Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 101 kayıt bulundu.

Balıklarda Üreme

Balıkların üreme organları genellikle gonadlar olup, bunlar dişide ovaryum, erkekte ise testis adını alırlar. Ovaryumlar (dişi üreme organları) genellikle bir çifttir. Büyüklük ve ağırlıkları türlere göre değişmekle beraber, olgun oldukları zaman balık ağırlığının % 25’i kadar olabilirler. Genellikle üreme mevsimi yaklaşmış ergin bir balıkta ovaryumlar açık sarı veya kahverengimsi bir renk alır, daneli bir görünüş kazanır ve yüzeyinde bol miktarda kılcal kan damarları bulunur. Ovaryumda gelişen yumurtalar genellikle oviduct (yumurta kanalı) denilen bir boru ile vücut dışına atılırlarsa da bazı balıklarda (örneğin, Anguillidae ve Salmonidae familyalarında ve Cyclostomata grubunda) yumurta kanalı tamamen körelmiş olup, yumurtalar ve spermler sadece bir delikle dışarı atılabilirler. Testisler ise erkek üreme organları olup, genellikle bütün tatlı su balıklarında çifttir. Büyüklükleri üreme mevsimiyle ilgili olarak çok değişir. Ergin haldeki bir balıkta, üreme mevsiminde testislerin rengi beyazımsı olur, lekesiz düz bir görünüş arz eder ve üzerinde kılcal kan damarları da görülmez. Ağırlıkları da ovaryuma nazaran daha az olup, ergin halde iken en çok vücut ağırlığının %12’si kadar olabilirler. Tatlısu balıklarının çoğu ovipar (yumurta ile çoğalan) karakterli oldukları halde, bazılarında (Gambusia affinis) ovovivipar bir durum görülmektedir. Ovipar olanlarda döllenme haricidir. Yani dişinin ve erkeğin suya bıraktığı yumurta ve spermler su içerisinde döllenirler, bunun için de böyle formlarda çiftleşme organları gelişmemiştir. Balıklarda spermler çeşitli şekillerde olabilirlerse de genel yapıları diğer omurgalılarınkine çok benzer. Nadir bir olay olmakla beraber, Gambusia cinsinde döllenme dahili olduğundan, özellikle erkek bireylerinde, çiftleşme organı olarak anal yüzgeç modifiye olmuştur ve adeta yüzgecin bir kısmı penis görevi yapmaktadır. Gambusia’da görülen bu yarı doğurma hali, hiçbir zaman memelilerdeki doğurmaya benzemez. Zira memelilerde yavru, ana rahmindeki gelişimi esnasında plasenta denilen bir göbek bağı ile annenin dolaşım sistemine doğrudan bağlanmış olup, beslenmesi anadan gelen kan içindeki besinler ile olur. Halbuki Gambusia’da plasenta mevcut değildir. İç döllenme ile meydana gelen zigot, yumurtanın vitellüs maddesi ile beslenir. Fakat yumurtanın açılması, embriyonun açılması, balığın vücudu içerisinde olduğu için, yavrular kloak boşluğundan dışarı atılırlar. Bu nedenedir ki, Gambusia’da görülen üreme tarzına viviparlık değil fakat ovoviviparlık diyebiliriz. Genellike bir çift bez halinde olan ovaryumlar, granüllü bir görüntüde olup, hava kesesi bulunan balıklarda bu keseye yapışık vaziyette yer alırlar. Yumurtlama mevsimi yaklaştığında ovaryumların büyüklüğü giderek artar ve visceral boşluğu doldururlar. Olgunlaşmış olan yumurtalar gözle ayırt edilebilecek kadar birbirlerinden ayrılmış olurlar. Yumurtanın büyüklüğü tiplere göre çok değişik olup, balığın büyüklüğü ile ilgili değildir. Bununla beraber, yumurta büyüklüğü yumurta sayısı ile alakalı olup yumurta ne kadar küçük ise sayısı o nisbette fazla olur. Örneğin Dere Kayası olarak bilinen Çöpçü balığı, Nemacheilus yumurtalarının büyüklüğü, Cyprinus carpio gibi çok iri vücutlu balıklarınkinden bile büyüktür. Döllenmesi harici olan balıklarda, döllenmiş yumurtanın gelişmesi su içinde ve bırakıldığı yerde gerçekleşir. Embriyonik gelişim sırasında genellikle şeffaf olan yumurtanın içindeki yavrular, dışarıdan rahatlıkla izlenebilirler. Yumurta sayısı da balık türüne göre oldukça değişmektedir. Örneğin, tatlı su formlarından acı balık (Rhodeus)’ta yumurta sayısı 40-100 arasında iken, bir Mersin Balığı olan Acipenser sturio’da bir defada 3 milyondan fazla ymurta bırakılmaktadır. Balıkların bu kadar fazla yumurta bırakmaları kendi nesillerinin sürdürülmesi için gereklidir. Zira dişi balığın bıraktığı yumurtaların büyük bir kısmı diğer karnivor hayvanlar tarafından yenilir, bir kısmı da suların içinde döllenmeyerek çürüyüp kaybolur. Hal böyle olunca, bırakılan yumurtanın durumuna göre % 60-70’i telef olur, ancak %30 kadarı açılarak yavruları meydana getirir. Yumurtadan yeni çıkmış yavrular vitellüs keselerini absorbe etmeden önce, oldukça pasif davranışlı ve kendilerini korumaktan aciz olduklarından bu safhada iken de büyük bir kısmı diğer yırtıcılara yem olmaktan kendilerini kurtaramazlar. Ancak %10-20 civarında yeni neslin ebeveynlere ilavesi mümkün olur. Yukarıda verilen değerlerden de anlaşılacağı gibi bırakılan her bir yumurtanın yavru verebilmesi, dolayısıyla ebeveynlerin yaşamlarını sürdürebilme oranı oldukça düşüktür. Bu nedenledir ki balıkların yumurta ve sperm verimleri diğer hayvanlara nazaran çok daha fazla olmaktadır. Zira birkaç cins hariç (Gobius, Gambusia), balıklarda döllenme haricidir. Bu sebepten balıkların meydana gelmesinden evvel, yumurta ve yavru balıkların telef olma sebepleri dikkate alınacak boyuttadır. Bir türün yumurtaları ne kadar çok döllenir ve açılırsa kuşkusuz o nispette yavru balık gelişir. Bunların da gelişerek ergin boya ulaşabilmeleri ve düşmanlarının az olması için çevre şartlarının uygun olması söz konusudur. Balıklar yumurtalarını genellikle ya dişi tarafından hazırlanan bir yuvaya veya sadece çukur bir zemin üzerine veya su yosunları ve köklü su bitkileri üzerine veyahut da çıplak taşlar üzerine bırakırlar. Tatlı su balıklarının çoğu, yumurtlamak için daima az derin suları tercih ederler. Yumurtlama yerleri ya hızlı akıntılı taşlık bir zon olabilir (Lampiridler, Salmonidler, Barbuslar, Aspiuslar, Chondrostomlar, Phoxinuslar vb.) yahut da vejetasyonca zengin durgun bir su olabilir (Cyprinus, Abramis, Cobitidler, Percidler vb.) Tatlı su balıklarında olgunlaşan yumurtaların tümü bazı türlerde bir defada bırakılırken (Esox, Perca ve Rutilus’ta ); diğerlerinde birkaç gün aralıklarla iki veya daha çok defada bırakılırlar (Tinca, Cyprinus, Alburnus, Blicca, Leuciscus vb.) Çok zaman şeffaf ve biraz da vizkoz karakterli olan balık yumurtaları şayet sudan daha ağır iseler, mukus maddesi sayesinde taşlar veya bitkiler üzerine yapıştırırlar. Bazı formlarda ise (Alosa ve Lota gibi) tamamen serbest ve hafif olan yumurtalar, açılıncaya kadar su üzerinde yüzerler, bu nedenlerle balıkların bıraktıkları yumurtalar genel olarak 5 grup altında toplanabilirler. 1- Yüzücü yumurtalar 2- Yarı yüzücü yumurtalar 3- Hafif ve yapışkan olan yumurtalar 4- Ağır fakat yapışkan olan yumurtalar 5- Ağır fakat yapışkan olmayan yumurtalar Balıkların çoğu yumurtalarını gelişi güzel suyun içine bıraktıkları halde bazı formlar yumurtalarının başka balıklar ve diğer su hayvanları tarafından yenmelerini önlemek amacıyla özel olarak yaptıkları yuvalara bırakırlar. Balık yuvaları ya hayvanın tercih ettiği bir barınaktan ibaret olabilir veyahut da Dikence balığında (Gasterosteus aculeatus) olduğu gibi yosun ve bitki kırıntıları ile kendilerine özgü yuva kurarlar. Hakiki yuva kurma içgüdüsü olan bu balıkların büyük bir gayretle kurdukları yuvaya dişi tarafından bırakılan yumurtalar, erkek balık tarafından yavrular çıkıncaya kadar (yaklaşık 15 gün) dikkatlice korunurlar. Erkek bu bekçiliği esnasında yuvanın içindeki suyu sirkülasyon yaptırmak amacıyla yüzgeçlerini de devamlı olarak hareket ettirir. Buna benzer şekilde yumurtaların erkek bireyler tarafından korunma içgüdüsü Gobiidae ve Cichlidae temsilcilerinde de vardır. Diğer taraftan acı balık (Rhodeus) cinsinde az sayıda olan yumurtaların açılıncaya kadar emniyet altında bulundurulmaları için tedbir alınmaktadır. Şöyle ki dişi balık olgunlaşan yumurtalarını uzunca bir ovipozitörü sayesinde bir tatlı su midyesi olan Anadonta ve Unio’ların solungaç-manto boşluğu arasına bırakırlar. Çok az miktarda albümine karşı bol miktarda vitellüs içeren ve etrafı ince ve şeffaf bir zarla çevrili bulunan balık yumurtaları çeşitli şekillerde ve değişik ortamlarda suya bırakılmalarını müteakip erkeğin aynı suya bıraktığı çok daha fazla sayıda sperm hücreleri tarafından döllenirler. Kısa bir süre sonra (5-10 dak.) döllenen yumurtalar üzerinde döllenme lekesi adı verilen küçük bir iz büyümeye başlar ve bu kısım bir müddet sonra daha da ilerlemiş bir değişmenin merkezi haline gelir. Bu gelişmeyi zarın şeffaflığı nedeniyle çıplak gözle dahi takip etmek mümkündür. Yumurtalarını döken balıklar genellikle gıda almak üzere avlanmazlar, çünkü yumurtalarını döktükten sonra halsiz, bitkin bir duruma düşerler. Hatta bazı türlerde bu haldeki balıklara hasta balık nazarıyla bakılır. Örneğin Onchorhynchus adı verilen pasifik alası denizden tatlı su göllerine yumurta bırakmak üzere göç ettikleri zaman yuurtalarını orada döktükten sonra sahile çekilip ölürler. Bu meyanda yılan balıkları da Meksika körfezinde bin metre derinliğe yumurta bıraktıktan sonra ölüme giderler. Kuşkusuz bu özellik tüm balıklarla ilgili olmayıp, istisnai bir durumdur. Balıklarda kuluçka süresi türden türe çok değişik olur. Bu süre genellikle suyun sıcaklığı ile çok yakından ilgili olup, suyun ısınmasıyla (belli sınırları aşmamak şartıyla) ters orantılıdır. Bu nedenledir ki suyun ısısını yükseltmek veya düşürmekle kuluçka müddetini kısaltmak veya uzatmak da mümkündür. Örneğin Salmo trutta’nın kuluçka süresi 5ºC de 82 gün iken 10ºC de 41 güne indirilebilmektedir. Demek oluyor ki döllenmiş olan yumurtaların açılabilmesi kuluçka süresince alacağı toplam ısı miktarına bağlıdır. Bu da Derece/gün orantısı olarak ifade edilmektedir. Örneğin bu değer alabalık için 410 ºC/gün olduğu halde, sazan balığı için 100 ºC/gün olarak hesap edilmiştir. Buna göre 20ºC de bırakılan sazan yumurtalarının kuluçka süresi 100/20 5 gün olacaktır. Yavru balıklar embriyonik gelişmeleri esnasında vitellüs kesesi içindeki besin maddesiyle beslenirler ve yumurtadan çıktıkları zaman da bu kesenin bir kısmını yine karınlarında taşırlar. Bu kese onlara doğumdan sonra bir müddet daha besleyici besin maddesi temin etme bakımından önemlidir. Belirli bir süre sonra bu kese kendi kendine absorbe edilerek kaybolur gider. Bu absorbsiyon müddeti balıklar için türlere göre değişmekte olup, sazanlar için 20 gün, alabalıklar için ise 40-50 gün devam eder, hatta deniz alası için (Salmo salar) bu süre daha da fazla olup, 70-120 gün kadardır. Vitellüs kesesinin absorbsiyonu tamamlandıktan sonra küçük yavrular kendi besinlerini kendileri aramaya başlarlar. Bu çağdaki balıklar özellikle su içinde bol miktarda bulunan bitkisel ve hayvansal planktonik organizmalarla beslenirler. Yumurtadan çıkmış yeni bir balık yavrusu aşağı yukarı yumurta çapının üç katı boyundadır ve türe göre değişen pasiflik devresini geçirdikten sonra (şayet hava kesesi bulunan bir balığın yavrusu ise) hava keselerini doldurmak için suyun yüzeyini doğru tırmanırlar. Balık yavruları gelişme esnasında genellikle büyük değişmelere uğramazlar (yılan balıkları, dil balıkları ve lampiridler hariç). Bu nedenle balık yavrularına larva demek pek doğru olmaz. Zira besin keseleri hariç şekil itibariyle tamamen ebeveynlerine benzerler. Fakat yukarıda da belirttiğimiz gibi Yılan balıkları (Anguilla anguilla) ile Lamprilerin (Lampetra fluviatilis) Leptocephalus adı verilen yavruları aşağı yukarı 3 yaşına kadar ebeveynlerinden çok farklı olan hakiki bir larva safhası geçirirler. Diğer taraftan bir tatlı su pisi balığı olan Pleuronectes flesus türünde ise yavrular başlangıçta bilateral simetri iken uzun bir gelişmeden sonra ebeveynlerde görülen asimetrik durum ortaya çıkar. Bundan dolayı yumurtadan çıktıktan sonra belli bie metamorfoz geçirerek ebeveynlerine benzeyen bu balıkların genç formları için larva tabiri kullanmak zorunlu olmaktadır. Aşağıda tatlısularımızda yaşayan bazı balık türlerinin üreme periyotları gösterimiştir. Latince İsmi Türkçe İsmi Üreme Periyotları Alburnus escherichi (Tatlı su sardalyası) Nisan-Mayıs Acipenser sturio (Mersin balığı) Mayıs-Temmuz Anguilla anguilla (Yılan balığı) Şubat-Nisan Abramis brama (Çiçek balığı) Mayıs-Haziran Vimba vimba (Aptalca balığı) Mart-Temmuz Barbus plebejus lacerta (Bıyıklı balık) Mart-Temmuz Carassius carassius (Sarı havuz balığı) Mayıs-Temmuz Carassius auratus (Kırmızı havuz balığı) Mayıs-Temmuz Chondrostoma nasus (Kababurun balığı) Nisan- Mayıs Cobitis taenia (Taş yiyen) Nisan-Mayıs Cyprinus carpio (Sazan balığı) Mayıs-Ağustos Esox lucius (Turna balığı) Şubat-Mart Gobio gobio (Dere kayası) Nisan-Temmuz Leuciscus cephalus (Tatlı su kefali) Nisan-Haziran Nemacheilus angorae (Çöpçü balığı) Nisan-Mayıs Perca fluviatilis (Tatlısu levreği) Şubat-Haziran Rutilus rutilus (Kızılgöz balığı) Nisan-Mayıs Phoximus phoximus (Ot balığı) Nisan-Temmuz Salmo trutta macrostigma (Dere alası) Kasım-Ocak Scardinius erythrophtalmus (Kızılkanat) Nisan-Ağustos Silurus glanis (Yayın balığı) Haziran-Ağustos Blicca björkna (Tahta balığı) Mayıs-Haziran Rhodeus cericeus amarus (Acı balık) Mart-Ağustos Tinca tinca (Yeşil sazan) Mayıs-Haziran Aspius aspius (Kurt balığı) Nisan-Mayıs

http://www.biyologlar.com/baliklarda-ureme

Balıklarda biyolojik sistemlerin işleyişi

Balıklarda sindirim sisteminde büyük farklılıklar gözlenir Bütün balıklarda görülen karaciğer genel olarak büyüktür ve yumuşak bir dokudan oluşur. Kıkırdaklı balıkların dışında, pankreasın yerini ya mide ile barsağın birleştiği mide kapısının çevresinde bulunan özel bir dokudan oluşmuş körbarsaklar ya da barsağın başlangıcında bulunan bu dokunun kendisi alır. Ağzı donatan dişler de büyük ölçüde değişkenlik gösterir. Yalnızca birkaç türde hiç diş bulunmaz. Dişler, genellikle avı tutmaya ya da parçalamaya yarar. Balıkların çoğu hayvansal besinlerle beslenirler. Yırtıcı olanların büyük bir bölümü, kendi türlerinden olanları bile ayırt etmeksizin balıklara saldırarak beslenirler. Bazılarıysa kabukluları ve yumuşakçaları yer. Az sayıda balık türüyşe bitkicildir (bitkisel maddelerle beslenirler) ya da midelerini mikroskopik hayvancıklarla dolu suların çamuruyla doldururlar. Balıkların böbrekleri omurga boyunca uzanır; ama sidik torbası göden barsağınm üstündedir ve memeililerdekinin tersine, anüs ile üreme açıklığının arkasından dışarı açılır. Balıkların sinir sistemi Balıkların beyni, bedene oranla çok küçüktür ve beyni oluşturan çeşitli bölümler eşit olmayan biçimde gelişmiştir. Bununla birlikte, beyinden çıkan sinirlerin dağılımı, öbür omurgalılar ınkiyle tam bir benzerlik gösterir. Duyu organları arasında, genellikle büyük olan göz, geniş ve çok açık olan gözbebeğiyle dikkati çeker. Derin deniz balıklarının gözleri ya körelmiş ya da çok gelişmiştir. Kulağın yapısı yalındır: Yalnızca içkulaktan oluşur.Koku alma organı, tabanı kıvrımlı bir zarla çok düzenli biçimde döşenmiş kapalı bir uçla son bulan, iki boşluktan oluşur; balıklar kokulara karşı çok duyarlıdırlar (hiç akıntı olmasa bile uzaktan yemin bulunduğu yere doğru gelirler). Buna karşılık, tat alma pek gelişmemiştir. Balıkların dili kemiktendir ve yapısında çok az sinir yer alır; ayrıca, balıklar besinlerini ağızlarında tutmazlar. Dokunma duyusu son derece gelişmiştir; böylece balıklar, şaşırtıcı bir keskinlikle, suyun en küçük titreşimlerini hissedebilir ve geldikleri yeri belirleyebilirler. Dokunmanın başlıca merkezi, omurgaya koşut olarak gövde boyunca uzanan ve yan çizgi adı verilen bir oluk içindedir. Dokunma duyusuna dudaklar da yardımcı olabilir. Balıklarda üreme Balıklarda yumurtalar genellikle beden dışında döllenir (yani ovipardırlar). Son derece ince, suyu ve dölleyici sıvıyı geçiren bir zarla kaplı olan yumurtaların büyüklüğü değişkendir. Bazı türler bir milyondan çok yumurta yumurtlar. Bütün bu yumurtalar iki zarla sarılmış bir vitellüsten oluşurlar; bazı köpekbalıklarında bir eten vardır. Dişi,, yumurtlama dönemindeyken, yumurtalar çok büyük bir gelişme gösterirler ve aşağı yukarı bütün karın boşluğunu doldururlar. Erkekte balıksütü denen sperma için de aynı şey söz konusudur. Üreme sırasında dişi ve erkek balıklar, olağanüstü etkinlik gösterirler: Su bitkilerini hareket ettirir, kıyılara yaklaşırlar ve dişi, sığ yerlere yumurtalarını döker. Yumurtalar bırakılır bırakılmaz, erkek balıklar üstlerine spermalarını bırakarak onları döllerler. Sonra erkek ve dişi, yumurtaları bırakıp giderler. Ama, dikenbalıkları, horozbinalar, yayınbalıklan gibi bazı balıkların, yuva yapma içgüdüsüyle yumurtalarını koruma altına aldıkları bilinmektedir. Bazen yalnızca erkek balığın yuvanın başında beklediği ve yavrularını koruduğu görülür. Bazı türlerde de erkek ve dişi, yavruların çevresinde durur ve bir tehlike sezdikleri anda onları geniş ağızlarının içine alarak korurlar. Bazı balık türleriyse çiftleşirler ve yumurtalar ana karnında açılır (yani ovovivipardırlar); yavrular kısa bir kanalla dışarı çıkarlar. Yalnızca köpekbalıklarında, yumurtalıktan ayrı, çoğunlukla gerçek bir dölyatağıyla son bulan uzun yumurtalık kanalları vardır. Köpekbalıkları ya canlı yavrular ya da bağsı bir maddeyle sarılmış büyük yumurtalar üretirler.

http://www.biyologlar.com/baliklarda-biyolojik-sistemlerin-isleyisi

Nematoda Larvalarının Tayin Anahtarı

1. İnteestinal cecum yoktur ................................................................................21. İnteestinal cecum yoktur ................................................................................92. Büyük bir nematod olup deniz balıklarının etlerinde, bazen anadromus balıklarında bulunur.....................................................................Soy: Anisakia 2. Nematod genellikle daha küçük (Eustrongylides); mesenteriler ve iç organlarda , bazen kaslarda bulunur....................................................................... 33. Dudak veya lateral lob yoktur....................................................................... 43. Dudak , lateral loblar veya cephalic papillalar vardır................................... 54. Mikroskobik larva ; kist içinde değildir..........Soy: Philometra ve Philonema4. Balığın mesenterileri ve kasındaki kist içindedirler 1 cm . kadar çapında larva kan kırmızısı renginde ; iki çember halinde 12 veya 18 baş papillaları vardır; birçok balıklarda görülmüş olup olgunları su kuşlarının ön mide bezlerinde bulunur.....................................................................................Soy: Eustrongylides5. Başta dudaklar yoktur fakat çember halinde altı papilla vardır; 10mm kadar uzun olabilirler .............................................................. Soy: Dioctophyma renale5. Dudaklar vardır.............................................................................................. 66. Başta iki lateral dudak vardır......................................................................... 76. Başta üç veya dört dudak vardır....................................................................... 87. Başta uçları geriye doğru dikenlerle donatılmış kütiküler baş ampulü vardır.. .................................................................................................... Soy: Gnathostoma7. Başta diken teşekkül yoktur................................. Soy: Dacnitoides ,Dichelne8. Başta üç belirgin dudak vardır; bağırsak kırmızıdır;mesenterilerde bulunur...............................................................................................Soy: Spiroxya8. Başta spesialize olmuş dört dudak vardır..................................Soy: Hedruris9. Deniz balıklarının etlerinde bulunan büyük bir nematodtur; seyrek olarak anadromus balıklarında bulunur.................................................Soy: Porrocaecum9. Üç dudaklı küçük bir nematod olup görülmesi zor olabilir; mesenterilerde ve karaciğerde kist içinde veya kistsiz olabilir; kistler 5cm. büyüklüğünde olabilir...........................................Soy: Contracaecum( Ekingen,G.,1983 )

http://www.biyologlar.com/nematoda-larvalarinin-tayin-anahtari-1

Balıklarda solunum fizyolojisi

Solunum terimi, bir organizmanın hücresi ile çevresi arasındaki gaz (genellikle oksijen ve karbondioksit) alışverişini ifade eder. Tek hücreli canlılarda, gerekli gaz alışverişi pasif difüzyon ile sağlanabilir. Balık gibi komplex organizmalarda, dokulara yeteri miktarda O2 sağlamak ve CO2’i ortadan kaldırmak için, hem gaz alışverişi için gelişmiş bir yapı (solungaç), hem de bir gaz transfer sistemi (kan ve dolaşım sistemi) gerekir. Su ve dokular arasında osmoregülasyon ve asit-baz dengesini sağlamak gibi, balık solungacının başka fonksiyonları da vardır. Solunum sisteminin, elinde tuttuğu ve transferini gerçekleştirdiği su ve kan ve ayrıca O2 ve CO2 alışverişini sağladığı aşamalarının anlaşılması; balıkların fizyolojik ihtiyaçlarını giderecek ve yüksek derecede sağlık ortamı sağlayacak bir intensive kültür sisteminin mantıklı dizayn ve operasyonunu temin edecektir. Solunumun bütün işlevleri önemlidir, fakat intensive kültür sisteminin tipik özelliği olan yoğun balık stoklamalarında, gaz alışverişindeki etkilerin ani ölümlere neden olması bilinmelidir. Solungaç çevresindeki sudan transfer edilmesi ve dokulara gönderilmesi gereken O2 miktarı önemlidir. Salmonid gibi aktif soğuk su balıkları için O2 gereksinimi 100 mg.O/kg vucut ağırlığı şeklinde yüksek bir oranda veya daha fazlası olabilir. Aktif olarak yüzen balıklarda, solunum sistemi, 800 mg.O/kg/saat (20 ml.O/min civarında) kadar yüksek oranda O2 sağlayıp, karşılığında büyük oranda CO2 ortadan kaldırmalıdır. Bununla birlikte su, maximum çözünmüş O2’nin 10-12 mg/l’yi nadiren geçtiği O2 fakiri bir ortamdır. Deniz suyunda, mevcut çözünmüş yüksek tuz konsantrasyonu, mevcut DO’yu maximum 8-9 mg/l’ye kadar azaltabilir. Bunun için, balık yaşamının devamı için büyük miktarda suyun solungaçlardan geçmesi gereklidir. Salmonidler için solungaçlardan suyun geçmesi 5-20 l HO2/O2/vücut ağırlığı/saat oranındadır. Çoğu balık gerekli miktardaki suyu ağızlarıyla pompalayarak ve opercular hareketler yaparak sağlarlar. Ağız ve solungaçlar emme basma tulumbası olarak görev yaparlar ve böylece sabit bir su akışı sağlarlar. Haçerideki balıklar için, su alıp verme oranı 40-60 l/dk oranındadır. Suyun yüksek yoğunluk ve viskozitesinden dolayı solungaç ventilasyonunun enerji gideri, en az, tüketilen O2’nin %10’u kadardır. Salmonid, köpek balığı ve tuna gibi aktif balıklar, solungaçları üzerinden gerekli su akışını ram ventilasyonu (Yüzerken ağızını açarak) ile sağlarlar. Örneğin, pasifik salmon, ram ventilasyonunu 1 vücut uzunluğu/saniye’den daha yüksek hızda yüzerek kullanır. Bazı köpek balıkları, ram ventilasyonu ile sınırlandırılmıştır ve yaşamak için sürekli yüzmek zorundadır. Her iki solungaç ventilasyon metodunda da DO’nun %80’ine kadarki kısmımın (teorik olarak) kullanılması mümkündür. Çünkü solungaç anatomisi, ters yönde kan akışını sağlayacak şekilde dizayn edilmiştir (suyun solungaçlar üzerinden akışı, kanın solungaçlar içinden akışına terstir). Gerçek O2 tüketimi türlere göre farklıdır. Alabalıkta %30-40, tunada %70 ve sazanda %70-80’dir. Buna kıyasla, insan havadaki O2’nin sadece %25’ni alabilir. Su solungaçlardan geçerken, sudaki çözünmüş O2, sekonder solungaç lamelinin ince epitelyal hücrelerinin arasından geçer ve kana difüze olur. Asitlik arttıkça hemoglobinin O2’ye yakınlığı azalır (Bohr etkisi) ve bazı türlerde asitlik, hemoglobinin O2’yi tutmasındaki maksimum kapasiteyi azaltır (Root etkisi). Bu yüzden kan, dokuların kapillar yataklarından geçerken üretilen CO2’in neden olduğu asitlik Hb-O2 ağını zayıflatır ve O2 yoğunluğunun düşük olduğu hücrelere difüze olan O2’nin çıkışını kolaylaştırır. Aynı zamanda, CO2, dokulardan kana difüze olur. O2’in tersine, CO2’in çoğu plazmada erir ve bikarbonat formunda yeniden solungaçlara gönderilir. Kan solungaçlardan geçerken karbonikanhidraz enzimi, HCO3 iyonunu sonra yeniden suya difüze olan CO2 molekülüne hidroliz eder. Bir ünite kanın solungaçlar içinde kalma zamanı, sadece birkaç saniye olduğu için ve kan ve su arasındaki yüksek CO2 basıncından dolayı bu enzimatik reaksiyon son derece hızlı bir aşamadır. Bu yüzden kandaki O2 basıncı 100 mg Hg veya daha yüksek seviyeler arasında değişebilir, kandaki CO2 konsantrasyonu düşük kalır ve çok az değişir. Özellikle aktif soğuk su balıklarında Bohr etkisi büyük olur (kanın düşük CO2 düzeyinde başlar). Aquakültür sistemlerinde, örneğin eğer sudaki çözünmüş CO2 konsantrasyonu 20 mg/l’ye çıkarsa Bohr etkisi salmonidlerin O2 transferini engeller. Karışık kültürü yapılan sıcak su balıkları (Tilapya, sazan, kanal kedi balığı gibi) genellikle çözünmüş CO2 konsantrasyonuna daha az duyarlıdırlar ama, bu yetiştiricilik yöntemi, iyi bir yetiştiricilik işletmesi için, CO2 ’in havuz suyunda birikmesine engel olan durumları sağlamada iyi bir yöntemdir. CO2’in etkisiyle birlikte, laktik asit üretimi kan asitliğinin yükselmesine ve kanın O2 transferinin bozulmasını neden olur. En genel sebep; beyaz kaslarda O2 olmamasından dolayı kan ve dokularda laktik asit birikmesiyle sonuçlanan aşırı yüzme aktiviteleridir. Bu da heyecan ve stresten kaynaklanır. Örneğin, eğer kanın pH’sı 7,8-7,6’dan 6,0’a düşürülürse toplam hemoglobinin sadece çok az bir yüzdesi O2 ile doyurulabilir. Root etkisindeki Hb’in normal görevi choroid rete üzerinden O2’i göze ileten moleküler pompa görevi yapmak ve physoclistik türlerde rete mirabile üzerinden yüzme kesesini doldurmaktır. İkinci görevi, salmonidlerde (fizostomları bulunduğu için) önemsizdir ki; havayı emerek yüzme kesesini doldurmaktır. Bununla beraber, salmonid gözündeki normal O2 yoğunluğu, hem kanın, hem de suyunkinden fazladır. Bu da root etkisindeki Hb’in bu balıklarda önemli bir rol aldığını gösterir. Cadmium ve civa gibi ağır !!!!llerin öldürücü seviyelerinin altındaki dozlarına maruz kalma durumunda, root etkisindeki Hb’in normal fonksiyonunun tersi yönde etkilendiği bilinir. Bunun yoğun kültürdeki balığın sağlığı için önemi bilinmemektedir. Yoğun kültürdeki balıklar için, Bohr ve Root etkisi altında O2 transferinin azalması ile ilgili problemler, kanda yüksek laktik asit konsantrasyonu (Hyperlacticemia) veya kanda yüksek CO2 konsantrasyonu sonucu ortaya çıkar. Genel sebepleri; düşük DO durumları ve heyecandan kaynaklanan aşırı yüzme aktiviteleridir. Ayrıca yetiştirme ve transfer sırasında daha yüksek stoklama yoğunluğu sağlamak için saf O2 kullanarak havalandırma yapmak, aşırı doyurulmuş DO düzeyine ve hipercapnia’ya (yüksek DO’nun solungaç havalandırma oranını baskılaması nedeniyle oluşan bir yan etki) neden olur. Bu ise, CO2 birikmesine ve yüksek arterial PCO2 basıncına neden olur. Kana O2 transferi bundan etkilenmeyebilir. Çünkü daha yüksek arterial PO2, bohr etkisi kaynaklı azalmaları dengeler. Buna ek olarak hipercapnia, dokulara O2 naklini, sadece arta kalan asitliği normal kan dengesini aşarsa veya solunum asidosisi meydana gelirse tehlikeye sokabilir. Suyun kalitesinin iyi olduğu balık kültürlerinde Bohr etkisi kaynaklı O2 naklinin azalması ile ilgili problemler, aşırı yüzme sonunda üretilen laktik asitten dolayı ortaya çıkan !!!!bolik asidosis kökenlidir. Bohr etkisinin solunum baskısının CO2 ve DO konsantrasyonu ile olan ilişkisi ilk kez Basu (1959) tarafından belirlendi. Dokulara yeterli O2 sağlamak için vasat bir yüzme seviyesi oluşturmak için gereken DO seviyesi bunu ortaya çıkarmıştır. Bu minimum miktar, eğer çok az CO2 varsa veya hiç yoksa 6 mg/l’den, Eğer çözünmüş CO2 konsantrasyonu 30 mg/l’ civarına yükselirse, 11 mg/l’den daha yukarı çıkar. Sonuç olarak, salmonid gibi balıkların, DO seviyesinin %80 doygunluk oranının altına düşmemesi şartıyla, yeterli O2’ye sahip olmaları önerilir. Eğer çözünmüş CO2 seviyesi 30-40 mg/l’nin altında tutulmazsa, kanın O2 taşıma kapasitesi, yüksek DO konsantrasyonunun bile yetersiz olduğu, doku hipoksia’sına neden olabilecek seviyelere düşer. Bohr ve root etkisi kaynaklı solunum baskısı, heyecan ve yüzme aktivitesini azaltmak için dikkatli balık tutumu ile en aza indirilebilir. Yeterli miktarda çözünmüş O2 sağlamanın yanısıra çözülmüş CO2 ‘yi hızla ortadan kaldıran havalandırma sistemi ve su değişim oranı ile de bu sağlanabilir. Pratikte bunlar yoğun kültürdeki balığın ihtiyaçlarını sağlamada gerekli unsurlardır. Haçeri’deki çözünmüş O2’i balığın tüketme oranı yoğun kültür sistemlerinin sağlanmasında önemlidir. O2 tüketimi, balık naklinde gerekli olan havalandırma miktarı ve istenilen yükleme yoğunluğu için gerekli su alışveriş oranı gibi temel parametreleri belirler. Racewaylerdeki salmonidler en az 100 mg.O/kg/saat ile en fazla 800 mg/kg saat arasında tüketir. Bu seviye, yüzme seviyelerine, su sıcaklığına, zaman, son beslenme ve heyecan, stres derecesine göre değişir. Egzersiz, stres veya su sıcaklığının sonucu olan !!!!bolik ihtiyaçları karşılamak ve O2 tüketim oranını kontrol etmek için hormonal teknikler kullanılır. Hem soğuk su, hem de sıcak su balıklarının solunum oranı karasal omurgalılarda olduğu gibi kanda CO2 yükselmesi ile değil, DO konsantrasyonundaki düşüş ile stimüle edilir. Örneğin, balıklar elle tutularak stres olduğu zaman, adrenalin ve diğer cathekolomine hormonları (hem solungaç perfüzyon miktarını , hem de alyuvar hemoglobininin O2 taşıma kapasitesini artıran hormonlar) üretilir. Bronşal vasodilasyonun yan etkisi olarak suyun normal ozmatik akımı aşırı şekilde yükselir ve bundan sonra vücuttan atılmalıdır. Diüresis’in sonucu çok çarpıcı olabilir, kandaki elektrolitlerin bazıları üretilen çok fazla üre içinde kaçınılmaz bir şekilde kaybolur. Diüresis uzatılırsa, iyon regulasyonunda bozulmalar ortaya çıkabilir. Balık tutulduktan veya nakledildikten 1-2 gün sonra oluşan gecikmiş ölümler büyük ölçüde bu olayın bir sonucudur. Yoğun kültür sistemlerindeki balıkların O2 tüketimi, hem balığın kültürel prosedürü, hem de doğal gelişmeler nedeniyle arttırılabilir. Bunlardan, tutma nedenli stres, heyecan nedenli arttırılmış yüzme aktivitesi ve beslenmenin doğal aşamaları en önemli olanlarıdır. Örneğin Çelikbaş alabalığı juvenilleri tutulmaktan dolayı strese girerler, O2 tüketimleri 2 kat birden artabilir ve bir veya daha fazla saat yüksek oranda kalır. O2 tüketiminin artması (heyecan ve stres kaynaklı), balıklar nakil tanklarına yüklendikten sonra, birden meydana gelen DO’daki ani düşüşün sorumlusudur. O2 havalandırması varsa, balık bulunan tank suyu 14-16 mg/l’lik DO’ya kadar doyurulmalıdır ki, bu da balıkların O2 ihtiyacını karşılar. Sadece sıkıştırılmış hava varsa, havalandırma sistemini, balık yüklemeden 5-10 dakika önceden başlatmak, suyun doyurulmasını sağlayacağından bir dereceye kadar etkili olacaktır. Beslenme ve sindirimin doğal aşamaları, balığın O2 tüketimini büyük ölçüde artırır. Çünkü sindirimin, absorbsiyon ve asimilasyonun kalorik maliyeti, geri kalan !!!!bolik kalorinin %40’ı kadardır. Bu etkinin O2 tüketimindeki boyutu (Specific dynamic action of food (SDA) = .Yiyeceklerin spesifik dinamik hareketi) her zaman tam olarak değerlendirilmez. Çünkü beslenme rutin bir operasyondur. Salmonid, kanal kedi balığı ve tilapya için, her defasında balık birkaç saat beslendiği için O2 tüketim oranını %40-50 veya daha fazla arttırmak akıllıcadır. SDA’nın pratik sonucu olarak; balığın hemen tutulmaması veya nakil edilmemesi gerekir. Çünkü, beslenme ve sindirim olaylarına eklenen heyecan ve stres, onların O2 tüketimini, havalandırma sisteminin yeterli DO sağlayamayacak seviyede arttırır. Elle tutulmadan ve nakilden 24-48 saat önce balık beslemeyi durdurmak bu etkiyi önler ve O2 tüketim oranını büyük ölçüde azaltır. Yoğun kültür sisteminde O2 tüketimini etkileyen diğer önemli faktörler ise; su sıcaklığı ve yüzme aktiviteleridir. Daha yüksek su sıcaklığı, bütün !!!!bolik hızı artırarak O2 tüketimini yükseltir. Bununla beraber yüzme aktivitelerinde O2 tüketimi, kasların kasılması için, Hb doygunluğunu düşürerek kandaki O2‘yi tüketmesi ile yükselir. Gökkuşağı alabalığında, solungaç lamelleri’nin sadece %60’ı kanla perfüze olur. Hızlı yüzmeye dayanan kas kasılması, adrenalin ve diğer cathekolamine hormonlarının dolaşımını teşvik eder. Meydana gelen solungaç perfüzyonun yükselmesi ile birlikte, eritrosistlerin, hücre içi pH’sını artıran, Na / H değişiminin adrenal hormonu tarafından teşviki sağlanır. Bohr etkisi düşürülür ve hem kanda O2 oluşumu, hem de O2 ‘nin dokulara teslimi sağlanır. Isı ve yüzme aktivitelerinin O2 tüketimi üzerindeki etkisinin gerçek boyutu Brett (1973) tarafından, kontrol altında tutulan pasifik solmonu üzerinde belirlenmiştir. Daha sıcak su, O2 tüketimini bir dereceye kadar artırır. Bununla beraber, yüzmenin etkisi daha çarpıcıdır. İleri atılarak yüzme, özellikle enerji bakımından yoğundur. Çünkü sürtünme etkisi çok yüksektir. Yoğun kültür sistemindeki balığın yüzme aktivitesi genelde daha düşüktür. Salmon kültüründe racewaylerde su alışverişi öyle ayarlanmalıdır ki, o balığın O2 tüketim oranı, DO’yu son taşma sınırının yaklaşık 6 mg/l aşağısına indirmemelidir. Havalandırma sistemi ayrıca, taşıma kapasitesini artırmak için de kullanılır. Bazı durumlarda DO oranını 14-16 mg/l ‘ye çıkarmak için sıvı O2 kullanılır. Balık nakil sisteminde O2 tüketim oranı, genelde yüksek heyecan ve stres nedeniyle değişkendir. Yakaşık DO doygunluğunu sağlamak için saf O2 kullanılır. DO, balık tarafından tüketildikten sonra hemen yenilenmezse, O2 tükenmesi meydana gelir. Karasal hayvanların aksine, balığın nefes alma oranı, yükselen CO2 ile değil, düşen DO konsantrasyonu ile stimüle edilir. Alabalık, sazan, kedi balığı gibi türler düşen DO seviyesine, önce ağız ve solungaçlarını kullanıp solungaç havalandırma oranını yükselterek; kan basıncını ve kardial verimi yükseltip solungaçlardan kan akışını artırarak cevap verir. Salmonidlerde, normal DO tükenmesi bile, solungaç havalandırma oranında çarpıcı yükselmelere neden olur. Bu olaylar, ilk olarak O2 alımını yükseltir, fakat daha fazla su akışı da, solungaçlardan her geçişte çekilebilen DO oranını azaltabilir. DO düştükçe kana transfer edilen O2 miktarı da düşer (max %80’den min %15’e). Ayrıca, daha fazla suyun solungaçlar üzerinden hareket ettirilmesi, enerji maliyetini büyük oranda yükseltir (Absorbe edilen O2 ‘nin %10 ‘undan %70’e yükselmesi). Sonuç olarak; O2 elde etmek için harcanan güç, suda çözünmüş O2 miktarı düştükçe ve arterial kandaki O2 basıncı düştükçe yükselir. Arteial kan O2‘si, alyuvardaki Hb %60 doygunluktan daha az olduğu noktaya ulaşıncaya dek azaldığında; solungaç damarlarını genişleterek ve Na/H alışverişini alyuvar membranı ile sağlayıp, hücre içi PH’yı yükselten adrenalin ve diğer cathecolamine hormonları salgılanır. Bir dizi karışık olay sırasında Hb-O2 ilişkisinde değişiklikler ve Bohr ve Root effect kökenli kapasite değişiklikleri, hem solungaçlardaki O2 transferini, hem de O2 ‘nin dokulara yükselmesini kolaylaştırır. Eğer çözünmüş O2, 5 mg/l’nin altına düşerse, salmonidler, iştahsızlaşırlar. Bu, beslenme ve sindirim sırasında O2 tüketiminde meydana gelen normal yükselmeye engel olmak için geliştirilen bir davranışsal cevaptır. Salmonidlerde, O2‘nin elde edinimi ve kullanımının biyoenerjik maliyeti, DO’nun 2 mg/l civarına kadar tüketilmesinden dolayı ortaya çıkan aşırı enerji ihtiyacı ile başlar ve bilinç kaybı ve hatta ölümle sonuçlanabilir. Aquakültür için önemli olan çoğu sıcak su balığı DO seviyesi 1 mg/l’nin altına düşse bile birkaç saat hayata kalmayı başarır. Ama sonunda meydana gelen doku hipoksiası bilinçsizlik ve ölümle sonuçlanır. Aquakültür ortamında balığın tükettiği O2 oranını sürekli düşürmek en temel hedeftir. O2 tüketimini artırmak için varolan aynı biolojik ve çevresel faktörlerin çoğu onu düşürmek için de arttırılabilir. Su sıcaklığını azaltma (hipothermia) ve yüzme aktivitesini, heyecanı ve balık tutma sırasındaki stresi düşürmek için anastezik kullanımı en bilinenleridir.

