. Orman içi dinlenme yeri planları, orman içi dinlenme yeri kriterleri ile sahanın rekreasyonel ve estetik değerlerinin yıpratılmadan kullanılması, statü uygulamasının o yer için amaçları gözönünde bulundurularak Dairesince hazırlanır ve Genel Müdürlükçe onaylanarak yürürlüğe konur. Uygulama Projeleri Madde 14 - Uzun devreli gelişme planı, mahalli gelişme planı ve yatırım projeleri uyarınca Dairesince hazırlanan veya hazırlattırılan uygulama projeleri, Genel Müdürlükçe onaylanarak yürürlüğe konur. Kültür Varlıklarının Korunması ve Turizm Yatırımlarına Dair Plan Kararları Madde 15 - Bu yönetmelik uygulamasına konu olan yerlerde; a) Kültür varlıklarının korunması, tahkimi, restorasyonu ve değerlendirilmesine dair plan kararları, 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümlerine göre ve Kültür ve Turizm Bakanlığı ile işbirliği içinde tesbit edilir. b) Turizm bölge, alan ve merkezlerinde, turizm yatırımlarına dair plan kararları Bakanlığın görüşü alınarak sonuçlandırılır. DÖRDÜNCÜ BÖLÜM : Kuruluş ve Yönetim Kuruluş Madde 16 - Bu Yönetmelik kapsamına giren hizmetlerin taşradaki uygulaması bölge müdürlüklerince yürütülür. Koruma Madde 17 - Bu Yönetmeliğin uygulandığı yerlerde; a) Sınırlar uygun fiziki elemanlarla veya yeşil çitlerle yer yer belirlenir. Bunun dışında kalan sınırlar uygun aralıklı ve kolay görülebilir işaret ve levhalarla belirtilir. b) Koruma amacı ile yol, patika, haberleşme ağı; telsiz ve telefon gözetleme kule ve kulübeleri geliştirilir; deniz-hava ulaşım ve kontrol imkanları, ekipman ve araçlarıyla donatılır. c) Yangınlar, özellikle orman yangınlarıyla mücadele yönünden bu Yönetmeliğin 10 uncu maddesinde açıklanan esaslar dahilinde her türlü tedbir alınır. Mücadelede su ve çevreye zararlı olmayan kimyevi madde kullanımına yer verilir. Yangınların tesbit ve söndürülmesine ilişkin her türlü müdahale kalifiye ekiplerce sağlanır. Geniş uygulama alanları için özel yangınla mücadele projeleri hazırlanır ve uygulanır. d) Planlar uyarınca gerçekleştirilecek her türlü tesisin, idarenin koyacağı esaslar dahilinde, çevre sorunu yaratmayacak şekilde, atık su arıtma sistemiyle donatılması ve tesisle birlikte bitirilmesi, tesisi yapan kuruluş veya şahıslarca sağlanır. Yapım sırasında meydana gelen moloz döküntüleri yatırımcı tarafından kaldırılır ve kullanım alanının tabii peyzaja uygun çevre tanzimi idarenin belirleyeceği esaslara göre yapılır. İdarece gerçekleştirilecek müşterek alt yapı tesislerine, kamu ve özel tesis sahiplerinin, belirlenecek katılım payları ile iştiraki temin edilir. e) Çevreyi ve ziyaretçileri rahatsız edecek seviyede gürültülü faaliyetlerde bulunulamaz, yüksek sesle müzik yayını yapılamaz. f) Yapı ve tesislerde çevre ve hava kirliliği yaratan yakıt kullanılamaz, kullanılması gerektiğinde idarenin koyacağı kirlenmeye karşı tedbirlerin alınması zorunludur. g) Ziyaretçiler, idarece konan esaslar dahilinde bu yerlerden yararlanabilirler. h) Yasaklanan fiillere, arazi kullanma şekillerine ve plan dışı yapılaşmaya fırsat verilmez. Aksi hareket edenler hakkında kanuni işlem yapılır. ı) Genel peyzajda göze çarpan bozulmaları gidermek üzere, yörenin tabii arazi yapısı, tabii bitki örtüsü ve tabii peyzaj özellikleri dikkate alınmak ve o yörenin tabii türleri kullanılmak suretiyle ağaçlandırma, peyzaj restorasyonu ve tesislerin yakın çevre peyzaj düzenlemeleri yapılır. Koruma Görevlileri Madde 18 - Bu Yönetmeliğin uygulandığı yerler ve yörelerde; Yönetmelikte belirtilen her türlü koruma hizmetleri ve yasaklara karşı işlenen suçların takibi 6831 sayılı Orman Kanununun 5 inci fasıl dördüncü bölümünde yer alan suçların takibi ile ilgili hükümlere, 2872 sayılı Çevre, 1380 sayılı Su Ürünleri ve 3167 sayılı Kara Avcılığı Kanunları hükümlerine, genel hükümlere ve Muhafaza Memurları Görev ve Çalışma Yönetmeliğine uygun olarak orman muhafaza memurlarınca sağlanır. Mülkiyet ve Kamulaştırma Madde 19 - Milli park, tabiat parkı, tabiat anıtı, tabiatı koruma alanlarının devlet mülkiyetinde ve Genel Müdürlüğün intifa ve denetiminde olması esastır. Ancak Milli parklarda devlet mülkiyeti aranmayabilir. Bunu sağlamak üzere gerekli kamulaştırma işlemleri, Kanunun 5 inci maddesi hükmüne göre yapılır. Kamulaştırma bedelleri Fon'dan karşılanır. Taşınmazların tahsisi ise Kanunun 6 ncı maddesi hükümlerine göre yapılır. Tesis ve Düzenleme Madde 20 - Kanun kapsamına giren yerlerde planların gerektirdiği her türlü yapı, tesis, hizmet ve faaliyetlerin yapılması, yönetilmesi ve işletilmesi Kanunun 12 nci maddesine göre düzenlenir. Bu hizmetler içinde yer alan, lokanta, kafeterya, büfe, kır gazinosu ve benzeri tesisler idarece fon kapsamında işletilebileceği gibi, mevsimlik olarak işletmeciye de verilebilir. Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları yatırımları için gerekli ödenekler, fon yönetmeliği esasları dahilinde kullanılır. Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları içindeki mevcut yerleşim merkezlerinde ikamet edenler dışında bu yerlere gelen ziyaretçiler; giriş kontrol merkezlerinde veya sahalar içindeki idare ve ziyaretçi merkezlerinde, Bakanlıkça tesbit edilecek ücreti öderler. Bu ücretler fon'da toplanır. Kamu Kurum ve Kuruluşlarına Verilecek İzinler Madde 21 - Milli park ve tabiat parklarında, planlarına uygun olması şartıyla kamu kurum ve kuruluşları tarafından yapılacak her türlü plan, proje ve yatırımlara Bakanlıkça izin verilebilir ve uygulamalar Kanun ve Yönetmelik hükümlerine göre denetlenir. Ancak bu yerlerdeki tarihi ve arkeolojik sahalarda kazı, restorasyon ve ilmi araştırmalar, Bakanlığın bilgisi içinde olmak şartıyla, Kültür ve Turizm Bakanlığının iznine tabidir. Gerçek ve Tüzel Kişilere Verilecek İzinler Madde 22 - Milli Park ve tabiat parklarında, kamu yararı olmak şartıyla, o yer planlarının hükümleri dahilinde turistik amaçlı bina ve tesisler yapmak üzere gerçek ve özel hukuk tüzel kişileri lehine, Maliye ve Gümrük Bakanlığının görüşü alınarak ve Bakanlık tarafından öngörülen şartlar yerine getirilmek kaydıyla izin verilebilir. Müteşebbis, o yere ait mevcut planlarındaki şartlarla, Bakanlığın belirleyeceği esaslar dahilinde projelerini hazırlar ve turizm mevzuatına uygun olarak Kültür ve Turizm Bakanlığından belge almak sureti ile Bakanlıktan intifa hakkı tesisi talebinde bulunur. Turizm belgesi ve ekli projeleri ile keşif özetlerini Bakanlığa getiren müteşebbis adına, Maliye ve Gümrük Bakanlığının görüşü alınarak, Bakanlıkça usulüne ve proje ekonomisi ile amortisman müddetine uygun olarak kırkdokuz yılı geçmemek kaydıyla intifa hakkı tesis edilir. İntifa hakkı tesis edildiğinin Bakanlıkça müteşebbise tebliğini takip eden bir ay içinde Bakanlıkça verilen örneğe uygun noter tasdikli taahhüt senedi Bakanlığa verilir. Takiben, tahsis edilen yer, Bakanlıkça müteşebbise mahallen düzenlenen bir tutanakla teslim edilir. Müteşebbis, Bakanlığa taahhüt ettiği şartlara kesinlikle uymak zorundadır. İntifa hakkı süresinin uzatılması ve devri Kanunun 8 inci ve 9 uncu maddeleri hükümlerine göre yapılır. İzin Verilmeyecek Yerler ve Haller Madde 23 - a) Milli Park ve tabiat parklarında gelişme planları kesinleşmeden Kanun ve Yönetmelikte sözü edilen izinler verilemez. b) Tabiat anıtları ve tabiatı koruma alanlarında; 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümleri saklı kalmak kaydıyla izin verilmez veya intifa hakkı tesis edilemez. c) Bu yönetmelik kapsamına giren yerlerde, Maden ve Petrol Kanunları gereğince araştırma, işletme ruhsatnamesi ve imtiyazı 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümleri saklı kalmak kaydıyla, Bakanlar Kurulu Kararıyla verilir. Araştırma, işletme faaliyetlerinde bu yerlerin korunması amacıyla riayet edilecek hususlar Bakanlıkça belirlenir. Bu yönetmelikte yer alan izin işleriyle ilgili hususlar dışında 6831 sayılı Orman Kanununun ilgili hükümleri ve buna bağlı mevzuata göre hareket edilir. BEŞİNCİ BÖLÜM : Suçların Takibi ve Cezalar Suçların Takibi Madde 24 - Kanunda belirlenen yasaklar ve bu Yönetmelikteki açıklamalar ile 6831 sayılı Orman, 3167 sayılı Kara Avcılığı, 1380 sayılı Su Ürünleri, 6785 ve 1605 sayılı İmar, 2872 sayılı Çevre, 2634 sayılı Turizmi Teşvik ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanunu gibi Kanunlar ile bu Kanunların ek ve değişiklikleri ve bunlara dayalı mevzuatın getirdiği yasaklara uyulmaması ve suç sayılan fiillerin işlenmesi Kanun ve bu yönetmelik hükümlerinin uygulandığı yerlerde görevli orman muhafaza memurları tarafından bu memurların görevlerine ilişkin mevzuat çerçevesinde önlenir veya suç işlenmesi halinde gerekli kanuni işlem yapılır. Cezalar Madde 25 - 6831 sayılı Orman Kanunu, 3167 sayılı Kara Avcılığı Kanunu ve 1380 sayılı Su Ürünleri Kanunu ile bu kanunların ek ve değişikliklerinde yasaklanan fiillerin, Kanunun uygulandığı yerlerde işlenmesi halinde Kanunun 20 ve 21 inci maddeleri uygulanır. ALTINCI BÖLÜM : Son Hükümler Yürürlükten Kaldırma Madde 26 - 08/02/1973 gün ve 6304-586/9 Sayılı Milli Parkların Ayrılma, Planlama Uygulama ve Yönetimine Ait Yönetmelik yürürlükten kaldırılmıştır. Geçici Maddeler Geçici Madde 1 - Kanunun yürürlüğe girmesinden önce 6831 sayılı Orman Kanununun ilgili maddelerine göre Milli Park olarak ayrılan yerler ile Devlet Orman İşletmesi ve Döner Sermayesi Yönetmeliğinin ilgili hükümleri uyarınca orman içi dinlenme yeri (mesire yeri) olarak ayrılan yerler, Kanun ve bu Yönetmelik hükümlerine uygun olarak yeniden tasnif ve değerlendirmeye tabi tutulur. Milli Park kriterlerine haiz olan yerlerde; tamamı veya belirli bir kısmı evvelce Bakanlar Kurulu Kararı ile orman rejimine alınıp milli park olarak ayrılmış olanlarında; Kanun ve bu Yönetmelik hükümleri başkaca bir işleme gerek kalmaksızın uygulanır, diğerlerinin Milli Park olarak kabul edilmesi için Bakanlar Kurulu Kararı istihsal edilir. Tabiat parkı, tabiat anıtı ve tabiatı koruma alanı kriterlerine haiz yerlerde ise Kanun ve bu Yönetmelik hükümlerinin uygulanmasına belirleme işlemi ile birlikte başlanır. Geçici Madde 2 - Kanun ve bu Yönetmelik kapsamına giren yerlerde evvelce verilmiş kullanma izni, irtifak ve intifa hakları; geçerlilik süresi bitimine kadar başka bir işleme gerek kalmaksızın sahibi tarafından kullanılır. Yürürlük Madde 27 - Bu yönetmelik Resmi Gazetede yayımı tarihinden yürürlüğe girer. Yürütme Madde 28 - Bu yönetmelik hükümlerini Tarım Orman ve Köyişleri Bakanlığı yürütür.

http://www.biyologlar.com/milli-parklar-yonetmeligi

Canlıların Sınıflandırılması nedir,nasıl yapılır

CANLILARIN SINIFLANDIRILMASI Dünyamızda yaşamakta olan canlılar incelenirse özelliklerinin çok farklı olduğu gözlenir.Bu farklara rağmen bu canlıları derece derece ve birbirlerine benzeyenleri bir araya toplayarak gruplandırmak mümkündür.Canlıların benzerliklerine göre gruplandırılmasına sınıflandırma (sistematik) denir.Hayvanlar ve bitkiler belirli bir düzen içerisinde sınıflandırılır. SINIFLANDIRMA SİSTEMİNİN GELİŞİMİ Canlılar; monera, protista, fungi, bitki ve hayvan olmak üzere gözle görülmeyen çok küçük organizmalardan dev ağaçlara ve binalara kadar bir dağılım gösterirler.Bu büyük hayat çeşitliliğini tanıyabilmek için, büyük grupları daha küçük gruplara ayırmak gerekir.Biyologlar dünyadaki canlıları sınıflandırmamış olsalardı, bu kadar çeşitli olan canlılara ulaşmak mümkün olmayacaktı. Sınıflandırmanın amacı, canlıları bir sistematiğe oturtmak ve tabiatı daha kolay anlaşılabilir hale getirmektir. İlk sınıflandırmayı Yunan Filozofu Aristoteles (m.ö.383-322) yapmıştır.Aristoteles bitkileri otlar, çalılar, ağaçlar; hayvanları ise yaşadıkları yere göre karada, suda ve havada yaşayanlar şeklinde gruplandırmıştır.Aristoteles’in sınıflandırması canlıların görülebilen ve morfolojik özelliklerine göre yapılmıştır. Günümüzdeki sınıflandırılmada, canlıların bütün özellikleri göz önünde bulundurulur. Örneğin yarasanın kanatlarına bakarak onu kuşlar sınıfında incelemek mümkün değildir.Yarasa bütün özellikleri ile bir memeli hayvandır. Sınıflandırma, canlıların görülen bir veya birkaç özelliğine göre yapılırsa ‘suni sınıflandırma’ (yapay sınıflandırma) adını alır. Aristo’nun yapmış olduğu sınıflandırma yapay sınıflandırmadır. Buna ampirik sınıflandırma da denir. Günümüzde sınıflandırma, canlıların akrabalık ilişkilerine göre yapılır. Sınıflandırılmada canlıların tüm özellikleri göz önünde bulundurulur.Bu çeşit sınıflandırmaya ‘tabii sınıflandırma’ (doğal sınıflandırma) denir. Doğal sınıflandırma bilimsel olan sınıflandırılmadır.Buna filogenetik sistematik da denir. Bir canlıyı türün evrim sistematiğine geçirdiği gelişmelere filogeni (soy oluş), embriyo döneminde geçirdiği değişmelere ontogeni (birey oluş) denir. SINIFLANDIRMA BİRİMLERİ Sınıflandırmanın en küçük birimi tür dür.Sınıflandırmada tür kavramını ilk kuran kişi John Ray dır. Tür ortak bir atadan gelem,yapı görev bakımından ortak özelliklere sahip olan, kendi aralarında çiftleşerek verimli döller meydana getirebilen bireylerin oluşturduğu topluluktur. Sistematikte her tür iki isimle adlandırılır.Bu iki isimden 1. si canlının cinsini 2. si tanımlayıcı özelliğini belirtir.Her türün iki isimle adlandırılması ilk kez Carolus Linnaeus tarafından kullanılmıştır. Türlerden daha büyük topluluklar da vardır.Bunlar sırasıyla cins, familya, takım, sınıf, şube ve alem dir. Birbirlerine çok benzeyen yakın türlerin gruplaşmasıyla cinsler ortaya çıkar.Örneğin kedi, aslan ve kaplan türleri ‘felis’ cins adı altında toplanır. Felis domesticus :Kedi Felis leo :Aslan Felis tigris :Kaplan Her tür kendi cinsiyle belirtilir.Bu kural bütün dünyada kullanılır. Böylece karışıklık önlenir.Cinslerin ortak karakterlerine göre gruplaşmasına familyalar meydana gelir.Benzer familyalar takımları oluşturur.Benzer takımların gruplaşmasıyla sınıflar ortaya çıkar. Sınıfların bir araya gelmesiyle şubeler, şubelerin bir arya gelmesiyle alem meydana gelir. Sınıflandırmada birimler büyükten küçüğe doğru gidildikçe, birimin kapsadığı birey sayısı artar, aralarındaki benzerlik azalır.Büyük biriden küçük birime doğru gidildikçe birey sayısı azalır, benzerlik artar. BİLİMSEL SINIFLANDIRMANIN DAYANDIGI TEMELLER Günümüzde geçerli olan sınıflandırma filogenetik sınıflandırmadır. Bu sınıflandırmaya göre bütün canlıların ortak bir atası vardır.Bu sınıflandırmanın açıklanabilmesi için akrabalık derecelerinin açıklanması gerekir.Akrabalık derecelerinin belirlenmesinde bazı temel kurallar göz önüne alınır. 1) Homolog Organlar: Yapıları ve gelişimleri birbirlerine benzeyen fakat farklı görevleri olan organlara homolog organlar denir.Örneğin fok balığının ön yüzgeci, yarasanın kanadı, kedinin pençesi, atın ön bacağı, insanın eli homolog organlardır.bunları her biri yaklaşık olarak aynı sayıda kemik, kas, sinir ve kan damarlarına sahiptir.Aynı plana göre düzenlenmiş ve aynı gelişme biçimine sahiptir.homolog organlar canlıların ortak bir atadan geldiğinin kanıtlarından biri olarak ileri sürülmektedir. Bazı organlar aynı kökten gelmedikleri halde, yaptıkları görev aynıdır. Bu organlara anolog organlar denir.Kuş ve böcek kanatları analog organlardır. 2) Embriyolojik Benzerlik: Canlıların embriyo dönemlerinde geçirdikleri evreler ve farklılaşmalar birbirine çok benziyorsa bu canlılar yakın akrabadır.Omurgalı hayvanlarının embriyolarının ilk evreleri çok belirgin bir benzerlik gösterir.İlk evrede balık ve domuz embriyosunu ayırmak çok zordur. 3)Biyokimyasal Benzerlik: Çeşitli hayvanların plazma proteinleri arasındaki benzerlik derecelerinin antijen-antikor tekniği ile denenir. Her hayvan türünün kan içeriği kendine özgün bir protein bileşimine sahiptir.yakın akraba olan canlıların plazma proteinlerinin benzerliği daha fazadır. Bütün hayvanlarda hücrenin çalışması ve kalıtım faktörlerinin dölden döle geçmesi kromozomlar tarafından kontrol edilir.Bütün canlılarda kromozomların kimyasal yapısını DNA (deoksiribonükleik asit) meydana getirir.Akrabalık derecesi yakın olan canlıların DNA’larının baz dizilimlerinin benzerliği de artmaktadır. Hayvanlar, protein metabolizması sonucu oluşan azotlu artıkları üre, ürik asit ve amonyak şeklinde idrarla vicuttan uzaklaştırılabilir. Sınıflandırılmada canlıların idrarlarının bileşimi de dikkate alınır. Memeli canlılarının çoğunda sindirim için aynı veya benzer enzimler kullanılır.Bu olaylar canlıların ortak bir kökten geldiğinin kanıtlarından biri olarak gösterilmektedir. Bunlar başka yumurta tiplerinin benzerliği, organizmaların simetri şekilleri anatomik yapılarındaki benzerlikler gibi özellikler de doğal sınıflandırma yapılırken dikkate alınır. Bazı organizmalar mevcut bir sınıflandırma sistemine koymak oldukça zordur.Çünkü canlıların taşıdıkları özelliklerin bazısı bir gruba, bazısı da diğer bir gruba ait olabilir.Örneğin tek hücreli olan euglena; hareketli , kloroplast taşıyan ve kendi besinini yapabilen canlıdır. Euglena, hareketinden dolayı hayvan, kloroplast taşıdıgı ve kendi besinini kendisi yaptığından dolayı da bitki olarak kabul edilmiştir. Bakteriler: Heteretroflardır. Parazit yada saprofit beslenirler. Fotosentez ya da kemosentez yapan ototrof olanları vardır. Mavi-Yeşil algler:Fotosentez yaparlar.Kloroplastları yoktur. Fotosentez olayı stoplazma içine dağılmış klorofiller aracılığı ile olur. PROTİSTA a) Kamçılılar: Tek hücreli yapıya sahiptirler. Suda hareket ederler. Heterotrof ve otorotrof olanları vardır.Örnek:Euglena. b) Kök ayaklılar: Tek hücreli olan bu protozoalar besinlerini yalancı ayakları ile alır ve hareket eder.Örnek:Amip c) Sporlular: Sporla ürerler. parazityaşarlar. Örnek: Plazmadizmmalaria d) Silliler: Hücrenin çevresi hareket ve besin almayı saglayan sillerle çevrilidir. Örnek: Şapkalı mantar. FUNGİ Çok çekirdekli hücrelere sahip olup, sporlarla ürerler. Örnek: Şapkalı mantar. BİTKİLER Algler, çiçeksiz bitkiler ve çiçekli bitkiler olmak üzere üç grupta incelenir. Algler: İletim demetleri yoktur.İletim demetleri olmadığından su ve suda erimiş madensel tuzları tüm bitki tüzeyi ile alırlar.Doku farklılaşması yoktur. Çiçeksiz Bitkiler: Kendi arasında ikiye ayrılır. 1) Kara yosunları: İletim demetleri yoktur.Eşeyli ve eşeysiz üreme, döl değişimi şeklinde birbirini takip eder. Gametleri gametongium denen keselerde oluşturur.döllenme sonucu oluşan zigot bir süre ebeveyne bağlı kalır. 2) Eğrelti otları: İletim demetleri vardır.Gerçek kökleri yoktur. Eşeyli ve eşeysiz üreme döl değişimi şeklinde birbirini takip eder. Çiçekli Bitkiler:İyi gelişmiş iletim sistemleri vardır.Üreme organları çiçek şeklinde özelleşmiştir.Açık ve kapalı tohum olak üzere iki grupta incelenir. 1) Açık tohumlular: Her zaman yeşildirler.Soymuk demetlerinde kalburlu hücreler vardır, arkadaş hücreleri yoktur.Çiçekleri daima tek eşeylidir.Tohumları daima çok çeneklidir.Tohum taslakları yumurtalık dışına gelişir. 2) Kapalı tohumlular: En gelişmiş bitki sınıfıdır.Her zaman yeşil değildirler.Çiçekleri genelde erseliktir.Çiçeklerinde çanak ve taç yaprak farklılaşması vardır.Kapalı tohumların iki önemli sınıfı vardır. 1)Monokotiledonlar (bir çenekliler): Embriyolarında tek çenek yaprağı taşırlar.Otsu bitkilerdir.Tek yada çok yıllık olabilirler.İletim demetleri dağınık ve düzensiz sıralanmıştır.Korteksi incedir.Meristem kambiyumu yoktur.Yaprakları paralel damarlıdır. Saçak kök sistemi bulunur. 2) Dikotiledonlar(iki çenekliler): Embriyolarında iki çenek yaprağı taşırlar.Otsu ve odunsu bitkilerdir.Tek yada çok yıllık olabilirler. İletim demetleri dairesel çizilmiştir. Korteksi incedir.Enine kalınlaşmasını sağlayan kambiyum (meristem) bulunur.Yaprakları ağsı damarlıdır.Ana kök ve buna bağlı yarı kökler gelişmiştir. HAYVANLAR Çok hücreli heterotrof canlılarıdır.Aktif hareket ederler. Omurgalılar ve omurgasızlar olmak üzere iki gruba ayrılırlar. Omurgalılar(kordalılar) Omurgalılar ve ilkel kordalılar olmak üzere iki gruba ayrılırlar. A) Omurgalılar:Vücutlarının sırt tarafında bir sinir kordonu bulunur.İç iskelet eklemlidir. İskelete bağlı kaslar hareketi sağlar.Hepsinde beyin ve beyini koruyan kafatası vardır.Dolaşım sistemleri kapalıdır.Holozoik olarak beslenirler.Çoğu ayrı eşeylidir.Balıklar, kuşlar, kurbağalar, sürüngenler ve memeliler olmak üzere beş sınıfa ayrılırlar. 1) Balıklar: Vicutları pullarla örtülüdür.İç iskelet kemikten ya da kıkırdaktan oluşmuştur.Solungaç solunumu yaparlar.Kalpleri iki odacıklıdır.Kalplerinde sürekli kirli kan bulunur.Vücutlarında temiz kan dolaşır.Soğuk kanlı hayvanlardır.Boşaltım organları mezonefros tipi böbreklerdir.Boşaltım maddelerinin, üreme hücrelerinin ve sindirim artıklarının toplandığı kloak denilen yapıya sahiptirler.Örnek:köpek balığı, alabalık, sazan. 2) Kuşlar: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sağa kıvrılarak dallanır.Sıcakkanlıdırlar.Boşaltım organı metanefroz tipi böbreklerdir, vücut tüylerle kaplıdır.Tüysüz olan bölgeler pullarla örtülüdür.Kloaklıdırlar. Dişleri yoktur.Örnek:martı, bülbül, tavuk, ördek, deve kuşu. 3) Kurbağalar: Lavralar solungaç solunumu, erginleri akciğer ve deri solunumu yaparlar.Kalpleri üç odacıklıdır.Vücutlarında karışık kan dolaşır.Soğukkanlıdırlar.Azotlu dolaşım maddesi amonyaktır.Boşaltım organı mezonefroz tipi böceklerdir.Kloak lıdır.Derilerinin mukus salgısı olan mukus, deriyi kaygan tutar.Örnek:semender, kuyruklu kurbağa, su kurbağası. 4) Sürüngenler: Akciğer solunumu yaparlar.Kalpleri üç odacıklıdır (timsah hariç).Soğukkanlıdırlar.Erginlerinin boşaltım organları metanefroz tipi böbreklerdir.kloak lıdırlar.Dişilerde yumurta kanalının bir bölümü yumurta akı, diğer bölümü yumurta kabuğu yapacak şekilde özelleşmiştir.Vücut keratinle kaplı olduğundan kurudur. Örnek:yılan, timsah, kaplumbağa, kertenkele. 5) Memeliler: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sola kıvrılarak dallanır. Sıcakkanlı hayvanlardır.Kloak yoktur.Ürogenital sistem sindirim sisteminden ayrı olarakdışarıya açılır.Boşaltım organı metanesaz tipi böbreklerdir.Sinir sistemleri çok gelişmiştir.Örnek:fare, yarasa, kirpi, insan,balina.  B) İlkel kordalılar: İskeletleri kıkırdaktır.Yutak bölgesinde solungaç yarıkları, sırt tarafında da sırt ipliği bulunur.Bu grubun tek örneğiAmfiyoksüs tür. OMURGASIZLAR Süngerler, sölentereler, solucanlar, yumuşakçalar, eklembacaklılar ve derisi dikenliler olmak üzere gruplandırılmışlardır. a) Süngerler: Yapısını oluşturan hücreler arasında iş bölümü vardır.Hücresel farklılaşma görülmesine karşın hücrelerde doku oluşturmak için iş bölümü yoktur. b) Sölenterler: Bu şube üyeleri oyu bir kese gibi düzenlenmiş tek açıklı sindirim boşluklarına sahiptirler.Örnek:deniz anası, hidra, mercanlar. c) Yassı solucanlar: Sinir ve üreme sistemlerine sahiptirler.Örnek: tenya, planoria. d) Yuvarlak solucanlar: Bitki ve hayvanlarda parazit yaşarlar.Örnek: bağırsak solucanı. e) Böcekler: Vücutlarının tamamı epidermisin salgıladığı kitin ile kaplıdır.Trache solunumu yaparlar. CANLILARDA BESLENME İLİŞKİLERİ Besleme sistemine göre canlılar üreticiler(ototroflar) ve tüketiciler(heterotroflar) olmak üzere iki grupta incelenir.Üretici canlılar(ototroflar) kendi besinlerini yapar.Tüketiciler(heterotroflar) besinlerini kendileri yapamaz.Doğrudan veya dolaylı olarak ototrof canlılardan sağlar. OTOTROF BESLENME Kendi besinini kendisi sentezleyebilen organizmalara ototrof (üretici) canlı denir.Enerji sayesinde inorganik maddelerden organik madde sentezleyebilirler.Bitkiler, algler ve bazı bakteriler ototrof canlılardır.Kullanılan enerji kaynağına göre, ototrof organizmalar fotosentez yapanlar ve kemosentez yapanlar olmak üzere iki bölümde incelenir.fotosentez yapan canlıların klorofili vardır.bunlar klorofilleri sayesinde güneş ışınlarını soğurarak organik besinlerde kimyasal bağ enerjisine çevirirler. Kemosentez yapan organizmalar genellikle bakterilerdir.Bunlar gerekli enerjiyi amonyak, hidrojen, sülfür gibi belirli inorganik maddeleri oksitleyerek sağlar. Nitrit bakterileri amonyağı nitrite, nitrat bakterileri nitriti, nitrata dönüştürür.bu sırada açığa çıkan enerji bakteriler tarafından ATP sentezinde kullanılır.Bu şekilde gerçekleşen ATP sentezine kemosentetik fosforilasyon denir.Bu ATP inorganik maddelerden organik maddelerin sentezi sırasında kullanılır. Nitrit ve nitrat bakterileri azot döngüsünde rol oynar.Amonyağı, yeşil bitkilerin kolayca alıp kullanabileceği nitrat bileşiklerine dönüştürür.Amonyağın nitrata dönüştürülmesine nitrifikasyon denir. HETEROTROF BESLENME İnorganik maddelerden organik besin yapamayan, organik besinleri hazır olarak alan canlıların beslenme biçimine heterotrof beslenme denir.Böyle beslenen canlılara dış beslek veya tüketiciler adı verilir. Heterotrof canlıların beslenme ve yaşama şekilleri holozoik, simbiyoz, saprofit olmak üzere üç grupta incelenir. a) Holozoik Beslenme:Bu şekilde beslene canlılar besinlerini katı parçalar halinde alarak sindirirler.bunların sindirim sistemleri, avlarını yakalayabilmek için duyu organları, sinir sistemleri ve kas yapıları gelişmiştir.Otçul hayvanlar, etçil hayvanlar ve hem otçul hem etçil hayvanlar bu grupta incelenir. b) Birlikte Yaşama:İki veya daha fazla türün bir arada kurdukları yaşam şekline simbiyosim denir.Bu canlılardan biri konak diğeri konuk adını alır.Birlikte yaşama yararlı ve zararlı birliktelikten oluşur.Yararlı birliklerin beslenme biçimi kommensalizm ve mutualizm dir.Zararlı birlikteliklerin ise parazitizmdir. 1) Mutualizm:Bir arada yaşayan canlıların karşılıklı olarak yarar sağlaması şeklindeki beslenme biçimidir.Bu beslenme biçimine en tipik örnek likenlerdir.Liken, mantar ve yeşil algler in birlikte oluşturdugu bir yaşama birliğidir. 2) Kommensalizm:Bir canlı üzerinde yaşadığı canlıya zarar vermeden bu canlıdan yararlanıyorsa bu yaşama şekline kommensalizm denir.Örnek olarak yengeçlerin solungaçlarına tutunarak yaşayan bazı yassı kurtlar. 3) Parazitizm:Bir arada yaşayan iki canlıdan birinin digerini sömürerek ona zarar vermesi şeklinde olan beslenme ilişkisidir.Bazı bakterilerin sindirim enzimleri yoktur.Önemli monomerleri diğer canlı organizmalardan sağlarlar.Böyle bakterilere parazit bakteriler denir. Hastalık yapan parazit bakterilere de patojen bakteriler denir. Bir canlı diğer bir canlının deri ve solungaçlarına yapışarak yaşıyorsa bu canlılara ektoparazit (dış parazit) denir.Koku ve diğer duyu organları iyi gelişmiştir.Bit, pire, tahtakurusu, uyuz böceği, sivrisinek bir ekoparazittir. Bir canlı diğer bir canlının iç kısmında yaşıyorsa endoparazit denir. Bu parazitler hücre içerisinde yaşıyorsa bunlara hücre parazitleri denir.Örneğin sıtmaya neden olan parazit plazmadium al yuvar hücresinde yaşar.Endoparazitler çok sayıda gamet oluştururlar. Bundan dolayı üreme sistemleri çok gelişmiştir Bitki üzerinde yaşayan ve konak organizmanın odun borularından su ve madensel tuzlar alarak fotosentez yapabilen parazitlere yarı parazit denir.Üzerinde yaşadığı konak bitkinin soymuk borularından hazır organik maddeler alarak yaşayan parazit bitkilere tam parazit denir. c) Saprofit (çürükçül) beslenme:Biramayası, küf mantarı ve bakterilerin çoğu besinlerini katı olarak alamazlar.Bunlar gerekli olan organik besin maddelerini kokuşmaya yüz tutmuş bitki ve hayvan ölüleri üzerinden canlı artık ve salgılarından sağlarlar.Saprofitler öncelikle dışarı salgıladıkları enzimle besinlerini sindirir.Daha sonra küçük molekülleri emerler.Bu şekilde heterotrof beslenmeye saprofit beslenme denir.Saprofit bakterilerinin bir kısmı çürümede, bir kısmı ise mayalanmada rol oynar. HEM OTOTROF HEM HETEROTROF BESLENME Sinek kapan ve ibrik otu gibi böcek yiyen bitkiler fotosentezle organik madde yapar.Ayrıca yakaladıkları böcekleri salgıladıkları enzimlerle hücre dışında sindirirler.Daha sonra bu besinleri emerler. DOGADA MADDE DEVRİ Organik artıklar ve cesetler ayrıştırılarak inorganik maddelere dönüştürülür.Bu yollarla serbest kalan inorganik maddeler yeniden fotosentez ve kemosentez de kullanılır hale getirilir.Fotosentez ve kemosentez olaylarıyla inorganik maddeler yeniden organik bileşiklere dönüştürülür. Bu dönüşümlere doğada madde döngüsü denir. Karbon devri: Bir dönümlük şeker kamışı her yıl atmosfer tabakasından 20 ton kadar karbondioksit kullanır.Bitki ve hayvan enerji elde etmek için organik maddeleri yıkar.Karbondioksit ve su ya kadar parçalanır.Hücre solunumu denen bu olay sonucunda oluşan karbondioksit tekrar atmosfer tabakasına verilir. Azot devri: Bitkiler aminoasit ve protein sentezi yapabilmek için gerekli olan azotu, nitrat tuzları olarak topraktan alırlar.Bitkiler tarafından alınan nitratlar bitki hücreleri tarafından aminoasit ve protein sentezinde kullanılır. Ölmüş bitki ve hayvanla, canlıların artıkları ve salgılarındaki proteinli maddeler saprofitler tarafından amonyağa dönüştürülür.Bu olaya pütrüfikasyon (kokuşma) denir. Amonyak nitrit bakterileri tarafından nitrite; nitritte nitrat bakterileri tarafından nitrata dönüştürülür.Bu olaya nitrifikasyon denir. Bitki tarafından kullanılmayan nitratlar azot bozan bakteriler ile parçalanır.Bu parçalanmadan açığa çıkan azot tekrar havaya karışır.Bu olaya denitrifikasyon denir. Havanın azotu toprağa iki şekilde geçer: 1)Yıldırım çakması sonucu azot oksijenle birleşir.Daha sonra su ile etkileşince nitrik asit meydana gelir.Yağmurla toprağa inen nitrik asit toprakta bulunan sodyum ve potasyum bileşikleri ile etkileşerek nitrat tuzlarını oluşturur. 2)Toprakta, havanın serbest azotunu bağlayabilen ve kullanabilen azot bakterileri vardır.baklagillerin köklerindeki urlarda yaşayan ribozom da havanın serbest azotunu bağlayabilir ve azotlu madde yapar.Bu bakterilerin ölüleri topraktaki azotlu organik artıkları oluşturur.

http://www.biyologlar.com/canlilarin-siniflandirilmasi-nedirnasil-yapilir

Rektum Kanserinin Tedavisindeki Gelişmeler Umut Verici

Anadolu Sağlık Merkezi’nin düzenlediği “Onkoloji Sempozyumu” uluslararası hekimlerin de katılımı ile gerçekleşti.  Kanser tedavisinde gelinen nokta ve burada  kullanılan teknolojilerin vurgulandığı sempozyumda rektum kanserinin tedavisindeki yeni umutlar paylaşıldı. Rektum kanserinde PET/BT’nin ilk evrelemede tümörün hangi tabakaya kadar yayıldığını (derinlik/penetrasyon) ve tümöre bitişik küçük lenfnodlarındaki metastazı göstermede etkin bir yöntem olduğunu belirten Anadolu Sağlık Merkezi Nükleer Tıp Uzmanı Dr. Kezban Berberoğlu, “Değeri düşük olsa da en önemli katkısı pelvis içinde bulunan diğer lenf nodlarını ve hastalığın uzak yayılımını değerlendirmede oldukça etkilidir. Metastatik hastalarda kemoterapi öncesi tedavi etkinliğini değerlendirmede daha sonraki çalışmalarla kaşılaştırma yapılabilmesi için mutlaka başlangıçta yapılmalıdır. Bu sayede hastanın fayda görmeyeceği cerrahiden hastayı korur. PET/BT’nin diğer önemli rolü rekürrens şüphesi olan hastalarda CEA yüksekliği veya BT’de şüpheli lezyon bulunanlarda rekürrensi saptamada rutin olarak kullanılmaktadır. “Rektum kanserinde son dönem cerrahi yaklaşımlar Rektum kanserinin tedavisinde cerrahinin rolüne dikkat çeken ABD Austin Diyaknostik Kliniği’nden Dr. Francis Buzad, tedavide multidisipliner bir yaklaşım olması gerektiğini vurguladı. Cerrahın yanı sıra  radyolog, onkolog ve diğer branşlarla birlikte değerlendirilmesi gerektiğini belirten Dr. Buzad, “Hastanın geldiği hekime ulaştığı evreye göre tedavi de farklılaşmaktadır.  Doğal olarak cerrahinin uygulama zamanı da bu doğrultuda farklılaşmaktadır. Eğer, hastada rektum kanseri erken dönemde teşhis edilmişe, tanı konar konmaz cerrahi operasyona alınır. Ancak ileri evrelerde tanı konmuşsa, bu hastalar için cerrahi öncesinde kemoterapi ve radyoterapiden yararlanılıyor. Bunların dışında bu hastalarda endoskopi, rektoskopi gibi birçok tanı yöntemi kullanılıyor ve tümörün yerine göre, uygulanacak cerrahi opsiyonlar da değişiyor. Tedavide temel hedef hastayı tümörden kurtarmak.  Ancak bunu yaparken de hastanın anal fonksiyonlarını da korumayı amaçlıyoruz.” diye konuştu.   Rektum kanserinin cerrahisinde son yıllarda önemli gelişmeler yaşandığını belirten Dr. Buzad, sözlerine şöyle devam etti: “Son yıllarda cerrahi anlamda yaşanan en önemli gelişmelerden birinin robotik cerrahi olduğunu söylemek mümkün. Özellikle de bu konudaki deneyim arttıkça görüyorum ki genel cerrahi branşında opere edilebilecek her hasta da Vinci ile ameliyata uygun. Hastalar 3-5 günde normal yaşama dönebiliyorlar. Robot sonrası daha hızlı iyileşme sağlandığı için takip eden tedavileri kişi daha rahat tolere edebiliyor.”  Biyoteknoloji dönemi başlıyor Tanı ve teknolojide yaşanan gelişmelerin daha rahat cerrahi operasyonlara olanak sağladığını belirten Dr. Buzad, “Cerrahi mevcut halinden en fazla biraz daha gelişebilir. Ancak çok yakında biyoteknoloji gelecek. Gelecekte  tümörün hiç oluşmaması için çalışacağız. Şu anda üzerinde çalıştığımız florasan diye yeni bir sistem var. Bu sistemde; tümöre kimyasal bir madde enjekte ediliyor. Böylece özel bir kamera sayesinde tümör daha iyi görüntülenebiliyor ve daha başarılı bir ameliyat gerçekleşiyor. Ayrıca ameliyat sonrasında da daha iyi sonuçlar elde ediliyor.  Bu sistemin şimdilik damarların görüntülenmesiyle ilgili olarak FDA onayı var. Çok yakında sistemin kendisinin de FDA onayını alması bekleniyor” diye konuştu.Görüntülemede  en önemli yeri manyetik rezonans alıyor Rektum kanserinin tanısında dijital muayene ve rektosigmoidoskopinin  birincil rolünü koruduğunu belirten Anadolu Sağlık Merkezi Radyoloji Uzmanı Dr. Oktay Karadeniz ise yeniliklerle ilgili şu bilgileri verdi: “Rektum kanserinde radyolojik görüntülemede  en önemli yeri manyetik rezonans görüntüleme almaktadır. Çok kanallı, paralel görüntüleme yapan  faz sıralı sargılar sayesinde rektum detaylı olarak  incelenebilmekte ve geniş bir alan görüntülenebilmektedir. Bu sayede komşu organlar değerlendirilebilmekte, evrelendirmede önemli rol oynayan bölgesel lenf nodları  da incelenmektedir. Barsak katmanının yüksek rezolüsyonda incelenmesi sayesinde tümörün sınırları ve uzanımı detaylı olarak incelenmekte ve patoloji ile birebir aynı sonuçlar elde edilebilmektedir.Tüm bu bulgular ışığında hasta için en faydalı tedavi seçeneği belirlenmektedir (cerrahi veya kemoradyoterapi). Kemoradyoterapi sonrası  tedaviye yanıt ve cerrahi sonrası lokal nüks takibi için yine MR kullanılmaktadır. MR  ile difüzyon tekniği kullanılarak lezyonun  hücre yoğunluğu incelenmekte ve tedaviye yanıtın değerlendirilmesi difüzyon haritası eşliğinde yorumlanmaktadır. Rektum kanserlerinin  en sık karaciğere metastaz yapması  nedeniyle karaciğer görüntülemesi gerektiğini belirten Dr. Karadeniz, “MR yüksek yumuşak doku kontrastı sağlaması sayesinde tercih edilmekte olup  duyarlılığı en yüksek modalitedir.Teknolojideki gelişmeler sayesinde 10-15 saniyelik nefes tutmalı sekanslar ve serbest nefes alma sırasında görüntü elde edilebilmesi ile çekim kolaylıkla  gerçekleştirilebilmektedir. Ayrıca son yıllarda geliştirilen MR  kontrast maddelerin bir kısmı karaciğer hücrelerine özel olup metastazların belirlenmesindeki duyarlılığı daha da artırmaktadır.” diye konuştu. Karaciğer metastazlarında CyberKnife Karaciğer metastazlarında CyberKnife’ın önemine değinen Prof. Dr. Kayıhan Engin, karaciğerin primer kanseri (hepatoselüler ca.) ve karaciğerdeki safra yolları kanserinin (intrahepatik kolanjio ca.) öncelikli tedavisini cerrahi yöntemin oluşturduğunu belirtti. Cerrahi uygulanan, özellikle tümörü küçük olan hastaların uzun süre yaşayabildiğini belirten Prof. Dr. Engin, “Ancak %30 hastada cerrahi uygulanabiliyor. Diğer hasta grubu cerrahi şansını kullanamıyor ve birçok sistemik tedaviye rağmen yaşam süresi kısa oluyor. Aynı şekilde karaciğerin metastatik hastalıklarında da cerrahi yaklaşım çok daha az oluyor ve kemoterapi ile yeterince etkili olunamıyor. Klasik radyoterapi bu hasta gruplarında karaciğerin hareketli olması ve sağlam karaciğer dokusunun radyasyondan etkilenerek zarar görmesinden dolayı uygulanamıyor veya çok sınırlı olgulara çok sınırlı dozlar verilebiliyor. Bu dozlar da tümör üzerinde istenilen etkiyi gösteremiyor. Radyocerrahi sistemle sağlam dokular maksimum korunabilse bile teknik olarak kafatası dışında uygulanamıyor ve hareketli organlara planlama yapılamıyor. Oysa Cyberknife ile hareketli organların radyocerrahisi küçük bir müdahale ile mümkün olabiliyor. Sağlam dokular maksimum korunurken tümör dokusuna diğer klasik yöntemlerle verilemeyen yüksek dozlar da verilebiliyor. Böylece cerrahi yapılamayan primer veya metastatik karaciğer kanserlerine etkili dozlarda radyocerrahi yapılarak yaşamlarını uzatma şansı doğuyor.” diye konuştu.   http://www.medical-tribune.com.tr

http://www.biyologlar.com/rektum-kanserinin-tedavisindeki-gelismeler-umut-verici

BİYOKRİMİNAL ENTOMOLOJİ

Böcekler çeşitli özellikleri nedeniyle cinayetlerin çözümüne katkıda bulunabilmektedirler; Cinayetlerin çözümüne nasıl yardım ettiklerinden önce böcekler dünyasına kısaca bir bakalım. Böcekler Dünya üzerinde yaşayan en kalabalık canlı grubunu oluşturmaktadır. Yaklaşık 1.5 milyon böcek türü Dünya’yı bizimle birlikte paylaşmaktadır. Kutuplar ve derin denizler hariç heryerde böcekleri görmek mümkündür. Dünya üzerinde insanlardan sonra en baskın canlı grubu olarak yeralmaktadırlar. Yeryüzündeki en başarılı canlı grubu böceklerdir çünkü: Çok küçük vücuda sahip olmaları Kanatlarının bulunması Larva veya ninfleri ile erginlerinin farklı besin maddeleri üzerinde beslenmeleri Çok sayıda yavru oluşturabilmeleri Kütikülaya sahip olmaları Hacimlerine göre yüzey alanlarının az oluşu Böcekler hemen heryerde yaşayabildiği gibi her türlü besinlede beslenebilmektedirler. Canlı bir bitkinin kök, gövde, dal, yaprak, meyva, tohum, ölü bir bitkinin tüm kısımları, depolanmış besinler, kıl ve ölmüş tüm hayvanlar ve insan üzerinde beslenebilmektedirler. Vücut üç bölümden oluşmaktadır. Baş, toraks ve abdomen. Vücudun her tarafını çok sert yapıda olan kütikula yada diğer ismiyle dış deri örtmektedir. Bu deri yani kutikula böcek erginliğe ulaşırken belirli aralıklarla atılmak zorundadır (Derinin atılması ve konu ile ilgisini anlat). Baş üzerinde göz, ağız ve antenler yeralmaktadır. Toraksta ise yürüme ve uçma görevini üstlenen bacaklar ve kanatlar yeralmaktadır. Abdomende çeşitli sistemler bulunmaktadır. Böceklerin gelişme ve değişme yani metamorfoz tiplerine baktığımızda ise birbirinden farklı metamorfoz tipleri olduğunu görüyoruz. Bunlar Ametabola, Neometabola, Hemimetabola (yarım metamorfoz),Holometabola (tam metamorfoz) Holometabola yani tam metamorfoz cinayetlerin saatinin veya gününün belirlenmesinde kullanılan temel unsurdur. Holometabola bir böceğin gelişmesi yumurta, larva, pupa ve ergin olmak üzere dört bölüme ayrılmaktadır. Böcek canlı üzerine yumurtalarını bırakır, bu yumurtalar türe özgü olarak birkaç saatten birkaçgüne uzanan bir sürede geliştikten sonra açılmaktadır. Açılan yumurtalardan genç larvalar çıkar. Bu larvalar çıkar çıkmaz hızlı bir şekilde beslenmeye başlarlar. Yine türe özgü olarak değişen günde gömlek değiştirerek ikinci larva çıkar. Larvanın beslenmesi ve gömlek değiştirmesi ardı ardına devam eder. Her gömlek değiştirmede larvanın boyu büyürken şeklide nispeten değişiklik göstermektedir. Son deri değiştirildikten sonra larva pupa dönemine girmektedir. Pupa döneminde larvaya ait organlar yıkılarak yerine ergin böceğe özgü yenileri yapılmaktadır. İşte bu döngünün tamamlanması bir jenerasyon veya kuşak veya döl olarak adlandırılmaktadır. Bu döngünün tamamlandığı süre her tür için değişiklik göstermektedir. İşte bu sürelerin bilinmesi cinayetin nezaman işlendiği hakkında ipuçu vermektedir. ENTOMOLOJİYİ KULLANARAK ÖLÜM NEDENİNİN BULUNMASI * Bir suç araştırmasında, kurbanın ne zaman öldüğünü bilmenin yanısıra, nasıl öldüğünü bilmekte çok önemlidir. Bu bilgi katilin bulunmasında kullanılabilir. * Zehire, kanda, idrarda, mide içeriğinde, saçta ve tırnakta rastlanabilir. Başka bir önemli kaynakta ceset üstünde oluşan larvalardır. Bir süre sonra mide içeriğinden, kandan veya idrardan tahlil yapmak olanaksızlaşırken larvalardan, boş pupalardan ve larvasal deri parçalarından örnek almak hala mümkündür. Bu kimyasalların çoğu larvaların hayat döngüsünü de etkiler. Örneğin yüksek dozlarda kokain bazı Sarcophagidlerin gelişimi hızlandırır. • Bir insectisid olan malathion, çoğunlukla intiharlarda kullanılır ve ağız yoluyla alınır. Ağızda malathion olması, olası kolonileşmeyi geciktirir. • Bir antideprezan olan amitriptyline, Sarcophagidae türlerinin en az bir tanesinin oluşumunu 77 saate kadar uzatabilir. • Kurbanın uyuşturucu yada ilaç kullanıp kullanmadığının bilinmesi, sadece ölüm sebebi değil, ölüm zamanı tahmininde de yardımcı olur. * Ceset üzerinde leşsineklerinin sardığı yerlerde ölüm sebenin bilinmesi veya ölümden önceki olayların yeniden göz önünde canlandırılabilmesi için çok önemlidir. Örneğin kurban ölmeden önce bir yaralanma veya bozulma geçirmişse, geçirmemişe göre daha değişik yerlerinde istila olabilir. Bıçak saldırısında, korunma amaçlı olarak olarak kollar, boğazın ön kısmını ve kafayı kapatır. Bu durumda kolun alt kısımları yaralanır ve ölüm sonrasında leş sinekleri buraya yerleşebilir. * Böceklerin insanlar üzerinde genel yerleşme yerleri doğal açıklardır. Bu yerler tercih edilir. Leş sinekleri çoğunlukla yüz bölgelerinde, nadirende genital bölgelere yumurtalarını bırakırlar. Eğer ölüm cinsel saldırı sonrası olduysa, genital bölgelerdeki kanama sonucu, leş sinekleri buralara yerleşmeyi tercih ederler. Bu şekilde, genital bölgelerde sinek oluşumu varsa, cinsel saldırı düşünülür. Tabii ayrıca bu düşünce diğer kanıtlara da uymalıdır. Doğal bozunmanın sonucu olarak, yumurtaların genital bölgelere yerleşmesiyle, bölgeler birkaç gün (4-5) içinde larvalarla dolar. ENTOMOLOG OLAY MAHALLİNDE HANGİ BİLGİLERİ EDİNEBİLİR Entomologlar genelde cinayetlerin üzerinden ne kadar zaman geçtiğinin belirlenmesi için çağrılırlar. Entomologlar toplanmış derecelendirilmiş zaman tekniği olarak bilinen, tür süksesyonu, larval uzunluk ve daha birçok değişik tekniği de içeren yöntemle, gerekli veriler elde olduğunda çok değerli işler yapabilirler. Nitelikli bir adli entomolog olası postmortem zamanı için tahminlerde de bulunabilir. Bazı sinekler değişik habitatları seçerler. Mesela yumurtalarını koymak için kapalı veya açık alan tercih eden böcek türleri vardır. Açık alanlarda gölge veya güneşte duran leşleri tercih edebilirler. Bu durumda üzerinde kapalı alanda büyüyen sinek larvaları bulunan leşin açık alanda bulunması, ölümden hatta böcek yayılmasından sonraki zamanlarda cesedin taşınıp, yerinin değiştiğinin göstergesidir. Benzer olarak cesedin dondurulması veya sarılma, üzerinde oluşması muhtemel böcek süksesyonunun değişmesine neden olur. Böceklerin normal yumurta bırakma sürelerini engelleyen herhangi bir olay, türlerin sırasını ve tipik kolonileşme zamanlarının değişmesine neden olur. Bu normal böcek süksesyonundaki veya faunasındaki değişiklik, eğer normal ortamda veya coğrafik koşullarda ne olması gerektiği biliniyorsa, adli entomologlar için farkedilmemesi imkansız bir olay olur. Böceklerin hiç olmaması ise cesedin postmortem aralıkta, dondurulduğu, sıkıca kapatılmış bir konteynerde olduğu yada çok derine gömüldüğü sonucu ortaya çıkarabilir. Entomolojik kanıtlar, saldırı yada tecavüz gibi durumların da ortaya çıkarılmasında yardımcı olabilir. Kurbanlar eğer kötü kıyafetler içinde yada dışkı ve idrarlı (sidikli) kıyafetler içinde bulunurlarsa bağlandıkları yada uyuşturuldukları yani muhakeme kabiliyetinde olmadıkları anlaşılır. Bu tip maddeler, herhangi başka bir durumda bulunamayacak bazı bazı böcek türlerini çekerler. * Bozunan insan kalıntılarından toplanan böcekler toksik analizler için de değerli kanıtlar olurlar. Böceklerin doymak bilmez iştahı cesedi kısa bir sürede iskelet yığınına çevirebilir. Çok kısa sürede toksik analiz için gereken kan ve sidik gibi vücut akışkanları ve yumuşak doku yok olabilir. Ama böcek larvaları toplamak ve bunları insan dokusuymuş gibi standart toksik analizlere sokmak mümkündür. Böcekler üzerinde toksik analiz yapmak başarılı olabilir çünkü ölümden sonra insan dokuları üzerinde bulunan ilaç ve toksinler böcek larvalarında da benzer sonuçlar doğurur. ÖLÜM ZAMANININ TAHMİNİ * İlk çürümeden sonra, ceset kokmaya başlar, çeşitli böcek türleri cesede gelmeye başlar. Genellikle ilk gelen böcekler Dipterler yani sinekler. Özellikle leş sinekleri blow flies yani Calliphoridae ve et sinekleri Sarcophagidae’ ler. * Dişi böcekler ceset üzerine yumurtalarını özellikle burun, göz, kulak, anüs, penis ve vajina gibi doğal boşluklar civarına bırakırlar. Eğer ceset üzerinde yaralar varsa yumurtalar böyle kısımlara da bırakılır. Et sinekleri (flesh flies) yumurta yumurtlamazlar bunun yerine larva bırakırlar. * Kısa bir süre sonra, türlere bağlı olarak, yumurtalardan küçük larvalar çıkar. Bu larvalar ölmüş doku üzerinde beslenirler ve hızla büyürler. Kısa bir zaman sonra larva deri değiştirir ve ikinci larval döneme ulaşır. * Sonra çok fazla beslenir ve deri değiştirerek üçüncü larval döneme geçer. Larva tam olarak büyüdüğünde hareketsiz kalamamaya başlar ve cesedin içinde dolaşmaya başlar. Bu dönem prepupal safha olarak adlandırılır. Prepupa deri değiştirerek pupal safhaya geçer fakat üçüncü larval dönemdeki deri, daha sonra puparyuma dönüşen, korunur. Tipik olarak yumurtadan pupal safhaya 1-2 hafta arasında bir zaman geçer. Tam zaman türlere ve çevre sıcaklığına bağlıdır. Leş sinekleri (Blow flies) ve et sineklerinin bazı türlerinin yaşam döngüsünün tablosu burada sağlanabilir ve leş sineklerinin yaşam döngüsü buradan sağlanabilir. Böceklerin yardımıyla ölümün zaman tayininin arkasındaki teori yada tercihen ölüm sonrası zaman aralığı (kısaca PMI) işlemi çok basittir: ölümden hemen sonra vücuda böcekler geldiği zaman böceğin yaş tahmini ölümün zamanının tahmini yolaçacaktır. Leş sineğinin yumurta, larva, pupa ve ergininden nasıl yaş tayin edilir. Yumurta: Leş sineği yumurtladığı zaman, yumurtaları embiryonik gelişmesi çok kısa sürede olmaktadır. Yumurtalar yaklaşık 2 mm uzunluğundadır. İlk sekiz saat süresince yada daha fazla gelişmeyle ilgili çok az işaret vardır (dıştan gözlenen herhangi bir gelişme olmaz bununla birlikte ilk 8 saatte segmentasyon vardır. Daha sonra organ taslakları oluşmaya başlar Protrpod- Oligopod, asetat göster). Bu değişikliklerden sonra yumurta safhasının sonunda yumurtanın koriyonu boyunca larvayı görebiliriz. Yumurta safhası tipik olarak bir gün yada biraz daha fazla sürede sonlanır. Larva: Leş sineği üç larval deri değiştirmeye sahiptir. İlk deri değiştirmede 1.8 gün sonra yaklaşık 5 mm. boyundadır, ikinci deri değiştirmede 2.5 gün sonra yaklaşık 10 mm. uzunluğundadır, üçüncü deri değiştirmede 4-5 gün sonra yaklaşık 17 mm. uzunluğundadır. Tam larval dönemi teşhis etme en kolayıdır ve larvanın büyüklüğü, larvanın ağız parçaları ve vücudun posteriöründeki stigmaların yapısı temel alınarak yapılır. Farklı larval dönemler arasındaki farklılığın nedeni mikroklimaya, örneğin sıcaklık ve neme bağlıdır. Biraz sıcaklık nem ilişkisini anlat. Prepupa: Larva üçüncü deri değiştirmenin sonunda hareketlenmeye başlar ve vücuttan uzaklaşmak için harekete geçer (bu leş sinekleri için karakteristik bir davranıştır). Cesedin kanı kademeli biçimde boşaltılacak, ve yağ doku (fat body) kademeli olarak larvanın iç yapısına katılacak. Biz larvanın bir prepupa ya dönüştüğünü söyleriz. Prepupa yaklaşık 12 mm. boyunda ve yumurtlamadan sonra 8-12 gün arasında görünür. Pupa: Prepupa kademeli olarak zamanla koyulaşan pupa ya dönüşür. Yaklaşık 9 mm. boyunda olan pupa yumurtlamadan sonra 18-24 gün arasında görünür. Boş pupariumun bulunmasıyla adli entomolog söz konusu kişinin yaklaşık 20 günden fazla bir süre önce ölmüş olduğunu söylemelidir. Teşhis, üçüncü larval derinin geride kalan ağız parçalarından yapılabilir. Önemli bir biyolojik olayda vücudun değişik kısımlarında başarılı olan (beslenen) organizmaların bir süksesyon yani bir silsile oluşturmalarıdır. Örneğin, Kemik üzerinde özelleşmiş olan Coleopterler kemik ortaya çıkıncaya kadar bekleyeceklerdir. İlk olarak cesede ulaşan leş sinekleridir (Blow flies), kısa süre sonra Coleoptera’dan Staphylinidler izler. Bozulmanın (çürümenin) ilerlemesiyle, bir çok grup olay mahalline ulaşır, birçok grup, vücuttaki sıvıların sızması sebebiyle kurumasından hemen önce olay mahallinde yeralır. Vücut kuruduktan sonra, Dermestidler, Tineidler ve belirli akarlar ceset üzerinde baskın grup olacaklardır ve leş sinekleri kademeli olarak gözden kaybolacaklardır. Topraktaki faunanın nasıl değiştiğinede dikkat et. Bu da ölümden sonraki zamanının tahmininde kullanılabilir. Böceklerin ardı ardına gelme bilgisi (silsile:süksesyon) bir database içine dahil edilebilir ve bir entomolog bir olayı araştırmaya başladığı zaman ceset üzerinde bulunan taksonu bilgi olarak kullanabilir ve ölüm zamanının tahmininde veri olarak kullanılır. Birçok böcek, çürümekte olan ceset üzerinde yaşamada özelleşmişlerdir. Bir örnek, ölümden sonra 3-6 ay arasında larvası oluşan peynir sineği, Piophila casei, dir. Bu tür bütün dünyada peynir ve salam zararlısı olarak iyi bilinir ve bütün dünyaya yayılmıştır. Ergin peynir sineği ölümden sonra ilk (erken) safhalarda bulunabilir fakat larva daha sonra oluşur. İnsan cesedinin kalıtılarında en erken gözlem (tespit) ceset iki aylık olduğu zamandır ve bu durum en iyi yaz koşullarındadır. OLAY YERİNİN ENTOMOLOJİK KANITLAR İÇİN İNCELENMESİ Olay yerinde izlenmesi gereken prosedür habitata göre değişmektedir fakat biyokriminal entomologların görevlerini genel olarak beşe ayırabiliriz. 1- Olay yerinde görsel gözlem ve not alma. 2- İklimsel verilerin olay yerinde toplanmaya başlaması. 3- Ceset yerinden oynatılmadan önce vücut üzerinden örnekler alınması. 4- Ceset yerinden oynatılmadan önce 6 metreye kadar yakın çevresinden örnekler alınması. 5- Ceset alındıktan sonra, tam altından ve 1 metreye kadar yakın çevresinden örnekler alınması. Olay yerindeki böcek aktivitesinin gözlenmesi çok yararlı olabilir çünkü, entomologlar bu konuda olay yerini inceleyen araştırıcılardan daha değişik şekilde eğitim alırlar. Entomolog, araştırıcıların göremeyeceği yada önemsemeyeceği bir şeyi farkedebilir. Yada tam tersi olabilir. Olay Yerinde Nelere Bakılmalıdır? * Olay yeri hangi habitat içindedir: şehir, şehir içi mi, kırsal bir alan mı, yoksa sulu bir bölge mi? Ormanlık mı, yol kenarı mı, kapalı bir bina mı, açık bir bina mı, havuz mu, göl mü, nehir mi yoksa tamamen farklı bir habitat mı? Habitat, cesedin üzerinde hangi tip böcek olması gerektiği belirleyecektir. Ceset üzerinden toplanan entomolojik kanıtlar eğer bulunduğu yerin habitatına uymuyorsa , bu, bedenin başka bir yerden getirilip atıldığına işaret olabilir. * Uçucu ve sürüngen böceklerin çeşitlerinin ve sayılarının değerlendirilmesi. • Ceset üzerinde ve çevresinde gelişen böcek oluşumunun en fazla olduğu yerlerin not edilmesi. Bu istilanın yumurta, larva, pupa veya ergin gibi hangi evrede olduğu. Tek bir tanesi yada herhangi birilerinin beraber olması gibi. • Yetişkin bir tür böceğin yetişkin olmadan önceki evrelerinin incelenmesi. Bu evreler yumurta, larva, pupa(lık), boş pupa(lık), larva derilerinin bırakılması, tortu maddesi, çıkış delikleri ve beslenme izleri gibi olabilir. • Arı, karınca veya yabanarıları ve başka farkılı böceğin verdiği zararların not edilmesi. • Cesedin tam olarak yerinin el ve ayak gibi parçalarının yerinin belirlenmesi. Yüzün ve kafanın durumu. Hangi vücut parçalarının yerle temas ettiğinin belirlenmesi. Gün ışığında, gölge ve ışığın nereye geldiğinin not edilmesi. • Cesedin 3-6 m. yakınındaki böcek aktivitesinin kontrol edilmesi. Cesedin civarındaki, uçan, dinlenen ve sürünen, yetişkin, larva veya pupa dönemi böceklerin not edilmesi. • Yaralanma, yanma, gömülme, parçalanma gibi doğal olmayan, çöpçü ve bunun gibi insanların sonradan verdiği değişikliklerin not alınması. Bu görüntülerin hepsinin fotografı çekilmeli. Böceklerin toplanmadan önce hangi evrelerde oldukları da fotograflanmalı. Olay Yerinde İklimsel Verinin Toplanması PMI nin hesaplanmasında iklimsel verilerin olay yerinde toplanması çok önemlidir. Böceğin hayat çemberinin uzunluğu genelde olay yerindeki sıcaklık, bağıl nem gibi hava olaylarına bağlı olarak belirlenir. Aşağıdaki iklimsel veriler olay yerinde toplanmalıdır: 1- Cesedin 0.3-1.3 m. civarındaki yerel sıcaklık. 2- Yerin ve üstünde varsa eğer herhangi bir örtünün sıcaklığını termometre yerleştirilerek ölçülmesi. 3- Vücudun sıcaklığının da termometro yerleştirilerek ölçülmesi. 4- Vücut altı sıcaklığının yer ile ceset arasına konulan bir termometro ile ölçülmesi 5- Larva yoğunluğunun, merkeze konulan bir termometre ile ölçülmesi. 6- Toprağın vücut kaldırıldıktan sonraki sıcaklığın ölçülmesi. Ayrıca bedenin 1-2 m. uzağındaki sıcaklık ölçülmelidir. Bu üç aşamalıdır: Tam altından (çim ve yapraklar), 4 cm. Derinden ve 20 cm derinden Hava durumu, olay yerine en yakın meteoroloji istasyonundan öğrenilebilir. Minimum gereksinimler, maksimum ve minimum sıcaklık ve kalıntının miktarıdır. Öteki bilgilerin de toplanması güzel olur ve olayların yeniden yaratilmasında yardımcı olur. İklimsel veriler, kurbanın son görüldüğü ana kadar uzatılıp incelenmelidir. Cesedin Kaldırılmasından Önce Örneklerin Toplanması Olay Yerinde Böceklerin Bedenden Toplanması: İlk önce toplanması gereken böcekler yetişkin sinekler ve böceklerdir. Bu böcekler hızla hareket ederler ve suç mahallini hızla terkedebilirler. Yetişkin sinekler biyolojik merkezlerden tedarik edilebilecek böcek ağlarıyla yakalanabilir. Etil asetat yada alelade tırnak cilası ile böcekler hareketsizleştirilir. Daha sonra % 75 lik etil alkol bulunan şişeye aktarılır. Toplanan örneklerin etiketlendirilmesi çok önemlidir. Etiketler siyak kurşun kalemle yapılmalıdır, kesinlikle tükenmez veya dolma kalem kullanılmamalıdır. Etiket örnekle birlikte alkol içine atılmalıdır. Toplama etiketi aşağıdaki bilgileri içerir. 1- Coğrafik konum 2- Toplama saati ve günü 3- Olay numarası 4- Beden üzerinde toplama yapılan bölge 5- Toplayanın ismi Etiket iki adet olarak hazırlanmalı ve biri şişenin dışına diğeri içine konmalıdır. Ergin örnekler toplandıktan sonra, ceset üzerinden larval örneklerin toplanmasına başlanabilir. Önce araştırmacı kolay görülemeyecek yumurtaları araştırmalı. Bu adımdan sonra, larva beden üstünde kolayca görünür Verilerin Analiz Edilmesi Ölümden Sonra Ceset Hareket Ettirildi mi? Ölümden sonra, cesedin üzerinde mantarlar, bakteriler ve hayvanlar kolonileşmeye başlarlar. Cesedin, üzerinde yattığı yerde zamanla değişebilir. Cesetten sıvıların sızıp gitmesiyle bazı böcekler yok olurken, bazılarının da sayısı zamanla artar. Biyokriminal entomolog ceset üzerindeki faunaya bakarak ne kadardır orada olduğunu ve cesedin altındaki topraktaki böcekleri inceleyerek de yaklaşık ölüm zamanını tahmin edebilir. Eğer ikisi arasında bir farklılık varsa, yani toprak analizi kısa PMI’I, vücut faunası da uzun bir PMI’I gösteriyorsa, bu cesedin hareket ettirildiğine bir işaret olabilir. Bazı Calliphoridler güneş severdir, yumurtalarını sıcak yüzeye koymayı tercih ederler, yani güneşli yerlerde bulunan cesetler üzerinde oluşurlar. Diğer leş sinekleri gölgeleri tercih ederler. Örneğin Lucilia güneşi tercih ederken Calliphora gölgeyi tercih eder. Bazı türler sinantropiktir yani şehirsel bölgelerde yaşarlar. Bazıları da sinantropik değildir, onlar kırsal alanlarda görülürler. Calliphora vicina sinantropik bir sinektir, çoğunlukla şehirlerde rastlanır. Calliphora vomitoria ise kırsal alanlarda bulunan bir türdür. Ölüm Yeri İşlemleri (Cinayet mahalindeki İşlemler) Yer incelemeleri ve hava verileri; olay yerinde bedenden böceklerin toplanması; bedenin yerinin değiştirilmesinden sonra böceklerin toplanması; toplanan böceklerin biyokriminal entomologlara gönderilmesi Böceklerin ve diğer arthropodların ölüm yerinden toplanması sırasında cesete verilebilecek zararlara dikkat etmek önemlidir. Bu yüzden entomologlar (yada olay yerinde görevli toplama yapan kimse) öncelikli araştırıcıyla temasa geçilmeli ve entomolojik delilleri toplamak için bir plan yapılmalı. Olay yeri gözlemi ve hava verileri: Ölüm yerinin entomolojik araştırması belli adımları izleyerek analiz edilebilir. 1- Olay yerinin gözleminde bitki örtüsü için habitata ve bedenin yerine ve eğer bir bina içindeyse açık pencere yada kapıya yakınlığına dikkat edilmelidir. Beden üstündeki böcek istilalarının yeri en az böceklerin hangi evrede olduğunun (yumurta, larva, pupa, ergin) belirlenmesindeki kadar dikkat edilerek belirlenmeli. Omurgalı hayvanlar, yumurta ve larvanın ve diğer böceklerden ötürü –ateş karıncaları gibi- işe yarayacak kanıtların belirlenmesi yararlı olur. Ölüm yerinin şekli üzerindeki gözlemlerde de en az bunlarda olduğu kadar dikkat edilmelidir. 2- Olay yerinde klimatolojik verilerin toplanması. Bu veri şunları içermeli: a) Olay yerindeki hava sıcaklığı gölgede, bir termometre ile, göğüs yüksekliğinde, yaklaşık olarak belirlenebilir. TERMOMETREYİ DİREKT GÜNEŞ IŞIĞINA MARUZ BIRAKMAYIN. b) Larva kütlesinin ısı derecesi (larval yığından direkt termometre ile almak) c) Yer yüzeyinin sıcaklığı. d) Bedenle yer arasında kalan yerin sıcaklığı (tamamen iki yüzey arasında kalan kısımda bırakılan termometre ile). e) Toprak sıcaklığı doğrudan vücudun altından alınır (vücut kaldırılınca derhal sıcaklık alınır). f) Hava verileri maksimum ve minumum günlük ısı derecesini ve sağnak yağışı, kurban kaybolmadan 1-2 hafta öncesinden bedenin bulunmasından 3-5 gün sonrasına kadar ki periyodu içerir. Bu bilgiler ulusal hava durumu ofislerinden yada devlete bağlı klimatoloji ofislerinden elde edilebilir. Biyolog Yalçın DEDEOĞLU