http://www.biyologlar.com/baliklarda-solunum-fizyolojisi

Zehirli Balık Türleri

Zehirli Balık Türleri

Aslan balığı (Pterois), Hint Okyanusu ve Büyük Okyanus'un batı kısımlarında mercan kayalıklarda yaşayan zehirli deniz balıklarından oluşan bir cinstir. İnsanlar için tehlike teşkil ederler. Kıyıya yakın yerler ile 50 metre derinlik arasındaki kısımlarda yaşarlar.Yetişkinleri 40 cm uzunluğa değin erişebilirler. Gözlerinin üzerinde ve ağızlarının altında pervane benzeri pektoral yüzgeçlere iyedirler.Üst kısımlarında bulunan iğnelerin insan ile teması sonucunda birkaç gün süren yanma, terleme ve solunum zorluğu görülebilir, hatta ölüme bile neden olabilir.

http://www.biyologlar.com/zehirli-balik-turleri

Tuzlu Su Balıkları

Tuzlu Su Balıkları

Tuzlu su deniz balıklarından bazılrına örnek

http://www.biyologlar.com/tuzlu-su-baliklari

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

DİPHYLLOBOTHRİUM LATUM

Erişkini insan, kedi, köpek, domuz gibi balık yiyen hayvanların ince bağırsağında yaşayan, balıkta larva dönemini geçiren en büyük cestodtur. Cestodların vücudu yassı, halkalara ayrılmış, uzun ve şerit şeklindeki helmintlerdir. Vücutları fonksiyon bakımından üç kısım içerir. 1)Baş (skoleks) 2)Boyun 3)Halkalar Baş üzerindeki vantuz ve çengelleri parazitin bağırsak duvarına tutunmasını sağlar. Boyun bölgesi ince ve segmentsizdir. Halkalar boyundan tomurcuklanma ile oluşur. Boyuna yakın olanları en genç olanları olmakla birlikte boyundan uzaklaştıkça genital organlar ve olgun halkalar meydana gelir ETİYOLOJİSİ: Parazit 3-10m ulaşabilmektedir. İnsan bağırsağındaki sayısı genellikle birdir. Badem şeklindeki skoleksin bütünü boyunca uzanan yarık şeklinde iki adet vantuzu vardır.Genital delikler halkaların ventralinde bulunur.Bir dişi parazit günde bir milyondan fazla yumurta bırakabilmekle birlikte yumurtalar 25-70 x 32-45 µm boyutunda sarımsı kahverenktedirler. EPİZOOTİYOLOJİSİ: Parazit yaşam süresi olan 10yıl boyunca 7 km’lik halka oluşturabilmektedir. Diphyllobothrium latum’ un, Turna, Levrek, Alabalık gibi tatlı su balıklarında su sıcaklığının 15 – 25 Cºolduğu dönemlerde 1 -2 cm’lik larvaları balığın iç organları arasında ve kaslarda kistleşmeye, organların birbirine yapışmasına neden olur. Etkene bağlı vakalar Türkiye’ de bildirilmiştir fakat ülkemizde çiğ ya da az pişmiş balık tüketilmediğimden bu vakalarda kesin değildir KLİNİK VE OTOPSİ BULGULARI: Klinik olarak asemptomatik olabilir. Semptomatik hastalarda karın ağrısı, kramplar, kilo kaybı ve daha çok B12 vitamini eksikliğine bağlı şiddetli anemi görülmektedir.B12 vitamini eksikliğinin nedeni parazitin bu vitamini emilmeden tüketmesidir.Dışkıda yumurta görülmesiyle tanı konulabilmektedir. Balığın iç organlarına yerleşen pleocercoid larvaların meydana getirdiği kistler hastalığın tanınmasını sağlamaktadır KORUNMA: Etlerin yeterli miktarda pişirilmesi tenya larvalarını parçalamaktadır. Tuvaletten sonra yeterli el yıkama ve daima uygun hijyen hastalığın yayılmasını önlemektedir. TEDAVİ: Tek doz Niklosamid oldukça etkilidir. Ayrıca Praziquantel ve Paramomisin kullanılmaktadır. KAYNAKLAR: www. ailem.com / templates / library http:// bilimsel konular. com/ index2 www. gata. edu. edv. tr/ dahibilimler/ infeksiyon www. hekimce. com Timur, G. , Timur, M. , 2003. Balık Hastalıkları, İ. Ü. Su Ürünleri Fakültesi Yayınları No. 5 www. vaxa. com/ human tapeworms – diphyllobothrium – latum. cfm

http://www.biyologlar.com/diphyllobothrium-latum

PROTOZOONLARIN SUCUL EKOSİSTEMLERDEKİ GÖREVLERİ

Protozoonlar sucul ekosistemlerde madde ve enerji döngüsünün önemli organizma grubunu oluşturur. Hızlı büyüme yetenekleri, alg, bakteri ve çözünmüş besin kaynaklarını kullanabilmeleri, kendilerinden daha büyük diğer yaşam formlarına av oluşturmaları nedeni ile sucul besin ağında anahtar role sahiptirler. Bazı üyeleri fotosentetik yolla besinlerinin bir kısmını sentezleme yeteneğine sahip olmakla birlikte, serbest yaşayan formların tamamı kendilerinden daha küçük mikroorganizmaları besin olarak kullanırlar. Çoğu kez üzerinden beslendikleri avları ile eş büyüme potansiyeline sahip olduklarından büyük populasyonlar meydana getirirler ve diğer mikrobiyal populasyonların gelişimini kontrol ederler. Protozoon predasyonu sucul ekosistemlerdeki bakteriyel ölümün en büyük kaynağını oluşturur. Tek hücreli veya filametöz alglerin en önemli tüketicileridir. Aynı zamanda diğer protozoonları hatta metazoon yumurtaları ve küçük krustaseleri besin olarak kullanabilirler. Bununla birlikte, metazooplanktonlar gibi küçük omurgasız canlılar ile bazı balık larvaları gibi daha büyük canlılar için da besin oluştururlar [17, 24-26]. Yakın zamanlara kadar sucul habitatlardaki besin ve enerji akışının, diyatom ve dinoflagellatlar gibi büyük fitoplanktonlar üzerinden beslenen zooplanktonlar aracılığıyla, balıklar gibi daha büyük organizmalara doğru olduğu düşünülmekteydi. Son zamanlarda bu görüş değişmiştir. Sucul primer üretimin büyük bir kısmının küçük ökaryotik algler ve siyanobakteriler tarafından üretildiği ve bu üretimin önemli bir miktarının protozoonlar tarafından tüketildiği bilinmektedir. Aynı zamanda primer üretimin önemli bir kısmı çözünmüş organik madde olarak ortama salınmakta ve bu maddeler bakteriler tarafından kullanılmaktadır. Bakteriler diğer organizmaların ölmesinden ve salgılarından oluşan organik maddeleri de besin olarak kullanırlar [27]. Protozoonlar, bakteriler üzerinden beslenerek bu kaynakları da zooplanktonlar aracılığı ile besin ağının daha ileri kısımlarına pompalayan anahtar organizmalar olarak karşımıza çıkarlar Protozoon kommuniteleri dinamik yapılar olup, ortamın fiziksel ve kimyasal koşullarında meydana gelen değişikliklere duyarlıdır. Çevresel koşullarda meydana gelen değişikliklere hücre bölünmesi, kist oluşturma ve kistten çıkma şeklinde hızla cevap verirler. Bundan dolayı, protozoon çeşitliliği ve spesifik türler, ekosistemdeki değişikliklerin indikatörü olarak kullanılabilir [5, 28]. Protozoa organik olarak kirletilmiş suların doğal arıtım sürecinde de rol alır. Ortamdaki çözünmüş ve partiküler organik materyali besin olarak kullanarak bu maddelerin ortamdan uzaklaştırılmasını sağladıkları gibi, bunların üzerinden beslenen bakterileri tüketerek onların aktivitelerini de uyarır. Sucul habitatlarda bulunan protozoonların tümü faydalı organizmalar değildirler. Bazıları halk sağlığında ciddi problemlere neden olan insan bağırsak parazitleridir. Bunların kistleri ile kontamine olmuş sular aracılığıyla, bir konaktan diğerine geçerler: Giardia lamblia (flagellat), Entamoeba histolytica (amip), Cryptosporidium spp. (sporozoon). Parazitik E. histolytica dışında insan bağırsağında yaşayan diğer amip türleri (E. hartmanni, E. coli, Endolimax nana, Iodamoeba buetschlii) zararsız kommensaller olup, patojen değildirler. Bazı küçük amip türleri doğal olarak sularda ya da nemli topraklarda serbest yaşarlar, ancak insana ve diğer memelilere bulaştıklarında patojen özellik kazanırlar. Naegleria fowleri ve çeşitli Acanthamoeba türleri öldürücü amibik meningoensefalite neden olurlar. Bazı serbest yaşayan tek hücreli formlar da patojenik bakteri taşırlar ve hastalık reservuarları olarak fonksiyon görürler. Bakteriler tek hücreli sitoplazmasında sadece yaşamlarını devam ettirmezler, aynı zamanda çoğalarak sitoplazmayı doğal habitat olarak kullanırlar [5]. Fotosentetik dinoflagellatların ekzotoksinleri, balık ve denizel omurgasızlar tarafından alınarak besin zinciri vasıtasıyla insana kadar taşınırlar. Bu ekzotoksinler birikim sonucunda öldürücü olabilirler. Bazı protozoon türleri ise tatlı su balıklarında ekto- (örneğin Icthyophthirus multifilis, Tetrahymena corlissi, Trichodina spp., Chilodonella piscicola, Icthyobodo necator, Piscinoodinium sp., Epistylis spp.) ve endoparazit (örneğin Octomitus salmonis, Trypanoplasma borreli) olarak yaşarlar ve kültür balıkçılığında önemli zararlara neden olurlar.

http://www.biyologlar.com/protozoonlarin-sucul-ekosistemlerdeki-gorevleri

Toksik Balıklar

Zehirli balıklar ya aktif olarak zehirlerini venom organlan ile verirler;veya bazı balıklann içerdiği zehirler belirli organlannda pasif olarak bulunurlar. Örneğin bazı köpek balıklan aşın miktarda vitamin A içerdiklerinden yenmeleri zararlı olabilir. Yaklaşık olarak 700 tuzlu su (marine) balık türünün insanlara toksik olduğu bilinmektedir. Balık zehirlenmesine "ichthyotoxism: iktiyotoksizim" adı verilir. (Zoolojide,iktiyoloji (ichthyology) balıklar bilgisidir). İktiyotoksik balıklar 3 alt grupta incelenebilir: 1) İktiyosarkotoksik (ichtyosarcotoxic) balıklar;toksinleri kas, organ veya derilerinde bulunur. Yenilmeleriyle çok zararlı etkileri olur; 2) İktiyootoksik (ichthyootoxic) balıklar; gonadlannın aktivitesi sonucu toksin oluştururlar. Bu balıklann çoğu tatlı su balıklan ölüp, bunlann yumurtalan zehirlidir; 3) İktiyohemotoksik(ichthyohemotoxic) balıklar; bunlann zehirleri kanlannda bulunur. 1-... İktiyosarkotoksik balıkları: Bu tip zehirlenmeler, toksinin bulunduğu balık adı ile bilinir. toksinlerin isimleri ve bulundukları balık ve diğer deniz canlılarının adı gösterilmiştir. İktiyosarkotoksinler Toksin Ciguatoksin Scombrotoksın Saxi toksin Tetrodotoksin Ciguatoksin: Daha çok tropikal kayalıklarda bulunan balıklarda bulunan bir toksindir. Bu küçük kayalık balıklan Gambierdiscus toxicus isimli protozoalan (dinoflagellates: bir cins protozae) alırlar ve toksin balıklarda ürer. Daha büyük yırtıcı kayalık balıklarında, besin zinciri ile daha çok toksin konsantre edilir. Toksin ısı ve aside dayanıklıdır,lezzetsiz ve kokusuz olduğu için de toksinle enjekte balık yenirken farkına varılmaz. Ciguatoksin zehirlenmesi en çok, bu toksini taşıyan balıkların ürediği 35° Kuzey 35° Güney enlemleri arasındaki bölgede (Bermuda-Bounes Aires arası) raslanır. Amerika'da balıkla zehirlenmelerin yansı Ciguatoksinle ilgilidir.Ciguatoksinin kimyasal yapısı henüz bilinmemektedir. Renksiz ve ısıya dayanıklı toksin molekül ağırlığı 1.100 civannda olan hidroksillenmiş bir lipid molekülüdür. Toksinin kolinerjik ve antikolinesteraz aktivitesi olduğu gösterilmiştir. Ancak toksik etkisi daha çok, sodyumlu membran permeabilitesini arttırarak depolarizasyona neden olması ile ilgilidir. Doza bağlı olarak kalp hızı ve kalbin kontraksiyon gücünde değişiklik olur. Yüksek dozlarda kardiyak etkisi daha belirgindir.Antikolinesteraz aktivitesi olduğuna dair yayınlar olmasına karşın, fizostigmin ile antagonize edilir (Ellenhorn 1988, Cassarett 1991). Ciguatoksinin toksik etki belirtileri sulu diyare, kusma, abdominal krampla başlar. Semptomlar balığın yenmesinden hemen sonra olduğu gibi 30 saat sonra da görülebilir. İlk belirtilerden sonra nörolojik semptomlar (parestezi, başağınsı, duyulann herhangi birinin kaybolması:dysesthesia), hipersalivasyon, görme bulanıklığı, tremor, ataksi ortaya çıkar. Tetrodotoksin: Bazı balon ve kirpi balıklannda (tetraodontus),okyanus pervane balıklannda (sunfish: ay balığı, pervane balığı) ve kirpi balıklarında (porcupine fısh: Diodon hystrix) bulunur. Ayrıca bazı sürüngenlerde (salamandrida ve mavi-halkalı octopus) de tetradotoksin bulunur. Tetrodotoksin ile zehirlenmeye sadece "Tetraodontus"türü balıklar neden olmaktadır. Bu balıkların 100 kadar türü içinde 50 kadarının belirli koşullarda insanlara toksik olduğu bilinmektedir. Bu toksin, balıkların yumurtaları, karaciğerinde yoğunlaşmıştır;az miktarda barsak ve derilerinde de bulunur. Balıklar derin olmayan sularda tropik bölgelerde yaşarlar. Uzunlukları 25-30 cm arasında değişir.Tetrodoksin aminoperhidrokinazolin yapısındadır. Isıya dayanıklıdır. LD50 değeri: farelerde (oral) 3.22/*g/kg; (i.p) 8 pg/kg ve farelerde,LDşg 12 jig/kg dır. İnsanlarda LD50 (i.p) 12 pıg/kg verilmiştir. Toksin lokal anestezik etkiye benzer özellikte etki gösterir. Hücre depolarizasyonu sırasında sodyum kanalını bloke ederek sinirlerin erken geçici iyon permeabilitesi artışını engeller. Toksinin çok az miktarı 1-45 dakika içinde dudak ve dilde batıcı his, deride uyuşukluğa ve adale zayıflığına neden olur. Yaygın felç ve konvülziyondan sonra,zehirlenmelerin %60'ı ölümle sonuçlanır. Tetrodon türü balıklar Japonya'da lezzetli ve tercih edilen bir balıktır.Üreme mevsiminin dışında toksik değildir. Ancak özel restoranlarda ve dikkatle hazırlanması gerekir. Saksitoksin: red tide dinoflagelates (bir cins protozoa) cinsi mikroorganizmaların toksinidir. Bu toksinle enfekte olan zehirli olmayan balıklar da toksik etki yaparlar. 2- İktiyootoksik balıklar: Bazı taze su balıklan ve tuzlu su (deniz) canlıları gonadlarında toksin üretilir. Bu balıkların eti ve hatta gastrointestinal organları yenilebilir. Zehirlenme, gonad ve yumurtaları yendiği zaman ortaya çıkar. Scorpaenichthys marmoratus yumurtaları toksiktir. Bu balığı yiyen kuşlar, yumurtalarını yemekten kaçınırlar. 3- İktiyohemotoksik balıklar: Birçok balık türlerinin kanında toksik bir madde bulunmuştur. Yılanbalığı cinsi (eel) Anguilla ve Muraena kanında bu toksin saptanmıştır. Ancak bu balıkların taze kanının yenmesi ile görülen zehirlenmeler son derece azdır. Venomlu Balıklar Tuzlu sularda (denizlerde) yaşayan balıklardan yaklaşık 200 türünün venomlan olduğu saptanmıştır. Çeşitli balıklar zehirlerini venom organları ile (yüzgeç, diken veya iğneleri ile) verirler. Venom organları ile temasta olduğu doku üzerine toksinini enjekte ederler. Venomlu balıkların toksini diğer hayvanların venomlanndan farklı olup, liyofilize edildiklerinde bile dayanıksızdırlar. Bu nedenle toksik özelliklerinin incelenmeleri güçleşmektedir. Ancak genel toksik etkilerinin benzerliği, kimyasal yapılarının birbirine benzemesi görüşünü desteklemektedir.Scorpaena türünden Scorpaena scrofa (Lipsoz, iskorpit) balık cinsi Gemlik ve Marmaris'te bulunmaktadır (Güley, M. 1975). Bu balıklar zehirlerini dikenleri ile enjekte ederler. Enjeksiyondan hemen sonra ani ve şiddetli ağrı, iltihap görülür. Bacakta şişme olur, kısa zamanda halsizlik, baş dönmesi ve hatta şok oluşabilir. Yaralı yerde renklenme ve felç olabilir. Sistemik zehirlenme belirtileri hipotansiyon,solunum yetersizliği ve felci, miyokardiyal iskemi şeklinde ortaya çıkar. Venomun direkt hemolitik etkisi vardır. Tedavi: Genel olarak balık venomlan ısıya son derece dayanıksız olduklarından, yaralanan yer hemen hastanın dayanabildiği kadar sıcak su içinde tutulur. Bir saat kadar bekletme ile etki önlenebilir. Bu tedavide gecikildiği durumda, yaralanan yere lokal anestezik enjekte edilmelidir veya sistemik analjezik verilmelidir. Venomun enjekte edildiği yaralı uzuv yüksekte tutulur, diğer destekleyici ve semptomatik tedavi (şok tedavisi, kan basıncının düzenlenmesi gibi) yapılır.

http://www.biyologlar.com/toksik-baliklar

Nematoda Larvalarının Tayin Anahtarı

1. İnteestinal cecum yoktur ................................................................................2 1. İnteestinal cecum yoktur ................................................................................9 2. Büyük bir nematod olup deniz balıklarının etlerinde, bazen anadromus balıklarında bulunur.....................................................................Soy: Anisakia 2. Nematod genellikle daha küçük (Eustrongylides); mesenteriler ve iç organlarda , bazen kaslarda bulunur....................................................................... 3 3. Dudak veya lateral lob yoktur....................................................................... 4 3. Dudak , lateral loblar veya cephalic papillalar vardır................................... 5 4. Mikroskobik larva ; kist içinde değildir..........Soy: Philometra ve Philonema 4. Balığın mesenterileri ve kasındaki kist içindedirler 1 cm . kadar çapında larva kan kırmızısı renginde ; iki çember halinde 12 veya 18 baş papillaları vardır; birçok balıklarda görülmüş olup olgunları su kuşlarının ön mide bezlerinde bulunur.....................................................................................Soy: Eustrongylides 5. Başta dudaklar yoktur fakat çember halinde altı papilla vardır; 10mm kadar uzun olabilirler .............................................................. Soy: Dioctophyma renale 5. Dudaklar vardır.............................................................................................. 6 6. Başta iki lateral dudak vardır......................................................................... 7 6. Başta üç veya dört dudak vardır....................................................................... 8 7. Başta uçları geriye doğru dikenlerle donatılmış kütiküler baş ampulü vardır.. .................................................................................................... Soy: Gnathostoma 7. Başta diken teşekkül yoktur................................. Soy: Dacnitoides ,Dichelne 8. Başta üç belirgin dudak vardır; bağırsak kırmızıdır;mesenterilerde bulunur...............................................................................................Soy: Spiroxya 8. Başta spesialize olmuş dört dudak vardır..................................Soy: Hedruris 9. Deniz balıklarının etlerinde bulunan büyük bir nematodtur; seyrek olarak anadromus balıklarında bulunur.................................................Soy: Porrocaecum 9. Üç dudaklı küçük bir nematod olup görülmesi zor olabilir; mesenterilerde ve karaciğerde kist içinde veya kistsiz olabilir; kistler 5cm. büyüklüğünde olabilir...........................................Soy: Contracaecum ( Ekingen,G.,1983 )

http://www.biyologlar.com/nematoda-larvalarinin-tayin-anahtari

Yüksek Organizasyonlu Deniz Canlıları

Yüksek organizasyonlu canlılar çok sayıda türleri kapsamakla birlikte biz en çok bilinen " Köpek balıkları " ve " Balina " türlerine örnekler verdik. Köpek balıkları belgesellerde ve filmlerde gördüğünüzden çok daha mükemmel ve gizemli yaratıklardır.Köpek balıklarının kendi içerisinde birçok alt türleri vardır. Örneğin mamuzlu köpek balığı, boğa köpek balığı ve çekiç başlı köpek balığı gibi.Fakat köpek balıklarının bazıları çok uysal olmakla birlikte diğer bazı türleri oldukça saldırgan olup önüne gelen hemen her tür canlıya saldırabilirler. Saldırgan bir köpek balığı grubu kendilerinden onlarca kat daha büyük olan balinalara bile saldırabilirler. Bu balıklardan en ünlüsü ise " Beyaz köpek balıkları " dır. Bu balıklar köpek balığı türleri arasında en saldırganı olup yunuslara, foklara, deniz aslanlarına ve hatta balinalara bile saldırabilirler. Bir köpek balığını tehlikeli yapan en önemli organları dişleridir.Eğer dişleri normal bir balığınki gibi pek keskin olmasaydı, köpek balıkları tanındığı kadar tehlikeli olmayacktı. Birçok insan köpek balığının avını özellikle kuvvetli çene darbeleriyle parçaladığını zanneder fakat asıl fonksiyon çenede değildir. Köpek balıklarının dişleri öyle mükemmel bir anatomiye sahiptirki hem bir jilet kadar keskin hemde ince elenmiş bir testere kadar yivlidir. Bir köpek balığı avını ısırdıktan sonra başını derhal sağa sola doğru sallamaya başlar.Bu şekilde davranarak dişleri arasına sıkışan bir objeyi ivmelendirip yanal olarak dişleri üzerinde hareket etmesini sağlar. Obje veya av, dişleri üzerinde hareket ettiği zaman jilet kadar keskin olan dişler tarafından rahatlıkla kesilir.Böylelikle balık avını kısa süre içerisinde parçalayarak etkisiz hale getirir. Köpek balığı avını parçalarken gözlerini asla açmaz. Bunu yapmasının nedeni ise avını parçalaması esnasında etrafa saçılacak kemik parçalarından gözlerini korumak içindir. Çünki bir canlının kemiği kırıldığı (insan olsun hayvan olsun) zaman küçük partiküller haline gelen kemik parçaları oldukça keskin bir hale dönüşür. Bazı köpek balığı türlerinin boyları oldukça büyük olmasına karşın çok uysal olabilirler.Hatta bazı türleri iri memelilere saldırmak yerine deniz planktonları ve küçük deniz canlıları ile beslenmektedir.  www.webhatti.com/showthread.php?t=60387 Sağdaki resimde erişkin bir köpek balığı, bir insanla karşılaştırılmış olarak görülüyor. Buna karşın doğada, resimdekinden çok daha iri köpek balıklarınında yaşamasına karşın bazıları insanların zannettikleri gibi bir saldırganlık göstermezler. Köpek balıklarının vücut şekilleri çok mükemmel bir şekilde dizayn edilmiştir.Tıpkı bir füzeye benzeyen vücutları ve güçlü yüzgeçleri sayesinde saatte 60 - 80 km ye kadar hıza erişebilmektedirler. Diğer bir mükemmel özellikleri ise solungaçlarının bu kadar süratle giderken sudaki oksijenden maksimum istifade edebilmesi için yan yaraflarda özel olarak konumlanmış olmasıdır. Dikkat ettiyseniz yarış arabalarının her iki yanında hava boşlukları olduğunu görürsünüz.Bu boşluklar, araba süratle giderken motorun havayı daha rahat bir şekilde emmesine yardımcı olmak içindir.Köpek balıklarının yanlarındaki solungaçlarda, hayvan büyük bir süratle yüzerken sudaki oksijeni maksimum absorbe etmesi için yan taraflarda birer boşluk bırakacak şekilde konumlanır. İnsanların köpek balıklarından esinlenerek taklit etmeye çalıştığı bu mükemmel sistemi köpek balıkları haberleri bile olmadan milyonlarca yıldır kullanmaktadır. Bugün halen sadece zevk amacıyla köpek balığı öldüren insanlar vardır.Bazı balıkçılar ise besin değeri ve parasal değeri çok yüksek olduğundan dolayı hiç durmaksızın köpek balıklarını avlamaktadırlar. Bazı uzakdoğu ülkelerinde balıkçılar, lüks restoranların ihtiyaçlarını karşılamak amacıyla yanlızca yüzgeçlerini kesip balıkları tekrar çaresiz bir şekilde denize atmaktadırlar. Eğer bu mükemmel yaratıkların korunması amacıyla bir önlem alınmaz ise yakın bir zaman içerisinde soyları tükenme noktasına gelecektir. Ve eğer köpek balıklarının soyları tükenirse, denizde avlanılması ve sayılarının azaltılması gereken birçok av hayvanının nüfusları gitgide artacak ve deniz ekosistemini altüst etmeye başlayacatır.

http://www.biyologlar.com/yuksek-organizasyonlu-deniz-canlilari

Cestoda (YASSI SOLUCANLAR) Özellikleri

CESTODA (YASSI SOLUCANLAR) - Sestodlar; vücutları yassı, halkalara ayrılmış şerit şeklindeki PLATHYHELMINTH'lerdir. - Boyları 2-4 mmden 20-25 mye kadar varan değişik ölçülerde olabilir.(Diphylobotrium latum 20-25 m. , Taenia saginata 5-10m. ) - Halka sayısı ise 3'ten 8-10bine kadar çok farklı sayılarda olabilir. (D.latum 8-10 bin halka, E.granulosus 3 halka) Cestodlarda vücut, şekil ve fonksiyon yönünden 3'e ayrılır: SCOLEX:Ön uçta bulunur. Yuvarlak / badem biçimlidir. Yapışma görevi vardır. 3 Yapışma organeli vardır: Bothria: Pseudophyllidea'da görülür. 2- 4 adettir. Yanda bulunur. Acetabula: Cyclophyllidea'da görülen çekmenlerdir. Kadeh ya da kase biçiminde, kassal yapılı, 2-4 adet, karşılıklı yer almış oluşumlardır. Bazısında çekmenler bulunabilir Rostellum: Yine Cyclophylladea'da anteriorda bulunur. Uzayıp kısalabilen, üzerinde 1 ya da 2 sıralı çengel taşıyan bir yapıdır. PROLİFERASYON BÖLGESİ: Scolex'ten hemen sonra, halkalara ayrılmamış ve halkaların oluşturulduğu kısımdır. Bazı sestodlarda yoktur (Moniezia). STROBILA: Boyundan sonra gelir. Halkalar: genç (üreme organı henüz yok) olgun (üreme organı gelişmiş) gebe (yumurtalarla dolu) Psedophylleidea'da halkaların sadece genç ve olgun formları varken, Cyclophylleidea'da 3 form da görülür. Vücut tabakaları: En dışta kutikula, onun altında kas tabakası vardır. Bunun altında da Ca granüllerinden zengin paranşim bulunur. Sindirim sistemi: Yoktur. Tüm vücut yüzeyince osmotik absorbsiyonla besinlerini alırlar. Solunum sistemi: Yoktur. Dolaşım sistemi: Yoktur. Boşaltım sistemi: Osmo-regulator sistem de denir. Tüm halkalarda ortaktır. Halkaların yanlarınd aseyreden 2şer (dorsal, ventral) toplama kanalı ve bunların halka posterirorlarındaki bağlantılarında ibarettir. Boşaltım kesesi yoktur. Paranşime dağılmış kirpikli hücreler vasıtasıyla atık maddeler toplanır, bunlar ana boşaltım kanallarına bağlanırlar. Tıklar dışarıya boşaltım deliğinden atılırlar. Sinir sistemi: İyi gelişmemiştir. Tüm halkalar için ortak bir sistem vardır. 1) Merkezi sinir sistemi (scolex'teki ganglionlar topluluğudur) 2) Sinir lifleri (MSS'ten 2 büyük, çok sayıda küçük sinir çıkar) Dölerme sistemi: Her halka için müstakildir. (1/2 adet). Hermafroditizm görülür. Protandri vardır ( önce erkek genital organları gelişr daha sonra dişi genital organları gelişir; körelmede de aynı sıra izlenir). Bu sistem en gelişmiş ve de en önemli sistemdir. Bunun nedeni ise sestodların komplike olan biyolojileri sırasında hiç olmazsa milyonlarcası üretilen yumurtadan sadece birkaçının olgun şerit haline gelebilmesidir. Döllenme halka içi, halkalar arası ya da parazitler arası olabilir. Erkek dölerme organları 1. testis (çok sayıda, halkanın dorsalinde, sperm üretir) 2. vasa efferentis (ince kanallardır) 3. vas deferens (spiral şeklindedir) 4. vesicula seminalis (sperm depolanır) 5. prostat bezleri 6. canalis ejaculatorius 7. cirrus (penis) 8. genital atrium Dişi dölerme organları 1. ovarium (tek loblu, ventrale doğru, yumurta üretir) 2. oviduct 3. ootype (genişlemiş kısım, yumurta döllenir ve gelişir) 4. Mehlis bezleri (kabuk oluşmu için gerekli) 5. vitellojen bezler (yumurta sarısı için gerekli) 6. receptulum seminis (sperm depolanır) 7. uterus (ootype'den köken alır, yumurta kapsülü ve paruterin organ) 8. vagina 9. genital atrium Pseudophylleidea'da uterus deliği varken, Cyclophyllidea'da yoktur. Yumurtalar: Çeşitli tiplerde olabilir. Pseudophyllidea yumurtaları tramatod yumurtalarına benzer. Yumurta sarısı ile doludur. Cyclophyllidea yumurtalarının içinde 3 çift çengele sahip onkosfer bulunur. Gelişim: İndirektir. Cyclophylidea tek ara konak (mesocestoides hariç), Pseudophylidea iki ara konak kullanır. Larva şekilleri: Cyclophyllidea 1) Cysticercus 2) Coenurus 3) Hidatik kist 4) Strobilocercus 5) Cysticercoid 6) Tetrathyridum Pseudophyllidea 1) Coracidium 2) Procercoid 3) Plerocercoid Cyclophyllidea Cysticercus: İnce çeperli, suyla dolu küçük bir kese ve içinde invagine tek scolex'ten ibaret larva formudur (0,5-1 cm). Taenia cinsina bağlı türlerde görülür. Ör: Taenia saginata (insan-barsak) / Cysticercus bovis (sığır-kas) Coenurus: İnce çeperli, içi su ile dolu, büyücek kese (ceviz/tavuk yumurtası büyüklüğünde). İçinde çok sayıda invagine scolex vardır. Ör: Multiceps multiceps (köpek barsak) / coenurus cerebralis (sığır-beyin) Strobilocercus: İnvagine olmamış bir scolex ve henüz dölerme organları gelişmemiş halkalar (strobila) taşıyan larva formudur. Ör: Hydatigera taeniaformis (kedi-barsak) / Strobilocercus fasciolaris (kemirgen-karaciğer) Hidatik kist: (Echinococcus)En kompleks yapılı cestod larva formudur. Su ile dolu ve çapı 20-25 cm'ye ulaşabilen bir kesedir. Çeperi biri lamelli tabaka, diğeri ise çimlenme yeteneğinde doğurgan tabakalardan yapılmıştır. Bu tabakadan yüzbinlerce invagine scolex (protoscolex) meydana gelir. Ör: Echinococcus granulosus (köpek-barsak) / Hidatik kist (memeli- karaciğer, akciğer) Cysticercoid: Omurgasız arakonaklarda gelişir. Büyük, invagine scolex ve kuyruk taşıyan larva formudur. Cercocystis (kuyruklu) ve cryptocystis (kuyruksuz) formları vardır. Ör: Dipylidium caninum (köpek-barsak) / larvası pire ve bitlerde gelişir. Tetrathyridium (Dithyridium): Ön kısmı daha geniş, arkaya doğru incelmiş, basık, kırışık yapıda, tek parça ve ön tarafta invagine tek scolex taşıyan larva formudur. Ör: Mesocestoides lineatus (köpek-barsak) / larvası çeşitli canlılarda gelişir. Pseudophyllidea Coracidium: Trematodlardaki miracidium'a benzeyen, suda serbest yüzebilen , kirpikli, 3 çift çengelli larva formudur. Procercoid: Coracidium'dan sonraki larva formudur. Coracidium'un girdiği kabukluda aldığı formdur. Tek parça, uzunca bir larva formu olup, posteriorunda boğumla ayrılmış, 3 çift çengel taşıyan yuvarlak bir kısım taşır. Önde cephalic invaginasyon vardır. Plerocercoid: Uzun, tek parça, ön uzunda olgunlarınkine benzer 2 bothria taşır. Artık embriyonik çengellerin kaybolduğu larva formudur. Ör: Diphyllobothrium latum (köpek-barsak) Procercoid_kabuklunun vücut boşluğunda Plerocercoid_tatlı su balıklarının kan ve diğer organlarında SINIF: CESTOIDEA ALT SINIF: CESTODA (EUCESTODA) TAKIM: PSEUDOPHYLLIDEA Yumurta: kapaklı , 3 çift çengelli onkosfer sonradan gelişir Morfoloji: - Scolex badem biçiminde - Yapışma organeli; bothria - Halkalar genç, olgun - Genital delik halka ventralinde - Uterus deliği var Gelişme: 2 ara konak, 3 larva şekli var TAKIM: CYCLOPHYLLIDEA Yumurta: Kapaksız, üç çift çengelli onkosfer var. Morfoloji: - Scolex yuvarlak, oval - Yapışma organeli; rostellum, çekmen(acetabula), - Halkalar genç, olgun, gebe - Genital delik halka lateralinde - Uterus deliği yoktur. Gelişme: 1 ara konak, 6 larva şekli var. PSEUDOPHYLLIDEA AILE: DIPHYLLOBOTHRIAE Tür: Diphyllobothrium latum Son konak: İnsan ve balık iyen carnivora Yerleşim: İnce barsaklar Morfoloji: 20-25 m boya ulaşabilir. 2 tane bothria vardır, scolex badem biçimlidir, genital delik halkanın ventralinde, yumurtalar 52-70x32-45m boyutunda, sarımısı kahverenginde, kapalı. Biyoloji: Yumurta dışkı ile dışarı çıkarılır. Suda coracidium gelişir ve serbest kalır. 1.ara konak çeşitli Crustacae (Cyclops, Diaptomus gibi su pireleri)'de gelişen procercoid 2.ara konak olan tatlı su balıklarınca alınır ve bunlarda plerocercoid gelişir (kas ve diğer organlarda). Balıkların çiğ ya da az pişmiş olarak yenmesi sonucu etken son konaklarca alınır. Önemi: Etken, yaşam süresi olan 10 yıl boyunca 7 km'lik halka oluşturabilir. D.latum vit B12'yi absorbe eder ve bu durum sonucunda enfeste canlılarda pernisiyöz anemi şekillenir. Etkene bağlı vakalar Türkiye'de bildirilmiştir ama ülkemizde çiğ ya da az pişmiş balık tüketilmediğinden bu vakalar da kesin değildir. Diphylobotrium latum Tür: Ligula intestinalis Son konak: Olgunları su kuşlarının barsağında, larvaları (plerocercoidler) tatlı su balıklarında ligulose'a neden olur. Biyoloji: D.latum ile aynı biyolojiye sahiptir. Önemi: Balıklarda paraziter kastrasyon nedenidir. Bunu, organlara basınç yaparak, antigonadotropik hormonlar salgılayarak yapar. Hasta balıklarda karın şişer, hantallaşırlar, yüzemezler, karınları patlar ve ölürler. Hastalığa ülkemizde baraj göllerindeki balıklarda rastlanır. İnsan sağlığı açısından tehlikesi yoktur. Ayıklandıktan sonra balıklar yenebilir. İtalya'da plerocercoidler tüketilmektedir. Mücadele: 1.ara konakla mücadele olanaksızdır. 2.ara konak olan balıklarla mücadele edilir. Hasta olanlar, ölenler ve karınları patlayan balılardan serbest kalan plerocercoidler su yüzeyinden toplanır. Diagramma ve Schistocephalus gibi cinsler de vardır. Spirometra erinacei, köpek, kedi gibi hayvanların incebarsaklarında parazitlenirken, Spirometra mansoni 1.ara konak olarak Crustacae'yi, 2.ara konak olarak balık, kurbağa ve yılanları, bazen de 3.ara konak olarak herhangi bir omurgalıyı kullanır. Sparganose: Plerocercois=spargonum Bazen D.latum, Spirometra gibi parazitlerin plerocercoidleri 1) sudaki kabukludayken insanlarca kabuklunun yenmesi ile alınır, 2) kurbağa, fare, yılan, balık gibi canlıların etleri ampirik tedavi yöntemleriyle yara,göz vs. üzerine tatbik edilerek primitif olarak insanların yaralarına ya da gözlerine bulaşır. Plerocercoidlerin bulunduğu kısımda irritasyona bağlı olarak kızartı, kaşıntı, şişkinlik, iltihaplanma görülür. CYCLOPHYLLIDEA AILE: ANOPLOCEPHALIDAE Tür: Anoplocephala perfoliata Son konak: Tek tırnaklılar Yerleşim: İnce barsakların alt kısımları, colon ve caecum Morfoloji: 8x1-1,5 cm. Scolex küçük, rostellum yok. Çekmenler arkasında küpe benzeri yapılar var. Yumurtalar 80m boyutunda ve Moniezia yumurtasına benzer. Onkosferi çevreleyen embriyoforun ucundaki kollar uzun ve kavuşur. Tür: Anoplocephala magna Son konak: Tek tırnaklılar Yerleşim: İnce barsak, jejenum Morfoloji: Atların en büyük şerididir. 70-80x1,5-2 cm. Yumurtaların boyutu 50 m. Scolexte küpe benzeri çıkıntı yoktur. Tür: Paranoplocephala mamillana Son konak: Equide Morfoloji: 1-4x5 cm. yumurtalar 50m boyutunda. Küpe benzeri çıkıntılar yok. Çekmenler yarık biçiminde. Embriyoforun uçları kısa ve ayrık.Atların en küçük şerididir. Ara konak: Oribatidae fam. bağlı akarlardır. Biyoloji: Yumurtayı yiyen akarlarda 4 ayda cysticercoid gelişir. Cysticercoidleri alan atlarda 6-10 haftada şeritler gelişir. Patojenite: Meradan yazın alınan hastalık Eylül Ekim ayında ortaya çıkar. Taylar 100%, erginler 60% hastalığa duyarlı. Genellikle az sayıda parazit bulunur. En patojeni A.magna'dır. Kataral -hemorajik enterite sebep olurlar. A.perfoliata ve P.mamillana az patojendir. İliocecal lokalizasyon önemlidir. Sağaltım: Niclosamide Tür: Moniezia expansa Son konak: Ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 6m x 1,5-2 cm. her halkada 2 tane genital atrium vardır. Testisler halka ortasında dağılmış ya da iki yanda toplu halde bulunabilir. Interproglottidal bezler halka posterior boyunca seyreder. Yumurtalar 50-60 m boyutundadır. Tür: Moniezia benedeni Son konak: Özellikle büyük ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 0,5-4m x 2 cm. Interproglottidal bezler sadece ortada. Tür: Thysaniezia ovilla Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1,5-4,5m x 8-9 mm. Halkalarda 1 tane genital delik var. Testisler boşaltım kanallarının lateralinde. Yumurtaların 5-15'i birarada paruterin organ içinde bulunur. Tür: Stilesia globipunctata Son konak: Ruminantlar (koyun, keçi) Yerleşim: İnce barsaklar Morfoloji: Her halkada 1 tane genitel atrium vardır. 40-60cm x 2-2,5 mm. Testisler boşaltım kanallarının medialinde seyreder. Her halkada 2 tane paruterin organ bulunur. Tür: Avitellina contripunctata Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1-3m x 2-2,5 mm. Her halkada 1 tane genital delik vardır. Testisler boşaltım kanallarının her iki yanında gruplar halinde bulunur. Her halkada 1 tane paruterin organ vardır. Tür: Thysanosoma actinoides Son konak: Ruminantlar Ara konak: Oribatida ailesine bağlı akarlar. Yerleşim: İnce barsaklar, seyrek olarak safra ve pankreas kanalları Morfoloji: 35-40 cm x 8 mm. Her halkada 2 tane genital atrium vardır. Testisler halka posterioru ve ortasında bulunur. Halka posteriorlarında saçaklı yapılar vardır. Yumurtalar paruterin organ içinde bulunur. Biyoloji: Akarlar 0,5-1 mm boyutundadır. Sert kabuklu, gözsüz, serbest olarak toprakta yaşayan, organik kalıntı ve dışkı ile beslenen, bitki kök ve sap kısımlarında yoğun olarak bulunan akarlardır. Akarlarda 3 ayda vücut boşluğunda cysticercoid gelişir. Akarların otlarla birlikte alınımı ile 1,5-2 ayda şeritler gelişir. * Thysaniezia, Stilezia, Avitellina ve Thysanosoma cinslerinde yumurtada onkosferi çevreleyen armut biçimli bir embriyofor yoktur. * Anoplocephalidae ailesindeki parazitlerin olgunları tedavi edilmezse 3-4 ay yaşarlar. Cysticercoidleri akarlarda 1-1,5 yıl boyunca yaşarlar. Akar ölünce onlar da ölürler. Bu akarlar için nemli, uzun, kaba otlu meralar uygundur. Anoplocephalose: 1) mera kontaminasyonu 2) kontaminasyonun devamı ile meydana gelir. Kronik form: En çok görülen formdur. Anemi, zafiyet, yapağı bozulması, ölüm, dehidrasyon, diyare, konstipasyon ve barsaklarda atoni görülür. Akut form: Seyrek görülür. Sinirsel belirtiler (dönme, çırpınma, titreme ve diş gıcırdatma) ile seyreder. Subklinik form: Bakımlı sürülerde görülür. Semptomsuz seyreder. Sindirim sistemi belirtileri (kötü kokulu ishal) görülebilir. Yayılış: 60%'a varabilir. Teşhis: Dışkıda şerit ya da halkaya rastlanabilir. Dışkı muayenesinde yumurta/yumurta kapsülü görülebilir. Otopside olgun şeritlere rastlanır. Sağaltım: Niclosamide, Praziquantel, Albendazol, Nebendazol AILE: DAVAINEIDAE Tür: Davainea proglottina Son konak: Tavuklarda (en yaygın şerit) Ara konak: Sümüklüböcekler (cysticercoid gelişir) Yerleşim: İnce barsaklar (duodenum) Morfoloji: 1,5-5 mm uzunlukta. Halka sayısı 4-9. Rostellumda 2 sıra çengel var. Çekmenlerinde de çengel vardır. Yumurtalar ince çeperli, 30-40 m çapında Tür: Railettina tetragona Son konak: Tavuk, hindi ve diğer kanatlılar Ara konak: Kara sinek ve karıncalar Yerleşim: İnce barsaklar (duodenum) Morfoloji: 6-25 cm x 1-4 mm. Rostellumda tek sıralı çengeller vardır. Çekmenlerinde de çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina echinobothrida Son konak: Kanatlılar Ara konak: Karıncalar Yerleşim: İnce barsaklar Morfoloji: 9-25 cm x 1-4 mm. Çekmenlerinde çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina cesticillus Ara konak: Kaprofaj böcekler Morfoloji: 4-13 cm x 1-3 mm. Kokon içinde tek bir yumurta bulunur. Çekmenler çengelsizdir. AILE: HYMENOLEPIDIDAE Tür: Hymenolepis lanceolata Son konak: Ördek ve kazlar Ara konak: Tatlı sudaki crustacea Yerleşim: İnce barsak Tür: Hymenolepis cariocea Son konak: Tavuklar (sıklıkla görülür) Ara konak: Kaprofaj böcekler Tür: Hymenolepis contaniana Son konak: Tavuk ve hindiler Ara konak: Kaprofaj böcekler Morfoloji: 2-5 mm'den 7-8 cm'ye kadar değişen boylardadırlar rostellumda çengel olabilir ya da olmayabilir. Yumurta 3 katlı koruyucu içindedir. Tür: Hymenolepis diminuta Son konak: Fare, sıçan ve insanlar Ara konak: Çeşitli arthropoda (cysticercoid gelişir) Yerleşim: İnce barsaklar Morfoloji: 20-60 cm uzunluktadırlar. Scolexte 4 çekmen vardır. Rostellum çengelsizdir. Yumurtalar ovalimsi, gri-açık kahverengi, 2 kabuklu (dış ve iç) ve 3 çift çengelli onkosfere sahiptir. Tür: Hymenolepis nana Son konak: İnsan, fare ve sıçanlar Yerleşim: İnce barsaklar Morfoloji: "Cüce şerit" de denir. 2.5-4 cm uzunluktadır. Yumurtaları ovaldir. Açık renkli, grimsidir. 2 kabukludur ve içinde 3 çift çengelli onkosfer vardır. İç kabuğun kutuplarında filamentler vardır. Biyoloji: 1) Direkt 2) İndirekt (ara konak olarak arthropodları kullanır) AILE: DILEPIDIDAE Tür: Ametobotaenia cuneata Son konak: Tavuk, ördek Ara konak: Yer solucanları Yerleşim: İnce barsaklar Morfoloji: 2,2-4 mm x 1-1,5 mm. 12-24 adet halka vardır. Scolexte tek sırlaı çengel taşıyan rostellum vardır. Çekmenler çengelsizdir. Tür: Choanotaenia infundibulum Son konak: Tavuk, hindi vb. Ara konak: Karasinek, çekirge, kaprofaj böcekler Yerleşim: İnce barsaklar Morfoloji: 5-23 cm uzunluktadır. Tek sıra çengel taşıyan rostellum vardır. Çekmenleri silahsızdır. Yumurtaları 60-65 x 40-45 m boyutunda, filamentlidir. KANATLILARDA ŞERİT ENFEKSİYONLARI: En önemlisi Davaniea proglottina'dır. küçük olmasına rağmen 50%lere varan ölümler meydana getirir. Patojen kısmı scolextir. Çünkü hem çekmenlerde hem de rostellumda çengeller vardır. Davainea yumurtaları dirençsizdir. Rutubetli, sıcak ve gölgeli yerlerde 5 gün yaşayabilir. Cysticercoidleri sümüklüde en az 1 yıl canlı kalabilir. Ara konak olan sümüklüde 1000'den fazla cysticercoid bulunabilir. Ağır enfestasyonlarda duodenum mukozasında yangı, hemoraji ve ödem görülür. Klinik semptomlar ise zafiyet, anemi, ishal ve mukusta artıştır. Railettina türleri içinde en patojeni Railettina echinobothria'dır. Barsaktaki yangı şekli NODÜLER ENTERİTtir. Barsak içine gömülü scolex etrafında kazeöz nodüller şekillenmiştir. Sağaltım: Niclosamide (Mansonil, Şeridif, Tenyavet)...............................................50-200mg/kg 2-6 gün boyunca..................................................................................................................20 mg/kg Fenbendazol (Panacur) 5 gün boyunca...............................................................................20 mg/kg Mebendazol (Mebanvet)....................................................................................................10 mg/kg Praziquantel (Droncit)....................................................................................................................... Bithional (Actomer)...............................................................................................................0,2 g/kg AILE: TAENIADAE Tür: Echinococcus granulosus Son konak: Olgunları........................köpek, kurt, çakal vb.'nin incebarsakları (kedilerde seksüel olgunluğa erişemez) Larvaları.........................bütün evcil memelilerde (ruminant, sus, eq.,insan...) başta karaciğer ve akciğer olmak üzere, dalak, böbrek, pankreas, kalp, beyin, kemik iliği, bağlayıcı doku aralıkları ve dokularda. Morfoloji: Olgunlar..........................2-6 mm uzunlukta, vücut genellikle 3 halkadan oluşur. Son halkanın uzunluğu vücudun diğer bölümlerinin uzunluğundan daha fazladır. Genital atrium halka posteriorundadır. Ovarium böbrek biçimindedir. Yumurtalar......................Taenia yumurtası formundadır (yuvarlak/oval). Küçük ve kalın kabukludur. Kabuk enlemesine çizgilidir. 3 çift çengelli onkosfer taşır. KİST HYDATİK (EKİNOKOK KİSTİ): 2 tip kist vardır. 1. Uniloculer kist (kistler tek tektir,daha çok koyun ve insanda görülür) 2. Multicystic/Multivesicular kist (birbirine komşu kistlerdir. Her birni ayrı boşluğu ve sıvısı vardır. Özellikle sığırlarda görülür) Biçimleri yuvarlağımsı (yumuşak, hacimli dokularda) yada mevcut boşluk ya da aralıkları dolduran (ör:kemik iliği) gibidir. Büyüklükleri dokularda konakçı reaksiyonları ile sınırlandırılır (çocu başı ya da portakal büyüklüğünde olabilirler). Göğüs ya da karın boşluğunda iseler büyüklükleri sınırlandırılamaz (20 cm çapına varan kistler görülmüştür). Lokalizasyon; ruminantlarda 70% karaciğerde, 25% akciğerde, 5% de diğer dokularda olmaktadır. Gelişme hızları yavaştır. 6 ayda ancak birkaç mm çapında içi sıvı ile dolu kistik yapı şekillenebilir. Protoscolexler 12 ayda şekillenir. Protoscolex taşıyanlar fertil kist, taşımayanlar ise infertil kist adını alır. Sığırda 90%, domuzda 20%, koyunda ise 8% kistler infertildir. 2 şekilde gelişim tamamlanır: 1- PASTORAL SİKLUS: Evcil karnivorlarla evcil ruminantlar konaktır. Köpek, koyun, deve, Ren geyiği. 2- SILVATIC SİKLUS: Son konak yabani karnivor, ara konaklar ise yabani ruminantlardır. Avusturalya'da dingo-kanguru. Hindistan, Pakistan, Seylan'da çakal-geyik. Bu iki epidemiyolojik siklus bağımsıuz seyreder. Ancak avcılık yolu ile kırılabilir. Kanada'da Kariba(geyik)-köpek. Kırsaldan ormansala geçiş şu şekillerde olur: - Kistli evcil ruminantlar köpeklerce yenir § Enfekte av ve çoban köpeklerinin ormanda dolaşması ve buralara dışkısını bırakması ile yabani rum. enfeste olabilir. Ormandan kırsala geçiş ise şöyle olur: § Evcil ruminantlar ormanlık yörede otlarken yabani köpekgillerin bıraktıları dışkılardan yumurta alırlar. § Av veya çoban köpekleri enfekte yabani ruminantların kistlerini yer. Önemi: Hayvanlarda; - Kistler pek klinik belirtiye yol açmaz (normal doku kalmamasına rağmen) - Enfekte havanlarda karkas ağırlığı azalmaktadır - Enfekte organlar(karaciğer, akciğer, dalak) kısmen ya da tamamen imha edilir (ekonomik kayıp). İnsanlarda; Çoğunlukla klinik belirti göstermese de lokaliza olduğu organ ya da dokuya göre normal fonksiyonları bozar, ağrı yapabilir. Kistler kendiliğinden ya da ameliyat sırasında patlayabilir. Bu da anafaktik şok ya da sekonder hidatidose (echinococcose)'a neden olur. Teşhis: Hayvanlarda serolojik testler yetersizken, ancak kesim sırasında teşhis mümkündür. İnsanlarda klinik belirtiler (organların çalışmalarında aksamalar, şişlik, ağrı), röntgen, serolojik testler(KFT, FAT, ELISA, HA, presipitasyon) ve alerji testi (Casoni) ile teşhise gidilir. Sağaltım: Operasyon ile yapılır. Öncesinde Mebendazol-Albendazol kullanılır. Hastalığın prepatent süresi 4-5 haftadır.