http://www.biyologlar.com/biyokriminal-entomoloji

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi

Mikrotübüller

Mikrotübüller protein yapıda olan, uzun, içi boş silindirik yapılardır. Çapları 24 nm'dir. Başlıca görevleri hücresel asimetreyi korumak, hücre içi organel iletimine yardımcı olmak, bölünme olayında kromozom hareketlerini sağlamak ve Golgi kompleksi ile endoplazmik retikulum arasında materyal iletimini sağlamaktır. Mikrotübüller bazı kompleks hücre organellerinin yapısına katılırlar. Bunlar hareketli silya (kinosilya) kamçı (flagella) ve sentriollerdir. Mikrotübüller kinosilya, flagella ve sentriollere özelbir düzende organize olmuşlardır. Sentrioller bölünmeyen hücrelerde Golgi kompleksi ile çekirdek arasında çift olarak yer alır. Sentrozom adını alan bu çift yapı 300-500 nm uzunlukta 150 nm çapında olup, silindirik şekillidir. Sentrozom hücre bölünmesi sırasında mikrotübüllerin oluşturacağı iğ iplikçiklerinin yerinin belirlenmesinde rol oynar.

http://www.biyologlar.com/mikrotubuller

Her Yıl 36 Erkekten Biri Prostat Kanserine Yakalanıyor

Her Yıl 36 Erkekten Biri Prostat Kanserine Yakalanıyor

Türk Radyoloji Derneği Genel Sekreteri ve Avrupa Ürogenital Radyoloji Derneği Prostat Kanseri Çalışma Grubu Üyesi Doç. Dr. Ahmet Tuncay Turgut, MR görüntüleme ve multiparametrik MR teknolojisindeki gelişmeler sayesinde prostat kanserinin kolaylıkla saptandığını belirtti. MT- Prostat kanseri görülme sıklığı nedir ve toplum sağlığı açısından taşıdığı önemden söz eder misiniz? Yapılan araştırmalarda, gelişen hayat standartları sayesinde yaşam beklentisinin artmasına paralel olarak özellikle 65 yaş üzerinde olmak üzere kanser vakalarında önümüzdeki otuz yıl içinde üç kat artış meydana geleceği hesaplanmıştır. Bu durum ağırlıklı olarak bir ileri yaş hastalığı olan prostat kanseri için de geçerlidir. Prostat kanseri genel olarak orta yaşı geçmiş erkeklerde en sık tanı konan kanser olup tüm kanser vakalarının %11'inden ve kanserden ölümlerin % 9'undan sorumludur. Çok çarpıcı bir veriyle devam etmek gerekirse, yapılan araştırmalar her 6 erkekten birinin yaşamı boyunca prostat kanserine yakalanacağını göstermiştir. Prostat kanseri tüm dünyada erkeklerde kansere bağlı ölüm nedenleri arasında akciğer kanserinden sonra ikinci en sık sorumlu tutulan neden durumundadır. Bu durumda her 36 erkekten birinin prostat kanseri nedeniyle hayatını kaybettiği düşünülmektedir. Tüm dünyada yılda yaklaşık 900 bin hasta prostat kanseri tanısı alırken, her yıl 258 bin hasta prostat kanseri nedeniyle hayatını kaybetmektedir. Benzer şekilde ABD’de 2012 için öngörülen yeni olgu sayısı 241 740, ölüm sayısı ile 28 170’dir. Mevcut artışın devam etmesi durumunda 2030 yılında dünyada her yıl 1,7 milyon yeni olgu ve 500.000 ölüm görüleceği düşünülmektedir. MT - Prostat kanseri için kimler risk altındadır? Prostat kanseri için bilinen en kuvvetli risk faktörü genetik faktörlerdir. Bu nedenle ailesinde prostat kanseri öyküsü olanlar prostat kanseri için risk altındadır. Ayrıca diğer bazı kanser türleri için olduğu gibi prostat kanserinin de batı tipi yaşam tarzı, hazır gıdaların fazla tüketimi gibi alışkanlıklarla artış gösterdiği düşünülmektedir. MT - Prostat kanserinin belirtileri nelerdir? Genellikle 40 yaşın üstündeki erkeklerde görülen prostat kanseri erken dönemde belirti vermeyip tanı ancak rutin kontroller sırasında yapılan tetkiklerle konulabilmektedir. Hastalık sıklıkla sinsi şekilde ilerledikten sonra geç dönemde kendini göstermektedir. Bu nedenle birçok hastada prostat kanseri genellikle ileri evrede yakalanmaktadır. Bu dönemde hastalık önce prostata komşu organlara ardından kan ve lenf yolu ile lenf düğümleri, kemik ve akciğerlere sıçrayabilmektedir. Başlıca belirtiler arasında yer alan idrardan kan gelmesi, meniye kan karışması gibi bulguların varlığı hastalığın ilerlediğini akla getirirken metastaz halinde ise kemiklerde ağrı görülebilmektedir. MT - Prostat kanseri için erken tanının önemi hakkında bilgi verebilir misiniz? Geçmişte, erken tanı araçları henüz yaygın değilken birçok erkek ilerlemiş kanser tanısı almaktaydı ve hastalar teşhisten bir kaç sene sonra ölmekteydiler. Bu nedenle 1970’lerde hastalığın tanısı sonrasında 5 yıllık yaşam süresi %70’lerin altındaydı. Oysa günümüzde prostat kanseri erken evrede yakalandığında ve doğru tedavi uygulandığında başarı oranı % 90’lara yükselmektedir. Yapılan araştırmalarda tarama yoluyla prostat kanserinden ölüm oranlarının %30 oranında azaldığı hesaplanmıştır. Beklendiği üzere hastalığın erken teşhis edilmesi halinde tedavi başarısı artacaktır. Tanı anında kanser sadece prostata sınırlı ise hastanın tamamen iyileşme şansı çok yüksektir. Bu nedenle prostat kanseri tanısıyla ilgili yaklaşımın esasını, hastalığın prostatın içinde sınırlıyken yani hiçbir klinik belirtisinin olmadığı dönemde tespit edilmesi oluşturmaktadır.  Hiçbir yakınması olmasa bile erkeklerin 50 yaşından itibaren yılda bir kez prostat kanseri taraması için başvurması önerilmektedir. Bir diğer önemli nokta ise hastalığın tedavisinin tamamen evreye göre planlanıyor olması nedeniyle evrenin doğru olarak saptanması gerekliliğidir MT - Türkiye’de durum nedir? Türkiye’deki durum da aslında dünya ile paralellik göstermekte olup, prostat kanseri görülme sıklığı   % 20 civarındadır. Yapılan çalışmalarda ülkemizde de prostat kanserinde belirgin artış olduğu, prostat kanserinin erkeklerde akciğer kanserinden sonra ikinci sıraya yerleştiği anlaşılmıştır. Bu artış tüm dünyada olduğu gibi ülkemizde de kişilerin doktora görünme sıklıkları, yapılan kan testlerinin artışı, tanı koymada kaydedilen gelişmeler gibi faktörlerle yakından ilişkilidir. Bununla birlikte Batı ülkelerinden kısmen farklı olarak erken tanı oranının hala önemli ölçüde düşük olduğu söylenebilir. Bu durum hastalığa yönelik farkındalığın görece düşük olması ve özellikle kültürel faktörlerle ilişkili olmak üzere hekime başvurma oranının istenen düzeyde olmaması ile açıklanabilir.  Maalesef toplumun geneli herhangi bir yakınması olmaması nedeniyle kontrol amacıyla doktora başvurmamaktadır. MT - Prostat kanseri tanısı nasıl konmaktadır? Prostat kanseri taraması için iki temel yöntem parmakla prostat muayenesi ve kanda PSA denilen bir maddenin ölçümüdür.  Kan PSA düzeyinin artışı tipik olarak prostat kanserinin potansiyel varlığına dair ilk belirtidir.  Bunu takiben gerçekleştirilen uygulama ultrason rehberliğinde prostat bezinin özel iğnelerle genellikle 12 örnek alımını içerecek şekilde örneklenmesi işlemidir. MT - Prostat kanseri tanısı için neden yeni tekniklere gereksinim duymaktayız? Her şeyden önce iğneyle parça alınması işleminin kanseri saptamaya yönelik duyarlılığı %40-50 oranındadır.  Ayrıca PSA düzeyinde artışın prostat kanseri dışındaki bazı sebeplere de bağlı olabilmesi sebebiyle rutin PSA taraması pek çok gereksiz biyopsiye yol açmaktadır. Önemli bir problem de biyopsi ile kanser tanısı elde edilmemesine rağmen anormal olarak yüksek kalan veya yükselmeye devam eden PSA değerleri nedeniyle prostat kanseri şüphesinin devam ettiği çok sayıda hastaya biyopsi tekrarları uygulanma zorunluluğunun bulunmasıdır. Bu da sosyal güvenlik sistemine ciddi bir ek maliyet getirmekte, tanısal bakımdan belirsizliklere neden olmaktadır.  Diğer önemli bir dezavantaj ise iğne biyopsilerinin tümörün sınırlarını tam olarak ortaya koymada yeterli oranda başarılı olmaması, bir başka deyişle hastalığa yaklaşımda çok önemli bir parametre olan kanser evresinin biyopsi ile doğru olarak belirlenemiyor olmasıdır. Prostat kanseri tanısını doğrulamaya yönelik olarak gerçekleştirilen biyopsi uygulaması invazif bir işlemdir. Hastaların bir kısmı bu işlemi inanılmaz derecede ağrılı olarak nitelendirmektedir; bir çalışmada hastaların %20’si yeni bir biyopsi işlemi gerektiği takdirde işlemi yaptırmayı kabul etmeyeceklerini belirmişlerdir. Ayrıca işlem bazı hastalarda işlem sonrasında kanama ve enfeksiyon gelişmesi gibi komplikasyonlara yol açabilmektedir. Söz konusu yan etkiler beklendiği üzere işlem sırasında alınan parça sayısı ile doğru orantılıdır. MT - Peki çözüm nedir? Giderek artan sayıda hastaya biyopsi uygulanması gerekliliğinin ortaya çıkması ve örneklem hatası riskinin olmasına bağlı olarak negatif bir biyopsi sonucunun otomatik olarak kanserin olmadığı anlamına gelmemesi gerçeğinden hareketle MR incelemesi elde edilen bulguların rehberliğinde yapılan biyopsi uygulamasının önemli yararlar sağladığı görülmektedir. Multiparametrik MRG ile sağlanan yararların başında tümörün davranış paterninin belirlenmesi gelmektedir. Prostat kanserinin hasta açısından hangi düzeyde (düşük, orta ve yüksek) risk oluşturduğunun öngörülmesinde/belirlenmesinde ultrason rehberliğinde biyopsi işleminin doğruluk oranları %50’ler düzeyinde iken bu oran multiparametrik MRG ile %95’lere yükselmektedir. Ayrıca yüksek PSA nedeniyle gerçekleştirilen biyopsi işleminde kanser saptanmamasına rağmen PSA’daki yükselmenin devam etmesi gibi kuvvetli kanser şüphesinin varlığı söz konusu olduğunda, multiparametrik MRG sonrasında gerçekleştirilen biyopsi ile % 40’lar düzeyinde prostat kanseri saptanmakta olup bunların yaklaşık %90’ı klinik olarak önemli kabul edilen tiptedir. Tümörün yerini tam olarak belirleyebilen yöntem sayesinde ultrason eşliğinde alınan 12 örnek yerine 1-2 örnek alınması bile yeterli olabilmektedir. Ayrıca MR ile kanserin görüntülenmesinde sağlanan başarı MR incelemesi ile prostatında anormal bulgu saptanmayan hastalarda biyopsi yapılması gerekliliğini azaltmaktadır.  Tabi burada önemli olan gerçekleştirilen MR incelemesinin uygun teknikle yapılması ve bulgulara yönelik değerlendirmenin tekrarlanabilir olma özelliğini taşıması, bir başka deyişle standart hale getirilmesidir. Bununla ilgili Avrupa Ürogenital Radyoloji Derneği  tarafından bu yılın başında yayınlanan kılavuz ve PI-RADS (Prostat Görüntüleme Raporlama ve Data Sistemi) adı verilen yapılandırılmış raporlama sistemi Amerikan Radyoloji  Koleji  tarafından da kullanılmaya başlanmıştır. MT - Bu yöntem Türkiye’de kullanılmaya başlandı mı? Ülkemizde de henüz çok yaygın olmamakla birlikte multiparametrik prostat MR incelemeleri gerçekleştirilmektedir. Türk Radyoloji Derneği adı geçen uygulamayı yaygınlaştırmaya sağlamaya yönelik çalışmalarını sürdürmektedir. Kadınlarda meme kanseri taramasına yönelik olarak mamografinin kullanılmasına benzer şekilde yakın gelecekte erkeklerde de prostat kanseri tanısına yönelik olarak manyetik rezonans görüntülemenin kullanılmasının gündeme geleceğini düşünüyoruz. http://www.medical-tribune.com.tr

http://www.biyologlar.com/her-yil-36-erkekten-biri-prostat-kanserine-yakalaniyor

Sitoloji Soruları

1. Hücrede enerji üretiminin (ATP sentezi) yapıldığı organel hangisidir? A) Lizozom B ) Golgi Kompleksi C) Mitokondriyon D) Sentrozom E) Ribozom 2. Hücre zarının yapısı nasıldır? A) Lipidlerden oluşmuştur B ) Karbonhidratlardan oluşmuştur C) Proteinlerden oluşmuştur D) Lipidler ve proteinlerden oluşmuştur E) Elektrolitlerden oluşmuştur 3. Çekirdeği ökromatini egemen görünen hücre için ne düşünürsünüz? A) Metabolizması çok hızlı B ) Kalıtım materyali eksik C) Hücre interfazda D) Hücre bölünmeye başlamış E) Hücre ölümü gözleniyor 4. Dış çevreden gelen olumsuz etkilerden en çabuk etkilenen organeller hangisidir? A) Mikrotübüller B ) Mitokondriyonlar C) Lizozomlar D) Mikrofilamentler E) Endoplazmik retikulum 5. Bölünme olayında mitoz mekiğinin yerinin belirlenmesinde rol oynar diye belirtilen organel hangisidir? A) Lizozom B ) Peroksizom C) Ribozom D) Granülsüz endoplazmik retikulum E) Sentrozom 6. Hücrede protein sentezi yapan mikromakineler hangisidir? A) Sentrozom B ) Ribozomlar C) Golgi kompleksi D) Peroksizomlar E) Mitokondriyonlar 7. Hücre içindeki organellerin arasındaki sıvıya ne ad verilir? A) Metaplazma B ) Öplazma C) Esas plazma D) Paraplazma E) Alloplazma 8. Hücrede depo maddesi gibi bulunan hayati olaylara karışmayan yapılar nasıl isimlendirilir? A) Paraplazma B ) Metaplazma C) Öplazma D) Hyaloplazma E) Esas plazma 9. Hücreyi yöneten merkez ayrıca kalıtım materyalini bulunduran organel hangisidir? A) Çekirdekçik B ) Golgi kompleksi C) Mitokondriyonlar D) Çekirdek E) Granüllü endoplazmik retikulum 10. Hücre içinde membranında ribozomlar bulunduran organel hangisidir?   A) Granüllü endoplazmik retikulum B ) Golgi kompleksi C) Mitokondri D) Peroksizom E) Lizozom

http://www.biyologlar.com/sitoloji-sorulari

Türkiye Zootekni Bölümlerinde Hayvan Davranışları Bilimi

Hayvan davranışları bilimi bakımından Türkiye’de son yıllarda sevindirici gelişmeler yaşanmaktadır. Lisans ve lisansüstü ders olarak hayvan davranışları, zootekni bölümü olan neredeyse tüm üniversitelerde okutulmaya başlanmıştır. Genellikle lisansta zorunlu ders olarak genel hayvan davranışları verilmekte, lisansüstünde ise seçmeli ders olarak türlere özgü davranış dersleri yer almaktadır. Ülkemizde davranış derslerinin türlere özgünleşmesi ilginçtir. Zira ülkemize kıyasla hayvan davranışları biliminin çok daha eski bir geçmişi olmasına rağmen batı ülkelerinde türlere ilişkin ayrı derslere neredeyse rastlanmamaktadır. Zootekni öğretiminin yapılanması ve bu konudaki ulusal alışkanlıklarımız ile ilişkilendirilebilecek bu oluşum aynı zamanda ülkemizde temel davranış çalışmalarına olan ilginin yetersizliğini de açıklamaktadır. Ülkemiz zootekni bölümlerinde hayvan davranışları konusunda yapılan ve Science Citation Index tarafından değerlendirmeye alınan dergilerde yayınlanan çalışmalara bakıldığında ilk yayının 1999 tarihli olduğu görülmektedir (Çam ve ark., 1999). Aynı yazarların daha sonraları davranış konularında yayınlarına rastlanmamaktadır. Bu çalışmayı, güncel değerlendirme makalesinin yazar(lar)ının da içerisinde bulunduğu 2001, 2002 ve 2003 tarihli üç araştırma makalesi izlemektedir (Savaş ve ark, 2001; Yurtman ve ark., 2002; Karaağaç ve ark., 2003). Kasım 2007 tarihi itibarıyla SCI tarafından taranan dergilerde hayvan davranışları konusunda yayınlanan Türkiye adresli toplam makale sayısı 21’dir. Makale sayıları bakımdan, Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Zootekni Bölümü (Savaş ve ark., 2001; Yurtman ve ark., 2002; Uğur ve ark., 2004; Savaş ve ark., 2007; Tölü ve Savaş, 2007; Atasoglu ve ark., 2007), Mustafa Kemal Üniversitesi Ziraat Fakültesi Zootekni Bölümü (Keskin ve ark., 2004; Keskin ve ark., 2005; Tapkı ve Şahin, 2006, Tapkı ve ark., 2006) ve Atatürk Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nden (Yanar ve ark., 2006; Metin ve ark., 2006; Güler ve ark., 2006) araştırma gruplarının çalışmaları dikkat çekmektedir. Anılan çalışmaların yarıya yakın bir bölümü pür uygulamalı etolojik çalışmalar olarak değerlendirilebilirler. Diğer çalışmalarda ise davranış özellikleri daha ziyade ikincil, yada destekleyici biyolojik göstergeler olarak kullanılmışlardır. Söz konusu çalışmalar türler bazında incelendiğinde küçükbaş hayvanların ağırlıklı olduğu, bunları sığırların izlediği gözlenmektedir. Türkiye adresli ve SCI indeksli yayınlar içerisinde kanatlı türlerde, biri yumurtacı tavuk diğeri güvercin özdekli olan yalnızca iki çalışmaya rastlanmıştır (Karaağaç ve ark., 2003; Savaş ve ark., 2007). Bununla birlikte, ulusal dergilerde yayınlanmış olan bazı araştırma makaleleri ile (Savaş ve Şamlı, 2000) yine bu konuda yürütülen tez çalışmalarına (Köse, 2004) da ulaşmanın mümkün olabileceği düşünülmektedir. Her ne kadar TÜBİTAK ULAKBİM bu konuda önemli adımlar atmış olsa da, ne yazık ki, ulusal paylaşım ağımızın yetersizliği nedeni ile çalışmalara ulaşmak son derece güç olabilmektedir. Bu nedenlerle değerlendirmede sadece uluslararası paylaşım kolaylığına sahip süreli yayınlar dikkate alınmıştır. Bilim insanlarının çalışma alanlarının belirlenmesinde ulusal nitelikli bilimsel toplantılar iyi birer araçtır. Zira bilimsel projeler, proje başladıktan çok kısa sonrasında bu tip toplantılarda sunulurlar. Halbuki bu çalışmaların makaleye dönüşmesi çok daha uzun bir süre alabilir. Bu bağlamda hayvan davranışları bilim alanındaki çalışmaların gelişimini takip etmek açısından Ulusal Zootekni Bilim Kongrelerinde sunulan bildiriler iyi birer araç olabileceği düşünülmüş ve 2000 yılından sonra yapılan üç Ulusal Zootekni Bilim Kongresi (2002 Ankara, 2004 Isparta ve 2007 Van) incelenmiştir. Ankara Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nce organize edilen III. Ulusal Zootekni Kongresi’ne toplam 167 bildiri sunulmuş olup, Hayvansal Üretim bunlardan biri küçükbaş diğeri balarısı özdeğinde olmak üzere, yalnızca iki tanesinin hayvan davranışları konusunu içerdiği gözlenmiştir. Süleyman Demirel Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nün gerçekleştirdiği IV. Ulusal Zootekni Kongresi’nde ise toplam bildiri sayısı 174, hayvan davranışları konulu bildiri sayısı 13 e ulaşmıştır. Son yapılan Van Kongre’si değerlendirildiğinde, bir önceki kongreye göre %13,2’lik bir artışla (Ankara ile Isparta arasındaki toplam bildiri sayısı artışı %4,2) toplam bildiri sayısının 197, hayvan davranışlarını konu alan bildiri sayısının ise 17 olduğu görülmektedir. Kongrelere göre hayvan davranışlarını konu edinen bildiri sayısının toplam bildiri sayısına oranı sırasıyla %1,2, %7,5 ve %8,6’dır. Bu gelişme hayvan davranışları bilim dalı bakımından sevindiricidir. Zootekni, veteriner hekimlik ve biyoloji öğrencileri için önemli bir Türkçe kaynak durumunda olan ve Ege Üniversitesi Ziraat Fakültesi Zootekni Bölümü öğretim üyesi Prof. Dr. Erdinç Demirören tarafından kaleme alınan “Hayvan Davranışları” kitabı da, bu konuda bir ilk olması nedeniyle anılmadan geçilemez (Demirören, 2007). Ancak bir tek kitabın bilim dalı için yeterli olmadığı, hayvan davranışları alanında Türkçe kaynak sıkıntısı çekildiği de bir gerçektir. Sonuç Hayvan davranışları bilimi, hayvanların çevresel düzenlemelerinde yararlı bir araç olarak görülmektedir. Bu yararlanma, çevrenin hayvanın davranışlarına göre şekillendirilmesi yanında davranış bakımından mevcut çevre koşullarına uyum sağlayabilecek hayvanların ıslah edilmesi şeklinde iki yönlüdür. Sözkonusu bilim dalından yararlanmanın anılan her iki yönünün de birlikte ele alınması ön koşuldur. Zira hayvan bilimi içerisinde bu güne değin yapılan çalışmalar göstermiştir ki, ne tek başına çevreyi ne de tek başına hayvanın genetik yapısını “yetiştiricinin arzuları doğrultusunda” optimize etmek mümkün olmuştur. Dolayısıyla optimizasyon bütüncül bir yaklaşımı gerektirir. Bu bilim dalından üretilecek bilgi hayvanların yaşamlarını daha sağlıklı sürdürmelerini, üremelerini ve üretmelerini sağlayacaktır. Bunların ötesinde hayvanlarla ilgili hukuki düzenlemelerde de bu bilim dalının vazgeçilmez katkısı bulunmaktadır. Hayvan refahının gözetilmesi anlamında Hayvanları Koruma Kanunu’nda hayvan davranışları bilim dalına doğrudan atıfta bulunulmaktadır (Kanun No: 5199; Madde 3, 5, 8 ve10). Ancak çevresel düzenlemeleri insan kontrolünde olan hayvanların davranışlarının yalnızca uygulamaya dönük olarak ele alınması, hayvan davranışları bilim dalının gelişmesini olumsuz olarak etkiler. Bilim dalının sağlıklı olarak gelişmesi için, yetiştirme olgusu altında hayvanların davranışlarına yönelik temel çalışmalara da gereksinim vardır. İlgili davranışların ortaya çıkışında etkili mekanizmaların aydınlatılabilmesi için fizyolojiden genetiğe, gelişme biyolojisinden patolojiye kadar davranışa temel oluşturan alanların kapsamı içerisinde çalışmak kaçınılmaz gözükmektedir. Söz konusu yaklaşım tarzı aynı zamanda bu konuda yetişecek genç bilim insanlarının temel etolojiyi ve ilgili alt dallarını iyi öğrenmelerini de sağlayacak niteliktedir. Zootekni açısından hayvan davranışları bilim dalının Türkiye’de son yıllarda sergilediği gelişimin niteliği sevindirici ve umut vericidir. Ancak ve ne yazık ki, zootekni bilim camiası içerisinde yapılan sohbetlerden takip edilen bir şekilde, özellikle davranışın sayısallaştırılması ve akabinde istatistiksel değerlendirilmesi konusunda bilimcilerimizin sorunlar yaşadıkları, kimi zaman bu güçlüklerin araştırmacıları söz konusu alandan vazgeçmenin eşiğine getirdiği izlenimi, çalışmaların sürekliliği açısından endişe yaratmaktadır. Öncelikle belirtmek gerekir ki tüm Dünya’da bu konuda çalışmalar yetersizdir. Bu durum söz konusu alanda bilimsel çalışma yapmaktan vazgeçmeyi değil ilgili sorunların üzerine gitmeyi ve araştırma yapmayı gerektirir. Nitekim hayvan davranışları bilimi alanında yöntem konusunda da çalışmalara gereksinim vardır. Kaynaklar Ataşoğlu, C., Yurtman, İ. Y., Savaş, T., Gültepe, M., Özcan, O. 2008. Effect of weaning on behavior and serum parameters in dairy goat kids. Animal Science Journal 79(4): 435-442. Bessei, W. 1983. Die Bedeutung der Lorenzschen Instinktlehre in der Diskussion um eine verhaltensgerechte Unterbringung von Legehennen. Züchtungskunde 55: 222-232. Çam, M., Kuran, M., Selçuk, E. 1999. Effects of time spent near mothers postpartum on the behaviour of ewes and lambs and on the growth performance of lambs in Karayaka sheep. Turk. J. Vet. Anim. Sci. 23: 335-342. Darwin, C. 1990. Türlerin kökeni. (Çev. Öner Ünalan) Onur Yayınları, Şahin Matbaası, Ankara, ss 392. Dietl, G., Nürnberg, G., Reinsch, N. 2006. A note on a quantitative genetic approach for modeling of differentiation tasks. Appl. Anim. Behav. Sci. 100: 319–326. Demirören, E. 2007. Hayvan davranışları. II. Baskı. Ege Üniversitesi Ziraat Fakül. yayınları No:547, İzmir. Hayvansal Üretim 49(2), 2008 Hayvan Davranış Bilimi ve Zootekni: Tanım ve İzlem 41 Güler, O., Yanar, M., Bayram, B., Metin, J. 2006. Performance and health of dairy calves fed limited amounts of acidified milk replacer. S. African J. Anim. Sci. 36: 149-154 Immelmann, K., Ekkehard, P., Sossinka, R. 1996. Einführung in die Verhaltensforschung. Blackwell Wissenschafts-Verlag Berlin, Wien, pp 287. Karaağaç, F., Özcan, M., Savaş, T. 2003. Verlauf von aggressivem Picken und einigen Verhaltensmerkmalen in rangordnungsinstabilen Käfiggruppen bei Legehennen. Arch. Tierz. 46: 391-396 Keskin, M., Şahin, A., Biçer, O., Gül, S. 2004. Comparison of the behaviour of Awassi lambs in cafetaria feeding system with single diet feeding system. Appl. Anim. Behav. Sci. 85: 57-64. Keskin, M., Şahin, A., Biçer, O., Gül, S., Kaya, S., Sarı, A., Duru, M. 2005. Feeding behaviour of Awassi sheep and Shami (Damascus) goats. Tr. J. Vet. Anim. Sci. 29: 435-439. Köse, K.,2004. Devriye köpeği amaçlı kullanılan alman çoban köpeği ile Belçika çoban köpeği (Malinois) ırkı köpeklerin eğitim sürelerini etkileyen faktörler. Yüksek Lisans Tezi. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Çanakkale, 56 s. Lorenz K. 1982 Vergleichende Verhaltensforschung. Grundlagen der Ethologie DTV Wissenschaft: München, pp 399. Lund, V., Coleman, G., Gunnarsson, S., Appleby, M. C., Karkinen, K. 2006. Animal welfare science—Working at the interface between the natural and social sciences. Appl. Anim. Behav. Sci. 97: 37-49. Metin, J., Yanar, M., Güler, O., Bayram, B., Tüzemen, N. 2006. Growth, health and behavioural traits of dairy calves fed acidified whole milk. Indian Vet. J. 83: 976-979 Millman, S.T., Duncan, I.J.H., Stauffacher, M., Stookey, J. M. 2004. The impact of applied ethologists and the international society for applied ethology in improving animal welfare. Appl. Anim. Behav. Sci. 86: 299-311. Mormede, P. 2005. Molecular genetics of behaviour: research strategies and perspectives for animal production. Livestock Production Science 93: 15–21 Sambraus, H.H. 1998. Applied ethology-it’s task and limits in veterinary practice. Appl. Anim. Behav. Sci. 59: 39-48. Sambraus, H.H. 2002. Aufgaben der Angewandten Ethologie bei Landwirtschaftlichen Nutztieren früher und heute. Gumpensteiner Tagung “Nutztierhaltung im Wandel der Zeit”, Bundesanstalt für alpenländische Landwirtschaft, Gumpenstein, A-8952 Irdning: 17-20. Sandilands, V. 2004. David Wood-Gush, the biography of an ethology mentor. Appl. Anim. Behav. Sci. 87: 173-176. Savaş, T., Şamlı, E. 2000. Tavuklarda agresyon ile sosyal hiyerarşinin yumurta verimi ve bazı davranış özelliklerine etkisi. Tarım Bilimleri Dergisi 6: 11-15. Savaş, T., Yurtman, I.Y., Karaağaç, F., Köycü, E. 2001. Einfluss der intensiven Gruppenhaltung und Geschlecht auf Oral-Stereotypien und einige Verhaltensmerkmale bei Mastlämmern. Arch. Tierz. 44: 313-322 Savaş, T., Konyalı, C., Daş, G., Yurtman, İ.Y. 2007. Effect of beak length on feed intake in pigeons (Columba livia f. domestica). Animal Welfare 16: 79-86. Smidt, D., Schlichting, M.C., Ladewig, J., Steinhardt, M. 1995. Ethologische und verhaltensphysiologische Forschung für tiergerechte Nutztierhaltung. Arch. Tierz. 38: 7-19. Steiger, A. 1993. Schlussbetrachtung zur 25. Freiburger Tagung und kritische Gedanken zur Stellung der angewandten Ethologie. Aktuelle Arbeiten zur artgemäßen Tierhaltung, Vorträge anlässlich der 25. Internationalen Arbeitstagung Angewandte Ethologie bei Nutztieren der Deutschen Veterinärmedizinischen Gesellschaft e.V. KTBL-Schriften-Vertrieb im Landwirtschaftsverlag GmbH, Münster-Hiltrup: 274-284 Tapkı, İ, Şahin, A. 2006. Comparison of the thermoregulatory behaviours of low and high producing dairy cows in hot environment. Appl. Anim. Behav. Sci. 99: 1-11. Tapkı, İ., Şahin, A., Önal, A.G. 2006. Effect of space allowance on behaviour of newborn milk-fed dairy calves. Appl. Anim. Behav. Sci. 99: 12-20. Tembrock, G. 1992. Verhaltensbiologie. 2. Auflage. Gustav Fischer Verlag, Jena, pp 386. Tinbergen, N. 1979. Tiere und ihr Verhalten. (Überstz. Hans-Heinrich Wellmann und Wolfgang Vilwock) Rowohlt Taschenbuch Verlag GmbH, Reinbek bei Hamburg, pp 191. Todes, D. 2003. İvan Pavlov: Hayvan makinesini araştırırken. (Çev. Ebru Kılıç), TÜBİTAK Popüler Bilim Kitapları, Ankara, ss. 118. Tölü, C., Savaş, T. 2007. A brief report on intra-species aggressive biting in a goat herd. Appl. Anim. Behav. Sci. 102: 124-129. Uğur, F., Savas, T., Dosay, M., Karabayır, A., Atasoglu, C. 2004. Growth and behavioral traits of Turkish Saanen kids weaned at 45 and 60 days. Small Ruminant Research 52: 179-184. Hayvansal Üretim

http://www.biyologlar.com/turkiye-zootekni-bolumlerinde-hayvan-davranislari-bilimi

BÜYÜMEYİ UYARAN HORMONLAR

1.)Oksin hormonu ve etkileri: ...Bitkilerdeki en önemli büyüme hormonudur. ...Hücre bölünmesi,büyümesi,hücre ve doku farklılaşmasını düzenler. ...Bitkinin güneşe doğru yönelmesini sağlar. ...Az salgılanması durumunda yapraklar dökülür,fazla salgılanırsa büyüme durur. ...Döllenmiş çiçeğin dökülmesini engeller ve meyve oluşumunu etkiler. ...Oksijenli solunum reaksiyonlarını hızlandırır,ilkbaharda kambiyum gelişimini düzenler. ...Ovaryum gelişmesini ve çekirdeksiz meyve oluşmasını sağlar. ...Oksin özellikle bitkinin uç kısımlarından salgılanır ve bitkinin boyca uzamasını sağlar.Bitki kökünde daha az oranda bulunur. ...Oksin doğrudan güneş ışığı görmeyen bölgelerde daha çok üretilir.Bu durum o bölgedeki hücrelerin daha çok bölünmesini sağlar ve bitki ucu güneşe doğru yönelmiş olur.Oksinin gövde ucunda düzensiz dağılımı ışığa yönelmeyi sağlar. ...Filiz uçları(koleoptil) karanlıkta olduğu zaman dik olarak yukarıya doğru büyür. ...Yalnız bir yönden gelen ışığın karşısına bırakıldığı zaman ışığa doğru bükülür.Filiz ucu,ışığı engelleyecek şekilde kapatılıp tek yönden ışık karşısına bırakılırsa yönelim gerçekleşmez. ...Filiz ucu kesilip tek yönlü ışık karşısına bırakılırsa ucu kesilmemiş kontrol bitkisinin ışığa doğru yöneldiği kesik olan bitki ucunun yönelmediği görülür. ...Filiz ucu kesilerek uç ile gövde arasına mika yerleştirilirse oksinin difüzyonu engellenir.Bu durumda büyüme ve ışığa yönelim gerçekleşmez. ...Filiz ucu kesilerek uç ile gövde arasına agar (jelatin)yerleştirilirse oksin difüzyonu engellenmediği için büyüme ve ışığa yönelim devam eder. ...Oksin hormonunun aşırı fazla olduğu durumlarda yapraklarda bükülmeler görülür.Yapraklarda oksin eksikliğine bağlı olarak mantar doku oluşur ve yaprak dökülür. ...Oksin hormonu eşit olarak dağılmışsa büyüme normal bir şekilde devam eder. 2.)Sitokinin hormonu ve etkileri: ...Embriyolarda ve genç bitkilerin kök hücrelerinde sentezlenir.Hücre bölünmesini(mitozu) uyarıcı etki yapar. ...Diğer hormonlarla birlikte tomurcuk gelişmesinde ve yaprakların geç dökülmesinde etkilidir. ...Ayrıca zarar gören dokuların onarılmasında da etkin olarak görev yapar. 3.)Giberellin hormonu ve etkileri: ...İlk olarak mantarlardan izole edilmiştir.Hücre bölünmesini,gövde uzamasını ve meyve büyümesini hızlandırır. ...Soymuk borularının farklılaşmasında ,tohumların çimlenmesinde.bitkinin çiçek açma zamanının belirlenmesinde etkilidir.

http://www.biyologlar.com/buyumeyi-uyaran-hormonlar

XXIV.Ulusal Biyokimya Kongresi

XXIV.Ulusal Biyokimya Kongresi

Değerli Meslektaşlarım, Sizleri 25 - 28 Eylül 2012 tarihlerinde, tarih öncesi dönemden beri pek çok Anadolu Medeniyetine beşik olmuş, kucak açmış Konya’da, Hazreti Mevlana’nın kentinde yapılacak olan XXIV.Ulusal Biyokimya Kongresi ve Kongre öncesinde ve sonrasında gerçekleştirilecek olan çalıştaylara katılmaya davet etmekten onur duyuyorum. Açılış Konferansı, kongremizin de ana konusunu oluşturan Tıbbi Laboratuvarlarda İzlenebilirlik – Standardizasyon – Harmonizasyon üzerine Prof. Dr. Lothar Siekmann tarafından yapılacaktır. Prof. Siekmann, Joint Commission for Traceability in Laboratory Medicine (JCTLM) Yönetim Kurulu Üyesi, kuruluşun IFCC Temsilcisi ve JCTLM Reference Measurement Laboratories Çalışma Grubu Başkanı olup, izlenebilirlik – standardizasyon - harmonizasyon alanında en yetkin bilimcilerden biridir. Konuşmasının meslektaşlarımız için ilgi çekici olacağını düşünüyoruz. Kongre bilimsel programında bu yıl çok sayıda genel konferans da bulunmaktadır. Bunların başında “keynote” konuşmacılarımızdan Prof. Dr. Sevil Atasoy’un yapacağı Kepçe Kulaktan Kesik Kulağa Biyokriminolojinin Önlenemez Yükselişi başlıklı konuşma tüm katılımcılarımızın dikkatini çekecektir. Ayrıca, son zamanlarda yeniden canlanan Kolesterol, Dislipidemiler ve Statinler konusundaki tartışmalara klinisyenlerin nasıl baktığına yönelik olarak Kardiyolog Prof. Dr. Sinan Aydoğdu tarafından Klinisyen Gözüyle Kolesterol Tartışmalarına Güncel Bakış başlıklı bir genel konferans verilecektir. Son zamanlarda gerek tıp alanında, gerekse özel olarak tıbbi laboratuvar alanında önemli gelişmelerin olduğu Nanoteknoloji konusunda ise başarılı genç bilim insanlarımızdan Dr. Selman Yavuz tarafından Nanoteknoloji, Tıp ve Laboratuvar başlıklı bir genel konferans verilecektir. Bunlara ek olarak Prof. Dr. Reşat Apak, oksidatif stres, antioksidan aktivite/kapasite çalışmalarında kullanılan CUPRAC yöntemi konusunda Antioksidan Aktivite/Kapasite Tayin Yöntemleri, CUPRAC Yöntemi ve İnsan Sağlığındaki Önemi başlıklı, Prof. Dr. Sema Genç ise gene güncel bir konu olan osteoporoz üzerine Osteoporoz: Klinik ve Laboratuvar Yaklaşım başlıklı birer genel konferans vereceklerdir. Kongre bilimsel programında her zaman olduğu gibi Laboratuvar Yönetimine yönelik oturumlar bulunmaktadır. Bunlardan birisi tıbbi laboratuvarlarda ISO 15189 akreditasyon süreci ve hizmet kailte standartları üzerine düzenlediğimiz bir panel olup, panelde Sağlık Bakanlığı ve TÜRKAK’ın katkılarıyla birlikte akreditasyon alanında önemli yol kat etmiş meslektaşlarımız tarafından aktarılacak bilgilere ulaşacağız. Laboratuvar Yönetimi alanındaki diğer oturum ise, yakın zamanda kaybettiğimiz, derneğimizin kurucu üyesi Uzm. Dr. M. Engiz Tezcan anısına düzenlediğimiz Yalın Laboratuvar Yönetimi, Klinisyen Laboratuvarcı İlişkisi, Hasta Güvenliği, Kritik Değerlere Yaklaşım, Risk Yönetimi ve Kaliteye Etkisi, Biyolojik Varyasyon ve Laboratuvar Sonuçlarına Katkısı, Sağlık Bakanlığı’nın Laboratuvar Hizmetleri Dairesi’nin Güncel Çalışmaları ve Hedefleri konularının işleneceği bir paneldir. Laboratuvar Yönetimi ile ilgili diğer bir panelde, IFCC Referans Aralık Komitesi Başkanı Prof. Dr. Kiyoshi Ichihara’nın yürüttüğü Küresel Referans Aralık Çalışması ve bununla bağıntılı olarak ülkemizde yapılan çok merkezli referans aralık çalışmalarının sonuçları Prof. Dr. Yahya Laleli ve Prof. Dr. Yeşim Özarda’nın katkılarıyla tartışılacaktır. Bilimsel programda yer alan dikkat çekici oturumlardan tüm katılımcıların ilgisini çekeceğini düşündüğümüz ve birisi Prof. Dr. Mustafa Gültepe moderatörlüğünde yapılacak olan Tek Karbon Metabolizması ve Nörokimya üzerine, diğeri Prof. Dr. Arzu Seven moderatörlüğünde yapılacak olan Endoplazmik Retikülum Stresi ve Metabolik Homeostaz üzerine, bir diğeri ise Prof. Dr. Ali Ünlü moderatörlüğünde yapılacak olan, güncel ve popüler bir konu olan Gıda, Vitamin ve Eser Element Destekleri üzerine konuşmalar içeren üç paneldir. Programda her zaman olduğu gibi tıbbi laboratuvar alanında yeniliklere iki panelde yer verildi. Bunlardan birisi son zamanların gözde konusu MikroRNA’lar ve Tıbbi Laboratuvar üzerine olup yakın zamanda kaybettiğimiz Hocamız Prof. Dr. Yavuz Taga anısına düzenlenmiştir, diğeri ise bizzat uygulayıcıları tarafından aktarılacak olan moleküler tanıya yönelik çalışmalar üzerinedir. Tıbbi biyokimyada özel konular kapsamında yer verdiğimiz ve bizzat uygulayıcılar tarafından verilecek olan Adipokinler ve Alkolik Olmayan Yağlı Karaciğer, Lizozomal Depo Hastalıklarında Otofaji, Siklik Nükleotid Fosfodiesterazlar ve Klinik Önemi, Gen Klonlanması ve İfade Seviyesinin Belirlenmesinde Yenilikler konulu konferansların da ilgi çekeceğini düşünüyoruz. Eğitim hemen her kongremizin bilimsel programında yer verdiğimiz bir alandır. Bu kapsamda programda iki panel bulunmaktadır. Bu panellerin birisinde lisans düzeyinde biyokimya laboratuvar eğitimi her yönüyle tartışılacaktır. Diğeri ise tarihçesiyle birlikte biyokimya uzmanlık eğitiminin, ülkemiz gerçeklerinin ve özellikle Avrupa’daki durumun tartışılacağı Uzmanlık Eğitimi Panelidir. Eğitim alanında ayrıca tüm katılımcıların ilgisini çekeceğini düşündüğümüz ve Türk Biyokimya Dergisi Baş Editörü Prof. Dr. Yahya Laleli moderatörlüğünde yapılacak olan Bilimsel Makale Yazımı konusundaki panelin de çok yararlı olacağına inanıyoruz. Bu yıl 11-12 Mayıs tarihinde Ankara’da düzenlediğimiz, çok ilgi çekmesi ve istek gelmesi üzerine Kongre öncesinde yapacağımız bir günlük Kalite Kılavuzları Temelinda Laboratuvar Hesaplamaları Kursu ve Kongre sonrasında yapacağımız, gene bir günlük LC-MS/MS ve GC-MS/MS uygulamalarının yer aldığı Laboratuvarların Yeni Gözdesi Kütle Spektrometreleri ve Klinik Uygulamaları Kursu ile ilgili bilgilere kongre sitemizden ulaşabilirsiniz. Sınırlı sayıda katılımcının yer alacağı bu kurslar için çok gecikmeden başvuru yapmanızı öneririz. Bu Kongre’de yukarıda aktardıklarımızın yanı sıra sözlü sunumlar için de önemli bir zaman ayrılmıştır. Ayrıca, genç katılımcılar için kısmi yol ve kalacak yer desteği sağlamak üzere TUBITAK’a başvuru yapılacaktır, lutfen şimdiden Dernek’e başvurunuzu yapınız. Kapanış sırasında, Bilimsel Komite tarafından seçilmiş on poster arasından, kura ile belirlenen bir katılımcıya, bir diz üstü bilgisayar, diğer dokuz katılımcıya ise kitap hediye edilecektir. Ayrıca, orada bulunan katılımcılar arasından, kura ile belirlenecek, beş meslektaşımız TBD 2013 yılı Kongresine katılım ücreti ödemeden katılabileceklerdir. Kongre’de sunulan tüm çalışmalar, SCI Expanded, Journal Citation Reports/Science Edition, Chemical Abstracts, Directory of Open Access Journals, Index Copernicus, EmbaseScopus, indekslerinde indekslenen "Turkish Journal of Biochemistry-Türk Biyokimya Dergisi", özel sayısında yer alacaktır. Bu yıl kongrede önceki yıllara göre sosyal programa daha geniş yer ayrılmıştır. Bu kapsamda 25 Eylül'de Dedeman Otel'de gerçekleşecek Açılış Kokteyli ile başlayan, 26 Eylülde yer alacak Panoramik Konya Turu ve sonrasında gerçekleştirilecek olan Semazen Gösterisi ve Akşam Yemeği ve 27 Eylül akşamı tarihi Zazadin Han’da verilecek olan yerel yemeklerin sunulacağı akşam yemeği ile devam eden programa hepinizi davet ediyoruz. Kongremiz, her zaman olduğu gibi, 28 Eylül akşamı yapılacak olan Kapanış Töreni ve Gala Yemeği ile sonuçlanacaktır. Değerli Meslektaşlarım, Hepinizi bu zengin bilimsel ve sosyal programı paylaşmaya, kongremize katılmaya davet ediyoruz. Kongremize gösterdiğiniz ilgiden dolayı şimdiden teşekkür ederiz. Ek olarak, biyokimya ve ilgili tüm alanlarda yeni bilimsel gelişmelerin paylaşılacağı bu bilimsel toplantıların gerçekleştirilebilmesi için maddi desteklerini esirgemeyen ve teknolojik gelişmeleri standlarına taşıyarak laboratuvarlarımızın çağdaşlaşmasına katkıda bulunan diyagnostik firmalarını da 24. Ulusal Biyokimya Kongresi’nde, tüm meslektaşlarımızla birlikte aramızda görmekten mutluluk duyacağımızı belirtmek isterim. Saygılarımla,Prof. Dr. Nazmi ÖzerTürk Biyokimya Derneği Başkanı   Resmi Web Sitesi: http://www.biyokimyakongresi.org/kayit-ve-konaklama/konaklama-bilgileri/

http://www.biyologlar.com/xxiv-ulusal-biyokimya-kongresi

CHLAMYDİA ANTİJEN

Kullanımı: Kadınlarda servisit, pelvik inflamatuar hastalık, endometrit, perihepatit ve üretral sendroma; erkeklerde nongonokoksik üretrit ve epididimite ve yeni doğanlarda inklüzyon konjonktiviti ve pnömoniye neden olan bakterinin antijeninin belirlenmesinde kullanılır www.tahlil.com

http://www.biyologlar.com/chlamydia-antijen

Mantarların Sınıflandırılmaları ve İsimlendirilmeleri

Mantarlar kök, gövde, yaprak, çiçek ve klorofile sahip olmayan ökaryotik, heterotrofik çok hücreli organizmalardır. Klorofilin bulunmaması nedeniyle fotosentez olayına rastlanamaz. Çok hücreli ve büyük olmaları, üreme tarzları, yaşam siklusları, çekirdek etrafında bir zarın bulunması, çok kromozoma sahip olması, nukleolus içermeleri ve hücre içi organellerin (mitokondrium, golgi aparatı, endoplasmik retikulum, vesikül, vakuol, vs) bulunmaları gibi nedenlerle prokaryotiklerden ayrılırlar. Mantarlar doğada (kara ve sularda) çok yaygın bir yaşam spektrumu gösterirler. Büyük bir çoğunluğu saprofitik bir yaşantıya sahip olup kendilerine gerekli gıda maddelerini cansız materyallerden ve basit organiklerden temin ederler. Bir kısım mantarlar da, insan ve hayvanların yanı sıra, bitki, balık, kerevit, algler, insektler vs. canlılar üzerinde parazitik, sembiyotik veya komensal bir yaşam içinde bulunurlar. Şimdiye dek 110000' den fazla mantar türü (bunun 30000' den fazlası Basidiomycetes, 30000 den fazlası Deuteromycetes, 30000 den fazlası Ascomycetes sınıflarına aittir) saptanmış olup bazılarının da karakterleri henüz tam olarak aydınlatılamamıştır. Çok doğaldır ki bu kadar fazla ve aynı zamanda çeşitlilik gösteren türlerin bütün özelliklerini ayrıntıları ile saptamak, açıklamak oldukça güçtür ve ayrıca zaman alıcıdır da. Hatta, bazılarının biyokimyasal, sitolojik, fizyolojik ve genetik özellikleri de hala tam bir açıklığa kavuşturulamamıştır. Mantarları klasifiye etmede, bunların başlıca, makroskobik ve mikroskobik morfolojileri, miselyal özellikleri, spor, sporulasyon ve sporangium şekilleri, yaşam siklusları, üreme tarzları ve diğer önemli karakterleri dikkate alınmaktadır. Ancak, bakterilerde olduğu gibi, mantarlarda da henüz kesinleşmiş ve yerleşmiş bir sistematik bulunmamaktadır. Patojenik mantarlar, yukarıda açıklanan kriterler dikkate alınarak bazı sınıflandırmalara tabi tutulmuşlardır. Bunlar da özetle şöyledir: I) Mikroskobik Morfolojilerine Göre Sınıflama Bu sınıflamaya göre, mantarların hifa yapısı (septumlu, septumsuz, branşlı, spiral, makro ve mikro konidiumlar, artrospor, klamidospor, blastospor, vs.), konidiumlar (basit, kompleks, vs.) ve sporangioforların özellikleri dikkate alınır. II) Üreme Özelliklerine Göre Sınıflama 1) Perfekt mantarlar: Seksüel veya hem seksüel ve hem de aseksüel üreme yeteneğine sahip olan mantarlar. 2) İmperfekt mantarlar: Sadece aseksüel üreme sistemine sahip olan mantarlar için kullanılan bir terimdir. Çünkü, böyle mantarların seksüel durumları henüz bilinmemektedir. III)Yerleştikleri Bölgelere Göre Sınıflama 1) Kutan mikozeslere neden olanlar: Bunlar derinin kutan tabakasında yerleşerek hastalıklara neden olurlar. Epidermofiton, Mikrosporum, Trikofiton cinslerine ve diğer cinslere ait mantar türleri gibi. 2) Subkutan mikozeslere neden olanlar: Sporotrichum schenkii, Rhinosporidiumseeberi, vs. mantarlar subkutan dokulara yerleşerek bozukluklara yol açarlar. 3) Sistemik mikozeslere neden olanlar: Bazı mantarlar da çeşitli iç organlara yerleşerek hastalık meydana getirirler. Bunlar arasında, A. fumigatus, C. albicans, B. dermatitidis, C. immitis, C. neoformans, H. capsulatum, N. asteroides, N. brasiliensis vs. vardır. IV) Makroskobik Morfolojilerine Göre Sınıflama Bu tür sınıflamada koloni morfolojisi esas alınmaktadır. Miselyal ve maya benzeri koloniler, difazik ve monofazik mantarlar, yuvarlak, oval, vs. durumlar dikkate alınır. V) Toksin Sentezlemelerine Göre Sınıflama Mikotoksin sentezleyenler ve sentezlemeyenler olarak başlıca iki grup mantar oluşturulabilmektedir. Doğadaki tüm mantarlar Alexopulos (1979'da) tarafından yapılan sınıflamada Mycetae 'ye konulmaktadır. Bu da aşağıda belirtilen tarzda bir taksimata tabi tutulmaktadır. Alem (Kingdom):Mycetae (mantarlar) Divizyon:Mycota Altdivizyon-1 :Myxomycota (hücre duvarı olmayan mantarlar) Altdivizyon-2:Eumycota (hücre duvarı olan mantarlar) Sınıf-1 :Mastigomycotina (zoosporlu mantarlar) Sınıf-2 :Zygomycotina (Zygomycetes) Sınıf-3 :Ascomycotina (Ascomycetes) Sınıf-4 :Basidiomycotina (Basidiomycetes) Sınıf-5 :Deuteromycotina (Deuteromycetes, fungi imperfecti) Mantarlar da aynen bakterilerde olduğu gibi, binomial sisteme göre iki kelime ile adlandırılırlar. Bunlardan ilki cins (genus) adı olup büyük harfle başlar. Diğeri ise tür (species) ismi olup küçük harfle başlar ve yazılır. Bu isimler de italik olarak yazılır. Mantarların alt bölümlerinin belirlenmesinde de, genellikle, bitkilere uyulmaktadır. Bu sıralama şöyledir. Alem, divizyon, alt divizyon, sınıf, altsınıf, order, familya, seksiyon, kabile, cins ve tür. Bu düzenlemeye göre, patojenik bir mantar olan Histoplasma capsulatum'un durumu aşağıdaki gibidir. Alem:Mycetae Divizyon:Mycota Altdivizyon:Eumycota Sınıf:Deuteromycetes Order:Moniliales Familya:Moniliaceae Seksiyon:Amerosporeae Kabile :Eleuriosporeae Cins:Histoplasma Tür:Histoplasma capsulatum Yukarıda açıklanan mantar bölümlerini ifade etmede mantarların sonlarına bazı ekler konulmaktadır. Örneğin, divizyon ...mycota ; sınıf ..mycetes ; alt sınıf ...mycetidae ; order ....ales ; familya ...aceae gibi eklerle ifade edilirler.  