http://www.biyologlar.com/cestoda-yassi-solucanlar-ozellikleri

Crustacea Sınıfı (Kabuklular)

Bu sınıftakilerin büyük bir kısmı sularda yaşarlar. Solungaçlarla solunum yaparlar. İki çift antenleri (Diantennata) vardır. Aynca thorax ile abdomenden çıkan çok sayıda ayakları bulunur. Crustacea 'ların üzerlerinde kireç birikmesiyle sertleşmiş bir kabuklan vardır, Bunun için bu sınıftaki artropodlara kabuklular adı verilir. Büyük bir kısmı sularda serbest olarak yaşarlar. Ancak tesbih böcekleri gibi bazı türleride karada yaşar. Bu sınıfa bağlı iki alt sınıf vardır. Bunlar; Alt sınıf: Entomostraca Bu alt sınıfta bulunan türler küçük kabuklulardır. Vücutları değişik sayıda bölümlere ayrılmıştır. Abdomenleri ise genellikle çatal şeklinde sonlanır. Küçük yapılı olan ve su piresi olarak da adlandırılan Diaptomus,Cyclops ve Daphnia’lar sularda zooplaktonları oluştururlar. Bunlardan Cyclops ve Diaptomus’lar helmintlerden Diphyllobothrium latum'a arakonakçılık yaparlar. Ayrıca Cyclops 'lar Dracunculus medinensis' e de arakonaklık yaparlar. Daphnia 'lar ise nematodlardan Acuaria ve Tetrameres'lere arakonaklık yaparlar. Bu alt sınıfta ki türlerden balıklarda ektoparazit olarak bulunan ve balıkların crustacealanrı olan cinsler önemlidir.Bunlar; Cins: Ergasilos : Tatlı su balıklarının solungaçları üzerinde ektoparazit olarak yaşarlar. Bu parazitler kanla ve epitelle beslenirler. Bu nedenlede solungaçlarda patolojik bozukluklara yol açarlar. Bu parazitle enfekte balılarda soluma güçlüğü, büyüme geriliği ve sexuel olgunluğa erişememe durumu görülür. Enfeste balıklar sekunder bakteri enfeksiyonlarına duyarlıdırlar. Özellikle mantar enfeksiyonlarına duyarlıdırlar. Ağır enfeksiyonlarda ölümler görülür. Özellikle sıcaklığın arttığı yaz aylarında kayıplar daha fazla olur. Cins: Salmincola : Vücutları cephalothorax ve abdomen olarak ayrılmıştır. Büyüklükleri 4 -7 mm' dir. Dişileri yumurta çıkarır ve bu yumurtadan çıkan larvalar balıkların solungaçlarına tutunarak 5 kez gömlek değiştirir ve olgunlaşırlar. Bu cinste tatlı su balıklarının yüzgeç ve solungaçlarında yerleşir. Cins: Achtheres : Çeşitli tatlı su balıklarının solungaçlarına yerleşir. 2 -7 mm büyüklüğündedir. Cins: Lernaea : Bu cins tatlı su balıklarında en yaygın olarak görülür. Bunların sadece dişileri parazittir. Erkek ile dişi çiftleştikten sonra dişi paraziter hayata geçer. Yumurtadan çıkan larva suda serbest yüzer ve birkaç kez gömlek değiştirerek olgunlaşır. Özellikle kültür balıklanrıda ölümlere neden olur. Parazitler balıkların pullarını tahrip ederler. Buralarda ülserler oluşur ve daha sonra buralardan bakteri, mantar ve virusların içeri girmesine zemin hazırlanır. Enfekte balıklarda büyümede gerileme ve yüzme bozuklukları görülür. Cins: Argolos: Bu cinse balık biti adı verilir. Erişkinleri 6 -22 mm uzunluğunda olup, tatlı su balıklarında yaygın olarak görülür. Vücutları caput, thorax ve abdomenden oluşur. Bu türün biyolojileri biraz karışıktır. Erişkin dişi konağı terkeder ve suda bulunan çeşitli maddeler üzerine yumurtalarını bırakır. Yumurtalar içinde larva gelişir ancak yumurtayı terketmez ve 3 larval dönem geçirip yumurtayı terkeder. Bir seri gömlek değiştirir ve her gömlek değiştirmede konağını terkeder. Bu gömlek değiştirme dönemlerinde de parazittir. Biyolojisini sıcaklığa bağlı olarak 40 -100 günde tamamlar, Argulus 'lar balıkların derisini delerek kanla beslenirler. Parazitlerin beslenme yerlerinde ülserler meydana gelir ve sekunder enfeksiyonlara neden olurlar. Balıklarda ektoparazit olarak bulunan ve yukarıda yazılan cinslerin kontrolünde parazitsiz balıkların havuza alınması ve balıksız su kaynaklarının kullanılması esastır. Havuzlarda kullanılan suların süzülmesi gerekir. Ayrıca enfestasyonun görüldüğü yerlerde enfeste balıklar toplanıp imha edilmelidir. Yine havuzlarda balık sayısı azaltılmalıdır. Havuza yeni balıklar konmadan önce havuzun suyu boşaltılır ve kurutulur. Genç balıklar koruyucu amaçla ilaçlanırlar. Ayrıca larval dönemlerin ortadan kaldırılması için de ; Kalsiyum klorür (% 0.85), Bakır sülfat (% 0.2), Magnezyum sülfat (% 1.7), Organik fosforlu bileşiklerden Dipterex 0.5 ppm, Malathion 0.25 ppm oranında haftada bir defa olmak üzere 5 hafta kullanılır. Alt sınıf: Malacostraca Bu alt sınıfta bulunan crustacealar daha büyük yapılıdırlar. Vücut segmentleri sabit sayıdadır. Genellikle thoraxda 8 ve abdomende 7 segment bulunur. Bu alt sınıfta istakoz, kerevides, yengeç ve karidesler bulunur. Serbest olarak yaşayan bu kabuklular insanlar tarafından gıda maddesi olarak tüketilirler. Bunların bazıları bazı helmintlere arakonakçılık yapması bakımından önemlidir.

http://www.biyologlar.com/crustacea-sinifi-kabuklular

Büyük Beyaz Köpekbalığı - Carcharodon carharias

Büyük Beyaz Köpekbalığı Nedir? Büyük beyaz köpekbalığı,(Carcharodon carharias),genellikle soğuk kıyı sularında yaşayan,çok büyük ve hızlı yüzücü,yırtıcı bir balık türüdür.Hakkındaki ilk bilimsel araştırma,1554 yılında çıkardığı bir kitaptaki tanım ve çizimleriyle Rönesans dönemi araştırmacılarından Guillaume Rondelet’e aittir.1785’te Carolus Linnaeus çıkardığı katoloğunda (Systema Naturae),bu türü bilimsel olarak Carolus Linnaeus olarak isimlendirmiştir.Yüzyıllar boyu bu yanlış anlaşılmış balık ta Afrika’da yaşayan diğer yırtıcı kediler gibi,birazda popüler medya ve yanlış bilgilendirilen insanlar yardımıyla,bir korku kaynağı oluşturmuştur.Fakat biz burada bu köpekbalığının dünyasını inceleyip,denizler aleminde hakettiği rolü anlamaya çalışacağız. 2- İsimler ve Sınıflandırma Linnaeus’un sınıflandırma sistemi bütün türleri isim üzerinden adlandırır,genel ve spesifik olarak.Linnaeus’un kitabının onuncu baskısı,bilimsel isimler hakkında en eski yayın olarak seçilmiştir,dolayısıyla Squalus carharias büyük beyaz köpekbalığının kabul edilen en eski ismidir.Büyük beyaz köpekbalığı değişik bir genel isim altında olmalıydı,çünkü Linnaeus’tan sonraki bilim adamları farkattiler ki “Squalus” daha birçok değişik köpekbalığı temsil ediyordu.1833’te Sir Andrew Smith “Carcharodon” isminin genel (cenerik) isim olarak verilmesini önerdi,fakat Linnaeus’un verdiği spesifik ismin Sir Andrew’un verdiği genel isimle birlikte kabul edilmesi ancak 40 yıl sonra olabild Büyük beyaz köpekbalığı Lamnidae uskumru köpekbalıkları familyası grubunda yer alır.Bu familyada iki mako ve iki de porbeagle köpekbalığı türü olmak üzere dört tür daha yer alır.Bunların sadece biri shortfin mako,Güney Afrika açıklarında yaygındır.Büyük beyaz köpekbalığı için kullanılan lokal (yerel) isimler dil gruplarına göre değişiklik gösterir.Fakat ingilizce konuşulan ülkelerde “white shark (beyaz köpekbalığı) ismi yaygın olarak kullanılır.Daha az yaygın olarak ta daha eski bir kelime olan “man-eater”(insan yiyici) kelimesi kullanılır.Avustralya’da “white pointer”(beyaz değnek)kelimesi yaygındır.Daha az yaygın olarak ta “white death”(beyaz ölüm).Güney Afrika’da da bu terimler kullanılır,fakat “blue pointer”(mavi değnek) bazı büyük beyazların arkası mavimsi renkte olduğu için veya Britanya ordusundaki askerlere verilen eski bir takma isim olan “tommy” kelimesi de kullanılır.Afrikalıların kullandığı (witdoodshaai)kelimesi daha az kullanılan ingilizce isimlerin birinden gelmiştir. En çok aşina olduğumuz köpekbalıkları büyük beyaz köpekbalığı gibi,torpido benzeri ve diğer köpekbalıkları ile karşılaştırıldığında oldukça kalın,bir gövdeye sahiptir.Büyük beyaz köpekbalığının burnu kısa ve koniseldir.Gözler yuvarlak ve zifiri siyahtır.Dişler özellikle üst çenedekiler küçük testere dizilimsi keskin kenarlardan oluşan oldukça üçgensel bir yapıya sahiptir.İki metreden küçük olan bazı gençler(yetişkin olmayanlar) düz diş yüzeylerine(kenarlarına) sahip olabilirler.Beş solungaç yarığı(yırtmacı) uzundur ve hepsi göğüs yüzgeçlerinin önünde yer alır.Yetişkinlerdeki anal ve ikinci sırt yüzgeçleri neredeyse dikdörtgensel bir yapıya sahiptir ve çok küçüktür.Kuyruk yüzgeci hilal biçimindedir(üst ve alt uçlar yaklaşık olarak aynı büyüklüktedir).Kabaca göze ve pelvis yüzgecine doğru uzanan bir çizgi üzerinde yer alan vücudun üst kısmı siyahtan açık griye değişir.Bunun altında,gövde beyazdır.Taze yakalanmış olanları genellikle zamanla suyun dışında(havada)solan pirinç kaplama renginde bir parlaklık gösterirler.Göğüs yüzgecinin vücuda bağlandığı yerde genellikle siyah bir nokta mevcuttur. Shortfin mako köpekbalığı görünüş olarak büyük beyaz köpekbalığına benzer.Gövde üzerinde ve yanlardaki parlak mavi renkle diğerlerinden farklılık gösterir.(Gövde üzerinde ve yanlardaki parlak mavi ona ait belirgin bir özelliktir).Daha büyük gözleri vardır.Dişleri daha dar ve düz yüzeylidir.Büyüdüğünde 4 metreye kadar ul Şekil 2:177cm olgunlaşmış dişi(Kwazulu-Natal) WHITE SHARK Sistematik Order:Lamniformes Family:Laminidae Genus:Carcharodon Species:carharias 3-Yetişme Ortamı Büyük beyaz köpekbalığı en çok kıta Avrupası sularında görülen ılıman denizlerin yakın kıyı balığıdır.Tropikal kuşaktan tamamen kaçınmak(özellikle büyük olanları),fakat özellikle Orta Amerika,tropikal Güney Amerika ve merkezi Pasifik adaları gibi bazı bölgelerde çok sık ta görülmez.Issız sulardan gelen birçok rapor,bu türün geniş bir alana yayılabilme ve hatta okyanus havzalarını karşıdan karşıya geçebilme yeteneğinde olduğunu gösterir.Büyük beyaz köpekbalıkları çoğunlukla yakın yüzey(üst) sularda bulunurlar,özellikle avlanırken,fakat istisnai bir olayda bir büyük beyaz 1280 metre derinlikte bir oltaya takılmıştır. Büyük beyaz köpekbalığı açısından zengin olarak bilinen bölgeler, muhtemelen bu bölgelerde insanla8spor balıkçıları,denize girenler,akuba dalgıçları,sörfçüler gibi)daha fazla bir etkileşimi yansıtır.Bu bölgeler Kaliforniya,ABD’nin Orta-Atlantik Federe Devletleri,Güney Afrika ve Doğu Avustralya,Yeni Zelanda ve bazı Pasifik adaları gibi yerlerdir. 4-Beyaz Köpekbalığı Ekolojisi ve Korunması Yetenekli olduğu kadar etkileyici de olan beyaz köpekbalığı(diğer deniz canlılarından ayrı)bir ortamda kalamaz.O, karmaşık kuralları olan karşılıklı bir dayanışmanın hüküm sürdüğü deniz canlılarının gerekli bir üyesidir(parçasıdır). Kıyı şeridindeki bütün ekosistemler,güneşin ışık enerjisini yakalayıp,diğer canlıların kullanabileceği bir formda paketleyen fotosentetik organizmalarla başlar.Bu bitkiler çok geniş bir otçul tarafından yenir(bu bitkiler çok geniş bir otçul hayvan kitlesini besler).Bu otçul hayvanlar etçil hayvanlar tarafından yenir(bu otçul hayvanlar etçil hayvanları besler).Bu etçil hayvanlarda daha büyük etçil hayvanlara yem olur.Bu sayede,enerji,besin zincirinin daha uzak noktalarında yer alan,çok daha büyük hayvanlara iletilir(geçer). Enerji,bir beslenme seviyesinden,bir sonraki beslenme seviyesine geçerken,yaklaşık %90’ını kaybeder.Bu nedenle ,her beslenme seviyesi,bir alttaki beslenme seviyesinin ancak 1/10(onda biri)kadar canlı madde içerir.(Bir seviyedeki bütün canlı varlıkların toplam madde miktarı,bir alttaki seviyeye göre 10 kat daha azdır).En yukarıdaki beslenme seviyesinde büyük beyaz köpekbalığı gibi en zirvedeki yırtıcılar yer alır.sayısal olarak çok nadir olmalarına rağmen,bu en zirvedeki yırtıcılar,bütün ekosistemin üzerinde bulunan bir başlıktır.Nerdeyse okyanusta olup biten her şey büyük beyaz köpekbalığını beslemek içindir.Oldukça yakın geçmişe kadar,büyük beyaz köpekbalığının ne kadar yediği hakkında çok az fikir sahibi olduk.Son zamanlarda Kuzey Atlantik’in batısında yapılmış çok önemli bir deney,büyük beyaz köpekbalığının,keskin ısı farklarındaki ortamlarda yüzüşünden kaslarındaki ısı değişimini inceledi.Bu ölçümler temel alınarak yapılan ılımlı bir tahmine göre,45 kilogram balina yağı yemiş yaklaşık 5 metrelik bir büyük beyaz köpekbalığı,1.5 ay başka hiç bir şey yemeye ihtiyacı olmaksızın yaşayabilir.Ortalama bir kütle ve yağ içeriğine sahip olan bir Kuzey deniz Fili yavrusu temel alındığında,bir yavrunun bir büyük beyaz köpekbalığına 3 ay yeteceği tahmin edilmektedir. Sonuç olarak gözüküyor ki,büyük beyaz köpekbalığı çok az bir sıklıkta bu gibi deniz memelileri ile beslenme ihtiyacındadır ve muhtemelen deniz Fillerinin beyaz köpekbalıklarınca ölümü hastalıklar,boğulmalar ve kendi aralarındaki kavgalar gibi sebeplerdeki ölüm oranı oldukça düşüktür. Zirvede bir yırtıcı olmasına rağmen,beyaz köpekbalığının da korktuğu yırtıcılar mevcuttur.1997 yılında Farallon adası açıklarında,bir öldürülen balinanın(Orcinus orca) 10-12 foot(yaklaşık 3-3.5 metre)uzunluğundaki bir beyaz köpekbalığını öldürüp yemesi gözlenmiş ve filme alınmıştır.Bu saldırıdaki öldürülen balina belki kendi yavrularını koruyordu,belki de bu atak tamamen kendisiyle av konusunda rekabet halinde olan bir rakibi devre dışı bırakma vakası idi.Bu gibi aşırı derecede ilgi çeken bazı olayların olmasına rağmen,büyük beyaz köpekbalığını yiyen doğal yırtıcılar nadirdir.Bu güne kadar büyük beyazların en göze çarpan öldürücüleri insanlar olmuştur.Bu türün eti sıkı(sertçe),beyaz ve lezzetlidir.Belki de bundan daha önemlisi,büyük beyazın çenesi ve dişleri nadir bulunan bir ganimet ve hatıra eşyası olarak dünya çapında aşırı derecede gözdedir(değerlidir).Kaliforniya açıklarında her yıl 10-20 büyük beyaz öldürülür.Yakın geçmişte bu rakama erişmedeki pay,büyük ölçüde spor için balık avlayan Kaliforniyalılara ait olmuş çene ve dişleri tutup geri kalanı atmışlardır.Bu günlerde ise,büyük beyazların büyük çoğunluğu ticari balıkçılar tarafından yanlışlıkla tutulmaktadır.Bunların bir kısmı bilimsel araştırma kurumlarına bağışlanmakta,diğerleri de genellikle internet üzerinden açık arttırmayla satılmaktadır.1993’ün ekiminde,Kaliforniya büyük beyaz köpekbalığını korunması gereken canlı türlerine dahil eden ilk Amerikan federe devleti olmuştur.1994’ün ilk gününden itibaren bütün Amerika Birleşik Devletleri sularında büyük beyaz köpekbalığının ticari ve spor amaçlı avlanması yasaklanmıştır.Büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir gemi Amerika Birleşik Devletleri suları dışında yakalanmış büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir geminin,Kaliforniya limanına yanaşmasına izin verilmez.İzin verilen yegane yakalamalar,sınırlı sayıdaki ticari balıkların yanlışlıkla yakaladıkları ile bilimsel araştırma ve eğitim amaçlı yakalamalardır. En azından Kaliforniya suları sınırları içinde,büyük beyaz köpekbalığı kanun tarafından korunmaktadır.Fakat Pasifik kıyı şeridi boyunca uzanan diğer sularda,bu muhteşem köpekbalığı tehlikeleri göze almak zorundadır.Büyük beyaz köpekbalığının aşırı derecede sınırlı olan üreme kabiliyeti göz önüne alındığında,bir yok edilme oranı bile,bu türün soyunun tamamen tükenmesi sonucunu doğurması yüksek derecede olasıdır. Kişi,büyük beyaz köpekbalığını korumak için,çok sağlam delillere dayanan bütün tavrını oluşturabilir.Büyük beyaz köpekbalığının deniz ekosistemindeki rolünü tam olarak anlamamamıza rağmen,onun çevresel önemini örnek olarak verebiliriz.Bu hayvanı ahlaksal yükümlülüklerimizden dolayı korumamız gerektiğinden bahsedebiliriz,fakat daima ahlaksal aciliyetler ve öncelikler konusunda bir tartışma söz konusu olacaktır.Muhtemelen okuyucular,büyük beyaz köpekbalığının korunması için ileri sürülen aşağıdaki sade fikri en doyurucu bulacaklardır.Büyük beyaz köpekbalığı,dünyamıza zenginlik,ilgi çekici bir farklılık,efsaneler ve gizemler katan nadir bir yabani hayvandır. 5- Boyut ve Yaş Köpekbalıklarının yaşlanması basit bir proses değildir.Bunun ana sebepleri,büyümenin beslenmeyle olan ilgisi,coğrafi alanı ve bazı türlerdeki erkek ve dişi büyüme oranının,ki yaşla yavaşlar,değişiklik göstermesidir.Araştırmacılar,ağaç tabakalarında olduğu gibi,omurga kemiğindeki kireçlenme tabakasının büyük beyaz köpekbalığının yaşını yansıttığını gösterdiler.Bu temelde Doğu Pasifik büyük beyaz köpekbalıkları 13-14 yaşında 16 ft (4.75m)’ye ulaşırlarken,Kuzey Atlantik köpekbalıklarının aynı uzunluğa 20 yaşlarında ulaşabildiğini bulmuştur. Yeni doğmuş büyük beyaz köpekbalıklarının boyu 109-129cm civarındadır.Büyüklük ve cinsel olgunluk balıktan balığa değişkenlik gösterir.Erkekler yaklaşık 9 yaşlarında,3.5-4.5m boyutlarında olgunlaşır.Dişilerse 12-14 yaşlarında,4.5-6m civarlarındayken olgunlaşırlar.Görülmüş olan en büyüklerin (5m üzerinde)çoğu dişi olmasına rağmen,bugün hala erkeklerin dişilerden daha büyük bir maksimum boyuta ulaşıp ulaşmadığı bilinmiyor.Geçtiğimiz yıllarda birçok doğru olmayan maksimum boyutlar rapor edilmiştir,bir rapordaki on yıllar boyunca tartışılmış olan 36 feet(11m)’lik bir boyutun,aslında 16 feet olduğu fakat yazım hatasına maruz kaldığı düşünülmektedir.Son yıllarda yakalanan en büyük köpekbalığı ölçülmemiştir,fakat araştırmacıların biri Malta diğeri de South Avustralya’dan olan büyük beyaz köpekbalıklarının 7m’den büyük olduğu hakkında çok az şüpheleri vardır.Bu köpekbalıkları 30 yaşına yaklaşıyorlardı.Yakın zamanlarda Gans Bay’da yakalanmış ve Cape Town’daki shark Research Centre’de incelenmiş 6m’lik bir dişinin,bir omurga bandının bir yıla eşit olduğu varsayımıyla,yaklaşık 22 yaşında olduğu tahmin edilmiştir. 6-Üreme ve gelişim Büyük beyaz köpekbalığında döllenme dahilidir ve dişiler yavruları canlı olarak dünyaya getirirler(onlar ovovovipar’dır).Kur yapma davranışları “tam olarak”bilinmez,fakat bilim adamları yaralı bireylerin,erkek erkeğe olan saldırganlığın veya çiftleşmeden önceki erkeklerin dişileri hafifçe ısırmalarının sonucu olduğuna inanırlar.Embriyolar,kendi yumurtalarının bütün sarısını tükettikten sonra,ana içindeki yumurtadan hatta diğer embriyolarla beslenmeye başlar.Büyük beyaz köpekbalığının akrabalarında da görülen bu olayı “intrauterine cannibalism”(döl yatağı yamyamlığı) olarak adlandırılır.Yavrulu dişiler belgelenmemiştir,fakat diğer köpekbalıklarında olduğu gibi,büyük dişiler küçüklerden daha fazla yavru taşırlar.Bir Avustralya dişisi 11 yavruyla bulunmuştur.Gebelik süresinin kesin olarak bilinmemesine rağmen,büyük boyutta olan dişilerde yaklaşık 1 yıl veya daha fazla olduğu tahmin edilmektedir.Cape Town’daki Shark Research Centre(Köpekbalığı Araştırma Merkezi)’nde çalışan Dr. Leonardo Compago çok sayıda değişken ve bilinmeyeni de göz önünde bulundurarak,ortalama bir dişinin üreme potansiyelini izlemiştir.15 yaş ve 5 metrede olgunlaşan 30-31 yaşlarında 7.2m’lik maksimum boyuta ulaşan doğumdan sonraki bir yıllık dinlenme süresiyle birlikte her 3 yılda ortalama olarak 9 yavru doğuran ortalama bir dişinin,ölümünden önceki seneye kadar 45 yavru dünyaya getireceği tahmin edilmiştir.Bununla beraber,doğal ölümler,nispi sağlık ve çiftleşme mevcudiyeti gibi nedenlerle,dişilerin çoğu,özellikle insan etkisinin çok fazla olduğu bölgelerde,muhtemelen daha az yavru dünyaya getiriler. Bazı araştırmacılar büyük beyaz köpekbalıklarının,ılıman denizlerin kıyı sularında,kendi kendini soyutlamış yavrusunu beslemeyen dişiler tarafından dünyaya getirildiğine ve daha sonra büyüdükçe daha geniş sıcaklık ortamlarına adapte olduklarına inanırlar.Bu da büyük köpekbalıklarının açık okyanus alanlarına doğru açılmayı göze alabilmelerini sağlayan ve tropikal orta-okyanus adalarında görülmelerini açıklayan bir teoridir.Bilim adamları genç büyük beyaz köpekbalıklarının (iki yaş veya daha küçük) bilinen dağılımları ve büyüme tahminleri sonuçlarından yola çıkarak,su sıcaklıklarına karşı toleranslarının gelişimine kadar,coğrafi olarak dar sıcaklık değişimli alanların içine sınırlandırabileceklerine dikkat çekmişlerdir. 7-Yiyecek ve Beslenme Alışkanlıkları Büyükbeyaz köpekbalığının zirvede bir yırtıcı olduğu,denize çıkışı olmayan bölgelerde yaşayan insanlar arasında bile bilinir. Bu yaratığın sırf görünüşü , gücü ve korku veren çeneleri böyle bir gözlemi gerekli kılar. Fakat sürpriz bir şekilde, beyaz köpekbalıkları aynı zamanda leş ve çöp süpürücülerdir (yiyicileridir). Araştırmacılar şu aşağıdaki şeyleri mide içeriklerinde bulmuş ve kayıtlara geçirmişlerdir:Sardalya’dan mersin balığına kadar her çeşit ve büyüklükteki kemikli balıklar, diğer daha büyük köpekbalığı dahil kıkırdaklı balıklar, deniz kaplumbağaları, sümsük kuşu martı ve penguenler dahil çeşitli kuşlar, yunus, domuzbalığı, fok, ölü balina gibi deniz memelileri,abalon, diğer deniz salyangozları, kalamar,supya, denizyıldızı,yengeç dahil çeşitli omurgasızlar. Fok kolonilerinin bulunduğu alanlarda,3 m. ve daha büyük boyutlardaki büyük beyaz köpekbalıkları,çoğunlukla balıktan oluşan diyetlerini gözle görülür bir şekilde foklara doğru kaydırırlar.Jackass penguins zaman zaman ısırılmalarına rağmen çok nadiren büyük beyaz köpekbalığının midesinde görülmüştür.Özellikle önemli beslenme alanları Bird Island(Kuş Adası),Doğu Cape,Pyer ve Robben Adaları,Batı Cape gibi yerlerdir.Bununla beraber,büyük beyaz köpekbalığı,fokların bulunmadığı veya çok nadir olduğu tropikal alanlarda,kemikli balıkları diğer köpekbalıkları ve deniz memelileriyle çok rahat bir şekilde hayatta kalma yeteneğine haizdir.Şu noktaya dikkat etmekte yarar vardır ki,uzmanlaşmış bir yırtıcı,bir alanda bulabildiği bir tercihi başka bir alanda bulamayabilir,dolayısıyla büyük köpekbalıkları deniz içinde yüzen neredeyse her şeyi pusuya düşürme veya yakalama yeteneğine sahiptir. Büyük canlı fokların büyük beyaz köpekbalıklarının en zor avları arasında olduğu düşünülmektedir.Bu foklar,onları tamamen suyun dışına fırlatabilen, “ısır”ve “bırak” taktiğiyle,genellikle yüksek hızla ani bir hamleyle öldürürler.Bu eylem bilim adamlarınca savunarak öldürme olarak nitelendirilir,bir başka deyişle,köpekbalıkları bu sayede kendilerini,korku ve heyecan içindeki yaralı bir hayvanın diş ve pençelerinden korurlar.Güney Afrika açıklarında,penguenlerin bu şekilde defalarca havaya fırlatıldıkları görülmüştür.Bu davranış şekli,gerçek bir beslenme çeşidinin bir parçası olmasından çok,avıyla oynama veya avını test etme amacına yönelik olabilir.Yaralı,ölmek üzere olan av,köpekbalığı tarafından yeterince zayıf hale düşene kadar kuşatma altında tutulur ve en sonunda tüketilir. 8- Yaşayan(hala var olan)Fosil Akrabalar Yaşayan büyük beyaz köpekbalığı Carcharodon cinsi içinde sınıflandırılan beş türden biridir.Diğer dördünün nesli tükenmiştir.Şu andaki araştırmacılar inanırlar ki bugünkü büyük beyaz köpekbalığının en eski atası kabul edilen bir tür,Carcharodon landanensis,Paleocene çağında (65-57 milyon yıl önce) ortaya çıkmış ve yaklaşık aynı çağlarda bu kökten iki değişik grup(sülale,soy,nesil)oluşmuştur.Bugünkü yaşayn büyük beyazın da içinde bulunduğu birinci grup,göreceli olarak daha küçük olan C. landanensis(2-3m uzunluğundadır)ile bağlantısı (akrabalığı)olan orta dereceli fosil türlerine sahiptir.Ayrı bir cins olarak kabul edilen ikinci grup,Carcharocles,bazı araştırmacılara göre,izleri yaklaşık 50 milyon yıl öncelerine kadar gelen devasa akrabaları da kapsar.Bu kocaman köpek balıklarının evrimi vücut büyüklüğünün artmasıyla karakterize edilmiştir ve oldukça yakın zamanlara kadar yaşamış olabilir. Modern büyük beyaz köpekbalığı yaklaşık 20 milyon yıl önce Miyosen çağlarda evrim geçirmiştir(evrimleşerek bugünkü halini almıştır).Aynı zamanlarda,ikinci paralel gruptan (sülaleden) gelen (evrimleşmiş olan)Carcharodon megalodon ve C.angustidens isimlerini verdiğimiz çok daha büyük diğer iki kardeş tür dünya denizlerinde varlığını sürdürüyordu.Peru’da C. megalodon’a ait 17cm uzunluğunda dişler bulunmuştur.Bu bize gösterir ki,bu tür 13m veya daha büyük bir uzunluğa ve yaklaşık 20 ton ağırlığa erişmiştir.Bu dev yırtıcı,en azından büyük boyutta olanları muhtemelen çoğunlukla balinalarla beslenmiştir.Bazı araştırmacılar,balinaların evrimleşip,kutup sularında bol miktarda bulunan planktonlarla beslenmek için bu sulara doğru göç etme eğilimi göstermesinin bu köpekbalığı türünün neslinin tükenmesine neden olduğunu varsayalar.Bu dev köpekbalıklarının değişik sıcaklıklara adapte olamaması ve buzlu sulara göç eden balinaları takip edememesi,ana yiyecek kaynağını yılın büyük bir bölümü için kaybetmesi sonucunu doğurmuştur. Güney Afrika’da Carcharodon’un üç türünün fosilleşmiş dişleri bulunmuştur.Uloa yakınlarındaki KwaZulu-Natal’daki Miyosen tortusundan anlaşılmıştır ki modern büyük beyaz köpekbalığı C.angustidens’e ait olan fosil dişler 15 milyon yıllıktır.Daha büyük C.angustidens’lerin 15cm’yi bulan dişleri,Kwa-Zulu-Natal bölgesinde,Doğu Cape’deki Eocene yatağında ve Namibya’da bulunmuştur.Pürtüksüz dişlere sahip olan(Otodontidae familyası)Paleocene devasa köpekbalıklarına başka bir yakın grup ta Carcharodon türüyle paralel olarak evrime uğramış ve bugün hayatta olan porbeagle köpekbalıklarının (Lamna cinsi)oluşumuna yol açmıştır. 9- İnsana Karşı Saldırılar İnsanın en büyük korkularından biri,yabani bir hayvan tarafından canlı canlı yenmektir.Muhtemelen büyük beyaz köpekbalığı endişelerinin esrarı,büyük ölçüde onun uzun zamanlar boyunca sadece bu amaçla insanlara saldırması olmuştur. Rapor edilen büyük beyaz köpekbalığı saldırıları,öteki köpekbalığı saldırılarından daha fazladır.Bununla beraber rapor edilmiş bütün köpekbalığı saldırılarının %80’i büyük beyaz köpekbalıklarının nadir olduğu tropikal bölgelerde meydana gelmiştir.Bu bölgelerdeki ataklardan genellikle çekiç balıkları (bir tür köpekbalığı) ve requiem köpekbalığı sorumlu tutulmuştur.Gerçekten de Durban’daki Oceanographic Research Institute’un(Okyanus Araştırmaları Enstitusu)eski yöneticisi Dr.Davies daha1964’lerde Güney Afrika’da 7 tehlikeli türden bahsetmektedir.Bugün hala köpekbalığı saldırılarından daha fazla insan boğulmalar,arı sokmaları,şimşek çarpmaları veya yılan sokmaları gibi nedenlerle yaralanır veya ölür.Buna rağmen,büyük beyaz köpekbalıkları su içinde insan için tehlikelidir ve bazı bölgelerden diğer bazı bölgelere göre daha fazla saldırı olayı rapor edilmiştir. Amerikalı araştırmacılar 1926’dan 1991’e kadar bütün dünya çapında vuku bulmuş 115 büyük beyaz köpekbalığı saldırısı belgelemişlerdir.Güney Afrika açıklarında,altısı ölümle sonuçlanan,29 saldırı meydana gelmiştir.Güney Afrika’da 1940’tan bu yana toplam olarak 28’i ölümle sonuçlanan 89 köpekbalığı saldırısı rapor edildiği düşünüldüğünde,bu saldırıların bazılarının diğer türler tarafından yapıldığı sonucuna varılabilir. Niçin Büyük Beyaz Köpekbalıkları Tehlikelidir? Bazı popüler iddiaların tersine,biz karada yaşayanlar,okyanus ortamına doğal olarak uyamadığımız için bu büyük,hızlı,yırtıcılar insanları potansiyel av olarak görürler ve bu yüzden tehlikelidir.Aynı zamanda,sudaki, insanlara,takip edilip dışarıya atılması gereken bölgesel işgalciler olarak kabul ettikleri için de tepki gösterebilirler.Bu teori büyük beyaz köpekbalıklarını atfedilmiş,kurbanların hayatta kaldığı,tek ısırıklı saldırıları da muhtemelen açıklar.Özellikle geçmiş dönemde bir kısım film ve kitapta yapılan bazı sansasyonel köpekbalığı tasvirleri içimize korku salmak için çılgınca bir yok etme ve intikam alma karalılığı içinde olan nefret dolu canavarlar çizmiş ve onun doğal yırtıcı davranışlarını çarpıtmıştır.Hiçbir şey hakikatten öteye gidemez. 10- Denize Girenler,Sörfçüler ve Dalgıçlara Tavsiyeler Bütün önlemlere rağmen,olası bir saldırı durumunda bilinmesi gereken birkaç şey vardır. 1-En önemli şey kanı mümkün olduğunca çabuk durdurmaktır.Kol bacak gibi uzuvlardaki yaralarda çok ta fazla sıkı olmamasına dikkat ederek,sıkıca bir sargı sarılması kanı durdurmaya yardımcı olacaktır.Yumuşak ve esnek herhangi bir şeyi(kumaşı)sıkıştırıp bandaj olarak yara üzerine yerleştirin.Yaralıyı hareketsiz ve mümkün olduğunca sıcak tutun,küçük ve önemsiz bir yara gibi bile gözükse hemen tıbbi acil yardım çağırın. 2-Denize girenlerin veya sörfçülerin büyük ve önemli yaralanmalarında,yaralıyı kum üzerinde denize paralel bir şekilde yatırıp başa doğru kan akışını desteklemek için ayaklarını yukarıya kaldırın.Yaralıyı başı su tarafına gelecek şekilde yatırmayın.Gerekirse yaralının nefes almasına yardımcı olun. 3-Tıbbi yardımın gelmesini beklerken,yaralıyla rahatlatan bir edayla konuşarak onu sakin ve ayık tutun.Yaralıyı hastaneye yetiştirmek amacıyla sahilden uzağa veya bir araca taşımaya teşebbüs etmeyin.Bu yaralıyı şoka sokabilir. 4-Vücut iç sıcaklığını düşürüp yaralıyı şoka sokmasına yardım etme ihtimali olduğundan,hiçbir içecek özellikle alkollü içecek vermeyin.Yaralının dudaklarını ıslatmak amacıyla su kullanılabilir. 11- Kaynaklar: Weidnfield & Nicolson, London, 222pp. Cliff, G., S.F.J. Dudley & B. Davis. 1989. Sharks caught in the protective gill nets off Natal, South Africa. 2. The great white shark, Carcharodon carcharias. S. Afr. J. Mar. Sci., 8:131-144. Compagno, L.J.V. 1981. Legend versus reality: the Jaws image and shark diversity. Oceanus 24 (4); 5-16 -1984. Sharks of the World. FAO Species Catalogue, vol. 4,2 parts, Rome. -D.A. Ebert & M.J. Smale. 1989. Guide to the Sharks and Rays of Southern Africa. Struik Publishers, Cape Town, 160pp. Condon, T. (ed.). 1991. Great white Sharks - a Perspective. Underwater, no.17. Ihlane Publications, Durban: 1-130. Cousteau, J. -Y. & P. Coustea. 1970. The Shark: Splendid Savage of the Sea. Doubleday & Co., Garden City, 277 pp. Davies, D.H. 1964. About Sharks and Shark Attack. Shuter & Shooter, Pietermaritzburg, 237pp Ellis, R. & J.E. McCosker. 1991. Great White Shark. Stanford University Press, Harper Collins, New York, 270pp. Sibley, G. et al (eds.). 1985. Biology of the white shark. Mem. So. Calif. Acad. Sci. 9, 150pp Smith, M.M. & P.C. Heemstra (eds.). 1986. Smiths’s Sea Fishes. Macmillan South Africa, Johannesburg, 1047pp. Springer, V.G.& J.P Gold. 1989. Sharks in Questions. Smithsonian Institution Press, Washington, D.C., 187pp. Van der Elst, R. 1986. Sharks and Stingrays. Struik Publishers, Cape Town, 64 pp. Not:Alıntıdır ayrıca karakter sınırlaması olduğu için parça parça yollayabildim kusura bakmayın arkadaşlar

http://www.biyologlar.com/carcharodon-carhariasbuyuk-beyaz-kopekbaligi

İlginç Yaşamlar.... Deniz Canlıları

Suların vazgeçilmez canlıları. Kimi zaman soframızı, kimi zaman da evimizdeki akvaryumu dolduran balıklar. Torpido ya da iğ şeklindeki vücutları var. Bu vücut yapısı sayesinde su içerisinde daha az enerji harcayarak hareket edebiliyorlar. Bazen renk renk, göz alıcı güzelliğe sahip balıklarla karşılaşırız. Vahşi yaşamda bu balıklar, 0-200 m derinliklerde yaşar ve littoral balık olarak isimlendirilir. Littoral balıklar, bulunduğu bölgedeki taş, kum, resif ya da kayaların rengine sahipler. Yani kamuflaj yetenekleri var. Balıklar için bu özellik, düşmanlarından saklanmak için bir avantaj. Bu avantajı onlara verip, renk değiştirerek saklanmalarını sağlayan renk hücreleriyse dört çeşit. Kromotofor adı verilen bu hücreler, melanofor (siyah), ksantofor (sarı), eritrofor (kırmızı) ve gümüşi renkte olan iridositler. İridositler dışındaki diğer kromotoforlar, merkezi bir kısım ve uzantılarından oluşan karmaşık bir hücresel yapıya sahip. Işık, hormon ve sinirlerin etkisiyle kromotofor içerisindeki pigment granü’lleri, bu hücrenin merkezinde toplanırsa balığın rengi açık, tüm hücreye yayılırsa renk koyu oluyor. Bu özellik ani renk değişimi olarak biliniyor. Bazen de karanlık bir ortamda yaşayan ya da uzun süre böyle bir ortamda kalmış olan bir balık, yavaş yavaş kromotofor sayısını arttırarak, vücut rengini bulunduğu ortama göre ayarlayabiliyor. Bu renk değiştirme biçimi uzun süreli olup, kalıcı. İridositler dediğimiz gümüşi renkteki kromotoforlarınsa içinde özel bir renk maddesi bulunmuyor. Bunun yerine ışığı kuvvetlice kıran, guanin kristalleri içe-riyorlar. Bu kristallerin hücre içindeki yerine göre, ışığı az ya da çok miktarda yansıtmasıyla da bir gökkuşağı rengi meydana geliyor. Açık denizlerde yaşayan balıklardaysa renk karakteristik. Sırt, mavi yeşil parıltılı olup, balığın yanlarından karnına doğru gümüşi, karın tarafı da beyaz. Sofralarımızı dolduran hamsi, sardalye, uskumruda olduğu gibi… Dip balıklarından vatoz (Rajiformes), dil ve pisi (Pleuronectiformes) balıklarına bakacak olursak, sırt taraflarının koyu renkli ve karışık desenli, karın taraflarının da soluk renkli olduğunu görürüz. Karanlık çevreye uyum sağlamak için bu gibi dip balıklarında menekşe ya da siyah renk hakim. Ayrıca diplerde ve bulanık sularda yaşayan balıklarda gözler küçük. Besin aranmasında, düşmanın algılanmasında vs. gözler yerine bıyıklar ya da koklama organı gibi başka organlar görev alıyor. Bıyıklar üzerindeki reseptörler kimi zaman tat almada, kimi zaman da besin aranmasında rol oynuyor. Balıklardaki koklama organı kara hayvanlarında olduğu gibi solunum işine yaramıyor ve yutakla bağlantısı yok. Balığın gözü ile ağzı arasında bulunan burun delikleri, her iki yanında bir çift delikten oluşup burun boşluğu içinde koklama kapsülü bulunuyor. Yüzme sırasında su, ön delikten giriyor ve koklama kapsülünden geçtikten sonra arka delikten çıkıyor. Özellikle de sürü halinde gezen balıklarda bu organ, balığın kendi sürüsünden birinin ya da düşmanın kokusunu ayırt etmede kullanılıyor. Bazı balıklarda bir bireyin yaralanmış derisinden salgılanan koku maddesi, sürünün diğer üyeleri tarafından algılanarak, ortamda düşmanın var olduğunu anlamalarını sağlıyor. Balıkların birbirleriyle haberleşmesini sağlayan diğer bir yöntem de çıkardıkları sesler. Balıklarda gırtlak olmadığı için, memeli ve kuşlarda olduğu gibi ses çıkarmıyorlar. Bunun yerine sazangiller (Cyprinidae) ailesinde olduğu gibi yüzme kesesinden hava çıkarken oluşan ya da kırlangıç balığıgiller (Triglidae)ailesindeki balıklarda görülen ‘gurlama’ şeklindeki ses gibi karakteristik sesler çıkarıyorlar. Birçok balığın kendine özgü sesi var: Trachurus, Mola ve bazı Balistes türleri üst ve alt yutak dişlerini birbirine sürterek kaba bir ses çıkarıyorlar. Bazı balıklarsa süpersonik sesler çıkarıyorlar. Genellikle, süpersonik sesler çıkaran canlılar olarak yunuslar gelir aklımıza. Fakat yunuslar, denizlerde yaşayan memeli hayvanlar. Bu sevimli canlılar 2000 Hz’den az ve 100 000 Hz’den fazla olan ‘klik’ şeklindeki sesleriyle büyüklük, boyut, boşluk tayini ve aynı zamanda da doku ve objelerin yön ve yoğunluğunu algılıyorlar. Bizim duyamadığımız bu sesler, yunusun kafasının içindeki ‘melon’ adı verilen bölgeden kaynaklanıyor. Yunuslar su içerisinde hareket ederken, genellikle kafalarını yavaş biçimde bir yandan diğer bir yana döndürerek ve yukarı aşağı hareketler yaparak, çevreyi tarıyorlar. Bu tarama sırasında, çevrelerindeki nesnelerin şeklini, gönderdikleri seslerin frekansını değiştirerek ortaya çıkarırlar. Sesin geri dönüş süresi objenin yunusa olan uzaklığını belirliyor. Yunusun kafasının yan kısımları ve alt çenesi oldukça yağlı. Geri dönen ses yansımaları, bu bölge ile algılanır. Şişe burunlu yunus (Tursiops truncatus), tırtak yunus (Delphinus delphis), çizgili yunus (Stenella coeruleoalba) ve Karadeniz’de yaşayan, ama günümüzde sayıları oldukça azalmış olan mutur (Phocena phocena), yurdumuzun denizlerinde yaşayan yunus türleri. Kontrolsüz biçimde avlanma, ağlara takılmaları, besin azlığı nedeniyle sayıları oldukça azalmış bu sevimli hayvanlar hakkında ne yazık ki ülkemizde yeterli bilimsel araştırma yok. Azalan sayılarıyla halen yaşam mücadelesi veren, suların vazgeçilmez canlılarından bir diğeriyse, Mersin morinası (Huso huso). Acipenceridae ailesinden biri olan bu değerli balık, mersin balıkları içinde en büyüğü ve yurdumuzda Karadeniz’de 100-130 m derinliklerde yaşıyor. Karides, yengeç, çeşitli kabuklular ve kabuklularla beslenen bu muhteşem hayvanın boyunun 4 m ve ağırlığının 1300 kg’a ulaştığı ne yazık ki efsanelerde kaldı. Günümüzde Mersin morinasının boyu 2 m’yi bile bulmuyor. Havyarı ve lezzetli eti yüzünden aşırı avlanıyor. Yumurtlamak için tatlı sulara girmek istediğinde önüne kurulan setler yüzünden nehre giremeyen bu değerli üyemizi, gün geçtikçe kaybediyoruz. Normal olarak denizlerde yaşayıp da yumurtlamak için tatlı sulara göç eden balıklara anadrom balıklar deniyor. Mersin morinası gibi alabalıklar da (Salmonidae ailesi) anadrom balıklar grubuna giriyor. Salmonidae ailesini diğer balıklardan ayıran en önemli özellikleri sırtlarında bulunan yağ (adipoz) yüzgeci. Etleri çok lezzetli olan bu balıklar, küçük omurgasız ve balıklarla besleniyor. Ülkemizde temiz dağ sularında ve Karadeniz’de yaşıyorlar. Salmonidae ailesinin en ilginç yaşam öyküsüne sahip olan üyesi, Pasifik som balığı (Oncorhynchus sp.). 2 Aralık 1964′de, Prairie Creek balık çiftliğinde yaşanan bir olayla araştırılmaya başlandı. Yavru balıkların bulunduğu havuzda, büyük bir som balığı görüldü. Balık, iki yıl önce okyanusa bu çiftlikten bırakılmıştı. Çünkü, bu balık çiftliğinin metal klipsini taşıyordu. Balık çiftliğinin tahliye kanallarına bakıldığında 70 kadar daha som balığının havuza girmek için beklediği görüldü. Yapılan uzun süreli araştırmalar sonucu ülkemizde yaşamayan bu göçmen balığın yaşam yolculuğu belirlendi. Bir som balığının yaşamı, ekim-ocak aylarında annelerinin sığ bir akarsuda, çakıl ve kumlar arasına yaptığı yuvaya, yumurtalarını bırakmasıyla başlıyor. Suyun sıcaklığına göre gelişimini tamamlayan yumurtalar 3-5 ay sonra açılıyor. Yavrular iki ay kadar çakıllar arasında besin keseleriyle besleniyor, daha sonra aktif olarak beslenmeye başlıyor. Parlak pembe renkli ve üzeri koyu lekeli, gene som balığı yavrusuna ‘parr’ deniyor. Parr’lar gelişerek ertesi ilk baharda 25-35 gr ağırlığa ulaşıyorlar. Bu büyüklükteki bir som balığında, tuzlu suya geçiş için fizyolojik değişimler meydana geliyor ve balığın davranışları değişiyor. Renk değiştirerek gümüşi bir renk alıyorlar. Göç etmeye hazır duruma gelmiş som balığı yavrularına ise ’smolt’ adı veriliyor. 1-5 yıl boyunca okyanusta, çok uzun mesafelere göç ediyorlar. Kanada ve Alaska’da bulunan bu balıklar, Amerika, Alaska ve Japonya kıyılarında dolaştıktan sonra üremek için yumurtadan çıktıkları akarsuya geri dönüyorlar. Ne bir şelale, ne de kuvvetli bir akıntı yıldırabilir onları. Çok uzun mesafelerde gerçekleştirdikleri bu üreme göçü sırasında hiçbir şey yemiyorlar. Doğduğu akarsulara geldiğinde sığ kesimlere yumurtalarını bırakıyor ve kısa bir süre sonra da ölüyorlar. Bu şaşırtıcı yolculuğun nasıl yapıldığına ait araştırmalar, som balığının, dünyanın manyetik alanını algılayan doğal bir pusulasının bulunduğunu söylüyor. Kendi akarsularını nasıl bulduklarına gelince; dünyadaki bütün akarsuların kendine özgü bir kimyasal bileşimi var. Som balıkları da hassas koku alma sistemleriyle, yumurtadan çıktıkları akarsuların kokusunu algılayarak yolculuklarını tamamlarlar. Balıklarda göç, yalnızca denizlerden nehirlere olmaz. Normalde tatlı sularda yaşadığı halde, yumurtlamak üzere denizlere göç eden balıklar da var. Bunlar katadrom balıklar olarak biliniyor. Yılan balıkları (Anguilla anguilla) bu gruba giriyor. Ülkemizin denizlere dökülen akarsularında ve özellikle de Akdeniz bölgesinde yaşıyorlar. Okyanuslarda dünyaya gelen yılan balığı larvasına ‘Lepto-sephalus’ adı veriliyor. Leptosephalus, şeffaf ve yassı vücutlu olup, ilk günlerde iğne gibi sivri dişleriyle planktonlarla besleniyor ve hızlı bir şekilde büyüyor. Bu sırada yavaş yavaş deniz yüzeyine doğru yaklaşıyorlar. Larvaların başkalaşımı üç yılda tamamlanıyor. Eşeysel olgunluğa 6-7 yıldan sonra erişiyorlar. Erkekleri nehir ağzında kalıyor, dişilerse nehirlere doğru göç etmeye başlıyor. Tatlı suda kaldıkları sürece sırt yeşilimsi- kahve karın ve yan tarafları sarı. Bu nedenle ’sarı yılan balığı’ olarak adlandırılırlar. Tatlı sularda 15-18 yıla kadar devamlı olarak kalabilirler. Kışın soğuğundan rahatsız olan bu balıklar; göl ve nehirlerde, suyun derin kısımlarında ve çamurlar arasında kış uykusuna yatarlar. Sonbahar sonlarına doğru çok kuvvetli bir iç güdüyle tatlı sulardan denizlere göç ederler. Bu sırada renk değiştirirler. Sırt siyah, yan tarafları gümüş parlaklığındadır. Bunlara ‘gümüş yılan balığı’ da deniyor. Gümüş yılan balıklarının etleri oldukça yağlı. Baş, genç yaştakilere göre daha kısa, çeneler küçük ve dudakları ince. Denizle bağlantısı kesilmiş sularda yaşayan yılan balıklarının bile denize ulaşmak için ıslak çayırlar üzerinden geçtikleri biliniyor. Erkek ve yumurtalarını bırakan dişi yılan balıkları yumurtalarını bıraktığı yerde ölüyor. Yılan balıkları içinde bir tür var ki, bu kuvvetli göç etme içgüdüsünün yanında elektrik üretmesiyle de kendini özel kılmış. Elektrophorus electricus (elektrikli yılan balığı) 250 cm’lik boyu, 15-20 kg ağırlığıyla Güney Amerika’nın nehir ve bataklıklarında yaşıyor. Kuyruğunun her iki yanında bulunan 6000-8000 bölmeli elektrik organı, 550 volt ve 2 amper şiddetinde elektrik üretiyor. Çizgili kasların değişikliğe uğramasıyla oluşan elektrik organı, etrafı ara doku ile çevrili, disk şeklindeki elektroplakların arka arkaya dizilmesiyle oluşuyor. Bu plakların bir yüzünde sinirler, bir yüzünde kan damarları yerleşmiş. Plaklar, aynı yüzleri, aynı yöne gelecek şekilde dizilmiş. Elektrik akımının şiddeti, elektrik plaklarının sayısına ve balığın büyüklüğüne bağlı olarak değişiyor. Elektrikli yılan balığı, iki metrelik bir uzaklıktan 1 kilovvatt kuvvetinde bir etki gösterecek kadar tehlikeli. Elektrik organını genellikle korunma amacıyla kullanıyor. Elektrik akımına giren büyük memelileri ve hatta insanları bile rahatlıkla çarpıp, bayıltıyor ve şiddetli ağrılara neden oluyor.

http://www.biyologlar.com/ilginc-yasamlar-deniz-canlilari

Deniz Biyolojisi

Su an yeryüzünde görebildiginiz tüm canlilar, dogadaki canlilarin çok küçük bir bölümünü teskil etmektedir.Yeryüzünün üçte ikisinin sularla kapli oldugunu düsündügümüz zaman, okyanus ve denizlerde yasayan canlilar aleminin ne kadar devasal oldugunu anlayabiliriz. Yapilan arastirmalara göre dünya üzerindeki su kütlesinin hemen hemen tamami volkanik patlamalardan atmosfere salinan su buharindan husule gelmistir. Atmosfere salinan yüksek miktardaki su buhari yogunlasarak yillar boyunca yagan yagmurlari ve nihayetinde deniz ve okyanuslari meydana getirmistir. Yagmur sulari tatli yani saf su olmasina ragmen okyanus ve denizlerde yüksek miktarda tuzluluk vardir.Bunun nedeni jeolojik tabakalarin yüksek miktarda karbonat, sodyum klorür (tuz) ve zengin mineraller içermesidir.Sodyum miktari oldukça fazla oldugu için deniz ve okyanuslari olusturan tatli sularin tuzlu hale gelmesine neden olur. Tuz orani yüksek bu sularda herhangi bir kara canlisinin veya bir insanin uzun süreler yasamasi mümkün olmamasina karsin birçok deniz canlisi rahatlikla yasayabilmektedir.Tabii yasamlarini vücutlarindaki mükemmel organ sistemleri sayesinde sürdürürler. Okyanus ve denizlerde tipki karada yasayan canlilar gibi mikroorganizmalardan tutun devasal memeli canlilalar kadar binbir çesit canli türü yasamaktadirlar.Biz yanlizca bu devasal canlilar aleminden bilinen ve bilinmeyen birkaç örnek verecegiz. Deniz ve tatlisu mikroorganizmalari Bu canlilara " Plankton " adi verilmektedir.Planktonlar tatli sularda yasayabildigi gibi deniz ve okyanusta yasayanlarida vardir. Bu canlilar tipki bakteriler gibi ikiye bölünerek çogalmaktadirlar.Önce canlinin içerisindeki DNA replikasyonla kopyalanarak iki Katina çikarilir ve ardindan canlinin vücudu ikiye bölünür. Miktari iki katina çikan DNA nin yarisi birinci yavru hücreye diger yarisi ise ikinci yavru hücreye aktarilir. Planktonlarin en önemli özellikleri, suda yüzmek için aktif olarak belli bir hareketleri olmamasidir.Bu canlilar bulunduklari su ortaminin akimina bagimli olarak basibos dolanirlar. Planktonlar ancak mikroskopla görülebilirler fakat çiplak gözle dikkatlice bakildiginda görülebilecek kadar büyük olanlarida vardir. Bu mikroskobik canlilardan en çok bilineni ise " alg " adi verilen tek hücreli bir canli türüdür ki algler hemen hemen heryerde yasamaktadirlar. Denizlerde, tatli sularda, okyanuslarda, havuz sularinda, su birikintilerinde çamurlarin içinde ve nehirlerde bile yasamaktadirlar.Bu kadar fazla bir yasam alanina sahip canlilar biz ziyaretçilerin bile gözünden kaçmis olamaz. Örnegin bir havuz veya insaat sahasindaki seffaf su birikintilerinin renginin, birkaç gün sonra yesile veya kirmiziya dönüstügünü görmüssünüzdür.Bu sularda ilk zamanlarda yasayan binlerce tek hücreli canli türü, uygun bir sicakliga geldiginde süratle çogalmaya baslarlar. Yanlizca birkaç gün içerisinde sudaki canli sayisi milyari bulabilir.Bu kadar fazla sayidaki tek hücreli canlilar suyun rengini bulandirmaya baslar. Suyun rengi niçin yesile dönüsüyor ? Bunun nedeni ise bazi planktonlarin, tipki yesil bitkiler gibi klorofil molekülünü içermesinden dolayidir.Hatirlarsaniz bitkilerin yapraklarinin renginin yesil olarak görünmesinin klorofil molekülünden dolayi oldugunu söylemistik. Iste bu tip planktonlarinda vücutlarinda klorofil molekülü vardir ve tipki bitkiler gibi fotosentez yaparlar.Bu yüzdendir ki taksonomik olarak siniflandirilirken bitkiler kategorisinemi yoksa hayvanlar kategorisinemi konacagi konusunda sistematikçilerin ortak bir karari yoktur. Yumusakçalar (Mollusk) Okyanus ve denizlerde yasayan diger bir canli grubu ise, genel latince isimleri " Mollusk " olan yumusakçalardir. Bu canlilarin vücutlari adindanda anlasilacagi gibi oldukça yumusak bir yapiya sahip olup, bazi türlerinin vücutlari oldukça sert kabuklarlada kapli olabilir. Yumusakçalarin en iyi bilinen iki örnegi " Mürekkep baligi " ve kabuklu bir yapiya sahip olan " Deniz minareleri " dir. Mürekkep baliklari, gerek anatomik yapilari gerekse savunma mekanizmalari bakimindan oldukça ilginç canlilardir. Belgesellerde sik olarak gördügümüz bu canlilarin hareket mekanizmalari, bir jet motorunun çalisma prensibiyle aynidir.Bu prensip " etki - tepki " prensibidir.Yani bir yandan madde alinirken diger yandan madde verilmekte ve bu sekilde süratle hareket etmektedir. Balik, öncelikle vücudunu, arka tarafindan aldigi bir miktar su ile doldurur.Ardindan karin kaslarini büyük bir siddetle kasarki bu kasilma neticesinde sikisan su büyük bir süratle yine vücudun arka tarafindan disari püskürtülür.Disari püskürtülen su, baligin büyük bir hizla ileri dogru ivmelenmesini saglar. Bunun yaninda hayvan düsmanlarindan korunmak için bir tür sivi salgilarki bu sivi mürekkebe benzer olup salgilandiginda, kendisi kovalayan avcinin görmesini engelleyecek kadar suyu bulandirabilir. Yine bir mollusk olan deniz minareleri ise, yumusak bir vücuda sahip olmasina karsin çok sert bir kabuga sahiptir. Bu kabugun en önemli fonksiyonu canliyi düsmanlarindan korumasidir. Nasil oluyorda bu canlilar etraflarini kabukla örtebiliyorlar ? Bir sperm ile bir yumurtanin birlesmesinden sonra zigotu meydana getirdigini ve bu zigotun ardi ardina milyonlarca kez bölünerek bir yavru canliyi meydana getirdigine deginmistik.Mesela insan yavrusunda, en distaki hücreler diger hücrelerden farklilasarak keratin adi verilen bir madde üretir ve " Derinin " sekillenmesini saglarlar. Deniz minarelerinde ise, zigot milyonlarca kez bölünerek yavruyu meydana getirdiginde, yavrunun en distaki hücreleri " Kalsiyum " salgilayan özel bir hücre tipine farklilasirlar.Bu hücreler, canlinin içinde yasadigi deniz yada okyanuslardan absorbe edilen kalsiyumu düzenli bir sekilde salgilayarak canlinin etrafinda kalin bir tabaka olusmasini saglarlar. Okyanus bitkileri Su an soludugunuz havadaki oksijenin büyük bir kismi, deniz ve okyanuslarda yasayan ve klorofil içeren bitkiler tarafinda fotosentez yoluyla üretilir. Nasil ki atmosfer sartlarinda klorofil içeren bir bitki havadan CO2 yi, topraktan suyu ve günesten isigi alarak fotosentez yapip canlilar için oksijen üretiyorsa ayni sekilde deniz ve okyanuslarda da günes isiginin varabildigi bölgelerde bulunan klorofilli bitkilerde oksijen üretmektedirler. Bu canlilarin büyük bölümünü ise yosunlar teskil eder.Bunun yaninda daha adini sayamadigimiz onbinlerce tür deniz bitkisi vardir. Deniz bitkilerinin ihtiyaci olan su zaten yasam ortami olan denizden, CO2 ihtiyaci ise diger tüm deniz canlilari tarafindan karsilanir.Eger bu tabiat harikalari denizlerde var olmasaydi hemen hemen tüm deniz canlilari oksijensizlikten hayatini kaybedecekti. Basit bir canli gibi görünen bu yaratiklari aslinda ekosistemin vazgeçilmez birer parçasidirlar. Bu canlilarin milimetrelerle ölçülebilecek kadar küçük olanlari oldugu gibi yüzlerce metre uzunlugunda devasal boyutlara sahip olanlarida vardir. Atlas okyanusu kiyilarinda yasayan birtür deniz bitkisi, fotosentez yapmak için oldukça mükemmel bir yöntem gelistirmistir. Bu bitki tipki bir " Palmiye " agacina benzer ve onlarca metre uzunlugundaki dallarinin uçlarinda bir veya birkaç adet hava kesesi bulunur.Bu hava keseleri, bitki gelistikçe gitgide büyüyerek bitkinin dallarini suyun kaldirma kuvvetinin etkisiyle yukari dogru kaldirir. Deniz yüzeyine yaklasan dallar günes isigindan olabildigince faydalanarak fotosentez yapma imkani bulur. Deniz bitkilerinin üremeleri hem eseyli hemde eseysiz olabilmektedir. Erkek bitkiden gelen bir sperm ile disi bitkiden gelen bir yumurta hücresinin birlesmesiyle (eseyli üreme) yavru bir bitki meydana gelebildigi gibi bazi bitkiler ikiye bölünme ve " Tomurcuklanma " ile de çogalabilir (eseysiz üreme). Tomurcuklanma, bir bitkinin belirli bir bölgesinde büyüyen hücre veya hücre gruplarinin daha sonra bitkiden ayrilarak bagimsiz bir sekilde kendi basina büyüyüp gelismesi olayidir. Derisi dikenliler (Ekinodermata) Derisi dikenli deniz yaratiklarinin basinda " Deniz yildizlari ", " Deniz hiyarlari " ve degisik sekillerdeki dikenli canlilar gelmektedir. Bu hayvanlarin yasayis tarzlari pek aktif olmasada görünüs itibariyle deniz diplerinde bir renk cümbüsü meydana getirmektedirler.Görünümleri göze çok hos gelen bu yaratiklar alimli renkleriyle deniz diplerindeki vahsi yasamin vazgeçilmez birer parçasidirlar. Deniz yildizlari bilindigi gibi ikiye, üçe, dörde veya daha fazla sayida parçalara ayrilmasina ragmen her ayirdiginiz parça kendini tamir ederek yeni bir deniz yildizi verebilir.Canlilarin bu yeteneklerine "rejenerasyon" yani tamir edebilme özelligi denir. Deniz yildizlarinin bazi türlerinde dikenler oldukça uzun olup, yildizi vahsi deniz canlilari tarafindan parçalanma tehlikesine karsi korur Deniz hiyarlari, protein bakimindan zengin olup uzakdogu ülkelerinde besin kaynagi olarak tüketilmektedir.Bu canlilar genellikle fazla derin olmayan okyanus sularinda yasarlar. Deniz kestaneleri ise disaridan basit bir yapiya sahip oldugu izlenimini verir fakat iç organlari oldukça kompleks bir yapiya sahiptir.Öyleki kestanenin içerisinde, hayvanin sudaki oksijeni rahatça soluyabilmesi için suyu vücudunun içerisinden geçiren karmasik devri-daim organlari bile vardir. Bu mükemmel deniz yaratiklari, gözalici renkleriyle deniz diplerini adeta birer cennete çevirirler. Yüksek Organizasyonlu Deniz Canlilari : Yüksek organizasyonlu canlilar çok sayida türleri kapsamakla birlikte biz en çok bilinen " Köpek baliklari " ve " Balina " türlerine örnekler verdik. Köpek baliklari belgesellerde ve filmlerde gördügünüzden çok daha mükemmel ve gizemli yaratiklardir.Köpek baliklarinin kendi içerisinde birçok alt türleri vardir. Örnegin mamuzlu köpek baligi, boga köpek baligi ve çekiç basli köpek baligi gibi.Fakat köpek baliklarinin bazilari çok uysal olmakla birlikte diger bazi türleri oldukça saldirgan olup önüne gelen hemen her tür canliya saldirabilirler. Saldirgan bir köpek baligi grubu kendilerinden onlarca kat daha büyük olan balinalara bile saldirabilirler. Bu baliklardan en ünlüsü ise " Beyaz köpek baliklari " dir. Bu baliklar köpek baligi türleri arasinda en saldirgani olup yunuslara, foklara, deniz aslanlarina ve hatta balinalara bile saldirabilirler. Bir köpek baligini tehlikeli yapan en önemli organlari disleridir.Eger disleri normal bir baliginki gibi pek keskin olmasaydi, köpek baliklari tanindigi kadar tehlikeli olmayackti. Birçok insan köpek baliginin avini özellikle kuvvetli çene darbeleriyle parçaladigini zanneder fakat asil fonksiyon çenede degildir. Köpek baliklarinin disleri öyle mükemmel bir anatomiye sahiptirki hem bir jilet kadar keskin hemde ince elenmis bir testere kadar yivlidir. Bir köpek baligi avini isirdiktan sonra basini derhal saga sola dogru sallamaya baslar.Bu sekilde davranarak disleri arasina sikisan bir objeyi ivmelendirip yanal olarak disleri üzerinde hareket etmesini saglar. Obje veya av, disleri üzerinde hareket ettigi zaman jilet kadar keskin olan disler tarafindan rahatlikla kesilir.Böylelikle balik avini kisa süre içerisinde parçalayarak etkisiz hale getirir. Köpek baligi avini parçalarken gözlerini asla açmaz. Bunu yapmasinin nedeni ise avini parçalamasi esnasinda etrafa saçilacak kemik parçalarindan gözlerini korumak içindir. Çünki bir canlinin kemigi kirildigi (insan olsun hayvan olsun) zaman küçük partiküller haline gelen kemik parçalari oldukça keskin bir hale dönüsür. Bazi köpek baligi türlerinin boylari oldukça büyük olmasina karsin çok uysal olabilirler.Hatta bazi türleri iri memelilere saldirmak yerine deniz planktonlari ve küçük deniz canlilari ile beslenmektedir. Buna karsin dogada, resimdekinden çok daha iri köpek baliklarininda yasamasina karsin bazilari insanlarin zannettikleri gibi bir saldirganlik göstermezler. Köpek baliklarinin vücut sekilleri çok mükemmel bir sekilde dizayn edilmistir.Tipki bir füzeye benzeyen vücutlari ve güçlü yüzgeçleri sayesinde saatte 60 - 80 km ye kadar hiza erisebilmektedirler. Diger bir mükemmel özellikleri ise solungaçlarinin bu kadar süratle giderken sudaki oksijenden maksimum istifade edebilmesi için yan yaraflarda özel olarak konumlanmis olmasidir. Dikkat ettiyseniz yaris arabalarinin her iki yaninda hava bosluklari oldugunu görürsünüz.Bu bosluklar, araba süratle giderken motorun havayi daha rahat bir sekilde emmesine yardimci olmak içindir.Köpek baliklarinin yanlarindaki solungaçlarda, hayvan büyük bir süratle yüzerken sudaki oksijeni maksimum absorbe etmesi için yan taraflarda birer bosluk birakacak sekilde konumlanir. Insanlarin köpek baliklarindan esinlenerek taklit etmeye çalistigi bu mükemmel sistemi köpek baliklari haberleri bile olmadan milyonlarca yildir kullanmaktadir. Bugün halen sadece zevk amaciyla köpek baligi öldüren insanlar vardir.Bazi balikçilar ise besin degeri ve parasal degeri çok yüksek oldugundan dolayi hiç durmaksizin köpek baliklarini avlamaktadirlar. Bazi uzakdogu ülkelerinde balikçilar, lüks restoranlarin ihtiyaçlarini karsilamak amaciyla yanlizca yüzgeçlerini kesip baliklari tekrar çaresiz bir sekilde denize atmaktadirlar. Eger bu mükemmel yaratiklarin korunmasi amaciyla bir önlem alinmaz ise yakin bir zaman içerisinde soylari tükenme noktasina gelecektir. Ve eger köpek baliklarinin soylari tükenirse, denizde avlanilmasi ve sayilarinin azaltilmasi gereken birçok av hayvaninin nüfuslari gitgide artacak ve deniz ekosistemini altüst etmeye baslayacatir. Balinalar Dogadaki en büyük memeli hayvanlari temsil eden balinalarin bazi türleri küçük boyutlara sahip olmasina karsin bazi türlerinin boylari ise 35 - 40 metreye kadar varabilir. Balinalarda kendi aralarinda uysal ve saldirgan olarak ayrilirlar.En taninan uysal balina, boyutlari 35 metreye varmasina ragmen planktonlarla beslenerek yasamlarini sürdürürler. Balinalarin cüssesinin büyük olmasina karsin oldukça uysaldir.Bu balinalarin bazi türleri plnaktonlar ve küçük baliklar ile beslenmektedirler. Planktonlarin çok küçük canlilar oldugunu biliyoruz.Fakat bu kadar büyük cüsseli bir balina plnaktonlarla nasil beslenebilmektedir ? Balina bunu, çenelerinin arkasinda bulunan kusursuz bir yüzgeç sistemi sayesinde basarir.Boyu yaklasik 40 metreye varan ve planktonlarla beslenen bir balina, tek hamlede vücuduna 3 oda dolusu suyu doldurabilir.Vücuduna doldurdugu bu muazzam su kütlesini, mükemmel bir yüzgeç sistemine sahip çenelerinden tekrar disari verir. Su büyük bir hizla disari çikarken plankton ve diger küçük canlilar (ufak baliklar gibi) çenedeki yüzgeçte kalirlar.Bir cm3 suyun içinde onlarca plankton bulunduguna göre metrelerce küp su içerisinde içerisinde milyarlarca plankton bulunabilir.Balina bunu defalarca yaparak, midesini protein degeri yüksek bu ufak canlilar ile doldurur. Katil balinalar saldirgan olmalarina karsin egitildikleri zaman dost olmaktadirlar.Fakat vahsi yasam ortamlarinda birer köpek baligi gibidirler. Denizlerin en vahsi hayvanlari sayilan beyaz köpek baliklari bile bir katil balinayi gördügü zaman mümkün oldugu kadar ondan kaçinmaya çalisir. Bu canlilar, karsilastikari bir köpek baligini tek bir çene darbesiyle ikiye bölebilirler. Bazi katil balinalar fok ve deniz aslanlarini avlamak için sahile kadar kovalayabilirler.Ve bu kovalamaca neticesinde basarilida olurlar. Katil balinanin yaksaltigini gören fok veya deniz aslani sürüsü çareyi kumsala çikmakta bulurlar. Fakat katil balinanin sahile kadar çikacagini ummazlar. Balina foklari avlamak için kendini sahile kadar vurabilmektedir.Nitekim bazi foklar hayvanin koca agizindan kurtulamaz. Televizyonlarda gördügümüz gösteri balinalari bu katil balinalardir.Vahsi yasamlarindakinin aksine egitilidikleri zaman oldukça uysal olan bu yaratiklar insanlarin çok yakin dostu olabilmektdir. Senede bir kez belirli dönemlerde dogum yapan balinalar, yavrularini dogurmak için sig sulara göç ederler. Göç sirasinda binlerce mil yol katedebilirler.Deniz arastirmacilari halen balinalarin nasil yönlerini sasirmadan devasal okyanuslarda istedikleri yerlere gidebildiklerini tam olarak çözememislerdir. Bir balina sürüsünün içindeki bireyler, çok tiz bir ses çikararak birbirleriyle anlasmaktadirlar.Bu seslerin ne anlama geldigi konusunda uzun arastirmalar yapilmaktadir. Çikarilan bu sesler kilometrelerce ötedeki baska balinalar tarafindan ve hatta insanlar tarafindan bile duyulabilr. Balinalarin bu seslere nasil yanit verdikleri ise bir sirdir. Balina ve köpek baliklari deniz ekosistemi için mutlaka gerekli olan canlilardir.Fakat insanlarin bilinçsiz avlanmalari sonucunda denizlerdeki av - avci orani süratle bozulmakta, ve denizel ekosistemin dengeleri altüst olmak üzeredir. Örnek verecek olursak okyanuslarda istakozlarla beslenen ve ayni zamanda besin olarak tüketilen bir balik türü, istakozlarin bilinçsiz avlanilmasi sonucunda açlik ve nihayetinde ölüm tehlikesiyle karsi karsiya gelir.Yani insanlar, besin olarak tükettigi bu baliklari kendi elleriyle yok etmektedirler. Ayni sekilde köpek baligi ve balinalarin sayilarindaki süratli düsüs, av sayisinin yükselmesine (örnegin foklar ve küçük baliklar) ve dolayisiyla denizel ekosistemde bir nüfus patlamasina yol açar.Av canlilarinin sayisi yükseldikçe denizdeki diger canlilarin yasamlari olumsuz yönde etkilenmektedir. Umuyoruzki su an bu mükemmel deniz yaratiklarinin soylarinin devam etmesi için yürütülen çalismalar olumlu sonuç versin ve hergeçen gün yikilma noktasina biraz daha yaklasan deniz ekosistemi eski durumuna kavussun.