http://www.biyologlar.com/mantarlarin-siniflandirilmalari-ve-isimlendirilmeleri

CMV IgG AVİDİTİTE

Kullanımı: CMV enfeksiyonundan fetüsün etkilenip etkilenmediğinin belirlenmesinde kullanılır.CMV enfeksiyonunun muhtemel başlangıç tarihi hakkında bilgi verir. Böylece primer enfeksiyonun hamileliğin başlamasından sonraki dönemde meydana gelip gelmediği ve dolayısıyla fetüsün CMV enfeksiyonundan etkilenme olasılığının bulunup bulunmadığının değerlendirilmesini sağlar. www.tahlil.com

http://www.biyologlar.com/cmv-igg-aviditite

Nişasta Hidrolizasyon Testi

Bu test, bir homopolisakkarid olan nişastanın, bazı mikroorganizmalarca sentezlenen ekstrasellüler amilase enzimi tarafından hidrolizasyonunu ortaya koymak amacı ile yapılır. Ayrıca bu test bakteri cins ve türlerinin belirlenmesinde de yardımcı olur. Nişastanın glikoz'a kadar olan ayrışma aşamaları yanda gösterilmiştir. Materyal1) Petri kutularında hazırlanmış nişastalı agar besi yerleri2) Denenecek mikroorganizmaların saf ve taze kültürleri3) Kontrol mikroorganizmalar [(E. coli (-) ve B. subtilis (+)]4) Lugol solusyonu veya % 95 etanol5) Test, agar üzerinde olduğu gibi, sıvı kültürler (nişastalı buyyon) içinde de yapılabilir.MetotNişasta hidrolizasyon aktivitesi ölçülecek mikroorganizmadan nişastalı agar üzerine çizgi tarzında ekimler yapılır ve 37°C de 2-5 gün inkube edilirler.Diğer bir besi yeri de iki kısma ayrılarak her bir yarımına kontrol mikroorganizmalar ekilir.Değerlendirme1) İnkubasyon süresinin sonunda agarların üzeri lugol solusyonu ile kaplanır. Pozitif reaksiyonlarda, koloni etrafında renksiz bir halka oluşur (alfa-amilase enziminin nişastayı hidrolizasyonu sonu). Negatif durumlarda besi yeri mavi renkte görülür. Koloni etrafındaki oluşan pembe-esmer bölge şüpheli reaksiyonu ifade eder. Reaksiyon 5 dakika içinde okunmalıdır.2) Petri kutuları üzerine lugol solusyonu yerine 8-10 ml % 95 etanol'de konulabilir. Nişastanın hidrolizasyonu halinde koloni etrafında açık alan meydana gelir (pozitif amilase). Negatif durumlarda bu alan süt beyazı görünümündedir. Reaksiyon 30 dakika içinde okunur. Her iki yöntemde de lugol ve etanol döküldükten sonra değerlendirme yapılır.Dikkat edilecek noktalar: 1) Nişastalı katı veya sıvı besi yerleri çok fazla ısıtılmamalıdır.2) Besi yerleri nötr (pH 7.2) olmalıdır.3) Nişastalı besi yerleri taze oldukları zaman daha belirgin ve çabuk sonuç verirler. Eski besi yerleri ise opaklaşır ve yanlış değerlendirmelere yol açar.4) Besi yerlerinde, alfa -amilase aktivitesi için klorid iyonları bulunması gereklidir. Bu nedenle klorid iyonlarının en az 0.01 M konsentrasyonunda olması gereklidir.5) Besi yerlerinin buzdolabında bulunması ve muhafazası opaklaşmaya yol açar.6) Testte kullanılan lugol solusyonu 1/5 sulandırılarak kullanılır. Saf lugol yanlış negatif sonuçlara yol açar.7) Lugol solusyonu besi yeri üzerinde 5 dakika (etanol 30 dakika) tutulduktan sonra dökülür ve değerlendirme yapılır.

http://www.biyologlar.com/nisasta-hidrolizasyon-testi-1

Solucanlar; Platyhelminthes ( Yassı ), Anelida (halkalı ), Aschelminthes (yuvarlak solucanlar)

Solucan sınıfı Platyhelminthes (yassı solucanlar), Anelida (halkalı solucanlar), Aschelminthes (yuvarlak solucanlar) ve Pogonophora (sakallı solucanlar) filumlarını kapsar. Bazen Aschelminthes grubunu oluşturan Nematoda (iplik solucanlar), Rotifera, Gastrotricha, Kinorhyncha ve Pripalida sınıfları filum düzeyine yükseltilerek sınıflandırılmaktadır. Yer solucanları, Oligochaeta sınıfından halkalı solucanların karada yaşayan en tanınmış üyeleridir. Solucanların gövdesi ince uzun, silindir biçiminde yada yassılaşmış ve genellikle uzantılardan yoksundur. Uzunlukları 1mm ‘nin altından başlayarak 15m’yi aşabilir. Denizlere, tatlı sulara ve karalara yayılmış olan bu hayvanların bir bölümü asalak, öbürleri serbest yaşar. İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın Halkalı solucanlar (Annelida) Polymera olarak da bilinir. Segmentleri dıştan belirgin olarak görülen bir omurgasız hayvanlar şubesidir. Deniz, tatlı su ve karalarda yaşarlar. Vücut uzun ve segmentlidir. Vücut segmentler septum adı verilen bölmelerle birbirlerinden ayrılmıştır. Baş bölgesine prostomium, posterior uca ise pigidium adı verilir. Prostomium ile pigidium birer segment değildirler. En yaşlı segment başın hemen arkasındaki segmenttir. Çeşitli organlar her segmentte tekrarlanır. Protostome grubuna dahillerdir. Gerçek sölom bulunur. Sölomları şizosöl (Schizocoelous) tiptir. Boşaltım organları segmental sıralanmış nefridium’lardır. Vücudun ön ve arka uçlarındaki birkaç segment hariç, her segmentte bir çift nefridium bulunur. Vücut yüzeyi ince esnek kutikula ile kaplıdır. Bazılarında kitinden kıllar bulunur. İp merdiven sinir sistemi gelişmiştir. Prostomiumun sırt tarafında iki loplu bir beyin gangliyonu vardır. Duyu organları kimyasal duyu organları ve gözlerden ibarettir. Kapalı dolaşım sistemi bulunur. Annelidler hermafrodit hayvanlardır. Gonadları gayet basit yapılıdır. Rejenerasyon özellikleri çok iyi gelişmiştir. 9 bin türü bulunur. Bir kısmı mikroskobiktir. Yuvarlak solucanlar (İpliksisolucanlar) ya da Nematodlar, yuvarlak yapıda, sayıca Dünya üzerinde en fazla bulunan omurgasız hayvan şubesidir. Hayvan ve bitkilerde önemli zararlara neden olan birçok türü vardır. Yalancısölomları bulunur. Vücutları uzamış, silindirik, bilateral simetrilidir. Dünya üzerinde çok değişik yaşam yerlerine uyum sağlamışlardır. Bazıları serbest, bazıları parazitik yaşar. Marin nematodları, hayvan parazitleri, insan parazitleri, karasal nematodlar olarak gruplandırılırlar. Yuvarlak solucanlar, anatomik ve morfolojik olarak basit yapılı canlılardır. Boyları 0,25 mm – 3 mm, çapları 1-20 µ arasında değişir. Yüksek yapılı hayvansal organizmaların sahip olduğu bazı sistemlere sahip değildirler. Ör. solunum, dolaşım ve iskelet sistemi yoktur. Sinir ve boşaltım sistemleri ise çok basit yapılı hücre gruplarından oluşmuştur. En gelişkin sistemleri sindirim ve üreme sistemidir. Üreme [eşeysiz) olmakla beraber birçok türde besin konukçu varlığı ve çevre şartlarının uygun olduğu zamanlarda üreme partenogenetik (döllemsiz) olarak dişinin dişi birey içeren yumurta bırakması şeklinde olur. Böylece kısa sürede populasyonları artar. Erkekler populasyon içinde çok düşük oranda bulunurlar ve çevre şartlarının iyileşmesiyle dayanıklı yumurtaların oluşmasını sağlarlar. Bitki parazitleri, bitkilerin kılcal köklerinde ve kök-büyüme konisi (uç kısmı)nde styletlerini doku içerisine batırarak buradan bitki öz suyunu emerler. Nematod türüne ve yoğunluğuna bağlı olarak bitkilerde gelişme geriliği, solgunluk ve verimde azalmaya neden olurlar. Endoparazit, yarı-endo parazit ve ektoparazit olarak beslenirler. En zararlı grup, kök sistemine en çok zarar veren endoparazitlerdir Örn. kök-ur nematodları.    

http://www.biyologlar.com/solucanlar-platyhelminthes-yassi-anelida-halkali-aschelminthes-yuvarlak-solucanlar

Kısırlık ve Genetik

İnfertilite (Kısırlık) konusunda genetik sebepler nelerdir ve ne gibi tedavilersöz konusudur; bu konuda sıkça sorulan soruları ve yanıtlarını bir kez de burada vermek istedim. Erkek kısırlığında genetik incelemenin önemi Son yıllarda genetik alanında ilerlemeler erkek kısırlığının nedenleri hakkında çok önemli bilgiler elde etmemizi sağlamıştır. Seks kromozomlarından Y kromozomu üzerindeki genlerdeki silinmeler vücut yapısı ve fonksiyonları normal olmasına rağmen testiste sperm yapımının azalması veya hiç sperm yapılmaması gibi duruma yol açmaktadır. Aynı şekilde yine seks kromozomlarındaki sayı anomalileri örneğin en sık görülen 47 XXY Klinefelter sendromugibi genetik hastalıkta da testis gelişimi yetersiz kalmış ve sperm yapımı azalmış olabilir. Ayrıca testislerden sperm taşıyan kanalların doğuştan olmaması halinde testiste normal sperm üretimi olmasına rağmen çıkış imkanı olmadığı için menide sperm görülmez. Bu da genetik olarak Konjenital Bilateral Vas Deferens Agenezisi (CBAVD) denilen bir hastalığa bağlıdır. Preimplantasyon genetik tanı nedir, hangi çiftlerde uygulanmaktadır ve avantajları nelerdir? Günümüzde genetik hastalıklar gebelik sırasında veya doğumdan sonra tanımlanabilmektedir. Ancak bebekteki muhtemel genetik hastalıklar ultrasonografi, amniosentez gibi yöntemler ile gebeliğin ancak dördüncü ayında belirlenebilmekte ve ciddi bir anormallik saptanması durumunda gebelik 5. ay civarında sonlandırılmaktadır. Bu durum anne ve baba adayını psikolojik ve fiziksel olarak travmaya uğramaktadır. Son yıllarda genetik bilimindeki gelişmeler henüz gebelik oluşmadan, tüp bebek yöntemleriyle laboratuar ortamında geliştirilen embriyolar üzerinde genetik inceleme yapılmasına ve seçilmiş olan sağlıklı embriyoların anne adayının rahmine yerleştirilmesine imkan tanımaktadır. Bu yönteme gebelik öncesi genetik tanı (Preimplantasyon Genetik Tanı - PGT) adı verilmektedir. Gebelik öncesi genetik tanı, anne ve baba adayından elde edilen yumurta ve sperm hücrelerinin laboratuvar ortamında döllendirilmesi sonucu gelişen embriyolardan bir adet hücre alınması ile gerçekleştirilmektedir. Genetik tanı için Floresence İn Situ Hibridizasyon (FISH) veya Polimeraz Zincir Reaksiyonu (PCR) adı verilen özel yöntemler kullanılmaktadır. Doğacak bebekte monozomi veya trizomi (Down sendromu ve diğer trizomiler) gibi sayısal kromozom bozukluklarının ve tek gen hastalıklarının (Hemofili, Akdeniz anemisi, kistik fibrozis, muskuler distrofiler gibi) tanısı PGT ile mümkündür. Böylece hastalık taşımayan, sağlıklı embriyoların anne adayına transferi ile sağlıklı bebeklerin doğması sağlanmaktadır. Gebelik öncesi tanı Genetik veya kalıtsal bir hastalık taşıyıcılığı bulunan çiftlerde, daha önce genetik hastalığı olan çocuk veya çocuklara sahip çiftlerde,HLA genotyping (doku tiplemesi) yapılması amacı ile, genetik predispozisyon gösteren hastalıkların tanımlamasında, yardımcı üreme teknikleri için kabul edilmiş ileri yaş grubundaki kadınlarda (37 yaş ve üzeri), tekrarlayan erken gebelik düşükleri olan çiftlerde, çok sayıda uygulanmasına rağmen yardımcı üreme teknikleri ile gebelik elde edilememiş veya düşüklerle gebeliklerini kaybetmiş olan çiftlerde, şiddetli erkek kısırlığı ile birlikte görülen kromozom bozuklukları veya genetik hastalıklarda uygulanmaktadır. Talasemi, hemofili vb. hastalıklarda PGT'nin önemi nedir, embriyolarda doku tiplemesi yapılması mümkün müdür? Bireyler, taşıdıkları kalıtsal hastalığı değişik oranlarda çocuklarına aktarırlar. Bu nedenle genetik hastalıkların çiftlerde ve embriyolarda belirlenmesi çiftlerin sağlıklı çocuk sahibi olabilmesi için önemlidir. Günümüzde DNA analizi yöntemi ile çok sayıda kalıtsal hastalığın henüz embriyo düzeyinde iken tanımlanması mümkün hale gelmiştir. Kalıtsal bir hastalığa neden olan genetik bozukluğun tanımlanması için hastalığa neden olan genin yapısının belirlenmiş olması gerekmektedir. Yapılan araştırmalar sonucu B-talasemi, Hemofili, Kistik Fibrosis, Orak Hücre Anemisi, Muskuler Distrofiler, Frajil X gibi hastalıklara sebep olan bir çok genin yapısı belirlenmiş ve bunların genetik tanısına yönelik yöntemler geliştirilmiştir. Bu yöntemle, öncelikle anne baba ve varsa hasta çocuklara ait kan örneklerinde genetik bozukluğun gösterilmesi için genetik analizler yapılır. Sonrasında kalıtsal hastalık taşıyıcısı olan çiftlerin tüp bebek yöntemi ile elde edilen embriyolarından alınan hücrelerde hastalığa neden olan genetik yapı özel yöntemlerle çoğaltılmakta ve taranan hastalığa ait gen bölgesi DNA analizi yöntemi ile tanımlanabilmektedir. Sonuçta, kalıtsal hastalığı taşıyan embriyolar elenirken sağlıklı embriyoların transferi ile genetik hastalık taşımayan çocukların dünyaya gelmesi sağlanabilmektedir. Yapılan araştırmalar sonucu B-talasemi, Kistik Fibrosis, Orak Hücre Anemisi, Hemofili, Muskuler Distrofiler, Frajil X gibi hastalıklara sebeb olan bir çok genin yapısı belirlenmiş ve bunların genetik tanısına yönelik yöntemler geliştirilmiştir. Ayrıca; B-talasemi, Fanconi anemisi ve lösemi gibi hastalıklarda, DNA dizi analizi yöntemi ile sağlıklı embriyoların saptanmasının yanısıra HLA genotyping (doku tiplemesi) işlemi de aynı anda uygulanabilmekte ve embriyoların doku tipi belirlenebilmektedir. HLA genotyping yöntemiyle talasemi veya lösemi hastalığı saptanmış çocuklara sahip ailelerde, anne ve baba ile çocuğa ait doku tiplerinin belirlenmesinden sonra, hastalığı taşımayan embriyolar içerisinden doku tipi hasta çocuk ile uygun olan embriyolar seçilebilmektedir. Bu şekilde elde edilen sağlıklı gebelikler, sağlıklı doğan çocukların kordon kanı ve kemik iliğinin kullanılması ile hasta çocuklar için tedavi sağlayıcı olmaktadır. Bu yöntemle aile prenatal tanı işlemi sonrasında uygulanan gebelik sonlandırılmasına bağlı tıbbi ve psikolojik travmalardan da korunmaktadır. Ayrıca; gebelik öncesi tanı, hasta kişilerin yaşam boyu karşılaştıkları sağlık problemleri, hastalıkların tedavisindeki güçlükler ve yüksek tedavi maliyetleri nedeniyle ailelerin sağlıklı çocuk sahibi olmalarını sağlaması ve hasta kişiler için tedavi olanağı sunması nedeniyle çok önemli bir tekniktir. Günümüzde yapılmakta olan çalışmalar sonucunda hastalıkların genetik yapısının belirlenmesiyle birlikte çok daha fazla sayıda hastalığın embriyolarda tanımlanması mümkün olacaktır. Talasemi, hemofili vb. hastalıklarda PGT'nin önemi nedir, embriyolarda doku tiplemesi yapılması mümkün müdür? Preimplantasyon genetik tanı uygulanarak kromozom bozukluğu taşıyan embriyolar seçilip sadece sağlam olanlar transfer edilebilmektedir. Gebelik oluşmadan önce genetik problemler konusunda alınabilecek önlemler var mı? Preimplantasyon Genetik Tanı yöntemi bu amaçla uygulanmaktadır. Bu yöntemle kalıtsal hastalıklar yönünden riskli ailelerde tüp bebek işlemi uygulanarak elde edilen embriyolar incelenip hastalık taşımadığı saptanan sağlıklı embriyolar transfer edilmektedir. Kadın yaşının ileri olması ile (35–45 ) başarı oranı azalmakta, gebelik elde edildiğinde ise düşükle sonlanabilmektedir. Yaşla birlikte yumurtalarda kromozom bozukluklarının artması sebebiyle tüp bebek tedavisi yapılacak olan çiftlerden elde edilen embriyolar üçüncü güne ulaştıklarında biyopsi yapılmaktadır. Elde edilen bir veya iki adet hücrenin moleküler tanı yöntemleri kullanılarak birkaç saat içinde değerlendirilmesini takiben sağlıklı embriyolar ayrılmakta ve transfer edilmektedir. Yaşla birlikte en çok artış gösteren ve yaşamla bağdaşabilen kromozom bozuklukları (Trizomi 13, 16, 18, 21, 22, 15, 17 ve X,Y ) hakkında bilgi vermektedir. Bu yöntemle yeterli embriyo elde edilen ileri yaş kadınlarda gebelik oranı arttırılabilmekte ve düşük riski azaltılmaktadır. More Sharing ServicesBu Sayfayı Paylaşın|Share on facebookShare on emailShare on favoritesShare on print Embriyolarda genetik inceleme kimlere önerilmekte? Tüp bebek programına alınan her çiftte embriyoların genetik olarak incelenmesine gerek duyulmamakta, buna karşın belirli özelliklere ve risklere sahip olan çiftlerde bu inceleme önerilmektedir. Bu özellikler şu şekilde sıralanabilir: Genetik veya kalıtsal bir hastalık taşıyıcılığı bulunan çiftlerde Daha önce genetik hastalığı olan çocuk veya çocuklara sahip çiftlerde Yardımcı üreme teknikleri(tüp bebek için kabul edilmiş ileri yaş grubundaki kadınlarda (37 yaş ve üzeri) Tekrarlayan erken gebelik kayıpları-düşükleri olan çiftlerde Birçok kez yardımcı üreme teknikleri uygulanmasına rağmen gebelik elde edilememiş veya düşüklerle gebeliklerini kaybetmiş olan çiftlerde Şiddetli erkek kısırlığı ile birlikte görülen kromozom bozuklukları veya genetik hastalıklarda HLA genotyping (doku tiplemesi) yapılması amaca ile Genetik predispozisyon gösteren hastalıkların tanımlanması Preimplantasyon Genetik Tanı'nın avantajları nelerdir? Gebelik şansını artırmakta, düşük şansını azaltmaktadır Ailelerin sağlıklı çocuk sahibi olmaları sağlanmaktadır Aile, gebelik sonlandırılmasına bağlı tıbbi ve psikolojik travmalardan korunmaktadır Talasemi gibi hastalıklarda doku tiplemesi ile doğacak olan bebek ailenin hasta çocukları için tedavi imkanı sağlamaktadır Gebelik öncesi tanı; hasta kişilerin yaşam boyu karşılaştıkları sağlık problemleri, hastalıkların tedavisindeki güçlükler ve yüksek tedavi maliyetleri ile karşılaştırıldığında çok daha faydalı ve ucuz bir tanı yöntemidir Kromozom analizi normal olan çiftlerin embryolarında da genetik hastalıklar görülebilir mi? Çiftlerden alınan kan hücrelerinden yapılan genetik testlerde kromozom yapısı normal bulunabilir. Ancak embriyo genetik yapısının yarısını anneye ait yumurta hücresinden alırken diğer yarısını da babaya ait sperm hücresinden alır. Bu nedenle vücut hücrelerinin genetik yapısı normal olmasına rağmen bazı çiftlerde sadece üreme (yumurta veya sperm) hücrelerinde görülebilen kromozom bozuklukları bulunabilir ve bu bozukluk embriyolara aktarılabilir. Gebelik öncesi genetik tanı ile embriyolarda oluşan bu tür genetik bozukluklar saptanabilmektedir. Akraba evliliğinin genetik hastalıkların ortaya çıkmasındaki etkisi nedir? Akraba evlilikleri, aralarında kan yakınlığı olan kişiler arasında yapılan evliliklerdir. Akrabalık derecelerine göre en yakını 1. derece akraba evliliği dediğimiz kuzen evlilikleri olup teyze, hala, amca ve dayı çocuklarının arasında yapılan evliliklerdir. Yurdumuzda akraba evliliği oranı % 21- 40 oranında olup bölgelere göre değişmektedir. Genel olarak toplumda doğan her 100 çocuğun 2–3 ünde çeşitli sebeplerden kaynaklanan anomaliler saptanır. Bu risk akraba evliliği yapmış olan çiftlerde % 4–5 oranına kadar yükselebilmektedir. Genetik açıdan risk taşıyan kişiler kimlerdir? Genetik veya kalıtsal bir hastalık taşıyıcılığı bulunan çiftler ,daha önce genetik hastalığı olan çocuk veya çocuklara sahip çiftler, yapısal olarak vücudunda anomaliler saptanan, mental retardasyonlu çocuk öyküsü, cinsiyet gelişimi anomalileri, gelişme geriliği ve boy kısalığı, yakın akrabalarında (1. kuzen gibi) genetik bir hastalık öyküsü çiftler, tekrarlayan düşükleri ve ölü doğumları olan çiftlerde, 37 yaş üzerindeki kadınlar ve birçok kez yardımcı üreme teknikleri uygulanmasına rağmen gebelik elde edilemeyen çiftler. Bu çiftlerde, öncelikle bir genetik uzmanı tarafından ayrıntılı aile öyküsü alınmalı ve aile ağacı çıkartılmalıdır. Ailede düşünülen hastalık için ve varsa önceki gebelikler için ayrıntılı bilgilerin alınması gereklidir. Hasta çocuklar ve aile bireyleri muayene edilmeli ve gerekli testler istenmelidir. Tüm bu işlemlerden sonra hastalığın tanısı konmuş veya genetik neden saptanmış ise çiftlere saptanan problemler ile ilgili ayrıntılı bilgi verilir. Genetik hastalığın neden olabileceği problemler, sonuçları, yeni gebeliklerdeki riskler, gebelik öncesi ve sonrasında yapılması gerekenler konusunda aile aydınlatılır. Bu işlemler sonrasında çiftlerin yeni gebeliklerindeki riskler tekrarlama riskinin olmamasından %100 e kadar değişebilmektedir. Çiftlerin bir kısmında preimplantasyon genetik tanı önerilebileceği gibi bazı hastalarda da prenatal dönemde genetik tanı uygulanması önerilir. İnfertilitenin (kısırlık) oluşmasında genetik faktörlerin rolü nedir? Günümüzde çiftlerin yaklaşık %15 inde azalmış fertilite saptanmaktadır. Bu olguların büyük bir kısmında neden erkek infertilitesidir. Erkek infertilisinde özellikle sperm bulunmayan kişilerde patojenik sebep Y kromozomu mikrodelesyonlarına bağlı sperm üretiminin azalması veya kistik fibrozis transmembran regülatör (CFTR) gen mutasyonlarına bağlı oluşan konjenital vaz deferens yokluğu ile karakterize obstrüktif azospermidir. Bunların yanı sıra cinsiyet kromozomlarındaki sayısal anomaliler ve yapısal kromozom bozuklukları da spermatogenezde, dolayısıyla da fertilizasyonda problemlere neden olur. Ayrıca hipogonadotropik hipogonadizme neden olan KAL (X e bağlı kalıtılan Kalman sendromu), DAX1 (X e bağlı kalıtılan Konjenital Adrenal Hipoplazisi), GNRHR (GnRH sekresyonunda bozukluk) ve PC1 (prohormon convertase 1 ) gen mutasyonları ile Androjen Reseptör gen mutasyonları spermatogenezis yetmezliği ile birlikte gözlenebilir. Ayrıca sekonder infertil olarak adlandırılan tekrarlayan gebelik kayıpları veya ölü doğum öyküsü olan çiftlerde bazı genetik bozukluk taşıyıcılığı gözlenebilir. Gebelik oluştuktan sonra genetik problemler tanılanabilir mi? Gebelikte uygulanması gereken bazı tarama testler mevcuttur. (11–14 tarama testi - ikili test - üçlü test ...) Bu tarama testleri gebelikteki genetik risk hakkında bize bilgi verir. Böyle bir risk belirlendiğinde 11–14. haftada fetusun eşinden biyopsi yapılarak veya 16–18 haftada bebeğin içinde bulunduğu sıvıdan örnek alınarak bebeğin kromozom analizinin yapılması mümkündür. Ayrıca ultrasonografi de bu konuda bize yardımcı olmaktadır.

http://www.biyologlar.com/kisirlik-ve-genetik

Bitki Fizyolojisi Ders Notları

Fizyolojinin başlangıçı tohumun çimlenmesiyle başlar.Çünkü bitkilerin hayat devreleri spor ya da tohum faaliyetleriyle başlar.Çimlenme embriyodan ekolojik isteğe göre optimum koşullarda normal bitki yapılarını oluşturma yeteneğidir.Bir tohum gömleğinden radikula belirmesi çimlenmenin en önemli kısmıdır.Bu devrede sert koruyucunun engel olmaktan çıkarılması esnasında ise bir çok fizyolojik olayların başlamasıdır.Çünkü buradaki fizyolojik olayların sonucunda hücre bölünmeleri başlayıp tohumda büyüme dolayısıyla hacminde artma olacaktır.O halde radikula belirmesinden itibaren(çimlenmenin başlangıcı) henüz ayrıntısı bilinmeyen biyokimyasal(Fizyolojik) olaylar meydana gelmekle beraber bu olayların en önemlisi solunumun artmasıdır.Bu durumdan sonra çimlenmede 2. derecedeki metabolik aktivite enzim aktivitesinin artmasıdır.Burada faaliyet gösteren enzimlerin bir kısmı önceden tohumda vardır,bir kısmı da hücre tarafında sonra üretilmektedir.Bütün bunlar bize çimlenmeyle metabolik faaliyetlerin başladığı ve hücre için ihtiyacı olay her şeyi üretebildiği fikrini vermektedir.Örneğin çimlenme esnasında tohumda üretilen amilaz enzimi depo maddelerinin parçalanmasında önemlidir.Ayrıca RNA-az ve proteolitik enzimlerde çimlenme sırasında üretilen enzimlerdir.Tohum çimlendikten yaklaşık ½ saat sonra ,bu kez protein sentezinin aniden arttığı görülmektedir.Çünkü çimlenmeden yarım saat sonra mevcut hücrede polizomların sayısı aniden artar.Hücrenin bir iskeleti vardır ve hücrede bir bölgeden bir bölgeye geçiş kolay değildir.Hücrede proteinlere az ihtiyaç olduğu zamanlarda Ribozomda üretilen protein yeterliyken hücre tam inhibitörle karşılaştığında bu yeterli olmamaktadır. Çünkü hücredeki bu zehrin dışarı atılması için daha enzime ve proteine ihtiyaç olduğundan ve bunu da ribozomda üretilen protein yeterli olmadığından dolayı polizomlardaki protein üretimi aniden artar. Mevcut enzimler ve bunların aktivitelerindeki artış su alıp turgorunu artıran ve buradaki reaksiyonların endosperme doğru hareketlerini de beraberinde getirir. Endospermdeki besinler parçalanıp eritilerek embriyonun beslenmesi için aktive edilir. Bir tohumun hem çimlenmeden önce hem de çimlendikten sonra biyolojik polimerler tarafından deneye tabii tutulursa çimlendikten sonra bunların atıldığı görülür.Söz konusu azalma çimlenmenin ilk evrelerinde maksimumdur.(Bölünme o devrede fazla olduğu için) Tohumda fizyolojik faaliyetlerin gerçek anlamda başlayıp normal bir çimlenme olması iki faktöre bağlıdır.Bunlar:• İç Faktörler:1. İç faktörün asıl özelliği tohumun biyolojik yapısı ve ekolojik isteği tarafıdan tayin edilir.Bundan sonraki endospermdeki enzim ve hormonların bozulmamış olması,patikte buna tohumların canlılığını sürdürmesi denir.Bu durumda tohum dormansi durumundadır.2. Tohumları olgunlaşmış olması3. Embriyonun yaralanmamış ya da zedelenmemiş olması.4. Tohum parazitleri ve zararlıları tarafında yaralanmamış olması.5. Büyüme ve gelişme esnasında oluşacak tohum kabuğunun endospermi koruyacak şekilde güçlü çimlenmeye engel olacak şekilde bir yapı göstermesi gerekir.• Dış faktörler:Dış faktörler tohumun çimlenmesinde iç nedenlere oranla çok daha etkili ve yaygındır.Bu da habitat ve nişin ekolojik koşullarını kapsar.Bunlardan en önemlisi de tohumun çevresinde yeterli nem kullanabilir ve oksijene ulaşması gereklidir.Yukarıdaki faktörler optimum koşullarda olmazsa tohum tohuma geçemez.İç faktörler bazen genel olarak çimlenme için dış faktörler yeterli olsa da uygun olmuyor.Aynı durum bitkilerin diğer organlarında da görülebilir.Ama esasen dış koşullar dikkate alınmadan iç faktörler gelişmeye engel olabilmektedir.O yüzden çevre koşullarının uygun dönemi başlamasına rağmen bir çok tohum çimlenmeye geçmiyor.Bu olaya çimlenme durgunluğu anlamındaki dormansi denir.Tohumda çimlenmenin olmaması her zaman dormansi değildir.Çünkü çimlenme sırasındaki büyüme ve gelişme döneminde çeşitli nedenlerle gerileme olabilir.Dormanisinin doğal ve kültür bitkilerinde spesifik durumları vardır.Doğal bitkilerde yukarıda açıklanan içsel nedenlerle,kültür bitkilerinde ise tohumun derinde kalması,çeşitli engelleyiciler,kimyasal ilaçlar vs. çimlenmeyi engelleyebilir.O yüzden tohum ya da başka bir bitki organındaki pasifliği dormansi olarak nitelendiremeyiz.Çevre koşullarının etkisiyle bir bitki organının gelişmesindeki gecikme daha çok dinlenme hali bu sözcük ile ifade edilir.Sonuç olarak bitkilerdeki her dinlenme dormansi değil,ancak her dormansi bir dinlenmedir.Dormanside yukarıdaki iç nedenlere ilaveten tohum kabuğunun su ve gazlara karşı geçirimsiz olması kabuğun mekanik olarak embriyonun gelişimini engellemesi ve bazı doğal inhibitörlere sahip olmasıdır.Dış etkenlerden çimlenmede rol oynayanlar nem ve suyun etkisi olup bitki dünyası bu bakımdan iki guruba ayrılır.Bunlardan bir grubunun çimlenmesi için toprak nemi yeterlidir.Oysa aynı olay için diğer gruba aktif su gereklidir.Halbuki habitatta her ne kadar toprak suyu ve nem birbirinin tamamlayıcısı ise de hem aktif suyun minimum miktarının azalmasıdır. 1)Su ve Nemin Etkisi:Çoğu bitki tohumunun çimlenmesi için yeteri kadar su gerekmektedir.Ancak bazı tohumlar toprağın su kapasitesi %50 bazılarında %75 olduğunda çimlenir.Tohumları çimlenmesi için niş suyunu %50-75 olmalıdır.Buna rağmen tüm tohumlar tarla kapasitesinde su absorbe edebilirler.buna göre tohumların çimlenme suyunun tarla kapasitesi olduğu söylenir.Kuru topraktaki tohumların suyu emme kuvveti ne kadar fazla olursa olsun aldıkları su şişmelerine yeterli olsa bile ancak kısmen çimlenme sağlanır. Görülüyor ki ortamın osmotik basıncı ile çimlenme şansı paralellik gösterir.Tohumlara sağlanan fazla ve sürekli su çimlenmeyi hızlandırır.Ancak kademeli olmayan sürekli artış sınırlayıcıdır.Genel olarak havada %90 nem olduğunda tohum sadece bundan 2 gün faydalanabilir.Tohumun aktif suyla ıslanması 1-1.5 gündür.Uzayan süre ket vurucu olabilir.Burada tohumun emdiği su enzim faaliyetleri için ortam sağladığı gibi çözünen protein,yağ vs. besin maddelerini embriyonun büyüme noktalarına taşınmasını sağlar. Tohumdaki su alımı kabuktaki hidratasyon suyunda biraz yükselmiş atmosferden alınır. 2)Sıcaklığın Etkisi:Sıcaklığın çimlenmeye özel etkisi tam anlaşılamamasına rağmen su varlığında reaksiyonların başlaması ve hızına,suyun absorbsiyonuna ve tohumun oksijen alımına önemli etkileri olduğu kesindir.Bitkilerde türler arasında olduğu gibi aynı türün diğer bireyleri arasında görülen sıcaklık farkı isteği(niş durumunda) tohumlardan ziyade olgunluk çağında daha kolay belirlenmiş bitki yaşı ile depolama şartlarına bağlanmıştır.Oysa bitkilerin tohumdan tohuma kadar habitatta eko-fizyolojik koşullarda yaşar.Aynı türün bireyleri farklı sıcaklıklardaki habitatlarda yaşabiliyorsa bu onların ekolojik koşullara karşı toleransın sonucudur.Çünkü daima ekolojik koşullar optimum koşullar için gösterilir.Genel olarak serin iklim bitkileri sıcak iklim bitkilerinde daha düşük sıcaklıkta çimlenir.Bu nedenle kozmopolit bitkiler dünyanın %50’sinde yaygındır. Bitkilerin tohum çimlenme anındaki sıcaklık isteğini karmaşık hale getiren yetişme dönemidir.Örneğin,Colchium,Crocus,Muscari,Gagea vs. gibi bitkiler kar tabakası çözündüğü an;Phlomis,Cardus,Carthamus vs.sıcaklık 14-25oC’ye arttığında;Cyclamen,Muscari ve Gagea bazı türleride 8-14oC’de çimlenir.Bu gruplardan ilki ilkbahar geofiti,ikincisi yaz geofitleri, üçüncüsü ise sonbahar geofitleri denir.Genel olarak bir çok serin iklim bitkisi 20oC,sıcak iklim bitkileri35oC’de çimlenir.Bu iki durumdan meydana gelen sapmalar.gece-gündüz arasındaki sıcaklığı farkı çimlenmeye teşvik etmesinden kaynaklanır. 3)Işığın Etkisi:Bilhassa doğal bitkiler çimlenmede ışık gereksinimi bakımından ışığı seven,ışığa ihtiyat duyan ve fazla ışıktan zarar gören şekline üçe ayrılır.Bilhassa tohumda ışığa karşı davranış embriyo sitoplazmasındaki bir foto-kimyasal sistemin fitokrom denen bir pigmenti üretmesinden anlaşılır.Fitokrom pigmenti fotoreversibl(Dönüşebilen ışıkları emebilen) olduğu için çimlenmede iş yapan eko-fizyolojik olayların ışıkta ya da karanlıkta olduğuna karar veren metabolik kontrol düğmesidir.Örneğin fitokrom kendisi ışıkta çimlenen karanlıkta çimlenmeyen tohumlar için özellikle kırmızı ışığı emerken,bunun tersinde ışık emilimini engeller.Dolayısıyla bu metabolik anahtar alınacak ışığın miktarını ayarladığı için bitki dünyasında çok ışık kullanan(uzun gün bitkileri),az ışık kullanan(kısa gün bitkileri) ve sadece difüz ışık kullanan(gölge bitkileri)şeklinde üçe ayrılır.Çimlenmede etkin olan en önemli faktör ise vernalizasyon olayıdır.Deneysel çalışmalar çimlenmenin sadece ışıkla değil düşük sıcaklık periyodu ile ilgili olduğu görülmektedir.Çünkü bu olayla oluşan uyartı sadece soğuk periyotlarda oluşmuştur.Uyarıya neden olan faktörler ise soğuk ve ışığın etkisiyle üretilen ve özel uyarıcı görev yapan vernalin hormonudur.Bu olayın anlamı ilk baharlaştırma ya da düşük sıcaklıkta akımın(indüksiyon) hızlandırılması anlamına gelir. Bitkilerde vernalizasyonun en açık görüldüğü yer vejetasyon konileri ve tohumlardır. Vernalin hormonu hem tohumlarda oluşup embriyo sitoplazmasının metabolizmasında rol oynar hem de vejetasyon konisinden alınan uyartının diğer kısımlara aktarılmasında rol oynar. Olay her bitkide az çok belli bir indüksiyon ısısıyla bu ısının belli bir etkinlik süresi (vernalizasyon süresi)vardır ve türe göre değişir.Buna göre deneyler bitkileri vernalizasyon açısından da obligat ve fakültatif şeklinde ikiye ayrılmıştır.Obligatlar uzun gün bitkileri olup soğuk periyot şarttır.Diğerlerinde çimlenmeyi hızlandırmasına karşın eksikliliğinde de çiçeklenme olabilir.Ancak tohumların tohuma geçmesi garanti değildir.Deneyler tohum halde vernalize edilen türlerin soğuk periyot ihtiyacını fakültatif,fide ve sonraki dönemlerde vernalize edilenlerin ise obligat olması gerektiğini ortaya koymuştur. Örneğin çevremizde gördüğümüz buğdaylar ekimde tarlaya atılır.Su periyodu gelinceye kadar fide olur.Soğuk periyodu öyle geçirir.4)Oksijenin Etkisi:Çimlenmede tohumdaki besin maddelerinin oksidasyonu içi oksijen gerekmektedir.Çünkü bu katabolik olayla açığa çıkacak enerji embriyonun hayatını sürdürecek en önemli kaynaktır.Burada hücre büyüdükçe embriyo büyür ve oksijen ihtiyacı artar.Çoğu tohumlar kuru iken geçirimsizdir.Fasulye ve bezelye tohumları bu konuda gaddardır.Tohumlar su geçirmeye başladığı zaman oksijen girişi de başlar.Fakat tohumdaki hidratasyon suyu çimlenmeye ket vurucu yöndedir.O halde çimlenmenin gerçekleşmesinde tohumun en az %20 oksijen temas halinde olması gerekir.Doğal bitki tohumları derinlere gömüldüğünde ve oksijen almadığı sürece çimlenmez,fakat hayatta kalırlar.Ekosistemin dengesi için son derece önemli olan tohumlar her durunda sisteme en önemli katkıyı yapmaktadır.Ancak işleme karıştırma,erozyon ya da başka bir yolla toprak yüzeyine yaklaşmada çimlenir.O halde çimlenmede nişin durumu çok önemlidir(tohum yatağı).Nişte nem artınca nem azaldığında bu ikisini birlikte kapsayan topraklar iyidir.Sonuçta yukarıda belirtilen faktörlerin bir arada bulunması halinde nişteki tohumun hava almasıyla kuru ağırlığı %60-100 artarak çimlenir.Olayda en önemli rolü şişme göstermiştir.Yani su metabolizmasıyla ilgili olan olaylar tamamlanmıştır(difüzyon,osmoz). Sonra tohumda depolanmış ilk şekerler suda erir,nişasta ise diastaz enziminin etkisiyle su alarak maltoza dönüşür.Buradaki maltozda maltaz enziminin etkisiyle glikoza çevrilir.böylece glikoz difüzyon-osmoz kuvvetleriyle hücreden hücreye geçerek yeni uyanmaya başlayan fideciğe ulaşır ve orada ilk etapta selüloz ve nişasta gibi maddeleri teşkil eder.Proteinler ise başka enzimlerle aminoasitler ve amidlere parçalanarak fidecik büyümesinde değişik şekilde kombine olarak farklı proteinlerin yapımı için kullanılır.Özellikle yağlı tohumlardaki yağlarda lipaz enzimiyle yağ asitleri ve gliserine parçalanır. Bunlara da çeşitli kimyasal değişikliklerle şeker yağların yapımında kullanılır.Çimlenmedeki fizyolojik faaliyetler ve büyümede kullanılan enerji,solunuma alınan oksijen vasıtasıyla karbonun Karbondioksite,H’nin su haline gelmesiyle(biyolojik oksidasyon) saptanır.Bu nedenle çimlenme halindeki bir tohumda solunum,kuru haline göre yüzlerce kat fazladır.Örneğin 1kg buğday çimlenirken 1 m3 havanın içerdiği oksijenin yarısını kullanır.Böylece solunumla oksijen devreye girince başlayan büyüme ve gelişme olaylarında diğer elementlerde ihtiyaç haline gelir.Tohum,kökleriyle aktif su alımına geçmeden önce ihtiyaç duyduğu en önemli elementler nitratlardır.Çünkü nitratlar tohum fide haline geldiğinde yaprağı oluştururken yapacağı fotosentez olayını düzenlemek için ışığa karşı istek ve hatta tohumdaki çimlenmeyi artırırken vejetatif metabolizmayı da artırmaktadır.Çimlenmede nitratlar sınırlayıcıdır.Çimlenme bittikten sonra büyüme ve gelişme olaylarını 3 temel gruba toplamak mümkündür:1. Metabolik olaylar fizyolojisi2. Büyüme ve gelişme fizyolojisi3. Hareket fizyolojisiO halde madde değişimi olan metabolizmayı metabolizma fizyolojisi diğerlerini ise 2 ve 3. maddeler inceler.1)Metabolizma Fizyolojisi:Burada bitki hücreleri ve dokuları fiziksel ve kimyasal değişiklerle yönlenir.Su,gaz ve eriyiklerin bitkilerce nasıl alındığını ;bunların bitkilerde hücreler dokular ve organlar arasında nasıl taşındığını;besin ve kompleks bileşiklerin (hormonlar)nasıl sentezlendiğini;büyüme ve gelişme olaylarında ihtiyaç enerjisinin sentezlenen bileşiklerden nasıl sağlandığını;yeni dokuların nasıl yapıldığını ve vejetatif bazı dönemlerinde üreme organlarının teşekkülüne ne zaman başladığını araştıran bir fizyoloji koludur.Bu temel olaylar iki yönde ele alınır:a) AnabolizmaSentez ya da asimilasyon olaylarını gerçekleştiren bu devre bitkilerin değişik yollarla ortamdan aldıkları ham besin maddelerini bünyelerinde yararlı bileşikler yapımı olayıdır.Yani metabolizmanın yapıcı kısmıdır.b) KatabolizmaParçalanma olayları olup bitki biyolojik dinanizmde gerekli enzimce zengin bileşiklerin kullanılması için bileşiklerin parçalanması olayıdır.Yani metabolizmanın yıkıcı kısmıdır.Metabolizma fizyolojisinde en önemli unsur bitkileri oluşturan elementlerdir ve ayrıntılı incelenmeleri gerekmez.İlkel analizle elde edilen sonuçlar metabolik olaylar hakkında zaten yeterli bilgi veriyor.Tüm canlı hücrelerinde olduğu gibi bitki hücrelerinde de su maksimum düzeyde bulunur.Alınan suyun çoğu atmosfere verilir.Bir bölümü dokularda su olarak kalır ve diğer kısmı da değişik bileşikler yapmakta kullanılır.Bitki nişinde suyun az ya da aşırı bulunması gelişimi diğer faktörlere oranla daha fazla etkiler.Su azlığında yeterli turgor sağlanmaz.Hücrelerin büyüyüp gelişmesinde turgor basıncıyla meydana gelen reaksiyonlar sonucu sağlana enerjiye bağlı olduğu için biyolojik dinanizm(BD) minimuma iner.Yine bitkilerde su azlığında yaşlı organlardan gençlere su nakli yapılarak bu ekstrem koşulun önüne geçilir.Su noksanlığında bitkinin ilk kontrolü stomalara müdahale etmektir.Su fazlalığında akuatik bitkiler hariç diğerlerinin gelişimini olumsuz etkiler.örneğin nişte biriken su toksik etkisi yapan maddeleri artırır,solunum için gerekli oksijeni azaltır.Daha da önemlisi bitki topraktan nitratları alamaz.Böylece kök gelişmesi azalır.Bu da genel metabolizma düşüşüne neden olduğundan kök gelişmesi nedeniyle verim düşer.Bitki gevşek yapılı olur ve direnç azalır.Bitkideki su miktarı türe,aynı türün farklı organlarına ,aynı organların günün değişik zamanlarındaki durumuna ve mevsimlere,bitkinin yaşına,toprağın tarla kapasitesine, absorbsiyon transporasyon miktarlarına ve toprağın mineral zenginliğine göre daima değişkendir.Bir çam tohumuyla yapılan deneyde tohum çimlenmeden önce %7 su içerirken, çimlenme esnasında bu miktar %172 artar.Meritemlerde %90 su içeren kök ve yumrularda daha az su bulunur.Bitkilerdeki su kapasitesinin en değişken dönemi günün farklı saatleri ve mevsimleridir.Bu durum tamamen kuru madde artışı ve kuru madde işgalinden dolayı su miktarı azalmasından kaynaklanır.Ama özel olarak günü farklı saatlerindeki değişme ise suyun absorbsiyonu ile transporasyonu ile alakalıdır.Güneşli günlerde sabah erkenden öğlene doğru transporasyonda da artış olur.Bu olayın temelinde sabahın erken saatlerinde bitkinin suyu taşıma güçlülüğü vardır.Yani absorbsiyon yetersizdir. Bitkilerde su kapsamı tür topraktaki mineral madde ve miktarına göre değişir.Örneğin toprakta potasyum arttığında su kapsamının arttığı belirlenmiştir.Fakat sodyum ile bu olay terstir.Fosforun artması ya da azalması cüzi olarak artış yönündedir.Bitkilerin su kapsamının belirlenmesinde en ekonomik yönü kuru ağırlık tayini yapılmasıdır.Deney için farklı bitkilerin farklı organları belli ölçülerde önce taze olarak sonrada 105oC’lik etüvde belli aralıklarla kurutulduktan sonra tartılması ve değişmeyen en son tartımın kuru ağırlığı verdiği en uygun yöntemdir.Deneyin en önemli yönü hata kaynaklarının azaltılmasıdır.Bu da suyun bitkilerden uzaklaşma hızının hangi etkenlere bağlı olduğuna,Kullanılan malzemenin hassaslığına(terazi) ve titizliğe bağlıdır.Bunu dışında materyalin otsu ya da odunsu oluşu,organın cinsi,etüvün genişliği etüvdeki materyalin miktarı,ara sıra etüvün devreden çıkması ve kontrol esnasında etüv kapağının açılıp kapanması vs. Sonuçta: % Su Miktarı = Su Miktarı x 100 Yaş AğırlıkFormülüyle hesaplanır ve biter.Burada kuru maddenin %10’nu inorganik,%90’ı organikten oluştuğu görülebilir.Bitki Organları Bitki % Su Miktarı Yaprak Sedum (Dam Koruğu) %95 Syringia(Leylak) %70 Pinus(Çam) %50Odun Pinus(Çam) %50 Fagus(Kayın) %40Meyve ve Tohum Triticum(Buğday) %14 Pisum(Bezelye) %12 Pyrus malus(Elma) %85 Tablo incelendiğinde elma türü meyveler hariç genç organların yaşlı organlara oranla daha fazla su içerdiği görülür.Ayrıca tohumlarda ve meyvelerde su oranı ve içeriği azdır. Kuru distilasyon,Bitkideki mikro ve makro elementler,minimum yasası ve bitkilerde N kapsayan organik bileşikler……. (bkz.ek) Su Metabolizmasıyla İlgili OlaylarHer canlı metabolizmasının gücü nispetinde aktif yaşam sürer.Metabolizmanın derecesi ile kullanılan suyla ilgilidir.O halde metabolizmanın başlangıcı su alımının başlangıcından, hızı da kullanılan suyun miktarından anlaşılmaktadır.Su kullanabilen her bitki ve hayvan adaptasyonu sürdürüyor demektir.Ancak adaptasyondaki aktif ve pasiflikte suyun miktarıyla ilgilidir.Fakat kullanılan bu su miktarı her zaman enerji üretiminde kullanılmayabilir.Bitkilerde su alma mekanizmasını iyi anlayabilmek için su ve suyla alınan mineral maddelerin taşınmalarında cereyan eden temel olayların bilinmesi gereklidir.Bunlar:1)Difüzyon 2)Osmoz 3)Şişme 1. Difüzyon(Yayılma,Dağılma)Moleküllerin çevreden aldıkları kinetik enerji ile bulundukları ortamda yapmış oldukları hareket olaylarıdır.Zarsız ortamdaki Osmoz olayıdır. Maddeyi meydana getiren tüm tanecikler hareket halindedir ve bu hareketleri gelişi güzeldir. Çünkü sahibi oldukları enerjiyi kendileri üretmeyip dışarıdan aldıkları için kinetik enerji değişimlerine uğrarlar.Eğer aldıkları enerji kademeli değişse sapma meydana gelir.Fakat gaz molekülleri başka moleküllere çarpıncaya kadar düz hareket eder.Sıvılarda titreşerek hareket, katılarda ise sabit titreşen bir hareket vardır.Normal basınç ve sıcaklıkta gaz molekülleri çok geniş çapta ve kolayca yayılış yaparlar.Bir parfüm ağzı açıldığında yoğun konsantrasyonlu olduğu için havaya geçiş ve yayılışı hızlı olur.Havada düzenli bir yayılış yaparak ortamı eşitlediğinde havadan şişeye bir geçiş olmuş demektir.Birim zaman içerisinde parfüm kutusuna giriş ve çıkış dengelenir.Buna dinamik dengenin kurulması denir.Gaz molekülleri arasında olduğu gibi sıvı ve katı moleküller arasında difüzyon olur.Ayrıca iyonlar ve koloidal partiküllerde difüzyona uğrar.KarbonhidratlarMineral ve tuzlar SıvıSu KolloidProteinLipit Katı Sonuç olarak küçük çaplı moleküller ve iyonlar büyük olanlara göre daha hızlı difüzyon yaparlar.Örneğin bir tuz iyonunu glikoz molekülünden daha hızlı Difüzyon yapar. Ayrıca hidratasyon gücü yüksek olan moleküller ve iyonlar düşük olanlara göre daha yavaş difüzyon yapar.Difüzyonda kütlede önemlidir.Kütlesi fazla olan az olandan daha yavaş difüzyon yapar.Difüzyon Basıncı(DB):Her hangi bir madde moleküllerinin çok yoğun ortamdan daha az yoğun ortama geçebilme yeteneğine denir.Başka bir deyişle bir kapta bulunan çözelti içerisindeki moleküllerin difüzyonlarından kaynaklanan çepere yaptıkları basınca denir.Çözelti içerisinde her hangi bir molekülün DB’si diğer moleküllerin DB’sinden tamamen bağımsızdır.Örneğin içerisinde az miktarda hava bulunan balon CO2 gazıyla dolu bir ortama konulduğunda balonun yavaşça şiştiği görülür.Çünkü ortamdaki CO2 yoğunluğu içeriden kat kat fazladır.Bu olaya da Difüzyon basıncı değişkenliği(DBD) denir.Bu olay bitkilerde çok önemlidir.Çünkü bitkilere gerekli maddelerin sürekli alınması gereklidir. Özellikle stomalarda bir kısım hava girerken bir yandan da başka bir kısımda hava ve su çıkar.Aynı durum hücrelerde de mevcuttur.İşte her maddenin alınmasının ve verilmesinin birbirinden bağımsız olmasını gerçekleştiren olaya DB değişkenliği denir. Yoğunlukları farklı iki sıvı Difüzyon ortamında bir araya gelirse yoğun olan diğerinden su çeker.İşte suyun yoğun olduğu ortamdan az yoğun ortama girişini sağlayan bu kuvvete ise DB farkı(emme kuvveti) denir.Difüzyon ortamındaki Difüzyon hızını(DH) etkileyen en önemli faktörlerden biride Difüzyon direncidir.Çünkü her hangi bir ortamda 2 maddenin birbirine difüzyonu sırasında moleküller arasında mutlaka çarpışma olur.Moleküller ağırlık ve büyüklük bakımından fazla olanlar küçük olanlara direnç göstererek hızlarını artırırlar.O halde büyük ve ağır moleküllerin ortamdaki miktarı ile DD doğru orantılı,DH ile ters orantılır.Moleküller arasındaki DD en düşük olan gazlardır.Dolayısıyla en hızlı hareket eden ve dinamik dengenin kurulmasını en kısa zamanda sağlayan gaz ortamının difüzyonudur.Böylece gazları difüzyonu DB’nin yüksek olduğu ortama doğrudur.Yani DB farkı difüzyonu doğru orantılı olarak etkiler.Öte yandan difüzyonun olduğu 2 ortam arasındaki yol uzunluğunun etkisi ile ters orantılıdır.Difüzyon Basıncı Gradienti(DBG):İki ortam arsındaki DBF’nin 2 ortamı ayıran yola (uzaklığa) oranı olduğundan buna Difüzyon basıncı derecesi denir.O zaman Difüzyon yolunun uzunluğunun artmasından kaynaklanan gelişme Difüzyon olan maddelerin özelliği ile telafi edilir.DBG arttıkça Difüzyon artar.Yol uzadıkça ortamdaki büyüklük artar.Dolayısıyla ortamdaki çözeltini yoğunluğu azalır. Aynı şartlar altında farklı gazların DH’si farklı olur.Bu durum söz konusu gazın yoğunluğu ile ilgilidir.Örneğin Havada oksijen hidrojenden 16 defa fazla olduğu için hidrojenin DH’si oksijenden 4 kat daha fazladır.Grahm yasasına göre gazların difüzyonu yoğunluklarını kare köküyle ters orantılıdır.Ortamın sıcaklığı artıkça kinetik enerjilerinden dolayı Difüzyon hızı artar.Deneysel olarak 1oC’nin artışı karşılığı %2-4 artar.Yine ortamın yoğunluğu Difüzyon hızına ters tepki yapar.Sıvı ortamdaki maddelerin difüzyonu:Bir maddenin suya karşı isteği varsa o madde suda çözünür.Ancak her maddenin kendine öz çözünürlüğü vardır.Çözünürlük kapasitesi ne olursa olsun sıvılarda çözünen maddeler molekül ve iyonlarına ayrıldıkları için kinetik hareketlilik artar.O halde Difüzyon olayı gözlemek mümkün olur.Ancak ister molekül ve iyonlarına ayrılma isterse gözlemlemekteki kolaylık çözünürlük gücüne bağlıdır.Örneğin içerisinde saf su bulunan şekildeki kaba KMnO4 kristali atılırsa kristalin molekül ya da iyonlarının suya difüzyo-nu sudaki rengin değişimiyle anlaşılır.DH hakkın- da bilgi edinmek için başka bir kristalde konulabilir.Kristallerin eriyerek difüzyona başlamaları birbirinden farklı olsa da gene de yavaştır.Çünkü kristallerin molekülleri su tarafından ayrılıp uzaklaştırılması belli bir zamana tabidir.Aynı zamanda DBG azalması moleküllerin hidratasyonu daha büyük iç sürtünmeye neden olmaktadır.Çözeltilerdeki herhangi bir maddenin hızı ve yönü diğer maddelerin hız ve yönüne bağlı değildir.     Gazların difüzyon Hızına Etki Eden FaktörlerSıvıdaki madde parçacıkları da difüzyona etki eder.Kural olarak küçük molekül ve iyonların büyük olanlara göre difüzyon hızı daha fazladır. Örneğin H molekülü glikoz molekülüne göre daha hızlı difüzyon hızına sahiptir.Difüzyona etki eden süre,difüzyon kabının büyüklüğü ve difüzyon yolunun uzunluğu ortam sıcaklığı ve karıştırmadır.Difüzyon olayı bir sıvı içerisinde birden fazla katı madde konulursa çözeltideki katıların moleküllerini difüzyon yönü ve hızı birbirinden bağımsızdır.Çünkü farklı moleküllerin hidratasyon kabiliyeti ve DBF birbirine benzemez.Sıvı bir madde katı bbir ortamda difüzyona uğruyorsa yer çekimi yönünde molekül ağırlığı arttıkça hız artar,azaldıkça azalır.Ancak yer çekimine ters yönde ise parçacıkların difüzyonu molekül ağırlıklarıyla ters orantılıdır.   Sıvını katıya difüzyonu sırasında difüzyon ortamının yoğunluğu ile difüzyon hızı yine ters orantılıdır.   Yoğunluğu aynı olan eşit çaptaki 4 tane deney tüpüne konulmuş jelatin çözeltisi vardır.Aynı laboratuar ortamında aynı anda molekül ağırlıkları farklı a,b,c,d maddeleri tüpe konuluyor. Belli bir deney süresinden sonra molekül ağırlığı bakımından kaplara yer çekimi doğrultusunda tüpe yayılma d > c > b > a şeklindedir.Eğer aynı moleküller molekül büyük-lüğü bakımından deney yapılacak olursa a > b > c > d şeklinde olmalıdır.Diğer bir örnek ise molekül ağırlığı belli olan bir maddenin farklı yoğunluktaki jelatin çözeltilerine olan difüzyonudur Burada da görüldüğü gibi difüzyon hızı ortam yoğunluğu ile ters orantılı olduğu için difüzyonun hızı I.tüpten IV. Tüpe doğru artar.Eğer difüzyon olayı bu kurala uymuyorsa deney hatasının çözeltinin hazırlanmasından kaynaklandığı düşünülür.Buna göre difüzyon hızı difüzyon yapan maddelerin difüzyon ortamındaki yoğunluk farkları ve 2 maddenin değme yüzeyleri ile doğru,difüzyon eden maddelerin molekül ağırlığı ile ters orantılıdır.Yine difüzyon-osmoz olaylarında da zarın kalınlığı,sıvıların basınç farkları,porların yarıçapı ve viskozite ile ilgili olarak değişebilir(Doğru orantılı). 2.Osmoz(Geçişme)Laboratuar ortamında yarı geçirgen canlı sistemlerde seçici geçirgen bir zarla ayrılmış ortamda,su konsantrasyonunun yüksek olduğu ortamdan düşük olduğu ortama doğru geçiş olayıdır.Ya da yoğunlukları farklı 2 çözeltinin zar bulunduğu taktirdeki difüzyon olayıdır.O halde osmoz difüzyonun özel bir durumudur.   Ozmometrede görüldüğü gibi su hemen huniye geçer.Çünkü beherdeki su konsantrasyonu hunininkinden fazladır.Su geçişi arttıkça çözeltinin yoğunluğu azalır.Olay ilerledikçe hacim artışı nedeniyle hunideki çözeltinin yüksekliği manometredeki Hg kolunda yükselme meydana gelir.Osmozis olayı bitkilerde sürekli cereyan eden metabolizmanın bir dönemidir. Hücre zarı ile koful,çekirdek ve diğer organellerin zarları tam anlamıyla seçici geçirgen özelliktedir.Çünkü zarların kimyasal yapıları birbirinden farklı olsa bile birim yapıları aynıdır. Genellikle osmoz 2 çözelti arasında meydana gelir.Su konsantrasyonu az olan çözeltilerin su potansiyelinden daha düşük olduğuna suyun hareketinin yüksek olduğu taraftan düşüğe doğrudur.Ancak aynı şeyi diğer madde molekülleri için söylemek mümkün değildir.O halde saf suyun potansiyeli diğer tüm sıvıların su potansiyelinden daha yüksek olduğu için sıvılar içinde en iyi çözücü ve en hızlı geçiş yapan sudur.Şekildeki zar yarı geçirgen olduğu için şeker molekülleri porun genişliğinden büyük olduğundan su tarafına geçiş yapamaz.Bu durumda şekerin molekülleri porların ağzına gelerek su moleküllerini kendine çeker.Bir süre sonra şeker çözeltisinin yoğunluğu azalarak hacim ve basınç artar.Böylece etkisi zara yansıyan bir osmotik basınç ortaya çıkar.Burada içeriye giren su moleküllerinin kuvveti çözeltinin karşıt kuvvetinden fazla olduğu sürece su girişi olur.Ancak su molekülünün hareketi iç kuvvete eşit olunca olay durur.yukarıdaki osmoz olayında da görüldüğü gibi osmotik basınç zarı geçemeyen moleküllerin büyüklüğü ile değil sayısıyla doğru orantılı olarak artar.     Bitki hücresi en iyi bir osmotik sistem durumundadır.Selüloz çeper sermabl(yarı geçirgen),zar ise seçici geçirgendir.Şekildeki osmometre deneyinde saf su molekülleri huniye geçer.Manometrenin kolundaki cıva düzeyini yükseltmek üzere meydana gelen basınç osmotik basınçtır.Bu basınca emme basıncıda denir.Çünkü olay su konsantrasyonu düşük olan çözeltinin yüksek olan çözeltiden suyu emmesinden dolayı meydana geldiği içindir.Osmotik basıncı meydana getiren çözeltinin potansiyel değerine osmotik değer denir.Dikkate alınacak kadar osmotik değer meydana getiren en önemli maddeler şekerler,organik asitler ve inorganik tuzlardır.Hangisi daha çabuk erirse osmotik değer daha fazladır denir. Osmotik Basıncın Bağlı Olduğu Faktörler Bilindiği gibi osmotik basınç ,belirli bir hacim çözücü için çözünmüş madde moleküllerinin konsantrasyonu ile doğru orantılıdır.Kural olarak çözeltilerde yoğunlukla doğru orantılıdır.Aynı zamanda belli bir düzeye kadar sıcaklık artması da osmotik basıncı artırır.Yapılan deneylerde çözeltilerde gazların hacimlerinde olduğu gibi 1 mol eriyik 22,4 basınç oluşturduğu gözlenmiştir.şekildeki aniden ortaya çıkan sapmanın nedeni çözeltide yoğunluğun artmasıyla çözünen maddenin çözelti içerisinde fazla hacim işgal etmesinden kaynaklanır. Molekül ağırlığı yüksek olan maddelerde işgal edilen alada azalma olmasına yol açar.O zaman bu haldeki bir çözeltide çözünme olayının bulunduğu ortam yoğunlaşacağı için sapmaya neden olur.Diğer bir nedenle suda çözünen maddelerle su arasında bir çekim olayının bulunmasıdır.Bu şekilde suda çözünen madde moleküllerine su molekülleri bağlanır.Adsorbsiyon veya hidratasyon suyu da denilen bu tutulan su molekülünün çapını artırarak hareket alanını azaltır ve eriyerek zaman içinde iç sürtünmenin de boyutunu artırır.Çünkü eriyen maddenin molekül büyüklüğü büyür.Buda suyun hacminin azalmasına yol açar.İşte gittikçe hacmi azalan ortamda sapma meydana gelir.Osmozis veya şişme olayları sonucu bitki hücrelerinin stoma ve kafullardan hücre çeperine yapılan basınca hidrostatik basınç(Turgor basıncı),Hücre çeperinin protoplasta yaptığı basınca da çeper basıncı(EB) denir.Normalde çeper basıncı hidrostatik basınca eşit fakat karşıt bir basınçtır.Turgor basıncıda hücre içindeki sıvının osmotik basıncı yüksek olduğu için su hücreye kolayca girer ve hacim artışı yaparak zarı çepere iter.İşte bu basınçla hücre içerisine başka su moleküllerinin girmesini engellediği için çeşitli minerallerin alımı da durmuş olur.Örneğin,K’yi çok kullana bitkilerde Ca’nın engellenmesi aynı yolla olur.Ancak Bitki bu kez Ca’ya fazla ihtiyaç duyuyorsa yine aynı yöntemle K’yi engeller.Çeper basıncında ise hücre çeperi sert olduğu için hücreyi dengede tutmak amacıyla eşit zıt basınç yapmak zorundadır.İşte osmotik basınç ile turgor basıncı arasındaki farka bağlı su moleküllerini çekebilen asıl kuvvete emme kuvveti(EK) denir.O halde bir hücrenin yoğunluğu ne kadar fazla ise EK’de o kadar fazladır.Kısaca:EK=OB – TB Sonuç olarak TB bitkilere dayanıklılık sağlayan çoğunlukla otsu bitkilere direnç ve diklik kazandıran ama asıl enerjinin üretildiği metabolik bir ortamdır.Solmuş bir bitkinin sulu bir ortamda yeniden eski görünüşünü alması bu olay sayesinde olur. ŞİŞME Difüzyon osmoz yoluyla katı haldeki cisimlerin su alıp hacimlerini artırması olayıdır. Aslında osmoz difüzyonun,şişmede osmozun özel bir şeklidir.Yalnız şişme sırasında şişen ortamlar difüzyon ve osmoz bakımından çok farklılık gösterdiği için bu olaylarda suyun ne kadarının ne içerdiği ölçülemez.Çünkü giren sıvı miktarı belli olsa bile bu sıvının bir kısmı kapiller boşluklara girmektedir.Ancak bu olay şişen maddenin ve şişirici çözeltinin difüzyon basınçları farkı (DBF-emme kuvveti) ilgili olarak ortaya çıkmıştır.Şişen maddenin DBG’si (DBD) düşük olduğu sürece su girmeye devem eder.Ancak her sıvı emilmesi şişme değildir. Çünkü şişmede enerji üretimi ve hacim artışı karakteristiktir.Örneğin tebeşirden bir birkaç parçanın ağırlığı ve hacmi ölçülüp suya konulur.Bir süre sonra bu ölçümler tekrarlanırsa sadece ağırlığın değiştiği görülür.Tebeşir porlu yapıya sahiptir.Bu pordaki hava boşalıp su girer.Ağaç parçası aynı deneye tabii tutulursa ağacın hacmi artar.Miseller kohezyon kuvvetiyle Oysa Miseller kohezyon kuvvetiyle bir aradan tutulduğundan miseller arasına girişi fazla olsa da parçalanmasını önler.Bu da şişmede fazla su alımının sınırı aşmasını engellemesi anlamına gelir.Bir balon cam balonun içine konulursa cam engelleyen bir kuvvet oluşturuyor. Bir cisimde şişmenin meydana gelmesi için başlıca 2 koşulun sağlanması gerekir:a)Şişen maddelerin içerdiği sıvının DB ile şişiricinin DB’si arasında belirli bir fark olması lazım.Şişmenin miktarı bu farka bağlı olarak artar ya da azalır.(Emme Kuvveti) b)Şişen maddenin şişirici sıvıya karşı belli bir ilgisi olması lazım(Adsorbsiyon kuvveti ile olur).Terazide görüldüğü gibi,bir süre sonra terazi dengesinin yani A ve B kefesi tarafından değiştiği görülür.Bu durum NaCl şişede Na+ ve Cl- serbest suyu hidrote etmesinden kaynaklanır.A kefesine terazi dengeye gelene kadar ilave edilen ağırlık B’deki jelatinin almış olduğu fazla suyun ağırlığına eşittir.Başka bir deneyde kuru bezelye tohumu kumpas ile ölçülüp,tartıldıktan sonra dereceli mezürde saf suya konulur.1-2 gün sonra aynı ölçüme tabi tutulursa bütün ölçümlerde artma olacaktır.Tüm şişme olaylarında en çok enerji su alımının başlangıcında meydana gelir.Çünkü bu devrede (Başta emme gücü fazla olduğu için çok yüksek bir emme kuvveti oluşur).Eğer dış güçler şişen cismin hacminin artmasına yani genişlemesine ,(Yurgor artıyor,enerji üretimi artıyor)dış güçler bunu engellemeye çalışırsa en yüksek tepki atm’de (basınçta) meydana gelir.İşte bunlardan ilki çeper basıncı diğeri de Turgor basıncıdır.Örneğin;kurak havalarda kayalar arasında çakılan kuru odunlar yağmur yağdığında kayayı parçalar.Şişme olaylarını günlük en güzel örnekleri yağmurlu havadaki ahşap kapı ve pencerelerin durumudur.Şişmede şişiricinin sıcaklığının önemli etkisi vardır.Sıcak suda daha hızlı fakat , soğuk suda daha yavaş ama fazladır.Çünkü Sıcak su molekülleri ısı enerjisiyle maksimum hareket ederek miseller arasına ani giriş yapar.Bu da permabiliteyi azaltan bir şok etkisi yapar. Yani tahrip eder.O halde şişmede sıcaklığın derecesi çok önemlidir.Çünkü sıcaklık sıvı ortamdaki su moleküllerinin termik hareketlerini artırarak çözeltilerde daha bağımsız davranmayı sağlamaktadır(Sıcaklık artınca molekülleri hareket eder,bağlar kopar ve çarpışma olur).Bu nedenle sıcaklık şişmeye ayrılan süreyi azaltır.Fakat sıcaklık artışı ile birim zamanda şişme yüzdesi azalır. Sıcaklığın artışı belli bir dereceden sonra ters yönde etkiler.Osmotik basınç(EM) şişmeyi azaltan bir başka faktördür.Osmotik basınç ile şişmenin hızı ve miktarı ters orantılıdır.Çünkü osmotik basıncın artması demek çözeltideki çözünen birim madde başına düşen Su molekülleri sayısının azalması demektir.Bu durumda çözeltinin difüzyon basıncı azalır yani çözünmüş madde miktarı arttıkça şişen cisme giren su miktarı azalacaktır. ELEKTROLİTLERDE ŞİŞME Soru:Okaliptus meristemi(1),çimlenmekte olan köknar tohumu(2) ve patates yumrusu vardır. Su kapsamını tespit etmek istersek sıralama nasıl yapılır.Yanıt:Bir ortamda su miktarı ile nişasta miktarı ters orantılıdır.Yumrularda su yoktur. Tohumlarda çimlenme sırasında su miktarı %77 kadar artar.(321)Soru:Sulu ortamda yetiştirilen yumrulu bitkilerde Ca,Cl,S elementleri yumruda çok yaprakta yoktur.Niçin?Yanıt:S proteinleri yapısına giriyor. Elektrolitler iyonik bileşikler olduğu için çözündükleri zaman iyonlarına ayrılırlar. Ayrılan her iyon elektrik yükü taşır.Bu da onların mutlaka su molekülü hidrate ederek su örtüsü ile kaplanacağı anlamına gelir.O halde,elektrolitlerde şişen cisme iyonla birlikte su girer.Bu durum iyonları su tutma kapasitesine bağlı olup şişmenin miktarını düzenler. Görülüyor ki elektrolitlerde şişme suya göre değişiktir.Aslında bu değişikliğe neden olan asıl faktör iyonların elektrik yükleri ve atom ağırlıklarıdır(Çekim arttıkça yüklenme fazla olur,ağırlık artar).Birçok doğal jellerin(yumurta akı,cıvık mantarlar,sitoplazmanın kendisi) miselleri su ile temas ettiğinde ( - ) elektrik yükü kazanırlar.O yüzden temasa geçtiği elektrolitteki (+) katyonlar için bir çekme kuvveti haline gelirler.Onlarda (-) yüklü anyonları çekerler.Her ne kadar şişen madde ile elektrolitik iyonlar arasındaki ilişki bu maddelerin bünyelerine bağlı ise de bu eriyiklerde şişen bir cisimde 2 farklı elektrolit fazı vardır:1)Eğer şişen maddenin yapısı elektrolitlere yeter derecede geçirgen ide misellerin yüzeyi katyonlardan bir tabaka ile örtülüdür.Katyonlar şişen cisme hidratasyon suyunu da götürürler.böylece şişme suyu alınmış olur. İşte iyonların şişmedeki direkt etkisine P.İ.E.(Primer İyon Etkisi) denir.Ayrıca şişen maddeler aynı zamanda elektrolitlerde absorbe olmayan anyonlarla da temastadır.Yani şişen madde elektrolitlerin içeri girmeyen iyonları ile de temas halindedir.İşte içeri girmeyen bu anyonlar-da şüphesiz bir hidratasyon suyu vardır.Bu durum yukarıdaki olayın tersini ortaya çıkarır. Çünkü bu kuvvet ile su arasında rekabet başlar.Yani dıştaki anyonlar içerideki misellerden su çeker.Bu olaya da sekonder iyon etkisi denir.Şişmede başlangıçta EK’den dolayı hızlı bir giriş vardır.Her giren suyu bağlayıp gitti.Orada kalanların suyu içeri girenlerden fazla olunca dışa-rıdakiler suyu çeker.Denge sağlanana kadar.(Toprağın bitkiden su çekmesi)Katıların kazandığı su miktarını iyonların sayısı değil hidratasyon güçleri belirler.Yani miktardan ziyade absorbe olan veya olmayan iyonların hidratasyon kuvvetleri arasındaki fark belirler.Örneğin,önce eritilen sonra kurutulan jelatinden alınan silindirler.şemadaki eriyiklere konulduğunda en fazla şişme KI da meydana gelir.Çünkü bu eriyik serisinde atom ağırlığı en fazla olan iyondur. H2O KCl NaCl LiCl KBr KI%Şişme 100 103 109 114 120 ∞ 2)Eğer şişen maddenin yapısı elektrolitlere karşı yarı geçirgense hem anyonlar hem de katyonlar şişen cisim ile su için rekabete girer.Bu olay cismin emmek istediği suyun engellenmesi durumuna dayandığı için S.İ.E. vardır.O zaman yapıları yoğun olan cisimler tuz eriyiklerinde saf sudakinden daha fazla şişer.Bu durumda şişmede azalma katyonların giriş yeteneğiyle ters orantılıdır.Örneğin aynı büyüklükte ayrı tüpe eşit miktarda keten tohumu konularak her birinin üzerine 2’şer mol saf su,KCl,NaCl,LiCl bir deney süresi sonunda şemadaki gibi su dışındaki çözeltilerden KCl’de en fazla şişme olmuştur.Çünkü K’nın atom ağırlığı fazla,hidratasyon örtüsü ise azdır.En az şişme ise LiCl’de görülmüştür.Çünkü Li’nin Saf Su KCl NaCl LiClŞişme% 57 46 43 36           Durumu K’nın Tam tersidir.NaCl’de Na’nın özellikleri Li ve K’nın ikisi arasında olduğun için orta durumda bir değişme olmuştur.Demek ki bu deneyde de zarın yarı geçirgen olması sonuçları etkileyen en önemli faktördür.Sonuç olrak görülüyor ki,su metabolizmasıyla ilgili bu üç olay birbirini tamamlar niteliktedir.Çünkü genelde birinin nedeni ve sonucu ötekisidir. Bazen bu iki olay aynı anda gerçekleşebilir.Örneğin,Şişme olayı difüzyonun özel bir şeklidir. Çünkü bitki çeperini oluşturan her biri 2000 kadar glikoz molekülünden oluşan miseller arsına suyun girmesi difüzyon olayıdır.Aralarına su giren misellerin şişme miktarı kohezyon kuvve-tiyle kontrol edildiği için turgordur.tebeşir ve süngerin boşluklarının su ile dolmasının bu olayla ilgisi yoktur.Kısaca şişmede kontrollü(tepkili) hacim artışı karakteristiktir.Çünkü su alınmasına rağmen yerde kalan su yeterli değildir.Bu durumda şişen madde şişiriciden sıvı alıp boşluklarını doldurduğundan şişiricinin miktarı azaldığı için süreklilik göstermez.Her ne kadar şişerek azalan hacmi telafi gibi görülse de boşluklardaki hava yerine girmiş olan su miselleri birbirinden uzaklaştıran sudan bağımsız düşünülmelidir.O halde suya karşı ilgisi olan her madde hiç şişmese de içerisinde bulunduğu sıvıdaki su moleküllerini kendine bağlar. Yani hidratasyon suyu oluştururlar.Madde etrafında düzenli yerleşen bu su molekülleri sıvı içerisinde serbest dolaşan su moleküllerinden daha az hacim işgal eder.Şişme esnasında su molekülleri kendi kinetik enerjilerinin büyük bölümünü kaybederler.Kaybedilen bu kinetik enerji şişme ortamından ısı enerjisi olarak çevreye aktarılır. SU İLETİMİ *İyon AntagonizmasıBitki dünyasında halofit(tuzcul) bitkiler hariç tuz çözeltisi bitkiler için zararlıdır.Ayrıca bir tek tuzdan hazırlanan çözeltiler bir kaçından hazırlanan çözeltilerden daha zararlıdır.Örneğin,buğday fideleri ayrı ayrı 0,12 mol CaCl2 ve 0,12 NaCl çözeltisinde kök gelişimine bırakılmıştır.Aynı fideler 0,12 NaCl+0,0012 CaCl2 çözeltisine konulursa (c) şeklindeki görülür.Çünkü NaCl orta büyüklükte olup Na Hidratasyon suyuyla birlikte protoplazmaya geçer.Eğer ortama eseri Ca bileşiği katılırsa 2 değerlikli olan Ca’nın su örtüsü Na’dan daha fazladır.O halde büyük Ca molekülü içeri giremez.Üstelik sekonder iyon etkisi yapar.Bu durumda su kaybeden hücrelerin kapıları kapanır. Böylece Na iyonları içeri giremez.İşte iyonların birbirine karşı bu etkisine iyon antagonizması denir.Bu olaya bir örnekte Spirogyra deniz alginin metilen mavisinde tam boyanmasıdır.Eğer metilene AlCl3 katılırsa boyama tam olamaz.Bu durum diğer çözeltilerin içeri girip zehir etkisi yapmasını engeller.Olayın esası 2 ya da daha fazla değerlikli iyonların zarı yoğunlaştırdığı bilinmektedir.Zar yoğunlaşması porların kapatılıp.permabl’ın azalmasıdır.Böylece tek değerli iyonların geçmesi önlenir ve şişmeyi artırarak zehir etkisi yapmasını da ortadan kaldırır.İşte tek değerlikli bileşiklerde hazırlanmış çözeltilerin hücreye yaptığı etkiye sinerjistik etki denir.Sonuç olarak bir elementin yaptığı etkiyi ikinci elementin artırmasına sinerjisitk etki denir. Bitki Fizyolojisi Ders Notları Hazırlayan Duygu OKTEN  

http://www.biyologlar.com/bitki-fizyolojisi-ders-notlari-1

BİYOLOJİK MÜCADELE:

Zararlı bir organizmayla,bunun düşmanı olan başka bir canlıdan faydalanmak suretiyle yapılan savaşa denir..Su birikintilerine larva yiyen balık, sineklerin üreme yeteneğini bozan formülasyonlar atma gibi tedbirlerdir.Yani zarar veren canlıyı ortamdan yok etmek için ,mevcut canlıyı yiyerek beslenen başka bir canlıyı ortama yerleştirmektir. Biyolojik mücadele,tabii dengenin tesisine yardımcı olur.ileriye dönük kalıcı sonuçlar verir.Dezavantajı ise uzun zaman almasıdır.Kimyasal mücadele,Hem çevre ve insan sağlığına zarar verdiği hemde zararlıların bunlara karşı dayanıklılığı kazandığı görülmüştür.Kimyasal savaşın Biyolojik mücadele programı ile birlikte yürütülmesi çoğu zaman oldukça risklidir.Bu sebeple biyolojik mücadele programının tavsiye edilmesi veya başarısız kaldığı dönem ve alanlarda tamamlanması için Biyoteknik yöntemler kullanılır.Biyoteknik yöntemlerden biri olan FEROMON' da amaç,hedef türü,çevreye ve diğer canlılara zarar vermeden kontrol altına almaktır. BİYOLOJİK MÜCADELE UYGULAMASI: 1-KISIRLAŞTIRMA 2-FEROMON 3-ATRAKTAN BİYOLOJİK KONTROL YÖNTEMLERİ 1~ PATOJEN AJANLARIN KULLANILMASI; -Bacil menşeyli ilaç uygulamaları, -Bazı bakteri,virüs ve mantarların kullanılması(Henüz araştırma aşamasındadır) 2~ PREDATÖRLER; -Kuş,kurbağa,kertenkele ve bazı balıklar 3~ YAPAY GENETİK DEĞİŞİKLİKLER -Gelişmeyi düzenleyen hormon esaslı ilaç uygulamaları -Bacil esaslı biyolojik kontrol ilaçları: 1)Bacillus sphericus 2)Bacillus thurigiensis:Şu özelliklerden dolayı B.thurigiensis dünyada en çok tercih edilen biyolojik ilaçtır. ---Hedef seçici özelliği vardır(yalnız sivrisinek larvalarına etkilidir)diğer canlılara toksik etkisi yoktur, ---Hedef canlılar B.thurigiensis’e direnç göstermezler, ---Doğal besin zincirini olumsuz etkilemez, ---Çok kısa zamanda etkisini gösterir ve parçalanarak birikime neden olmaz. -Predatörler: Doğal denge içerisinde bazı sucul kuşlar, Gambusia gibi etçil balıklar,kurbağalar larvalarla beslendiklerinden zaralıların üreyip çoğalmasını dengelerler. ~ Gelişmeyi düzenleyici hormonlar: Başkalaşım dönemine sahip zararlının; -Herhangi bir döneminden bir üst dönemine geçmesini engelleyen Gençlik hormonları, -Başkalaşım döneminde gömlek değiştirmesini engelleyen Kitin hormonları. BİYOLOJİK MÜCADELENİN ÖZELLİKLERİ: AVANTAJLARI: YAN VE ART ETKİLERİNİN OLMAYIŞI:İnsan,Hayvan,Bitki ve faydalı organizmalarda herhangi bir zarar meydana gelmez. EN AZ MASRAFLA EN İYİ SONUCUN ALINABİLMESİ:Biyolojik mücadelede,nakil için başlangıçta önemli bir masraf olur,ilerki yıllarda bu masraf azalır. DEVAMLI/ETKİ (ETKİNİN İDAME OLMASI):İlk tesisten sonra yok denecek bir masrafla kendi kendisini devam ettirebilme özelliği vardır.Mekanik ve Kimyevi mücadelede etki,ancak bilfiil yürütüldüğü zaman olur. ZARARLILARDA DAYANIKLILIK VE BAĞIŞIKLIĞA YOL AÇMAMASI:Biyolojik mücadelede bu önemli bir avantajdır. DOLAYLI FAYDALAR SAĞLAMASI: a)Konuk zararlıyı direk öldürür, b)Üreme gücünü azaltır, c)Gelişiminde dengesizlikler yaratır. d)Zararlının direncini kırma,ve hassasiyet oluşmasını sağlar. DEZAVANTAJLARI: BAŞLANGIÇTA RİSK TAŞIMASI: NETİCENİN GEÇ ALINMASI: BİYOLOJİK MÜCADELEDE BAŞLANGIÇ: İlk olarak faydalı türün korunması ve sonrada güçlendirilmesi esas alınmalıdır.Bu süreyi beklerken zararlı alyhine dönüşen durumlarda,zararlının yoğunluğu artar.Mücadele Başlangıç süresi ,3 yıl tesbit edilir(3 generasyonluk süre) Bu süreler zarfında düşman çoğalıp istenen seviyeye çıkar.tek risk "Başlangıç Riski"dir.Buda ekonomik kayıptır.Son 5 yılın istatistik verilerine göre mücadele faaliyet oranları şu şekildedir. A)MEKANİK MÜCADELE(%65), B)KİMYASAL MÜCADELE (%21), C)BİYOLOJİK MÜCADELE (%12). D)BİYOTEKNİK(FEROMON)MÜCADELESİ (%2) dir. BİYOTEKNİK(FEROMON)MÜCADELESİ: UYARMA KAYNAĞI: A)FİZİKSEL : Ses titreşimi ve elektromanyetik radyasyon uygulamaları. B)KİMYASAL:Tat alma,Koku alma,Gaz ile zararl duyu organları ile uyarılır.Koku bırakılarak doğrudan uyarılması sağlanır. BİR ARAYA GETİRİCİ FEROMONLAR: A)CİNSİYET FEROMONLARI:Türün yalnız bir cinsiyeti tarafından salgılanıp öteki cinsi cezbeder. (Erkek > Dişi) ,veya (Dişi >Erkek) şeklinde uygulanır. B)TOPLANMA FEROMONLARI:Türün her iki cinsiyeti üzerinde de etkili olan (Yine bir cinsiyet tarafından salgılanan (Erkek >Dişi ve Erkek), veya (Dişi >Dişi ve Erkek) şeklinde uygulanır. FEROMON'un Kaynağı ,Yeni erginleşmiş dişi böcekten veya sentetik olarak laboratuar ortamında üretilir. TARIMDA FEROMON: Direk etki,Yaprak biti türlerinde alarm feromonu bulunmuş Corniclerinden salgı yaparlar.Feromon ile alarma geçiren yaprak biti Kolonilerinin kendisini yere atması veya bulunduğu bitkiyi terk etmesini sağlar. İndirek Etki,Zararlı böcek populasyonunu tayin etmede uygulanır,sex feromonları indirek uygulanır. FEROMON NEDİR? : Feromon bir böcek türünün,kendi bireyleri arasında haberleşmelerinde kullandıkları Kokudur.Feromon böcekler arası kimyasal konuşma dilidir.Çiftleşmeye hazır bir dişi böceğin salgılamış olduğu kokuyu duyan erkek böcek,kokunun izini takip ederek dişiye ulaşır.işte bu koku seks Feromonudur. Bilim adamları Feromonların kimyasal yapılarını çözebilmek için ilk etapta çeşitli böcek türlerinden çok sayıda toplayıp Laboratuvar ortamında böceklerin salgıladıkları kokuların kimyasal yapılarını öğrenmişlerdir.Bilim adamları Feromonların kimyasal yapılarını elde ettikten sonra bu kokuların türe bağlı olarak farklılıklar gösterdiğini görmüşlerdir. BUNA BAĞLI OLARAK HER BÖCEĞİN FEROMONU BİRBİRİNDEN FARKLIDIR.: Yıllar süren araştırmalar sonunda Bilim adamları türden türe farklı olan feromonları tanımlamalarının yanısıra,Feromonları Laboratuvarda "SENTEZ ETME" Başarısına ulaşmışlardır.Sentaz edilen Feromonlar,çeşitli maddelere emdirilerek tuzaklarla birlikte mücadele edilecek ortama asılarak denemeler yıllar sürmüştür.Son olarak gelinen noktada,mevcut bilgiler ışığında bir çok böceğin Feromonu bulunmuştur.Bu bizlere zararlı böceklerin haberleşme dünyalarına girmeyi ve onları tuzaklara çekerek zararlarını en aza indirme şansını vermiştir.Entegre zararlı mücadelesi,zararlı davranışları ve Popülasyonları konularında fazla bilgi gerektirmektedir.Zararlının ne zaman ve nerede ortaya çıktığını bilmek,hangi yaşam evresinde olduğunu görebilmek zararlılarla mücadelede ve sonraki tehditlerde çözümlere kolay ve ucuz bir şekilde ulaşmamızı sağlar.Her geçen yıl dünyada çeşitli zararlılar hakkında çeşitli kimyasal zehirler karşı reziztans (Yani,Bağışıklık)geliştirdikleri veya,çok bilinen bazı kimyasal zehirlerin mücadelede daha az etkili olmaya başladığı görülmektedir.Orman,Tarım,Depolanmış ürünler,Ev ve Bahçe zararlılarına karşı mücadelede Alternatif,Çevreye,İnsana zararlı olmayan,Ucuz ve Başarılı Altarnatif yöntemlerin kullanılması kaçınılmaz bir hal almaya başlamıştır.Bu avantajlara haiz bir metot olan Feromonlarla Zararlı Böcek Mücadelesi dünyada ve ülkemizde hızla gelişmektedir. YÖNTEMLER VE UYGULAMA METOTLARI ? : Laboratuar ortamında sentez edilen ve böceklerin salgıladığı kokunun kopyası olan Feromon'lar "DİSPENSER" denilen ve kokuyu atmosfere yayan maddelere emdirilirler.Elde edilen Feromon Dispenserleri ile mücadelede amaca ve ihtiyaca göre dört ana yöntem kullanılır. 1-ERKEN UYARI (MONITORING) : Erken uyarı böceklerin pupa evrelerinden sonra hangi zamanda ergin olup uçmaya başladıklarını tesbit için kullanılır.Böceklerin uçma zamanlarını tesbit etmek mücadele yapan için büyük faydalar sağlar.Zararlının gerçekten var olup olmadığını görür.Eğer varsa ilaçlama yapılacak zamanın tam ve kesin tarihi ortaya çıkar.ve böylece çok sayıda ilaçlama tekrarı gerektirmez. 2-KARIŞTIRMA (CONFUSION) : Zararlılar ergin olduktan sonra çiftleşmek için dişinin salgılamış olduğu kokuyu ararlar,ancak ortamda çok kaynaklı bir koku varsa dişiyi bulmaları güçleşir.Mücadele yapılacak ortama asılan çok sayıdaki Feromon Dispenserinden yayılan kokular nedeniyle zararlı dişiyi bulamayarak çiftleşme gerçekleşmez ve böcek zararı ortadan kalkmış olur. 3-ÇEK-ÖLDÜR (ATTRACT-KILL) : Tuzağa çekilen böceklerin tuzak içine konulmuş Pestisit'lerle(Kimyasal İlaç) öldürülmesine dayanan bu metotta,tuzağa çekilerek hapsolan erkek bireyler temas etkili pestisitlerle yok edilirler. 4-TOPLU TUZAKLAMA (MASS TARPPING) Hangi alanda kullanılacak olursa olsun toplu tuzaklama yönteminde Feromon Dispenseri ve tuzaklar mücadele alanına tavsiye edilen miktarlarda asılarak gerçekleştirilen metottur.en çok kullanılan ve bilinen bu metotta böcekler toplu olarak tuzaklara hapsedilerek zarar vermeleri önlenir. FEROMON'LA MÜCADELENİN AVANTAJLARI NELERDİR ? : 1-FEROMONLAR TAMAMİYLE ZEHİRSİZ-NON TOXİC MADDELERDİR.ÇEVREYE,İNSANA,BAŞKA CANLILARA VE ATMOSFERE ZARAR VERMEZLER. 2-FEROMON'LAR TÜRE ÖZGÜ CEZBEDİCİ VE ÇEKİCİ KOKULAR OLDUKLARINDAN DOĞADAKİ DİĞER CANLILARI ZARAR VERMEZLER.KİMYASAL MADDELERİN SEÇİCİ OLMAMASI KADAR FEROMON'LAR SEÇİCİ BİR MÜCADELE METOTUDUR.HEDEF CANLI DIŞINDA HİÇ BİR ORGANİK YADA İNORGANİK MADDEYE ZARAR VERMEZLER. 3-FEROMON'LAR MÜCADELE EDİLECEK ZARARLININ VARLIĞININ YADA YOKLUĞUNUN ORTAYA ÇIKMASINDA ROL OYNAR.BUDA BOŞUNA YAPILACAK İLAÇLAMA İŞİNDEN MÜCADELE YAPANI KURTARMIŞ OLUR. 4-UYGULAMASI OLDUKÇA BASİTTİR.İLAÇLAMAYA GÖRE OLDUKÇA KISA VE GÜVENLİ BİR İŞLEMDİR. 5-UÇAKLA İLAÇLAMANIN DAHİ MÜMKÜN OLMADIĞI,ARAZİ ŞARTLARININ ÇETİN OLDUĞU YERLERDE KULLANIMI MÜMKÜNDÜR. 6-BİR ÇOK MÜCADELE YÖNTEMİNE GÖRE UCUZ BİR YÖNTEMDİR. 7-İLAÇ KULLANILMADAN ÜRETİLEN TARIM ÜRÜNLERİNİN DEĞERİ DIŞ VE İÇ PAZARDA ARTACAĞINDAN,FEROMON YÖNTEMİ İLE ZARARLI BÖCEK MÜCADELESİ ,KATAGORİSİNDE TEK VE VAZGEÇİLMEZ BİR UYGULAMA YÖNTEMİDİR. FEROMONLARIN ZARARLI BÖCEKLERLE MÜCADELEDE KULLANILMASI 1. GİRİŞ Feromonlar böceklerde bir türün bireyleri tarafından dışarıya salınan ve o türün diğer bireyleri tarafından hissedilerek reaksiyon göstermelerine sebep olan kimyasal maddelerdir. Bu maddeler; cinsel cezbedici, buluşma, dağılma, alarm verme, yol veya sınır belirleme, tat uyarması, dişilerin üreme faaliyetlerinin engellenmesi gibi etkilerine göre sınıflandırılabilir. Bunların arasında cinsel cezbedici hormonlar bitki koruma alanında büyük ölçüde kullanılmaktadır. Dişi böcekler bu feromonu çiftleşmeye hazır olduklarını belli etmek ve erkeklerin kendilerini bulabilmesi için salgılarlar. Bu maddeler hava hareketleri ile taşınırlar ve erkeklerin antenleri aracılığıyla algılanırlar. Feromonlar Entegre Zararlı Düzenlemesi Programı’nın elemanlarından biridir. Etkileri çok eskiden beri bilinmekle beraber ilk olarak BUTENANDT (1954) tarafından ipek böceklerinin koku salgı bezlerinden elde edilip, tanımlanmış ve erkekleri çektiği belirlenmiştir (SEREZ 1983). Daha sonraki yıllarda birçok böceğe ait feromonlar izole edilip tanımlanmıştır. Günümüzde feromonlar sentetik olarak üretilmekte ve bu iş için geliştirilmiş tuzaklarda çekici olarak kullanılmaktadır. Zararlı böceklerle mücadelede feromonlardan yararlanmak üzere üç metot geliştirilmiştir. Bunlar; gözlem ve erken uyarı, kitle tuzaklama ile çiftleşmeyi engellemedir. 2. GÖZLEM VE ERKEN UYARI (MONITORING) Feromonlar zararlı böcek türlerinin varlığının, biyolojilerinin belirlenmesinde ve uygun mücadele zamanının tespitinde yaygın şekilde kullanılmaktadır. Bunun için tuzağın şekli de önemlidir. Hedef böcek türüne uygun olacak tuzak tipleri (yapışkan yüzeyli, su yüzeyli, delta tipi, kelebek tipi, funnel tipi vs.) geliştirilmiştir. Tuzağın büyüklük ve çeşidi hedef böceğin davranışına da bağlıdır. Bu tuzakların en önemli kısmı çekici maddeyi kontrollü şekilde salan dispenserlerdir. Arazide 1 mg veya daha az feromon ihtiva eden dispenser bir ay veya daha uzun süre hedef böceği çekmeye devam edebilir. Belli dönem boyunca yakalanan böcekler sayılarak zararlının varlığı, uçuş ve populasyon yoğunluğu bilgileri elde edilebilir. Bu bilgiler önceki yılların verileriyle karşılaştırılıp değerlendirilerek ilaçlamaya karar vermede kriter olarak kullanılır. Bu bilgilerin yorumlanmasında dikkatli gözlem ve tecrübe başarı için çok önemlidir. Tahıl ve otsu bitkilerde zararlı olan Spodoptera exempta’ya karşı seks feromonu ihtiva eden tuzak ağı kullanımıyla Doğu Afrika’da başarılı sonuçlar alınmaktadır. Diğer taraftan Avrupa ve ABD’de, depolanmış ürünlerin böcekten (Ephestia, Plodia, Sitotroga ve Trigoderma türleri) korunması için feromon tuzaklarıyla gözlem ve erken uyarı hizmeti verilmektedir. Feromonların kullanımıyla İngiltere’de önemli bir zararlı olan Cydia nigricana’nın populasyon artışına ilişkin tahminlerde oldukça başarı sağlanmıştır. Önceleri ürün üzerinde yumurta araştırarak gözlem yapılırken, 1977’den beri bu amaçla feromon tuzakları kullanılmaktadır. Buna benzer bir uygulama dünyanın çeşitli yerlerindeki meyve bahçelerinde Laspeyresia pomonella’ya (Elma iç kurdu) karşı yapılmaktadır. Ülkemizde zararlı böceklere karşı feromonlu tuzaklar ile erken uyarı denemeleri 1980’li yıllarda Bornova Zirai Mücadele Araştırma Enstitüsü tarafından başlatılmıştır. Günümüzde değişik yörelerde önemli zararlılar olarak kabul edilen (Laspeyresia pomonella, Lobesia botrana, Dacus oleae, Prays oleae, Rhagolatis cerasi, Heliotis helicoverpa, Quadraspidotus pernicious, Ostrinia nubilalis, Agrotis ipsilon Heliotis zea vs.) türlere karşı erken uyarı amacıyla feromonlu, cezbediciler ve renkli görsel çekici tuzaklar yaygın şekilde kullanılmaktadır (SEREZ 2001). 3. KİTLE TUZAKLAMA Populasyon yoğunluğu düşük olduğunda, hedef böceğe özgü feromonlu tuzaklarla zararlının yoğunluğu çok daha azaltılabilir. Başarı için böcek populasyonunundan yakalanması gerekli miktarı ve gerekli tuzak sayısının iyi belirlenmesi gereklidir. Yüksek bir yakalama oranı, Lepidoptera türlerinde özellikle erkekler yakalandığı için önemlidir. Mücadelenin başarılı olması için erkeklerin %80-95’inin yakalanmasının gerektiği hesaplanmıştır. Pratikte farklı türler için tuzak yoğunluğu hektarda 1 ila 700 arasında olabilir. Tuzak sayısındaki üst limit maliyet ve tuzak ağının devamlılığına göre belirlenir. Kitle tuzaklaması orman, meyve bahçeleri ve tarım arazilerinde çok çeşitli böcek türleri için yapılmaktadır. Çankırı Orman Fidanlığında bir Lepidopter olan Sciapteron tabaniformis zararlısına karşı funnel tipi tuzaklarda (30 adet/ha ), türe özgü eşeysel çekici feromon kullanarak kitle tuzaklama denemesi uygulamış, %63,9’luk bir etkinlik sağlanabilmiştir. Bu çalışmaya göre; izole olmayan kavaklıklarda feromonlu tuzakların gözlem ve erken uyarı için amacıyla kullanılmasının daha faydalı olacağı sonucuna varılmıştır (ŞİMŞEK 1998). Her iki cinsi de çektiğinden Coleoptera türlerine karşı kitle tuzaklama programları daha başarılı şekilde uygulanmaktadır. Buna en iyi örnek kabuk böceklerine karşı alınan sonuçlardır; 1979 yılında İsveç ve Norveç’te Ips typograhus’a karşı kitle tuzaklama projesi yürütülmüş, toplam 320 bin tuzak kullanılarak 1,6 milyar böcek yakalanmış, ölen ağaç sayısında önceki yıllara göre büyük azalma olmuştur (SEREZ 1983). Türkiye’de ilk feromon denemeleri Doğu Karadeniz Bölgesi’nde Picea abies ormanlarında Ips sexdentatus kabuk böceğine karşı başlatılmış olup, araştırma ve uygulama faaliyetleri genişleyerek devam etmektedir. Artvin ormanlarında ladinlerde zarar yapan Ips typographus’a karşı 2001 yılında feromon tuzak denemeleri yapılmış, sonuçta Kanada tipi hunili tuzakların ve “Almanya –Trifolia M” menşeli preperatların kullanımı önerilmiştir. Ayrıca aynı ormanlarda 1998 -2001 yılları arasında toplam 20 bin adet tuzak kullanılarak 50 milyon civarında böcek (Tuzak başına ortalama 2500 adet) toplanmıştır (ALKAN 2001). Hedef böceğe göre farklı tuzaklar geliştirilmiştir. Örneğin kabuk böcekleri için; boru, körüklü boru tipi, hunili, radyötör tip gibi çok çeşitli tuzaklar kullanılmaktadır. Etkili bir tuzak ağı kurmanın maliyeti ve zorluğu kitle tuzaklamada genel bir sorundur. Ayrıca, tuzak materyalinin, çalınarak kaybolma riskini azaltacak malzemeler seçilmesine dikkat edilmelidir. 4. ÇİFTLEŞMEYİ ENGELLEME Çiftleşmeyi engelleme; böceğin bulunduğu sahada çiftlerin buluşmasını, engelleyecek sentetik feromonların kullanılmasıyla yapılır. Korunacak alanda hedef böcek için feromon salgılayan çok sayıda dispenser yerleştirilir. Bu dispenserlerden yeterli yoğunlukta feromon konsantrasyonu sağlanarak doğal feromon maskelenir ve erkeklerle, dişilerin buluşması, böylece doğurganlıkları engellenir. Mücadele için sahadaki feromon konsatrasyonu birkaç hafta yeterli düzeyde tutulmalıdır. Teorik olarak çiftleşmeyi engelleme, sahte ize yönlendirme veya şaşırtmayla yapılabilir. Denemelerde üç tip dispenser, feromon salınma oranında tatmin edici sonuçlar vermiştir. Bunlar, içi boş plastik lifler, küçük ince plastik yaprak ve mikro kapsüllerdir. Plastik lifler 10 mm boyunda, 0,2 mm çapındadır, feromon lifin içindeki boşluğa konur ve lifin uçlarından birisi açık bırakılarak kontrollü salınması sağlanır. Plastik yaprak formülasyonunda, plastikten imal edilmiş koruyucu özelliği olan iki tabakanın ortasına feromon yerleştirilmiştir. Plastik dış tabaka güneş, oksidasyon ve hidrolizden koruma özelliği yanında, içindeki feromonun kontrollü şekilde salınmasını sağlamaktadır. Bu çeşit preperatlar kare, şerit, bant, pul, konfeti gibi değişik şekillerde üretilerek kullanılmaktadır. Bu preperatlar uçakla veya yerden deposunda özel yapıştırıcı ilave edilmiş püskürtme sistemi ile serpilerek, arazide bitkilerin yapraklarına yapışmaları sağlanır (FLINT ve DOANE 1996). Üçüncü formülasyon tipi feromonun jelatin, poliüretan veya poliamid gibi maddelerden oluşan mikro kapsülün içine konulmasıyla elde edilir. Bunda feromonun salınma oranı, çeperin yapısı, kalınlığı ve içindeki maddenin bileşimine göre değişir. Bu formülasyon tipi çok miktarda ve kolaylıkla imal edilip, ilave yapıştırıcıya ihtiyaç duyulmadan uygulanabilir. Her üç formülasyon ABD, Latin Amerika ve Mısır’da Pectinophora gossypiella (Pembe pamuk kurdu)’ya karşı 3-10 g/ha oranlarında kullanılmış ve başarılı sonuçlar alınmıştır (CAMPION ve VEIGH 1984). 5. SONUÇLAR Feremonların, zararlı böceklerle mücadelede etkili oldukları durumlarda, özellikle faydalı böceklere zarar vermeyişleriyle klasik insektisitlerle mücadeleye nazaran avantajları bulunmaktadır. Ancak, seçici olmaları nedeniyle tek bir böcek türüne karşı kullanılabilmektedir. Aynı sahada birkaç tür zararlı olması durumunda geniş spektrumlu insektisit kullanımı tercih edilmektedir. Feromonla doğrudan mücadelede başarı, ergin böcekler arasındaki çiftleşmenin azaltılmasına ve mücadele sahasının dışından gelerek yumurta bırakacak döllenmiş dişilerin sayısının azaltılmasına bağlıdır. Feromonla mücadelede faydalı böcekler işlevlerini zarar görmeden sürdürebildiklerinden, feromonlar Entegre Zararlı Düzenlemesi programlarının en önemli unsurlarındandır. Diğer taraftan feromon tuzaklarının da yer aldığı, erken uyarı istasyonlarıyla zararlıların populasyon yoğunluğu ile muhtemel zarar düzeyleri önceden tahmin edilebildiğinden, insektisit uygulaması daha az sayıda ve en uygun zamanda yapılabilmektedir. Kaynak: www.osman.com.tr

http://www.biyologlar.com/biyolojik-mucadele

EKOLOJİK TERİMLER

Çevre: Canlıların yaşamları boyunca ilişkilerini sürdürdükleri ve karşılıklı olarak etkileşim içinde bulundukları fiziki, biyolojik, sosyal, ekonomik ve kültürel ortamıdır. Çevre korunması: Çevresel değerlerin ve ekolojik dengenin tahribini, bozulmasını ve yok olmasını önlemeye, mevcut bozulmaları gidermeye, çevreyi iyileştirmeye ve geliştirmeye yönelik çalışmaların bütünüdür. Çevre kirliliği: Çevrede meydana gelen ve canlıların sağlığını, çevresel değerleri ve ekolojik dengeyi bozabilecek her türlü olumsuz etkidir. Sürdürülebilir kalkınma: Bugünkü ve gelecek kuşakların çevreyi koruyarak, sağlıklı ve dengeli bir çevrede yaşamasını güvence altına alan kalkınma politikalarıdır. Alıcı ortam: Hava, su, toprak ortamları ile bu ortamlarla ilişkili ekosistemleridir. Doğal kaynak: Bütün bitki, hayvan ve mikroorganizmalar ile bunların yaşama ortamları olan hava, su ve toprak ve doğada bulunan cansız varlıklardır. Kirleten: Eylem veya işlemleri sonucu doğrudan veya dolaylı olarak çevre kirliliğine ve çevrenin bozulmasına neden olan gerçek ve tüzel kişilerdir. Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemdir. Canlı organizmanın içerisinde bulunduğu ortamı meydana getiren, canlı ve cansız varlıkların tümüne Ekolojik Çevre denir. Ekolojik denge: İnsan ve diğer canlıların varlık ve gelişmelerini doğal yapılarına uygun bir şekilde sürdürebilmeleri için gerekli olan şartların bütünüdür. Sulak alan: Yaban hayatın yaşama ortamı olan, doğal ve yapay, devamlı veya geçici, suları durgun veya akıntılı, tatlı, acı veya tuzlu, deniz ve okyanusların gel-git hareketlerinin çekilme devresinde derinliği altı metreyi geçmeyen suları, bataklık, sazlık ve turbiyeleridir. Atık: Herhangi bir faaliyet sonunda çevreye veya bırakılan her türlü maddedir. Tehlikeli atık: Tehlikeli fiziksel, kimyasal ve/veya biyolojik özellikleri nedeniyle canlılarda ve alıcı ortamda olumsuz etkilere yol açan atıklar ve bu atıklarla kirlenmiş madde ve malzemelerdir. Radyoaktif atık: İlgili mevzuat uyarınca yetkili kılınan merciler tarafından belirlenen serbest bırakma seviyelerinin üzerinde aktivite ve konsantrasyonda radyoizotopları bulunduran veya bu radyoizotoplarla bulaşmış ve tekrar kullanılması düşünülmeyen madde ve malzemelerdir. Tehlikeli kimyasallar: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan her türlü kimyasal madde ve ürünlerdir. Çevresel etki değerlendirmesi; Gerçekleştirilmesi planlanan faaliyetlerin çevreye olabilecek etkilerinin belirlenmesinde, olumsuz etkilerin önlenmesi ya da zarar vermeyecek ölçüde en aza indirilmesi için alınacak önlemlerin tespitinde, yer ve teknoloji alternatiflerinin değerlendirilmesinde ve faaliyetlerinin uygulanmasının izlenmesi ve denetlenmesinde sürdürülecek çalışmalardır. Stratejik çevresel etki değerlendirmesi: Plan, politika ve programların kabulünden önce çevresel etkilerinin incelenmesidir. Çevre Yönetimi: Ekonomik, idari, hukuki, politik, sosyal ve kültürel araçları kullanarak doğal ve yapay çevre unsurlarının sürdürülebilir kullanımını ve kalkınmasını sağlamak üzere yerel, ulusal, bölgesel ve küresel düzeyde politika ve stratejilerin geliştirilmesidir. Çevre Koruma Planı: Bitki ve hayvan türleri ile bunların yaşam alanlarını ve alıcı ortamları korumak ve geliştirmek üzere ülke, havza veya alan bazında yapılan planlardır. Çevre ile uyumlu teknoloji: Her türlü faaliyet sırasında doğal kaynak ve enerjinin verimli kullanılmasını ve geri kazanılmasını sağlayan ve atık oluşumunu azaltan teknolojilerdir. Küresel ısınma; bütün dünyada sıcaklığın sistematik bir şekilde artması sürecidir. Bu yolla bir iklim değişikliği meydana gelmektedir. Çünkü sıcaklık artınca buharlaşma artmakta, yağışlar ve hava hareketleri değişmektedir. Erozyon (toprak aşınımı); toprağın aşınmasını önleyen bitki örtüsünün yokedilmesi sonucu koruyucu örtüden yoksun kalan toprağın su ve rüzgarın etkisiyle aşınması ve taşınması olayıdır. Erozyonun nedeni; toprağı koruyan bitki örtüsünün yok olmasıdır. Arazi eğimi, toprak yapısı, yıllık yağış miktarı, iklim faktörleri, bitki örtüsü, toprak ve bitkiye yapılan çeşitli müdahaleler, erozyonun şiddetini belirleyen öğelerdir. Toprak; kayaların ve organik maddelerin çeşitli derecedeki ayrışma ürünlerinden meydana gelen, içinde geniş bir canlılar topluluğu barındıran, bitkilere durak yeri ve besin kaynağı olan ve katı yer kabuğunun, uzun zaman içerisinde belirli özellikler kazanan en üst kısmını saran doğal, dinamik bir yapıdır. Bitki Örtüsü; Bir arazi parçası üzerinde bir arada yetişip yaşayan, birbirleri ve çevreleriyle sürekli etkileş im içinde bulunan, çeşitli otsu ve odunsu bitki türlerinin oluşturduğu topluluğa denir. Orman; genel anlamda ağaç topluluğunu ifade etmektedir. Fakat bununla beraber, çağdaş orman anlayışına göre oldukça eksik bir tanımlamadır. Çünkü orman, içerisinde ağaçların dışında diğer bitkiler, hayvanlar ve mikroorganizmalardan oluşan başka canlı varlıkları da barındırır. Öyleyse; orman, ağaçlar ve öteki canlıların tümüyle birlikte, toprak, hava, su, sıcaklık ışık, gibi fiziksel çevre unsurlarından oluşan bir doğa parçasıdır Çölleşme: iklim değişiklikleri ve insan faaliyetleri de dahil olmak üzere muhtelif faktörlerin etkisi altında kurak, yarı kurak ve az yağış alan bölgelerdeki toprağın doğal özelliklerini yitirmesi veya kısaca toprağın aşınmasıdır.

http://www.biyologlar.com/ekolojik-terimler

EBV EBNA ANTİKOR (Epstein-Barr virüs nükleer antijen antikoru)

Kullanımı: EBV enfeksiyonunun başlangıç zamanının belirlenmesinde kullanılır. Enfeksiyoz mononükleozisin etkeni olan EBV virüsü ile karşılaşıldıktan sonraki 6-8. haftada (konvelesan dönem) pozitifleşir ve ömür boyu pozitif kalır. Erişkinlerin %90’ında EBV VCA IgG ve EBNA antikorları pozitiftir www.tahlil.com

http://www.biyologlar.com/ebv-ebna-antikor-epstein-barr-virus-nukleer-antijen-antikoru