http://www.biyologlar.com/deniz-biyolojisi

Deniz Biyolojisi Hakkında Bilgi

Su an yeryüzünde görebildiginiz tüm canlilar, dogadaki canlilarin çok küçük bir bölümünü teskil etmektedir.Yeryüzünün üçte ikisinin sularla kapli oldugunu düsündügümüz zaman, okyanus ve denizlerde yasayan canlilar aleminin ne kadar devasal oldugunu anlayabiliriz. Yapilan arastirmalara göre dünya üzerindeki su kütlesinin hemen hemen tamami volkanik patlamalardan atmosfere salinan su buharindan husule gelmistir. Atmosfere salinan yüksek miktardaki su buhari yogunlasarak yillar boyunca yagan yagmurlari ve nihayetinde deniz ve okyanuslari meydana getirmistir. Yagmur sulari tatli yani saf su olmasina ragmen okyanus ve denizlerde yüksek miktarda tuzluluk vardir.Bunun nedeni jeolojik tabakalarin yüksek miktarda karbonat, sodyum klorür (tuz) ve zengin mineraller içermesidir.Sodyum miktari oldukça fazla oldugu için deniz ve okyanuslari olusturan tatli sularin tuzlu hale gelmesine neden olur. Tuz orani yüksek bu sularda herhangi bir kara canlisinin veya bir insanin uzun süreler yasamasi mümkün olmamasina karsin birçok deniz canlisi rahatlikla yasayabilmektedir.Tabii yasamlarini vücutlarindaki mükemmel organ sistemleri sayesinde sürdürürler. Okyanus ve denizlerde tipki karada yasayan canlilar gibi mikroorganizmalardan tutun devasal memeli canlilalar kadar binbir çesit canli türü yasamaktadirlar.Biz yanlizca bu devasal canlilar aleminden bilinen ve bilinmeyen birkaç örnek verecegiz. Deniz ve tatlisu mikroorganizmalari Bu canlilara " Plankton " adi verilmektedir.Planktonlar tatli sularda yasayabildigi gibi deniz ve okyanusta yasayanlarida vardir. Bu canlilar tipki bakteriler gibi ikiye bölünerek çogalmaktadirlar.Önce canlinin içerisindeki DNA replikasyonla kopyalanarak iki Katina çikarilir ve ardindan canlinin vücudu ikiye bölünür. Miktari iki katina çikan DNA nin yarisi birinci yavru hücreye diger yarisi ise ikinci yavru hücreye aktarilir. Planktonlarin en önemli özellikleri, suda yüzmek için aktif olarak belli bir hareketleri olmamasidir.Bu canlilar bulunduklari su ortaminin akimina bagimli olarak basibos dolanirlar. Planktonlar ancak mikroskopla görülebilirler fakat çiplak gözle dikkatlice bakildiginda görülebilecek kadar büyük olanlarida vardir. Bu mikroskobik canlilardan en çok bilineni ise " alg " adi verilen tek hücreli bir canli türüdür ki algler hemen hemen heryerde yasamaktadirlar. Denizlerde, tatli sularda, okyanuslarda, havuz sularinda, su birikintilerinde çamurlarin içinde ve nehirlerde bile yasamaktadirlar.Bu kadar fazla bir yasam alanina sahip canlilar biz ziyaretçilerin bile gözünden kaçmis olamaz. Örnegin bir havuz veya insaat sahasindaki seffaf su birikintilerinin renginin, birkaç gün sonra yesile veya kirmiziya dönüstügünü görmüssünüzdür.Bu sularda ilk zamanlarda yasayan binlerce tek hücreli canli türü, uygun bir sicakliga geldiginde süratle çogalmaya baslarlar. Yanlizca birkaç gün içerisinde sudaki canli sayisi milyari bulabilir.Bu kadar fazla sayidaki tek hücreli canlilar suyun rengini bulandirmaya baslar. Suyun rengi niçin yesile dönüsüyor ? Bunun nedeni ise bazi planktonlarin, tipki yesil bitkiler gibi klorofil molekülünü içermesinden dolayidir.Hatirlarsaniz bitkilerin yapraklarinin renginin yesil olarak görünmesinin klorofil molekülünden dolayi oldugunu söylemistik. Iste bu tip planktonlarinda vücutlarinda klorofil molekülü vardir ve tipki bitkiler gibi fotosentez yaparlar.Bu yüzdendir ki taksonomik olarak siniflandirilirken bitkiler kategorisinemi yoksa hayvanlar kategorisinemi konacagi konusunda sistematikçilerin ortak bir karari yoktur. Yumusakçalar (Mollusk) Okyanus ve denizlerde yasayan diger bir canli grubu ise, genel latince isimleri " Mollusk " olan yumusakçalardir. Bu canlilarin vücutlari adindanda anlasilacagi gibi oldukça yumusak bir yapiya sahip olup, bazi türlerinin vücutlari oldukça sert kabuklarlada kapli olabilir. Yumusakçalarin en iyi bilinen iki örnegi " Mürekkep baligi " ve kabuklu bir yapiya sahip olan " Deniz minareleri " dir. Mürekkep baliklari, gerek anatomik yapilari gerekse savunma mekanizmalari bakimindan oldukça ilginç canlilardir. Belgesellerde sik olarak gördügümüz bu canlilarin hareket mekanizmalari, bir jet motorunun çalisma prensibiyle aynidir.Bu prensip " etki - tepki " prensibidir.Yani bir yandan madde alinirken diger yandan madde verilmekte ve bu sekilde süratle hareket etmektedir. Balik, öncelikle vücudunu, arka tarafindan aldigi bir miktar su ile doldurur.Ardindan karin kaslarini büyük bir siddetle kasarki bu kasilma neticesinde sikisan su büyük bir süratle yine vücudun arka tarafindan disari püskürtülür.Disari püskürtülen su, baligin büyük bir hizla ileri dogru ivmelenmesini saglar. Bunun yaninda hayvan düsmanlarindan korunmak için bir tür sivi salgilarki bu sivi mürekkebe benzer olup salgilandiginda, kendisi kovalayan avcinin görmesini engelleyecek kadar suyu bulandirabilir. Yine bir mollusk olan deniz minareleri ise, yumusak bir vücuda sahip olmasina karsin çok sert bir kabuga sahiptir. Bu kabugun en önemli fonksiyonu canliyi düsmanlarindan korumasidir. Nasil oluyorda bu canlilar etraflarini kabukla örtebiliyorlar ? Bir sperm ile bir yumurtanin birlesmesinden sonra zigotu meydana getirdigini ve bu zigotun ardi ardina milyonlarca kez bölünerek bir yavru canliyi meydana getirdigine deginmistik.Mesela insan yavrusunda, en distaki hücreler diger hücrelerden farklilasarak keratin adi verilen bir madde üretir ve " Derinin " sekillenmesini saglarlar. Deniz minarelerinde ise, zigot milyonlarca kez bölünerek yavruyu meydana getirdiginde, yavrunun en distaki hücreleri " Kalsiyum " salgilayan özel bir hücre tipine farklilasirlar.Bu hücreler, canlinin içinde yasadigi deniz yada okyanuslardan absorbe edilen kalsiyumu düzenli bir sekilde salgilayarak canlinin etrafinda kalin bir tabaka olusmasini saglarlar. Okyanus bitkileri Su an soludugunuz havadaki oksijenin büyük bir kismi, deniz ve okyanuslarda yasayan ve klorofil içeren bitkiler tarafinda fotosentez yoluyla üretilir. Nasil ki atmosfer sartlarinda klorofil içeren bir bitki havadan CO2 yi, topraktan suyu ve günesten isigi alarak fotosentez yapip canlilar için oksijen üretiyorsa ayni sekilde deniz ve okyanuslarda da günes isiginin varabildigi bölgelerde bulunan klorofilli bitkilerde oksijen üretmektedirler. Bu canlilarin büyük bölümünü ise yosunlar teskil eder.Bunun yaninda daha adini sayamadigimiz onbinlerce tür deniz bitkisi vardir. Deniz bitkilerinin ihtiyaci olan su zaten yasam ortami olan denizden, CO2 ihtiyaci ise diger tüm deniz canlilari tarafindan karsilanir.Eger bu tabiat harikalari denizlerde var olmasaydi hemen hemen tüm deniz canlilari oksijensizlikten hayatini kaybedecekti. Basit bir canli gibi görünen bu yaratiklari aslinda ekosistemin vazgeçilmez birer parçasidirlar. Bu canlilarin milimetrelerle ölçülebilecek kadar küçük olanlari oldugu gibi yüzlerce metre uzunlugunda devasal boyutlara sahip olanlarida vardir. Atlas okyanusu kiyilarinda yasayan birtür deniz bitkisi, fotosentez yapmak için oldukça mükemmel bir yöntem gelistirmistir. Bu bitki tipki bir " Palmiye " agacina benzer ve onlarca metre uzunlugundaki dallarinin uçlarinda bir veya birkaç adet hava kesesi bulunur.Bu hava keseleri, bitki gelistikçe gitgide büyüyerek bitkinin dallarini suyun kaldirma kuvvetinin etkisiyle yukari dogru kaldirir. Deniz yüzeyine yaklasan dallar günes isigindan olabildigince faydalanarak fotosentez yapma imkani bulur. Deniz bitkilerinin üremeleri hem eseyli hemde eseysiz olabilmektedir. Erkek bitkiden gelen bir sperm ile disi bitkiden gelen bir yumurta hücresinin birlesmesiyle (eseyli üreme) yavru bir bitki meydana gelebildigi gibi bazi bitkiler ikiye bölünme ve " Tomurcuklanma " ile de çogalabilir (eseysiz üreme). Tomurcuklanma, bir bitkinin belirli bir bölgesinde büyüyen hücre veya hücre gruplarinin daha sonra bitkiden ayrilarak bagimsiz bir sekilde kendi basina büyüyüp gelismesi olayidir. Derisi dikenliler (Ekinodermata) Derisi dikenli deniz yaratiklarinin basinda " Deniz yildizlari ", " Deniz hiyarlari " ve degisik sekillerdeki dikenli canlilar gelmektedir. Bu hayvanlarin yasayis tarzlari pek aktif olmasada görünüs itibariyle deniz diplerinde bir renk cümbüsü meydana getirmektedirler.Görünümleri göze çok hos gelen bu yaratiklar alimli renkleriyle deniz diplerindeki vahsi yasamin vazgeçilmez birer parçasidirlar. Deniz yildizlari bilindigi gibi ikiye, üçe, dörde veya daha fazla sayida parçalara ayrilmasina ragmen her ayirdiginiz parça kendini tamir ederek yeni bir deniz yildizi verebilir.Canlilarin bu yeteneklerine "rejenerasyon" yani tamir edebilme özelligi denir. Deniz yildizlarinin bazi türlerinde dikenler oldukça uzun olup, yildizi vahsi deniz canlilari tarafindan parçalanma tehlikesine karsi korur Deniz hiyarlari, protein bakimindan zengin olup uzakdogu ülkelerinde besin kaynagi olarak tüketilmektedir.Bu canlilar genellikle fazla derin olmayan okyanus sularinda yasarlar. Deniz kestaneleri ise disaridan basit bir yapiya sahip oldugu izlenimini verir fakat iç organlari oldukça kompleks bir yapiya sahiptir.Öyleki kestanenin içerisinde, hayvanin sudaki oksijeni rahatça soluyabilmesi için suyu vücudunun içerisinden geçiren karmasik devri-daim organlari bile vardir. Bu mükemmel deniz yaratiklari, gözalici renkleriyle deniz diplerini adeta birer cennete çevirirler. Yüksek Organizasyonlu Deniz Canlilari : Yüksek organizasyonlu canlilar çok sayida türleri kapsamakla birlikte biz en çok bilinen " Köpek baliklari " ve " Balina " türlerine örnekler verdik. Köpek baliklari belgesellerde ve filmlerde gördügünüzden çok daha mükemmel ve gizemli yaratiklardir.Köpek baliklarinin kendi içerisinde birçok alt türleri vardir. Örnegin mamuzlu köpek baligi, boga köpek baligi ve çekiç basli köpek baligi gibi.Fakat köpek baliklarinin bazilari çok uysal olmakla birlikte diger bazi türleri oldukça saldirgan olup önüne gelen hemen her tür canliya saldirabilirler. Saldirgan bir köpek baligi grubu kendilerinden onlarca kat daha büyük olan balinalara bile saldirabilirler. Bu baliklardan en ünlüsü ise " Beyaz köpek baliklari " dir. Bu baliklar köpek baligi türleri arasinda en saldirgani olup yunuslara, foklara, deniz aslanlarina ve hatta balinalara bile saldirabilirler. Bir köpek baligini tehlikeli yapan en önemli organlari disleridir.Eger disleri normal bir baliginki gibi pek keskin olmasaydi, köpek baliklari tanindigi kadar tehlikeli olmayackti. Birçok insan köpek baliginin avini özellikle kuvvetli çene darbeleriyle parçaladigini zanneder fakat asil fonksiyon çenede degildir. Köpek baliklarinin disleri öyle mükemmel bir anatomiye sahiptirki hem bir jilet kadar keskin hemde ince elenmis bir testere kadar yivlidir. Bir köpek baligi avini isirdiktan sonra basini derhal saga sola dogru sallamaya baslar.Bu sekilde davranarak disleri arasina sikisan bir objeyi ivmelendirip yanal olarak disleri üzerinde hareket etmesini saglar. Obje veya av, disleri üzerinde hareket ettigi zaman jilet kadar keskin olan disler tarafindan rahatlikla kesilir.Böylelikle balik avini kisa süre içerisinde parçalayarak etkisiz hale getirir. Köpek baligi avini parçalarken gözlerini asla açmaz. Bunu yapmasinin nedeni ise avini parçalamasi esnasinda etrafa saçilacak kemik parçalarindan gözlerini korumak içindir. Çünki bir canlinin kemigi kirildigi (insan olsun hayvan olsun) zaman küçük partiküller haline gelen kemik parçalari oldukça keskin bir hale dönüsür. Bazi köpek baligi türlerinin boylari oldukça büyük olmasina karsin çok uysal olabilirler.Hatta bazi türleri iri memelilere saldirmak yerine deniz planktonlari ve küçük deniz canlilari ile beslenmektedir. Buna karsin dogada, resimdekinden çok daha iri köpek baliklarininda yasamasina karsin bazilari insanlarin zannettikleri gibi bir saldirganlik göstermezler. Köpek baliklarinin vücut sekilleri çok mükemmel bir sekilde dizayn edilmistir.Tipki bir füzeye benzeyen vücutlari ve güçlü yüzgeçleri sayesinde saatte 60 - 80 km ye kadar hiza erisebilmektedirler. Diger bir mükemmel özellikleri ise solungaçlarinin bu kadar süratle giderken sudaki oksijenden maksimum istifade edebilmesi için yan yaraflarda özel olarak konumlanmis olmasidir. Dikkat ettiyseniz yaris arabalarinin her iki yaninda hava bosluklari oldugunu görürsünüz.Bu bosluklar, araba süratle giderken motorun havayi daha rahat bir sekilde emmesine yardimci olmak içindir.Köpek baliklarinin yanlarindaki solungaçlarda, hayvan büyük bir süratle yüzerken sudaki oksijeni maksimum absorbe etmesi için yan taraflarda birer bosluk birakacak sekilde konumlanir. Insanlarin köpek baliklarindan esinlenerek taklit etmeye çalistigi bu mükemmel sistemi köpek baliklari haberleri bile olmadan milyonlarca yildir kullanmaktadir. Bugün halen sadece zevk amaciyla köpek baligi öldüren insanlar vardir.Bazi balikçilar ise besin degeri ve parasal degeri çok yüksek oldugundan dolayi hiç durmaksizin köpek baliklarini avlamaktadirlar. Bazi uzakdogu ülkelerinde balikçilar, lüks restoranlarin ihtiyaçlarini karsilamak amaciyla yanlizca yüzgeçlerini kesip baliklari tekrar çaresiz bir sekilde denize atmaktadirlar. Eger bu mükemmel yaratiklarin korunmasi amaciyla bir önlem alinmaz ise yakin bir zaman içerisinde soylari tükenme noktasina gelecektir. Ve eger köpek baliklarinin soylari tükenirse, denizde avlanilmasi ve sayilarinin azaltilmasi gereken birçok av hayvaninin nüfuslari gitgide artacak ve deniz ekosistemini altüst etmeye baslayacatir. Balinalar Dogadaki en büyük memeli hayvanlari temsil eden balinalarin bazi türleri küçük boyutlara sahip olmasina karsin bazi türlerinin boylari ise 35 - 40 metreye kadar varabilir. Balinalarda kendi aralarinda uysal ve saldirgan olarak ayrilirlar.En taninan uysal balina, boyutlari 35 metreye varmasina ragmen planktonlarla beslenerek yasamlarini sürdürürler. Balinalarin cüssesinin büyük olmasina karsin oldukça uysaldir.Bu balinalarin bazi türleri plnaktonlar ve küçük baliklar ile beslenmektedirler. Planktonlarin çok küçük canlilar oldugunu biliyoruz.Fakat bu kadar büyük cüsseli bir balina plnaktonlarla nasil beslenebilmektedir ? Balina bunu, çenelerinin arkasinda bulunan kusursuz bir yüzgeç sistemi sayesinde basarir.Boyu yaklasik 40 metreye varan ve planktonlarla beslenen bir balina, tek hamlede vücuduna 3 oda dolusu suyu doldurabilir.Vücuduna doldurdugu bu muazzam su kütlesini, mükemmel bir yüzgeç sistemine sahip çenelerinden tekrar disari verir. Su büyük bir hizla disari çikarken plankton ve diger küçük canlilar (ufak baliklar gibi) çenedeki yüzgeçte kalirlar.Bir cm3 suyun içinde onlarca plankton bulunduguna göre metrelerce küp su içerisinde içerisinde milyarlarca plankton bulunabilir.Balina bunu defalarca yaparak, midesini protein degeri yüksek bu ufak canlilar ile doldurur. Katil balinalar saldirgan olmalarina karsin egitildikleri zaman dost olmaktadirlar.Fakat vahsi yasam ortamlarinda birer köpek baligi gibidirler. Denizlerin en vahsi hayvanlari sayilan beyaz köpek baliklari bile bir katil balinayi gördügü zaman mümkün oldugu kadar ondan kaçinmaya çalisir. Bu canlilar, karsilastikari bir köpek baligini tek bir çene darbesiyle ikiye bölebilirler. Bazi katil balinalar fok ve deniz aslanlarini avlamak için sahile kadar kovalayabilirler.Ve bu kovalamaca neticesinde basarilida olurlar. Katil balinanin yaksaltigini gören fok veya deniz aslani sürüsü çareyi kumsala çikmakta bulurlar. Fakat katil balinanin sahile kadar çikacagini ummazlar. Balina foklari avlamak için kendini sahile kadar vurabilmektedir.Nitekim bazi foklar hayvanin koca agizindan kurtulamaz. Televizyonlarda gördügümüz gösteri balinalari bu katil balinalardir.Vahsi yasamlarindakinin aksine egitilidikleri zaman oldukça uysal olan bu yaratiklar insanlarin çok yakin dostu olabilmektdir. Senede bir kez belirli dönemlerde dogum yapan balinalar, yavrularini dogurmak için sig sulara göç ederler. Göç sirasinda binlerce mil yol katedebilirler.Deniz arastirmacilari halen balinalarin nasil yönlerini sasirmadan devasal okyanuslarda istedikleri yerlere gidebildiklerini tam olarak çözememislerdir. Bir balina sürüsünün içindeki bireyler, çok tiz bir ses çikararak birbirleriyle anlasmaktadirlar.Bu seslerin ne anlama geldigi konusunda uzun arastirmalar yapilmaktadir. Çikarilan bu sesler kilometrelerce ötedeki baska balinalar tarafindan ve hatta insanlar tarafindan bile duyulabilr. Balinalarin bu seslere nasil yanit verdikleri ise bir sirdir. Balina ve köpek baliklari deniz ekosistemi için mutlaka gerekli olan canlilardir.Fakat insanlarin bilinçsiz avlanmalari sonucunda denizlerdeki av - avci orani süratle bozulmakta, ve denizel ekosistemin dengeleri altüst olmak üzeredir. Örnek verecek olursak okyanuslarda istakozlarla beslenen ve ayni zamanda besin olarak tüketilen bir balik türü, istakozlarin bilinçsiz avlanilmasi sonucunda açlik ve nihayetinde ölüm tehlikesiyle karsi karsiya gelir.Yani insanlar, besin olarak tükettigi bu baliklari kendi elleriyle yok etmektedirler. Ayni sekilde köpek baligi ve balinalarin sayilarindaki süratli düsüs, av sayisinin yükselmesine (örnegin foklar ve küçük baliklar) ve dolayisiyla denizel ekosistemde bir nüfus patlamasina yol açar.Av canlilarinin sayisi yükseldikçe denizdeki diger canlilarin yasamlari olumsuz yönde etkilenmektedir. Umuyoruzki su an bu mükemmel deniz yaratiklarinin soylarinin devam etmesi için yürütülen çalismalar olumlu sonuç versin ve hergeçen gün yikilma noktasina biraz daha yaklasan deniz ekosistemi eski durumuna kavuşsun.

http://www.biyologlar.com/deniz-biyolojisi-hakkinda-bilgi

Balıklar ( Pisces)

Balık, tatlı ve tuzlu suda yaşayan, evrimleşme çizgileri farklı, soğukkanlı omurgalıların genel adıdır. Bu terim, bir sınıflandırmadan çok bir yaşam biçimini tanımlar. Bugün yaşayan balıklar genellikle 5 sınıf altında toplanır. Bu sınıflar, hava soluyan hayvanların 4 sınıfı olan amfibyumlar, sürüngenler, kuşlar ve memeliler kadar birbirinden farklıdır. Yaklaşık 450 milyon yıllık bir geçmişi olan balıklar, bu süre boyunca, hemen her çeşit su ortamına uyum sağlayacak biçimde gelişmiştir. Kara ortamına geçiş sürecinde büyük bir değişime uğrayarak 4 ayaklı kara omurgalılarına dönüştüklerinden, aslında kara omurgalılarının ilk ataları bu su canlılarıdır. Balık dendiğinde genellikle, yüzgeçleri olan, solungaçlarıyla solunum yapan, gövdesi kaygan ve suda hareket etmeye elverişli olan su hayvanı akla gelir. Ne var ki, bu tanıma uymayan balıkların sayısı, uyanlarından çok daha fazladır. Bazılarının gövdesi uzunlamasına genişlemiş, bazılarınınki kısa kalmış, özellikle dipte yaşayanlarda yassılaşmış, birçoğunda da yanlardan basılmıştır. Ağızlarının, gözlerinin, burun deliklerinin ve solungaçlarının konumu da türden türe büyük bir değişiklik gösterir. Balık vücudunun temel yapısı ve işlevi bütün öbür omurgalılarınkine benzer. Kara omurgalılarının vücudunu oluşturan 4 temel doku balıklarda da vardır: Dış yüzeyleri kaplayan epital doku, bağ ve destek doku (kemik, kıkırdak ve lifsi dokularla türevleri), sinir dokusu ve kas dokusu. Tipik balık vücudu, yüzmeye uyarlanmış aerodinamik profilli ve iğ biçimindedir: baş, gövde ve kuyruk bölümlerinden oluşur. Yaşamsal önemdeki organları içeren gövde boşluğu genellikle vücudun ön alt yanındadır. Bu boşluğun arka ucunda, anüs yüzgecinin tabanının hemen önünde, dışkıların boşaltıldığı anüs deliği bulunur. Omurilik ve omurga, kafa iskeletinin arka bölümünden başlayıp sırt, gövde boşluğu ve kuyruk bölgesinden geçerek kuyruk yüzgecinin tabanında sonlanır. Balıklarda çok değişik üreme biçimleri görülmekle birlikte, en yaygın olanı dişinin suya bıraktığı sayısız, küçük yumurtanın vücut dışında döllenmesine dayanır. Açık denizlerdeki yüzey balıklarının yumurtaları genellikle suya asılıymış gibi duru; kıyı ve tatlı su balıkları ise yumurtalarını deniz dibine yada bitkilerin arasına bırakır; hatta bazı türler bir salgıyla yumurtalarını kayalara yada bitkilere yapıştırır. Yumurtaları dölleyecek olan spermalar erkeklerin gövde boşluğundaki 2 (bazen 1) erbezi içinde üretilerek , süt kıvamındaki ve rengindeki bir sıvıyla suya boşaltılır. Kemikli balıklarda, erbezlerinin her birinden çıkan bir sperma kanalı, anüsün arkasındaki ürogenital deliğe, köpekbalıklarında ve vatozlarda ise dışkılığa açılır. Ayrıca bazı balıklarda, erkeğin spermalarını dişinin yumurta kanalına boşaltmasını (iç döllenme) sağlayan bir tür çiftleşme organı vardır. Balıklara duyu organları açısından bakarsak; koku duyuları, hemen hemen tüm balıklar için büyük önem taşır. Çok küçük gözlü bazı yılanbalıkları, besininin yerini bulabilmek için görmeden çok koku duyusuna güvenir. Tat duyusu da balıkların çoğunda çok gelişmiştir; yalnız ağız boşluğunda değil, başın ve vücudun bazı bölümlerinde de tat alma organları bulunur. Beslenme, tehlikelerden kaçınma ve üreyerek soyunu sürdürme açısından belki de en önemli organ gözdür. Balıkların gözü temel yapısı ve işleviyle bütün diğer omurgalılarınkine benzese de, çok değişik yaşam koşullarına uyarlanmış olduğundan değişik özellikler gösterirler. Karanlık ve loş ortamlarda yaşayan balıkların gözleri genellikle büyüktür. Ama başka bir duyusu aşırı gelişerek baskın duruma geçerse gözlerin işlevi azalır. Onlarda ses algılama ve denge, birbirleriyle çok yakın bağıntısı olan iki duyudur. Suyun içerisinde kolayca yayılan ses dalgaları, özellikle düşük frekanslı dalgalar, balıkların baş ve gövde içi sıvıları ile kemiklerine çarparak işitme organlarına iletilir. Balıklarca algılanabilen ses frekanslarının alanı insanlarınkinden çok değişiktir; bu da sesin sudaki yayılma hızından ileri gelir. Bir çok balığın, dişlerini birbirlerine sürterek yada başka yollarla birtakım sesler çıkarıp birbirleriyle iletişim kurdukları sanılmaktadır.

http://www.biyologlar.com/baliklar-pisces

Jeolojik Zamanlar Hakkında Bilgi

Hadeen (4,6 – 4,0 milyar yıl) Dünya’nın bir gezegen olarak şekillendiği ve gezegen haline dönüştüğü dönemdir. Bu dönemde yeryüzüne sürekli bir meteor yağışı görülürken volkanlar da çok aktifti. Aktif olan volkanların püsküttüğü metan, amonyak, su buharı, hidrojen sülfür, kükürt gibi gazlardan oluşan zehirli bir atmosfer bulunuyordu. Canlılığın temel yapıtaşı olan aminoasitler, DNA ve RNA moleküllerinin ilk kez bu dönemde ortaya çıkması ile 4,3 – 4 milyar yıl önce ilk canlı moleküller görüldü. Demirin damlacıklar halinde Dünya’nın merkezine doğru inerek yoğunlaşması ile çekirdek oluştu. Arkeen (4,0 – 2,5 milyar yıl) Eğer Arkeen dönemine geri dönebilseydik, muhtemelen içinde bulunduğumuz gezegeni tanıyamayacaktık. Bilinen en eski kayaçlar bu döneme aittir. Serbest oksijen içermeyen atmosfer yaşam için hala zehirliydi. Yaşamın ilk izleri olan, bilinen en yaşlı fosiller özellikle siyanobakterilerin oluşturduğu ve 3,5 milyar yıl yaşındaki stromatolitlerdir. Siyanobakterilerin yaptığı fotosentez sonucu okyanuslara oksijen salınmaya, yeryüzü kabuğunun yavaş yavaş soğumasıyla kıtasal plakalar oluşmaya başladı. Proterozoyik (2,5 milyar – 542 milyon yıl) Bu dönemin en önemli özelliği oksijenli atmosferin oluşmaya başlamasıyla birlikte birçok bakteri grubunun yok olması, 1,5 milyar yıl önce bir hücreli, gelişmiş ve eşeysel üreme yeteneğine sahip ökaryotik hücrelerin ortaya çıkasıdır. Dönem ortalarına doğru atmosferde oksijenin artmasıyla birlikte çok hücreli, yumuşak gövdeli canlılar ortaya çıktı. FANEROZOYİK - PALEOZOYİK(542 – 251 milyon yıl) Kambriyen (542 – 488,3 milyon yıl) Bu dönem yeryüzü yaşamı için bir dönem noktasıdır. Bilinen hayvan şubelerinin nerdeyse tamamı Kambriyan’de ortaya çıktı. Belli başlı hayvan gruplarının birdenbire ortaya çıkması, yaşam çeşitliliği ve yaygınlığının en fazla düzeye ulaşması “Kambriyen Patlaması” olarak bilinir. Bu dönemde ilk kez ortaya çıkan canlılar arasında Nautilus gibi yumuşakçalar, bryozoalar, hydrozoalar, süngerler, mercanlar, derisidikenliler ve trilobit gibi ilkel eklembacaklılar bulunur. Sudaki bu zengin yaşama karşı karada henüz yaşam yoktu. Ordovisiyen (488,3 – 443,7 milyon yıl) Bu dönemde denizel canlılarda büyük çeşitlenme görüldü. Ayrıca kırmızı-yeşil algler, ilkel balıklar, Ammonoidler, mercanlar, deniz laleleri ve karındanbacaklılar (Gastropoda) da bu dönemde okyanuslarda bulunuyordu. Dönemin sonlarına doğru karasal bitkiler ortaya çıktı. Ordovisiyen’in sonunda birçok canlı grubunun ortadan kalkmasına neden olan büyük kitle yokoluşu meydana geldi. Silüriyen (443,7 – 416 milyon yıl) Silüriyen, çevre ve canlıları önemli derecede etkileyecek yeryüzü değişimlerinin meydana geldiği bir dönemdir. Büyük iklim değişimlerinin sona ermesiyle iklim dengeye ulaştı. Deniz seviyesinin yükselmesiyle birlikte mercan resifleri ilk kez oluştu ve çeneli, çenesiz balıklar ile tatlı su balıklarındaki çeşitlenmeyle birlikte balık türlerinin evriminde belirgin gelişmeler yaşandı. Kara yaşamına ait ilk kanıtlar olan örümcek, akrep, kırkayak ve akrabaları ile ilk damarlı bitkiler ortaya çıktı. Devoniyen (416 – 359,2 milyon yıl) Bu dönem, balıklarda görülen büyük çeşitlenme nedeniyle “Balık Çağı” olarak bilinir. Çeneli balıkların çeşitliliği artarken kıkırdaklı balıklar ilk kez ortaya çıktı. Lob yüzgeçli balıkların yaklaşık 397 milyon yıl önce karaya ayak basmaları ve üyelerin evrimleşmesi ile ikiyaşamlılar (Amphibia) ortaya çıktı. Bu dönemin sığ ve sıcak denizleri çok çeşitli omurgasız gruplarına ev sahipliği yapıyordu. Mercanlar, süngerler, algler ve dallı bacaklılardan (Brachiopoda) oluşan resifler çok yaygındı ve ilk ammonitler ortaya çıktı. İlk toprak oluşumu ve ilk böcek fosili Devoniyen’den bilinir. Karbonifer (359,2 – 299 milyon yıl) Karbonifer, dünya ölçeğinde geniş yayılımlı kömür yataklarının zenginliği ile bilinir. İklim oldukça ılımandı. Karada eğrelti otları ve ilk tohumlu bitkilerden oluşan dev boyutlu bitki örtüsü ile birlikte dev boyutlu böcekler, kırkayaklar ve akrepler hakimdi. Bu dönemde omurgalılar karaya tam olarak ayak basıp çeşitlenmeye başladı ve sürüngenler büyük bir evrimsel değişim gösterdi. Permiyen (299 – 251 milyon yıl) Bu dönem memeliler, kaplumbağalar, lepidosaurlar ve archosaurların atası olan amniyotların çeşitlenmesi ile karateristiktir. Karasal iklimin görülmeye başlaması ile sulakalanlar azaldı ve ikiyaşamlılar yerine sürüngenler daha fazla yayılım gösterdi. Dönem sonlarına doğru memelilerin atası olan Synapsidler ve günümüz sürüngenleri, dinozorlar, pterosaurlar ve timsahların atası olan Diapsidler oldukça başarılı şekilde geniş alanlara yayıldılar. Permiyen sonunda karasal canlılarla birlikte daha çok sucul canlıların yok olmasına neden olan büyük bir kitlesel yokoluş meydana geldi. - MESOZOYİK (251 – 65,5 milyon yıl) Triyas (251 – 199,6 milyon yıl) Triyas’tan önce meydana gelen büyük yokoluştan kurtulan canlılar boş alanları doldurdu. Sucul ortamda yeni mercanlar ve aralarında Ichthyosaur ve Plesiosaur’un da bulunduğu sucul sürüngenler ortaya çıktı. Dönem sonlarında ilk memeliler, uçan sürüngenler (Pterosaur) ve ilk dinozorlar görüldü. Triyas sonunda yine daha çok sucul canlıların etkilendiği büyük bir yokoluş meydana geldi. Jura (199,6 – 145,5 milyon yıl) Jura “Sürüngenler Çağı” olarak bilinir. Bu dönem Brachiosaurus, Diplodocus gibi büyük otçul dinozorlar için altın bir çağdı. Eğrelti otları ve palmiye benzeri ağaçlarla beslenen bu otçul dinozorlar Allosaurus gibi o dönemin etçil dinozorları tarafından avlanırdı. Sucul yaşamda balıklar ve sucul sürüngenler hakimdi. Dönemin sonlarına doğru ilk kuş olan Archaeopteryx ortaya çıktı. Kretase (145,5 – 65,5 milyon yıl) Kretase ılıman iklimi ve yüksek deniz seviyesi ile karakteristiktir. Okyanus ve denizler günümüzde nesli tükenmiş olan sucul sürüngenler, ammonitler ve rudistlerle, karalar ise içlerinde büyük etçil Tyrannosaurus rex’in de bulunduğu dinozorlarla kaplıydı. Yeni memeli ve kuş gruplarıyla birlikte çiçekli bitkiler ve birçok yapraklı ağaç türü ortaya çıktı. Dönemin başlarında erken keseli memeliler (Marsupialia), sonlarına doğru ise gerçek plasentalı memeliler görüldü. Kretase sonunda meydana gelen büyük yokoluş sonucunda kuş olmayan dinozorlar, pterosaurlar ve büyük sucul sürüngenler tamamen ortadan kalktı. - SENOZOYİK(65,5 milyon yıl – günümüz) 1. Paleojen Paleosen (65,5 – 55,8 milyon yıl) Bu dönemde meydana gelen en önemli olay birçok yeni memeli türünün ortaya çıkması, hızlı bir şekilde evrimleşmesi ve dinozorlardan boşalan alanları hızlar doldurmasıdır. Bu dönemdeki memelilerin küçük boyutlu olmalarından dolayı fosil kayıtları çok az sayıdadır. Karada modern bitkiler gelişti, kaktüs ve palmiye ağaçları ortaya çıktı. Denizlerde yeni tip foraminiferler ve günümüzde bulunan gruplara çok benzer formlar ile gastropodlar ve bivalvler bulunuyordu. Paleosen’de ortaya çıkan grupların birçoğu günümüze ulaşamadan ortadan kalktı. Eosen (55,8 – 33,9 milyon yıl) Eosen devrinin başlangıcı ilk modern memelilerin çıkışı ile karakteristiktir. Çift toynaklılar (Artiodactyla), tek toynaklılar (Perissodactyla) ve Primatlar gibi memeli gruplarının küçük boyutlu formları ile birlikte hortumlu memeliler (Proboscidea), kemirgenler (Rodentia) gibi modern memeli gruplarının erken formları ve balina, deniz ineği gibi deniz memelileri ilk kez görülmeye başladı. Eosen modern kuş takımlarının ilk kez ortaya çıktığı dönemdir. Bu dönemin sonunda meydana gelen yokoluş ile Asya faunası Avrupa’ya giriş yaptı. Oligosen (33,9 – 23,03 milyon yıl) Bu dönemde otlak alanların yayılmasıyla birlikte tropik geniş yapraklı ormanlar ekvator bölgesine çekildi. Karadaki canlıların boyutlarında artış görüldü ve Baluchitherium gibi gergedan benzeri memeliler çok büyük boyutlara ulaştı. Atlar, gergedanlar ve develer gibi memeli grupları açık alanlarda koşmaya uyumlu hale geldi. Sucul ortamdaki canlılar günümüzdekilere oldukça benzerdi. 2. Neojen Miyosen (23,03 – 5,33 milyon yıl) Bu döneme ait bitki ve hayvanlar günümüzde yaşayanlara oldukça benzemekteydi. Bitkiler açısından iki önemli ekosistem dikkat çekiciydi. İlki ot yiyici hayvanların evrimi üzerinde etkili olan genişleyen çayırlık alanlar, diğeri ise azalan tropik ormanlardır. Memeli çeşitliliği en üst düzeydeydi. Geyikler ve zürafalar ilk kez görülmeye başladı. Köpekler, rakunlar, atlar, kunduzlar, geyikler, develer ve balinalar gibi memelilerin günümüzde yaşayan türlerine benzer formlar ortaya çıktı. Pliyosen (5,33 – 2,58 milyon yıl) Bu dönemde dünya coğrafyası, iklim ve hayvan toplulukları günümüze oldukça benzerdi. Kıtalar hemen hemen bugünkü konumlarını aldılar. Daha soğuk ve kurak iklim koşulları sonucunda tropik bitki türleri azalırken, yapraklarını döken ağaç ormanları hızla çoğaldı, otlak alanlar Antaktika hariç tüm kıtalara yayıldı. 3. Kuvaterner Pleyistosen (2,58 milyon – 10.000 yıl) Bu dönemde görülen en önemli olay, sürekli devam eden iklimsel bir soğuma ve buzul çağlarıdır. İklim oynamaları sonucunda aşağı yukarı 50 ile 100’er bin yıl süren buzul ve buzularası dönemler görüldü. Büyük memeli faunası hızla yayıldı ve hominid primatlar biyolojik ve kültürel alanda evrim geçirdi. İnsan soyu Homo erectus, Homo neanderthalensis ve Homo sapiens (modern insan) olarak evrimsel bir sıra izledi. Deniz seviyesinin düşük olduğu buzul dönemlerde kurulan kara köprüleri ile karasal hayvanların kıtalar ve adalar arası göçleri gerçekleşti. Pleyistosen sonlarında özellikle büyük memelileri etkileyen yokoluş sonucunda mamutlar, mastodonlar, kama dişli kediler, yer tembelhayvanı ve mağara ayısı gibi memeliler yokoldu. Holosen (10.000yıl – günümüz) İnsan Çağı olarak da adlandırılan bu devir, içinde bulunduğumuz zamanı ifade eder. İnsanın doğaya egemen olduğu, insan kültürünün hızla geliştiği ve yayıldığı çağ olarak kabul edilir. Bu devirde başlayan küresel ısınmanın önümüzdeki yıllarda da devam edeceği düşünülmektedir. İnsanın neden olduğu olaylar sonucunda doğa dengesinin bozulması nedeniyle birçok tür yokoldu ve yokolmaya devam etmektedir.