4. ULUSAL MOLEKÜLER BİYOLOJİ VE BİYOTEKNOLOJİ KONGRESİ

4. ULUSAL MOLEKÜLER BİYOLOJİ VE BİYOTEKNOLOJİ KONGRESİ

Saygıdeğer Meslektaşlarım, Moleküler biyoloji ve biyoteknolojinin hem güncel hayatımızda ve hem de akademik alandaki önemi ve uygulama alanları gün geçtikçe artmaktadır. Bunun önemli nedenlerinden birisi de moleküler biyoloji ve biyoteknolojinin disiplinler arası bir araştırma ve uygulama alanı olmasıdır. Moleküler biyoloji ve biyoteknolojinin yeni bir teknoloji alanı ve üretim sektörü olarak ülkemizdeki yeri maalesef istenilen seviyede değildir. Bu alanda rekabet edebilmek ve karşılaşılan sorunlara hızlı bir şekilde çözüm üretebilmek için benzer alanlarda çalışan akademisyenler arasında sıkı işbirliği olması ve bilgi paylaşımı gereklidir. Moleküler biyoloji ve biyoteknolojinin çok hızlı gelişen bir araştırma alanı olduğu da göz önüne alındığında, ülkemizde bu alandaki araştırma sonuçlarının paylaşılması ve yeni projelerin planlanabilmesi için gerekli ortamı sağlayabilmek amacıyla “IV Ulusal Moleküler Biyoloji ve Biyoteknoloji Kongresinin” 21-24 Ağustos 2015 tarihinde düzenlenmesine karar verilmiştir. Siz değerli akademisyenleri ve öğrencilerimizi moleküler biyoloji ve biyoteknoloji alanındaki araştırma sonuçlarınızı “IV Ulusal Moleküler Biyoloji ve Biyoteknoloji Kongresinde” sunmaya davet ediyoruz. IV Ulusal Moleküler Biyoloji ve Biyoteknoloji Kongresinin organizasyonu da daha önce olduğu gibi Nobel Bilim ve Araştırma Merkezi tarafından gerçekleştirilecektir. Bu şekildeki uygulamalar bilimsel kongrelerin organizasyonlarında sıklıkla görülmekte olup Kongrenin kurumsallaşması ve kesintisiz olarak devam etmesini de sağlamaktadır. Daha önceki Moleküler Biyoloji ve Biyoteknoloji Kongrelerinde olduğu gibi “IV Ulusal Moleküler Biyoloji ve Biyoteknoloji Kongresinde” sunulan araştırmalarda şayet yazarlar tarafından istenilirse gerekli değerlendirmelerden sonra “Journal of Applied Biological Science” (JABS) veya “Biyoloji Bilimleri Araştırma Dergisinde” (BİBAD) hızlı bir şekilde makale olarak da yayımlanacaktır. Araştırma sonuçlarının hızlı bir şekilde uluslararası indekslerde yer alan bu dergilerde yayımlanması genç araştırmacılarımızın akademik kariyerleri için önemli bir katkı olacaktır. IV Ulusal Moleküler Biyoloji ve Biyoteknoloji Kongresinde davetli konuşmacılar, poster ve sözlü sunumlara ek olarak siz değerli katılımcılar tarafında gelen önerilere göre belirli alanlarda paneller de düzenlenecektir. Kongre konuları da oldukça geniş kapsamlı olup bu konuların belirlenmesinde moleküler biyoloji ve biyoteknoloji alanındaki güncel eğilimler ve yenilikler de dikkate alınmıştır ve kongre resmi web sayfasında (http://www.biyoloji.gen.tr) verilmiştir.  Poster ve sözlü sunumlara ek olarak ülkemiz için öncelikli araştırma alanı olarak belirlenen biyoyakıt, gıda biyoteknolojisi, sağlık alanlarında davetli konuşmacılar ve paneller düzenlenmesi de planlanmıştır. Kongrede davetli konuşmacı olarak yer almasını istediğiniz akademisyenleri ve organize etmeyi düşündüğünüz kısa panel konularını da kongre düzenleme kuruluna iletebilirsiniz. Moleküler biyoloji ve biyoteknoloji alanında çalışan bütün meslektaşlarımızı ve geleceğimiz olan değerli öğrencilerimizi kongremizde ağırlamaktan onur duyacağımızı özellikle belirtmek istiyoruz. Katkı ve katılımınız dileği ile selam ve saygılarımı sunarım.   Prof.Dr. Sezai Türkel     Kongre Başkanı

http://www.biyologlar.com/4-ulusal-molekuler-biyoloji-ve-biyoteknoloji-kongresi

Sıtma Vektör Ekolojisi ve İlişkili Faktörler

Sıtma entomolojisini bir düzen içinde incelerken, parazitlerin bulaşımında mutlaka vektörün yaşadığı doğal ekosistemin de etkisinin olduğu gözönüne alınmalıdır. Bu sistem içinde ana faktörler, parazit, vektör ve konakçıdır. Bu faktörlerin birbirileriyle kesin ilişkileri olduğu gibi, her bir faktöre ait biyolojik ve fiziksel çevrelerinde bu ilişkilerde yeri vardır. Bu bir sistemdir ve bu sistem aşağıdaki gibi basit bir form altında gösterilebilir. Bu ana faktörler kendi içlerinde de bazı alt bileşenlere ayrılabilir: Parazit Türler, soylar, döngü için sıcaklık ihtiyaçları Vektör Üreme ihtiyaçları, sıcaklık ve nem, insanlarla ilişkisi, enfeksiyonlara hassasiyeti, beslenme ve dinlenme davranışı, uçuş kapasitesi, mevsimsel dağılımı, kışlama, hayat uzunluğu, insektisitlere karşı davranışı Konakçı (insan) Sosyal durum, yerleşim merkezlerinin, su bağlantılarının ve alt yapının kalitesi, tarımsal yapı, populasyon hareketi, bağışıklık, Fiziksel çevre Sıcaklık, nem, yağış, rüzgâr, yükseklik, topografya, su durumu, toprak, insektisit kullanımı Diğer biyolojik faktörler Predatörler, parazitler, patojenler, genetik Yukarıda da belirtildiği gibi, herhangi bir alanda sıtma olgusunun varlığı bu faktörlerin tümünün ideal seviyede ve koşullarda olmasına bağlıdır. Sıtma parazitlerini taşıyan vektörün belirli bir alanda olması; ancak, parazitin ortamda bulunmaması ya da bunun tam tersi sıtmanın ortaya çıkmasını engeller. Konuya bu açıdan bakıldığında, sıtma mücadele çalışmalarında, hastalığın yaygın olduğu alanlarda ve yakın çevresinde medikal ve entomolojik mücadelenin birlikte sürdürülmesinde yarar görülmektedir. Ancak, bu mücadele formlarının birbirleriyle bir koordinasyon içerisinde olması ve bilimsel temellere oturması, sıtmanın eradikasyonu açısından kesinlikle şarttır. Sivrisinekler gibi vektör canlıların, davranışlarını ve yaşam döngülerini etkileyen iki önemli faktör bulunmaktadır. Genetik ve ekolojik değişkenlikler. Benzer genetik yapıya sahip bir populas-yon içerisinde, populasyonu oluşturan bireylerin her biri, ekolojik faktörlere karşı değişik hareket edebilir. Yani, ekolojik ya da çevresel faktörler, bir bakıma, sıtma gibi hastalıkları yayan ve bulaştıran canlılar için, insan ve hayvan sağlığı düşünülecek olursa en önemli sıradadır. Sivrisineklerin, larva ve ergin evreleri birbirlerinden ayrı iki değişik çevrede geçmektedir. Öte yandan, her iki evrede kendi çevreleri içerisinde değişik ekolojik faktörlerin baskısı altında bulunmaktadırlar. Evrelerin, bulundukları çevreye adaptasyon derecesi, onların mevsimsel ve coğrafi yayılışlarını belirleyen bazı çevresel baskıların denetimi altındadır. Ekolojik faktörler arasında bazıları çok önemlidir. Örneğin, sivrisineklerin tatlı ya da tuzlu suda veya her ikisinde birden yumurtlamaları genetik faktörlere bağlı olarak kontrol edilir. Konak seçimi de genetik faktörler tarafından belirlenir ama bir konak üzerinde beslenmenin derecesi yerden yere, günden güne değişebilir. Bu sadece konağın durumuna değil, aynı zamanda meteorolojik koşullardaki değişmelere de bağlıdır. Sivrisineklerin gelişme hızı temel olarak klimatik faktörlere bağlıdır. Bunun gibi, sucul evre periyodu, beslenme, yumurta gelişimi gibi biyolojik olayların tümü değişik sıcaklıklara göre oluşur. Böylece, entomolojik araştırmaları ya da mücadele çalışmalarının yapıldığı aynı zaman diliminde, çevresel faktörlerinde dikkatli bir şekilde kayıt edilmesi oldukça önemlidir. Bugün artık iyi bir şekilde bilinmektedir ki, vektör canlıların mevsimsel dağılımı ve populasyonlarının mevsimsel dinamizmi tamamıyla klimatolojik faktörlere bağlıdır. Bunun gibi, üreme ve hayatta kalma gibi davranışlar da çevresel etkenlerin denetimi altındadır. Sivrisinek türleri, dinlenme ve saklanma amacıyla iç ortamlarda bolca bulunduklarında endofilik, aynı şekilde dış ortamda bulunduklarında ekzofilik olarak kabul edilir. Dinlenme habitatının seçimi, özellikle uygun dinlenme alanının sıcaklık ve orantılı nemi ile denetlenir. Örneğin, A. maculipennis, A. sacharovi gibi sivrisinekler kesin ekolojik koşullarla sınırlandırılmışlardır. Klimatik faktörlerin belirlenmesiyle sağlanan veriler ki bunlar sıcaklık, nem, yağış, rüzgâr vb olaylar ile diğer ekolojik faktörleri kapsamaktadır, vektör populasyonlarının dinamizmleri, vektörel potan-siyellerini, dağılımlarını vb. ortaya koyar. Bu tip bilgiler sadece geniş alanlar için değil, bazı özel alanlar içinde ayrıntılı bir şekilde toplanmalıdır. Aşağıda, vektör canlıların bolluk, yoğunluk, dağılım ve üremelerini etkileyen bazı ekolojik faktörlerin etki mekanizmaları ve tanımlayıcı özellikleri kısaca açıklanmıştır: Mikro ve Makroiklim İklim, fiziksel çevrenin en önemli birleşenlerinden birisidir ve sıcaklık, orantılı nem, ışık ve rüzgâr gibi diğer önemli birleşenlerin belirleyicisi durumundadır. Günlük iklimsel değişimler olarak adlandırdığımız "hava durumu", sivrisineklerin yukarıda belirttiğimiz tüm ekolojik ve biyolojik faaliyetlerini belirler. İklim iki alt bölüme ayrılmıştır: 1) Makroiklim, sivrisineklerin yayılım alanının her boyutunda hüküm süren ortalama hava değişimleri, 2) Mikroiklim, makroiklim altında, sivrisinek populasyonunu oluşturan bireylerin hemen çevresinde hüküm süren değişiklikler. Makroiklim, türlerin alan içerisinde mümkün olan dağılımlarını denetlerken, mikroiklimdeki koşullar, makroiklim içerisinde türlerin lokal alanlardaki dağılımını etkiler. Örneğin, sivrisineklerin iç alanlardaki dağılımı mikroiklim ile denetlenirken, dış alanlardaki dağılımı ve barınmaları genel makroiklim ile belirlenir. İç alanları tercih eden herhangi bir türün üyeleri, dış alanları da tercih edebilir; ancak, bu durum makroiklimde olacak bir değişikliğin, türün mikroklima sınırlarına dayandığı ana kadar devam eder. Makroiklim, değişik yerlerdeki mikroiklimi kesin olarak denetler. Bu durum sivrisineklerin iç ortama ya da dış ortama hareketlerini belirler. Örneğin, bir evin iç sıcaklığı dış ortama göre 1-2°C düşük olabilir; ancak, aynı zamanda ev içindeki nem oranı dış ortama göre % 30 daha yüksektir. Günlük olarak, ev içinde (mikroiklim) sıcaklık ve nemin azalış ya da artışı, dıştaki ortamın (makroiklim) azalış ve yükselişlerini takip eder. Gece boyunca, ev içi sıcaklığı özellikle akşamın ilk saatlerinde dış ortama göre daha yüksek; ancak, güneşin doğmasından sonra daha düşük olabilmektedir. Bu durum, sivrisinek hareketlerinin bu iki ortam arasındaki sıcaklık etkileşimine göre belirlenmesini sağlar. Sıcaklık Böcekler soğukkanlı hayvanlardır ve tüm metabolik faaliyetleri çevrenin sıcaklığına göre düzenlenir. Sivrisinekler gibi major böcekler, büyük sıcaklık değişimlerinde vücut sıcaklıklarını kontrol edebilme yeteneğinde değillerdir. Böcekler düşük sıcaklıklarda yaşayabilirler; ancak, tüm metabolik faaliyetleri yavaşlar. Bunun gibi, sıcaklık 32-35°C'nin üzerine çıkarsa, benzer şekilde tüm metabolik faaliyetler bu sıcaklıklara göre modifiye olur. Sivrisineklerin gelişebilmeleri için en uygun sıcaklık aralığı 25-27°C'dir. Sivrisinek populasyonlarında, 10°C'nin altında ve 40°C'nin üzerinde çok yüksek oranda ölümler görülür. Bu ölümlerin oranı türlere göre değişir. Örneğin, A. maculipennis larvaları kritik sıcaklık değeri olan1O°C'nin altındaki tüm sıcaklıklarda su yüzeyinde inaktif olarak kalır ve yüksek oranda ölürler. Buna karşılık, A. claviger larvaları 0 °C'de, hatta buzlu suda bile yavaş bir şekilde gelişmelerini devam ettirirler. Nem Nem, sıcaklık gibi sivrisineklerin yaşam uzunluğunu ve dağılımını etkiler. Trake sistemi ile solunum yapmalarından dolayı sivrisinekler, genel olarak çevre nemine karşı çok hassastırlar. Özellikle, ormanlık alanlarda yaşayan sivrisinek türleri, kuru iklim şartlarında yaşayanlara göre nem değişimlerine karşı daha hassastırlar. Kuru mevsimlerde, ev içi sinekleri uygun neme sahip iç alanlara hareket ederken, dış alan sivrisinekleri bitki kümelerinin yakınlarında bulunurlar. Bu durum, kuru mevsimlerde mücadele çalışmalarının ve mücadele alanının planlanması için önemlidir. Gündüz ve gece boyunca, sıcaklık ve nemin ritmi, bölgesel değişiklik gösterir. Özellikle, sivrisinek yayılımı ve uçuşu ile türlerin kışlama ya da yazlaması bu ritimler arasındaki değişikliğin boyutlarına bağlıdır. Yağış Sivrisinekler için yağışın etkisi iki yönlüdür. Sürekli tekrarlanan yağışlar türlerin yumurtlamasını ve larvaların gelişimini kötü yönde etkileyebilir. Çünkü bu tip yağışlar, bir yandan ergin ölümlerine sebep olurken, diğer yandan üreme habitatlarının sürekli olarak değişmesini sağlar. Buna karşılık, uzun süren güneşli günlerden sonra yağan yağmurlar, gerek ortamın kuru havasını yumuşattığı gerekse yeni üreme habitatları oluşturduğu için olumlu etki yapabilir. Işık Işık ritmi, sivrisinek populasyonlarının hareketlerini özellikle beslenme ve dinlenme faaliyetlerini kontrol eden önemli bir ekolojik faktördür. Birçok Anopheles türü alacakaranlıkta ya da gece beslenme faaliyetini sürdürür. Bazı türler gece ve gündüz, bazı türler ise güneş battıktan sonra ilk 30 dakika içinde faaliyetlerini artırır. Ülkemizin de içinde bulunduğu ılıman kuşakta, fotoperyod (ışık ritmi), özellikle Anopheles türlerinin kışlaması üzerine oldukça etkilidir. Örneğin, sonbaharın kısa günlerinin başladığı zaman diliminde A. maculipennis kışlama faaliyetine girer. Ergin sivrisineklerin habitatları, onların ideal koşullarda dinlenme alanları, konak ve üreme habitatları bulmasıyla belirlenir. Ergin habitatlarının belirlenmesinde, yukarıda belirttiğimiz tüm ekolojik faktörler etkilidir. Sivrisinek populasyonlarının habitatlarının farklı bölümleri içindeki hareketi, sıcaklık, nem, konağın çekiciliği ya da üreme alanının çekiciliği gibi faktörlerle denetlenir. Bu gibi faktörlerin etkisi, sivrisineklerin fizyolojik şartlarına bağlıdır. Üreme alanlarına uçuş, bir yandan sivrisinek dişisinin tam olarak yumurtlama durumuna gelmesi (gravid dişi) yoluyla, diğer yandan ise üreme habitatının bir takım ideal ekolojik şartları içeren üreme habitatının çekiciliğiyle sitümüle edilir. Buna karşılık, ideal olmayan sıcaklık ve nem ile konakçının olmayışı, özellikle hastalık taşıyan sivrisinek türleri için dinlenme alanı ve üreme habitatı değiştirmek için önemli nedenlerdir. Sivrisineklerin yayılımıda (dispersiyon) bir takım ekolojik faktörlere bağlıdır. Bu faktörlerin eşik düzeyleri türlere göre değişiklik göstermektedir. Genel olarak, sıtma parazitlerini taşıyan türler 1-3 km aktif uçuş yapabildikleri gibi, bazı türler çok uzun mesafeleri kat edebilirler. Ayrıca, uzakta bulunan ergin habitatlarının ya da köylerin daha çekici olması bazı türlerin bulundukları habitatları bırakıp 10 km ya da daha fazla uçarak o bölgelere gitmesini sağlayabilir. Bir ekolojik faktör olarak rüzgâr sivrisinek uçuşunu etkileyen önemli bir olgudur. Örneğin, bazı Anopheles türleri, özellikle ülkemizde bulunmayan A. pharoensis Mısır'da çölün oldukça sert koşullarını atlatabilmek için ideal şartları buluncaya kadar 56 km uçabilmiştir (Anonymous, 1975). Sivrisineklerin genel olarak birbirini izleyen ve yaşamları boyunca yaptıkları tek tip bir hareket şekli vardır. Ergin dişiler, üreme alanlarından dinlenme alanlarına, oradan konakçıya, sonra tekrar dinlenme alanlarına ve bir kez daha üreme alanlarına doğru hareket eder. Bu döngü ergin dişilerin tüm hayatları boyunca devam eder. Sivrisinek populasyonlarının bol olduğu bir bölgede, yerleşim yerleri arasındaki uzaklık, bu canlıların hareketi için uygunsa ve yerleşim merkezlerinin çevresinde zengin üreme kaynakları bulunuyorsa, sivrisinekler tüm alanı rahatlıkla enfekte edebilirler. Mücadele çalışmaları açısından, bu tip bölgelerin genel itibariyle mücadele programı ve kapsamı içine alınmasında yarar bulunmaktadır. Eğer üreme habitatı iki köy arasında bulunuyorsa, bu köylerden birisinde bulunan sivrisinekler yumurtlamak İçin habitata gider ve yumurtlama işleminden sonra diğer köye giderek enfeksiyon oluşturabilirler. Bu durumda, mücadele çalışmalarının her iki köyde de eş zamanlı yapılması gerekmektedir. Böyle bir durum, küçük alanlar haricinde, birbirine komşu ülkelerin sınır bölgelerinde oluşursa, bu defa enfeksiyon ülkeler arası boyutlara kadar ulaşabilir. Sıtmanın yayılması da, komşu ülkeler arasındaki koordinasyonsuzluk, sosyal farklılıklar ve mücadele programlarındaki düzensizlik nedeniyledir. Sivrisinek sucul evrelerinin dağılımı ve hayatta kalma sürelerini etkileyen diğer bir ekolojik ve biyolojik faktör ise, yaşadıkları su ortamında bulunan doğal düşmanlardır. Sivrisinekler için doğal düşmanları; omurgalı ve omurgasız predatörler, virüsler, bakteriler, protozoalar, helmintler ve mantarlar olarak sınıflandırabiliriz. Doğal düşmanlarla birlikte diğer faktörler, sivrisinek populasyonlarının mevsimsel dinamizminde önemli rol oynarlar. Örneğin, teorik olarak bir sivrisinek dişisi ortalama 200 yumurta bırakır (açılan yumurtalardan 100 tanesi dişidir). Bir sivrisinek populasyonunun bir yıl içinde dört döl verdiğini düşünecek olursak, dördüncü dölün sonunda populasyonda birey sayısı 100 milyona ulaşır. Oysa, pratikte, yukarıda belirttiğimiz faktörlerin ve doğal düşmanların kombinasyonuyla, yapılan mücadele çalışmaları populasyon büyüklüğünü belli bir düzeyde tutmayı sağlar. Doğal düşmanlar arasında en etkili olanı predatör balıklardır. Doğal düşmanların etkinlik derecesi, av ile avlanan arasındaki ilişkinin derecesine bağlıdır. Örneğin, Gambusia affinis adı verilen sivrisinek balıklarının yaşam alanı da genelde sivrisinek larvalarının yaşadığı habitatlardır. Bu nedenle, bu balık türünün etkinlik derecesi diğerlerine göre yüksektir. Predatör canlıların su içindeki yaşam yerleri de aktiviteleri açısından belirleyicidir. Eğer predatör suyun alt seviyelerinde yaşıyorsa, beslenmek ve solunum yapmak amacıyla genellikle suyun üst seviyesini, hatta su yüzeyini tercih eden sivrisineklere karşı etkili olamaz. Suyun hacminin ya da habitatın büyüklüğünün de predatör aktivitesi için önemi vardır. Küçük boyutlu su birikintileri yeme-yenilme ilişkisinin olasılığını artırır. Sivrisinek larvalarına karşı doğada bulunan çok sayıda düşman organizma bulunmaktadır. Aynı zamanda, özellikle bakteriler üzerinde yapılan çalışmalar sonucunda bu düşmanlar, biyoinsektisit olarak endüstri koşullarında da üretilmektedir. Bu bölümde, omurgalı predatörlerden bazı balık türleri üzerine kısa açıklamalarda bulunacağız. Özellikle, su dinamizminin hızlı olmadığı, küçük ve gölgelenmiş habitatlarda, sivrisinek larvaları üzerine predatör olan omurgalı balıklarıdır. Gambusia en etkili türlerin olduğu cinstir. Bu türler, suyun üst yüzeyinden beslenen iyi birer avcıdır. Bu balık türü, birçok ülkede, özellikle sıtma eradikasyon programlarında çoklukla kullanılmaktadır. Sivrisinek larva mücadelesinde kullanılan diğer türler şöyledir : Gambusia affinis Lebistes reticulatus Tilapia mosambica Tilapia maciochei Tilapia zilin Tilapia meianopleura Cyprinus carpio Carassius juratus Xiphophorus maculaius Nothobranchius guentheri Cynolebias bellotti Cynoiebias elongatus Aphanius dispar Anabas scandens Aplocheilus panchax Genç evrelerinde predatördür. Bu balık türleri içerisinde ülkemizde en yaygın olan ve en çok kullanılan tür Gambusia affinis'tir. Yapılan araştırmalar, sivrisinek balığının çok geniş bir adaptasyon yeteneğinin olduğunu, temiz sulardan kirli sulara kadar geniş bir habitat aralığında yaşayabildiğini, sıcaklık değişimlerine çok dayanıklı olduğunu ortaya çıkarmıştır. Ancak yine de, sivrisinek larva mücadelesi için belirli bir alanda bu balıkların etkili bir şekilde kullanılabilmesi için bazı faktörlerin ideal olması gerekmektedir: Etkili olabilmek için balıkların gereksinimleri • Habitat suyunun, yüzeyden beslenmeye elverişli, mümkünse küçük ve gölgelenmiş olması, • Balıkların su içerisinde rahat beslenebilecekleri bir ortamın olması, • Uygulanacak alana zedelenmeden taşınmalarının sağlanması: Bunun için uygulanacak en iyi yöntem, taşıma konteynerlerinin yarısına kadar su ile doldurulmasıdır. Ayrıca, suyun yüzey çalkantısının önlenmesi için, yüzeye yeterli miktarda tahta parçaları atılmalıdır. Eğer taşınacak mesafe uzaksa, balıkların oksijen ihtiyacı için su içine oksijen verilmeli (bir ya da iki adet şişirilmiş bisiklet lastiği su içine yerleştirilir ve hava sibopları bir miktar açılır) ve zaman zaman durularak konteyner kapağı açılmalıdır. • Konteynerlerin içindeki su mutlaka balıkların yaşadığı doğal habitat suyu olmalıdır, • Uygulanan yerlerde balık predatörlerinin olmamasına dikkat edilmelidir, • Balıkların bulundukları habitata zarar verilmesi önlenmelidir. Uygulanabilecek habitatlar • Sivrisinek balıklarının oldukça güçlü bir adaptasyon yeteneği bulunmaktadır. Bu yüzden, çok temiz sulardan kirlenmiş sulara kadar birçok habitatta kullanılabilir. Mücadele yapılacak alana dağıtılmadan önce, doğal koşullarda stok alanları kurulmalı ve bu alanlardaki su kalitesinin organik maddelerce zengin olmasına dikkat edilmelidir. • Sıtma mücadelesi için oluşturulmuş drenaj kanalları, • Pirinç tarlaları içinde vejetasyon açısından yoğun olmayan kanallar, • Kuyular, geleneksel su toplama kapları, havuzlar, • Göller ve göletler, • Yavaş akan akarsu ve pınarlar, • Foseptikler. Dikkat edilmesi gereken hususlar • Balıklar eğer olanak bulurlarsa içme suyu şebekesine karışabilmektedirler, • Eğer bulundukları ortamda doğal besin bulamazlarsa, yavrularını yiyebilirler, • Bazı türler bataklık ve tuzlu sulara adapte olamayabilirler, • Habitatlarda yoğun olarak bulunurlarsa etkili olabilirler, • Bazen çocuklar balıkları yakalamaya çalışabilir, • Bulundukları habitatların periyodik olarak kontrol edilmesi ve eğer balık miktarı azalmışsa stoktan eklenmesi gerekebilir, • Balıkların etkisi mevsime ve suyun kalitesine göre değişebilir, • Havuzlarda kullanılan balıklar, havuzların suyu değiştirilirken ölebilirler. Bunun için havuzların altında mutlaka 5-15 cm su kalması gerekmektedir. Aksi takdirde, kontrol çalışmalarındaki gecikme, bu tip havuzlardan tüm bölgenin sivrisineklerle enfekte olmasını sağlayacaktır. Balıkların kullanılması için uygulama basamakları • Sivrisinek üreme alanlarının haritalandırılma çalışmaları bitirilmelidir. Su özellikleri belirlenmeli ve sınıflandırılmalıdır. Larva yoğunluğu ve diğer doğal düşmanlar hakkında bilgi edinilmelidir, • Uygulanacak habitat için yeterli balık sayısı değerlendirilmelidir, • Balıkların mücadele alanına zamanında ve hızlı bir şekilde dağıtılması için stok alanlar kurulmalıdır, • Uygulayıcı personel ve yöre halkına eğitim verilmelidir, • Balıkların kalıcılığının sağlanması için gerekli önlemler alınmalıdır, • Mücadele alanına dağıtım yapılmadan önce, taşımada çıkacak aksaklıkları görmek ve bu aksaklıklara çözümler getirmek amacıyla taşıma egzersizleri yapılmalıdır. Bu egzersizler sonucun-da, eldeki taşıma olanaklarıyla kullanılacak alana getirilebilecek balık sayısı hesaplanmalıdır, • Taşıma amacıyla plastik, metal ya da tahtadan konteynerler oluşturulmalıdır. Taşınacak balıklar en az 3-4 saat öncesinden, habitat suyu ile birlikte bu kapların içlerine yerleştirilmeli ve adapte olmaları sağlanmalıdır. Su sıcaklığının 20-22 C olmasına dikkat edilmelidir. Çok sıcak günlerde suyun fazla ısınma tehlikesine karşılık, kaplar içerisine suyu ideal sıcaklıkta tutabilmek amacıyla torba içerisinde buz koyulabilir. Taşıma genel olarak, sabahın erken saatlerinde ya da akşam yapılmalıdır, • Genç balıklar yaşlı ve hamile dişilere göre çok daha fazla dayanıklıdır, • Taşıma sırasında suyun oksijenlendirilmesi asla unutulmamalıdır. Balıkların mücadele alanına dağıtımı • Zamanlama: En uygun mevsim ilkbaharın başlarıdır. Ancak, kışın da dağıtım yapılabilir. Gün içinde en uygun zaman sabahın erken saatleridir. • Her bir üreme habitatına uygulanacak sayı: Kısa zamanda etkinin görülmesi İçin 2-6 balık/m2 dozu uygulanmalıdır (kuyu, küçük su kapları vb habitatlarda 2 balık m2; pirinç tarlası, büyük havuz vb alanlarda 5-6 balık/m2 dozu kullanılmalıdır). • Geniş alanlarda uzun süreli etkinin görülebilmesi için hamile dişilerden seçilmiş 200-400 balığın hektara uygulanması gerekmektedir (200-400/ha). Bu populasyon 2-3 ay içerisinde tatminkâr bir sayıya yükselir. Doğal düşmanlarının yokluğunda, yıllar boyunca yüksek bir populasyon olarak kalabilir. • Herhangi bir etkiden dolayı uygulanan alanda balık populasyonu ortadan kalkarsa, etkinin nedeni bulunduktan sonra, aynı işlemlerin yeniden tekrarlanması gerekmektedir. • Balık uygulanmış alanlar sık sık kontrol edilmeli ve bir yandan balık populasyonunun durumu gözlenirken diğer yandan 1-2 haftada bir larva populasyonundaki düşüşler kontrol edilmelidir.

http://www.biyologlar.com/sitma-vektor-ekolojisi-ve-iliskili-faktorler

Mikroskop tipleri, patolojide kullanım alanları

Mikroskop tipleri, patolojide kullanım alanları

Mikroskop (16. yy) Lensler ve büyüteçler, Antik Yunan uygarlığında bile biliniyormuş. Ancak onlar bu lensleri yapmayı değil, sadece ortası kenarlarından daha geniş kristallerin etkilerini biliyormuş.

http://www.biyologlar.com/mikroskop-tipleri-patolojide-kullanim-alanlari

Bordetella pertussis ( Boğmaca etkeni)

Boğmaca, Bordetella pertussis‟in etken olduğu akut, bulaşıcı bir solunum sistemi enfeksiyonudur. Boğmaca ülkemizde bildirimi zorunlu hastalıklar arasında yer alır ve aşı ile önlenebilir bir hastalık olarak özel program yürütülmektedir (1,2,3,4).Tanı mikrobiyolojik incelemeye dayanır. Hem hasta yönetimi hem de süre giden bağışıklama programlarının etkinliğinin analizi bakımından vakalara kesin tanı konulabilmesi önem taşımaktadır. Kesin tanı Bordetella spp‟nin kültürden izole edilmesi ile konur. Ayrıca PCR, DFA ve serolojik yöntemlerden de yararlanılabilir. B. pertussis klasik mikrobiyoloji eğitiminin iyi bilinen mikroorganizmalarından biri olmasına rağmen ülkemizde az sayıda klinik laboratuvarın B. pertussis tanısı koyabiliyor olması dikkat çekicidir. 2012 yılında ülke genelinde laboratuvar kapasitesinin mevcut durumunun değerlendirildiği bir çalışmanın sonuçlarına göre, çalışmaya katılan 510 klinik mikrobiyoloji laboratuvarının sadece %2.1‟i boğmaca tanısı koyabilmektedir (5).Tanının sahada yaygın bir eğilimle klinikte karakteristik öykü ve fizik muayene bulgularına dayalı konuyor olması laboratuvar tanı kapasitesini sınırlayan faktörlerden biri gibi gözükmektedir. Çünkü çoğu laboratuvar boğmaca tanısı için gereken kaynağı (iş gücü, maddi vb.) yetersiz örnek akışı olasılığı yüzünden verimli kullanamayacağını varsayarak ayırmamaktadır.Ancak etkili bir eliminasyon ya da kontrol programı için laboratuvara dayalı tanı esastır. Program çerçevesinde, hekimlerin şüpheli vakaları laboratuvara yönlendirme konusunda giderek daha duyarlı hale gelecekleri düşünülürse, uygun bir laboratuvar tanı rehberinin el altında olması da ülke genelinde tanının yaygınlaşmasını teşvik edecek bir araç olarak önemli görünmektedir. Bu nedenlerle bu UMS belgesinde klinik laboratuvarlara, boğmacanın tanısında yöntemlerin seçimi, tanıdaki yerleri ve doğru uygulanmaları için bir Rehber sunulması hedeflenmiştir.Boğmaca, Bordetella pertussis‟in neden olduğu her yaş grubundaki duyarlı bireyleri etkileyebilen, özellikle bebeklik döneminde ağır seyreden, akut bulaşıcı bir solunum sistemi enfeksiyonudur (6). Dünyada her yıl 20 milyon boğmaca vakasının gözlendiği ve çoğu küçük çocuklar olmak üzere yaklaşık 200.000 ölüme neden olduğu bilinmektedir (7). Görülme sıklığı, aşı ve antibiyotik öncesi dönemlere göre azalmış olsa da boğmaca halen tüm dünyada endemik olarak gözlenmekte ve her 3-5 yılda bir epidemilere yol açmaktadır (6,8).Aşının koruyuculuğunun zamanla azalması nedeniyle ergenlik çağından itibaren erişkin popülasyondaki duyarlılığın arttığı, anneden bebeğe geçen koruyucu antikorların bebeği ilk aşı dozu uygulanana kadar yeterince koruyamayabileceği bilinmektedir. Duyarlı yaş gruplarındaki bu epidemiyolojik kaymanın yanı sıra son yıllarda hastalıkla ilgili farkındalığın artışı, tanıda gelişmiş tekniklerin uygulanması, suşların biyoevrimi ile yeni B. pertussis kökenlerinin ortaya çıkması, insidansdaki artışın önemli nedenleri arasında gösterilmektedir ( 8,9,10). Öte yandan boğmaca insidansının belirlenmesinde bazı güçlüklerle karşılaşılmaktadır. Bunlar; hastalığın farklı gruplarda farklı görülüşü (ergen/erişkinlerde asemptomatik veya ılımlı enfeksiyon gözlenirken yeni doğan ve bebeklerde yaşamı tehdit eden ciddi enfeksiyon oluşabilmesi), karma enfeksiyonlar nedeniyle yanlış tanı konması, hastalıktan şüphelenme indeksinin düşük oluşu ve bazı bölgelerde laboratuvar tanı kapasitesinin yetersizliğidir (11,12,13).Boğmaca bildirimi zorunlu bir hastalıktır (2,3). Sağlık Bakanlığı, Genişletilmiş Bağışıklama Programı kapsamında boğmaca hastalığının kontrolüne yönelik çalışmalar yürütmektedir (4). Öte yandan, ülkemizde oldukça az sayıda laboratuvar boğmaca kültürü yapma yeteneğine sahiptir. Çünkü uzun bir dönem boyunca boğmaca tanısında klinik bulgular yeterli kabul edilmiş, laboratuvara başvurulmamıştır. B.pertussis için tanı kapasitesi de bu durumdan olumsuz yönde etkilenmiştir. Son yıllarda yenilenen bulaşıcı hastalıklar bildirim sistemi bulaşıcı hastalıkların tanısında laboratuvarlara önemli bir rol vermektedir. Zira, aşılama etkinliğini, yüksek riskli bölgeleri ve salgınları öngörmek ancak iyi işleyen bir laboratuvara dayalı sürveyanstan elde edilen veriler ile mümkündür.Boğmacanın etkeni olan B. pertussis, yalnızca insanlar için patojenik olan, küçük, aerobik, zor üreyen, hareketsiz, gram negatif kokobasil yapısında bir bakteridir. B. pertussis, izolasyonu için özel besiyerlerine ihtiyaç duyar, karbonhidratları fermente etmez, aminoasitleri okside eder. Bakterinin en önemli virulans faktörleri arasında adhezinleri ve toksinleri yer alır. Adhezin olarak filamentöz hemaglütinin (FHA), Fim 2, Fim 3, pertaktin ve trakeal kolonizasyon faktörü; toksin olarak da pertussis toksin (PT), adenilat siklaz hemolizini ve sitotrakeal toksin son derece önemlidir. Bunlar; başlıca klinik belirti ve bulgular ile immün yanıttan sorumludurlar (6,14,15,16).Boğmaca hastalığının rutin laboratuvar bulguları özgül olmasa da bazı özellikler gösterir. Geç kataral ve erken paroksismal dönemlerde hematolojik bulgular tipik olabilir. Mutlak lenfositozun gözlendiği bu tabloda toplam beyaz küre sayısı 100.000/mm3‟e ulaşabilir. Öksürük şiddeti ile beyaz küre sayısı paralellik arz eder. Periferik yaymada lenfositler normal büyüklüktedirler ve bu özellikleri ile büyük atipik lenfositlerin gözlendiği viral enfeksiyonlardan ayırt edilirler. Hastalık süresince hiperinsülinemi ve epinefrine azalmış bir glisemik cevap vardır. Bu bulgular klinik belirtilerle beraber boğmacayı güçlü bir şekilde düşündürse de boğmacanın kesin tanısı mikrobiyolojik inceleme ile konabilir.Kaynaklar1 Boğmaca Saha Rehberi. Sağlık Bakanlığı, Ankara-2003.2 Bulaşıcı Hastalıkların İhbarı ve Bildirim Sistemi, Standart Tanı, Sürveyans ve Laboratuvar Rehberi, Sağlık Bakanlığı Ankara. 2004.http://www.shsm.gov.tr/public/documents/legislation/bhkp/asi/bhibs/BulHastBilSistStanSurveLabReh.pdf (erişim tarihi: 06.01.2014).3 Bulaşıcı Hastalıklar Sürveyans ve Kontrol Esasları Yönetmeliğinde Değişiklik Yapılmasına Dair Yönetmelik. Resmi Gazete; 02.04.2011 – 27893. http://www.resmigazete.gov.tr/eskiler/2011/04/20110402-3.htm (son erişim tarihi: 06.01.2014).4 Genişletilmiş Bağışıklama Programı Genelgesi. http://www.saglik.gov.tr/TR/belge/1-8187/genisletilmis-bagisiklama-programi-genelgesi-2009.html (son erişim tarihi 06.01.2014).5 T.C. Sağlık Bakanlığı (Bulaşıcı Hastalıkların Sürveyansı ve Kontrolü Projesi TR0802.16-01 Avrupa Birliği ve Dünya Bankası desteği ile) (Akbaş E, Pr Danışmanı). Türkiye‟de Bulaşıcı Hastalıkların Tanısında Mikrobiyoloji Laboratuvar Kapasitesi Mevcut Durum Değerlendirmesi: Anket - LabKap2012. XXXV. Türk Mikrobiyoloji Kongresi, Kuşadası, 4 Kasım 2012.6 Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005;18:326–382.7 Pertussis vaccines: WHO position paper. Weekly Epidemiological Record 2010;85:385–400. http://www.who.int/wer/2010/wer8540.pdf8 Cherry JD. Epidemic Pertussis in 2012-Resurgence of a Vaccine-Preventable Disease. New England J Medicine 2012;30:785-787.9 EUVAC-NET Report of the 7th Annual Meeting. 25-26 January 2010. Athens, Greece.10 Cherry JD. The present and future control of pertussis. Clin Infect Dis 2010;51:663-667.11 Cherry JD. Pertussis: Challenges today and for the future. PLOS Pathogens 2013;9(7):1-3.12 Carlsson RM et al. Control of pertussis-lessons learnt from a 10-year surveillance programme in Sweden. Vaccine 2009;(27):5709-5718.13 Bamberger ES, Srugo I. What is new in pertussis? Eur J Pediatr 2008;167:133-139.14 WHO. Laboratory manual for the diagnosis of whooping cough caused by Bordetella pertussis/ Bordetella parapertussis. Immunisation, Vaccine and Biologicals. WHO/IVB/ 04.14, 2004.15 Wirsing von König CH, Riffelmann M, Coenye T. Bordetella and related genera. In: Versalovic J (ed. in chief). Manual of Clinical Microbiology. 10th ed., ASM Press, Washington D.C. 2011, p.739-750.16 CDC. Pertussis. Epidemiology and Prevention of Vaccine-Preventable Diseases. The Pink Book: Course Textbook - 12th Edition Second Printing, 2012. http://www.cdc.gov/vaccines/pubs/pinkbook/pert.html (son erişim tarihi: 06.01.2014)

http://www.biyologlar.com/bordetella-pertussis-bogmaca-etkeni

Çevre Görevlisi Sınavında Çıkacak Temel Çevre Konularının Başlıkları

1.Çevre Kirlenmesi ve Kontrolü 2.Su ve Atıksu Numune Alma Esasları 3.Su Arıtımı 4.Atıksu Arıtımı 5.Su ve Atıksı Arıtımında İleri Arıtma Teknolojileri-Arıtılmış Atıksuların Geri Kullanımı 6.Endüstriyel Atıksı Yönetimi ve Endüstriyel Atıksu Arıtımı 7.İçme Sularının Özellikleri,Kalite Parametreleri ve Kirleticilerin Sağlık Etkileri 8.Evsel Katı Atık Yönetimi 9.Endüstriyel Atık Yönetimi 10.Atık Yönetiminde Biyolojik Prosesler,Organik Atıkların Kompostlaştırma ile Geri Dönüşümü,Düzenli Depolama 11.Tehlikeli Atık Yönetimi 12.Arıtma Çamurlarının Genel Özellikleri 13.Arıtma Çamurlarının Stabilizasyonu 14.Arıtma Çamurlarının Yoğunlaştırılması ve Susuzlaştırılması İşlemleri 15.Hava Kirlenmesi ve Kontrolü 16.Gürültü ve Yönetimi 17.Toprak Kirlenmesi 18.Çevresel Risk Yönetimi 19.Çevre Mühendisleri İçin Temel İstatistik Çevre Görevlisi Sınavında Çıkacak Çevre Mevzuatlar 1)Çevre Görevlisi ve Çevre Danışmanlık Firmaları Hakkında Yönetmelik 2) Atıkların Yakılmasına İlişkin Yönetmelik 3) Ambalaj Atıklarının Kontrolü Yönetmeliği 4) Çevre Kanunu 5) Tehlikeli Atık Taşımacılığı, Tehlikeli Atık İthalatı ve İhracatı 6) Tehlikeli Atık Beyan Sistemi 7) Atık Yağların Kontrolü Yönetmeliği 8) Atık Yağların Ek Yakıt Olarak Kullanılması 9) Tıbbi Atıkların Kontrolü Yönetmeliği 10) Atık Yönetimi Genel Esaslarına İlişkin Yönetmelik 11) Tehlikeli Atıkların Kontrolü Yönetmeliği 12) Tanker Temizleme Tesisleri Tebliği 13) Katı Atıkların Kontrolü Yönetmeliği 14) Bitkisel Atık Yağların Kontrolü Yönetmeliği 15) Atık Pil ve Akümülatörlerin Kontrolü Yönetmeliği 16) Atık Yönetim Planlarının Hazırlanması 17) Elektrikli ve Elektronik Eşyalarda Bazı Zararlı Maddelerin Kullanımının Sınırlandırılmasına Dair Yönetmelik 18) Ömrünü Tamamlamış Lastiklerin Kontrolü Yönetmeliği 19) Poliklorlu Bifenillerin ve Poliklorlu Terfenillerin Kontrolü Hakkında Yönetmelik 20) Ömrünü Tamamlamış Araçların Kontrolü Yönetmeliği 21) Atık Su deşarj İdari Usuller Tebliği 22) Su Çerçeve Direktifi 23) Su Kirliliği Kontrolü Yönetmeliği 24) Atıksu Arıtma Tesisleri Projelendirme Esasları 25) Atıksu Arıtma Tesisi Proje Onayı Genelgesi 26) Numune Alma İlkeleri, Saklama ve Taşıma Koşulları, Arazide Ölçülecek Parametreler 27) Su Kirliliği Kontrolü Yönetmeliği Atıksu Arıtma Tesisleri Teknik Usuller Tebliği 28) Tehlikeli Maddeler ve Müstahzarlara İlişkin Güvenlik Bilgi Formlarının Hazırlanması ve Dağıtılması Hakkında Yönetmelik 29) Toprak Kirliliğinin Kontrolü Yönetmeliği 30) Bazı Tehlikeli Maddelerin, Müstahzarların, Eşyaların Üretimine, Piyasaya Arzına ve Kullanımına İlişkin Kısıtlamalar Hakkında Yönetmelik 31) Kentsel Atıksu Arıtımı Yönetmeliği 32) Kimysalların Envanteri ve Kontrolü Hakkında Yönetmelik 33) Kum, Çakıl ve Benzeri Maddelerin Alınması, İşletilmesi ve Kontrolü Yönetmeliği 34) Madencilik Faaliyetleri ile Bozulan Arazilerin Doğaya Yeniden Kazandırılması Yönetmeliği 35) Tehlikeli Maddelerin Su ve Çevresinde Neden Olduğu Kirliliğin Kontrolü Yönetmeliği 36) Endüstriyel ve Kimyasal Kazalar 37) Seveso E-Bildirim Sistemi 38) Tehlikeli Maddelerin ve Müstahzarların Sınıflandırılması, Ambalajlanması ve Etiketlenmesi Hakkında Yönetmelik 39) Derin Deniz Deşarj Uygulama ve Genelgeleri 40) Gemi Atıkları Yönetimi 41) Çevre İzni, Çevre İzin ve Lisansı 42) Sanayi Kaynaklı Hava Kirliliği Kontrolü Yönetmeliği 43) Çevresel Gürültünün Değerlendirilmesi ve Yönetimi Yönetmeliği 44) Çevresel Etki Değerlendirme Yönetmeliği 45) Çevre Etki Değerlendirme Firmaları İçin Yeterlilik Belgesi Tebliği 46) Çevre Kanununun 29 Uncu Maddesi Uyarınca Atıksu Arıtma Tesislerinin Teşvik Tedbirlerinden Faydalanmasında Uyulacak Usul Ve Esaslara Dair Yönetmelik 47) Hava Kirliliğinin Kontrolü ve Önlenmesi Genelgesi 48) Atıksu Altyapı ve Evsel Katı Atık Bertaraf Tesisleri Tarifelerinin Belirlenmesinde Uyulacak Usul ve Esaslara İlişkin Yönetmelik 49) İnert Maden Atıklarına İlişkin Genelge 50) Kokuya Sebep Olan Emisyonların Kontrolü Yönetmeliği 51) İyonlaştırıcı Olmayan Radyasyonun Olumsuz Etkilerinden Çevre ve Halkın Sağlığının Korunmasına Yönelik Alınması Gereken Tedbirlere İlişkin Yönetmelik 52) Büyük Endüstriyel Kazaların Kontrolü Hakkında Yönetmelik 53) Evsel ve Kentsel Arıtma Çamurlarının Toprakta Kul. Dair Yönetmelik 54) Toprak Kirliliğinin Kontrolü ve Noktasal Kaynaklı Kirlenmiş Sahalara Dair Yönetmelik Yayımlandı 55) Eğlence Yerlerinden Kaynaklanan Çevresel Gürültünün Kontrolü Konulu ve 2010/10 sayılı Genelge 56) Büyük Yakma Tesisleri Yönetmeliği 57) Çevresel Gürültünün Değerlendirilmesi ve Yönetimi Yönetmeliği 58) Tehlikesiz ve İnert Atıkların Geri Kazanımı Tebliği Hazırlayan: Yalçın Dedeoğlu

http://www.biyologlar.com/cevre-gorevlisi-sinavinda-cikacak-temel-cevre-konularinin-basliklari

Kentsel atıksu arıtımı

1. Az hassas su alanı nedir* Su değişiminin çok olduğu ötrofikasyon riski ve oksijen tüketiminin az olduğu alanlara denir. Morfoloji hidroloji yada özel hidrolik şartlara göre atıksu deşarjının etkilemediği deniz, haliç, lagün gibi doğal su ortamlarıdır. 2. Hassas su alanı nedir? Ötrofik olan ya da olabilecek doğal tatlı su gölleri diğer tatlı su kaynakları, haliç ve kyı suları önlem alınmaması halinde yüksek nitrat konsantrasyonları içerebilecek içme suyu temini amaçlanan yüzeysel tatlı sular ve daha ileri arıtma gerektiren alanlardır. 3. Kentsel atıksu kaynakları nelerdir? a. Evsel atık sular, b. Okul, hastane gibi hizmet sektörünün suları c. gıda sektörünün suları d. yağmur suları 4. Atıksu toplama alanı nedir a. Atık su toplama alanı: Kentsel atıksuların toplanması ve bir atıksu arıtma tesisine veya nihai bir deşarj noktasına iletilmesi için, nüfusun ve/veya ekonomik faaliyetlerin yeterli derecede yoğunlaştığı alanı ifade eder. 5. Eşdeğer nüfus nedir? a. Eşdeğer nüfus (E.N.): Ham atıksuyun günlük BOİ5 miktarı 45 gr (gr/kişi/gün) esas alınarak endüstriyel atıksu için dikkate alınan biyokimyasal olarak oksitlenebilen organik madde yükünü ifade eder. 6. Birincil arıtma nedir? a. Arıtma tesisine giren atıksuyun BOİ5’inin en az %20 ve askıda katı maddelerin en az %50 oranında gideriminin sağlandığı fiziksel/mekanik ve/veya kimyasal işlem/işlemler ya da diğer işlemlerle arıtılmasını ifade eder 7. Not: Hassas alanlarda ileri arıtma (üçüncül arıtma) ile sadece azot ve fosfor giderimi yapılır. Az hassas alanlarda birincil arıtma, normal alanlarda ikincil arıtma kullanılması esastır. 8. Not: Gıda sanayisinde atıksu miktarı 4000 eş değer nüfustan büyük ise atık su arıtma tesisi uygulanmalıdır. (4000e kadar doğrudan kanalizasyona verebilir.) 9. Hassas su alanlarının belirlenmesinde esaslar: sunum slayt 22/52 bilinmesi gerekiyor. 10. Bir alan, hassas alan olarak belirlendiğinde bir daha değiştirilemiyor. 11. Kentsel atıksu arıtımı yönetmeliği, hassas ve az hassas su alanları tebliği: Gri alanlar hassas olabilecek alanları ifade eder. 12. Kıyı ve haliç sularında hassas ve az hassas su alanları ve belirlenmesi kriterleri: bilinmesi gerekiyor.

http://www.biyologlar.com/kentsel-atiksu-aritimi

ARITMA ÇAMURLARI SORULAR

1. Çamurda katı madde miktarı nasıl hesaplanır? 2. Uçucu askıda katı madde miktarı(VSS) ile çamur bileşimindeki hangi maddeler tayin edilir? 3. Aşağıda hacim indeksleri(SVI) verilmiş olan çamurlardan hangisi önce çöker? a) 450 b) 100 c) 78 d) 200 4. Aşağıdakilerden hangisi çamur yapısındaki suyun bulunma şekillerinden biri değildir? a) Flok suyu b) Serbest su c) Kapiler su d) Javel suyu 5. Viskozite çamurun hangi özelliğini hakkında bilgi verir? a) Akışkanlık b) Yoğunluk c) Nem içeriği d) Çökelme 6. Aşağıdakilerden hangisi arıtma çamurunun gübre olarak kullanılabilmesi için önemli olan parametrelerdendir? a) Fosfor miktarı b) Azot miktarı c) Potasyum Miktarı d) Hepsi 7. Zeta potansiyeli çamurun hangi özelliğini ifade eder? a) Yoğunluk b) Floklaşma c) Nem içeriği d) Akışkanlık 8. İlgili Yönetmelikte dikkate alındığında çamurun deponilerde(düzenli depolama alanı) depolanması için su içeriği en fazla kaç olmalıdır? a) %50 b) % 55 c) % 65 d) %75 9. Aşağıdakilerden hangisi arıtma tesislerinde çamur işleme ve bertaraf etme sistemlerinin kurulum amaçlarındandır? a) Organik maddenin stabilizasyonu ve koku kontrolü b) Hacim ve ağırlık azaltımı c) Patojen mikroorganizmaların yok edilmesi d) Hepsi 10. Aşağıdakilerden hangisi çamur stabilizasyon işleminin amaçlarından değildir? a) Patojenleri gidermek b) Koku gidermek c) Potansiyel bozunmayı azaltmak d) Çamur nem içeriğini artırmak 11. Aşağıdakilerden hangisi çamur stabilizasyonu için kullanılan yöntemlerdendir? a) Kimyasal yöntemler b) Biyolojik yöntemler c) Termal yöntemler d) Hepsi 12. Kireçle çamur stabilizasyonunun avantajlarındandır? a)Bakım problemleri azdır b) Son işlemden geçirilmiş çamurun suyunu almaya gerek yoktur c) Suyu alınmış çamura su ilavesine gerek yoktur d) Hepsi 13. Kireç çamuru ile stabilizasyon işleminde olması gereken PH değeri nedir? a) 9,5 b) 10 c) 11 d) 12 14. Aşağıdakilerden hangisi arıtma çamurlarının stabilizasyonunda aerobik çürümenin anaerobik çürümeye göre avantajlarından değildir? a) Açığa çıkan metan gazı değerlendirilir b)Kolayca bertaraf edilebilen stabil bir ürün elde edilir c) Çamurun gübreleme değeri yüksektir d) Yatırım maliyetleri düşüktür 15. Aşağıdakilerden hangisi arıtma çamurlarının stabilizasyonunda uygulanan aerobik çürütmenin anaerobik çürütmeye göre dezavantajlarındandır? a) Metan gazı elde edilemez b) Oluşan çamurun su alma karakteristikleri iyidir c) İşletme problemleri azdır d) Kötü kokulu olmayan ürün elde edilir 16. Tasarım aşamasında arıtma çamurlarının stabilizasyonu için kullanılan anaerobik çürütücü hacminin belirlenmesinde kullanılan yöntemler nelerdir? a) Ortalama çamur yaşı b) Hacimsel yük faktörleri c) Hacim azalmasının gözlenmesi d) Nüfusa dayalı yük faktörleri e)Hepsi 17. Çamur stabilizasyonunda kullanılan standart hızlı anaerobik çürütücünün(30-60 gün bekleme süresi) besleme çamurundaki tavsiye edilen uçucu katı madde kg/m3.gün değeri nedir? a) 0,5-1,6 b) 1,6-4,8 18. Çamur stabilizasyonunda kullanılan yüksek hızlı anaerobik çürütücünün(10-20 gün bekleme süresi) besleme çamurundaki tavsiye edilen uçucu katı madde kg/m3.gün değeri nedir? a)0,5-1,6 b) 1,6-4,8 19. Hangisi Anaerobik çürütücülerin karıştırılmasında kullanılan yöntemler hangileridir? a) Gaz Enjeksiyonu b) Mekanik karıştırma c)Pompalama ile sirkülasyon d) Hepsi 20. Anaerobik çürütücülerden çıkan enerji değeri olan en önemli gaz hangisidir? a) Metan b) Oksijen c) Karbondioksit d) Azot 21. Atık çamuru yoğunlaştırıcı tasarımında en önemli kriter nedir? a) Çamur kuru madde konsantrasyonu b) Çamurun kimyasal yapısı c)Çamurun biyolojik yapısı d) Pompalanabilme 22. Özgül ağırlığı d=1 den küçük çamurların yoğunlaştırma işleminde uygulanacak en uygun yöntem hangisidir? a) Flotasyon yoğunlaştırma b) Graviteli yoğunlaştırma c)Santrifüj yoğunlaştırma d)Hiçbiri 23. Aşağıdakilerden hangisi Flotasyon yoğunlaştırıcı tasarımı sırasında dikkate alınması gereken parametrelerdendir? a) Yüzeysel yükleme b) Bekleme zamanı c) Katı madde yükü d) Hepsi 24. Aşağıdakilerden hangisi çamur suyunu almak için kullanılan yöntemlerdendir? a) Çamur kurutma yatakları b) Santrifüjler c) Bantlı pres filtreler d) Hepsi 25. Aşağıdakilerden hangisi çamur suyu almak için kullanılan plakalı pres filtreler için yanlış bir özelliktir? a) İşletme maliyeti düşüktür b) Yüksek katı madde tutulur c) Filtrelenen çamur suyu berraktır d) Hiçbiri 26. Aşağıdakilerden hangisi çamurdan mekanik su alma yöntemlerinden değildir? a) Vakum filtrasyon b) Plakalı pres filtreler c) Bantlı pres filtreler d) Kurutma yatakları

http://www.biyologlar.com/aritma-camurlari-sorular

Üreme Sağlığı ve İnfertilite

İlk Randevu Sağlıklı çiftlerin her ay gebe kalabilme şansı %20�dir. Çiftlerin yarısından çoğu 6 ay içinde gebelik elde eder. Eğer herhangi bir doğum kontrol yöntemi uygulamadan 12 aydır düzenli cinsel ilişkide bulunmanıza rağmen gebelik elde edemiyorsanız doktora başvurmanız gerekir. İnfertiliteye neden olan problem kadın eşte, erkek eşte veya her iki eşte birden olabileceği için doktora mutlaka çiftlerin beraber başvurmaları gerekir. Eğer çiftler herhangi bir problemden şüpheleniyorsa bu kadar uzun süre beklenmemelidir. Kadın eşin menstrual siklusları çok düzensizse veya menstrual kanama olmuyorsa, enfeksiyon öyküsü veya menstrual kanama ve cinsel ilişki sırasında şiddetli ağrı yakınması varsa, erkek eşte ise inmemiş testis, testislerde geçirilmiş operasyon veya yaralanma öyküsü olduğunda çiftin doktora hemen başvurması gerekir. Doktora hemen başvurması gereken diğer grup ise kadın eşin 35 yaşın üzerinde olduğu çiftlerdir. Gebe kalabilme şansı ilerleyen yaşla beraber azaldığı için bu çiftler vakit kaybetmeden tedavi edilmelidir. Kadın eşe yöneltilecek sorular; Yaşı, ne kadar zamandır çocuk istendiği, önceden bir gebeliğin olup olmadığı, menstrual siklusların düzeni, kanama miktarı, süresi, ağrı ve diğer yakınmaların olup olmadığıdır. Bunun yanında vajinal akıntı, cinsel ilişki sırasında ağrı, geçirilmiş enfeksiyonlar ve operasyonlar hakkında da bilgi istenir. Erkek eşe yöneltilecek sorular; Genel sağlık durumu, geçirilmiş önemli hastalık ve operasyonlar, kabakulak enfeksiyonu geçirdiyse hangi yaşta geçirdiği, inmemiş testis veya testislere travma öyküsünün olup olmadığı, erken boşalma ve impotans (iktidarsızlık) gibi cinsel fonksiyon bozukluklarının varlığına ilişkin sorulardır. Muayene Fizik muayene infertilite araştırmalarının en önemli basamaklarından biridir. Kadın eşin jinekolojik muayenesi ve ultrasonografik incelemesinin yapılması, rahim ağzından örnek alınarak patolojik inceleme yapılması ve mikrobiyolojik araştırmalar için örnek alınması gerekir. Erkek eşin ise testisleri muayene edilerek gerektiğinde ultrasonografik inceleme yapılır. Ovulasyonun (Yumurtlamanın) Belirlenmesi Düzenli mestrual siklusları ve kanamaları olan kadınların bir çoğunda ovulasyon gerçekleşir. Ovulasyon döneminde artan östrojen hormonuna bağlı hafif bir ağrı hissedilebilir. Ovulasyonun belirlenmesi için bazal vücut ısı çizelgesinin tutulması, ultrasonografik incelemeler, endometrial biyopsi (rahmin iç tabakasından parça alınması) ve kanda progesteron hormon düzeyinin ölçülmesi kullanılan yöntemlerdir. Bazal vücut ısısı çizelgesi Bazal vücut ısısı sabah uykudan uyanıldığında ölçülen vücut ısısıdır. Menstrual kanamanın başladığı günden itibaren sabahları vücut ısınızı ölçerek bu çizelgeyi hazırlayabilirsiniz. Isı dil altından termometre aracılığı ile ölçülerek not edilmelidir. Yemek yemek, bir şeyler içmek veya ağzı çalkalamak ısıyı değiştirir. Size hekiminizin vereceği tablolara bir sonraki menstrual kanamanın başlangıcına dek her sabah vücut ısınızı kaydetmeniz gerekir. Bu tabloyu hazırladığınızda menstrual siklusun ikinci yarısında vücut ısınızın 0,5-1o C daha yüksek olduğunu görürsünüz. Vücut ısısı ovulasyon gerçekleştikten sonra progesteron hormonunun etkisi ile yükselir ve gebelik gerçekleşirse yüksek olarak devam eder. Ovulasyonun olmadığı vakalarda vücut ısısında pek değişiklik olmaz. Bu yöntem ovulasyonun olup olmadığının tespit edilmesi için kullanılan çok kaba bir yöntemdir. Bazı kadınlarda ovulasyon olduğu halde vücut ısısında artış olmayabilir. Bu tablolara göre cinsel ilişkinin zamanını belirlemek bazen yanıltıcı olabilir.Günümüzde ovulasyonun belirlenmesinde daha hassas yöntemler kullanılmaktadır. Ultrasonografik İnceleme Ultrasonografik incelemeler ile ses dalgaları kullanılarak iç organlar detaylı olarak izlenir. Hasta radyasyona maruz kalmadığı için güvenilir bir inceleme yöntemidir. Abdominal (karından) veya vajinal ultrasonografi yapılabilir. Abdominal ultrasonagrafik incelemeler (karından yapılacak incelemeler) için hastanın mesanesinin dolu olması gerekir. Dolu mesane bağırsakları iterek üreme organlarının görülmesini kolaylaştırır. Vajinal ultrasonografik incelemeler için mesanenin dolu olması gerekmez. Üreme organları vajinal ultrasonografi ile daha iyi incelenebilir. Ultrasonografik inceleme ile ovulasyonun belirlenmesi; Menstrual siklusun 3. veya 4. günü ilk inceleme yapılır ve yumurtalıklarda kist varsa bu inceleme sırasında belirlenir. Hasta herhangi bir ilaç kullanmıyorsa menstrual siklusun 8. ve 10. günleri arasında inceleme tekrarlanır. Bu günden sonra ovulasyon gerçekleşene kadar inceleme her gün tekrarlanır. Büyüyen folikülün çapı 18-26 mm arasında iken ovulasyon gerçekleşir. Rahim içinde endometrium adı verilen tabaka kalınlaşarak döllenen yumurtanın tutunabilmesi için hazırlanır. Çocuk sahibi olmayan kadınlarda infertilite nedeninin araştırılmasında ultrasonografik inceleme çok önemlidir. Rahim ve yumurtalıklar değerlendirilerek infertilitenin nedenleri hakkında fikir sahibi olunabilir. Hormonal eksikliği olan veya erken menopoza girmiş kadınlarda yumurtalıklar küçük, rahim ufak ve rahmin iç tabakası incedir. Polikistik over sendromu vakalarında ise yumurtalık normalden büyüktür ve birçok kist içerir. Bu vakalarda rahim büyümüş ve endometrium kalınlaşmıştır. Post Koital Test Rahim ağzındaki bezlerden salgıladığı sıvıya servikal mukus denir. Bu sıvının yoğunluğu menstrual siklus süresince değişir. Menstrual siklusun büyük kısmında bu sıvı çok yoğundur ve bakterilerin rahme girmelerini engelleyen bir tıkaç oluşturur. Ovulasyondan 5 gün önce mukus miktarı artar ve yoğunluğu azalarak sıvılaşır. Ovulasyondan 24 saat sonra mukusun kıvamı yine koyulaşır. Postkoital test cinsel ilişkiden 6-12 saat sonra rahim ağzındaki mukustan örnek alınarak yapılır. Bu örnek mikroskop ile incelenerek örnekteki sperm sayısı ve canlılığı belirlenir. HSG (Rahim Filmi) Histerosalpingografi olarak adlandırılan radyolojik incelemede rahim ağzından içeriye verilen boyanın Fallop tüplerinden (yumurtalık kanallarından) geçişi izlenir. Bu sırada çekilen röntgen filmleri incelenerek Fallop tüplerinin durumu hakkında bilgi sahibi olunur. Tüplerde tıkanıklık varsa boya tüplerden geçmez. Bu inceleme sırasında hastaya verilen radyasyon miktarı çok az ve zararsızdır. Hastaların bir kısmı hafif bir ağrı hissedebilir, bu işlem sırasında anestezi verilmesine gerek yoktur. HSG incelemesi ile rahim içi de değerlendirilir. İnfertilite nedeninin araştırılmasında HSG ve laparoskopi birbirini tamamlar. Histeroskopi Histeroskopi rahim içinin değerlendirilmesinde kullanılan en modern teşhis ve tedavi yöntemidir. İnce fiberoptik bir teleskop ile vajinal yoldan rahim içerisine girilerek tüm anormallikler teşhis edilir ve aynı seansta bu anormallikler cerrahi olarak giderilebilir. Bu işlem de laparoskopi gibi kansız ve bıçaksız bir ameliyat türüdür. Hastalar bu işlemi çok rahat tolere eder. İşlem çoğu zaman lokal bazen de genel anestezi altında yapılır. Histeroskopi ile rahim içi polipler (aşırı büyüme gösteren et parçaları), septum (rahmi bölen perde) ve myomlar giderilebilir. Böylelikle hasta bunların neden olabileceği infertilite, ağrı ve düzensiz kanamalardan kurtulur. İşlemden bir iki gün sonra hasta her zamanki aktivitesini yapmaya başlayabilir. Laparoskopi Laparoskopi üreme organlarının detaylı olarak incelenebilmesini sağlayan cerrahi bir yöntemdir. Laparoskopik inceleme çocuğu olmayan çiftlerin değerlendirilmesinde en önemli basamaklardan biridir. Genel anestezi altında gerçekleştirilen bu işlem yaklaşık yarım saat sürer ve hasta aynı gün içinde taburcu edilebilir. Menstrual siklusun ikinci yarısında laparoskopi işlemi uygulandığında hastanın gebe olma olasılığı vardır. Genellikle laparoskopi yapılması gebeliğe zarar vermez fakat emin olabilmek için laparoskopinin uygulanacağı ay çiftin korunması önerilir. Laparoskopi ile endometriozis (karın içine kanama yapan bir hastalık), rahim tümörleri, yumurtalık kistleri, dış gebelik ve yapışıklıklar gibi birçok kadın hastalığı teşhis edilebilir. Göbeğin hemen altından karın içine yönlendirilen teleskop benzeri optik bir cihaz ile karın içindeki organlar birkaç kez büyütülmüş olarak izlenir. Cerrah rahmi, Fallop tüplerini (yumurtalık kanallarını), yumurtalıkları ve karın zarlarını ayrıntılı olarak inceler. Laparoskopi karın içindeki üreme organlarının değerlendirilmesi yanında hastalıkların giderilmesi için de kullanılabilir. Laparoskopi sırasında üreme organlarında bir anormallik saptanırsa laparoskopik olarak (kansız bıçaksız ameliyat ile) giderilir. Böylelikle hasta daha az ameliyat stresine maruz kalır ve ameliyat sonrası iyileşme hızlı olur. Laparoskopi işleminde göbek altından girilerek ince fiberoptik bir teleskop ile tüm karın içi organlar görüntülenir ve ikinci bir küçük delik aracılığı ile organlara ulaşılarak gerekli işlemler yapılır. Karın içi organlar incelendikten sonra rahim içerisine verilen özel bir ilaç ile üreme kanallarının açık olup olmadığı kontrol edilir. Kanallarda tespit edilen yapışıklık ve tıkanıklıklar giderilir. Yapışıklıklar rahim, yumurtalıklar, yumurtalık kanalları, bağırsaklar ve karın zarları arasında olabilir. Bu organların birbirine yapışması organların sağlıklı hareket etmelerini engelleyerek fonksiyonlarını kısıtlar. Karın içine kanamalar yapan endometriozis odakları, yaralar ve dış gebelik de laparoskopik cerrahi ile tedavi edilebilir. Laparoskopik olarak kapalı olan kanalların açılması da mümkündür. Ayrıca infertiliteye neden olan yumurtalık kistleri ve myomlar da laporoskopik olarak giderilebilir. Bu cerrahi işlemler sırasında lazer, elektrokoter ve dikişler kullanılır. Bazı cerrahi laparoskopik girişimlerinden birkaç hafta veya birkaç ay sonra sonucu değerlendirmek için ikici bir laparoskopi yapılabilir. Böylelikle cerrah hastalığın tekrar edip etmediğini belirleyebilir. Sperm Analizi İnfertilite vakalarının üçte biri erkek faktörüne bağlı olduğu için çocuğu olmayan çiftlerin incelenmesinde sperm analizi ilk basamaklardan biridir. 2-5 günlük cinsel perhiz sonrasında mastürbasyon ile alınan meni örneği incelenir. Örnek alındıktan sonra bir saat içinde laboratuvara ulaştırılmalıdır. Özellikle soğuk havalarda sperm örneğinin vücuda temas ederek taşınması uygundur. Sperm analizinde mililitredeki sperm sayısı, spermlerin hareketliliği ve yapıları değerlendirilir. Ayrıcı meninin miktarı, asiditesi ve içerdiği yuvarlak hücreler belirlenir. Gerekli görüldüğünde antisperm antikor testleri ve mikrobiyolojik incelemeler yapılır. Normal sperm analizi ; Meni miktarı : 1.5 � 6.5 ml Sperm konsantrasyonu : 20 milyon / ml ve daha fazla Sperm hareketliliği : %50 ve daha fazla Sperm morfolojisi (yapısı) : %14 ve daha fazla normal yapıda sperm (Kruger kriterlerine göre) Sperm analizi sonrasında yukarıdaki değerlerin bulunması gebeliğin oluşacağını kesin olarak göstermez. Sperm konsantrasyonu 10 milyon /ml olan erkeklerin eşlerinde gebelik gerçekleşebilirken, sperm konsantrasyonu 60 milyon /ml olan erkeklerin eşleri gebe kalamayabilir. Sperm üretimini ısı, sigara, alkol, ilaçlar ve enfeksiyonlar gibi birçok faktör etkilediği için normal olmayan örneklerin analizi birer ay ara ile iki veya üç kez tekrarlanmalıdır. Testis ( yumurtalık) biyopsisi Menide hiç spermi olmayan hastaların testislerinden alınan parça incelenerek sperm üretiminin olup olmadığı tespit edilir. Eğer kanallarda tıkanıklık tespit edilmişse bu incelemeye gerek olmadan hemen tedaviye geçilebilir. İnfertilite Tanısında Kullanılan Hormon Testleri Kadınlarda kandaki FSH (folikül uyarıcı hormon), LH (luteinize edici hormon), östrodiol (kadınlık hormonu), prolaktin (süt üretimini sağlayan hormon), testosteron (erkeklik hormonu), DHEA-S (böbrek üstü bezleriden üretilen hormon) ve progesteron (menstrual siklusun ikinci yarısında salgılanan hormon) düzeyleri belirlenir. Hastanın menstrual siklusları düzensiz, menstrual kanamaları az veya hiç yok ise bu hormon düzeyleri ölçülerek düzensizliklerin nedeni ve yumurtalıkların durumu hakkında fikir edinilebilir. Yumurtalıkları yeteri kadar çalışmayan veya menopozdaki kadınlarda FSH düzeyi yükselirken östrodiol düzeyi düşer. Serum progesteron düzeyi ölçülerek o menstrual siklusta ovulasyonun (yumurtlamanın) olup olmadığı belirlenir. 28 günlük bir menstrual siklusun 21. gününde kandaki progesteron düzeyi ölçülür, 30 nmol / L' nin (10 ng/ml) üzerindeki değerler ovulasyonun olduğunu gösterir.

http://www.biyologlar.com/ureme-sagligi-ve-infertilite

KIZAMIK ANTİKORLARI IgM ve IgG (Rubeola IgM ve IgG)

Kullanımı: Kızamık virüsüne bağlı enfeksiyonun varlığının ve muhtemel evresinin belirlenmesinde kullanılır. IgM’in pozitif olması, yeni başlayan bir enfeksiyonu, eski enfeksiyondan sonra kalan rezidü antikorları veya aşılamayı düşündürür. Hamilelerde ve immün sistemi suprese olan hastalarda ağır pnömoni ve merkezi sinir sistemi enfeksiyonuna neden olabileceğinden bu hastaların kızamık virüsü ile bağışıklık durumlarının belirlenmesi için antikorları önceden ölçülmelidir. İmmün sistemi normal olan çocuklarda da komplikasyonlara karşı dikkatli olunmalıdır. www.tahlil.com

http://www.biyologlar.com/kizamik-antikorlari-igm-ve-igg-rubeola-igm-ve-igg

Bitkilerde virüs hastalıkları

SERALARDA GÖRÜLEN ÖNEMLİ VİRÜS HASTALIKLARI Yrd. Doç. Dr. Mustafa GÜMÜŞ Prof. Dr. Ülkü YORGANCI Ege Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü Domates Mozayığı Tütün Mozayık Virüsü’nün domatese özelleşmiş ırkları neden olmaktadır. Bitkilerde hafif ve orta şiddette çalılaşma gözlenir. Virüs, yeşil ırk grubuyla bulaşınca, açık ve koyu yeşil bir mozayık meydana gelir. Yapraklarda uzama, dişlilik artması gibi şekil bozuklukları görülür. Buruşukluk, dönüklük ve iplik yapraklılık gibi yaprak ayası daralması ortaya çıkar. Sarı ırklardaki bulaşmalarda ise çok şiddetlidir. Yaprak damarları, yaprak sapı ve bitki gövdesinde kahverengi-siyah çizgi veya bant şeklinde ölü alanlara yol açar. Meyvelerde renk değişiklikleri, şekil bozuklukları ve lekeler oluşur. Ürün azalır. Çiçeklenme öncesi bulaşmalar daha fazla ürün kaybına neden olurlar En önemlisi ise şaşırtma sırasındaki bulaşmalardır. Domateslerde virüsler ve özellikle domates mozayık virüsü %30-50 arasında ürün kayıbı yaparlar. Domates mozayık virüsüne yakalanan meyvelerin tohumlarının da yarısı virüse bulaşmaktadır. Çiçeklenme sonrası bulaşmalarda, gece sıcaklığının aniden 18oC’nin altına düştüğü ve nemin %80’den fazla olduğu zamanlarda meyve içi kahverengileşir. Virüs belirtileri domates çeşidine, virüs ırkına ve çevre koşullarına göre farklı olmaktadır. Virüslerin yetiştirilen bitkilerde ve yabancı bitkilerde konukçuları olmaktadır. Virüsler, temasla, tohumla ve böceklerle taşınmaktadırlar. Domates Çift Virüslü Çizgi Hastalığı: Domates Mozayık Virüsü ile Patates X Virüsü’nün karışık bulaşması sonucu ortaya çıkmaktadır. Genç bitkilerin öldüğü, şiddetli bir şok şeklinde görülür. Yaşlı bitkiler kendilerini toparlayabilir, fakat gelişmeleri zayıftır. Ürün miktarında büyük bir düşme olur. Oluşan meyveler ise lekelidir. Kısmen ölü alanlara ve bozuk şekillere sahiptir. Temasla, böceklerle ve tohumla taşınmaktadır. Hıyar Mozayık Virüsü Bu virüsün çok sayıda konukçusu vardır. Domateste “İplik Yapraklılık”, biberde “Rozet Hastalığı” ve hıyarda “Hıyar Mozayığı” hastalıklarının nedenidir. Domatesteki belirtileri çok değişmektedir. Genellikle yaprak yüzeyi daralır ve sadece orta damar kalır. Çalılaşma ve mozayik belirtileri gözlenir. Meyveler küçüktür. Çökük lekeler ve içte siyahlaşma görülür. Ekonomik değerini kaybeder. Biberde oluşturduğu Rozet Hastalığı’nda boğum aralarında kısalma olur. Bu nedenle sürgün ucunda yaprak yığılması görülür. Öncelikle uç yapraklar çok daralmış ve şekli bozulmuştur. Yapraklarda damar araları açık renklidir. Meyve tutumu azalır. Meyveler küçük, şekilleri bozuk ve sert dokuludur. Bulaşma zamanına göre gelişme geriler. Verimde %10-30 kadar kayıp olur. Hıyarda ise Hıyar Mozayığı’na yol açar. Genç yapraklardaki mozayik, yaprak yaşlandıkça zayıflar. Kıvrılmış ve hafif kıvırcıklaşmış yapraklar ancak yarı büyüklüğüne ulaşabilir. Yaprak sapı ve gövdede boğum araları kısalır. Yan sürgünlerin sayıları azalır. Meyvedeki belirtiler değişmektedir. Genç meyvede çoğu zaman mozayik şeklinde lekelenme olur. Bazı durumlarda, sıcaklık 27oC’yi geçerse meyve üzerinde renksiz dikenimsi çıkıntılar görülür. Erkek çiçeklerin sayılarında artma, dişi çiçeklerinde ise azalma olur. Hastalık şiddetli ise verim alınmadan bitkiler ölebilir. Bu üç önemli konukçu dışında virüs, 300 kadar bitki türünün hastalanmasına yol açar. Kabak ve kavun da ekonomik zarar oluşturduğu konukçulardandır. Temasla ve yaprak bitleriyle taşınmaktadır. Domates Bronz Lekelilik Hastalığı (Lekeli Solgunluk Hastalığı) Hastalığıa, Lekeli Solgunluk Virüsü neden olmaktadır. Virüsün domatesteki belirtileri değişkenlik göstermektedir. Çift Virüslü Çizgi Hastalığı’nın belirtilerine benzer. Genç yapraklarda bronz renkli küçük lekeler oluşur. Genç bitkilerin büyüme uçlarında, uç yaprakların aşağı doğru kıvrılması ve solması gibi görünümler ortaya çıkar. Domates bitkilerinin gövdesinde ve yaprak sapında kahverengi çizgiler oluşabilir. Hastalıklı bitkiler bodurlaşır. Bitki çiçeklenme öncesi hastalığa yakalanırsa meyve oluşmaz. Çiçeklenme sonrası hastalanan bitkilerin meyvelerinde iç-içe halkalar şeklinde lekeler görülür. Virüs, 160’ın üzerinde bitkide hastalık yapabilmektedir. Hastalık, Thripsler aracılığı ile yayılmaktadır. Virüs, larvalar tarafından alınır ve ergin böceklerle taşınır. Domates Sarı Yaprak Kıvırcıklığı Hastalığı Hastalığa Domates Sarı Yaprak Kıvırcıklık Virüsü neden olmaktadır. Hastalığın ilk belirtisi yaprak kenarlarında ve damar aralarındaki sararmalardır. Hasta bitkilerin yaprakcıkları içe ve dışa doğru kıvrılır. Yaprak ayası aşırı derecede küçülür. Olgunlaşan meyvelerde zarar görülmezken, yeni meyve oluşumu engellenir. Hastalığa çiçeklenme öncesi yakalanan bitkiler bodurlaşır. Önemli miktarda ürün kaybı olur. Virüs, tütünü de içeren bazı bitkilerde hastalık yapar. Beyaz sinekler hastalığın taşıyıcısıdırlar. Biberde Mozayik Hastalığı Biber, bir çok virus hastalığına yakalanır. Biberde mozayik oluşturan virüsler içinde en yaygını ve en fazla zarar yapanı Tütün Mozayik Virüsü’dür. Bu virüsün biberlerdeki belirtileri solgunluk, bodurlaşma, bitki sapları üzerinde ölü alanlar, yaprak dökülmesi, yapraklarda mozayik belirtileri ve meyvelerde şekil bozuklukları yanısıra güneş yanıklığı gibi ölü alanlar sayılabilir. Hastalık, temas ve tohumla taşınmaktadır. Kabak Mozayığı Kabak Mozayik Virüsü, Hıyar Mozayik Virüsü, Karpuz Mozayik Virüsü, veya Kabak Sarı Mozayik Virüsü bu hastalığa neden olmaktadır. Kabak yapraklarında şekil bozuklukları, küçülme ve mozayik lekelenmesi görülür. Meyvelerde de lekelenme ve şekil bozuklukları oluşur. Etmen Kabak Sarı Mozayik Virüsü olduğunda belirtiler çok şiddetlidir. Kabak Mozayık Virüsü yaprak bitleriyle ve tohumla taşınmaktadır. Marul Mozayığı Hastalığa Marul Mozayik Virüsü neden olmaktadır. Hasta bitkilerde tam baş oluşması olmaz. Bitkiler küçük kalır. Yapraklarda açık-sarı ve yeşil lekeler oluşur. Yaprak kenarlarındaki dişlenme belirginleşir. Ölü alanlara rastlanır. Virüs, yaprak bitleriyle ve tohumla taşınır. Yaygın Fasulye Mozayığı Hastalığa Yaygın Fasulye Mozayik Virüsü neden olmaktadır. Hastalığın etkisi çeşit, bulaşma zamanı, virüs ırkı ve çevre koşullarına göre değişmektedir. Dayanıklı çeşitlerde bulaşmadan 8-14 gün sonra oluşan yapraklar sarımsı renk alırlar. Mozayik belirtisi yanısıra yaprak ayası daralır, aşağı doğru kıvrılır. Mozayik lekelerinde koyu yeşil kalan kısımlar siğil şeklinde çıkıntılar oluştururlar (Kabarcıklı Mozayık). Hasta bitkiler küçük kalır. Hassas çeşitlerde çiçekten sonra şok şeklinde solgunluk oluşur. Hastalık, temasla, tohumla, ve yaprak bitleriyle taşınmaktadır. Virüs Hastalıklarından Korunmak İçin Ne Yapılmalıdır? Virüs belirtileri, virüsün ırkına, konukçunun çeşidine, iklim koşullarına ve bulaşma dönemine göre değişmektedir. Bu nedenle hastalığı tahmin etmeye çalışmak zaman zaman üreticileri yanlış uygulamalara yöneltmektedir. Virüs hastalığından şüphe duyulduğunda yapılacak en doğru davranış uzmana başvurmaktır. Virüs hastalıklarının ilaçlı mücadelesi yoktur. Hastalanan bitkiyi iyileştirmek de mümkün değildir. Bu nedenle virüs hastalıkları ile mücadelede aşağıdaki önerilere uyulmalıdır. Virüsten ari tohum veya fide kullanılmalı, Virüse dayanıklı çeşitler seçilmeli, Taşıyıcı olan yaprak biti, beyaz sinek gibi böceklerle mücadele edilmeli, Hastalık etmeni virüsün veya taşıyıcı böceklerin saklanabileceği çevredeki yabancı otlar yok edilmeli, Seradaki havalandırmalar böceklerin geçemeyeceği kadar küçük delikli tül veya tel ile kapatılmalı, Bitkiler şaşırtılırken, tepe ve koltuk alınırken ellerin ve aletlerin %10 luk Teepol, %10’luk Sodyumtrifosfat veya sabun çözeltisine batırılmalı, Üretim dönemi sonunda bitki artıkları en kısa zamanda seradan uzaklaştırılmalıdır. Çileklerde virüs hastalıkları Virüsler mikroskopla bile görülemeyen çok küçük hastalık etmeni canlılardır. Virüslerin bazıları çileklerde hastalıklara neden olurlar. Çoğu virüs hastalığı 2 veya daha fazla virüsün kombinasyonundan oluşur. Bir virüs veya belirli kombinasyonları bitkide açık belirtiler veya göze çarpan irilik kaybı göstermeyebilir. Ancak çeşitli nedenlerle bitki zayıfladığında etkisini hemen gösterirler. Özellikle gelişme şartlarının uygun olmaması nedeniyle bitkide görülen zayıflama ile hemen ortaya çıkarlar. Bitki ilave bir virüsle enfekte olduğunda açık belirtileri derhal ortaya çıkabilir. Bir çilek bitkisi virüs hastalıklarından genelde kurtulamaz ve enfeksiyon ana bitkilerden kol bitkilerine geçer. Virüslerin taşınımında afitlerin büyük önemi vardır. Virüs taşınmasını çoğunlukla Pentatrichopus spp. afitleri etkilidir. Hastalıklı alandan hastalıksız alanlara uçan bu böcekler virüs hastalığının farklı alanlara da yayılımını sağlar. Buruşma, sararma, çok gövdelilik, yaprak bükülmesi, beneklenme ve aster sarılığı en çok karşılaşılan virüs hastalıklarıdır. Kesin belirtileri olmayan alelade oluşan diğer virüs hastalıkları isimsizdir. Bu tip hastalıklara neden olan virüsler sadece indexleme ile tanımlanabilir. İndexleme indikatör bir bitkiye test edilmesi gereken bitkinin aşılanması şeklinde yapılır. Şayet test edilen bitki virüsle bulaşıksa indikatör bitki kesin belirtiler gösterir. Tüm virüs hastalıkları bitkileri zayıflatır kol oluşumunu engeller ve meyve verimini azaltır. Buruşma ve sarma en zararlı virüs hastalıkları arasındadır. Buruşma verimi %50 veya daha fazla düşürür. Sararma verimi ve kaliteyi düşürür ve bitkinin yaşamını kısaltır. Açık belirtiler üretmeyen virüs hastalıkları %50 oranında verimi düşürebilir. Gerçek kanıya deneysel bitkiler üzerinde test edilerek varılabilir. Tüm çilek çeşitleri bu tip hastalıklarla zayıflatılabilir, fakat bazı çeşitler diğerlerine göre daha hassastır. Belirtiler Tanımlanabilen virüs hastalıklarından bazılarının belirtileri şu şekildedir; Buruşma (Crinkle) Bitkiler normale göre daha açık yeşil tondadır. Yapraklar yere yatma eğilimindedir. Yaprak sapları kısadır. Bazı yapraklar şekilsizdir ve buruşuk bir görünümleri vardır. Bu tip yapraklar genellikle çok sayıda, yüzeye yayılmış iğne ucu boyutlarında sarı noktalara sahiptir. Meyve kalitesinde ve verimde düşüşlere sebep olur. Dünyanın hemen hemen her yanına yayılmış vaziyettedir. Afitlerle taşınan diğer virüslerle kombinasyon oluşturduğunda hastalık çok ciddi boyutlar kazanır. Çok gövdelilik (Multiplier) Bu tip virüsün bulaştığı çilek bitkisi, aşırı uzamış ve çok sayıda gövdeye sahiptir. Bazen bu gövde sayıları yüzlerle ifade edilebilir. Yaprak sapları ince ve çoğu kere normalden daha kısadır. Yaprakların 1/3 veya yarıya yakını normal boyutta, diğer yapraklar ise çok küçük boyuttadır. Sadece birkaç kısa kol bulunur veya hiç kol bulunmaz. Bitki bodur görünümlü olup normal bitkilerden belirgin bir şekilde farklılık gösterir. Çiçeklenme ve ürün çok az oluşur veya hiç oluşmaz. Sararma (Yellows) Bitkiler cüceleşmiştir ve çok sayıda kola sahiptir.Yapraklar genellikle ters kap şeklindedir. Bu yapraklar mat yeşil merkeze ve sarı kenarlara sahiptir. Yaprak Bükülmesi (Leaf Roll) Yapraklar aşağıya dönük kap gibi olma eğilimindedir. Genellikle bükülerek veya yuvarlanarak içiçe katlanarak tüp şeklini alır. Aster Sarılığı (Aster Yellows) Bu hastalığın tanınan iki alt grubu vardır; eastern ve western aster sarılığı, İlk belirtileri, genç yapraklarda sararma, cüceleşme ve kap şeklini alma biçiminde kendini gösterir. Daha sonra ilk belirtileri gösteren bitkiler aniden ölür. Bitkilere bağlı kol bitkileride aniden ölür. Bazen bitki ölmeden önce anormal yeşil yapraklı çiçekler oluşturur. Hastalık arazide ortaya çıktığında genellikle sadece birkaç bitkide kendini gösterir. Bununla birlikte, bazen, arazideki bitkilerin yarıdan fazlası hastalıktan etkilenebilir. Bu hastalığın en önemli belirtisi meyveler üzerinde çıkar. Meyveler üzerindeki akenlerden ve petallerden yeşil yapraklar oluşabilir. Bu belirtiler bir arazideki her bitkide bir veya birkaç meyvede ortaya çıkabilir. Sonraki safhada meyve gelişimi durur. Ciddi bir şekilde enfekte olmuş bitkilerdeki yaşlı yapraklar kırmızımsı mor renk oluşturabilir ve genç yapraklar küçük kısa saplar meydana getirir. Yayılma oranı yıldan yıla büyük değişiklik gösterir. Yeşil Taç Yaprağı (Green Petal) Bu hastalık meyve ve vejetatif aksamın her ikisinde de diğer bitkilerden farklı bir şekilde belirtiler ortaya çıkarır. Bitkide sıklıkla bodurluk oluşur. Bu bitkiler üzerindeki yaşlı yaprakların rengi mor-kırmızımsı renge dönüşür ve yeni çıkan yapraklar parlak sarı renkte ve küçük boyutludur. Bu hastalığın sonucunda bitki çöker ve ölür. Hernekadar bazı küçük normal şekilli meyveler oluşturulabilirse de, broccoli çiçekciklerine benzeyen çiçek tablası ile oluşmuş birkaç meyvenin oluşması bu hastalığın belirgin bir özelliğidir. Bu oluşum sürekli olma eğilimindedir ve normal meyve oluşumundaki yaşlanma, yani olgunlaşma, oluşmaz. 2.1.2. Koruma ve Kontrol Şayet arazide sadece birkaç bitkide buruşma ve sararma belirtisi görülürse hemen bunlar ortadan kaldırılmalıdır. Hastalık taşıyıcısı olan afitleri kontrol altına almak için insektisitler kullanılmalıdır. Bu yolla bir yaş altındaki bahçelerde oldukça iyi sonuçlar alınabilir. Şayet hastalık çok sayıda bitkide ortaya çıkmışsa yöredeki yetkili kişilere bilgi vererek enfeksiyon kaynağının belirlenmesinde yardım alınabilir. Bunun yanı sıra enfekte olan bitkilerin derhal ortadan kaldırılması pratik olacaktır. Arazideki bitkilerde çok gövdelilik veya yaprak yuvarlama hastalığı ortaya çıkarsa, sonraki dikimlerde hastalıklı bitkiler kesinlikle kullanılmamalıdır. Aster sarılığı bulaşmış bitkiler yerlerinde bırakılabilirler; genellikle bu bitkiler ölürler ve sağlıklı bitkiler onların üzerinde gelişmeye devam ederler. Virüs hastalıklarından kaynaklı zarardan korunmak için, sadece virüssüz fideler kullanıldığı ve dikimden sonra virüs taşıyıcısı böceklerin hareketinin azaltıldığı veya engellendiği şartlar altında yetiştiricilik yapmak gerekir. Yeni dikim alanları mevcut çilek alanlarından mümkün olduğu kadar uzağa kurulmalıdır. Hasattan sonra eski alan derhal sürülmelidir ve erken ilkbahar ile sonbaharda mevcut olan uçan afitlere karşı insektisitler kullanılmalıdır. Virüssüz fideler, yaygın olarak bulunan fidelere veya virüsle enfekte olmuş fidelere göre çok daha iri ve verimli olacaktır. Hatta bu virüs hastalığı görülmeyen yerlerde bile kendini gösterecektir. Virüssüz fide temin etmek için özellikle virüssüz olduklarına dair sertifikaya sahip fidelikler tercih edilmelidir. Virüssüz çilek bitkileri, virüsle bulaşmış bitkilerin yakınına ve afitlerin mevcut olduğu yerlere dikildikten sonra enfekte olabilirler. Virüs hastalıklarının problem olduğu alanlarda insektisitler yeni dikim alanları üzerinde kanatlı afitlerin oluşumunu engellemek amacıyla erken ilkbahar ve sonbaharda dikkatli bir şekilde uygulanmalıdır. Yeni bitkilerle bahçe kurulduktan sonra hemen afitlere karşı insektisit uygulanır ve herhangibir afit mevcudiyeti sözkonusu ise uygulamaya 3 hafta devam edilir. Şayet afitler meyve tutumundan sonrada görülüyorsa ilaçlamaya devam edilir. Meyve hasadı sırasında ilaçlama ihtiyacı ortaya çıkarsa uygulanacak ilaca bağlı olarak bir süre meyve hasat edilmemelidir. Bu konudaki bilgi ilaç üreticisi firma tarafından ambalaj kaplarında bildirilmiştir. Hasat sonunda veya Eylül ün ilk günlerinde ilaçlama tekrar edilir.