http://www.biyologlar.com/jeolojik-zamanlar-hakkinda-bilgi

BALIKLARDA ÜREME SİSTEMİ

Balıkların üreme organları genellikle gonadlar olup, bunlar dişide ovaryum, erkekte ise testis adını alırlar. Ovaryumlar (dişi üreme organları) genellikle bir çifttir. Büyüklük ve ağırlıkları türlere göre değişmekle beraber, olgun oldukları zaman balık ağırlığının % 25’i kadar olabilirler. Genellikle üreme mevsimi yaklaşmış ergin bir balıkta ovaryumlar açık sarı veya kahverengimsi bir renk alır, daneli bir görünüş kazanır ve yüzeyinde bol miktarda kılcal kan damarları bulunur. Ovaryumda gelişen yumurtalar genellikle oviduct (yumurta kanalı) denilen bir boru ile vücut dışına atılırlarsa da bazı balıklarda (örneğin, Anguillidae ve Salmonidae familyalarında ve Cyclostomata grubunda) yumurta kanalı tamamen körelmiş olup, yumurtalar ve spermler sadece bir delikle dışarı atılabilirler. Testisler ise erkek üreme organları olup, genellikle bütün tatlı su balıklarında çifttir. Büyüklükleri üreme mevsimiyle ilgili olarak çok değişir. Ergin haldeki bir balıkta, üreme mevsiminde testislerin rengi beyazımsı olur, lekesiz düz bir görünüş arz eder ve üzerinde kılcal kan damarları da görülmez. Ağırlıkları da ovaryuma nazaran daha az olup, ergin halde iken en çok vücut ağırlığının %12’si kadar olabilirler. Tatlısu balıklarının çoğu ovipar (yumurta ile çoğalan) karakterli oldukları halde, bazılarında (Gambusia affinis) ovovivipar bir durum görülmektedir. Ovipar olanlarda döllenme haricidir. Yani dişinin ve erkeğin suya bıraktığı yumurta ve spermler su içerisinde döllenirler, bunun için de böyle formlarda çiftleşme organları gelişmemiştir. Balıklarda spermler çeşitli şekillerde olabilirlerse de genel yapıları diğer omurgalılarınkine çok benzer. Nadir bir olay olmakla beraber, Gambusia cinsinde döllenme dahili olduğundan, özellikle erkek bireylerinde, çiftleşme organı olarak anal yüzgeç modifiye olmuştur ve adeta yüzgecin bir kısmı penis görevi yapmaktadır. Gambusia’da görülen bu yarı doğurma hali, hiçbir zaman memelilerdeki doğurmaya benzemez. Zira memelilerde yavru, ana rahmindeki gelişimi esnasında plasenta denilen bir göbek bağı ile annenin dolaşım sistemine doğrudan bağlanmış olup, beslenmesi anadan gelen kan içindeki besinler ile olur. Halbuki Gambusia’da plasenta mevcut değildir. İç döllenme ile meydana gelen zigot, yumurtanın vitellüs maddesi ile beslenir. Fakat yumurtanın açılması, embriyonun açılması, balığın vücudu içerisinde olduğu için, yavrular kloak boşluğundan dışarı atılırlar. Bu nedenedir ki, Gambusia’da görülen üreme tarzına viviparlık değil fakat ovoviviparlık diyebiliriz. Genellike bir çift bez halinde olan ovaryumlar, granüllü bir görüntüde olup, hava kesesi bulunan balıklarda bu keseye yapışık vaziyette yer alırlar. Yumurtlama mevsimi yaklaştığında ovaryumların büyüklüğü giderek artar ve visceral boşluğu doldururlar. Olgunlaşmış olan yumurtalar gözle ayırt edilebilecek kadar birbirlerinden ayrılmış olurlar. Yumurtanın büyüklüğü tiplere göre çok değişik olup, balığın büyüklüğü ile ilgili değildir. Bununla beraber, yumurta büyüklüğü yumurta sayısı ile alakalı olup yumurta ne kadar küçük ise sayısı o nisbette fazla olur. Örneğin Dere Kayası olarak bilinen Çöpçü balığı, Nemacheilus yumurtalarının büyüklüğü, Cyprinus carpio gibi çok iri vücutlu balıklarınkinden bile büyüktür. Döllenmesi harici olan balıklarda, döllenmiş yumurtanın gelişmesi su içinde ve bırakıldığı yerde gerçekleşir. Embriyonik gelişim sırasında genellikle şeffaf olan yumurtanın içindeki yavrular, dışarıdan rahatlıkla izlenebilirler. Yumurta sayısı da balık türüne göre oldukça değişmektedir. Örneğin, tatlı su formlarından acı balık (Rhodeus)’ta yumurta sayısı 40-100 arasında iken, bir Mersin Balığı olan Acipenser sturio’da bir defada 3 milyondan fazla ymurta bırakılmaktadır. Balıkların bu kadar fazla yumurta bırakmaları kendi nesillerinin sürdürülmesi için gereklidir. Zira dişi balığın bıraktığı yumurtaların büyük bir kısmı diğer karnivor hayvanlar tarafından yenilir, bir kısmı da suların içinde döllenmeyerek çürüyüp kaybolur. Hal böyle olunca, bırakılan yumurtanın durumuna göre % 60-70’i telef olur, ancak %30 kadarı açılarak yavruları meydana getirir. Yumurtadan yeni çıkmış yavrular vitellüs keselerini absorbe etmeden önce, oldukça pasif davranışlı ve kendilerini korumaktan aciz olduklarından bu safhada iken de büyük bir kısmı diğer yırtıcılara yem olmaktan kendilerini kurtaramazlar. Ancak %10-20 civarında yeni neslin ebeveynlere ilavesi mümkün olur. Yukarıda verilen değerlerden de anlaşılacağı gibi bırakılan her bir yumurtanın yavru verebilmesi, dolayısıyla ebeveynlerin yaşamlarını sürdürebilme oranı oldukça düşüktür. Bu nedenledir ki balıkların yumurta ve sperm verimleri diğer hayvanlara nazaran çok daha fazla olmaktadır. Zira birkaç cins hariç (Gobius, Gambusia), balıklarda döllenme haricidir. Bu sebepten balıkların meydana gelmesinden evvel, yumurta ve yavru balıkların telef olma sebepleri dikkate alınacak boyuttadır. Bir türün yumurtaları ne kadar çok döllenir ve açılırsa kuşkusuz o nispette yavru balık gelişir. Bunların da gelişerek ergin boya ulaşabilmeleri ve düşmanlarının az olması için çevre şartlarının uygun olması söz konusudur. Balıklar yumurtalarını genellikle ya dişi tarafından hazırlanan bir yuvaya veya sadece çukur bir zemin üzerine veya su yosunları ve köklü su bitkileri üzerine veyahut da çıplak taşlar üzerine bırakırlar. Tatlı su balıklarının çoğu, yumurtlamak için daima az derin suları tercih ederler. Yumurtlama yerleri ya hızlı akıntılı taşlık bir zon olabilir (Lampiridler, Salmonidler, Barbuslar, Aspiuslar, Chondrostomlar, Phoxinuslar vb.) yahut da vejetasyonca zengin durgun bir su olabilir (Cyprinus, Abramis, Cobitidler, Percidler vb.) Tatlı su balıklarında olgunlaşan yumurtaların tümü bazı türlerde bir defada bırakılırken (Esox, Perca ve Rutilus’ta ); diğerlerinde birkaç gün aralıklarla iki veya daha çok defada bırakılırlar (Tinca, Cyprinus, Alburnus, Blicca, Leuciscus vb.) Çok zaman şeffaf ve biraz da vizkoz karakterli olan balık yumurtaları şayet sudan daha ağır iseler, mukus maddesi sayesinde taşlar veya bitkiler üzerine yapıştırırlar. Bazı formlarda ise (Alosa ve Lota gibi) tamamen serbest ve hafif olan yumurtalar, açılıncaya kadar su üzerinde yüzerler, bu nedenlerle balıkların bıraktıkları yumurtalar genel olarak 5 grup altında toplanabilirler. 1- Yüzücü yumurtalar 2- Yarı yüzücü yumurtalar 3- Hafif ve yapışkan olan yumurtalar 4- Ağır fakat yapışkan olan yumurtalar 5- Ağır fakat yapışkan olmayan yumurtalar Balıkların çoğu yumurtalarını gelişi güzel suyun içine bıraktıkları halde bazı formlar yumurtalarının başka balıklar ve diğer su hayvanları tarafından yenmelerini önlemek amacıyla özel olarak yaptıkları yuvalara bırakırlar. Balık yuvaları ya hayvanın tercih ettiği bir barınaktan ibaret olabilir veyahut da Dikence balığında (Gasterosteus aculeatus) olduğu gibi yosun ve bitki kırıntıları ile kendilerine özgü yuva kurarlar. Hakiki yuva kurma içgüdüsü olan bu balıkların büyük bir gayretle kurdukları yuvaya dişi tarafından bırakılan yumurtalar, erkek balık tarafından yavrular çıkıncaya kadar (yaklaşık 15 gün) dikkatlice korunurlar. Erkek bu bekçiliği esnasında yuvanın içindeki suyu sirkülasyon yaptırmak amacıyla yüzgeçlerini de devamlı olarak hareket ettirir. Buna benzer şekilde yumurtaların erkek bireyler tarafından korunma içgüdüsü Gobiidae ve Cichlidae temsilcilerinde de vardır. Diğer taraftan acı balık (Rhodeus) cinsinde az sayıda olan yumurtaların açılıncaya kadar emniyet altında bulundurulmaları için tedbir alınmaktadır. Şöyle ki dişi balık olgunlaşan yumurtalarını uzunca bir ovipozitörü sayesinde bir tatlı su midyesi olan Anadonta ve Unio’ların solungaç-manto boşluğu arasına bırakırlar. Çok az miktarda albümine karşı bol miktarda vitellüs içeren ve etrafı ince ve şeffaf bir zarla çevrili bulunan balık yumurtaları çeşitli şekillerde ve değişik ortamlarda suya bırakılmalarını müteakip erkeğin aynı suya bıraktığı çok daha fazla sayıda sperm hücreleri tarafından döllenirler. Kısa bir süre sonra (5-10 dak.) döllenen yumurtalar üzerinde döllenme lekesi adı verilen küçük bir iz büyümeye başlar ve bu kısım bir müddet sonra daha da ilerlemiş bir değişmenin merkezi haline gelir. Bu gelişmeyi zarın şeffaflığı nedeniyle çıplak gözle dahi takip etmek mümkündür. Yumurtalarını döken balıklar genellikle gıda almak üzere avlanmazlar, çünkü yumurtalarını döktükten sonra halsiz, bitkin bir duruma düşerler. Hatta bazı türlerde bu haldeki balıklara hasta balık nazarıyla bakılır. Örneğin Onchorhynchus adı verilen pasifik alası denizden tatlı su göllerine yumurta bırakmak üzere göç ettikleri zaman yuurtalarını orada döktükten sonra sahile çekilip ölürler. Bu meyanda yılan balıkları da Meksika körfezinde bin metre derinliğe yumurta bıraktıktan sonra ölüme giderler. Kuşkusuz bu özellik tüm balıklarla ilgili olmayıp, istisnai bir durumdur. Balıklarda kuluçka süresi türden türe çok değişik olur. Bu süre genellikle suyun sıcaklığı ile çok yakından ilgili olup, suyun ısınmasıyla (belli sınırları aşmamak şartıyla) ters orantılıdır. Bu nedenledir ki suyun ısısını yükseltmek veya düşürmekle kuluçka müddetini kısaltmak veya uzatmak da mümkündür. Örneğin Salmo trutta’nın kuluçka süresi 5ºC de 82 gün iken 10ºC de 41 güne indirilebilmektedir. Demek oluyor ki döllenmiş olan yumurtaların açılabilmesi kuluçka süresince alacağı toplam ısı miktarına bağlıdır. Bu da Derece/gün orantısı olarak ifade edilmektedir. Örneğin bu değer alabalık için 410 ºC/gün olduğu halde, sazan balığı için 100 ºC/gün olarak hesap edilmiştir. Buna göre 20ºC de bırakılan sazan yumurtalarının kuluçka süresi 100/20 5 gün olacaktır. Yavru balıklar embriyonik gelişmeleri esnasında vitellüs kesesi içindeki besin maddesiyle beslenirler ve yumurtadan çıktıkları zaman da bu kesenin bir kısmını yine karınlarında taşırlar. Bu kese onlara doğumdan sonra bir müddet daha besleyici besin maddesi temin etme bakımından önemlidir. Belirli bir süre sonra bu kese kendi kendine absorbe edilerek kaybolur gider. Bu absorbsiyon müddeti balıklar için türlere göre değişmekte olup, sazanlar için 20 gün, alabalıklar için ise 40-50 gün devam eder, hatta deniz alası için (Salmo salar) bu süre daha da fazla olup, 70-120 gün kadardır. Vitellüs kesesinin absorbsiyonu tamamlandıktan sonra küçük yavrular kendi besinlerini kendileri aramaya başlarlar. Bu çağdaki balıklar özellikle su içinde bol miktarda bulunan bitkisel ve hayvansal planktonik organizmalarla beslenirler. Yumurtadan çıkmış yeni bir balık yavrusu aşağı yukarı yumurta çapının üç katı boyundadır ve türe göre değişen pasiflik devresini geçirdikten sonra (şayet hava kesesi bulunan bir balığın yavrusu ise) hava keselerini doldurmak için suyun yüzeyini doğru tırmanırlar. Balık yavruları gelişme esnasında genellikle büyük değişmelere uğramazlar (yılan balıkları, dil balıkları ve lampiridler hariç). Bu nedenle balık yavrularına larva demek pek doğru olmaz. Zira besin keseleri hariç şekil itibariyle tamamen ebeveynlerine benzerler. Fakat yukarıda da belirttiğimiz gibi Yılan balıkları (Anguilla anguilla) ile Lamprilerin (Lampetra fluviatilis) Leptocephalus adı verilen yavruları aşağı yukarı 3 yaşına kadar ebeveynlerinden çok farklı olan hakiki bir larva safhası geçirirler. Diğer taraftan bir tatlı su pisi balığı olan Pleuronectes flesus türünde ise yavrular başlangıçta bilateral simetri iken uzun bir gelişmeden sonra ebeveynlerde görülen asimetrik durum ortaya çıkar. Bundan dolayı yumurtadan çıktıktan sonra belli bie metamorfoz geçirerek ebeveynlerine benzeyen bu balıkların genç formları için larva tabiri kullanmak zorunlu olmaktadır. Aşağıda tatlısularımızda yaşayan bazı balık türlerinin üreme periyotları gösterimiştir. Latince İsmi Türkçe İsmi Üreme Periyotları Alburnus escherichi (Tatlı su sardalyası) Nisan-Mayıs Acipenser sturio (Mersin balığı) Mayıs-Temmuz Anguilla anguilla (Yılan balığı) Şubat-Nisan Abramis brama (Çiçek balığı) Mayıs-Haziran Vimba vimba (Aptalca balığı) Mart-Temmuz Barbus plebejus lacerta (Bıyıklı balık) Mart-Temmuz Carassius carassius (Sarı havuz balığı) Mayıs-Temmuz Carassius auratus (Kırmızı havuz balığı) Mayıs-Temmuz Chondrostoma nasus (Kababurun balığı) Nisan- Mayıs Cobitis taenia (Taş yiyen) Nisan-Mayıs Cyprinus carpio (Sazan balığı) Mayıs-Ağustos Esox lucius (Turna balığı) Şubat-Mart Gobio gobio (Dere kayası) Nisan-Temmuz Leuciscus cephalus (Tatlı su kefali) Nisan-Haziran Nemacheilus angorae (Çöpçü balığı) Nisan-Mayıs Perca fluviatilis (Tatlısu levreği) Şubat-Haziran Rutilus rutilus (Kızılgöz balığı) Nisan-Mayıs Phoximus phoximus (Ot balığı) Nisan-Temmuz Salmo trutta macrostigma (Dere alası) Kasım-Ocak Scardinius erythrophtalmus (Kızılkanat) Nisan-Ağustos Silurus glanis (Yayın balığı) Haziran-Ağustos Blicca björkna (Tahta balığı) Mayıs-Haziran Rhodeus cericeus amarus (Acı balık) Mart-Ağustos Tinca tinca (Yeşil sazan) Mayıs-Haziran Aspius aspius (Kurt balığı) Nisan-Mayıs Bütün bu anlatılanların yanı sıra görsel olarak dişi ve erkeklerin türlere göre kendine göre ayırt edici özellikleri mevcuttur. Örneğin Afrika bölgesinde Tanganyika ve malwi göllerinde yaşayan balıklarda genellikle erkeke bireyler dişilere göre renklidir. Diğer dere ve göllere yaşayan vatoz türlerinde ise erkek bireylerde boynuz adı verilen başın dorsal kısmında çıkıntılar ( dikensi ) yapılar mevcuttur. Bazı bireylerde ise dişi ve erkek ayrımı balığı elinize aldığınızda anlaşılabilir. ( Ergin Dişi bireylerin karnını bastırdığınızda ( sağdığınızda) yumurta dökerler. erkek bireylere aynı işlemi uyguladığınızda ise beyaz renkli sperm bırakırlar. Yayın balıklarında Üreme döneminden önce erkek ve dişiyi birbirinden ayırt etmek oldukça zordur. Üreme safhasının hemen öncesi dişilerin karınlarının şiş olmasıyla cinsiyet ayrımı daha kolay olur. Deniz baliklarinda genelde erkekler daha koyu renkli ve sirt alt ve kuyruk yuzgecleri daha sivri bir sekilde biter kafa yapilari disilere gore bazi turlerde daha kabarik siskin olur...ve genelde erkekler daha duz vucuda sahiptir.. disilerde ise renkler daha soluk olmakla beraber sirt,alt,ve kuyruk yuzgeci daha kisa duser...bazi turlerde arkeklerden daha iri ve bazi turlerde daha kucuk yapida olabilir disi baliklar daha genis karin kismina sahiptir ve anus bolgesi daha genis olur havyar doneminde olan balikta karin yanlarindan bir tombullasma gorulur ve anus disa yakindir.... Tatlı suda ise ureme zamanlarinda erkek baliklarda sazan familasi icindekilerde kafada beyaz benekler olusur bu baligin es zamaninda oladugu icin dir ve dolleme yapmaya hazir bir baliktir...ve erkek baliklar daha duzgun ve zayif bir vucuda sahiptir genelde... disi baliklar ise daha genis vucudlu ve ureme zamaninda unus disa cikar ve siskin bir karna sahipti..kafa altin anuse kadar oval bir gorunumu olur.. evet bazi balik turleri bellirli yas ve zamanlarda cinsiyet degistirme ozelligine sahiptir bildigim kadariyla denizde hanigiller familayasinda bazi turlerde ama tam hatirlamiyorum. BU BÖLÜM TAMAMEN KİŞİSEL TECRÜBELERİMLE KALEME ALINMIŞTIR... YAZILI BİR KAYNAK GÖSTERMEM MÜMKÜN DEĞİLDİR...İNŞALLAH İŞİNİZE YARAR

http://www.biyologlar.com/baliklarda-ureme-sistemi-1

Deniz timsahları

Her şey bundan tam 200 milyon yıl önce başlıyor. O tarihlerde de var olan timsah, henüz bir kara hayvanı... Ayakları üstünde yükselen gövdeleri ve gittikçe daralan yüz yapılarıyla, timsahtan çok yarış köpeklerini anımsatıyorlardı. Sadece içlerinden bir tanesi, bilinmeyen bir nedenle ayaklarından birini sudan hiç çıkarmıyordu. Bu türün su aşkı, aradan geçen 200 milyon yıla karşın hâlâ sürüyor. Dün, tek ayağını suya daldırmakla yetinen "Crocodylus porosus", bugün, tam 22 farklı timsah türü arasında, hem tatlı hem de tuzlu suda yaşayan tek örnek... Ancak hemen belirtelim, asıl tercihi Avustralya ve Hint Okyanusu'nun tuzlu suları... Deniz timsahları, pek aşina olmadıkları tuzlu sularda varlıklarını sürdürmek için bazı anatomik farklılıklar geliştirmişler. Ve bu farklılıkları ta atalarından beri korudukları ileri sürülüyor. En belirgin özellikleri, farklılaşmış tükürük bezleri... Hayvanın dilinin üstünde bulunan bu bezler, deniz suyunun içinde erimiş olan tuzun organizmaya girmesine engel oluyor. Böylece de, canlı bir salamuraya dönüşmesini engelliyor. Bütün dev görünüşüne karşın, deniz timsahları, türlerinin "XL" örneği değiller. En azından bazı organlarının yapısı nedeniyle... Örneğin, timsahtan çok kuşları anımsatıyorlar. Kalp sistemleri, onlar gibi dört bölmeli. Yine, kuşlar gibi çok gelişmiş bir işitme duyuları var. Oysa, diğer sürüngen türlerinin büyük çoğunluğu sağır yaratıklar... Son, ama tartışmalı bir nokta da, bu hayvanların bir görme yeteneğine sahip olup olmadıkları... Kimi araştırmacılara göre, böyle bir duyuları, özellikle de renkleri ayrıştırma yetileri var. Ancak henüz bilimsel olarak kanıtlanmış değil... Çünkü, bu oldukça iri ve vahşi hayvanlarla laboratuvar deneylerinin zorluğunu hemen hemen herkes kabul ediyor. . Suyun içindeyken, deniz timsahının gözleri bir üçüncü gözkapağı ile korunuyor. Deniz timsahları, kesinlikle aptal canlılar değil. Tam tersine, tüm sürüngenler arasında, ortalama zekâ düzeyinin üstüne çıkıyorlar. Bunun kanıtı olarak da, bilim adamları, bu hayvanlar arasında son derece gelişmiş bir hiyerarşi anlayışını gösteriyorlar. Gruplar halinde yaşayan deniz timsahları ailesinde, erkekler yaşam alanını kontrol ediyorlar. Dişilerin görevi ise, yavruların beslenmesi ve yetiştirilmesi... Bu minik grup içindeki tüm üyeler, özel sesler çıkararak birbirleriyle anlaşıyorlar. Deniz timsahlarının dilinde böğürme bir sevgi ve aşk gösterisi, homurdanma ise "dikkatli ol" mesajı... Eğer bir deniz timsahı çok koyu bir sessizliğe bürünmüşse, bu bir av peşinde olduğu anlamına geliyor. Bu deniz devleri, özellikle avlanma konusunda olağanüstü bir sabır örneği gösteriyorlar. Bir deniz timsahı, avının kendisine iyice yaklaşması için, tam 2 gün boyunca hiç kımıldamadan durabiliyor. Suyun içindeyken en tercih ettiği avlar, iri balıklar ve deniz yılanları... Yine içinde bulunduğu ortama göre avlanma stratejileri geliştiriyor. Denizdeyken açıktan açığa avlanan deniz timsahları, nehirlerde süper bir kamuflaj ustası kesiliyorlar. Suya yarı batmış olarak hareketsiz duruyorlar ve sadece gözlerini, kulaklarını ve burun deliklerini su üstünde bırakıyorlar. Deniz timsahı gerçek bir etobur... Üstelik, öyle özel bir tercihi de yok. Kendi cinsine yakın omurgasızlardan ördeklere, yılan balıklarından bufalolara kadar her hayvanın etiyle kendisine ziyafet çekebiliyor. Avını bir bütün olarak yuttuktan sonra, çok asitli özsuyu sayesinde, onları kemiklerine kadar sindirmeyi başarıyor. Enerji fazlasını ise, yağ biçiminde kuyruğunda ve sırt bölümünde depoluyor. Bu olağanüstü yağ depolarını kullanarak, yeni doğan bir deniz timsahı yavrusu 4 ay, bir ton ağırlığındaki yetişkin ise tam bir yıl boyunca yemek yemeden hayatta kalabiliyor. Vahşi, ama kesinlikle açgözlü olmayan deniz timsahları, kendi yavrularına karşı ola-ğanüstü şefkatliler... Yumurtalarını, humus (kara toprak) ve bitkilerden oluşturduğu yuvanın içine bırakan dişi deniz timsahı, iklim koşullarına bağlı olarak, 2-3 ay bunların üstünde kuluçkaya yatıyor. Bu dönemde çok sinirli olan dişi timsah, her türlü sese karşı duyarlı bir hale geliyor. Yavrularının ilk seslerini duyar duymaz, titizlikle yumurta kabuklarını kırıp parçalıyor. Böylece, yavrularının daha kolay biçimde dışarıya çıkmalarını sağlıyor. Bilindiği gibi, birçok timsah türü, yumurtaların kabuğunu kırmak için, onları ağızlarına alıp, dillerinden kaydırma yönteminden yararlanıyorlar. Deniz timsahlarının da bu şekilde davranıp davranmadıkları bilinmiyor. Ancak, ne biçimde olursa olsun yavrularına kavuşan dişi deniz timsahları, aylarca onların beslenmesini ve güvenliğini sağlıyorlar. Onları bir an bile yanlarından ayırmıyorlar. Küçük yavrular ısınmak için annelerinin sırtına çıkıyorlar. En küçük bir tehlike durumunda, anne timsah sırtında yavrularıyla suyun derinliklerine dalıyor. Annelerin yavrularını tehlikeye karşı uyarmak için kullandıkları bir yöntem de, kaslarını titretmek... Bu kas titreşimleri suyun içinde ses dalgalarına dönüşüyor ve çevredeki diğer annelerle yavruları tehlikeye karşı uyarıyor. Denizlerin bu ürkütücü yaratığının en büyük düşmanları yine kendi cinsleri. Zaman zaman, özellikle bölgesel egemenlik ve dişilere sahiplenme konularında aralarında ölümcül kavgalara tanık olunuyor. Bu hayvanların asıl düşmanı ise, insanoğlunun ta kendisi... 60'lı yıllarda, derilerinden hediyelik eşya, ayakkabı, çanta vb. yapmak için çok geniş kapsamlı bir deniz timsahı katliamı yaşandı. Bu hayvanların türü ciddi bir biçimde yok olma tehlikesiyle karşı karşıya geldi. Günümüzde, Avustralya'da "ulusal servet" olarak koruma altına alınan deniz timsahlarının sayısı her geçen gün artıyor. Bu artışın en büyük dinamiği ise, sayıları hızla çoğalan timsah çiftlikleri.

http://www.biyologlar.com/deniz-timsahlari

Balıkların Morfolojik yapısı

Genel olarak bir balığın tarifi suda yaşayan, pullar ve yüzgeçlerle donatılmış başı ve kuyruyğu bulunan bir hayvandır diye yapılır. Bununla beraber genelde vücut şeklî bakımından "hiçbir Hayvanda bulunmayan ve çok değişken çeşitlilik gösteren balıkları, böylesine kısa bir tarif içine sıkıştırarak tanımlamak her halde mümkün değildir. Zira, bir Sazan balığı (Cyprinidae) ; bir yayın balığı (Siluri-dae, Clariidae) ; bir Yılan balığı (Anguillidae] ve bir Vatoz balığı (Rajiidai) hiçbir zaman birbirlerine benzemedikleri gibi, bir deniz ejderi denen ve onun yakın bir akrabası denizatı (Hippocampus] ; deniz iğnesi denilen (Sjngnathidae) formlar bir balığı andırmazlar. Bunun dışında, özellikle denizlerde, pelajik formların yanında, zemin balıkları ve derin deniz balıkları birbirleriyle karşılaştırıldıklarında, bu farklılıkları daha da belirli bir şekilde görmek mümkündür. Şu halde, farklı ortamlarda, böylesine değişken şekiller oluşturan bu yaratıkları, topyekün birkaç satır içinde tarif etmek gerçekten güçtür. Zira doğa, canlıların yaradılışında ve onların bulundukları çevreye uyum gösterir bir düzeyde oluşmasında etkilerini öylesine gösterirki, bu yönde en güçlü bir insan muhayyilesi bile onunla başedemez. O halele ne yapmalı, bir balığın vücut şekli ile üç buut (dimansiyon) arasındaki ilişkileri araştırmakla işe başlayabiliriz. Balıkların yapısında; uzunluk, yükseklik ve genişlik boyutları (dimansiyonları) yaşadıkları çevreye uygun olarak çok değişir, örneğin; Bir Yılan balığı kendisini düşmanlarından koruma ve avları olacak balıkları gözaltında tutarak onlan kolaylıkla yakalayabilmek için denizlerde kayaların kovuklarına arka arka girerek, önünden geçmesi muhtemel avlarını gözaltında tutar ve onlan kolayca avlarlar. Tatlısularda da aynı davranış hakim olup, nehir ve göllerin çevre duvarları içindeki oyuk ve deliklere arka arka girerek önlerinden geçen küçük balık ve kurbağaları kolaylıkla avlarlar. Bunun için de böyle bir ortama uyma zorunda bulunduklarından şekilleri de bu davranışlarına en uygun olduğu sanılan yılanvari bir gelişme göstermiş, olmalıdır. Bazı balıklar sırt-karın istikametinde basık ve lateralden yassılaşmış bir şekil almışlardır. Örneğin denizlerde yaşayan Vatoz baliği gibi. Vatoz balığı sırt-karın istikametinde yapyassı bir şekil almış olup, kuyruğunun ortalarına rastlayan yerde, yukarı doğru dikey olarak duran bir zehir iğnesi taşır. Bu balık istirahat halinde iken zeminde özellikle plaj bölgelerinde veya daha derince sularda kum altında 5-10 cm derinlikte yatar. Üzerine basılırsa veya bir düşmanı ile karşılaşırsa kuyruğundaki zehir dikeni ile karşı koyar. O halda bu balık da avını kum altında yatarak beklediği için vücut şekli'de böyle bir habitata uygun olarak gelişmiş olur. Hepimizin bildiği gibi, pelajik balıkların bir çoğu fusiform (iğ şekli) bir şekil almışlardır. Bunlara örnek olarak Ton balığı, Palamut, Torik balık'ları, Uskumru ve Kalyozlar gösterilebilir. Böyle balıklar yaşamlarını yüksek su içinde rahatlıkla sürdürebilirler. Süratli hareket etme yetenekleri bulunduğu için avlarını kolaylıkla yakalarlar. Kuşkusuz, bu arada balıkların baş ve kuyruk yapıları da hareket yetenekleri ile orantılı ve ortama en iyi bir uyum sağlayabilecek şekilde gelişme gösterir. Bundan başka, aynı amaç doğrultusunda gözlerin büyüklüğü ve operkulumun (Solungaç kapağı), ağız ve burun yapısının şekil ve büyüklükleri de bu ortama uyma ve böyle bir ortamda esas amacına ulaşma doğrultusunda (av bulma ve yakalama) gelişme gösterecektir. Balıklarda yüzgeçlerin durumu, pulların yapısı, dağılışı ve büyüklükleri de duyulan gereksinime cevap verebilecek şekilde ve uygun oranda gelişir. Bu nedenle, bazı balıklarda pul da bulunmayabilir, örneğin, Yayın balığı (Silurus glanis}. Nihayet, balıkların çok değişken renklerinin de yaşamlarını kolaylaştırmada önemli bir faktör olduğu söylenebilir. Bu renkler bazen avlarını yakalamada onlara büyük bir kolaylık sağladığı gibi, bazen da düşmanlarını korkutmaya yararlar. 1.2.2. Balıklarda Vücut Şekilleri [Konu Başlığı] [Önceki Konu] [Sonraki Konu] Balıkların vücutları, genel olarak su içersinde yüzmeye uyum sağlayan, sudaki hareketini kolayca ve fazla enerji harcamadan yapabilmesi için direnci en aza (minimuma') indiren şekiller almışlardır. Bu vücut şekilleri herbir türe ve ırka göre değişiklikler gösterdiği gibi, farklı biotoplarda yaşayan aynı türün bireyleri ile erkek-dişi bireyleri arasında da değişiklikler gösterebilirler. Tatlısu balıklarında ençok görülen vücut şekilleri şunlardır A- Dorso-Ventral Yassılaşmış Olanlar : Bu tipte vücut, dorsalden ve ventralden oldukça basılarak tıpkı bir; yaprak şeklini almıştır. Böyle vücutlu formlar nadir olup, bizim sularımızda sadece vatoz balıklarında görülmektedir. B- Yanlamasına Yassılaşmış Olanlar : Bu tipte vücut yanlardan iyice basılmış olup, yükseklik artmış, genişlik ise daralmıştır. Bazı formlarda yassılaşma derecesi çok daha artarak vücut adeta bir disk şeklini almış ve yükseklik aşağı yukarı vücut uzunluğuna erişmiştir. Örneğin, memleketimizde mümessili bulunmayan Eupomotis cinsinde vücut şekli böyledir. Buna karşın bazı formlarda yanlardan yassılaşma daha az olup, vücut oval bir görünüş kazanmıştır ve daima boyu, yüksekliğinden daha fazladır. Tatlısu balıklarımızın çoğunda bu şekil hakim olup; örneğin, Sazan balığı (Cyprinus carpio), Kızılgöz (Rutilus rutilus), Acı balık (Rhodeus cericeus), Yassıkızılkanat (Blicca bjorkna), Çiçek balığı (Abramis brama) gibi türlerde görülmektedir. C- Konik Şekilli Olanlar : Bazı balık türlerinde baş kısmı diğer vücut kısımlarına nazaran anormal şekilde büyüyerek önden arkaya doğru gidildikçe incelen bir görünüş hasıl olmuştur. Bu türlü vücut şekli pek yaygın olmayıp sadece Dere Kayası {Cottus gobio) türünde görülür. D- İğ Şeklinde Olanlar ; Bu tür vücut yapısını, bilhassa fazla hareketli olan balık türlerinde görmek mümkündür. Böyle formlarda vücut adeta bir torpile benzer. Örneğin, Turna balığı (Esox lucius) ve Alabalıkta (Salmo trulta). E- Yılan Şeklinde Olanlar : Burada vücut adeta yılankavi bir görünüş kazanmış olup, genellikle ön kısmı silindirik, arka ucu ise, hafifçe yanlardan basıktır. Bu tip vücut şekli de Yılan balıklarında (Angilla anguilla) ve (Mastacembelus simack} türlerinde görülür. F- Vücutları iğne Şeklinde Olanlar : Bazı formlarda vücut uzun şekilde olup, özellikle kuyruk tarafı adeta bir iğne şeklinde sivrileşmiş-tir. Vücut şekli böyle olan balıklar nadir durumda olup, tatlısularımızda sadece Deniz iğnelerinde (Syngnathus cinsinde) görülmektedir. Vücut şekilleri seleksiyonla birçok değişimlere uğrayabilir. Örneğin, Sazan'ın farklı ırklarında değişik vücut şekilleri görülebilir. Genellikle yabani formlarında vücut boyu yüksekliğine oranla, daha fazla olduğu halde, Aynalı sazan denilen ırkında vücut yüksekliği daha da artarak tombul bir görünüş kazanmıştır. Bazı türlerin vücut şekli üzerinde, ortamın da etkileri olmuştur. Örneğin, Alabalıkların göllerde yaşayan formlarında vücut torpil şeklinden ziyade oval şekil kazanmıştır. Çok küçük su birikintilerinde yaşayan Turna balıklarında ise, kısa boylu cüce formlar meydana gelmiştir. Bazı türlerde ise, morfolojik görünüş bakımından erkek ve dişiler arasında farklar vardır, örneğin, Gökkuşağı Alabalığında erkek, dişiye nazaran daha kısa ve şişman olduğu halde; Turna balığında bunun aksi durum mevcuttur. Yani erkekler dişilere nazaran daha uzun ve zayıf görünüşlüdür. Buna benzer şekilde bazı balıklarda eşeysel farklılıklar da mevcuttur örneğin, Sivrisinek biyolojik mücadelesinde kullanılan Gambusia'da eşeysel farklılıklar görülür. Bunların erkek bireyleri dişilere nazaran oldukça cüce yapıda ve Anal yüzgeçlerinde gonopodium denilen kopulasyon organı olarak kullanılan bir kısım bulunmaktadır. Halbuki dişileri daha büyük cesametli ve şişman karınlı olup, Anal yüzgeçleri de normal durumdadır. Bir diğer durum Blennius'larda. görülmektedir. Bu formlarda sadece erkeklerin gözleri üzerinde ibik denilen uzantılar vardır. Dişilerde ise bu durum bariz değildir. Genel olarak balıkların erkek ve dişileri arasında görülen bu türlü morfolojik farklılıklar «Eşeysel Dimorfizm» olarak isimlendirilmektedir. Bazı balık türleri hayatlarının bazı dönemlerinde birbirlerinden tamamen farklı görünüşte olan vücut şekilleri içerirler. Yani böyle balıklarda juvenil form ve adult form olmak üzere iki değişik form vardır. Bu da muhtemelen onların metamorfozlarının çok uzun sürmesinden ileri gelmektedir, örneğin, Pleuronectes ve Anguilla cinslerinde durum böyledir. Yumurtadan yeni çıkmış olan bir Pisi balığı yavrusu yassılaşmış değildir. Pelâjik karakterli ve bilâteral simetrilidir. Ancak 10 mm. boya ulaştıktan sonra bir torsiyon sonucunda larva büyük bir değişikliğe uğrar ve sonunda gözler üst tarafa geçer, asimetrik durum meydana gelir ve pelâjik hayattan bentik hayata döner. Yılan balıklarında ise, yumurtadan yeni çıkmış olan larvalar adeta yassı bir zakkum veya zeytin ağacı yaprağı şeklindedir ve pelâjik olarak yüzerler. Bu durum çok uzun bir zaman sürer ve nihayet 3 yıl sonra, 60-80 mm. boya erişen larvalar metamorfoz geçirerek yükseklik ve boylarından bir miktar kaybederek silindirik bir durum kazanırlar ve pelâjik yaşamdan bentik yaşama geçerler. Bu nedenlerle balıkları vücut şekilleri yönünden sınıflandırırken bu iki balığın sadece ergin haldeki formları dikkate alınmıştır.

http://www.biyologlar.com/baliklarin-morfolojik-yapisi

Balıklarda yüzgeçler ve yüzgeç tipleri

Yüzgeçler genellikle balıkların yüzmesine, denge sağlamasına ve oriantasyonuna hizmet eden organlardır. Tipik olarak bir balığın 2 adet çift yüzgeci 3 adet de tek (median) yüzgeci bulunur. Tek Yüzgeçler (Median) İdeal bir balık vücudunda, örneğin; Sazan balığı (Cyprinus carpio), tek yüzgeçlerin adedi 3 tanedir. Bunlar sırtta bulunan Dorsal yüzgeç, anüs gerisinde bulunan Anal yüzgeç ve kuyruk sapının ucunda bulunan Kuyruk yüzgeci veya Kavdal yüzgeçten ibarettir. Tek yüzgeçler medianda iki katlı bir deri kıvrıntısı ile buna destek olan ışınlardan (radius) yapılmışlardır. Dorsal Yüzgeç Sırt yüzgeci adı verilen ve genellikle büyüklüğü, sayısı, şekli ve konumu bakımından gruplara göre farklılık gösteren bu yüzgeç, tıpkı bir kayığın karinası gibi iş görerek yüzme esnasında balığın su içinde yuvarlanmasını önler, dolayısıyla bir nevi denge sağlayıcıdır. Bazen çok uzun olur, bazen da küçüktür. Örneğin, Blennidae familyasındaki türlerinde oldukça uzun olup, hemen hemen bütün sırtı kaplamıştır. Buna karşın Clupeidae familyasında oldukça küçüktür. Bu yüzgeç genellikle tek (Cyprinidae, Clupeidae, Cobitidae vb.) olmakla beraber, bazı gruplarda iki adet (Mugilidae, Percidae, Atherinidae, Gobiidae) olabilir. Tek olduğu zaman genellikle serbesttir. Fakat bazı balıklarda kuyruk yüzgeci ile kaynaşmış olabilir. Yılan balıklarında (Anguilla gibi). Tek olunca konumu da oldukça değişiklik gösterebilir. Örneğin, Clupeidae familyasında aşağı yukarı ortada olduğu halde, Siluridac familyasında vücudun iyice ön tarafında, Esocidae familyasında ise, vücudun çok gerisinde yer almaktadır. Dorsal yüzgeç birden fazla olduğu zaman anteriorden itibaren I. Dorsal, II. Dorsal şeklinde isimlendirilir. Bazen I. Dorsalin önünde yer alan münferit radiuslarla (Gasterosteidae) dorsalin sayısı daha da arttırılabilir. Fakat genellikle bu müstakil ışınlar, Dorsal yüzgece dahil edilmeyip münferit dikenler olarak dikkate alınırlar. Dorsal tarafta bir de etsi yapıda ve ısırışız olan, Salmonidae, Bagfidae ve Sisoridae familyalarında bulunan yağ yüzgeci vardır. Şayet Dorsal yüzgeç çift ise, genellikle I. Dorsal diken ışınlardan, II. Dorsal ise yumuşak ışınlardan ibaret radiuslar taşırlar. I. ve II. Dorsaller bazen ayrı ayrı (Mugilidae, Atherinidae), bazen da bitişik olarak (Percidae) bulunurlar. Anal Yüzgeç Anal açıklığın hemen arkasında yer alan bu yüzgeç de yine balığın dengesini sağlamada rol oynar. Şayet balığın hareketinde rolü varsa bu yüzgeç genellikle çok uzun olur ve kuyruk yüzgeci ile birleşir (Anguilla'da olduğu gibi). Anal yüzgeçler bazen nadir olarak modifiye olup, kopulasyon organı halini alabilir. Örneğin; Gambusia'nın. özellikle erkek bireylerinde Anal yüzgecin bir kısmı gonopodia denilen çiftleşme organı şeklinde değişikliğe uğramıştır. Bu yüzgeç genellikle bütün balıklarda yumuşak ışınlardan meydana geldiği halde, sadece Percidae familyasında iki anterior ışını, diken radiustan teşkil edilmiştir. Kuyruk Yüzgeci Kuyruk yüzgeci, vücudun arka ucunda yer alan ve balığa bir kayığın dümeni gibi yön vermede iş gören bir hareket organıdır. Zamanımızda yaşayan balıklarda 3 tip kuyruk yüzgeci ayırt edilir Homoserk Kuyruk Yüzgeci Son birkaç omurun birleşmesinden meydana gelmiş ve ürostil adı verilen iskelet parçası yukarıya doğru yönelmiştir. Fakat kuyruk lopları birbirine eşit olup simetrik bir görünüş mevcuttur. Genellikle bütün kemikli balıklarda (Teleostei) bu tip kuyruk yüzgeci hakimdir ve daima bu yüzgeçte yumuşak ışınlar bulunur. Heteroserk Kuyruk Yüzgeci Bu tipte, omurganın son ucu yukarıya doğru kıvrılmıştır, yani ürostil kuyruğun üst lobu içersinde uzanmaktadır. Buna uygun olarak da lopların boyları farklıdır, dolayısıyla hem içte, hem de dışta asimetrik bir durum mevruttur Bu tip kuyruk yüzgeci Mersin balıkları (Chondruslei) grubunda görülür. Difiserk Kuyruk Yüzgeci Bu tip kuyruk yüzgecinde, diğer iki tipten farklı olarak omurganın son ucu kuyruk yüzgecinin nihayetine kadar düz olarak uzanmakta, dolayısıyla yüzgeç Dorsal ve Ventral olmak üzere iki eşit kısma bölünmektedir. Böyle yüzgeç tipine ise ilkel balıklardan Cyclostomata grubunda rastlanmaktadır. Çift Yüzgeçler ] Pektoral Yüzgeçler Genel olarak solungaçları örten solungaç kapaklarının hemen gerisinde yer alır. Çoğu zaman yumuşak radiuslarla desteklenmiş olup adeta bir kürek gibi vazife görürler. Bazı balıklarda tamamen kaybolmuş durumdadırlar. Ventral (Pelvik) Yüzgeçler Bunlar balığın hareketinde en aktif yüzgeçler oldukları için çok önemlidirler. Pelvik yüzgeçler bazı formlarda hiç bulunmayabilirler. Bazı balıklarda ise biribri ile birleşerek tıpkı bir vantuz şeklini alırlar. Genellikle yumuşak ışınlarlada desteklenirsede bazen diken ışını içerirler. Yüzgeç ışınları kemikleşmiş bazen de kıkırdaktan ibbaret olabildiği gibi bu ışınlar serbest ve birbiri ile kaynaşmış olabilir. Bazı balıklarda yüzgeçler normal bir rejenerasyon gösterir. Yüzgeçleri tamamıyla kesilen böyle bir balık kesilen yüzgecini kısa zamanda yeniden meyana getirebilirler.

http://www.biyologlar.com/baliklarda-yuzgecler-ve-yuzgec-tipleri

Balıkların iskelet yapısı

Fonksiyon bakımından çok önemli olan iskelet yapısı bir taraftan vücudun özel şeklini meydana getirir, diğer taraftan da yumuşak olan iç organlara desteklik eder ve istemli olarak hareket eden bütün vücut kaslarına birer bağlantı zemini teşkil eder. Ayrıca yüzeyde gelişen dış iskelet elementleride, üzerine kapladığı yumuşak vücut kısımlarını korur. Balıkların iskeleti, genellikle kemikten olmakla beraber bazı tatlısu balıklarında az çok kalsiyum içeren bir kıkırdaktan meydana gelmiştir. Dış İskelet Bu iskelet genellikle vücudun dış yüzeyini örten pullar, kemik plakları, yüzgeç ışınları ve iç isteletin bir kısmını teşkil eden dermal orijinli kemiklerle deri altındaki zarımsı iskeletten ibarettir. Dış iskelet daima kemikleşmiş veya keratinleşmiş elementlerden yapılmıştır Burada balıklar için karakteristik olan zarımsı veya membranöz iskelet olup, bu yapı derinin altındaki bağ dokusu tabakasından teşkil edilmiştir. Bu zanmu iskelet sayesinde bütün vücut kasları, başın hemen arkasından başlamak üzere birçok segmentlere bölünmüşlerdir. Membranöz iskeletin Myoseptum adı verilen bağ dokusu lifleri hem kasların bir çok "bölümlere ayrılmasını sağlamakta, hem de deriyi kaslara ve iskelet sistemine sıkı bir şekilde bağlamaktadırlar. Bu iskelet sayesindedir ki balığın vücudundaki her bir kas segmenti kolaylıkla hareket etme imkanı bulmuştur. İç iskelet İç iskeletin esas itibarıyla 2 kısım halinde incelenmesi uygun olacaktır. Aksiyal (Eksen) iskelet Buna eksensel iskelet de denilebilir ve esas itibariyle 3 bölümden meydana gelmiştir. Baş iskeleti : Kemikli balıklarda baş iskeletini meydana getiren başlıca kemikler burun, göz, ve kulak kapsülü bölgelerini koruyan ve solungaçlar gibi organları destekleyen bir seri kemik yaylardan teşkil edilmiştir. Baş iskeletini teşkil eden kemiklerin sayısı oldukça fazladır, örneğin, bir alabalığın başında 138 parça kemik bnlunur. Omur Şeridi (Notochorda) : Sırt ipliği denilen ve omurgalıların esas karakterlerinden birisi olan notochorda baştan itibaren kuyruk ucuna kadar devam eden bir seri omurlardan meydana gelmiştir. Omurga bir taraftan vücudun normal düzlemde durmasını sağlarken, diğer taraftan da çizgili kasların ve ekstremitelerîn doğrudan veya dolaylı olarak bağlandıkları bir yerdir. Balıkların omurgası, amfisel tip denilen ve uçları konkav olan gövde ve kuyruk omurlarından meydana gelmiştir. Omur sayısı balık türlerine göre farklılık gösterdiğinden genellikle türlerin sistematik ayrımında önemli bir diagnostik karakter olarak kullanılabilir. Kaburgalar :Balıklarda kaburga kemikleri pek çok sayıdadır, hem de gayet iyi gelişmiş bulunmaktadır. Bunlar, kaideleri ile omurlara birleşmiş olduğu halde, diğer uçları serbesttir. Zira balıklarda, kaburgaların ventral tarafa bağlandığı göğüs kemiği (sternum) mevcut değildir. Genellikle iki tip kaburga (Dorsal ve Ventral) bulunursa da bazı gruplarda her ikisini de bir arada görmek mümkün olmayabilir. Fakat kemikli balıklarda daima her iki tip kaburgaya rastlanmaktadır. Bazı teleostlarda (Salmonidae, Esoddae, Clupeidae) esas kaburgaların haricinde, myoseptumlar boyunca uzanan ve ligamentlerle omurgaya bağlanan gayet ince yapılı sekunder kaburga'lar da vardır ki, bunlar halk arasında kılçık tabir edilir. Kaburgalar daima göğüs bölgesi omurlarına bağlı olarak bulunduklarından kuyruk bölgesinde mevcut değildir. Apendikular (ekstremite) iskeleti : Buna aynı zamanda yüzgeçler iskeleti de denilebilir ve esas itibariyle çift ve tek yüzgeçlerin omurgaya veya başka vücut kısımlarına bağlanmasını sağlayan kemerlere ait iskelettir. Tek yüzgeçlerden olan Dorsal ve Anal yüzgeçler Pterigiofor denilen Jymile parçalarıyla omurgaya bağlanmaktadırlar. Genellikle bu pterigioforlar omurların dorsal ve ventral dikenleri ile bağlantılıdırlar. Kuyruk yüzgeci ise, doğrudan doğruya omurların neural ve hemal spinleri ile desteklenmektedir. Çift yüzgeçlerden olan Pektoral ve Ventral'ler ise, iç iskelete göğüs ve kalça kemerleri ile bağlanmaktadır. Genellikle Pektoral yüzgeçler bir takım küçük kemiklerden yapılmış olan göğüs kemeri ile omurgaya doğrudan irtibat sağladığı halde; Ventral yüzgeçler ise, omurgaya doğrudan bağlanmazlar, ancak bulundukları bölgenin kas dokusu içine gömülü olarak bulunurlar.

http://www.biyologlar.com/baliklarin-iskelet-yapisi

Balıklarda Sindirim sistemi

Diğer omurgalılarda olduğu gibi, balıklarda da sindirim ağızda, başlar, farinks (yutak), özofagus (yemek burusu), mide ve bağırsaklarda devam ederek anüste son bulur. Aşağı yukarı bütün tatlısu balıklarında esas yapıda pek büyük farklılıklar yoktur. Fakat beslenme tarzının değişik olmasına göre (herbivor veya karnivor) özellikle barsak uzunluğunda önemli farklar göze çarpmaktadır. Ağız ve Dişler Morfoloji bahsinde anlatıldığı gibi, balıklarda ağız tipleri beslenme tarzına göre çok değişik şekillerde olabilmektedir. Ağız boşluğu içersinde, glossum'un üzerini bir derinin örtmesiyle meydana gelmiş ve kaslı kısımları fazla gelişmemiş bir dil mevcuttur. Diğer omurgalılardan farklı olarak ağız cidarında veya ağız boşluğuna açılan sindirim bezleri bulunmaz. Buna karşın ağızda çeşitli şekillerde olabilen dişler yer almaktadır. Sindirimle ilgili olan bu dişler genellikle bulundukları yere bağlı olarak başlıca 3 grupta incelenebilirler. • Çeneler üzerinde bulunan dişler : Bunlar üst çenenin premaxil ve maxil kemikleri ile alt çenenin dental kemiği üzerinde yer alan genellikle zayıf köklü ve içleri boş olan dış iskelet elementleridir. Fonksiyonlarına göre çeşitli şekillerde olabilen kesici, köpek ve azı dişleri olarak isimlendirilmektedirler. • Ağız boşluğunda bulunan dişler : Genellikle ağız boşluğunu çevreleyen Vomer, Palatin ve Ektopterigoid kemikleri ile dil üzerinde bulunurlar. Eğer ağzın arka tarafında olurlarsa Vomer, damakta olurlarsa Palatin, dil üzerinde bulunurlarsa Lingual dişler adını alırlar. Dil üzerinde bulunan dişler Esox lucius, Salmo trutta, Lampetra fluviatilis'de; Palatin üzerinde bulunan dişler Esox lucius, Salmo trutta, Perca fluviatilis ve Cottus gobio'da; Vomer üzerinde bulunan dişler Salmo salar, Perca fluviatilis, Salmo trutta ve Lota lota'da.; solungaç yayları üzerinde bulunan dişler Esox lucius ile Perca fluviatilis'de; Farinksin iç cidarında bulunan dişler ise Cyprinidae familyası üyelerinde görülmektedir. Bunlar arasında özellikle Cyprinidler'e has olan Farinks dişleri ile Salmonid'lerde karakteristik olan vomer dişleri türlerin ayrılmasında taksonomistler için büyük önem arzeden ayırıcı özelliklerdir. Farinks ve özofagus Bazı balıklarda (özellikle Cobitid ve Cyprinid'lerde), üzerinde farinks dişlerinin yer aldığı iki kemik yaydan ibaret çok kısa bir yutak kısmı bulunur. Yutak bölgesinde yer alan, sayıları ve diziliş tarzları türlere göre büyük değişiklikler gösteren farinks dişlerinin şekilleri ve fonksiyonları da türlere göre değişir. Örneğin, Cyprinus carpio ve Carassius auratus'da, besinleri öğütmek için tıpkı bir değirmen taşına benzer; Nemacheiliis cinsinde çamuru filtre etmek için bir kalbur vazifesi görür; Scardinius erythrophthalmus''da böcek larvalarını parçalamak için bir testere gibi iş görür, nihayet Leuciscus cephalus'da ise, böceklerin kabuğunu çıkarmak için bir seri kancalar gibi vazife görür.. Farinksten sonra gayet kısa ve dışarıdan bakıldığında mideden pek ayırt edilemeyen bir özofogus (yemek borusu) gelir. Burada, ağıza alınan suyun mideye girmesini önleyici ve büzücü karakterde olan bir kas mevcut olup, bu kas solunum esnasında yemek borusunu kapatmaktadır. Mide Özofagusun devamında pek iyi bir gelişme göstermemiş olan mide kısmı bulunur. Mide genellikle iki kısımdan ibaret olup birinci kısım genellikle besinlerin sindirilmemiş halde toplandığı Kardiyak bölgesi, ikinci kısım ise sayısı türlere göre değişik olan ve parmaksı görünüşte bulunan divertikulumların (plorik çekum = kör barsak) açıldığı Pilor bölgesi'dir. Mide genel olarak kuvvetli kaslardan meydana. gelmiş olup, özellikle Mugilidae familyası mensuplarında çok kalın çeperlidir ve tıpkı kuşların katı midesine benzer şekilde fonksiyon görmektedir. Yırtıcı balıklarda (örneğin, Esox lucius'da.} mide çok şiddetli etki yapan sindirim enzimleri içerdiğinden bütün halinde yutulan balıklar kısa zamanda ve kolayca sindirilebilirler. Midenin şekli balıklarda çok değişik olabilmektedir. Örneğin, Coregonus'da. (U) harfi sekilinde, Cottus gobio'da. düz bir kese şeklinde, Esox lucius'da ise, bir torba şeklindedir. Bazı balıklarda; Örneğin, Cyprinidac familyasında gerçek mide yoktur, onun için özofagus iyi gelişmiş olup, doğrudan doğruya bağırsağa bağlanır. Genel olarak denilebilir ki, balıklarda karnivorluk derecesi arttıkça mide gelişimi de artar. Bağırsaklar Mideden sonra gelen ve anüse kadar devam eden en uzun sindirim cihazı bağırskklardır. Bağırsak gelişimi balıkların beslenme rejimleri ile ilgili olup, genellikle karnivor formlarda (Esox lucitis) çok kısa; buna karşın, otla beslenen herbivor formlarda (Cyprinns carpio) çok uzundur. Sindirimin son bulduğu açıklık ise, Anüs olarak isimlendirilir. Anüsün konumu çeşitli balık, türlerinde değişik durumlar gösterdiği halde, kemikli balıklarda genellikle Anal yüzgecin hemen önündedir. Anüsün şekli bazı türlerde (örneğin, Cyprintts carpio'da.} sexleri ayırıcı karakter olarak kullanılabilir, örneğin, dişi sazanda anüs konvex veya kabarık durumda olduğu halde, erkekte konkav yani çukur görünüştedir. Buraya kadar açıklanan ve sindirim borusunun esasını teşkil eden organlardan başka yardımcı sindirim bezleri de mevcuttur. Bunların başlıcaları Karaciğer ve Pankreas olup, özsularını mide ile bağırsağın birleştiği bölgeye akıtırlar. Genel olarak çok hacimli yapıya sahip karaciğer iki büyük loptan meydana gelmiştir. Yüksek dozda A ve D vitaminleri içerir. Pankreas ise, balıklarda iyi gelişmemiştir. Birçoklarında dışardan farkedilmeyecek derecede küçülmüş olup, dağınık bir durum arz etmektedir.  

http://www.biyologlar.com/baliklarda-sindirim-sistemi

Balıklarda Boşaltım sistemi

Balıklarda boşaltım organı, metabolizma artıklarını (CO2, Ürik asit, çeşitli boya maddeleri ve anorganik tuzlar vb.) dışarı atmakla yükümlü olan böbrekler olmakla beraber, bazen çeşitli vücut kısımları (örnegin, Bağırsak, deri ve solungaçlar) onlara yardımcı olmaktadırlar. Balıkların böbreği genellikle bir çift olup, vücut boşluğunun dorsalinde yer almış bulunmaktadır. Özellikle kemikli balıklarda kloak olmadığı için, her böbrekten çıkan boşaltım, kanalları ya doğrudan doğruya ya da birbirleriyle birleşmiş olarak dışarı açılırlar. Nadiren de olsa, bazen üreme organı kanallarıyla da birleşmiş olabilirler. Boşaltım sistemi, bilhassa tatlısu balıklarında çok iyi gelişmiştir. Zira yaşam ortamları olan tatlı suyun yoğunluğu vücut sıvısının yoğunluğundan daha az olduğundan vücutlarının devamlı şekilde suyu süzerek dışarıya atabilmesi için iyi gelişmiş bir boşaltım sistemine gereksinim duyar. Bu nedenle bunlarda boşaltım sistemi iyi gelişmiş bir organdır.

http://www.biyologlar.com/baliklarda-bosaltim-sistemi

Balıklarda Üreme sistemi

Balıkların üreme organları genellikle gonadlar olup, bunlar dişide ovaryum, erkekte ise testis adını alırlar. Ovaryumlar genellikle bir çifttir. Büyüklük ve ağırlıkları türlere göre değişmekle beraber, olgun oldukları zaman balık ağırlığının %25 i kadar olabilir. Genellikle üreme mevsimi yaklaşmış, ergin bir balıkta ovaryumlar açık sarı veya kahverengimsi bir renk alırlar. Daneli bir görünüş kazanır ve yüzeyinde bol miktarda kılcal kan damarları bulunur. Ovaryumda gelişen yumurtalar genellikle ovıduct denilen bir boru ile vücut dışına atılırsada bazı balıklarda yumurta kanalı tamamen körleşmiş olup, yumurtalar ve spermler sadece bir delikle dışarı atılabilirler. Testisler ise erkek üreme organları olup genellikle bütün tatlısu balıklarında çifttir. Büyüklükleri üreme mevsimi ile ilgili olarak çok değişir. Ergin haldeki bir balıkta, üreme mevsiminde tastislerin rengi beyazımsı olur, lekesiz düz bir görünüş arzeder ve üzerinde kılcal kan damarlarıda görülmez. Tatlısu balıklarının çoğu ovipar (yumurta ile çoğalan) karakterli oldukları halde, bazılarında ovavivipar bir durum görülmektedir. Ovipar olanlarda döllenme haricidir. Yani yumurta ve spermler su içeersinde döllenmektedirler. Nadir bir olay olmakla beraber, Gambusia cinsinde döllenme dahili olduğundan, özellikle erkek bireylerinde, çiftleşme organı olarak anal yüzgeç modifiye olmuştur ve adeta yüzgeçin bir kısmı penis görevini yapmaktadır. Gambusia’ da görülen bu yarı doğurma hali hiçbir zaman memelilerdeki doğurmaya benzemez. Zira memelilerde yavru, ana rahmindeki gelişimi esnasında plasenta denilen bir göbek bağı ile annenin dolaşım sistemine doğrudan bağlanmış olup, beslenmesi anadan gelen kan içindeki besinlerle olur. Halbuki Gambusia'da. plasenta mevcut değildir. İç döllenme ile meydana gelen zigot, yumurtanın vitellüs maddesiyle beslenir. Fakat yumurtanın açılması, embriyonun açılması, balığın vücudu içersinde olduğu için, yavrular Kloak boşluğundan dışarı atılırlar. Bu nedenledir ki, Gambusia'da. görülen üreme tarzına viviparlık değil fakat ovoviviparlık diyebiliriz. Genellikle bir çift bez halinde olan ovaryumlar, granüllü bir görüntüde olup, hava kesesi bulunan balıklarda bu keseye yapışık vaziyette yer alırlar. Yumurtlama mevsimi yaklaştığında ovaryumların cesameti giderek artar ve visceral boşluğu doldururlar. Olgunlaşmış olan yumurtalar gözle ayırt edilebilecek kadar birbirlerinden ayrılmış olurlar. Yumurtanın büyüklüğü tiplere göre çok değişik olup, balığın cesameti ile ilgili değildir. Bununla beraber, yumurta cesameti yumurta sayısıyla alakalı olup, yumurta ne kadar küçük ise, sayısı o nisbette fazla olur. Örneğin, Dere Kayası, olarak bilinen Çöpçü balığı, Nemacheilus yumurtalarının cesameti, Cyprinus carpio gibi çok iri vücutlu balıklarınkinden bile büyüktür. Döllenmesi harici olan balıklarda, döllenmiş yumurtanın gelişmesi su içinde ve bırakıldığı yerde gerçekleşir. Embriyonik gelişim sırasında genellikle şeffaf olan yumurtanın içindeki yavrular, dışarıdan rahatlıkla izlenebilirler. Yumurta sayısı da balık türüne göre oldukça değişmektedir. Örneğin, tatlısu formlarından Acı Balık (Rhodeus)'ta yumurta sayısı 40- 100 arasında iken, bir Mersin Balığı olan Acipenser sturio’ da bir defa.da 3 milyondan fazla yumurta bırakılmaktadır. Balıkların bu kadar fazla yumurta bırakmaları kendi bekalarının idâmesi için gereklidir. Zira dişi balığın bıraktığı yumurtaların büyük bir kısmı diğer karnivor hayvanlar tarafından yenilir, bir kısmı da suların içinde döllenmeyerek çürüyüp kaybolur. Hal böyle olunca, bırakılan yumurtanın duruma göre %60-70' i telef olur, ancak %30 kadarı açılarak yavruları meydana getirir. Yumurtadan yeni çıkmış yavrular vitellüs keselerini absorbe etmeden önce, oldukça pasif davranışlı ve kendilerini korumaktan aciz olduklarından bu safhada iken de büyük bir kısmı diğer yırtıcılara yem olmaktan kendilerini kurtaramazlar. Ancak % 10-20 civarında yeni neslin ebeveynlere ilavesi mümkün olur. Yukarıda verilen değerlerden de anlaşılacağı gibi bırakılan herbir yumurtanın yavru verebilmesi dolayısıyla ebeveynlerin yaşamlarını sürdürebilme oranı oldukça düşüktür. Bu nedenledir ki balıkların yumurta ve sperm verimleri diğer hayvanlara nazaran çok daha fazla olmaktadır. Zira birkaç cins hariç (Gobius, Gambusia), balıklarda döllenme haricidir. Bu sebepten balıkların meydana gelmesinden evvel, yumurta ve yavru balıkların telef olma sebepleri nazarı itibare alınmaktadır. Bir türün yumurtaları ne kadar çok döllenir ve açılırsa, kuşkusuz, o nisbette yavru balık gelişir. Bunların da gelişerek ergin boya ulaşabilmeleri ve düşmanlarının az olması için çevre şartlarının uygun olması söz konusudur. Balıklar, yumurtalarını genellikle ya dişi tarafından hazırlanan bir yuvaya veya sadece çukur bir zemin üzerine veya suyosunları ve köklü subitkileri üzerine ve yahut çıplak taşlar üzerine bırakırlar. Tatlısu balıklarının çoğu, yumurtlamak için daima az derin suları tercih ederler. Yumurtlama yerleri ya hızlı akıntılı taşlık bir zon olabilir (Lampirid' ler, Salmonid' ler, Barbus' lar, Aspius' lar, Chondrostom' lar, Phoxinus' lar vb.) yahut da vejetasyonca zengin durgun bir su olabilir (Cyprinus, Abramk Cobitid' ler, Percid' ler vb.) Tatlısu balıklarında, olgunlaşan yumurtaların tümü bazı türlerde bir defada bırakılırken (Esox,Perca ve Rutilus'da.) ; diğerlerinde birkaç günlük aralıklarla 2 veya daha çok defada bırakılırlar ( Tinca, Cyprinus Alburnus, Blicca, Leuciscus vb.). Çok zaman şeffaf ve biraz da vizkoz karakterli olan balık yumurtaları şayet sudan daha ağır iseler, mukus maddesi sayesinde taşlar veya bitkiler üzerine yapıştırılırlar. Bazı formlarda ise (Alosa ve Lota gibi), tamamen serbest ve hafif olan yumurtalar, açılıncaya kadar su üzerinde yüzerler, bu nedenlerle balıkların bıraktıkları yumurtalar genel olarak 5 grupaltında toplanabilirler. • Yüzücü yumurtalar • Yarı yüzücü yumurtalar . • Hafif ve yapışkan olan yumurtalar • Ağır fakat yapışkan olan yumurtalar • Ağır fakat yapışkan olmayan yumurtalar Balıkların çoğu yumurtalarını gelişi güzel suyun içine bıraktıkları halde, bazı formlar yumurtalarının başka balıklar ve diğer su hayvanları tarafından yenmelerini önlemek amacıyla, özel olarak yaptıkları yuvalara. bırakırlar. Balık yuvaları ya hayvanın tercih ettiği bir barınaktan ibaret olabilir (kaya ve taşlar arasındaki kovuklar ve yarıklar su bitkileri ve yosunlar arasındaki barınaklar) veyahut da Dîkence balığında (Gasterosteus aculeatus] olduğu gibi yosun ve bitki kırıntılarıyla kendilerine özgü yuvalar kurarlar. Hakiki yuva kurma içgüdüsü olan bu balıkların büyük bir gayretle kurdukları yuvaya dişi tarafından bırakılan yumurtalar, erkek balık tarafından yavrular çıkıncaya kadar (aşağı yukarı 15 gün ) dikkatlice korunurlar. Erkek balık bu bekçiliği esnasında yuvanın içindeki suyu sirkülasyon yaptırmak amacıyla yüzgeçlerini de devamlı olarak hareket ettirir. Buna benzer şekilde yumurtaların erkek bireyler tarafından korunma içgüdüsü Gobiideve Cichlidae temsilcilerinde de vardır. Diğer taraftan, Acı balık (Rhodeus) cinsinden az saylda olan yumurtaların açılıncaya kadar emniyet altında bulundurulmaları için tedbir alınmaktadır. Şöyle ki, dişi balık olgunlaşan yumurtaların uzunca bir ovipozitörü sayesinde bir tatlısu Midyesi olan Anadonta ve Unio'ların solungaç-manto boşluğu arasına bırakırlar. Çok az miktarda albümine karşı, bol miktarda vitellüs içeren ve etrafı ince ve şeffaf bir zarla çevrili bulunan, balık yumurtaları, çeşitli şekillerde ve değişik ortamlarda suya bırakılmalarını müteakip, erkeğin aynı suya bıraktığı çok daha fazla sayıda sperm hücreleri tarafından döllenirler. Kısa bir süre sonra (5-10 dakika içinde) döllenen yumurtalar üzerinde, döllenme lekesi adı verilen küçük bir iz, büyümeye başlar ve bu kısım bir müddet sonra, daha da ilerlemiş bir değişmenin merkezi haline gelir. Bu gelişmeyi zarın şeffaflığı nedeniyle çıplak gözle dahi takip etmek mümkündür. Hatta, bu sırada yumurtaların içindeki embriyoların gelişme safhalarını da inceden inceye gözlem altında tutmak imkân dahilindedir. Yumurtalarını döken balıklar, genellikle gıda almak üzere avlanmazlar, çünkü yumurtalarını döktükten sonra halsiz, bitkin bir duruma düşerler. Hatta bazı türlerde bu haldeki balıklara hasta balık nazarıyla bakılır. Örneğin, Onchorhynchus adı verilen Pasifik alası denizden tatlısu göllerine yumurta bırakmak üzere göç ettikleri zaman, yumurtalarını orada döktükten sonra, sahile çekilip ölürler. Bu meyanda, Yılan balıkları da (Anguilla anguilla) Meksika körfezinde bin metre derinliğe yumurta bıraktıktan sonra ölüme giderler. Kuşkusuz bu özellik tüm balıklarla ilgili olmayıp, istisnai bir haldir. Balıklarda kuluçka süreci, türden türe çok değişik olur. Bu süre genellikle, suyun sıcaklığı ile çok yakından ilgili olup, suyun ısınmasıyla (belli sınırları aşmamak şartıyla) ters orantılıdır. Bu nedenledir ki, suyun ısısını yükseltmek veya düşürmekle, kuluçka müddetini kısaltmak veya azaltmak da mümkündür. Örneğin, Salmo trutta' nın kuluçka süresi 5°C de 82 gün iken, 10°C de 41 güne indirilebilmektedir. Demek oluyor ki döllenmiş olan yumurtaların açılabilmesi, kuluçka süresince alacağı toplam ısı miktarına bağlıdır. Bu da Derece / gün orantısı olarak ifade edilmektedir. Örneğin, bu değer Alabalık için 410°C/gün olduğu halde, sazan balığı için 100°C/gün olarak hesap edilmiştir. Buna göre 20°C de bırakılan Sazan yumurtalarının kuluçka süresi 100/20=5 gün olacaktır. Yavru balıklar embriyonik gelişmeleri esnasında vitellüs kesesi içindeki besin maddesiyle beslenirler ve yumurtadan çıktıkları zaman da bu kesenin bir kısmını yine karınlarında taşırlar. Bu kese onlara doğumdan sonra bir müddet daha besleyici besin maddesi temin etme bakımından önemlidir. Belirli bir süre sonra bu kese kendi kendine absorbe edilerek kaybolur gider. Bu absorbsiyon müddeti balıklar için türlere göre değişmekte olup, Sazanlar için 20 gün, Alabalıklar için ise 40-50 gün devam eder, hatta deniz Alası için (Salma salar) bu süre daha da fazla olup, 70-120 gün kadardır. Vitellüs kesesinin absorbsiyonu tamamlandıktan sonra küçük yavrular kendi besinlerini kendileri aramaya başlarlar. Bu çağdaki balıklar özellikle su içinde bol miktarda bulunan bitkisel ve hayvansal planktonik organizmalarla beslenirler. Yumurtadan yeni çıkmış bir balık yavrusu aşağı yukarı yumurta çapının üç katı boyundadır ve türe göre değişen pasiflik devresini geçirdikten sonra (şayet hava kesesi bulunan bir balığın yavrusu ise) hava keselerini doldurmak için suyun yüzeyine doğru tırmanırlar. Balık yavruları gelişme esnasında genellikle büyük değişmelere uğramazlar (Yılan balıkları, Dil balıkları ve lampiridler hariç). Bu nedenle balık uavrularına uavruşarına larva demek pek doğru almaz. zİra, besin keseleri hariç şekil itibarıyle tamamen ebeveynlerine benzerler. Fakt yukarıdada belirttiğimiz gibi Yılan balıları (Anguilla anguilla} ile Lampri'lerin (Lampetra fluviatilis)Leptocephalus adı verilen yavruları aşağı yukarı 3 yaşına kadar ebeveynlerinden çok farklı olan hakiki bir larva safhası geçirirler. Diğer taraftan, bir tatlısu Pisi balığı olan Pleuronectes flesus türünde ise yavrular başlangıçta bilateral simetrili iken, uzun bir gelişimden sonra ebeveynlerde görülen asimetrik durum ortaya çıkar. Bundan dolayı yumurtadan çıktıktan sonra, belli bir metamorfoz geçirerek ebeveynlerine benzeyen bu balıkların genç formları için larva tabiri kullanmak zorunlu olmaktadır. Balık yavruları gelişme esnasında genellikle büyük değişmelere uğramazlar (Yılan balıkları, Dil balıkları ve lampiridler hariç). Bu nedenle balık uavrularına uavruşarına larva demek pek doğru almaz. zİra, besin keseleri hariç şekil itibarıyle tamamen ebeveynlerine benzerler. Fakt yukarıdada belirttiğimiz gibi Yılan balıları (Anguilla anguilla} ile Lampri'lerin (Lampetra fluviatilis)Leptocephalus adı verilen yavruları aşağı yukarı 3 yaşına kadar ebeveynlerinden çok farklı olan hakiki bir larva safhası geçirirler. Diğer taraftan, bir tatlısu Pisi balığı olan Pleuronectes flesus türünde ise yavrular başlangıçta bilateral simetrili iken, uzun bir gelişimden sonra ebeveynlerde görülen asimetrik durum ortaya çıkar. Bundan dolayı yumurtadan çıktıktan sonra, belli bir metamorfoz geçirerek ebeveynlerine benzeyen bu balıkların genç formları için larva tabiri kullanmak zorunlu olmaktadır.

http://www.biyologlar.com/baliklarda-ureme-sistemi

Balıklarda Sinir sistemi

Diğer yüksek organizasyonlu omurgalılarda olduğu gibi, balıklarda da uyartıları alma ve nakletme işini gören ektodermal orijinli bir sinir sistemi mevcuttur. Sinir sistemi sayesinde vücuttaki çeşitli organ ve sistemler arasında bir işbirliği ve bütünlük sağlanmış olur. Dolayısıyla canlının yaşam akışını idare eden merkezi sinir sistemidir. Beyin Balıklarda beyin, genel olarak ön, orta ve arka kısım olmak üzere üç bölüm halinde incelenebilir. Ön kısımda, beyin ile doğrudan irtibat sağlayan olfaktif loplar vardır. Bu bölgenin balıklarda esas olarak koku alma hissiyle ilgili olduğu söylenirse de, diğer bazı fonksiyonları da idare ettiği saptanmıştır. Örneğin, olfaktorius lopları çıkarılan üç dikenli Dikence balığı (Gasterosteus aculeatus) türünde üreme düzensizlikleri görülmüştür. Yüksek omurgalılardaki düşünme merkezi olan Cerebral hemisferler (beyin yarım küreleri) balıklarda koku alma merkeziyle birleşmişlerdir. Bunun içindir ki örneğin, köpek balıklarında suda hasıl olan herhangi bir kan kokusu, onların yırtıcılık hislerini kışkırtır ve dolayısıyla köpek, balığı hemen kan kokusunun geldiği yöne doğru yönelir. Sinirler Balıklarda genellikle iki çeşit sinir mevcut olup, bunlardan birisi beyinden çıkan kafatası sinirleri, diğeri de omurilikten çıkan spinal sinirlerdir. Dışardan gelen uyartıları motor sinirleri alır ve gerekli hareket için kaslara emir verirler. Böylece sinirler sayesinde dışardan yapılan etkilere karşı canlı tarafından gerekli tepki gösterilmiş olur. Herbir kas fibrili bir sinir fibrili içerir ve herbir kas bütün etkileri kontrol eden tek bir sinir ile koordineli olarak çalışır. Dışardan içeriye ve içerden dışarıya sayısız impulslar nakledilir ve bu sayede de canlının çeşitli durumlardaki vücut hareketleri idare edilir. Bir sinirin yapısı mikroskop altında incelenecek olursa, çok karışık (komplike) bir yapıya sahip olduğu görülür. Adeta bir telefon santralinde olduğu gibi birbirlerine çok yakın olarak yerleşmiş, gayet ince ve çok sayıdaki kablolardan ibaretmiş gibi bir görünüş arzeder. Uzunluk ve çapları hiçbir zaman insan beynindeki sinirlerin 1/10'ini geçmez. Bunlar beyin ve omuriliğin önemli kısımlarını teşkil eden yıldızımsı şekildeki nöronların uzantılarıdır. Balıklarda genel olarak sinirlerin çalışması bir telefon santralinden çıkan tellere benzetilirse de onlardan oldukça farklıdırlar. Zira telefon santralinden çıkan ve santrale gelen mesajlar aynı tel ile idare edildiği halde dışardan alınan uyartılar ve kaslara verilecek emirler ayrı sinirlerle yönetilmektedir. Genellikle uyartıların alınması his sinirleri ile olur Bu hisler, adı geçen sinirlerle beyindeki ilgili merkeze nakledilir. Beyindeki ilgili merkez böyle bir uyartıyı algılayarak çok kısa bir zamanda cevabını hazırlar ve gerekli emirleri kaslara motor sinirler gönderir. Bu sayede canlı gerekli davranışta bulunur veya lüzumlu salgıyı salar. Balıkların duyu organları yüksek yapılı omurgalılarınkiyle mukayese edildiğinde netice olarak balıkların da burun, dil, göz ve kulak gibi duyu organlarına sahip oldukları görülür. Fakat bunlardan ayrı olarak, sucul ortamda yaşayan canlılara özgü bazı his organlarına da malik bulundukları dikkati çekmektedir. Bu bakımdan balıklar her ne kadar yüksek omurgalılara benzerlerse de, karasal omurgalılarda görülmeyen ve büyük bir öneme haiz olan duyu organları da taşımaktadırlar.