http://www.biyologlar.com/bitkilerde-virus-hastaliklari

İnfeksiyonun Mekanizması

Doğada çok yaygın olarak bulunan mikroorganizmalardan ancak çok az bir bölümü insan ve hayvanlar için hastalık yapıcı niteliktedirler (patojenik mikroorganizmalar). Geri kalan büyük bir bölümü ise infeksiyon veya hastalık oluşturamamaktadırlar (apatojenik mikroorganizmalar). Ancak, genellikle hastalık oluşturmadığı bilinen bazı etkenler de, fazla stres nedeniyle konakçının direncinin kırıldığı hallerde veya bazı özel durumlarda, (immun yetmezlik hastalıklarında, immun supresif bireylerde, gizli infeksiyona sahip olanlarda, vs) vücutta ürüyerek ve yayılarak infeksiyonlara ve hastalıklara yol açabilmektedirler (fakültatif patojenler veya oportünist mikroplar). Bunları, yutak, larinks, sindirim, solunum ve ürogenital sistem de, deri ve mukozalarda bulunan mikroorganizmalar örnek olarak gösterilebilir. Bu etkenler, aynı zamanda, bu sistemlerin ve bölgelerin mikroflorasını da oluşturmaktadırlar. Bunların aksine, bazı mikropların patojenitesi (hastalık yapma yeteneği) pasajlarla, mutasyonlarla, doğal seleksiyonlarla veya özel işlemlerle (biyoteknolojik yöntemlerle) azaltılabilmekte ve değiştirilebilmektedir (attenüasyon). İnfeksiyonlar, genellikle, konakçı ile patojenik mikroorganizmaların (patojenler) karşılıklı interaksiyonu sonu ortaya çıkarlar. Eğer bir vücuda patojenik bir mikroorganizma girmiş, lokalize olmuş ve üremişse, o bireyde infeksiyon var demektir. Ancak, bu canlıda her zaman, genel veya özel klinik belirtiler gözlemlenmeyebilir. Eğer, klinik semptomlar ortaya çıkmışsa, o zaman infeksiyona bağlı hastalık meydana gelmiş olur (infeksiyon hastalığı). Mikroorganizmalardan ileri gelen hastalıklara, aynı zamanda, infeksiyöz hastalıklar adı da verilmektedir. Vücudun dış veya iç yüzeyleriyle temasa gelen patojenik etkenler, kendilerinde bulunan çeşitli adhesyon molekülleri ile konakçı hücre yüzeylerinde ki özel reseptörlere (glikoprotein, lipoprotein, glikolipid, vs.) bağlanırlar. Mikroplar, ya sadece yüzeylerde yerleşerek bozukluklar meydana getirebilecekleri gibi (lokalize infeksiyonlar), yüzeylerden daha derinlere, buralardan da kan veya lenf yolu ile bütün vücuda (veya afinitesi olan doku veya organlara) yayılabilir ve tehlikeli infeksiyonlara yol açabilirler (sistemik veya generalize infeksiyonlar). Bazen infeksiyon bir organa (barsak, akciğer, beyin, vs) yerleşmiş de olabilir. Patojenik bir ajan vücuda girdikten hastalık belirtilerinin ortaya çıkıncaya kadar geçen süre (inkubasyon periodu, kuluçka süresi), bazen, çok kısa (birkaç gün), bazen de 1-2 hafta veya daha uzun (aylar, yıllar) olabilir. Bu durum, giren mikroorganizmanın virulensi, miktarı, giriş yolu, yayılış tarzı, konacının duyarlılığı ile çevre koşulları yakından ilişkilidir. Mikroorganizma çok virulent ve yeterli miktarda da vücuda girerse, duyarlı konakcıda inkubasyon süresi kısa olabilir ve hastalık belirtileri (özellikle, genel belirtiler) bir kaç gün içinde ortaya çıkabilir. Böyle hastalıklar, aynı zamanda, kısa seyirli olur (3-6 gün) ve canlının hayatını tehlikeye koyabilir (perakut infeksiyonlar). Perakut seyirli olgulara, genellikle, septisemik infeksiyonlar hallerinde, mikroorganizmaların kana geçmesi, kanda üremesi ve kan yolu ile bütün vücuda yayılması sonunda rastlanılır. Mikroorganizmaların zayıf virulensli ve aynı zamanda az sayıda ve vücudun direnci de orta derecede olduğu durumlarda inkubasyon periodu uzun olduğu gibi, meydana gelen infeksiyon da kronik bir seyir izleyebilir (kronik infeksiyonlar). Perakut ve kronik seyirli infeksiyonlar arasında akut ve subakut seyirli olgulara da rastlanabilir. Perakut seyirli infeksiyonlar, çok kısa süre içinde geliştiklerinden ve aynı zamanda yine kısa sürede sonlandığından, spesifik klinik belirtilerin ortaya çıkması için yeterli bir zamana sahip değildirler. Ancak, genel (belirtiler) arazlar (durgunluk, iştahsızlık, ateş, baş ağrısı, titreme, terleme, bazen ishal vs) görülebilir. Bunlar da hastalığı çoğu zaman tam belirleyemediği için teşhis koymak da oldukça zordur. Bu dönem, aynı zamanda, immun sistemin uyarılması için de yetersiz olduğundan spesifik antikorlar da ya hiç sen¤¤¤lenemez veya oluşsalar da, çoğu zaman, kullanılan serolojik tekniklerle ortaya konulamazlar. Vücutta bir infeksiyonun oluşabilmesinde, mikroorganizmaların virulensleri yanı sıra, belli bir miktardan aşağı olmayan dozda girmesi de gereklidir (minimal infektif doz, MİD). Bu doz, aynı zamanda, %100 infeksiyon oluşturabilecek en az miktarı da ifade eder. Eğer ölümler oluşuyorsa, minimal letal doz (MLD) olarak tanımlanır. Mikroorganizmalar minimal infektif veya minimal letal dozun altında girerlerse infeksiyonlar veya ölümler %100 olarak gerçekleşemez. Bazen, bir hastalık ajanı tarafından başlatılan infeksiyona, sonradan diğer mikroorganizma (lar) da katılabilirler. Böyle durumlarda, hastalığın klinik seyri, semptomlar, prognoz, teşhis ve sağaltımı da değişebilir (sekonder infeksiyonlar). Böyle durumlarda, ikinci etken (sekonder ajan) hakim duruma gelebilir, esas infeksiyonu başlatan primer etken baskılanabilir ve izolasyonu çok zor veya imkansız bir hal alır. Eğer, infeksiyon ilerlemeye devam ederse hayatı tehlikeye sokacak bir sona ulaşabilir. Kesin teşhis de yapılamadığı için, uygun bir sağaltım kürü uygulanamaz. Bazen de infeksiyonun başlaması için bir tür mikroorganizma yeterli olamamakta, birden fazla diğer etkenlerin işbirliği ve sinerjik etkisiyle infeksiyon oluşturulabilmektedir (koinfeksiyon, ortak infeksiyon). İnfeksiyonun bu iki türü, miks infeksiyonlar olarak tanımlanırlar. Koinfeksiyonlar da, aynen sekonder infeksiyonlarda olduğu gibi, bir çok yönü ile teşhiste zorluklar yaratırlar. İnfeksiyonların hepsi, mikroorganizmaların bizzat kendileri tarafından meydana getirilmezler. Toksijenik özellikte olanların salgıladıkları ekzotoksinler ve Gram negatiflerinin endotoksinleri de toksemik infeksiyonlara (toksemi, intoksikasyonlar) yol açarlar ve hatta ölümlere de neden olurlar. Potent ekzotoksinler, ya sporlu bakteriler (C. botulinum, C. tetani, B. anthracis, vs) veya sporsuz bakteriler (C. diphtheriae, stafilokok, vs) ile bazı mantarlar (A. flavus, vs) tarafından sen¤¤¤lenirler. bakteri toksinleri çok iyi antijeniteye sahip olmalarına karşın mikotoksinlerin antikor sen¤¤¤ini uyarma etkinlikleri zayıftır. Bazı infeksiyonlarda, klinik belirtiler ve ortaya çıkan hastalıklar tespit edilemeyebilir görülmeyebilir (subklinik infeksiyonlar, gizli infeksiyonlar). Bazı viral infeksiyonlarda, virus hücrelerde üremelerine ve dışarı çıkmalarına karşın, hücrelerde dejenerasyonlar (CPE, cytopathic effect) oluşturmazlar. Hücreler hem virus üretmelerine ve hücreler de üremelerine devam ederler (persistent infeksiyonlar). Böyle durumlarda klinik belirtiler çok zayıf veya belli-belirsizdir. Bazı durumlarda da virus hücrenin çekirdeği ile birleşir ve onun bir devamı haline gelir, onunla birlikte replike olarak kardeş hücrelere transfer edilir (latent infeksiyon). Böyle infeksiyonlarda da semptomlar meydana gelmez. Bir çok, bakteriyel ve viral kronik infeksiyonlarda da klinik arazlar gözle görülemez ve çoğu zaman da gözden kaçabilir. Bunlarda da klinik belirtiler hastalığı tanımlayacak derecede değildir. İnfeksiyon ajanlarının bir kısmı, vücutta, bazı doku ve/veya organlara karşı özel bir afinitesi bulunmaktadır. Beyin, akciğer, karaciğer, barsaklar, deri, kan dokusu, vs. en fazla hedef teşkil eden organları oluşturmaktadırlar. Örn, kuduz ve menenjitte beyin;kolera ve stafilokokkal enterotoksinlerde barsaklar; S. pneumonia ve K. pneumonia da akciğerler ve N. gonorrhoeae ve bazı mycoplasmalar da da ürogenital sistem hedef organlar arasındadır. İnfeksiyonların ve/veya hastalıkların meydana gelebilmesi için başlıca 3 önemli faktörün işbirliğine gereksinim bulunmaktadır. 1) Mikroorganizmalara ait faktörler 2) Konakçıya ait faktörler 3) Çevresel faktörler 2. Mikroorganizmalara Ait Faktörler İnfeksiyonların oluşmasında mikroorganizmalara ait olan faktörler oldukça önemlidirler. Bu faktörlerden bir veya birkaçı bir arada etkilediklerinde infeksiyonun ilk adımı atılmış veya başlangıcı hazırlanmış olur. Bunlar hakkında aşağıda kısa ve özlü bilgiler verilmektedir. 2.01. Virulens Faktörleri Patojenik mikroorganizmaların (infeksiyon veya hastalık yapma yeteneğine sahip ajanlar, patojenler), insan ve hayvanlarda hastalık yapma şiddetleri, dereceleri veya güçleri oldukça değişiklik göstermektedir (virulens). Duyarlı bireylerde, aynı patojenik etken, bazılarında zayıf ve diğerlerinde de orta veya tehlikeli infeksiyonlara yol açabilir. Bu durum konakçının kondisyon ve konstitüsyonuna bağlı olduğu kadar, mikroorganizmaların virulensi ile de yakından ilişkilidir. Virulens, bakterilerde bir çok faktör tarafından tayin edilmekte ve desteklenmektedir (infektivite+invaziflik+patojenite). Bazı mikroorganizmalar, gerek in vitro ve gerekse in vivo olarak üretildiklerinde birçok türde toksin ve toksik maddeler sen¤¤¤ler. Bunların konakçıyı hastalandırmada etkinlikleri oldukça fazladır. Bu substansların büyük bir bölümü ekstrasellüler bir karakter gösterir. Diğer bir ifade ile, bunlar bakteri hücresinden dışarı çıkarlar (ekzotoksinler). Diğer bir bölümü de yapısal bir özellik taşır ve ancak hücreler eridiklerinde ortama geçerler (endotoksinler). Toksin sen¤¤¤leme yeteneği toksijenite olarak tanımlanmaktadır. Bunlar, hep birlikte etkenlerin patojenik potansiyelini (mikropların hastalık yapma kabiliyetlerini, patojenite) oluştururlar. Etkenlerin vücuda girdikten sonra bir hastalık odağı oluşturabilme yeteneği de infektivitelerini ortaya koyar. Eğer, etken bitişik dokulara veya vücuda yayılma özelliği de (invazyon kabiliyeti) gösteriyorsa infeksiyonlar daha kısa sürede gelişir ve ortaya çıkarlar. 1) Ekzotoksinler: Bu tür toksinler, protein karakterinde, genellikle, ısıya duyarlı ve eriyebilir substanslar olup toksijenik mikroorganizmalar tarafından sen¤¤¤lenirler. Ekzotoksinler, in vivo ve in vitro koşullarda salgılanabilirler. Ekzotoksin sen¤¤¤leyebilen bir çok aerobik, anaerobik, sporlu veya sporsuz bakteriler ve mantarlar bulunmaktadır. B. anthracis, E. coli, C. diphtheriae, S. dysenteriae, S. aureus, V. cholerae, C. botulinum, C. tetani, C. perfringens, A. flavus vs. bunlardan bazılarıdır. Ekzotoksinler ve endotoksinler canlılarda toksemik infeksiyonlara (intoksikasyon, toksemi) neden olurlar. Toksinler, miktarlarına ve etkinliklerine göre canlılarda sadece infeksiyonlara değil aynı zamanda ölümlere de yol açabilirler. Şimdiye dek en etkili bakteriyel toksinler arasında C. botulinum ’un ekzotoksini bildirilmiştir. C. botulinum A ’nın fare için 1 MLD’u (minimum letal doz) 2. 5x10-5 mcg (pürifiye toksin); C. tetani ’nin toksini fare için 1 MLD’u 4x10-5 mcg; difteri toksini kobay için 1 MLD’u 6x10-2 mcg ve S. aureus ’un alfa toksininin tavşan için 1 MLD’u 5 mcg kadar olduğu belirtilmiştir. Ekzotoksinlerin bazı özellikleri kısaca şöyledir: a) Ekzotoksinler, bazı mikroorganizmalarda (B. anthracis, C. tetani) plasmidler; C. diphtheriae ve C. botulinum ’da bakteriyofaj (profaj) ve bazılarında da genomik DNA (kromozom) tarafından spesifiye edilirler. Eğer plasmid veya fajlar bakterilerden çıkarlarsa veya çıkarılırsa, mikroorganizmalar atoksijenik veya apatojenik hale dönüşürler. b) Ekzotoksinler, protein karakterinde olup genellikle ısıya (60-80°C) duyarlıdırlar (termolabil, TL). Buna karşın, S. aureus ’un ve E. coli ‘nin enterotoksinleri, bu derecelerin üstündeki ısıya (100° C) direnç gösterirler (termostabil, TS). c) Ekzotoksinlerin çok az miktarları bile, duyarlı konakcıda hastalık yapıcı güce sahiptirler. Belli bir inkubasyon süresinden sonra, duyarlı deneme hayvanlarında, toksinin etki mekanizmasına göre, spesifik hastalık belirtileri ile karakterize olan intoksikasyonlar meydana gelir. d) Ekzotosinler, aynı zamanda, immunojeniktirler. Vücutta spesifik antikor sen¤¤¤ini uyarırlar (antitoksik antikorlar, antitoksinler). Bu antikorlar in vivo veya in vitro koşullarda toksini nötralize ederek hastalık yapma kabiliyetini giderirler. e) Bazı fiziksel (ısı) ve kimyasal maddeler (formaldehit, iodine, vs) toksini inaktive ederek hastalık oluşturma yeteneğini ortadan kaldırırlar ve toksoid hale gelmesine neden olurlar. Toksoidlerin, hastalık oluşturma güçleri olmamasına karşın, canlılara verildiklerinde antikor sen¤¤¤ini uyarabilirler. Bu nedenle de immunojeniteleri bulunmaktadır ve aşı olarak kullanılırlar. Ekzotoksinler, vücutta etkiledikleri doku ve/veya organlara göre de birkaç kategoriye ayrılmaktadırlar. Nörotoksinler (C. botulinum, C. tetani, S. aureus), Enterotoksinler (S.aureus, E. coli, V. cholerae, S. dysenteriae, C. perfringens, Klebsiella sp, vs) ve Sitotoksinler (bir çok mikroorganizma tarafından sen¤¤¤lenen, hemolizin, leukosidin, dermonekrotoksin, hepatotoksin, vs) gibi. Ancak, bir mikroorganizma birden fazla türde toksin sen¤¤¤lediği gibi, bir toksin birkaç doku veya organa da etkileyebilmektedir. Bu nedenle, bu temel sınıflama zamanla ve gerekli durumlarda değişebilmektedir. Ekzotoksinler birbirlerinden ayrı karakterde ve etkinlikte olmasına karşın bazıları yapı bakımından benzerlik gösterirler. Bu benzerlik, genellikle, “A-B modeli“ olarak tanımlanmaktadır. Bu model aynı zamanda strüktürel dimerik model olarak ta bilinmektedir. Buna göre, bazı toksinler iki alt üniteden oluşmaktadırlar. Bunlardan biri, enzimatik bir özelliğe sahip ve konakçı hücrelerinde toksik etki meydana getiren A fragmenti ve diğeri de, toksinin konakçı hücre yüzeyindeki spesifik reseptörlere bağlanmasını sağlayan B fragmentidir. İzole edilen A alt ünitenin toksik etkisi olmasına karşın hücrelere bağlanma yeteneği bulunmamaktadır. B alt ünitesi ise, hücrelere bağlanabilir, ancak nontoksiktir ve biyolojik olarak inaktiftir. Toksin molekülünün hücre içine girmesinde başlıca iki mekanizma önerilmektedir. Bunlardan biri, toksinin B alt ünitesi, hücre yüzeyindeki spesifik reseptörlere bağlanır. Hücre yüzeyinde bir erime meydana gelerek oluşan spesifik kanallardan, A fragmenti içeri girerek sitoplasmaya ulaşır. B fragmenti ise dışarıda kalır. Diğer görüş ise, toksinin B alt ünitesi hücreye bağlandıktan sonra tüm molekül (A ve B fragmentleri) endositozis ile internalize edilir. Bu tarz giriş bir bakıma pinositozise de benzemektedir. Bu ikinci mekanizmada, tüm molekül vesiküller içinde toplanır ve sonra, B alt ünitesi, A’dan ayrılarak, hücre yüzeyine çıkarılır. A alt ünitesi ise sitoplasmaya girer ve buradan hedef bölgeye giderek etkinliğini gösterir. Her iki mekanizma ile de olsa, önemli olan A fraksiyonunun sitoplasmaya ulaşmasıdır. Burada toksinler moleküler düzeyde başlıca 3 tür etki gösterirler. 1) Hücrelerde protein sen¤¤¤inin inhibisyonu, 2) Sinir snaps fonksiyonunun bozulması, 3) Sitoplasmik membranın parçalanması ve membran transport sisteminin bozulması. Aşağıda bazı önemli A-B modeli, ekzotoksinler ve etki mekanizmaları hakkında kısa özlü bilgiler verilmektedir. Difteri toksini: Bu potent ekzotoksin (MA:62000 A ve 38000 B ), C. diphtheriae ’de bulunan profaj (beta fajı) tarafından spesifiye edilir. Toksin (A-B modeli), hücre içine girdikten sonra A fragmenti hedef bölge olan ribosomlara ve özellikle, zincir uzamasında önemli fonksiyona sahip olan EF2 (elongation factor 2) ile bağlanarak polipeptid zincirinin uzamasını önler ve böylece protein sen¤¤¤ine mani olur. Difteri toksinine karşı oluşan antitoksinler toksini nötralize ederek etkinliğini ortadan kaldırabilir. Eğer hücrelere bağlanma meydana gelmişse nötralizasyon meydana gelememektedir. Toksinin B fraksiyonu hücre yüzeyindeki gangliosid Gml’e bağlanmadan önce antitoksin verilirse, bu alt ünite nötralize edilebilir ve böylece toksinin bağlanması önlenir. Sağaltımda da bu durum dikkate alınarak, mümkün olduğunca erken antitoksik serum verilmesine gayret edilir. Botulinum toksini: C. botulinum tipleri tarafından 7 ayrı tarzda etkinliğe sahip ve hepsinin de konakçı spesifitesi olan ekzotoksinler sen¤¤¤lenir. Bunlardan A, B, E ve F toksinlerine insanlar, C ve D’ye de sığırlar duyarlıdırlar. Bunlardan, C. botulinum C toksini, bakteriyofaj (profaj) tarafından spesifiye edilir. Bu toksinlerin hepsi değişik şiddette paraliz oluştururlar. Toksin, sinirlerle kasların birleştiği bölgelerde, sinirlerden gelen sinyallerin kaslara ulaştıran, kasların kontraksiyonlarında çok önemli rolleri bulunan ve sinir hücrelerince sen¤¤¤lenen asetil kolinin üretimini engellerler. Böylece, sinyaller kaslara ulaşamayınca gerekli reaksiyonları ve kontraksiyonları yapamazlar ve paraliz meydana gelir. Toksin daha ziyade, nöromuskuler bölgeye yakın olan aksonlara bağlanarak bu bölgedeki hücrelerde asetil kolin sen¤¤¤ini önler. Oluşan paraliz göğüs kasları ve diyaframa kadar uzanırsa solunum yetersizliği sonu ölümler meydana gelir. Botulinum ekzotoksini A ve B modeline uyar. Tetanoz toksini: Vücut yüzeyinde bulunan derin kontamine ve içinde yabancı cisim bulunan yaralarda anaerobik koşullarda üreyen C. tetani tarafından sen¤¤¤lenen ekzotoksin bir plasmid tarafından spesifiye edilir. Toksinin başlıca iki etkili komponenti bulunmaktadır. Bunlardan biri sinirlere tesir ederek spasm meydana getirir (tetanospasmin). Diğeri ise alyuvarları parçalayan tetanolizindir. Yaralarda üreyen C. tetani ’nin sen¤¤¤lediği ekzotoksin beyne ulaşınca, hücrelerde, bir amino asit olan glycine sen¤¤¤ine mani olur. Bu durum, vücutta birbirlerine zıt fonksiyonda olan kasların aynı anda kontraksiyonlarına yol açar. Böylece tetanoz spazmları meydana gelir. Bu kasılmalar o kadar şiddetli olur ki kaslar yırtılabilir ve bazen de kemikler kırılabilir. Kas kontraksiyonlarının kontrol edilememesi solunum bozukluklarına da yol açar. Sinire etkileyen toksin, tek bir polipeptid molekül olup 150000 molekül ağırlığına sahiptir. İlk sen¤¤¤lendiğinde inaktif olan molekül, proteolitik enzimlerle iki fraksiyona ayrılır (biri, H zinciri, MA; 100000, ve diğeri L zinciri, MA 50000). Bu iki fraksiyon bir veya iki disulfid bağla birleşmişlerdir. Toksin A-B modeline uyar. Kolera toksini: V. cholerae tarafından sen¤¤¤lenen bu enterotoksinin A fraksiyonu tek molekül olmasına karşın, B fraksiyonu ise 5 molekül halindedir. Toksinin B komponenti barsak epitel hücrelerinin yüzeyindeki gangliosid Gml ile bağlandıktan sonra, A alt bölümü sitoplasmaya girer ve burada ayrışarak A1 formuna dönüşür. Bu fraksiyon hücrelerde adenylate cyclase enzimini aktivitesini kontrol eden regulatör proteinin fonksiyonunu bozarak etkisiz hale getirir ve adenylate cyclase devamlı aktivite gösterir. Fazla sen¤¤¤lenen bu madde, ATP’nin fazla miktarda cyclic AMP (c AMP) haline dönüşmesine neden olur. Bu madde (cAMP) de, barsak epitel hücrelerinden fazla miktarda sıvı ve elektrolitin lumene geçmesine yol açar. Sıvının önemli bir bölümü kandan geldiği için, sıvı ile birlikte bikarbonatın kandan dışarı çıkmasına ve kanın pH’sının düşmesine ve buna bağlı olarak ta asidozun şekillenmesine yol açar. Bu durum ölümlere neden olabilir. Ayrıca, kanın yoğunluğu artar ve dolaşım bozukluğu meydana gelir. Hipovolemik şok ve dolaşım bozukluğu nedeniyle hastanın hayatı tehlikeye girer. Toksin A-B modeline uyar. Anthraks toksini: İnsan ve hayvanlarda hastalık oluşturan ve B. anthracis tarafından sen¤¤¤lenen ekzotoksin, plasmid orijinlidir. Toksin protein karakterinde ve zayıf antijenik olup başlıca 3 kısımdan oluşmaktadır (protektif antijen (PA), ödem faktörü (EF) ve letal faktör (LF). Bu üç toksin geni, pX01 plasmidi tarafından kodlanır. Bunlardan, PA 735 amino asit, LF 776 aa ve EF ise 767 aa 'ten oluşmaktadır. Toksin, kan damarlarının permeabilitesini bozarak hemorajilere neden olur. Bu 3 fraksiyon tek başına tam etkili olmayıp en azından iki tanesi (PA + LF) birlikte letal etki gösterir. Toksin, A ve B modeline uyar. B.anthracis 'te bulunan ikinci bir plasmid, (pX02, 60 MDa) kapsül formasyonunun kodlarına sahiptir. 2) Süperantijenler: Süperantijenler, şimdiye kadar tanımlanan immunojenlerden çok daha az yoğunlukta bile (pikomolar düzeyde) T hücrelerini uyarabilme yeteneğine sahip T hücre mitojenleridir. Stafilokok, streptokok, P. aeruginosa ve M. arthritis tarafından sen¤¤¤lenen bazı ekzotoksinler bu grup substanslar içinde kabul edilmektedirler. Bu antijenlerin (süper antijenler), diğer antijenlerden olan önemli farkları, APC (antijen sunan hücreler) tarafından işlenmeden, MHC II molekülü ile birlikte APC 'lerin yüzeylerine çıkarılır ve buradan T hücrelerine (T4 veya T8) sunulur. T hücrelerinin yüzeylerinde bulunan TCR (T hücre reseptörünün beta zincirinin variable bölgesi (VB ) ile direkt bağlantı kurarak birleşirler. Böylece, T4 hücreleri çok kuvvetli olarak uyarılır ve aynı zamanda çeşitli sitokin sen¤¤¤lemeye başlarlar. Süperantijenler orijinlerine göre başlıca 4 kategoriye ayrılmaktadırlar. Bunlar hakkında gerekli bilgiler “Mikrobial antijenler" bölümünde verilmiştir. 3) Endotoksinler: Endotoksinler, Gram negatif bakterilerinin hücre duvarının (dış membranının) Lipopolisakkarid (LPS) karakterindeki yapısal bir komponentidir. LPS, başlıca 3 kısımdan oluşmaktadır.Bunlardan biri, lipid porsiyonu (lipid A) toksik bir karakter taşır. Buna, merkez polisakkaridleri ile O spesifik karbonhidratlar (0 antijeni) bağlanmıştır. LPS, yapısal bir özellik taşıdığından ekzotoksinler gibi dışarı salgılanamazlar. Ancak, bunlar bakteriler lize oldukları zaman ortama geçerler. LPS'ler endotoksin olarak ta bilinirler. Lipid A'nın aktivitesinde, komplementin alternatif yoldan aktivasyonunun ve sitokin sen¤¤¤inin uyarılmasının rolü oldukça fazladır. Endotoksinlerin bazı özellikleri aşağıda kısaca belirtilmiştir. a) Deneme hayvanlarında toksik etki (letal etki) meydana getirebilmeleri için yüksek dozlarda (ekzotoksinlere oranla) verilmesi gerekir. b) Termostabil bir özelliktedirler ve antijeniteleri de zayıftır. c) Vücuda fazla miktarda verildiğinde, nonspesifik klinik belirtiler meydana getirirler (ateş, septik şok, zafiyet, diare, kan koagulasyonu, intestinal hemorajiler, yangısal reaksiyonlar ve fibrinolizis). d) Endotoksinlerin hücre veya dokulara karşı spesifik afiniteleri zayıftır. e) Toksoid hale dönüştürülemezler. f) Endotoksinler, lipopolisakkarid karakterindedirler. g) Vücuda girdiklerinde belli bir inkubasyon süresine sahip değildirler. Gram negatif mikroorganizmaların hepsi aynı kimyasal yapıda LPS oluşturamazlar. Aralarında farklar bulunmaktadır. Örn, bazılarında 0 spesifik karbonhidratlar kısa ve aynı zamanda değişik yapıda bulunur. Bazılarında da (spriroketalarda) dış membranında, LPS yanı sıra lipoproteinde vardır. Endotoksinlerin vücutta oluşturdukları bazı önemli bozukluklar şöyledir. Ateş (pirojenite): Vücutta, endotoksinlerin etkisi ile kan leukositlerinden (özellikle, makrofajlardan) sen¤¤¤lenen ve salgılanan endojenik pirojenler (Örn, İL-1, İL-6, TNF, vs), vücut ısısını kontrol eden beyin hipotalamusuna etkilemesi ve uyarması sonu ateş yükselmesi meydana gelir. Septik şok: Septik şok, vücutta organlarda meydana gelen fonksiyonel bozukluklarla karakterize olan kompleks bir olgudur. Eğer, Gram negatif bakteriler fazla miktarda kanda bulunursa veya damar içi endotoksinler şırınga edilirse tehlikeli septik şok oluşabilir (kan basıncı düşer, nabız zayıflar, solunumda azalma, yüksek dozlar kan dolaşımında bozukluklar, kollaps ve ölümlere yol açar). Kanda değişiklikler: Endotoksinler deneme hayvanlarına verilince, geçici bir süre için kan leukositlerinde azalma (leukopenia) ve sonra artmalar meydana gelir. Endotoksinler trombositleri zedeleyerek intravasküler kan pıhtılaşmasına yol açarlar. Ayrıca, endotoksinler damar permeabilitesini de artırarak hemorajilere sebep olurlar. Endotoksinler, kanda inaktif bir durumda bulunan Hageman faktörü-XII (kan pıhtılaşma faktörü-XII)nü de stimule ederler. LPS'ler leukositleri ve makrofajları uyararak İL-1, İL-6, İL-8, TNF-alfa, İFN, vs gibi sitokinlerin sen¤¤¤lerine de yol açarlar. 2.02. Diğer Virulens Faktörleri Bu başlık altında toplanan virulens faktörleri de, genellikle, ekstrasellüler niteliktedirler. Bunlar mikroorganizmaların yayılma kabiliyetlerine (invazif özellik) ve hastalık oluşturmalarına yardımcı olurlar. Ekzotoksinler kadar potent olmamakla beraber bazıları oldukça önemli ve ekindirler. Çoğu, enzim niteliğindedir. Bu faktörlerden önemli bazıları aşağıda bildirilmiştir. Hemolizinler: Bir çok Gram pozitif ve negatif mikroorganizma tarafından sen¤¤¤lenen bu toksik substansların alyuvarları parçalama özelliği bulunmaktadır. Hemolizinler alyuvarların membranında zedelenmeler yaparak hemoglobinin dışarı çıkmasına yol açarlar. Protein karakterinde, termolabil ve antijenik bir özellik gösteren ekstrasellüler streptokokkal hemolizinler oksijene olan duyarlılıklarına göre iki kısma ayrılmaktadırlar. Bunlardan Streptolizin O (SLO), oksijene karşı duyarlıdır ve okside olarak tahrip olur. Bu nedenle de anaerobik koşullarda üretilen S. pyogenes suşlarında koloni etrafında beta-hemoliz oluştururlar. Diğeri ise, Streptolizin S (SLS), oksijenden etkilenmez ve aerobik koşullarda üreyen S. pyogenes kolonilerinin etrafında beta-hemoliz alanı görülebilir. SLS, aynı zamanda hücrelere bağımlı durumdadır ve lökosidin etkisine de sahiptir. Eğer mikroorganizma fagosite edilirse, makrofajları veya PNL'leri öldürebilir. Hemolizin oluşturma yeteneği pasajlarla azalır ve kaybolabilir. Hemolizinler protein karakterinde olduklarından da antijeniktirler. S. pyogenes dışında bir çok Gram pozitif streptokok, stafilokok, klostridium ve Gram negatif (E. coli, P. aeruginosa, vs) bakteriler, kanlı agar üzerinde koloni etrafında alfa veya beta hemoliz alanları oluşturan koloniler meydana getirirler. Mikroorganizmaların hemolitik aktiviteleri, kullanılan kan türüne, agarın kalınlığına, ve aynı zamanda kültür koşullarına göre değişebilir. Bazıları, alfa hemoliz (koloni etrafında tam açılma yok, yeşilimsi görünüm) bir kısmı ise tam hemoliz (beta hemoliz) oluşturabilirler. Hyaluronidase (yayılma faktörü): Bazı mikroorganizmalar (streptokok, stafilokok, C. perfringens, vs) tarafından sen¤¤¤lenen bu enzim, bağdokuda bulunan ve sement vazifesi gören hyaluronik asidi hidrolize ederek ayrıştırır ve mikroorganizmaların dokularda kolayca yayılmasını sağlar. Bu enzim, indüklenebilen bir özellik taşıdığından, ancak ortamda hyaluronik asit varsa sen¤¤¤lenir. Streptokoklarda bulunan kapsülün bileşiminde de hyaluronik asit bulunmaktadır. Hyaluronik asit mukopolisakkarid yapısında olup antijenik bir özelliğe sahiptir. Streptokinase (fibrinolizin): Bu substans daha ziyade grup A, C ve G streptokoklar ile stafilokoklar (stafilokinase) tarafından sen¤¤¤lenir. Streptokinase, kan plasminogenini plasmine çevirir. Bu ürün de (plasmin) bir protease olup kan pıhtısı fibrini eritir. Kan pıhtısı eriyince, mikroorganizmalar daha kolay yayılma olanağı bulurlar. Koagulase: S. aureus, koagulase olarak adlandırılan enzim sen¤¤¤ler ve bu enzim plazmadaki aktivatöre etkileyerek koagulasyon meydana getirir. Reaksiyonda, kanda bulunan fibrinogeni, erimez (insoluble) fibrin haline dönüştürür (koagulasyon). Fibrin, aynı zamanda, mikroorganizmaların etrafını sararak fagositozdan ve diğer zararlı etkilerden korur. Koagulase enzimi termostabil ve antijeniktir. S. aureus 'ların patojenite kriterlerinin belirlenmesinde dikkate alınmaktadır. Ancak, koagulase sen¤¤¤lemeyen mutant patojenik S. aureus 'ların bulunması, patojenite tayininde bu faktörün tek olarak kriter alınamayacağını da ortaya koymaktadır. Leukosidinler: Bu substanslar, genellikle, streptokok, stafilokok ve pnömokoklar tarafından sen¤¤¤lenmektedir. Etkinlikleri daha ziyade fagositik hücrelerden olan makrofajlar ve polimorfnukleer lökositler üzerine olmaktadır. Mikroorganizmalar fagosite olduktan sonra, bunlara ait leukosidinler, hücre sitoplasmasında, içlerinde değişik karakterde hidrolizan enzimler bulunan granülleri parçalayarak internal degranülasyona yol açarlar. Bu substansların sitosola geçmesi fagositik hücrelerin çeşitli ve önemli fonksiyonlarını bozar ve aynı zamanda ölümlerine de neden olur. Bu durum, bir bakıma fagositik hücrelerin infeksiyonu niteliğini taşır. Leukosidinler antijeniktirler ve kendilerine karşı antikor sen¤¤¤ini uyarırlar. Deoksiribonuklease (DNase): Bu enzim, S. aureus, S. pyogenes, C. perfringens ve diğer bazı etkenler tarafından sen¤¤¤lenir. Zedelenmiş dokularda bulunan hücrelerin DNA (deoksiribonukleik asit) 'sını eriterek tahrip eder. Böylece, patojenler daha kolaylıkla yayılma olanağı bulurlar. Yaralarda bulunan ve yapısının büyük bir bölümünü ölmüş fagositik hücreler oluşturan irindeki hücre DNA'ları eridiğinden içlerinde bulunan mikroorganizmalar daha kolayca ve serbest hareket edebilmektedirler. Lesitinase: Daha ziyade, Clostridium spp'ler tarafından sen¤¤¤lenen bu enzim, hücre plazma membranında bulunan lesitini ayrıştırarak membranın bütünlüğünü ve fonksiyonunu bozar. Böylece hücreler tahrip olur ve patojenlerin etkinliği de artar. Kollagenase: Bazı Clostridium spp'ler tarafından sen¤¤¤lenen bu enzim de kas, kıkırdak ve kemiklerde bulunan kollageni ayrıştırma yeteneğine sahiptir. Patojenlerin invazyon kabiliyetini arttırır. Mikrobial demir kelatörleri: Demir bir çok aerobik ve aerotolerant mikroorganizmaların yaşamaları ve çoğalmaları için çok gerekli bir elementtir. Ayrıca, demir içeren bazı enzimlerin (sitokrom, katalase) sen¤¤¤leri için de demire gereksinim vardır. E. coli 'de de demir bağlayan protein (enterochelin) bulunmaktadır. Bu protein polimerize ferrik demiri solubulize ederek hücre içine girmesine yardımcı olur. Demir bağlayan proteinlere bakterilerde siderofor adı da verilmektedir. Konakçı serumunda bulunan transferrin, süt, sıvı ve mukozalarda bulunan laktoferrin demir içeren birer protein olarak bilinmektedir. Ayrıca, kanda da hemin bulunmaktadır. Ortamlarda demirin bulunması bakterilerin üremesi ve toksin sen¤¤¤leri üzerine olumlu etkide bulunur. Difteri, tetanoz, C. perfringens, vs etkenlerin toksini için demir gereklidir. Hidrojen peroksit (H2O2): Bazı mikoplasmalar ve ureaplasmalar, genellikle, ürogenital sistem mukozalarına yerleşme eğilimi gösterirler. Çoğaldıktan sonra burada hidrojen peroksit ve amonyak (NH3) oluştururlar. Bu maddelerin böbrek ve ürogenital sistem epitel hücrelerinde birikmesi zararlı ve zedeleyici etkiye sahiptir. 2.03. Membran Parçalanmasına Neden Olan Toksinler Listeriolizin: İnsan ve hayvanlarda hastalık oluşturan L. monocytogenes, uygun ortamlarda üretildiklerinde, hücrelerin sitoplasmik membranlarında porlar açan ve böylece hücrelerin permeabilitesini bozarak parçalanmasına neden olan listeriolizin adı verilen toksik maddeyi sen¤¤¤ler. Bu substans, aynı zamanda pore forming cytotoxin (delik açan sitotoksin) olarak ta bilinmektedir. Fosfolipase: C. perfringens tarafından sen¤¤¤lenen ve alfa-toksin olarak ta tanımlanan bu sitotoksin, fosfolipase karakterinde olup hücre membranındaki lesitini hidrolize ederek erimesine ve hücrelerin parçalanmasına neden olmaktadır. 2.04. Antifagositik Faktörler Kapsül: Bazı Gram negatif ve pozitif mikroorganizmaların etrafında hem virulensin artmasında, bakterinin korunmasında ve hem de fagositozun önlenmesinde etkili olan kapsül bulunmaktadır. Örn. B. anthracis 'in etrafında protein (D-glutamik asit polimeri) karakterinde ve plasmid tarafından spesifiye edilen zayıf antijeniteye sahip bir kapsül bulunur. C. perfringens, P. multocidae, S. pneumoniae, K. pneumoniae, H. influenzae, N. meningitidis, vs. etrafında polisakkarid yapısında kapsül bulunur. Kapsül, aynı zamanda, bakteriyi, fajların lizisinden de korur. B. anthracis 'in kapsülü in vivo koşullarda meydana gelir. Kültür ortamlarında pasajı yapıldığında kapsül kaybolabilir. Ancak, serumlu ve CO2 'li besi yerlerinde kapsül formasyonu tekrar meydana gelebilir. Kapsülsüz etkenin hastalık yapma yeteneği de kaybolur. Kapsül aynı zamanda komplementin aktivitesini azaltır ve fagositoza de mani olur. Bazı mikroorganizmaların etrafında bulunan mukoid tabakasının aynı zamanda üredikleri ortama da yayılabilen mukoid maddesinin de antifagositik etkisi bulunmaktadır. Hücre duvarı antijenleri: Hidrofobik yüzeye sahip olan Gram negatif bakteriler, hidrofiliklerden daha fazla, fagositoza dirençlidirler. Streptokoklarda bulunan M proteininin antifagositik aktivitesi (aynı zamanda adherens faktörüdür) vardır. S. aureus 'ların Protein A fraksiyonu, immunglobulinlerin Fc porsiyonu ile bağlanır. Eğer böyle bir antikor, fagositik hücrelerin yüzeylerindeki Fc reseptörleriyle birleşince antifagositik etki meydana getirir. Teikoik asitinin de antifagositik aktivitesi olduğu açıklanmıştır. Böylece mikroorganizmalar fagositozdan korunurlar. 2.05. Adherens Faktörleri Mikrobial infeksiyonların çoğu, genellikle, konakçının solunum, sindirim ve ürogenital sistemlerine ait mukozal membranlarının yüzeylerinden başlar. Bu yüzeylerde oluşan makroskobik veya mikroskobik porantreler patojenik mikroorganizmaların kolayca girmesine, yerleşmesine, üremesine ve vücuda yayılarak infeksiyonlar oluşturmalarına yardımcı olurlar. Ancak, yüzeylerinde böyle hazır giriş kapıları bulunmayan, sağlam hücrelere de etkenler girebilirler. Mikroorganizmalar kendilerinde bulunan adhezyon molekülleri yardımı ile hücrelerin yüzeylerindeki spesifik reseptörlere bağlanarak tutunur ve kolonize olabilirler, daha derinlere ulaşabilir ve vücuda yayılabilirler. Bu adhezyon faktörlerinden bazıları aşağıda bildirilmiştir. Hemaglutinin: Daha ziyade virusların yüzeyinde bulunan hücrelere tutunmada yardımcı olan ve aynı zamanda, eritrositlere de bağlanarak aglütinasyon (hemaglutinasyon) meydana getiren glikoprotein karakterinde moleküllerdir (peplomer). Fimbrial ve afimbrial adhezinler: Bazı bakterilerde bulunan fimbriaların (Tip-I pilus) distal uçlarında bulunan özel adhezyon proteinleri (adhezinler, fimbrial adhezinler) veya bakterilerin hücre duvarlarında lokalize olmuş spesifik adhezyon molekülleri (afimbrial adhezinler), konakçı hücre yüzeyindeki spesifik reseptörlerle (adhezin/reseptör) interaksiyona girebilir ve bunun sonunda mikroorganizmalar hücre yüzeyine bağlanabilir ve kolonize olabilirler. Bazı bakterilerde bulunan çeşitli adhezinler başlıca iki grup içinde toplanabilirler. 1- Gram negatif mikroorganizmalarda adhezinler a- Fimbrial adhezinler: E. coli (FimH, PapG, SfaS, PrsG), H. influenzae (HifE), K. pneumoniae (MrkD). Bu fimbrial adhezinler, hücre yüzeyinde bulunan, glikolipid, galaktoz, mannoz, sialogangliosid-GMI ve tip V kollagan reseptörleriyle interaksiyona girerler. b- Afimbrial adhezinler: B. pertussis (PHA, Pertactin), H. influenzae (HMV 1/HMV 2, Hia), H. pylori (Leb-bağlayan adhezin). Bu tür adhezinler de, S'li oligosakkarid, integrin, insan epitel hücreleri, fucosile Leb-histokan grubu) reseptörleriyle ilişki kurarlar. 2- Gram pozitif mikroorganizmalarda adhezinler Bunlar daha ziyade afimbrial özellikte olup bağlandıkları reseptörlerin karakterlerine göre gruplara ayrılırlar. a- Antijen I-II grubu: S. mutans (SpaP, Pl, PAc), S. gordonii (SspA, SspB ), S. sobrinus (SpaA, PAg). Bunlar, genellikle, salivar glikoproteinlere ve actinomyces reseptörlerine bağlanırlar. b- Lral grubu: S. parasanguis (FimA), S. pneumoniae (PsaA), S. gordonii (ScaA), S. sanguis (SsaB ), E. faecalis (EfaA). Bu gruptaki adhezinler (S. pneumoniae ve E. faecalis hariç), salivar glikoproteinlerine, fibrin ve actinomyces reseptörlerine bağlanırlar. c- S.gordonii (CshA, CshB ), S. aureus (FnbA, FnbB ), S. pyogenes (SfbI, protein F). Bu adhezinler de hücre yüzeyindeki fibronectin ve actinomyces reseptörleri ile ilişki kurarlar. d- S.pneumoniae (CbpA, SpsA, PbcA, PspC). Bu etkene ait çeşitli adhezinler de, sitokinle aktive olmuş epitelyal ve endotelyal hücreler ve İgA ile ilişki kurarlar. Yukarıda da görüldüğü gibi, bir tür mikroorganizma üzerinde hem fimbrial ve hem de afimbrial adhezinler bulunabiliyor. Ayrıca, farklı mikroorganizmalar farklı karakterdeki reseptörle bağlanabiliyor (veya tersi de olabilmektedir). Mikroorganizmaların sağ tarafındaki parantez içindeki kodlar, adhezin moleküllerini ifade etmektedir. Adhezinlerin bağlandıkları reseptörler de farklı karakter (genellikle) taşımakta ve hiç bir zaman bütün adhezinlerin, yukarıda belirtilen reseptörlerin hepsine bağlanabilir özellikleri yoktur. Diğer bir ifade ile adhezinlerle reseptörler arasında spesifik bir ilişki bulunur. Bakterilerin hücrelere kolonize olmalarını önlemek için, adhezinler ile reseptörler arasındaki ilişkiyi kesmek gerekir. Bu amaçla, adhezinlerle hazırlanan aşıların vücuda verilmesi halinde gerek kanda ve gerekse mukozal yüzeylerde spesifik antikorların varlığı ortaya konulmuş ve bunların, adhezinlerle birleşerek, reseptörlerle interaksiyona girmesinin önlendiği açıklanmıştır. Örn. uropatojenik E. coli 'ye ait FimH adhezinine karşı elde edilen anti adhezin antikorların, farelerde, çok olumlu sonuçlar verdiği bildirilmiştir. Mukoid salgı: Bazı mikroorganizmaların etrafında bulunan amorf bir özellik gösteren mukoid salgı antijenik bir maddedir. Fagositoza mani olur. Glikoprotein veya mukopolisakkarid yapısındadır. S katmanı: Bazı mikroorganizmalarda bulunan ve yüzeylere bakterilerin bağlanmasını kolaylaştıran maddelerdir. Teikoik asit ve lipoteikoik asit: Gram pozitif mikroorganizmaların hücre duvarında bulunan bu maddeler de, yüzeyde yerleştikleri için, adhesyon molekülleri gibi görev yapmaktadırlar. M proteini: S. pyogenes 'lerin hücre duvarındaki M proteini aynı zaman adherens faktörü olarak ta etkindir. 2.06. Mikroorganizmaların Vücuda Adaptasyonları Patojenik etkenler, çeşitli yollardan vücuda girdikten sonra, kendilerini çok değişik olarak buldukları bu yeni ortam koşullarına (ısı, pH, osmotik basınç, oksijen, gıda maddeleri, humoral, sellüler, fiziksel, kimyasal ve biyolojik anti mikrobial, diğer faktörler, vs) adapte etmeye çalışırlar. Bu faktörlerin büyük bir kısmı mikroorganizmaların yerleşme, kolonizasyon ve yayılmasına uygun olmamasına karşın, bazıları da destekleyici bir özellik taşımaktadır. Mikroorganizmaların bu kadar çok ve farklı olumsuz koşullara karşı kendini koruyabilmesi, savunabilmesi ve vücutta yerleşebilmesi için, bu yaşam savaşından galip çıkması (diğer bir ifade ile bu yeni ortama adaptasyon için mücadele vermesi ve bundan da başarılı olması) gerekmektedir. Eğer canlı kalabilirse, o zaman mikroorganizma, kendisinin, konakçının ve diğer faktörlerin etkinlik derecesine göre, yerleşebilir, ürer ve vücuda yayılarak infeksiyonlara ve hastalıklara yol açabilir. İşte, bu süreç, bir adaptasyon dönemidir ve infeksiyon için de ilk adımı oluşturur. Mikroorganizmaların, adaptasyon periodunu aşabilmesinde, genlerinde meydana gelebilecek reorganizasyonların önemli bir rolü bulunmaktadır. Bu genetik düzenleme için bazı mikroorganizmalar yeterli bir zamana sahip olmamasına karşın, bir kısmı da bu süreyi elde edebilir. Bu nedenle de hastalık ajanların bir çoğu vücutta yerleşme fırsatı bulamadan, başta, humoral ve sellüler faktörler olmak üzere diğer savunma faktörlerinin etkisi altında üremeleri sınırlandırılır ve öldürülürler. Bu adaptasyon periodunda, mikroorganizmalarda bulunan virulens faktörlerini kodlayan genlerin önemi oldukça fazladır. Bu period içinde genlerde bir reorganizasyonun meydana gelmesi gerekir ve bu sayede adaptasyon çok daha kolaylaşır ve canlı kalma süreleri de artar. Bu sürenin uzun veya kısa olmasında, bulunduğu ortamın sağladığı olanaklar (çevresel sinyaller, fiziksel ve kimyasal faktörler-Ca, Fe, vs) oldukça fazla etkilidirler. Bu ajanların indükleyici etkileri ile, virulens faktörlerinin kısa bir süre içinde ekspresyonuna yardımcı olurlar. Ancak, bu çevresel sinyaller ve bunların etkinlik dereceleri, mikroorganizmalara göre değişebilmektedir. Besi yerlerinde yavaş üreme gösteren mikroorganizmalar (veya generasyon süresi uzun olanlar) uzun bir adaptasyon dönemi geçirmiş olanlardır. Bu süre de kendini iyi reorganize edenler, üremenin latent periodunu geçerek üreme dönemine ve böylece daha hızlı çoğalmaya başlarlar. Eğer, mikroorganizmaların latent dönemi (adaptasyon dönemi) çok kısa sürmüşse, o zaman, etkenler çok daha hızlı çoğalabilir ve kısa bir sürede üreme dönemine geçerler. Latent periodun uzun veya kısalığı, mikroorganizmaların yeni girdikleri ortamının koşulları ile çok yakından ilgili olduğu kadar mikropların reorganizasyonu ile de alakadardır. Vücuda giren mikroorganizmaların genetik düzeydeki reorganizasyon ve regulasyon mekanizmaları oldukça önemlidir ve bunlar birkaç tarzda gerçekleştirebilmektedir. 1) gen reorganizasyonları (gen amplifikasyonu, genlerin yer değiştirmeleri, rekombinasyonlar, ve bunun gibi genetik düzeydeki değişiklikler). 2) Bazı özel genlerden yapılan transkript (mRNA) sayısının arttırılması, 3) Her transkriptten elde edilecek özel ürün (protein) miktarının artırılması, 4) Bazı silent genlerin indüklenerek stimule edilmesi ve böylece aktif gen haline getirilmesi, 5) Virulens faktörlerini kodlayan genlerin ve diğer önemli genlerin aktive edilmesi, Genetik yönden reorganizasyonda, çevresel faktörlerin uyarıcı etkileri yanı sıra, bakterilerde bulunan plasmidlerin, fajların, profajların İS-elementleri, Transposonların aktivitelerinin de rolleri oldukça fazladır. Bunların yanı sıra, kromozomun replikasyonu sırasında, yan yana gelen iki DNA iplikçiğinde homolog bölgeler arasında çok azda olsa, homolog rekombinasyonların meydana gelebileceğini belirten araştırıcılar bulunmaktadır. Yukarıdaki ekstrakromozomal genetik elementler, hem kendi aralarında ve hem de bakteri kromozomu ile çeşitli tarzda rekombinasyonlar meydana getirerek kromozoma integre olabilirler. Bazı bakterilerde virulens faktörlerinin bir kısmı plasmidler tarafından kodlanmasına karşın (Örn, B. anthracis ve C. tetani 'nin toksin sen¤¤¤i), bir kısım bakteride de faj tarafından spesifiye edilir (C. diphtheriae ve C. botulinum toksin geni). E. coli başta olmak üzere, bir çok Gram pozitif ve Gram negatif mikroorganizmalarda virulens faktörlerinin en önemlilerinden birisi olan pilusların ve diğer virulens faktörlerinin bazıları yine plasmid, Transposon, ve fajlar tarafından kodlanmaktadırlar. Promotorların kuvvetinin artırılması transkript ve gen ürününün de artmasına yol açar. Bu nedenle kuvvetli promotorlardan rekombinant DNA teknolojisinde fazla yararlanılır. RNA veya DNA polimerase genlerindeki mutasyonlar da replikasyona ve genlerin ekspresyonlarına olumsuz yönde etkilerler. Ayrıca, virulens genlerinin ekspresyonuna, promotor bölgesinde oluşan mutasyonlar da tesir ederler. 2.07. Mikroorganizmaların Giriş Yolları ve Miktarı 1) Mikropların vücuda girmesi: Mikroorganizmaların hastalık yapabilmesindeki ilk basamak, vücuda girmekle başlar. Bunun için bazı giriş kapılarına (porantre) ihtiyaç vardır. Vücutta bulunan en önemli giriş kapıları ağız, yutak ve sindirim sistemi, burun, larinks ve trachea ve akciğerler, genital organlar, göz konjunktivası ve deridir. Salmonella, shigella, vibriolar, brusella ve tüberküloz etkenleri sindirim sisteminden girerek; Corynebacterium diphtheriae insanlarda boğazda yerleşerek toksin meydana getirir ve bu zehir vücuda yayılarak hastalık yapar. Hayvanlarda septisemik hemorajik karakterde seyreden pastörellozisin etkeni ekseriya yutak ve larinkste yerleşmiştir. Bünyede bir zayıflamanın olduğu hallerde hastalık meydana getirirler. Tüberküloz ve anthraks etkenleri solunum yolu ile bulaştıkları gibi deriden de geçebilir. Deriden, ayrıca, leptospira, brusella, anaeroblar, anthraks mikroorganizmaları da girebilirler. Çiftleşme ile, genital yolla, sifilis, N. gonorrhoea, brusella ve C. fetus bulaşabilir. Göz yolu ile leptospiralar, listerialar ve diğer mikroorganizmalar girerek hastalık yapabilirler. Yukarıda yapılan ayrım kesin bir durum göstermez. Yani bir mikrop birçok yollardan vücuda girerek hastalık yapabilir. Örn, brusella sindirim, deri ve çiftleşme ile; tüberküloz, deri, sindirim ve solunum; antraks basilleri deri, sindirim ve solunum yolu ile bulaşabilir. Çeşitli yollardan infeksiyon meydana getirebilen mikroorganizmaların yaptığı hastalığın klinik tablosu girdiği yere göre değişebilir. Örn, B. anthracis sporları solunum yolu ile alınmışsa, akciğer antraksı, deriden alınmışsa girdiği yerde püstül ve ödem (kasap çıbanı), tüberküloz mikrobu deriden girerse deri tüberkülozu, barsaktan girerse barsak ve solunum yolu ile alınırsa akciğer tüberkülozunu meydana getirir. C. tetani, deride bulunan derin ve kirli yaralarda yerleşerek ürer ve toksin meydana getirir. Bu toksin kana karışarak hastalık yapar. Botulismde ise, toksin ihtiva eden gıdaların alınması sonu barsak yolu ile zehirlenme olur. Mantarların çoğu da, deri, solunum ve sindirim sisteminden girerek mikozeslere neden olurlar. Mikroorganizmaların hastalık yapabilmeleri için, bunların uygun yolla girmeleri de gereklidir. Örn, S. typhi sindirim yolu ile alınırsa vücudu istila edebilir ve hastalık meydana getirebilir. Deriden girerse çok nadiren vücuda yayılabilir. Buna karşın grup A hemolitik streptokoklar deriden girerek yayılma kabiliyetine sahiptirler: F. tularensis, derideki yaralardan girerse lenf yumrularında lokalize olur. Kana geçip istila edemez. Bu durumda ölüm oranı %5 kadardır. Halbuki, aynı etken sokucu sinek veya keneler aracılığı ile dokulara kadar iletilirse septisemi meydana getirir ve %95 ölüme sebep olabilir. Aynı şekilde, tetanoz toksinleri sindirim sisteminden girerse hastalandıramaz. Neisseria gonorrhoea ağızdan bulaşamaz. Beyin, damar ve periton içine verilen mikroorganizmalar, diğer yollardan, daha çabuk hastalık meydana getirirler. Vücudu mikroplardan koruyan sistemlerden biri de deri ve mukozaların mikroplar üzerine olan inhibitör ve öldürücü etkileri çok önemlidir. Deri dokusu salgılarıyla birçok mikroorganizmaların ölmesine sebep olmasına rağmen, derideki kıl ve yağ folliküllerinden ve çok küçük yaralardan mikroplar girerek infeksiyonlar yapabilirler (S. aureus, streptokoklar ve korinebakteriler, leptospiralar, vs.). Solunum ve genital organlarda bulunan mukus salgılayan hücreler de mikropların mukoza hücrelerine yerleşmesine mani olur. Bazı mikroplar lizozim enziminin etkisiyle öldürebilirler. Fakat, buna rağmen yine buralardan mikroplar girebilirler. Göz yaşının da aynı şekilde, mikroplar üzerine olumsuz etkisi vardır. Fakat, göz konjonktivası yolu ile de mikroplar hastalık yapabilirler. Mide asiditesi bazı salmonellaları inhibe eder. Fakat, bu asiditenin bozulduğu zamanlarda mikroplar mideyi kolayca geçebilirler. Bazı mikroplar normal deri ve mukozadan geçemezler. Ancak, deride ve mukozada meydana gelecek çok ufak mikroskobik yaralar mikropların giriş kapısı vazifesini görürler. Deri üzerinde sokucu insektlerin açtığı yaralardan mikroplar kolayca girebilirler. Su ile fazla yumuşamış deriden leptospiralar ve brucellalar kolaylıkla geçebilirler. 2- Mikrobun dozu (miktarı): Vücuda porantrelerden giren mikroorganizmalar, bir infeksiyonu başlatabilecek miktarda, olmalıdırlar (MİD minimum infektif doz). Bu limitin altında girenler, vücudun hücresel ve humoral savunma sistemleri ile kolayca yok edilirler. Mikrop sayısı ne kadar fazla olursa, konakçının hastalanma şansı o derece artar. Hastalık yapma veya başlatma limiti mikropların virulensine ve konakçının duyarlılığına göre de değişir. Virulensi fazla olan mikroorganizmalar çok hassas konakçıya az sayıda girseler bile, bir infeksiyonu başlatabilirler. Pasteurella multocidae için güvercinler, antraks basilleri için fareler örnek verilebilir. Mikroplar girdiği yerde yerleşmesine, üremesine ve buradan çeşitli yollarla (kan, lenf ve sinir sistemi) dokulara yayılmasına invazyon kabiliyeti adı verilir. Enterobakterilerin invazyon kabiliyeti, fazladır. Buna karşılık, deride yerleşen streptokok veya stafilokoklar, genellikle, burada lokalize olurlar. Bazen bitişik dokulara yayılırlar. 3. Konakçıya Ait Faktörler 3.01. Bağışıklık Mikroorganizmalar ne kadar virulent olurlarsa olsunlar konakçı duyarlı değilse ve savunma mekanizmaları tarafından önleniyorsa infeksiyon meydana gelemez. Konakçının direncine etkileyen bir çok faktörler vardır. Bunlar yerine göre işbirliği içinde, konakçıyı korumaya çalışırlar. Ancak, bu savunma mekanizmaları bazen yetersiz kalmakta ve canlılar hastalanmaktadırlar. Bir hastalıktan iyileşen şahsın, aynı infeksiyona, genellikle, ikinci kez yakalanmadığı veya en azından, uzun bir süre direnç gösterdiği eskiden beri bilinmektedir. On birinci asırda Çinliler, çiçek hastalığı geçirenlerin hayat boyu bu infeksiyona tutulmadıklarını bilmekteydiler. Bu nedenle, iyileşmiş kişilerin, hastalarla ilgilenmelerinin ve onlara yardım etmelerinin bir sakınca yaratmayacağını belirtmektedirler. Bu görüşler hastalıkların nedeni üzerinde durulmaksızın ve bilinmeksizin, Edward Jenner’e kadar muhafaza edilmiştir. Bağışıklığın kurucusu olarak kabul edilen bu bilim adamı, sığır çiçeği alan bir şahsın, insan çiçeğine karşı bağışık olacağını ve hastalanmayacağını deneysel olarak göstermiş ve böylece aşılama ile immunitenin elde edilebileceğini kanıtlamıştır (1798). Bağışıklık genel anlamda, vücuda giren veya verilen yabancı substanslara (mikroorganizma, toksin, toksoid, protein, polisakkarid, kompleks yapıdaki moleküller, vs.) karşı vücudun bütün genel ve özel savunma mekanizmaları ile karşı koyması, direnç göstermesi, kendini koruması ve zararlı maddeyi elimine etmesi olarak tanımlanabilir. Bağışıklık, bu genel tarifi içinde vücutta, birbirlerini tamamlayan ve çok yakın ilişkide bulunan başlıca iki temel korunma mekanizması tarafından sağlanmaktadır. DoğaI Bağışıklık 1)Genetik faktörler 2)Fizyolojik faktörler 3)Primer savunma mekanizması 4)Sekonder savunma mekanizması Edinsel Bağışıklık 1)Aktif bağışıklık a)Doğal aktif bağışıklık b) Suni aktif bağışıklık 2) Pasif bağışıklık a)Doğal pasif bağışıklık b) Suni pasif bağışıklık 3) Adoptif bağışıklık 3.02. Doğal Direnç (Yapısal direnç, Kalıtsal direnç, Nonspesifik direnç, Doğal Bağışıklık) Canlıların yapısal (anatomik, fizyolojik, fiziksel, kimyasal, vs) ve kalıtsal karakterleri ile ilişkili olarak, dışardan giren patojenik, apatojenik etkenlere ve diğer substanslara yönelik olarak genel savunma mekanizması yardımı ile karşı koyması ve kendini koruması doğal direnç (doğal bağışıklık) kapsamı içinde bulunmaktadır. Genetik olarak kontrol edilen ve kalıtımla nesillere aktarılabilen bu tür direnci, ayrıca, destekleyen ve yardımcı olan bir çok sekonder faktörler de vardır. Doğal dirençte etkinliği olan başlıca faktörler aşağıda gösterilmiştir. Genetik Faktörler Doğal direnci oluşturan faktörlerin başında genetik nitelikte olanları bulunmaktadır. Yavrulara kalıtsal olarak aktarılan bu karakter türler, ırklar ve bireyler arasında bazı değişiklikler göstermektedir. 1) Türlere ait direnç: İnsanlarda rastlanılan kızıl, kızamık, boğmaca, kolera, kabakulak, tifo, gibi bir kısım hastalığa ait bakteriyel ve viral etkenler hayvanlarda hastalık oluşturmazlar. Kanatlıların bir çok viral hastalığı da (AE, LL, Marek, IB, ILT, EDS, gibi) insan ve diğer memeli hayvanlarda bozukluklar meydana getirmezler. Hayvan türleri arasında da türlere özgü hastalıklar vardır. Şöyle ki, At vebası hastalığı tek tırnaklılarda, sığır vebası hastalığı da çift tırnaklılarda görülür. 2) Irklara (soy) ait direnç: Aynı tür içinde bazı ırklar (soylar), türün, genelde duyarlı bulunduğu infeksiyonlara, değişik derecede hassasiyet gösterirler. Örn, koyunlar, genel olarak, B. anthracis ’e duyarlıdırlar. Ancak, Cezayir koyunları, bu infeksiyona daha fazla doğal bir direnç gösterir ve hastalığı almazlar. Merinos koyunları, Piroplasmosis ve deri hastalıklarına daha fazla yakalanırlar. İnsanlar arasında, Negrolar Tüberkulozis ve mantar hastalıklarına, Anglosaksonlar solunum sistemi infeksiyonlarına daha duyarlıdırlar. Tavuk yumurta lizozimi, strain B10 farelerinde supresyon oluşturmasına karşın, B10 A ırklarında ise antikor sen¤¤¤ini uyarmaktadır. Poli-L-lizin, strain 2 kobaylarda hücresel bir yanıt meydana getirmesine karşın, strain 13’lerde hiç bir immunolojik cevap oluşturmamaktadır. Leghorn ırkı yumurtacı tavuklar, S. gallinarum infeksiyonlarına dirençli oldukları halde, Newhampshireler ise çok duyarlıdırlar. 3) Bireylere ait direnç: Bireyler arasında da hastalıklara yakalanma yönünden bazı farklar vardır. Ancak, bu durum genetik faktörler kadar, diğer nedenlerin etkisi (şahısların konstitüsyonel özellikleri yanı sıra, kondisyonel durumları, beslenme, kendini koruma ve diğer faktörler) altında da oluşmaktadır. İnsanlar arasında bir hastalığa (Örn, Grip), erken veya geç yakalananlar, hiç hastalanmayanlar, çok hafif veya çok şiddetli geçirenler bulunmaktadır. Hayvanlar için de benzer durumlar vardır. 4)Hücrelere ait direnç: Canlılar arasında türlere ve ırklara ait dirençte, hücrelerin yüzeyindeki özel reseptörlerin rolleri fazladır. Eğer, hastalık, ajanları, hücrelere kendinin bağlanmasına yardımcı olan reseptörleri bulamazsa tutunamaz, kolonize olamaz ve üreyemezler. Bunun sonunda da hastalık oluşturamazlar. Bir vücutta bazı doku ve organlar, mikroorganizmalarını yerleşmesine çok daha fazla duyarlı olabilmektedir. Fizyolojik Faktörler Doğal direnci destekleyen yan faktörler arasında bazı fizyolojik özellikler de bulunmaktadır. Bunlar da, 1) Vücut ısısı: Normal koşullarda, ısısı yüksek (41-42°C) olan kanatlıların hastalıkları (bakteriyel veya viral), ısısı 37-38°C arası olan memelilerde görülmemektedir. Bunun tersi de mümkündür. Ancak, kanatlılar normal koşullarda B. anthracis ’ten ileri gelen infeksiyonlara yakalanmamalarına karşın, bu hayvanların tüyleri yolunduktan sonra belli bir süre 37°C de tutulurlarsa deneysel olarak infekte olabilirler. Soğuk kanlılardan olan balıkların ve diğer hayvanların hastalıkları da, sıcak kanlılara bulaşmamaktadır. 2) Yaş durumu: Yeni doğanlar ile çok yaşlılar, immun sistem fonksiyonlarının yeterince aktif olmamaları ve hücresel aktivite noksanlığı nedenleriyle, gençlere veya erginlere oranla, bir çok infeksiyonlara daha duyarlıdırlar. Ancak, maternal antikorlar yeni doğanlarda önemli koruyucu etkiye sahiptir. Bazı hastalıklar da gençler arasında, erginlerden daha fazladır. 3) Hormonlar: Hormonları normal çalışan bireyler, hastalıklara daha dirençli olmasına karşın, hormonal bozukluk hallerinde vücut duyarlı hale gelmektedir. Ayrıca, hormon tedavileri de, doz ve süre iyi ayarlanmazsa, vücut direncinde azalmalara yol açmaktadırlar. 4) Beslenme: Yeni doğanlar için çok gerekli olan kolostrum ve spesifik antikorlar yanı sıra vitamin, karbonhidrat, yağ, protein, mineraller ve bazı sitokinler (TNF-a, TGF-b, IL-1b, vs) yönünden oldukça zengindir. Bu nedenle, neonatallar için çok gerekli bir besini oluşturur ve hayatın ilk günlerinde çeşitli bakteriyel, viral ve mantar infeksiyonlarına karşı koruma sağladığı gibi direnci de arttırır. Dengeli beslenmenin çeşitli infeksiyonlara karşı korumada çok önemli rolü vardır. Yetersiz gıda ve iyi beslenememe vücudun direncini zayıflattığı gibi antikor yapımına da olumsuz yönde etkiler. 5) Diğer fizyolojik faktörler: Öksürük, tıksırık, barsak peristaltiği, urinasyon, defekasyon, burun akıntısı, deskuamasyon, solunum sistemindeki siliar aktivite vs. gibi fizyolojik olgular mikroorganizmaların dışarı atılmasında önemli rollere sahiptirler. Primer Savunma Mekanizması Bir çok önemli ve nonspesifik komponentin işbirliği ile gerçekleştirilen bu savunma sisteminin, dışardan girebilecek her türlü hastalık yapıcı ajanlara karşı vücudu korumada önemli rolü vardır. Konakçı duyarlı, çevresel koşullar uygun ve mikroorganizmalar da virulent olsalar bile, yine bu sistem bütün elementleri ile direnç göstererek etkenlerin girmesine, kolonize olmasına ve yayılmasına mani olmaya çalışır. Primer savunma mekanizması, genelde, vücut yüzeyinde ve mukoz membranlarda aktivite gösterdiğinden, buna aynı zamanda tam karşılığı olmasa bile, dış savunma sistemi de denilmektedir. Bu savunmada rolleri olan başlıca faktörler aşağıda bildirilmiştir. 1) Tüyler: Hayvanların derisi üzerinde bulunan yapağı, tüy, yün veya kıl örtüsü bir çok tehlikeli mikroorganizmanın vücuda girmesine mani olduğu gibi, derinin yaralanmasına ve bütünlüğünün bozulmasına da karşı koymaktadır. Bu örtü, ayrıca, deri ve vücudu, aşırı soğuk ve sıcaktan, mekanik, fiziksel, kimyasal diğer faktörlerin zararlı etkisinde de korumaktadır. 2) Deri: Sağlam derinin epitel örtüsü mikroorganizmaların girişini önleyen önemli ve iyi bir bariyerdir. Bu epitel katmanının yaralanmaması ve bütünlüğünün bozulmaması gereklidir. Birçok patojenik mikroorganizma sağlam deriden geçememektedir. Ancak, bazıları (leptospiralar, brucellalar, vs) su ile yumuşamış sağlam deriden girerek infeksiyon meydana getirebilmektedir. Deride oluşan her türlü mikroskobik veya makroskobik lezyonlar mikroplar için uygun birer porantredirler. Fakat, her mikroorganizmanın infeksiyon oluşturabilmesi için virulensi yanı sıra, vücuda uygun bir yoldan ve yeterli miktarda da girmesi gerekmektedir. Örn, Mycobacterium tuberculosis ve B. anthracis insanlara deriden girerse, burada lokalize olabilir ve generalizasyon meydana gelmeyebilir. Stafilokok ve streptokoklar için de benzer durum söz konusudur. Deride bulunan ter ve yağ bezlerinin salgıları, bir çok patojenik mikroorganizmanın deride lokalize olmasına ve deriden içeri girmesine mani olurlar. Bu salgılar, mikroorganizmalar üzerine inhibitör veya öldürücü etkiye sahiptirler.Yağ bezi salgısının içinde bulunan doymamış uzun zincirli yağ asitleri (oleik asit gibi) hem deri yüzey pH’sını (3.5-5.5) düşürür ve hem de mikroplar üzerine antibakteriyel bir etki yapar. Sebumda bulunan kaproik ve kaprilik asitler bakterisidal bir etkiye sahiptirler. Terdeki laktik asit ve lizozim de benzer tarzda etkide bulunurlar. Terin içinde bulunan tuz konsantrasyonu da yüzeyde yüksek bir ozmotik basınç meydana getirir. Deri üzerindeki yerleşik mikrofloranın antagonist etkisi birçok patojenik etkenin kolonize olmasını önler. Deride komensal olarak bulunan C. acnea ’nin, özellikle S. aureus ve S. pyogenes gibi mikroorganizmalar üzerine bakteriostatik etkisi vardır. Deskuamasyon da deri üzerinde yerleşik mikroorganizmanın bir kısmının atılmasında büyük bir etkinlik gösterir. Derinin yıkanması veya dezenfekte edilmesi, folliküllere ve yağ bezlerine kadar girmiş olan etkenleri tam olarak elimine edemez. Derinin yukarıda belirtilen koruyucu etkinliği yanı sıra, immunolojik yönden de savunmaya katkısı olmaktadır. Özellikle, antijen işleyen ve sunan dendritik karakterdeki makrofajların (Langerhans hücreleri), T-hücrelerine (Th-lenfositleri) antijen sunmada ve salgıladıkları İL-1 ile de B- ve T- hücrelerini uyarmada önemli rolleri bulunmaktadır. 3) Mukoz membranlar ve salgıları: Sağlam mukozal yüzeyler, genellikle, bazı mikroorganizmalar için uygun giriş kapıları olarak düşünülmemektedir. Mikroorganizmaların içeri girmeleri için, önce mukus bariyerini geçmesi ve sonra da epitel hücrelere temas ederek onlara tutunması gerekmektedir. Eğer mukozal yüzeylerde, çeşitli nedenlerden ileri gelen porantreler varsa, mikropların girişi çok daha kolay olur. Vücutta bazı bölgelerdeki mukoz membranlar (ağız, yemek borusu, mide) çok katlı epitel hücrelerden oluştuğundan hastalık ajanlarına girişlerine karşı daha fazla direnç gösterirler. Solunum, sindirim ve ürogenital sistemlerin mukozaları üzerinde mukoid salgı daha fazla bulunmaktadır. Bunların koruyucu etkisi oldukça fazladır. Mukoz membranların yüzeyini örten mukoid tabaka (Mukus, MA: 530000) ve bunun devamlı hareket halinde olması mikropların hücrelerle direk temasını zorlaştırır. Birbirlerine disülfid bağlarla birleşmiş bir glikoprotein yapısında olan mukus, ayrıca, siliar aktivite nedeniyle de bir hareket hali gösterir. Ancak, piluslara sahip olan etkenler ile hareketli patojenik mikroorganizmalar bu mukoid tabakayı bazı noktalardan kolayca geçerek epitel hücrelerine ulaşabilirler. Ayrıca, mukoid katmanın zayıf olduğu yerler de bulunduğundan, buralardan hareketli veya hareketsiz bir çok mikroorganizma epitel hücrelerine tutunabilirler. Bu salgı tabakasının içinde bulunan bazı antibakteriyel substanslar (lizozim, sİgA, enzimler, mikrobial flora, fibronektin, vs) birçok etkenin kolonize olmasını önleyecek bir karakter gösterir. Bu aktivitede sİgA’ların özel bir yeri ve önemi vardır. Bazı mikroorganizmalar (N. meningitidis, N. gonorrhoea, H. influenzae, S. pneumonia, vs) salgıladıkları bazı maddelerle (sİgA protease), özellikle, sİgAl’in yapısını bozarak etkisiz hale getirir. Bu enzim, immunglobulini Fab- ve Fc-porsiyonlarına ayırır. Bazı bakteriler de (Bacterioides asaccharolyticus, B. melaninogeniscus) sİgAl, sİgA2 ve İgG yi ayrıştıracak enzim sen¤¤¤lerler. Barsaklarda yerleşik bulunan anaerobik mikroorganizmalardan kaynaklanan yağ asitleri, bazı salmonella ve shigella türlerinin üremelerini inhibe ettiği belirtilmiştir. Glisin ve taurin bileşikleri halinde sen¤¤¤lenen safra tuzlarının, barsakta anaerobik mikroorganizmalar tarafından kompleks safra kompozitlerine dönüştürülmesi, Bacteroides fragilis ve C. perfringens, laktobasil ve enterobakterilerin üzerine inhibitör etkisi bulunmaktadır. 4) Mikrofloranın etkinliği: Vücutta mukozal yüzeylerden (solunum sistemi, sindirim sistemi, ürogenital sistemlerin mukozaları ve göz konjunktivası yerleşik olarak bulunan ve bu yüzeylere daimi mikroflorasını oluşturan çeşitli tür ve sayıda mikroorganizmalar bulunmaktadır. Bunlar birbirleriyle kompetasyon (rekabet) halinde yaşayarak bir denge kurmuşlardır. Bu duyarlı denge, mikroorganizmaların salgıladıkları çeşitli türden antimikrobial substanslarla (bakteriyolisinler, lizozim, diğer enzimler, sIgA'lar, yağ asitleri, safra tuzları, vs) birbirlerinin üremelerinin belli limitler içinde kalmasını sağlarlar. Ayrıca dışardan gelen patojenik ve apatojenik etkenlerin de yerleşmesine mani olurlar. Bu dengenin bozulduğu durumlarda bazıları üreyerek konakçısını hastalandırabilirler.

http://www.biyologlar.com/infeksiyonun-mekanizmasi

İSTİRİDYE BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Aynur LÖK - Ege Üniversitesi Su Ürünleri Fakültesi, Yetiştiricilik Bölümü Bornova-izmir Mollusca bireylerinin tüketimi insanoğlunun tarihi ile yakından ilgilidir. Bugün arkeolojik verilerden de anlaşılacağı gibi, deniz kıyısında yerleşim alanları oluşturmuş insanların balık avlamadan önce bu sabit canlıları tükettikleri bilinmektedir. Mağaralarda çok miktarda yenmiş midye ve istridye kabukları bulunmuş; ve bunların bir kısmından kolye yapılmışlardır. Doğal ortamlardan toplanarak tüketim ilk günden bu güne kadar gelmektedir. İlk kültür çalışmaları 17. yüzyılda Japonlar tarafından ele alınmıştır. Bambu kamışları dikerek istridyelerin bunların üzerine tutunmasını sağlayarak yetiştirmişlerdir. Yine bambu kamışlarından sal yaparak denizde sadece dikey değil yatay olarak da yetiştiriciliği başlatmışlardır. Bu dönemde yavruların çoğu doğadan toplanmaktadır. İnsan kontrolü altında ilk yavru üretimi 1879 yılında ele alınmıştır. 1920’de ise kültüre alınacak boya kadar yetiştirilmişlerdir. Bugün birçok ülke yarı kontrollü olarak dipte, kazıklarda, halatlarda, rafta ve sallarda yetiştiricilik yaparken, tam kontrollü olarak yumurtadan pazar boyuna kadar istiridye üretimini de başarılı bir şekilde yapmaktadırlar. Istiridye yetiştiriciliğinde söz sahibi olan ülkelerin birkaçını ve yetiştirdikleri türleri sıralayacak olursak şöyledir; Japonya Crassostrea gigas Fransa Ostrea edulis, Crassostrea angulata, C. gigas Amerika Crassostrea virginica Portekiz Crassostrea angulata Filipinler Crassostrea eradelis Avustralya Crassostrea commercialis Ingiltere Ostrea edulis İnsan gıdası olarak yararlanılan kabuklu su canlıları görüldüğü gibi dış ülkelerde önemli bir yer tutmaktadır. Ülkemizde ise kabuklu deniz canlılarının tüketimi sadece deniz kıyısı olan bölgelerde yaygındır. Kıyı harici şehirlerimizde bu kabuklu canlıların pazarlandığını görmek sanırız pek mümkün değildir. Bu kabuklu su canlıları son yıllarda ülkemizde tanınmaya başlanmıştır. Ülkemizde tüketiminin pek fazla olmamasına rağmen dış talebin yüksek olaması nedeni ile bazı ihracatçılar bu canlıları doğadan toplatarak Italya, Ispanya, Yunanistan gibi ülkelere pazarlanmaktadır(Alpbaz, 1993). İstridyenin Sistematikdeki Yeri Phylum: Mollusca Classis: Bivalvia (Lamelibranchiata) Ordo: Filibranchiata Familia: Ostreidae Genus: Ostrea (Linne, 1758) Species : Ostrea edulis (Linne) Ostrea lurida (Carpenter) Ostrea angasi (Sowerby) Ostrea chilensis (Philippi) Genus: Crassostrea (Sacco, 1897) Species: Crassostrea gigas (Thunberg) Crassostrea virginica (Glein) Crassostrea angulata (Lamarck) Crassostrea rhizophorae (Guilding) Crassostrea madrasensis (Preston) Ülkemiz sularını temsil eden tek tür Ostrea edulis’tir. Marmara Denizi, Ege Denizi, Akdeniz ve Karadeniz’in Istanbul Boğazı ile birleştiği noktada görülmektedir. -Genus: Crassostrea (Sacco, 1897) Olgun istiridyelerde kabuklar karınlı ve uzundur. CaCo3’ın depolanması nedeniyle kabuklar yapraksı görünümdedir, ve sol kapağın karınlı alanı içerideki canlının gelişmesine imkan verir. Sağ kapakçık tamamen düzdür. C. gigas’ta süslü yapıda kapak mevcuttur. Ovipardırlar ve büyük üreme kabiliyetine sahiptirler. Intertidal zonda yaşarlar. Tuzluluk değişimlerine dayanıklı olduklarından acı sularda kolonize olabilirler. C. gigas Pasifik Okyanusu kökenlidir. Ayrıca S.S.C.B.’nin Vladivostok Denizi’nde, Sacolin Adası’nda, Japonya’da lokal 2 ırkı vardır. Iwata bölgesinde, Hiroşima’da, Kore’de, Kuzey Amerika’da (Alaska’dan, Kalifornya’ya kadar) yayılım gösterir(Korringa, 1976a). Bazı araştırıcılar C. gigas ve C. angulata’nın aynı tür olduğunu belirtirler. Portekiz türünün C. gigas’tan türediğini, 15-17. yüzyıla kadar ticaret seferleri yapan tahta gemilere yapışarak Avrupa’ya gelip yerleştiklerini söylemektedirler. Bununla birlikte bu iki türün farklı özellikler gösterdiği belirlenmiştir. Bunlar; solunum metabolizması, küçük zerrecikleri tutma özelliği, büyüme kabiliyeti, üreme şekilleri, farklı hastalıklar karşısındaki durum fizyolojik olarak her iki ırkın az da olsa farklılık gösterdiği tespit edilmiştir. -Genus: Ostrea (Linne, 1758) Kabuk oval şekilli olup, belirsiz kanca burunlu (gagalı), yaprak şeklinde, sarımsı kahverengi renge sahiptir. Sol kabuk hafif küp, sağ kabuk yassı görünümdedir. En önemli türü O.edulis olup max. 12cm, genellikle 6-7cm uzunluğunda olurlar. Yetişkin türlerde bireyin şekli yuvarlaktır. Sınırlı bir üreme vardır ve larvipardır. Tuzlu sularda yaşayıp bulanıklılığa karşı toleransı azdır. Doğal ve kültür yatakları daima denizin içerisinde olmalıdır(Infralittoral zon). Bu daha çok Kuzey Avrupa türü olup Norveç’ten Fransa’ya kadar (Ingiltere, Almanya, Hollanda, Irlanda ve diğer ülkeler) uzanır. Daha güneyde Ispanya kıyıları ile Fas’ın güney ucuna kadar yayılmışlardır(Korringa, 1976b). Akdeniz’de Fransa, Italya, Sicilya’dan Karadeniz’e kadar uzanır. Ülkemizde sahil ötesi kumlu, çamurlu veya kayalık bölgelerde yaşarlar. 2-İSTRİDYENİN BİYOLOJİSİ Morfolojik olarak Ostrea edulis dairesel şekilli iki kabuktan meydana gelmiştir.Her iki kabuk dorsal kenarlarından boynuza benzeyen ligamentlerle birbirine bağlanmıştır. Ligamentin esnekliği kabukların açık durmasını sağlar. Bu, hasta yada ölü istridyenin karakteristik bir özelliğidir. Açılmış kabukların canlılığı herbiri ayrı fonksiyona sahip olan iki kısma ayrılmış adductor kası tarafından kontrol edilir. Adduktor kası merkezdedir ve her iki kabuğa sıkıca yapışmış durumdadır. Vücut kısmı addüktör kası ile mafsal arasında uzanır. Kalp, bağırsak, böbrek, mide bu bölümdedir. Gonadlar da buradadır. Üreme zamanında gonadlar tüm yüzeyi kaplayarak krem beyaz görünüm alırlar. Manto, vücut kısmının her iki yanını kaplayan düz bir dokudur ve kabuk kenarı boyunca sabit olarak uzanır. Manto kenarlarında bulunan materyalin ilavesi sonucu kenar kısmında kabuk oldukça gelişmiştir. İstridye kabuklarının %95’den fazlası kalsiyum karbonattır. Manto vücudun iki yanında kabukla vücut arasında bir örtü gibi bağ dokuya asılıdır. Bu nedenle bir ada gibidir. Mantonu uçları üç yaprak şeklindedir. Bunlardan iki sıra kabuk üretiminde görev alırlar, içteki ve en geniş olanı vücut ile kabuk arasında perde görevi yapar. Mantonun öbür ucundaki yapraklar ayrı ayrı veya birlikte hareket ederek suyun manto içine akışını kontrol eder, bu durumda kabuklar yuva gibidir. Manto bölgesine giriş manto uçlarının birleşmesi ile sınırlandırılır. Küçük organizmaların girmesine ve suyun atılmasına olanak verir. İstiridye solungaçları vücudun 2/3’ünü sarar. Belli aralıklar ile birbirine bağlanmış küçük filamentlerden oluşur. Su, manto boşluğundaki su alma bölümünden filamentler üzerinde bulunan kırbaç biçimindeki sayısız sillerin hareketi ile su tüplerine hareket eder. Bunlar sadece suyun hareketini sağlamaz, aynı zamanda istiridyenin besinin oluşturan küçük parçaları da sudan filtre eder. Bu süzülen su, solungaç tüplerine geçer ve oradan su verme bölümüne, en sonunda manto boşluğundan dışarı atılır. Solungaçlar dört adet yarı ay şeklinde tabakalardan ibarettir. Manto uçlarının birleşmesi, manto kısmını manto odası ve solungaçları içeren geniş bir oda küçük bir boşaltım odası olmak üzere ikiye ayırır. Ayrıca bir boşaltım kanalı içerir. Bu manto ile vücudun sağ yanı arasında bulunur ve istiridyelerin özellikle çamurlu ortamda yaşamasına yardımcı olur(Walne, 1974). Solungaçlar basit bir süzgeç mekanizması değildir. Aynı zamanda komplex bir ayırma aygıtı gibi olup, uygun gıdanın yeterli miktarda ayırım ve değerlendirilmesini yapar. Gıdasını teşkil edecekler ağıza, diğerleri atık bölgeye liflerin yardımı ile yollanır. Çok iri olanlar mantonun altına düşürülür (Walne, 1974). Kabuklularda solungaç yapısı birbirlerine benzemesine karşın farklılık filamentlerin bağlantı şeklinde olup, Mytilus edulis’te filamentler arası organik bağlara rastlanmaz. Fakat istiridyelerde bu olay yukarıda görüldüğü gibi bulunmaktadır. Örneğin akivadeslerde bu filament bağlantılarının derecesi istiridyelerde bulunanlardan çok daha yüksektir. İstiridyenin sağ kabuğu düzdür ve larva metamorfoza ulaştığında kendini sol kabuk üzerinde zemine tespit eder. Uygun koşullarda istiridyeler bütün gün boyunca kabuklarını açıp su içerisindeki planktonları ve zerrecikler halindeki organik maddeleri, hatta su içerisindeki mineraller maddeleri bile süzerek gıda olarak kullanırlar(Claus, 1981). Böylece su içerisindeki organik maddeleri ete çeviren canlılar olarak önem kazanırlar. Su akımının esas rolü şüphesiz ki beslenme üzerinedir. Fakat bunun yanında su, sindirim sisteminde ve böbreklerde oluşan atıkları uzaklaştırmaya yarar ve ayrıca canlıya O2 sağlar. İstiridyelerin filtrasyon hızını sıcaklık, suyun debisi ve partikül konsantrasyonu etki eder. 3-İSTİRİDYELERDE ÜREME İstridyeler eşeyli üreme gösterirler. Üreme organları erkek ve dişi gametleri oluşturur. Bunların üreme mevsimi ilkbahar sonu ile sonbahar arasında olup havaların ısınmasıyla başlar, soğumaya başlaması ile sona erer. Her iki seksdeki gonadlar birçok hayvanda bulunan ile karşılaştırıldığında basit yapıdadır. Sindirim sistemi üzerinde yerleşmiş durumdadır. Avrupa istiridyesi, Ostrea edulis, olgun durumda iken gonadlar 2 veya 3mm kalınlığında bir tabaka biçimindedir. Seksler arasındaki farklılık yumurta ve sperm varlığından hariç dış görünüşten belli olamaz. 3.1 İstiridyelerin Gonad Gelişim Safhaları İstiridyelerin gonad safhalarını belirlemek için alınan histolojik örneklerde gonad aşamaları beş grup altında değerlendirilmektedir(Cole 1942; Brausseau, 1995; Garcia-Dominguez ve ark., 1996, Yolkolu, 2000). Bu gruplar: Safha 0 Dinlenme Safha 1 Ilk Gametogenesis Safha 2 Olgunlaşmaya başlama Safha 3 Döl atımına hazır Safha 4 Kısmı olarak döl atımı olarak sınıflandırılır. 3.1.1 Dinlenme safhası Bu safhada olan bireylerde istiridyelerin cinsiyetinin belirlenmesi açısından histolojik olarak herhangi bir ip ucu yoktur. Ortamda cinsiyeti belirleyici olan germ(cinsiyet) hücreleri bulunmamaktadır. 3.1.1.1 Testis Safha 1: Ilk gametogenesis safhasındadır. Bu özellikte olan örneklerde foliküler küçüktür, yuvarlak veya oval şekillidir. Bağ dokusunun kapladığı alan geniştir. Spermatagonialar bir arada ve koyu renklidir. Safha 2:Foliküller oldukça büyümüştür. Bağ dokusunun kapladığı alan iyice azalmıştır. Spermatozoalar merkeze doğru yönelmiştir ve kırmızı şeritler halinde kuyruklar belirgindir. Safha 3: Istiridyelerin döl atımına hazır olduğu safhadır. Foliküller şişip birleşmiş ve çoğunluğu tamamen spermatazoa ile doludur ve kuyrukları kırmızı renktedir ve açıkca belirgindir. Maturasyon ile incelmeye başlamış olan folikül duvarlarının iç kısmına doğru spermatositler ve spermatidler sıralandırılmışlardır. Serbest spermatazoalar follikül lümellerine tamamen yerleşmişlerdir. Çok sayıda hareketli spermatazoa görülmektedir. Bağ dokusu alanı azalmıştır. Safha 4:Foliküller tamamen boşalmış ve dinlenme safhasına geçilmiştir. Bu da ortamda inaktif olan spermatagoniumlardan anlaşılmaktadır. Foliküller arası bağ dokusu iyice gelişmiştir. 3.1.1.2 Ovaryum Safha 1: Foliküller başlangıçta küçük, boş ve belirgin değildir. Folikül duvarları, gelişen oositler ve kök hücreleri ile belirginleşmiştir. Oogonia ve primer oositler küçüktür ve yumurta sarısı yoktur. Bu aşamadaki primer oositlerin çekirdeği büyüktür ve belirgindir. Sık demetler şeklinde folikül duvarına doğru yapışma olmaktadır. Oogenesis ilerlemektedir. Birkaç büyük oositin uzamaya başlaması ile genç oositler bölünmektedir. Safha 2: Oositler, lumenlere doğru genişlemiş ve yığılmaya başlamıştır. Sekonder oositler yoğun miktarda görülmektedir. Primer oosit ve serbest oosit birkaç tanedir. Bu serbest oositler, lümel merkezinde görülmektedir. Hala folikül duvarları ile bağlantılı olan uzamış oositler ile hemen hemen olgunlaşmış olan oositler yoğun olarak bulunmaktadır. Oositler konik ve oval şekildedirler. Bağ dokusunun alanı iyice azalmıştır. Safha 3: Birleşmiş foliküller, bir çekirdekçiği ve çekirdeğinin gözüktüğü polygonal şekilli, tamamen serbest olan oositler ile doludur. Sekonder oosit bir kaç tanedir. Safha 4: Oositler olgunlaşmış atıma hazır hale gelmişlerdir. Bağ dokusu tekrar belirginleşmeye başlamıştır. Ayrıca oositlerin şekli hekzogenal hale gelmiştir. Bazı boşalmış ve yıkıma uğramış foliküller bulunmaktadır. Avrupa istiridyesi, Ostrea edulis sukseksif hermafroditizm gösterir. Seksüel olgunluğa ilk ulaştığı zaman gonad normal olarak bir erkek gibi gelişir ve sperm verir. Gonad spermi bıraktıktan sonra dişi safhasına geçer ve sperm yerine yumurta üretir. Bu düzenli bir şekilde tüm yaşamı boyunca devam eder. Erkek tarafından dışarı bırakılan spermalar dişi tarafından su alma kanalı ile alınarak yumurtalar dişinin içinde döllenir. Döllenmiş yumurtalar 8-10 gün kadar dişinin palial boşluğunda kuluçkalandıktan sonra dışarıya serbest yüzen veliger larva durumunda bırakılırlar(Alpbaz ve Hindioğlu, 1991). Avrupa istiridyesinin döl verimi üzerine sıcaklığın, besinin, büyüklüğün ve yaşın etkisi büyüktür Avrupa istiridyesinin larva boyu 150-190µm büyüklüktedir. 120-130µm büyüklükte larvalar görülse de, yetiştiricilikte büyük larvalar alınır. Küçük larvalar elenir. Böylece daha dayanıklı ve sağlıklı bireyler elde edilebilir. Suya bırakılan veliger larvaları velumları sayesinde hareket ederler. Besin olarak fitoplanton tüketirler. 10-15 gün pelajikte yaşamlarını sürdüren larvalar 290-300µm ve bazen de 360µm büyüklükte iken zemine inerek, hayatlarının geri kalan kısmını sürdürecekleri sert bir substratuma kendilerini tespit ederler. Larvanın kuru ağırlığı hareketli dönemi boyunca 1µg’dan 4µg’a çıkar. Bunun %75-80’i kabuk ağırlığıdır. Yeni bırakılmış bir larvanın kuru ağırlığının %14’ü glikojen, %15,5-22,5’i yağdır. Crassostrea genusuna ait istiridyeler ise 100 milyonun üzerinde yumurta dökebilmektedirler. Bu yumurtaların hepsi aynı zamanda değil, üreme dönemi boyunca bırakılırlar. Crassostrea gigas’da ise dişi birey yumurtalarını deniz suyuna bırakır ve erkek bireyin bıraktığı spermalar ile su içinde döllenme olur. Yumurtalar yaklaşık 50µm büyüklükte olup çok küçüktürler. Yumurtalar ovaryumda iken armut şeklindedir. Ovaryumdan bırakılıp su ortamında döllendikten sonra spiral şekil alır. Birinci ve ikinci polar vücut görünerek yarılma devam eder. Gelişme, morula, blastula ve gastrula safhalarına doğru ilerler. Veliger safhada larvanın velumu ortaya çıkar ve aktif hareket etmeye başlar. Daha sonra D şekilli larvaya dönüşür. Larvada umbo oluştuğunda umbo safhasındadır ve kabuk uzunluğu 0,2mm’ye ulaştığında metamorfoz başlar(Bardach ve ark., 1972). Larva metamorfoz aşamasına geldiğinde anacına benzer bir hal alır. Her iki genusda da benzer belirti olan göz noktası ve ayağın görülmesi metamorfozun en önemli işaretidir. Zemine inen larvada velum kaybolur ve yüzme hareketi ayak ile sürünme hareketine dönüşür. Uygun substrat bulduğunda kendini sol kabuğundan salgıladığı özel bir salgı ile oraya yapıştırarak sesil hayatı başlamış olur. Hareket kabiliyeti artık bitmiştir. 4-İSTİRİDYE YETİŞTİRİCİLİĞİ İstiridye kültüründe yavru bireyler ya kuluçkahanelerde üretilerek ya da doğal alanlardan toplanarak elde edilmektedir. Kuluçkahaneden yavru üretimi gerçekleştirilirse, genetik seleksiyonlar yapılarak hızlı büyüyen, zor şartlara karşı dayanıklı, et verimi fazla, hastalıklara karşı dayanıklı bireylerin elde edilmesi söz konusu olabilmektedir(Rodriguez ve Frias, 1992). Doğal ortamdan toplanan yavrularda ise böyle bir seleksiyon şansı yoktur. 4.1. Kuluçkahaneden Yavru Temini Bu kültür yönteminde kıyısal alanda bir kuçkahane binasının olması gerekmektedir. Bir istiridye kuluçkahanesinde filtre odası, fitoplankton üretim birimi, anaç, larva ve yavru üretim birimi olmalıdır. 4.1.1. Deniz Suyu İstiridye kültüründe suyun filtrasyonu önemli bir konudur. Anaç ve yavru biriminde kullanılan suyun 40-60µm’lik kum filtrelerinden geçmesi yeterli olurken, fitoplankton ve larva üretiminde kullanılacak suyun 20, 10, 5, 1µm’lik kartuj filtrelerinden geçerek partiküllerden ve suda bulunabilecek diğer organizmalardan ayrılması gerekmektedir. Bazı üreticiler deniz suyu ile gelebilecek bazı organizmaların istiridye larvaları tarafından besin olarak değerlendirilebileceğini düşünerek kaba bir filtrasyon yapmaktadırlar. Fakat üretimi riske atmamak için iyi bir filtrasyon ve sterilizasyon önemlidir. Suyun iyi filtre edilmiş olması U.V. ışınları ile yapılacak sterilizasyon etkisini arttırmaktadır. 4.2. Anaç Özellikleri Genellikle istiridye anaçları üretim zamanında doğal stok alanlarından döl almak amacıyla kuluçkahaneye getirilir ve döl alma işlemi tamamlandıktan sonra tekrar denize bırakılırlar. Bu anaçlar hızlı büyüyen, zor şartlara karşı dayanıklı, et oluşturma kapasitesi yüksek, düzgün kabuk şekilli gibi özelliklere sahip istiridye stoklarından seçilmasi tercih edilir. 4.2.1. Anaç istiridyelerden döl alım yöntemleri Olgun istiridyelerden yumurta ve larva elde etmek için birkaç yöntem vardır. İstiridyenin yumurta ve larvalarını ortama normal olarak kendi isteği ile bırakması haricinde yumurtlamayı uyarıcı şok yöntemler de uygulanır. Bu şok yöntemler şöyledir; Termik şok: Şok yöntemlerin en çok kullanılanıdır. Olgun istiridyelerin ani olarak sıcak sudan soğuk suya, soğuk sudan sıcak suya bırakılması ile olur (Field, 1922). Bu işlem birkaç defa tekrarlanır ve istiridyenin larva bırakması beklenir. Kimyasal şok: İstiridyelerin manto boşluğuna 2cc, 0.5 mollük KCL solüsyonu enjekte etmek sureti ile yapılmaktadır. (Bayne; 1965) Elektrik şok: İstiridyelere düşük voltta elektrik verilmek sureti ile uygulanır (Iwata, 1950; Sugiura, 1962). Mekanik şok: İstiridyelerin adduktor kasına enjektör iğnesi ile dokunularak uyarı yapılmaktadır (Loosanoff ve Davis, 1963). Diğer Yöntemler Diseksiyon yöntemi Olgun İstiridyelerin kapama kasları kesilerek gonadlardaki yumurta veya spermler C.gigas’ta alınırken, O. edulis’te palial boşluktaki larvalar alınabilir. Sperm solusyonu Yumurtlamayı uyarmak için suya sperm solüsyonu verildiğinde de istiridyeler bir süre sonra yumurta bırakmış olur. Bu amaçla şok uygulamalar sonrasında elde edilecek fazla sperm solusyonu kullanılabilir. Şok yönetemlerin uygulanmasından yaklaşık 30dk sonra istiridyeler döllerini su ortamına dökerler. Eğer istiridyeler döllerini bırakmaya hazır değiller ise şok yöntemler ile başarılı bir sonuç elde edilemez. İstiridyeler bilindiği gibi yaz aylarını üreme için kullanılır. Kışın ise doğada üreme görülmez. Laboratuvarda uygun koşullar yaratılarak kış aylarında da istiridye üretimi yapılabilir. Bunun için doğal ortamdan alınan istiridyeler 10°C sıcaklıktaki suya bırakılırlar. Ortama alışan damızlıkların tutulduğu havuzdaki su sıcaklığı tedrici olarak 18°C’ye veya biraz daha yüksek sıcaklığa çıkartılır. Bu sıcaklıkta istiridyeler 2-4 hafta tutulur. Bu süre üretim mevsimine bağlı olarak değişir. İstiridyeler bu süre içerisinde gonadlarını olgunlaştırırlar ve sıcaklık 20°C’ye ulaştığında döllerini dökerler. Bu işleme gonad olgunlaştırarak döllerin alınması işlemi denilir. Burada kullanılan anaçlar genellikle genetik olarak istenilen özelliklere sahip özel anaçlardır. 4.3. Larva Kültürü Yumurta veya larvalar anaç biriminde elde edildikten sonra larva birimine alınırlar. Burada 50lt’den 2tona kadar silindir-konik polyester tanklar kullanılabilmektedir. Tank hacmi üretim kapasitesine ve üreticinin tercihine bağlı olarak değişir. Bu tankların alt kısmında bir su çıkış vanası olur. Tanklar 40watt’lık floresan lambalar altına yerleştirilir. Tuzluluğu ‰33-35 ve sıcaklığı 20-22 °C olan iyi filtre edilip sterilize edilmiş deniz suyu doldurulur. Bu tanklara başlangıçta veliger larvaları 10 adet/ml’yi geçmeyecek şekilde stoklanır. Larvalar büyüdükçe stoklama yoğunluğu 3-5adet/ml’ye indirilir. Tankların temizliği gün aşırı yapılır. Tank suyu tamamen süzülerek larvalar yıkanır ve temiz su ile doldurulmuş yeni tanka aktarılırlar. Bu temizlik işlemi larva kültür boyunca devam eder. Veliger safhasında 170-190µm büyüklükte olan larvalar metamorfoza yakın gözlenmiş safhada iken 240-350µm boya ulaşırlar. 4.3.1 Fitoplankton Üretimi Kuluçkahanede bulunan anaç, larva ve yavru istiridyelerin besinleri bu birimde üretilerek temin edilir. Larva beslemede açıklanan Wells-glancy veya Milford yöntemine göre kültür gerçekleştirilmektedir 4.3.1.1 Wells-glancy yöntemi Wells-glancy yönteminde deniz suyu sadece kum filtresinden geçirilir ve sera ortamındaki büyük hacimli tanklara(20-30 tonluk) gönderilir. Tanklara deniz suyu ile gelen fitoplankton hücrelerinin artmasına izin verecek nutriyent karışımı verilir. Bu tank suyu 5-6 gün içinde kahverengi veya yeşil renk aldığında doğrudan larva tanklarında besleme amaçlı kullanılır. Bu yöntemin dezavantajı deniz suyu iyi filtre edilmediği için zararlı fitoplanktonlar türleri de kısa sürede çoğalarak istiridye larvalarına zarar verebilir. Suyla birlikte gelen zooplanktonlar hem larvalara predatör olarak zarar verdiği gibi bazıları da ortamda çoğalan besine ortak olur. Deniz suyu sterilize edilmediği için hastalıklara neden olabilecek mikroorganizma bulaşması da söz konusu olabilir. Böyle bir kültür yönteminde larva yetiştirciliği riske atılmış olmaktadır. Bu yönteme dayalı yapılan fitoplankton kültürü daha çok yavru veya anaç beslemede kullanılabilir. Wells-glancy yöntemi fitoplankton üretim masrafını çok azalttığı için tercih edilmektedir(Bardach ve ark., 1972). 4.3.1.2. Milford yöntemi Milford yönteminde ise alg hücreleri tek tek ayrı tüplerde ve saf kültür olarak inkübatörde muhafaza edilir. Larva kültürüne başlamadan önce bu hücreler steril şartlar altında arttırılmaya başlar. Kültür suyu 0.45µm göz açıklığındaki Milipore filtreden süzüldükten sonra otoklavda sterilize edilir. Kültür hacmi 6lt’yi geçtiğinde suyun filtrasyonu 1µm’lik kartuj filtrelerde, sterilizaysonu ise U.V. lambalarından yararlanarak yapılır. Böylece larva beslemede istenilen hücrelerin kültürü ayrı tanklarda yapılmış olur. Kültür biriminin iyi bir fitoplankton artışı sağlanması için 18-22°C arasında olması sağlanır. Şeffaf polyester tanklar veya naylon torbalarda(50-500lt hacimli) kültür gerçekleştirilir(Bardach ve ark., 1972). 4.3.2 Larva Besleme Milford yöntemine göre kültüre alınan fitoplankton hücrelerinden larvalara ilk olarak Isochrysis galbana ve Monochrysis lutheri besin olarak verilir. Larvalar büyüdükçe Tetraselmis suecica, Dunaliella tertiolecta, Chaetoceras calcitrans gibi besinler kullanılmaktadır. Genellikle tek tür beslemesinden ziyade karışık türler ile besleme iyi sonuç vermektedir. Isochrysis galbana, Monochrysis lutheri 100 000 hücre/ml, Tetraselmis suecica, Dunaliella tertiolecta 50 000-80 000 hücre/ml larva tankında olacak şekilde besleme yapılır. Karışık besleme başlangıçta %50 Monochrysis lutheri ve %50 Isochrysis galbana, larva metamorfoza yaklaştığında ise %20-30 Tetraselmis suecica ile karışık besleme yapılır. Beslemede kullanılacak fitoplankton hücrelerinin canlı olmasına dikkat edilir. Bu nedenle logaritmik artış fazında iken fitoplankton hasat edilerek larvalara verilir. Chlorella sp., ve Phaedactylun tricornutum besleyici değeri düşükolduğu için kullanılması tercih edilmez. Ayrıca Chlorella sp kalın hücre duvarına sahip olmaları nedeniyle larvalar tarafından sindirilememekte ve metabolik artıkları istiridye larvaları için toksik etkiye neden olmaktadır. Bu sebeplerden dolayı kabuklu larva kültüründe besin olarak kullanılmazlar(De Pauw, 1981). Son yıllarda kurutulmuş alg tozlarının kullanılması ile kuluçkahaneler fitoplankton üretim birimlerini küçültmüşler veya tamamen kaldırmışlardır. İhtiyaç duydukları kadar toz fitoplanktonu satın alarak larva beslemede kullanmaktadırlar(De Pauw, 1981). Metamorfoz Larva kültüründe metamorfoz dönemi en önemli dönemlerden biridir. Larvaların günlük sayımları ve ölçümleri alınırken göz ve ayak noktasının oluşumu çok iyi takip edilmelidir. Bu dönemde larvalar zemine iner ve kendilerine uygun gördüklere yerlere yapışırlar. Larva kontrolü iyi yapılmadığı taktirde larvalar tank çeperlerine yapışırlar ve buralardan çıkarılmaları çok zor olur. Böylece bir larva üretim dönemi başarısızlıkla bitmiş olur. Metamorfoz aşamasına gelen larvalar ya ayrı tanlara alınırlar ya da bulundukları tanklar içersine yapışma işlemi başlamadan önce çeşitli kollektör malzemeleri bırakılarak larvaların bunların üzerine yapışması sağlanır. Burada kullanılan kollektör malzemesi larvanın en çok tercih ettiği materyal olan istiridye kabuklarıdır. Bir ip üzerine 3-4 cm aralıklar ile dizilen istiridye kabukları larva tanklarının içerisine tank dibine değecek boyda hazırlanarak sık bir sekilde tank yüzeyinden aşağı doğru sarkıtılırlar. 3-5 gün içinde larvalar bu kabuklar üzerine tutunarak metamorfozlarını tamamlamış olurlar. Bu yeni tutunmuş istiridye yavrularına “spat” adı verilir. Yeni tutunmuş bir spat 1,2-5,7mg canlı ağırlığa sahiptir. Bu spatlar 10-11 hafta sonra 220-500mg canlı ağırlığa ulaşır. Yavrular kollektörler vasıtası ile yetiştirme alanlarına taşınarak uygun sistemlerde büyümeye alınırlar(Utting, 1988). Eğer spatlar tek tek herhangi bir yüzeye yapışık istenmiyorsa, metamorfoz aşamasında iken su sikülasyonunun olduğu spat tanklarına alınırlar. Bu tanklar. 50cm genişliğinde, 30cm derinliğinde olup 2m uzunluğundadır. Tankların içine derinliği 10-15cm olan altı plankton bezi ile çevrelenmiş tepsiler tabanları dibe değmeyecek şekilde yerleştirilir. Tanka su girişi herbir tepsinin üstünden olurken su çıkışı ana tankın sifon çıkışından olmaktadır. Başlangıçta tepsilerin plankton bezi büyüklüğü 150µm’dir. Bu sistemin esas özelliği larvalar bu tepsilere yerleştirilmeden önce kum haline getirilmiş istiridye ve midye kabuklarının tepsi tabanındaki plankton bezini örtecek şekilde yayılmasıdır. Plankton bezi başlangıç boyunun larva boyuna göre çok küçük olmasının nedeni de bu kabukların tepsiden akıp gitmesini engellemek içindir. Kabuk tozu serpilen tepsilere larvalar bırakılır ve 3-5 gün içinde larvalar bu kabuk tozlarına yapışırlar. Zaman içinde spat istiridyeler büyüdükçe kabuk tozları görünmez, spatlar gözle rahatlıkla görünür hale gelirler. Spat büyüklüğüne paralel olarak tepsinin plankton bezi göz açıklığı arttırılır. Spatların 2-3mm boya kadar bu sistemlerde kalabilmektedir. Bu aşamada verilen deniz suyu sadece kaba filtreden geçmektedir ve besin olarak da diatom ağırlıklı besleme yapılmaktadır. Kuluçkahanelerde yapılan larva çalışmaları sırasında metamorfoz aşamasına yaklaşan istiridye larvalarının tutunmasını uyarmak ve hızlandırmak için bazı neuroaktif bileşikler kullanılmaktadır (Shau-Hwaitan ve Wong, 1995). Bazı araştırıcılar bu amaçla sıcaklığı arttırırken bazıları da tank suyuna kabuklu glikojeni, potasyum klorür veya bakır klorür solusyonu kullanırlar(Nell ve Holliday, 1986).. Bu bileşikler larvalarda göz noktası ve ayak oluştuktan sonra kullanılarak larvaların hemen hepsinin aynı anda metamorfozu tamamlaması sağlanmış olur. Kuluçkahanede 3-4mm boya ulaşana kadar spat istiridyeler tuttulur. Bu aşamadan sonra deniz alanında hazırlanmış olan uygun sistemlere taşınarak yetiştiriciliğe devam edilir. 4.4. Doğal Ortamdan Yavru Temini İstiridyelerin yavruları doğal ortamdan ya dreçler ile avlanarak toplanırlar ya da istiridye yataklarının olduğu alanlara üreme dönemlerinde bırakılan çeşitli malzemelerden hazırlanmış kollektörler ile toplanırlar. İstiridyeler biyolojik yapılarından dolayı tutunmak için özellikle kendi anaç kabuklarına benzer materyalleri tercih etmektedirler. Eğer ortamda kabuk yoksa, spatlar buldukları sert substrata kendini yapıştırırlar(Pascual ve Zampatti 1995). Birçok ülkede, yarı kontrollü yetiştiricilik çalışmalarında, spat istiridyelerin toplanmasında, geleneksel yöntemlerin yanında geliştirilmiş yeni malzemelerden hazırlanan kollektörler de kullanılmaktadır. 4.4.1 Kollektör Tipleri Spat toplamada kullanılacak kollektör tipi önemlidir. Şimdiye kadar birçok materyal ve dizayn kullanılmıştır. Fakat bunlardan hiçbiri için her yerde ve her tür için çok iyi sonuç veren sistem denilemez. Bir tür için iyi olan kollektör diğer bir tür için arzu edilen sonucu vermeyebilir(Bardach ve ark., 1972). Uzak doğuda mangrov (Rhizophora sp., Avicennia sp.) bitkilerinin kökleri ile başlayan spat toplama işlemi günümüzde kiremit, çeşitli mollusk kabukları(midye, istiridye, tarak gibi), ahşap, PVC, metal materyallerin kullanımına kadar uzanmaktadır. (Burrell, 1980; Heral, 1990). 4.4.1.1 Kabuk kollektörler Japonya’dan Amerika’ya kadar çok yaygın bir kullanım alanına sahiptir. Bir ucu sivri olan özel çekiçlerle delinen kabuklar, 2 m. uzunluğundaki galvaniz tele dizilmektedir. Teldeki kabuk sayısı 80 ila 100 arasında değişmektedir. Kabuklar arasında mesafe bırakabilmek için önceleri bambu kamışlar kullanılmaktaydı, ancak maliyet ve geri dönüşüm açısından daha karlı olan plastik tüpler son yıllarda tercih edilmektedir. Kabukların bol olduğu bölgelerde ise herhangi bir mesafe bırakmadan ip veya galveniz tel üzerine üst üste gelecek şekilde kabuklar dizilerek kollektörler hazırlanmaktadır (Korringa, 1976a-b; Haven ve ark., 1987; Mann ve ark., 1990). Fransa’da Ostrea edulis spatlarının toplanmasında kabuk kollektörler içerisinde en iyi sonucu midye kabukları vermektedir. Bu kabuklar ince uzun ağ fileler içerisine yerleştirilmekte ve daha önceden hazırlanmış olan metal çerçeveler üzerine bağlanarak deniz tabanına bırakılmaktadır. Bunlar daha çok gel-git’in olmadığı derin sulara yerleştirmektedir (Heral, 1990). Hazırlanan tüm kabuk kollektör çeşitleri raf veya sallardan sarkıtılarak denize bırakılırlar. Bir çok kuluçkahanede, çeşitli kabuklular kırılıp toz haline getirildikten sonra metamorfoz aşamasına gelmiş larvaların yerleştirildiği tavaların tabanına serilmekte ve larvaların bu kabuk tozlarına tutunması sağlanmaktadır. Bu istiridye yavrularının tek tek elde edilmesi amacıyla da avantajlı bir yöntemdir. Bu şekilde elde edilen spat istiridyeler torbalara yerleştirilip kültür sistemlerine yerleştirlmektedir(Pascual ve Zampatti, 1995). 4.4.2 Kiremitler Kollektör olarak kullanılan kremitler, yaklaşık olarak yarı silindirik şekildedir. 33cm uzunluğunda, 15cm genişliğinde ve ortalama 5cm yüksekliğindedirler. Bu kiremitlerden birinin ortalama ağırlığı 900gr’dır. Kiremitler 10’luk gruplar halinde bir araya getirilirler ve Bouquets olarak adllandırılırlar. Bu onluk grupların oluşturulması için kısa kenarından 7,5cm uzaklıkta iki delik açılmaktadır. 110cm uzunluğunda 1,5mm kalınlığında galvanizli tel ile köşeler kesişecek şekilde birbirine bağlanmaktadır. Daha sonra kirece batırılıp kuruyuncaya kadar bekletilmektedir Kiremit kollektörlerde, kireç solusyonunun kullanılması ile spatlar kiremitler üzerinden rahatlıkla çıkarılmaktadır(Walne, 1974; Korringa, 1976a-b; Heral, 1990). Hollanda’da S-tipi kiremitler istiridye yavrusu toplamak için daha uygun olduğu bildirilmektedir (Dutch Tipi). Burada kullanılan kiremitlerin kuru ağırlıkları 2kg’dır. Ancak deniz suyu içindeki ağırlıkları ortalama 2,5kg. cıvarındadır. 35x23cm boyutlarında ve 13mm kalınlığındadırlar. Bu kiremitler de kreç ile kaplandıktan sonra denize bırakılmaktadırlar (Korringa,1976b). Gerek Crassostrea gerekse Ostrea türleri için gel-git’in olduğu alanlarda yaygın olarak kullanılan kremit kollektörler zemine yerleştirilmektedir. Kollektörlerin bırakılacağı alanlar daha önceden deniz yıldızları ve yengeçlerden temizlenerek kollektör veriminin olumsuz etkilenmesi önlenmiş olur. 4.4.3. Plastik malzemeler Günümüzde geleneksel olarak kullanılan bir çok materyalin yanında kolay şekil verilebilen plastik malzemeler de kullanılmaktadır. Bu malzemelerin maliyeti diğer kollektörlere göre daha yüksek olmasına karşın, tekrar kullanılması nedeni ile tercih edilmektedir. PVC çubuklar, yarı silindir plastik kollektörler, plastik levhalar ve fileler en çok kullanılan plastik materyal tipleridir(Korringa, 1976a-b). Dayanıklı ve hafifitirler., spat hasatı pratiktir. 4.4.4. Bambu kamışı ve ahşap materyaller Özellikle Filipinler’de Crassostrea eradelie için kullanılan bir kollektördür. Hazırlanışı basit olduğu için Filipin’li üreticiler tarafından özellikle tercih edilmektedir. Bu bambu kamışlar 5-10cm çapında ve sağlam olanları tercih edilmektedir. Bambu kamışları kesildikten sonra güneşte kurutulmakta ve eğer kalın bambu kamışları varsa bunlar da ikiye ayrılarak kullanılmaktadır. Daha önceleri bu ülkede istiridye kabukları yaygın olarak kollektör yapımında kullanılmasına karşın, bambu kamışlarının iyi bir spat toplayıcı olmasının belirlenmesinden sonra istiridye kabuklarının kullanımı azalmaya başlamıştır. Kullanılan bu kamışlar intertidal alanlara 0,3-0,7m aralıklar ile yanyana dikilmektedir. Her bir bambu sırası arasında bir küçük tekne gezebilecek kadar mesafe bırakılmaktadır. Bambu kamışlarının sıralar halinde kullanımının dışında kamışların bir araya getirilmesi ile ızgaralar hazırlanmıştır. Hazırlanan bu ızgaralar deniz dibine dik olacak şekilde ve özellikle gel-git alanlarına yerleştirilmektedir (Bardach ve ark., 1972). 4.4.5. Ahşap ızgaralar Avusturalya’da Crassostrea commercialis ‘in spatlarını toplamada tahta ızgaralardan yararlanılır. 2m uzunluğundaki ve 22-25mm2 yüzey alanına sahip olan bu çıtalar belli aralıklar ile kafes şeklinde çakılarak ızgaralar oluşturulur. Bunlar zeminden 1-1,3m yukarıdaki raflara üst üste gelecek şekilde yerleştirilerek tren yoluna benzer uzun hatlar oluşturulur. Her bir sıra arasında tekne girecek kadar mesafe bırakılır(Kesteven, 1941). Pek yaygın olmamakla birlikte, ahşap kaplamalar güneş altında kurutulup spral şekline getirilerek, spat toplama için kullanılmaktadır (Quayle,1969). 4.4.6 Kayrak taşı Kayrak taşı, özellikle Fransa’da kullanılan materyaldir. İnce kare parçalar halinde kesilen taşlar bir çelik tel üzerine araları 4-5cm mesafe ile dizilirler. Tel üzerindeki taş adeti 15 ila 20 adet arasındadır. Bu şekilde hazırlanan kollektörler gel-git etkisinde olan raf sistemlerinin üzerine yerleştirilerek kullanılmaktadır. Bu taşlar aynı zamanda ince uzun dirtdörtgen şeritler halinde de değerlendirilebilmektedir. Hazırlanan dirtdörtgen plakalar aralarında 5-6cm’lik mesafe ile yan yana gelecek şekilde birleştirilirler ve raflar üzerine bırakılırlar(Berthome ve ark., 1984). 4.4.7 Spat toplamada kullanılan diğer malzemeler İngiltere’nin bazı bölgelerinde kullanılan, ince bir beton tabakası ile kaplanmış yumurta kolileri Karasal hayvanların kümesi olarak kullanılan küçük tel kafesler, Seramikten hazırlanmış, çatı kremitlerine benzer yarı silindirik yapılar, Plastik ile kaplanmış tel ızgaralar, Çimentolu alçı taşı, İnce dilimler halinde kesilmiş lastik parçaları çeşitli dizaynlarda hazırlanarak kollektör olarak kullanılmaktadır((Bardach ve ark., 1972; Mann ve ark., 1990; Soniat ve ark., 1991; Lök ve Yolkolu, 1999). Günümüze kadar birçok kollektör materyali ve dizaynı denenmiş olmasına karşın genel olarak en iyi kollektör şudur demek yanlış olur. Bir tür veya bölge için iyi olan bir kollektör, diğer bir tür ve bölge için arzu edilen sonucu vermeyebilir. Bir yörede kullanılacak olan kollektörün seçiminde dikkat edilecek belli başlı özellikler vardır. Bu özelliklerin başında istiridyenin türü gelmektedir ki, yetiştiriciliği yapılacak olan türün özellikle hangi materyallere tutunduğunu belirlemek gerekmektedir. Kullanılacak olan kollektör tipinin ekonomik açıdan maliyetinin düşük olması ve tekrar kullanılabilirliğinin olabilmesi yada dayanıklılığının uzun vadeli olması tercih sebebini oluşturmaktadır. Yine seçilen kollektör tipinin o yörede bol miktarda olması aranılan özellikler arasındadır. Larvalar yapışmak için temiz, sert yüzeyleri tercih eder. Kollektörler yapışkan, kaygan veya düz zeminli olmamalıdır. Kaba yüzeyler larvalar tarafından daha çok tercih edilmektedir. Kollektör rengi önemsizdir. Kollektörler batabilme özelliğine sahip olmasına karşın hafif olmalı, larvaların hareketine izin verecek kadar kollektörler arasında su hareketi olmalıdır. Kollektörler ile yavru toplama işlemine başlamadan önce, o bölgede mevcut olan istiridye yatakları ve bu istiridyelerin üreme zamanlarının çok iyi belirlenmesi gerekmektedir. Bu amaçla araştırıcılar bölgede plankton çekimi yapıp istiridye larvalarının bolluğunu ve yaşını takip ederek en uygun zamanı bildirirler. Bazı bölgelerde ise üreticiler geçmiş yılların tecrübesine göre kollektörlerini denize bırakırlar. Eğer kollektörler denize çok erken bırakılırlarsa çok fazla sayıda balanus veya diğer arzu edilmeyen fouling organizmalar kollektörlere yapışır ve spat toplama başarısını olumsuz etkiler. Kollektörlerin bırakılacağı alanlarda yapılacak ön çalışmalar ile en iyi kollektör tipi ve en uygun spat toplama zamanı tespit edilir(Mori, 1987). Larva toplama zamanı araştırma istasyonları tarafından belirlenir ve ilgilenen üreticilere ilan edilir. Yeni yapışan larva 0.3mm büyüklüğündedir. Yaklaşık bir ay sonra 1-1.5cm olur. Bu boydan sonra kollektörden ayrılarak büyütme alanlarına transfer edilirler. Bazı yetiştiriciler kollektör tipleri uygun ise spatları ayırmadan ya aynı alanda ya da gelişmenin daha iyi olacağı başka bir alana taşıyarak uygun kültür sistemlerine yerleştirilerek büyümeye alınırlar. 5- YETİŞTİRİCİLİK YÖNTEMLERİ Gerek kuluçkahaneden elde edilen ve gerekse doğal alanlardan toplanan yavru istiridyeler, pazar boyuna kadar büyütülecekleri yetiştirme alanlarına yerleştirilirler. Yetiştirme alanlarının seçiminde aşağıdaki konulara dikkat edilmelidir: a) İstiridyenin büyümesine izin verecek uygun su koşullarına(sıcaklık, tuzluluk) sahip olmalıdır. b)Evsel ve endüstriyel bir atık girdisi olmamalıdır. c)Plankton açısından zengin olmalıdır. d) Toksik plankton patlaması olmamalıdır. e)Suda belli bir su akıntısı olmalı, durgun su olmamalıdır f)Denizyolu ulaşımı üzerinde olmamalıdır. 5.1 Dip Kültürü Gel-git etkisindeki kıyı alanlarında uygulanana en eski kültür yöntemidir. İplere dizilmiş olan kabuk kollektörler spatlar tutunduktan sonra iplerden çıkarılarak spatlar ile birlikte deniz tabanına bırakılırlar. Bu genç bireyler 22 ay bu alanda kalırlar. Bir yaz sezonunun geçmesi et dolgunluğu için yeterli olmaktadır. İstiridyeler sonbaharda hasat edilirler. Hasat işlemi elle veya dreçler ile yapılır. Toplanan istiridyeler basınçlı su ile yıkanarak temizlenir ve pazara sunulurlar. Bu dip kültür sistemi zemine hazırlanan raylı sistemler ile biraz daha geliştirilmiştir. Raylı sistemlere istiridye büyüklüğüne uygun göz açıklığına sahip kasalar yerleştirilir. Kasaların üstü ağ fileler ile örtülür. Böylece sular yükseldiğinde kasa içersindeki istiridyelere bazı organizmaların zararı olmayacaktır. Ayrıca kasalara yerleştirilen istiridyeler zemine direk temastan kurtulmuş olmaktadırlar. Böylece istiridye üstünde çamur birikerek boğulma riski de azaltılmış olmaktadır(Iversen, 1976). 5.2.Sehpalarda kültür Dip kültüründe zararlı organizmalar ve istiridyeler üzerinde çamur birikmesi verimin düşük olmasına neden olmaktadır. Bu nedenle üreticiler ilk zeminden uzak kültür yöntemi olarak sehpa sistemini uygulamaya başlamışlardır. Gelgitin fazla olduğu yerlerde zeminden 30cm yukarıda ve 2m uzunlukta olacak şekilde metal çubuklardan 30-40cm genişliğinde sehpalar yapılmaktadır. Bu sehpalar üzerine kollktörlerden temizlenen veya kuluçkahanelerden alınan spatlar plastik torbalar içersine konarak yerleştirilir. Plastik gözenekli torbalar sehpalara her iki ucundan metel maşalar ile sabitlenirler. İstiridyeler büyüdükçe torbaların göz açıklığı da büyültülür. 2-2,5 yıl sonra istiridyeler hasat edilir. Bu sistemin en önemli sorunu torbalar üzerinde makro alg birikiminin fazla olması ve gözenekleri kapatmasıdır. Torbalar sık sık kontrol edilmeli ve fazla alg birikimi temizlenmelidir. Temizleme işleminde algin tamamı alınmaz. Kalan algler torba üzerinde sular çekildiğinde gölgeleme yaptığı için istiridyelerin sıcaklıktan etkilenmesini azaltır(Bardach, ve ark., 1972). 5.3.Raf Kültürü Raf kültürü ile istiridye yetiştiriciliği hem horizontal, hem de vertikal alanda yapılır hale gelmiştir. Gelgit etkisinin az olduğu deniz derinliği 1.5-2m’den 5-6m’ye kadar olan kıyısal alanlarda raf kültürü uygulanmaktadır. Bazı üreticile gelgit etkisindeki alanlarda da uygulamaya almaktadır. Bambu kamışlar aralarında 2-3m mesafe olacak şekilde 2 ila 5m derinliklerdeki suların bulunduğu yerlere çakılırlar. Diğer bambular ise denize dik çakılan kazıkların üstlerine yatay olarak olarak bağlanırlar. Bu rafların dizaynı uzun ikili sıralar halinde olabileceği gibi 10x10m ebatlarında da yapılabilir. Bu durumda bambu sıraları arasındaki mesafeler 50-60cm olacak şekilde ayarlanır. İstiridye spatlanın tutunduğu kollektörler yatay bambu kamışlarının üzerinden 40-50cm aralıklar ile sarkıtılarak spatların büyümesine izin verilir. Bu sistemde kollektör uçlarının deniz tabanına değmemesine dikkat edilir. Böylece zararlı organizmalardan kollektörler uzak tutulmuş olur. Raf sisteminde bambu kamışı dışında dayanıklı ahşap materyaller ve deniz suyuna dayanıklı metal konstrüksiyon da kullanılmaktadır(Korringa, 1976a-b). 5.4 Sal Kültürü Sallarda yetiştiricilik genellikle iç denizlerde uygulanır. Salların inşasında tropik kuşakta 10-15cm çaplı bambular veya sedir ağacı kullanılmaktadır. Birbirine 30 veya 60cm aralıkla monte edilirler. Salların ebadı, 9x5,4m dir. Bu büyüklükdeki bir sal, 500-600 adet istiridye kollektörü(spatlı) taşır. Salların yüzdürülmesinde tercihen dayanıklı plastik variller (50 galonluk), fıçılar veya yüzdürücüler (stypor) kullanılır. Sallar 5-10m aralıklarla birbirlerine bağlanır. Bir ünite yaklaşık 10 saldan teşekküldür. Salların büyüklükleri ve sayıları değişiklik gösterebilir(Bardach, ve ark., 1972; Burrell, 1980). Sallar genellikle bambulardan yapılır. Plastik borularda bu amaçla kullanılabilir (PVC sulama boruları). Bu tür malzemenin esneme payı fazladır. Elemanlar 8 numara telle bağlanır. Salların sabitlenmesi için (deniz demiri) çapalar kullanılır, diğer bir yöntem ise, biri 3 tonluk, diğeri 5 tonluk iki beton bloğun yardımı ile sabitlemektir. Sert havalarda salı sürükleyen dalgalar güçlü ise, 3 tonluk bloğu oynatırlar. 5 tonluk bloğu oynatmaya çalışırken dalga aralarında 3 tonluk blok boşu alarak dibe çöker ve salın sürüklenmesini önler. Çapalı sabitlemede çapayı bırakmak ve ipin kopması çok görülmüştür. Bir salın ömrü 5 yıldan fazla olabilmektedir. Sal kültürü ile 25mm büyüklüğündeki bir istiridye 9 ay içinde pazar büyüklüğüne ulaşabilmektedir. Bu sistem ile su alanında hem horizantal, hem de vertikal olarak yararlanma söz konusudur. Dipte yapılan bir kültür ile karşılaştırıldığında verim en az%50 artmaktadır. 5.5. Halatlarda Kültür Aralarında 3-6m mesafe ile bir kalın halat üzerine sabitlenmiş yüzdürücülerden oluşur. Yüzdürücü olarak 30-40 lt hacimli plastik bidonlardan yararlanılır. Bu sistem tek halat ile hazırlanabileceği gibi arasında 30-40cm mesafe olacak şekilde çift halat olarak da hazırlanabilir. Uzunluğu 60-75m arasında değişir. Her hattın ucunda duruma göre 1-3 arası çapa bulunur ve deniz dbine sabitlenir. Her ünitede 10-12 yüzdürücü vardır.Yüzdürücülere bağlı olan ana halat bedene spatlar tutunmuş kabuk kollektörler asılabileceği gibi, içinde istiridye olan ağ fileler de asılabilir. İstiridye kollektörleri veya fileleri 30cm aralıkla asılırlar. Sahilden uzak derin sularda kurulabilir ve zor hava şartlarına karşı dayanıklıdır. Sistemin yıpranma ömrü diğer sistemlere göre daha uzundur. Planktonnun daha az olduğu derin, sahilden uzak sularda kurulması tercih edilen bir sistem olduğundan spatların Pazar boyuna ulaşması 2 yılı geçebilir(Bardach, ve ark., 1972; Iversen, 1976; Burrell, 1980). 5.6 Kafes Kültürü Kollektörler ile toplanıp bir yıl sonra seyreltilen istiridyelerden güzel şekilli olanlar seçilirler. Tel çerçeveli ızgara şeklindeki kafeslere herbirinin ayrı ayrı konabileceği bölmelere istiridyeler yerleştirilir, sal veya halat sistemlerinden asılır. Yaklaşık 6-8 ay sonra 10-20 cm uzunluğa ve 10-30 gr et ağırlığına ulaşır. Bu yöntem daha çok istiridyeler pazara çiğ olarak sunulacağı durumlarda uygulanır. Izgara sistemi nedeni ile sıkışan istiridyelerde kabuk şekli düzgün olarak büyüme gerçekleştiğinden tüketici tarafında tercih edilmektedir. Sal veya halat kültür alanlarındaki yerleşim akıntı, tuzluluk, besin ve yerel balıkçılık aktivitelerine bağlı olarak ayarlanmalıdır. Yoğun istiridye ölümleri kıyısal ve acı sularda yapılan kültür alanlarında ve doğal stoklarda görülmektedir. Bu ölümlerin başlıca nedenleri; -yetersiz beslenme -aşırı yağmurlar ve seller nedeni ile oluşan ekstrem tuzluluk ve sıcaklık değerleri, -predatörlerin aşırı üreyip yayılması, -çamur birikimi, -düşük oksijen seviyeleri, -yoğun stoklamalar -hastalıklardır. Bunlara ilaveten yaz aylarında seksüel olgunlaşma ve yumurtlama esnasında da anaç istiridyelerde yoğun ölümler görülmektedir. 6-Zararlı Organizmalar İstridye doğal ortamda iken suda mevcut olan diğer canlılar tarafından da bazı etkilere maruz kalmaktadır. Bu etkilerin başında onları besin olarak kullananlar, yaşadıkları ortama ve besine ortak olanlar, üzerinde yaşayarak direk ve indirek etki edenler veya kabuklarını delip içine girerek yaşamlarını istiridye içinde geçirenler gelmektedir. Kabuklu yetiştiricileri bu zararlıları bilip önlem almak zorundadırlar. Bu zararlıları predatörler(bazı balık türleri, yengeçler, istiridye matkabı, deniz yıldızı, ahtopot ve deniz kuşları (Haemotopus ostrolegus), rakip canlılar ve fouling, boring organizmalar olarak sınıflandırmak mümkündür(Korringa,1976a-b, Spencer, 1990; Lök ve Köse, 1999). Bunların dışında kabuklularda toksik madde birikimlerine neden olan Gonyaulax sp., Dinophysis sp. gibi fitoplanton türlerinin olduğu alanlardan istiridye hasatı yapılmamalı veya toksik etkisi geçene kadar beklenmelidir. Toksik fitoplankton patlamaları sonucunda toplanıp tüketilen istiridye, midye gibi kabuklu su canlıları bünyelerinde biriktirdikleri toksite nedeni ile insanlarda ölümlere kadar varan sonuçlar ile karşılaşılabilmektedir(Hindioğlu, 1998). 7- SONUÇ İstiridye kültürü Romalılar zanında başlamış ve günümüze kadar birçok kültür yöntemi ve sistemi geliştirilmiştir. Kültür uygulamaları ülkelere, istiridye türüne ve üreticinin tercihine göre değişiklik göstermektedir. Üreticiler kendi ülke şartları için en uygun sistemi geliştirmişler ve halen daha başarılı sonuçlar alma yönünde çalışmalar devam etmektedir. Ülkemizde ise istiridye kültürünün başlatılması hem ekonomik sonuçları hem de uygun deniz alanlarının değerlendirimesi açısından önemli olacaktır. KAYNAKLAR Alpbaz, A., 1993. Kabuklu ve eklembacaklılar yetiştiriciliği. E.Ü. Su ürünleri Fakültesi yayınları No. 26, s. 82-130. Bardach, J. E., Ryther, J.H., McLarney, W. O., 1972. Oyster culture. Aquaculture, The Farming and Husbandry of Freshwater and Marine Organisms :. pp. 674-742. Bayne, B. L., 1965. Growth and delay of metamorphosis of the larvae of Mytilus edulis(L.) Ophelia, Vol:2, No:1, Denmark. Berthome, J.P., Prou, J., Razet, D. & Garnier, J., 1984. Premiere approche d’unemethode d’estimation previsionelle de la production potentielle d’huitre creuse C.gigas d’elavage. Haliotis 14 39-38. Brausseau, D. J.,1995. Gametogenesis and spawning in intertidal oysters (Crassostrea virginica) from Westrn Long Island Sound. Journal of Shellfish Research. Vol.14, No.2 pp.483-487. Burrell, Jr.V.G., 1980. Oyster culture. In: Huner,J.V., ve Brown E.E.(eds), Crustacean and Mollusk Aquaculture in the United States. pp. 235-305. Claus, C., 1981. Trends in nursery rearing of Bivalve Molluscs. In:Claus, C., De Pauw, N., Jaspers, E.(eds) Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.1-33. Cole, H. A., 1942.Primary sex phase in Ostrea edulis. Quart. J. Micros. Sci., 83. pp. 317-356. De Pauw, N., 1981. Use and Production of Microalgae as Food for Nursery Bivalves. In:Claus, C., De Pauw, N., Jaspers, E.(eds). Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.35-69. Field, I. A., 1922. Biology and Economic Value of the Sea Mussel Mytilus edulis. Bull. U. S. Bur. of Fisheries, Vol: 38, pp. 127-259, Washıngton. Garcia-Dominguez F., Ceballos-Vazquez , P. B., Qezada A.T. 1996. Spawning cycle of the pearl oyster, Pinctada mazatlanica (Hanley, 1856) (Pteriidae) at Isla Espirito Santo, Baja California Sur, Mexico. Journal of Shellfish Research, Vol.15, No.2. pp.293-303. Haywood, E. L., Soniat, T. M.1992. The use of cement-stabilizied gypsum as cultch for the Eastern oyster, Crassostrea virginica (Glein, 1791). J Shellfish Res.vol.11, No.2 pp. 417-419. Haven, D. S., Zeigler, J. M., Dealteris, J. T., Whitcomb, J. P., 1987. Comparative Attachment, Growth and Mortalities of Oyster (Crassostrea virginica) Spat on Slate and Oyster Shell In The James River, Virginia. Journal of Shellfish Research , Vol:6, No:2, pp. 45-48. Heral, M.,1990. Traditional oyster culture in France. In: Barnabe, G. (ed.), Aquaculture Vol.1, pp. 342-387. Hindioğlu, A., Alpbaz, A., 1991. İstiridye (Ostrea edulis, L.1758) larvası üretimi üzerine araştırmala. Eğitiminin 10.yılında Su Ürünleri Sempozyumu, sayfa: 578-589. Hindioğlu, A., Serdar, S., Yolkolu, S., 1998. Kabuklularda (Bivalve-Mollusk) algal biotoksin ve insan üzerindeki etkileri. Özhan, E. (ed.) Türkiye’ nin Kıyı ve Deniz Alanları II. Ulusal Konferansı,Türkiye Kıyıları 98 Bildiriler Kitabı,22-25 Eylül 1998.ODTÜ Ankara pp.173-187. Iversen, E.S., 1976. Farming the edge of the sea, pp.134-158. Surrey England. Iwata , K. S., 1950. Spawing Mytilus edulis discharge by electirical stimulation. Bull. Jap. Soc. Scic. Fish. 15, pp.443-446. Loosanoff, V.L., Davis, H.C., 1963. Rearing Molluscs. Advances in Marine Biology. Vol. I, pp. 14-106. Academic Press, London. Lök, A., Yolkolu, S., 1999. İstiridye yavrularının (spat) toplanmasında kullanılan kollektör tipleri. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.109-114. Lök, A., Köse, A., 1999. İstiridye kültüründe karşılaşılan zararlı organizmalar. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.114-119. Mann, R.; Barber, B.J.; Whitcomb, J. P., Walker, K. S., 1990. Settlement of oysters, C. virginica (Glein, 1791), on oyster shell, expanded shale and tire chips in the James River, Virginia. J Shellfish Res, vol. 9, No.1 pp.173-175. Mori, K., 1987. Managed coastal water for oyster culture in Japan. In: Michael, R. G.(eds.).Ecosystems of the World 29 Managed Aquatic Ecosystems pp.125-143. Nell, A. J., Holliday J. E., 1986. Effects of potassium and copper on the settling rate of Sydney rock oyster (Saccostrea commercialis) larvae. Aquaculture, 58 pp.263-267. Kesteven, G.L., 1941. The biology and cultivation of oysters in Australia. CSIRO, Divisionof Fisheries. Report 5, pp.1-32. Korringa, P., 1976a. Farming the cupped oysters of the genus Crassostrea P.219. Elsevıer Scientific Publishing Company-Newyork Korringa, P.,1976b. Farming the flat oysters of the genus Ostrea P.231 Elsevier Scientific Publishing Company-Newyork. Pascual, M.S., Zampatti, E.A., 1995. Evidence of a Chemically mediated adult-larval interaction triggering settlement in Ostrea puclchana: applications in hatchery production-Aquaculture133, pp.33-34 Rodriguez J., Frias, J. A., 1992. Tropical mangrove oyster production from hatchery-raised seed in Cuba. Journal of Shellfish Research, vol. 11, No.2, pp.455-460. Quayle,D. B., 1969. Pacific oyster culture in British Columbia. Fisheriesresearch Board of Canada Biological Station, Nanaimo, B.C. pp. 57-65. Shau-Hwaitan ve Tat-meng Wong, 1995. Introduction of settlement and Metamorphosis in The Tropical Oyster, Crassostrea belcheri (Sowerby), byNeuroactive Compounds, Journal of Shellfish Research, vol. 14 pp.435-438. Soniat, T. M., R. C. Bioadhurst III & E.L. Haywood III. 1991.Alternatives to clamshell as cultch for oysters, and the use of gypsum for the production of cultchless oyster. J Shellfish Res. 10:405-410. Spencer, B.E., 1990. Cultivation of Pacific oysters. Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research. No: 63, p.47. Sugiura, Y., 1962. Electirical induction of spawing in two marine invertebrates (Urechis unucintus and hermahproditic Mytilus edulis). Biol. Bull. Woods Hole Cilt:123, pp.203-206. Utting, S.D., 1988. The growth and survival of hatchery-reared Ostrea edulis L. spat in relation to environmental conditions at the on-growing site.Aquaculture,69:27-38. Walne, P. R., 1974. Culture of Bivalve Mollusch 50 years experience at Conwy.Fishing News Books Ltd. Farnham, Surrey England. Yolkolu, S., 2000. İstiridye (Ostrea edulis)’nin gonad gelişimi ve cinsiyet oranı üzerine bir araştırma. E.Ü. Su Ürünleri Fakültesi. Yüksek Lisans Tezi, p.69.

http://www.biyologlar.com/istiridye-biyolojisi-ve-yetistirme-teknikleri

Laktik Asit Bakterilerinin tiplendirmesinde kullanılan Moleküler (Genotipik) Yöntemler

Organizmanın genetik yapısının analizini temel alan yöntemlerdir. DNA temelli yöntemler, kullanılan tekniğin tipine bağlı olarak mikroorganizmaların genus seviyesinden suş seviyesine kadar identifikasyonunu sağlayabilmektedir. Nükleotit sekanslarının kullanımını içeren bu teknikler oldukça hızlı teknikler olup besiyerindeki değişikliklerden etkilenmemeleri bakımından fenotipik identifikasyon yöntemlerine kıyasla oldukça önemli avantajlar sunmaktadır . Bununla beraber, genotipik yöntemler kromozomal DNA molekülünün insersiyon ve delesyonu, ekstrakromozomal DNA’nın kazanılması/kaybedilmesi veya restriksiyon endonükleaz kesim bölgelerinin yaratılmasına veya var olan kesim bölgelerinin elimine olmasına sebep olan rastgele mutasyonlardan etkilenmekle beraber doğal varyasyona daha az maruz kalmaktadırlar. Fenotipik ya da genotipik olsun, tüm identifikasyon sistemleri yorum ve performans rahatlığı, ayrım gücü, üretilebilirlik ve tiplendirilebilirlik bakımından karakterize edilmelidir. Günümüzde, LAB identifikasyon/tiplendirme çalışmalarında ilgi odağı fenotipik yöntemlerden daha kesin ve hassas sonuçlar veren moleküler (genotipik) yöntemlere doğru kaymıştır . DNA temelli moleküler yöntemler filogenetik çalışmalarda mikroorganizmaların birbirleri ile bağlantısının belirlenmesinde sıklıkla kullanılan yaklaşımlardandır ve kullanılan yönteme bağlı olarak genus düzeyinden suş düzeyine kadar mikroorganizmaların farklı seviyelerde tanımlanmasında gelişmiş bir bakış açısı sunmaktadır. Uygulamalı bakış açısından bakıldığında, ideal bir tiplendirme sistemi Tablo 1’de belirtilen bir takım önemli özelliklere sahip olmalıdır

http://www.biyologlar.com/laktik-asit-bakterilerinin-tiplendirmesinde-kullanilan-molekuler-genotipik-yontemler

BİTKİ GENETİK KAYNAKLARININ TOPLANMASI

Bitki genetik kaynakları, çevresel ve diğer baskılarla genetik erozyona uğramaktadır. Bitki genetik kaynaklarındaki çeşitliliğin saptanması, toplanması ve korunması, bitkisel çeşitliliğin sürdürülebilirliği bakımından son derece önemlidir. Genetik çeşitlilik türlerin yerel çeşitlerinin, yabani akrabalarının ve geçit formlarının birlikte bulunduğu yerlerde yoğunlaşmıştır. Türler kendi içlerinde milyonlarca genotip içerir. Toplanan örnekler toplam varyasyonun çok küçük bir modelidir. Bu nedenle, bitki genetik kaynaklarının korunmasında en geniş varyasyonu temsil edecek örneklerin toplanması önemlidir. Bitki genetik kaynakları materyali tohumla ve vejetatif çoğaltılan türleri içerdiğinden toplama prensipleri farklı olacaktır. Toplamanın amacına göre ekipte genetik bilgi birikimine sahip botanikçi, ıslahçı, agronomist, ekolojist ve taksonomistin bulunması gerekebilir. Ekip en az iki uzman kişiden oluşmalıdır. Başarılı bir toplama yapmak için iyi bir planlama, yörenin özellikleri ve hedef türler hakkında bilgi toplamak gerekir. Gerekirse hedef yöre ve türler için daha detay bilgi edinebilmek için bir sörvey programı(inceleme gezisi) düzenlenmelidir. Toplama programında zamanlama önemlidir. Böylece aşağıdaki yararlar sağlanabilir: -Uygun süre içinde en geniş genetik varyasyon toplanabilir. -Hedef türlerin olgunluk zamanları yakalanabilir. -Aynı yörede pek çok duraktan örnek toplanabilir. -Tarlalarda veya tarla kenarlarında geçit formları gözlenebilir. -Hedef türlerin yakın akrabaları gözlenebilir. -Toprak, iklim, yükseklik ve kültürel uygulamalardaki varyasyon yakalanabilir. Gerekli Ekipman Toplama programı süresince kullanılması gerekli ekipman; toplanacak materyal, iklim, yöresel koşullar, seyahat biçimi gibi etkenlerle çok yakından ilişkilidir. Toplama ekipmanı: Bitki türüne göre değişik ölçülerde bez torba, naylon torba, tohum örneklerinin konulacağı sağlam kağıt zarflar, tohum paketlerinin konulacağı kutu veya çantalar, çakı, çapa, çepin, küçük el küreği, şaşula, not defteri, kalem, silgi, kalemtraş, lastik bant, ataç, ip, tel zımba, yapıştırıcı bant, etiket, makas, el çantası, herbaryum presi, kurutma kağıdı, gazete kağıtları. Bilimsel ekipman: Altimetre, GPS, kompas, pusula, padometre, klinometre, digital fotoğraf makinesi, fon için beyaz bez, higrometre, lup, maximum-minimum termometre, harita, pH indikatör kağıtları, flora kitapları ve monograflar. Ulaşım ekipmanı: Arazi aracı, arazi koşullarına uygun giyim (tercihen çok cepli tişört gömlek ve pantolonlar, yağmurluk, şapka, güneş gözlüğü, bot vb.). Genel İlkeler Toplama stratejisinin belirlenmesinde materyalin yabani ve geçit formu, ıslah edilmemiş çeşit/primitif kültür formu, yerel çeşit/ yerel tipler olacağı hususu göz önünde bulundurulmalıdır. Bitki genetik kaynakları materyali dört değişik kaynaktan (habitat) toplanabilir: -Dağlar, vadiler, nehir yatakları, deniz kıyıları ormanlar gibi doğal alanlar, -Kültür tarlaları, tarla kenarları, -Kapama bahçeler ve ev bahçeleri, -Üretici ambarları, yerel köy dükkanları, pazarlar, aktarlar, tohumcular. Örnekleme stratejisi: Bitki genetik kaynakları materyalinin toplanmasında iki farklı örnekleme yöntemi uygulanabilmektedir: Rastgele (random) örnekleme: Genelde rastgele örnekleme yöntemi kullanılır. Örneğin bulunduğu alanda ön yargısız olarak, tüm alanı temsil edebilecek ve geniş varyasyonu içerecek şekilde örnek (tohum, soğan , rizom, yumru, çelik, aşı gözü gibi) alınmalıdır. Kültür, yabani ve geçit formları için kullanılan bu yöntem, az zamanda geniş bir alandan örnek alabilmek ve toplayıcının tüm alanı görmesini sağlaması açısından avantajlıdır. Ön yargılı (biased) örnekleme: Bu yöntemde fenotipik özellikler göz önüne alınarak örnekleme yapılır. Fenotipik durum her zaman genotipik farklılığı göstermediği için ön yargılı örneklemeden dolayı bazı genotiplerin örnek içinde yer alması güçleşebilir. Bir populasyon örneğinin bulunduğu ve ekolojik özelliklerinin kayıt edildiği yere durak adı verilir. Örneklemede, bir duraktan alınacak bitki sayısı, durak sayısı ve durakların toplama bölgesindeki dağılımı konuları ayrı bir öneme sahiptir. Genellikle genetik varyasyonun yüksek olduğu yabani türler ve geçit formları toplanırken bir duraktan toplanacak örnek sayısının belirlenmesinde duraktaki maksimum varyasyonun sağlanmasına dikkat edilmelidir. Bu nedenle etkin populasyon büyüklüğünün dikkate alınması gereklidir. Türlerin toplanmasında durak sayısını doğru belirleme açısından toplayıcı, hedeflediği toplama alanının tümünü örnekleyebilecek vejetasyon bilgisine sahip olmalıdır. Eğer yabani türlerin ve geçit formlarının toplanması hedefleniyorsa durak sayısı populasyonun büyüklüğü ve vejetasyonun değişmesine bağlı olarak yapılmalıdır. Populasyon tipi Durak/gün Bitki/durak Eski çeşitler (kısmen ıslah edilmiş) 20-40 15-30 Islah edilmemiş (primitif)/yerel çeşit ve tipler 10-20 30-50 Yabani türler 10-15 40-60 Yabancı döllenen türler 10-15 30-60 Toplama durakları hedeflenen bölge içerisinde uygun olarak dağıtılmalıdır. Bu konuda iki farklı yöntem uygulanabilir: -Durakların hedeflenen bölgedeki dağılımı homojendir (tek yıllık kültür formları için daha uygundur), -Durakların beşerli gruplar halinde olmak üzere hedeflenen bölgeye dağılımı homojendir (yabani ve geçit türleri için daha uygundur). Toplanan örneklerin sağlıklı ve hasar görmemiş olması gerekir. Tohumlu Bitkilerin Toplanması Tohumlu bitkilerin toplanmasında genel ilkeler uygulanmakta yabani ve kültür formlarına has hususlar dikkate alınmalıdır. Yabani türler ve geçit formları: Yabani türler doğal habitatlardan, yabani karakterli geçit formları ise tarla içleri ve kenarları gibi ikincil habitatlardan toplanırlar. Yabani ve geçit türlerinde türler içi ve türler arası doğal melezleme olabileceği göz önüne alınmalıdır. Bu nedenle populasyonlardaki varyasyonu temsil edebilecek olasıgenotipleri yakalayabilecek yeterli örneğin alınabilmesini sağlamak amacıyla örneklenen bitki sayısı daha fazla olmalıdır. Durakta tek veya birkaç bitki görülmesi halinde bu durum kaydedilmeli, bu bitkilerden tohum alınmamalıdır. Durak sayısı populasyonun büyüklüğü ve vejetasyonun değişmesine bağlı olarak değişir. Kültür formları: Toplama alanları tarlalar, bahçeler üretici ambarları, yerel köy dükkanları ve pazarlar, aktarlar, tohumcular olabilir. Tek yıllık kültür formlarında, eğer üreticiler farklı tohum kaynağı kullanıyorlarsa hepsinden ayrı örnekler, aynı kaynaklı tohum kullanıyorlarsa örneklerin karışımı ile oluşturulan tek bir örnek alınmalıdır. Ayrıca farklı isimlere sahip yerel çeşitlerin toplanması sırasında bu yerel çeşitlere ait bilgi alarak örnekleme yapmak gerekir. Yerel çeşit ve primitif çeşitlerin toplanmasında da durak sayısı önemlidir. Tek yıllık bitkilerde üreticiler kendi tohumlarını kullanıyorlarsa her tarla veya her çiftlikte bir durak yapılmalıdır. Gerek yabani gerekse kültür formlarında toplayıcının bitkisini iyi tanımasını gerekir. Tohumlar meyve içerisinde ise örnekler meyve olarak (olgun ve iri meyveler) alınır, gazete kağıtlarına veya bez torbalara sarılır ve tohumlar daha sonra meyve etinden ayrılır. Meyvelerin tohumunu çıkarmada en uygun yol, meyvenin parçalanarak bir süzgeç içinde yıkanması ve süzülerek tohumların kurutma kağıdı ya da gazete kağıdı üzerine serilerek gölgede kurutulmasıdır. Alınacak meyve sayısı da meyvelerin içerdiği tohum sayısına göre değişir. Gen bankasında uzun süreli muhafaza prensipleri doğrultusunda örnekteki tohum sayısı yabancı döllenen bitkilerde 10000-12000, kendine döllenen bitkilerde ise 8000 olmalıdır. Bu nedenle üretim ve yenileme gerekiyor ise hemen programa alınmalıdır. Vejetatif Üretilen Bitkilerin Toplanması Vejetatif üretime kolaylıkla tepki vermeyen türlerde tohum toplanmalıdır. Ancak vejetatif üretilen materyalde de tohum toplanabilir. Bu durumda tohumla üretilen bitki türlerine ait toplama prensipleri uygulanmalıdır. Tohum meyve türlerinden toplanıyorsa ve çevrede bu tür ile gen alışverişi yapabilecek türler varsa bunlarla ilgili bilgiler dikkate alınmalıdır. Bazı durumlarda sörveyler sırasında da meyve tipleri hakkında ön bilgi edinebilmek amacıyla meyve toplanarak bunların tohumları da değerlendirilebilir. Genelde muhafaza amaçlıtohum toplanması, orman ağaçları, ağaççıkları ve çalı formlu bitkiler ile tohum veren soğanlı, rizomlu ve yumrulu bitkiler ile sınırlıdır. Vejetatif materyalin korunabilmesi için, bitki türüne de bağlı olarak, birçok değişik çoğaltım metodu vardır. Bu nedenle çoğaltım tekniğine ve toplanacak bitki türüne bağlı olarak farklı vejetatif materyal (çelik, aşı gözü, aşıkalemi, soğan, yumru, rizom, sürgünler, köklerdeki piçler gibi) toplanır. Toplanan vejetatif materyal uygun bir koruyucu malzemeye sarılarak buz kutusu içerisinde nemli ve soğuk ortamda korunabilir veya zaman kaybetmeden çoğaltılacak şekilde korumanın yapılacağı kuruluşa yollanır. Vejetatif üretilen türlerin kültür formlarında (yerel meyve tipleri, eski ev bahçelerinde halen ekilmekte olan süs bitkileri vb.) ve yabani türlerinde (meyve, süs bitkisi, tıbbi ve kokulu bitki türleri vb.) genel toplama ilkeleri dikkate alınmalıdır. Endemik ve tehdit altında olan türlerde toplama sırasında yerinde kayıplara sebebiyet vermeyecek önlemler alınmalıdır. Yerel tiplerin toplanması sırasında, toplama yöresindeki bir köyde yerel tipin tohumdan yetiştirildiği saptanmış ise o tip için tüm köy tek bir durak kabul edilerek rastgele örnekleme yapılmalıdır. Eğer ağaçların, özel olarak seçilmiş geleneksel tiplerden klonal olarak üretildiği belirlenmişse köydeki her bir farklı tipin toplanması ve her birinin ayrı bir örnek olarak korunması gerekir. Toplama Sırasında Tutulacak Kayıtlar Toplama sırasında gerek tohumlu bitkiler ve gerekse vejetatif üretilen bitkilerde toplanan türler, toplama ve pasaport bilgileri ile toplama yöresi ile ilgili bilgilerin standart olması iyi bir veri tabanı yönetimi için gereklidir. Bu nedenle veriler standart toplama formlarına dikkatli bir şekilde kaydedilmelidir. Kayıtlarda özetle aşağıdaki bilgiler yer almalıdır: -Toplama numarası (toplama ekibi, toplama tarihi, durak numarası, duraktaki örnek numarası), -Habitat ve kaynağı, -Bitkinin botanik adı (cins, tür, alt tür gibi) ve yöresel adı, -Yöre (il, ilçe, köy, yön, vb.), -Koordinatlar (enlem, boylam ve yükseklik), -Materyal tipi (tohum, vejetatif) ve durumu (yabani, geçit veya kültür formu), -Populasyonun yöredeki büyüklüğü, -Topografya bilgileri (toprak, arazinin durumu vb.), -Birlikte bulunduğu diğer türler, -Tanımlayıcı notlar (Bitki ve yöreye ait ek notlar). Muhafaza Öncesi İşlemler Toplanan materyal ivedilikle muhafazaya alınacak şekilde muhafaza öncesi işleme tabi tutulmalıdır. Bunların başında kayıt işlemi gelmektedir. Materyal tohum örneği ise ivedilikle temizlenmelidir. Miktarı kontrol edilmeli ve üretilmesi gerekiyorsa üretim programına dahil edilmeli ve bu örnekler toplama numarası ile geçici kayda alınmalıdır. Üretimi gerekmeyen örnekler Gen Bankasında muhafazaya alınmak üzere esas kayda alınmalı (ülke kodu ve ardışık numara, TR 35444 gibi) ve tüm toplama bilgileri veri tabanına yüklenmek üzere elektronik ortamda ve standart formlarda Dokümantasyon Birimine iletilmelidir. Vejetatif materyal ise çoğaltılıp, bitkinin gelişimini tamamlayarak muhafaza parsellerine geçirilecek duruma gelene dek (fidan, olgun ve adapte olmuş sağlıklı bitki) toplama numarası ile geçici kayda alınır. Muhafaza parsellerine aktarılan ve oraya adapte olan sağlıklı örnekler ise esas kayda alınmalıdır. Muhafaza parsellerindeki örnekler ile ilgili Vejetatif Materyal İzleme Raporu hazırlanarak muhafaza bilgileri güncelleştirilmelidir. Dr. Ayfer TAN Dr. Tuncer TAŞKIN Uzm. Abdullah İNAL

http://www.biyologlar.com/bitki-genetik-kaynaklarinin-toplanmasi-1

SPERM MORFOLOJİSİ

Kullanımı: Strict kruger kriterlerine göre sperm morfolojileri normal olanların yüzde oranlarının belirlenmesinde kullanılır. Spermlerin morfolojik olarak değerlendirilmesi, fertilite parametreleri arasındaki en önemli kriterdir. www.tahlil.com

http://www.biyologlar.com/sperm-morfolojisi-1

 
3WTURK CMS v6.03WTURK CMS v6.0