http://www.biyologlar.com/baliklarda-sinir-sistemi

Anguilla anguilla Yılan Balığı ve Özellikleri

Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Sınıf : Pisces (Balıklar) Alt Sınıf : Osteichthys (Kemikli Balıklar) Takım : Anguilliformes (Yılanbalığımsılar) Familya : Anguillidae (Yılanbalıkları) Tür : Anguilla anguilla (Anguilla vulgaris, Muraena anguilla) (Avrupa Yılanbalığı) Tarihçesi: M.Ö. 3. Yüzyılda yaşayan Aristo, "Toprağın bağırsakları" dediği solucanlara benzeyen bu canlılarla ciddi ciddi ilgilenmişti. M.Ö. 1. yüzyılda bir Romalı düşünür ise, "Yılanbalıklarının kaya parçalarına çarpan diğer balıkların derilerinden meydana geldiğini" ileri sürmüş. 17. yüzyılda Francesco Redi adlı doğabilimci, yılanbalığının bir balık olması nedeniyle ancak yumurta yoluyla üreyebileceğini belirtmiş. Sigmund FREUD'ta 19. yüzyılın sonlarına doğru çalışmalarında biyolojiye ağırlık verdiği dönemde, çağrıştırdığı cinsellik açısından yılan balığını tanımaya çalışmış ancak sonuçsuz kalmış. 1920 yılında Danimarkalı biyolog Johannes Schmidt, Atlantik Okyanusunda avlanırken, ağına takılan 77 mm boyunda yılanbalığı larvalarına rastladı.Bunları takip etti ve sonunda yılanbalığı larvalarının Atlas Okyanusunda, Amerikanın biraz açıklarında "Sargasso Denizi" denilen bölgede doğuyorlardı. Daha sonra uzun bir yolculuğa çıkıp Avrupa'ya kadar geliyorlar ve burada ulaştıkları tatlı sularda gelişip büyüdükten sonra yeniden denize dönüyorlardı. Avrupa kıyılarından Meksika'ya gidildikçe larvaların boyları küçülmekte, buna göre yılanbalıkları Meksika yakınlarında üremekte. Yılanbalıklarının yumurta ile üremelerine ilişkin ilk bilgi yumurtalıkların keşfi ile olmuş, ancak birçok bilim adamı yumurtaları bulmak için çok uzun bir süre uğraşmıştır. İtalyan bilim adamı Lazzaro Spallanzani, yılanbalıklarını 40 yıl boyunca incelemesine karşın yumurtalı bir bireye hiç rastlamadığını belirtmiş. 1974 yılında Japon bilim adamları yakaladıkları bir dişi yılanbalığını suni yolla döllemeyi denediler.Laboratuarda gerçekleşen deneyde,dişi yılanbalığı yumurtlar yumurtlamaz öldü.Karnı yarıldığında dönüş yolculuğunda hiç yiyeceği kalmadığı anlaşıldı. 1981 yılında Alman okyanus bilimci Friedrich Wilheim Tesch ilginç bir deney yaptı.Yakaladığı dört dişi yılanbalığını Sargasso Denizi'ne alıcılar bağlayarak bıraktı.Son sinyaller 700 metre derinlikten geldi ve daha sonra yılanbalıklarının izini kaybetti. Yılanbalığı gizemini ve efsane kimliğini hala koruyor. Genel Özellikleri Yılanbalıkları,her ne kadar sürüngene benzese de gerçek bir balık türüdür.Solungaçları vardır. Karın yüzgeçleri yoktur,ancak sırt ve göğüs yüzgeçleri vardır. Karın yüzgecinin olmaması bu balık türüne özgüdür. Üzerinde yoğun bir mukus tabakası olan, kaygan bir derileri var. Bundan dolayı çıplak elle tutulamaz.Yılanbalıkları geceleri hareketlidir,gündüzleri çamurun içine saklanırlar.Çayıra bırakıldıklarında suyun yönünü hemen bulabilirler. Susuz ortama karşı çok dayanıklıdırlar ve uzun süre su dışında kalabilirler. Çünkü bu hayvanlar,yağmurlardan sonra ıslak yerlerde, nemli çimenlerde kolaylıkla hareket edebilirler. Bundan dolayı bir nehirden başka bir nehre (yakın mesafede) bile geçebilirler. Turna balıkları,mersin balıkları ve su kuşları en büyük düşmanlarıdır.Kanları çok tehlikeli bir sinir zehiri içerir, kanı yara ve çatlaklara değmemesine özen gösterilmelidir.Isıtıldığında zehir parçalanır.Toplam 19 yılanbalığı türü vardır Vücut uzun yılan şeklinde, yanlarda hafif yassı olup küçük pullarla kaplıdır. Renk üreme zamanına kadar kahverengimsi sarı, üreme zamanı gelince gümüşidir. Ömürlerinin büyük kısmını (6-20 yaşa kadar) tatlı sularda geçirirler. Yumurtlamak üzere tatlı suları terk ederek denize açılırlar. Üremelerini Meksika Körfezinde gerçekleştirirler. Hayatlarında bir defa yumurta kaparlar. Yumurtlayan yılan balıkları ölür. Çıkan yavrular 3 yaşında, 65-70 mm boyuna geldiklerinde karasularımıza ulaşırlar. 20-60 yıl yaşarlar. Göçün ortaya çıkmasında en önemli nedenlerin başında; üremedir, yavruların yetiştirilmesi, kış gelmeden önce bulunulan bölgeden uzaklaşmaları gerekmektedir. Yaşam ortamındaki besin miktarında azalma, populasyonun artmasıyla birlikte yaşam alanının küçülmesi gelmekte.Yılanbalıklarını göçteki amacı; iç güdüsel olarak doğdukları yere ulaşıp üremek istemeleridir. Coğrafik Dağılımları: Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Larva Dönemleri Şubat ile nisan ayları arasında dünyaya geliyorlar. Larvalarına "Leptocephal" adı verilen larvalar küçük bir dil balığı biçiminde ve vücutlarına oranla iri siyah gözleri bulunur. Şeffaf görünümde olur,kasları iç organları görülür. Uzunlukları yaklaşık 5-6 milimetre arasındadır. Sargasso Denizi'nden Avrupa'ya kadar gelişi sırasında zooplanktonlarla ve küçük kabuklularla beslenirler. Bu hayvanları 14 dişiyle parçalayarak yer. Yolculuğunu, ya kendisini akıntılara bırakarak ya da küçük sürüngenler gibi hareket ederek tamamlıyor. Dokuz ayda tam 6000 km yol katettikten sonra Avrupa Kıyılarına ve 7000 km'den sonra da Akdeniz havzasına ulaşırlar. Yavru Dönemleri Larva Avrupa kıyılarına vardığında,tatlı su ortamına uyum sağlamak ve kıyıdaki haliçleri daha kolay aşmak için metamorfoz geçirip, saydam ve minyatür yılanbalığı haline dönüşür . Bu ortamda yaşayabilmek için iç basıncını ayarlar. Larva dönemindeki dişlerini kaybeder ve bundan dolayı beslenemez. Beslenmeme döneminin uzamaması gerekir . Nehirlerde ilerlerken büyümeye başlarlar. Yılda boyları yaklaşık 10 cm, kiloları da 20 gram artar. Tatlı suya ve nehirlerin içlerine ulaşmak için çok hızlı ve gruplar halinde hareket eder. Nehirleri tırmanmaya başlayıp bazen kıyıdan 200 km içerlere kadar sokulurlar. Ancak daha fazla ilerleyemezler. Çünkü akarsular üzerinde barajlar ve setlere takılırlar. Grup halindeki dolaşmaları, kıyıdaki haliçlerde beyaz lekeler oluşturur. Belli bir süre sonra bir yere yerleşirler. Burada ikinci metamorfoz olur. Küçüklük Dönemleri Halk arasında "sarı yılanbalığı" denilen 3. aşamaya ulaşırlar. Bu metamorfoz aşamasında cinsiyeti belirlenir ve bu dönemde çok saldırgan olurlar. Derisinde beliren pigmentler nedeniyle rengi yavaş yavaş koyulaşır. Yemek borusu açıldığından yeniden beslenmeye başlıyor. Geceleri avlanmaya çıkarlar; Kız böceği, sinek, çamca balığı yiyerek beslenirler. Kış aylarında sularında soğumasıyla da kendini çamura gömerek kış uykusuna yatar. Nehir boyunca günde birkaç kilometre mesafe katederek sonunda bir süre sabit kalacağı noktaya ulaşır. Bugün yeryüzündeki yılanbalığı sayısının azalmasının temel nedenlerinden biri de onun yol aldığı bu nehirlere insanoğlunun inşa ettiği baraj ve setler. Bu dönemde uzunluğu cinse göre farklılık gösterir. Erkeklerde 5-8 yıl sürerken, dişilerde 7-12 yıl devam eder. Bu süre sonunda geldikleri yere dönmek için yola çıkarlar. Amaçları, tamamen içgüdüsel biçimde Sargasso Denizi'ne ulaşmak ve orada çiftleşmek. Yolculuğa çıkmadan son metamorfozlarını da geçirirler. Yetişkinlik Dönemleri Açık ve tuzlu su için gerekli metamorfozları geçirir. Derisi kalınlaşır,derinliklerin karanlığında yolunu daha iyi görmesi için gözlerinin hacmi artar ve bilye büyüklüğüne ulaşır. Daha önce vücudunun üçte birini oluşturan yağ tabakasını eritmeye başlar. Başını ön tarafı daha sivrileşir;böylelikle daha ince,aerodinamik bir yapı kazanır. 6 ile 13 yıl arasında bir süre bu yeni mekanında yaşıyor ve irileşiyor. Derisinin rengi ;karın kısmı gümüşümsü,sırt kısmıysa daha koyu bir görüntü kazandıktan sonra,12 gün içinde açık denizdeki yeni yolculuğuna hazırlanıyor. Boyu 1.2 metreye ulaşıyor ve vücudunun iç basıncını yeniden tuzlu suya göre ayarlıyor. Dönüş yolunda,akıntılardan mümkün olduğunca kaçınır ve bunu tamamen içgüdüsel olarak yapar. Geri dönüş yapan bir yılanbalığı bugüne kadar ,Avrupa kıyısından başlayarak tüm Atlas Okyanusu boyunca izlenememiştir. Sargasso Denizine ulaştıktan sonradaki yaşamları konusunda da bilgiler tam değildir. Dönüşü 120-200 gün süren yılanbalığı çok derin sularda yüzdükleri ve çok ağır basınç altında kaldıkları belirtiliyor. Basınç sayesinde üreme organları gelişmektedir ve hormon salgılamaya başlarlar.Sargassso Denizi'nin 600 metreye varan derinliklerinde çiftleşmeye uygun konuma gelirler. Dişilerde yumurtalar toplam kilosunun yüzde 80'ine ulaşır,yani 800 gram yumurta taşır. Renkleri: Yılanbalıklarında çeşitli renklenmeler görülür. Doğduğunda saydamdır.Nehirlere girinceye kadar bu formunu korur, nehirlere girdikten sonra renk pigmentleri oluşur. Rengi kahverengi sarımsıya döner,cinsel olgunluğa tam erişmemiştir.Bu hayvanlara sarı yılanbalıkları denir. 10-15 yaşlarında ise sırtları siyah, karın kısımları gümüşi renk alır.Cinsel olgunluğa erişmiştirler.Bu hayvanlara parlak veya gümüşi yılanbalıkları denir. Habitat ve Coğrafik Dağılımları Dipte, çamura bağlı olarak,tatlı suda ve denizde yaşarlar.Atlantik Okyanusu, Akdeniz, Batlık Denizi, Karadeniz ve bunlara akan akarsularda bulunurlar. Kuzey Afrika'da Cezayir'de görülebilirler.70 ile 25 kuzey enlemleri arasında dağılım gösterirler.Göçleri bütün Akdeniz, Baltık Denizi, Kuzey Denizi, Atlas Okyanusu ve Adriyatik Denizine dökülen nehir ve göllerden yola çıkan Avrupa yılanbalıklarının göçü Meksika Körfezi'nin 800 ile 1000 metre derinliklerinde son bulur.Sadece Avrupa yılanbalığı (Anguilla anguilla) ülkemiz iç sularında yaşar.Akdeniz ve Ege 'ye dökülen bütün göl ve nehirlerimizde bol miktarda bulunan yılanbalığı Batı Karadeniz'den Sakarya Nehri'ne kadar yayılan bir yaşam alanına sahip. Ekonomik Önemi: Bir çok ülkede beğenilen ve oldukça fazla tüketilen bir besin.Balık yetiştiriciliğinde genelde suni olarak balıkları üretmek mümkünken, yılanbalıkları suni olarak henüz üretilebilmiş değil.Yetiştiriciliği göç sonucu nehir ağızlarına gelen yılanbalığı larvalarının yakalanarak büyük havuzlarda beslenmeye alınmasıyla yapılmakta.Yakalanan yavruların bir kısmı doğrudan besin olarak tüketilir.1 kg yılanbalığı yavrusu 2800 ile 3500 arasında birey içerir.Avrupa kıyılarında yakalanan yavru balık miktarının yıllık 300 ton civarında olduğu söylenmekte.Bu miktar 900 milyar ile 1 trilyon arasında yavru balık anlamına geliyor. Türkiye kıyılarına ulaşan milyonlarca yavru balık büyük sürüler oluşturarak iç sulara girer.Nehir üzerindeki barajlara,yakındaki nehirlere,geceleri karaya çıkarak çamur ve nemli çayırlar üzerinden ilerleyerek ulaşabilir.Ülkemizde Akdeniz ve Ege kıyılarına dökülen nehirler üzerine yapılan barajlarda,balıkların yukarı çıkabilmesi için şelaleler yaparak yükselen balık merdivenleri bulunmadığından özellikle Gediz Nehri üzerindeki barajlarda, yavru balıkların türbinlere girmeleri,karaya çıkarak yukarı çıkmak istemeleri sonucu büyük kısmı telef olmakta. Nehirlere girişi,denizlerdeki akıntıları yardımıyla güney kıyılarından itibaren başlıyor. Aralık ve mart ayları arasında nehirlere giren yılanbalıkları,6-9 sene için denizlere kitlesel göç yapıyor.Yılan formunda olduğu için yerli halk tarafından tüketilmiyor ancak ;yurtdışında oldukça yüksek düzeyde alıcı buluyor. FAO'nun (Dünya Tarım Örgütü) ülkemizde yetiştiriciliğini tavsiye ettiği üç su ürünü karides,yılanbalığı ve süs balıkları arasında,ekonomik olarak en hesaplısı olan yılanbalıkları için hiçbir girişim yapılmıyor. Türkiye su ısısının Avrupa'ya göre yüksek olması,bu balığın göç dönemlerinde farklılık oluşturuyor.Avrupa'da yılanbalığı avcılığı mayıs-ekim dönemlerinde,ülkemizde ise eylül-ekim dönemlerinde gerçekleştiriliyor.Meriç Nehri 9.kilometrede Yunanistan sınırları içine kıvrılmış durumda.Bu noktadan itibaren sularının büyük bir kısmı Yunanistan sınırları içinden denize dökülmekteyken yatağındaki bu değişim, beraberinde bir çok sorunu da getirmiş. Yılanbalıkları içgüdüsel olarak akıntıya karşı yolculuk etme eğiliminde olduklarından, debisi giderek artan Yunanistan sınırlarındaki Meriç ağzında giriş yapmaya başladılar.Balıklar,geri dönüşte de aynı yol izlediklerinden, epeydir Yunanlı balıkçılar tarafından 9. kilometrede ve Meriç ağzında kurulan ağlarla avlıyorlar.Bugün Enez'de yılda sadece 1.5 tonluk bir üretimimiz var.Meriç'in 9. kilometreden ayrılan Türkiye kolunun debisinin azalmasıyla artık nehir yatağı giderek mıcır, taş yığınlarıyla dolmuş bulunuyor. Ekonomik olarak önem kazandığı yörelerimizin başlıcaları: Enez, Çandarlı (İzmir), Söke (Dalyan), Güllük (Muğla), Köyceğiz dalyanı ,Oragon çayı... Göç Sırasında Yön Bulma Yetenekleri Göç eden hayvanların yön bulma yetenekleri bilim dünyasında pek çok araştırmaya konu olmuş. Bu görüşlerden bazıları şöyledir; 1-) Göç sırasında dünyanın manyetik alanını kullandıkları görüşü: Dünyamızın bir manyetik alanı vardır. Bazı deniz memelileri, kuşlar, bazı balıklar, bazı böcekler, bazı mikro organizmalarda bu manyetik alanı saptayabilen algılayıcılar bulunur. Manyetoreseptör denen bu algılayıcıları sayesinde hayvanlar, uzun mesafeli göçte veya gezintilerinde yönlerini kolayca bulabiliyorlar. Ama bunun dışında kullandıkları referanslarda vardır. Yılanbalıklarının doğdukları yere geri dönüşleri, manyetoreseptörler ve suyun kimyasal yapısını tanımalarıyla açıklanmakta, denizlerde dahil olmak üzere her suyun, hatta her bölgenin kendine özgü bir kimyasal yapısı olur. Rota bu kimyasal bileşime göre saptanır. 2-) Sargasso Denizi'nde doğan canlılar, gelişme bölgelerine doğru göçerken suyun kimyasal yapısını belleklerine kaydederler. Gelişme dönemini tamamlayıp geri dönerken de, belleklerinde kayıtlı olan üreme alanlarına geri dönerler. Bu göçün tam anlamıyla bir yanıtı olmamakla birlikte kabul edilen bir görüşe göre dünyamızdaki kıtalar henüz birbirlerinden ayrılmamışken, yılanbalıkları bugün üredikleri yerde ürüyorlardı. Kıtaların ayrılmaya başlamasıyla, kıtalar arasındaki mesafeler uzadı. Milyonlarca yıl sonra bugün ki durumuna geldi. Göç başta kısa mesafelerde yapılırken, kıtalar birbirinden ayrılıp uzaklaşınca göç mesafesi de arttı. Sargasso Denizi belki de onların yumurtlamak için en uygun koşulları ( suyun sıcaklığı, kimyasal yapısı, bölgenin jeomanyetik alanı vb) sağlayan bir bölge olduğu için binlerce yıldır aynı bölgeye gelip yumurtlamakta. Yılanbalıkları iç güdüsel olarak göç ederler,yani ilk doğdukları yere giderek orada doğurur ve ölürler.Bu olay tamamen kalıtsal bir davranıştır. Zaten bununla ilgili görüşler ileri atılmıştır. Yılanbalıkları belirli periyotlarda bu göç olayını gerçekleştirirler ,yani; belirli bir büyüme sonunda göç etmeye başlarlar ritimleri bellidir.Göç olayı çiftleşme ,solunum gibi düşünülebilir.Sadece yılanbalıkları göç etmezler ;kuşlar,balıklar..vb İkinci Göç Bu göç, yılan balıklarının doğduğu yere üremek için yaptıkları göçtür. Gümüşi yılan balıkları sonbaharda, tatlı suları terkettiklerinde cinsi olgunlukları tamamlanmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Sargossa"daki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaşacağı zamana kadar, denizde beslenmeden hayatta kalabilmektedir. 5000 km"lik uzun ve tehlikeli göçün tek hedefi, doğdukları yere ulaşıp üremektir. Üreme alanında deniz derinliği 4-5 bin metredir. Yılan balıkları yavruları ise 400-500 metrede güneş ışınlarının son ulaştığı derinliklerde yakalanırlar. Yılanbalıklarının yumurtladıktan sonra öldüğü tahmin edilmektedir. Avrupa Yılan Balığının Ürediği Yer: Sargossa Denizi Yılan balıklarının üreme alanları Peurto Rico ve Bermuda Adalarından eşit uzaklıklarda bulunmaktadır. Sargossa denizi bir kuyu şeklinde ve 1000 m derinliğe kadar bir bölgede tuzluluk oranı % 0,35 ve su sıcaklığı 17 dereceyle, yılan balıklarının üreme sahaları olarak diğer bölgelerden ayrılır. Yılan balıkları tam olarak nerede toplanıyorlar? Yumurtlamaları nerede oluyor? Erkekler nerede bu yumurtaları döllüyorlar? Bu yerler ve olaylar hiçbir kimse tarafından gözlenememiştir. Sadece bu olayların anılan bölgede olduğuna dair bir çok bilgiye sahibiz... Yılan balıkları derin su balıklarıdır. Tatlı sulara geçici olarak, büyümek için gelmektedirler. Sargossa denizinde 400 metre derinlikte yumurtadan çıkmış yılan balıkları, 15 yıl sonra tekrar üremek için aynı sulara geri dönmektedir. Üreme zamanına ulaşan yılan balıklarını, tatlı sulardan denizlere göç ettiği dönemde “gümişi yılan balığı” adı verilir. Bu dönemde yılan balıkları yumurtaları incelendiğinde üreme organı içinde yağ damlaları gözlenmektedir. Bu durum yumurtaların deniz dibinde değil orta sularda olabileceğini kanıtlamaktadır. Sargossa denizinde derinlik 4500 metre dolaylarındadır. 400-500 metre derinlik bu denizde güneş ışınlarının ulaşabildiği son derinlik olmakta, 500-600 metreden sonra ise hayat güçleşmektedir. Üremenin bu derinlikte olmasından sonra, yumurtadan çıkan larvaların büyüyerek yükselmeye başladıkları saptanmıştır. Örneğin 5-15 mm boyundaki yılan balığı larvaları 100-300 metre derinliklerde rastlanırken, biraz daha büyükleri ve bu denizden uzaklaşmış olanları 50 m civarındaki derinliklerde bulunmaktadır. Bütün bu bilgiler yılan balıklarının döllenmiş yumurtalarının bu bölgede izlenememiş olmasına rağmen, üremenin bu bölgede olduğunu kanıtlayan veriler olmaktadır. Aynı bölgede Mart ve temmuz ayında milyarlarca leptosefalus larvasının gözlenmiş olması, üremenin ilkbahar ve yaz başlangıcında olabileceğine işaret etmektedir. Yumurtlayan Yılan Balıklarına Ne Oluyor? Yumurtladıktan sonra yılan balıklarının akibetlerinin ne olduğu günümüzde hala bir bilinmezdir. Çünkü yumurtladıktan sonra Avrupa kıyılarına geri dönmüş tek bir yılan balığına raslanamamıştır. Bu durumda iki hipotez ileri sürülmektedir: Bunlardan ilki yılan balıkları yumurtladıktan sonra derin dip balığı olarak yaşamını sürdürür. Diğeri ise, yılan balıkları yumurtladıktan sonra kitle halinde ölürler. Bu iki görüşten ikincisini destekleyecek bir çok delil bulunmaktadır. Gümüşi yılan balığı olarak adlandırılan üremek için denizlere açılmaya yönelmiş bir yılan balığında anüs yapısının bozulduğu, sindirim sisteminin deforme olduğu ve kaslarda değişim başladığı gözlenmiştir. Bazı balık türlerinde de üremeden sonra ölüm olduğu bilinmektedir. Örneğin som balıkları yumurtlamak için denizlerden nehirlere göç ederler. Ve hepsinin yumurtladıktan sonra öldükleri gözlenir. Öyleyse yılan balıklarının da üredikten sonra öldüklerini kabul etmek yanlış olmayacak ve bunların 4500 m’ye varan derinliklere çöküp çürüdüklerini kabul etmekten başka yorum kalmayacaktır. Yumurtadan Çıkan Larvaların İlk Yolculuğu Yumurtadan çıktıktan sonra larvalar için önemli, uzun ve güç bir yolculuk başlar. Üreme alanının hemen çevresine üreme mevsiminde milyarlarca larva dağılarak yol almaya başlarlar. Larvalar kuzeyden Labrodor"dan gelen soğuk su akıntısı ve güneyden Ekvatordan gelen sıcak su akıntısının zararlı etkisi nedeniyle bu yönlere gitmezler. Amerika kıtasına gitmeyi tercih etseler, Amerika kıyılarına kısa sürede ulaşacaklar ve metamorfoz denilen normal vücut değişimlerini (3 yıl gerekir) sağlayamadan kıyılara ulaştıkları için ölmekten kurtulamayacaklardır. Aynı bölgede Amerikan yılan balıkları da üremesine karşın, onların yavruları tatlı suya girebilecek morfolojik değişime 1 yılda ulaşırlar, bu yüzden Avrupa kıyılarına doğru değil, Amerika kıyılarına doğru göçe başlar. Çünkü morfolojik değişimden hemen sonra beslenemez ise onlar da ölecektir. Böylece bu balıklarda, beslenme sahaları olan tatlı sulara ulaşma süreleri ile morfolojik değişimleri tamamlama süreleri birbirini takip etmektedir. Ilkbahar başında yumurtadan çıkan larvalar defne yaprağına benzer ve bunlara leptosefalus denir. Bu larvalar Meksika körfezinden başlayıp Batı Avrupa kıyılarına kadar gelen sıcak su akıntılarıyla Avrupa kıyılarına kadar göç ederler. Şimdiye kadar yakalanan en küçük larva 7 mm olup, 75- 300 metre derinliklerde rastlanmıştır. Avrupa kıyılarına yaklaştıklarında boyları 75 mm"ye ulaşmaktadır. Avrupa yılan balığı larvalarının kat ettikleri mesafe 5000 km, Amerikan yılan balıklarının 1000 km kadardır. Larvalar kıyılara ulaştıklarında, defne yaprağı şeklinden yılan balığına benzeyen silindirik bir şekle dönüşmeye başlar. Vücut büyüklüğü ve ağırlığı artar. Larva dönemine ait dişler kaybolur. Larva döneminde mikroskobik canlılarla beslenirler. Avrupa yılan balıkları su akıntılarıyla nehir ağızlarına geldiklerinde 2.5 yılı geçmiştir. Türkiye kıyılarına gelmeleri ise 3 yılı bulmaktadır. Nehirlere giren yılan balıklarının zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara "Sarı Yılan Balığı" denir. 14-15 yıl kadar sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenme, etçil olarak dip canlılarıyla ve diğer balıklarla olmaktadır. Büyümesi yaşadığı ortama bağlıdır. Dişi balıklar (45-150 cm), erkeklerden (50 cm) daha büyüktür. Büyümedeki farklılık ve yaşadığı ortam cinsiyetin ayırt edilmesini sağlar. Erkek balıklar nehir ağzında kalırken, dişi bireyler kaynağa yakın yerlerde bulunur. Su dışında uzun süre yaşayabilen, susuz ortamda dayanıklı olan yılan balıkları, ıslak zeminlerde, nemli çimler üzerinde kolayca hareket edebilir. Hatta deniz-tatlı su bağlantılı bataklık alanlarda çamur içinde çok rahat hareket edebilen, bu balıkları, bu alanlarda 1-1,5 metre çamur içinde bulmak hiç de şaşırtıcı olmaz. 15 yaşına kadar tatlı sularda büyüyen sarı yılan balıkları ikinci bir değişim geçirir. Karın kısmı, gümüşi, sırt kısmında koyu bir renklenme görülür. Vücutlarındaki yağ oranı artar (vücut ağırlığının %30"unu geçebilir) Bu aşırı yağlanma onun Sargossa denizine yapacağı zorlu göçte dayanmasını sağlar. Zira yılan balıkları yaklaşık 18 ay sürecek bu göçte hiçbir besin almazlar. KAYNAKÇA: Alpbaz A., Hoşsucu, H., 1988. Iç Su Balıkları Yetiştiriciliği, Ege Üniversitesi Su Ürünleri Y.O. Yayınları No:12, 1-98 s. Izmir. Güner, Y., Kırtık, A. 2000, Yılan Balığı Biyolojisi ve Yetiştiriciliği. Tarım Bakanlığı Hizmet içi Seminer Notları. 32 sayfa. Bilim ve Teknik Dergisi ; Kasım 2002 Atlas Dergisi ; Mayıs 2000 Focus Dergisi ; Eylül 1998 Omurgalı Hayvanlar, Prof.Dr.Mustafa KURU   Yılan Balığı Yetiştiriciliği Yılan balıkları modern sınıflandırmada balıklar sınıfından Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Avrupa yılan balığı dışında K.Amerika ve Grönland!a ait Anguilla rostrata; Çin ve Japonya'da Anguilla japonica; Avustralya ve Y.Zelanda'da A.dieffenbachi ve A.australis türleri bulunur. Yılan balıkları kesinlikle karasal bir hayvan değildir. Bir balık türüdür. Sadece karın yüzgeçleri yoktur. Hayatları boyunca yumurtadan çıktıktan sonra 5 dönem geçirirler. İlk dönem larvaların yumurtadan çıktıktan sonraki keseli dönemidir. İkinci dönem 1-3 yıl arasında değişen larva dönemidir. Üçüncü dönem larvanın leptocephalus safhasındaki elver tabir ettiğimiz safhaya geçiş dönemidir. Dördüncü dönem elver haline gelen balıkların nehirlere veya göllere girerek yaşamalarıdır. Beşinci dönem de yılan balıklarının üremek için denize seyahat ettikleri dönemdir. Yılan balıklarının yumurtlamak için Sargossa Körfezine gittiği ve yumurtladıktan sonra öldükleri sanılmaktadır. Avrupa'da uygulandığı gibi yılan balığı yavrularının stoklanması şekliyle yetiştiriciliği yapılabilir (extansive). Bu yöntemlerde acı su (%010-20 tuzluluk) tabir edilen dalyanlarda veya göllerde yavru yılan balıkları kontrollu bir alan bırakılır. Gelişme tamamen doğal koşullara bırakılır. Yapay yem kullanılarak gelişme desteklenebilir. Üretim oranının 5-20 kg/dekar arasında değiştiği bildirilmektedir. Japonya'da uygulandığı gibi kontrollü yetiştiricilik yapılabilmektedir (Intensive). Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. • Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. • Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. • Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. 1. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. 5.2. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Beş farklı yöntemi vardır: Durgun Su Yöntemi: En eski ve yaygın yöntemdir. Balıkların oksijen ihtiyacının fitoplanktonlar vasıtası ile karşılanması esasına dayalıdır. Yılan balıklarına 12 ºC'nin altında yem verilmez zaten gelişme de olmaz. Bu yetiştirme yönteminde 3-4 dekarlık havuzlar kullanılır. Metrekarede 2-4 kg. balık yetiştirilebilir. Başarılı bir yetiştirme için sıcaklığın 23-30ºC arasında olması gerekir. Başarılı bir üretimde balıkların 2 yıl veya daha az sürede 150-200 gr.a ulaşması beklenir. Akarsu Yöntemi: Bu yöntemde havuzlar küçük tutulur. Alanları 150-300 m² arasında olur. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyu bulunması gerekir. Yöntemin başarılı olması için su sıcaklığının 23ºC den yüksek olması gerekir. Bu yöntemde üretime alınacak balıkların başlangıç olarak 30 gr. Civarında tutulması gerekir. Ağ Kafes Yöntemi: 2 x 3 x 1,5 m ölçülerinde 18 x 7 mm. Ağ gözlü metal veya tahta kafesler kullanılabilir. Kafes başına 20-30 kg. arası yılan balığı konulabilir. Yöntem yenidir ve hala geliştirme çalışmaları devam etmektedir. Tünel Yöntemi: Bu yöntemde ticari bir işletme kurulmamış olup, bilimsel denemeler başarılı yetiştiricilik çalışmalarının yapılabileceğini göstermiştir. Yılan balıklarının karanlıkta yem alma eğilimlerine dayanarak yapılmıştır. Bu çalışmada amaç balıkların gündüz saklanması mümkün olabilecek karanlık tünellerin hazırlanmasıyla doğal ortama yakın bir ortamın yaratılmasıdır. Sirkülasyon Yöntemi: Devamlı olarak sirkle edilen suyun kullanılması yolu ile yetiştirme yapılmasına dayana yöntemdir. Bu tür çalışmada 2 tür havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan sı devamlı olarak bir motopomp vasıtasıyla filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel ve biyolojik temizlenmesi yapılır. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: • Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. • Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. • Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. • Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. • Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. • Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. • Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. • Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. • Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; • Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7’ nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. 5.5. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR   Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR PDF DÖKÜMAN İNCELE : documents/ck37.pdf    

http://www.biyologlar.com/anguilla-anguilla-yilan-baligi-ve-ozellikleri

Balıkların Görme Organı ve Görüş Sahası

Balıkların gözü, ön tarafta hafif konveks bir durum arzeden küresel şekildedir. Görme yoluyla yön tayininin balıkların çoğu için büyük bir önemi vardır. Balıkların göz kapakları yok ise de, bazı balıklarda (Kefal balıklarındaki gibi) diğer omurgalılarınkine nazaran farklı yapıda olan etten yapılmış göz kapakları bulunur. Eskiden, balıkların çok iyi gördükleri zannedilirdi. Hakikaten balıklar insanı şaşırtacak bir emniyet ve son derece hızlı, bir süratle engeller arasından sıyrılıp geçmesini bilirler. Bugünkü görüşe göre ise, balıklardaki görme hissinin tam olmadığı yapılan tecrübelerde kesinlik kazanmıştır. Fakat herşeye rağmen yine kabul edilir ki, bu görüş noksanlığı diğer bazı özel organların mükemmilliği ile telafi edilmektedir. Bunun yanında çok istisnai olmakla beraber, daima ışıksız mağaralarda Yaşmaya adepte olmuş formların gözleri degeneratif evrimsonucu tamamen kaybolmuş veya deri altında fonksiyonu olmayan çok küçük noktacıklar halinde kalmıştır. Balığın gözü nispeten büyüktür. Kürsel ve sert bir kristal içerir. Kornea tabakası omurgalşılarda olduğu gibi ışığı yansıtmaz. Zira kırılma indisi suyunkinden farksızdır. Kristallerin yerleştiği görme odasının görüş açıları göz kapağının durumlarına bağlıolarak değişmektedir. Genellikle bir balık gözü için görüş açısının değerleri yatay olarak 190° - 170°, dikey olarak ise 150° civarındadır. Balığın önündeki 20-30 ° lik bir açısal alan, ancak iki gözün birlikte görebildiği bir görüş sahasıdır. Balıklar ancak bu durumda, herhangi bir objeyi çok net görebilirler. Eğer bir balık suyun içindeyken yukarıya doğru bakıyorsa, gerek sudaki, gerekse havadaki bir objeyi ancak 98° civarındaki bir açı içersinde net olarak görebilir. Fakat, görüş odasının açıklığı genellikle yukarıya doğru yönelmiş olduğundan, balıklar zemindeki objelerin ancak sudaki hayali yansımasını görürler. Bu yüzden bilhassa hareket halindeki olayların mesafesini tayin edemeyen balıklarda relief hissi çok zayıftır. Normal olarak az ışıklı bir biotopta yasayan balıklar daima ışıktan kaçan bir özellik gösterirler. Bu yüzden fazla ışıklı bir ortama getirilerek orada yaşamaya mecbur tutulursa daima ışığın az olduğu sığınma yerleri ararlar, şayet böyle barınaklar bulamazlarsa kısa zamanda kör olurlar. Bu konuda Lota lota ve Silurus glanis türleriyle bir seri tecrübeler yapılmış ve neticede fazla ışıklı ortamda tutulan bu balıkların kısa zamanda körleşerek hemcinsleriyle çarpıştıkları ve vücutlarında aşırı yaralanmaların meydana geldiği müşahade edilmiştir. Balıklardaki görüş yeteneği, gözünün yapısına göre türden türe az çok değişiklik göstermektedir.

http://www.biyologlar.com/baliklarin-gorme-organi-ve-gorus-sahasi

Balıkların Anatomik Yapısı

Balıkların Anatomik Yapısı

VÜCUT : Balıklarda vücut, esas itibariyle üç farklı bölgeden meydana gelmiştir. Baş : Burun ucundan solungaç kapaklarının (operkulum) arka kenarına kadar olan vücûdun ön (anteriör) kısmına verilen isimdir. Gövde : Solungaç kapaklarının arka kenarı ile anal açıklık (anüs) arasında kalan ve içerisinde vücut boşluğunun bulunduğu vücudun orta bölgesine verilen addır. Kuyruk : Anal açıklıktan vücudun sonuna kadar uzanan arka (posteriör) bölgeye verilen isimdir. Bu bölge çoğu zaman kuyruk sapı ve kuyruk yüzgeci olmak üzere iki ayrı bölüm halinde incelenebilir. Bu durumda, anal açıklıktan kuyruk yüzgeci ışınlarının başlangıcına kadar olan kısım kuyruk sapı; bundan sonraki kısım ise, kuyruk yüzgeci olarak isimlendirilir (Şekil 1). AĞIZ : Başın ön ucunda yer alan ve iki çene tarafından çevrelenmiş bulunan açıklığa denir. Ağızın konumu, türlere göre farklı durumlarda olabilir. a) Terminal veya uç durumlu : Genellikle balıkların çoğunda bu ağız tipi yaygın olup, böyle durumlarda alt ve üst çeneler eşit uzunlukta bulunurlar (örneğin, Leuciscus, Rutilus, Rhodeus,Tınca, Cyprinus v.b. de olduğu gibî). b) Üst durumlu veya yukarıya yönelik : Bu türlerde ağız belirgin bir şekilde yukarıya doğru yönelik olur. Bu durumda daima alt çene (mandibul) üst çeneden biraz daha uzun olup, öne doğru bir çıkıntı meydana getirmiştir (Örneğin, üambusia, Chalcalburnus, Aphanius v.b. de olduğu gibi). c) Alt durumlu veya aşağıya yönelik : Bazı balık türlerinde de ağız başın altında olup, üst çene tarafından örtülmüştür. Böyle hallerde üst çene daima alt çeneden uzundur ve öne doğru bir çıkıntı meydana getirmiştir (Örneğin, Chondrostoma, Vimba, Gana, Acipenser v.b. de olduğu gibi) BURUN : Başın ön ucu gözler arasında kalan bölgeye denir. Bunun görünüşü çeşitli türlerde çok değişik şekiller arzetmektedir.Bazen sivri (Lucioperca, Aspius) bazen yuvarlak (Silurus, Gana], bazen ördek gagası şeklinde (Esox), bazen hortum şeklinde uzamış (Syngnathus) , bazen aşağıya doğru kıvrık ( Mastacembelus) şekiller gösterebilir. Şekil 1.2. Tatlısu balıklarında burun tipleri : A- Sivri (Aspius aspius) ; B- Yuvarlak (Silurus glanis) ; C- Ördek gagası şeklinde (Esox lucius) D- Hortum şeklinde (Syngnat-hus) ; E— Etimsi uzantı şeklinde (Mastacembelus simack}. GÖZLER: Daima baş bölgesinde bulunan bir çift görme organıdır. Şekil, renk, büyüklük ve konumları türlere göre çok değişik olabilir. Genel olarak başın iki yanında bulunmakla beraber, bazen tek tarafta (Pleu-ronectes) veya başın iyice tepesine doğru yerleşmiş (Cottus gobio) de olabilirler. Göz Kapakları: Genellikle balıklarda göz kapakları teşekkül etmemiş olmakla beraber, bazı formlarda (Örneğin, Clupeid ve Mugilid lerde) gözlerin etrafı az çok yağımsı bir maddeden oluşmuş ve göz kapağım andıran bir zarla çevrelenmiştir. BIYIKLAR: Ağız etrafında bulunan ipliksi uzantılardır. Türlere göre boyları, çıkış yerleri ve sayıları çok farklı olabilir. Örneğin, Cobitid' lerde çok kısa olduğu halde Silurid'lerdc çok uzundur. Diğer taraftan yalnız üst çeneye (Gobio); yalnız alt çeneye (Acipenser); hem alt hem üst çeneye (Silurus) bağlanmış olabilirler. Sayılarına gelince bir tek (Gadus ve Lota); bir çift (Gobio); iki çift (Cyprinus); üç çift (Cobitis); dört çift (Clarias) beş çift (Misgurnus) gibi farklı sayılarda olabilmektedirler. ÇENELER: Ağzı alttan ve üstten kapatan, göz ile preoperkulum önünde yer alan iki parçadan oluşurlar. Genellikle alt çene kemiğine mandibul, üst çene kemiğine maksil adı verilir. DİŞLER: Balıkların çoğunlukla ağız ve bazen da boğaz bölgelerinde bulunan kemiksi yapılardır. Genel olarak üst çene kemiği üzerinde yerleşmiş olanlara Maksil dişleri, boğaz bölgesindeki 5. solungaç yayı üzerinde yerleşmiş olanlara da Farinks dişleri adı verilir. Özellikle besinlerini başka balıklardan ve diğer omurgalı su canlılarından temin eden etçil (karnivor) formlarda (Ludoperca, Esox gibi) çok iyi gelişmiş maksil dişleri vardır. Salmonid'lerde ise, damak üzerinde yerleşmiş ve adeta çengel şeklini almış kuvvetli Vomer dişleri görülür. Boğaz bölgesine yerleşmiş ve besinleri öğütme görevini üstlenmiş olan farinks dişleri ise, tatlısu formlarından olan sadece iki grupta (Cyprinidae ve Cobitidae) görülmekte olup, türlerin taksonomik ayrımında önemli bir karakter olarak dikkate alınırlar. Özellikle Cyprinidlerde sıra, sayı ve şekilleri türler arasında büyük değişiklikler göstermektedir. Örneğin, Carassius ve Tinca'da bir sıralı; Abramis ve Blicca'da iki sıralı; Cyprinus ve Barbus'da. üç sıralı olmaktadır. Diğer taraftan, Cyprinus'da, uçları düz iken, Barbus'ta hafif kıvrık; Scardimus'da ise, hafif tırtıklı bir görünüş arzeder. Daima 5. solungaç yayı üzerinde sağlı sollu olarak yerleşmişlerdir. 5-5 veya 5-6 : Bir sıralı olup her iki tarafta da 5'er diş veya sağda 6, solda 5 diş var demektir. 2.5 -5.2 veya 2.5-4.2 : İki sıralı olup dıştaki birinci sırada 2, içteki ikinci sırada ise 5 diş var demektir. Nadiren sağ veya sol taraftaki ikinci sırada 4 diş de bulunabilir. 1.3.5-5.3.1 : Üç sıralı olup en dıştaki sırada l, orta sırada 3, iç sırada ise 5'er diş var demektir. Genellikle bir türün sağ ve solundaki farinks diş sırasında bulunan diş sayıları sabit olmakla beraber, nadiren farklılıklar da olabilir. Örneğin, normal olarak 2.3.5-5.3.2 olması gerekirgen, 2.3.4-5.3.2 veya 2.3.5-4.3.2 gibi simetrik olmayan durumlar da görülebilir. DUDAKLAR: Ağız etrafını çeviren ve deri kıvrıntısından ibaret olan etli yapılardır Bazen kalın ve loplu şekilde (Barbus türleri), bazen da keratinleşmiş keskin kenarlı (Chondrostoma türleri) olabilirler. SOLUNGAÇ KAPAKLARI: (Operculum) : Solungaçların üzerini örten ve kemik parçalardan (kemikli balıklarda) yapılmış olan hareketli kapaklardır. Herbir kapak 4 ayrı kısımdan meydana gelmiştir. Operculum Preoperculum Suboperculum İnteroperc ulum. Sözü edilen bu kısımların hepsi, her balığın operculumunda birarada bulunmayabilirler. SOLUNGAÇ ZARLARI: Her iki solungaç kapağını alttan boğaz kısmına bağlayan ve solungaç ışını denilen kemik çubuklarla desteklenen yapılardır. Bunlar üst taraftan solungaç kapağına, alt taraftan da boğaz bölgesine bağlanırlar. SOLUNGAÇ DİKENLERİ: Solungaç yaylarının çukur taraflarına (iç kısmına) yerleşmiş olan, uzunluk ve sayıları türlere göre değişen, kemik veya kıkırdaktan yapılmış iğnemsi yapılara denir. Bu dikenlerin sayısı bazı türlerin ayrımında diagnostik karakter olarak kullanılır. SOLUNGAÇ LAMELLERİ: Solungaç yaylarının tümsek taraflarına (dış kısmına) yerleşmiş olan, üzerinde sayısız kılcal damarları taşıyan ve bu yüzden de kırmızı renkli görülen telciklerin oluşturduğu yapıdır. İSTMUS : Boğaz bölgesinde iki solungaç kapağı arasında kalan boşluğa denir. BOĞAZ: Başın ventralinde, pelvik yüzgeçlerle solungaçların kaidesi arasında kalan dar bölgeye denir. BÖĞÜR: Solungaç kapaklarının arka kenarı ile kuyruk yüzgeci arasında kalan vücudun yan taraflarına verilen isimdir. YANAL ÇİZGİ: (Ligne lateral): Balıklarda vücudun yan taraflarında bulunan ve başın gerisinden kuyruk yüzgeci başlangıcına kadar uzanan duygu organlarıdır. Genellikle su içerisindeki ses titreşimlerini algılamaktadır. Bunun için sinirsel bağlantısı bulunan bir sıra halindeki delikli pullardan yapılrnıştır. Genellikle tam olmakla beraber, bazen hiç bulunmaz veya vücudun sadece anteriöründe çok az bir kısmına kadar devam eder. Yanal çizgiyi oluşturan pulların sayısı herbir türün bütün bireyleri için sabit olduğundan tür ayrımında önemli bir taksonomik karakter olarak bilinir. PULLAR: Genellikle kemikli balıklarda (Teleostei) vücudun üzerini örten dermal orijinli yapılardır. Vücut üzerindeki dizilişleri adeta bir damın kiremitleri gibidir. Özellikle, kemikli balıklarda enine ve boyuna uzanan pul sayıları herbir tür için farklı olduğundan türlerin ayırımında yararlanılan önemli birer karakterdirler. Balık taksonomisinde pul sayısı iki şekilde tespit edilir Boyuna pul sayısı (Ligne lateral): Şayet söz konusu balığın yanal çizgisi mevcut ise bu çizgi üzerindeki delikli pullar sayılır. Örneğin, bir türün yanal çizgisinde 58-62 pul bulunuyorsa bu durum L. lat. = 58-62 seklinde ifade edilir. Eğer balıkta yanal çizgi bulunmuyorsa, başın gerisinden kuyruk yüzgeci başlangıcına kadar uzanan boyuna hat üzerindeki pullar sayılır. Örneğin, bu pulların sayısı 70-82 arasında bulunuyorsa, bu da Sq = 70-82 şeklinde gösterilir. Enine pul sayısı (Ligne transversal): Bunun için dorsal ve ventral yüzgeçlerin başlangıcı ile L. lat. veya boyuna çizgi arasındaki pullar sayılmaktadır. Enine verev şekilde uzanan bu pul sayıları da önemli diagnostik karakter olarak bilinir, ifade edilmesini örneklerle açıklamak mümkündür. Şayet bir türün dorsal yüzgeci başlangıcı ile L. lat. arasındaki enine verev pul sayısı 10-12; ventral yüzgeçlerin başlangıcı ile Bunlardan başka, bazı hallerde (özellikle Alabalıklar için) yağ yüzgeci ile L. lat. arasındaki enine verev pul sayısı da kullanılabilir. Fakat bu yöntem pek yaygın değildir. Çift dorsal yüzgeci bulunan balıklarda enine verev pul sayıları için daima I. Dorsal'in başlangıcından geçen pul sırası esas alınır. YÜZGEÇLER : Balıkların su içerisindeki dengelerini korumalarını ve hareketlerini sağlayan ve deri kıvrıntısından meydana gelmiş olan yapılardır. İki grupta incelenebilirler; 1) Tek Yüzgeçler : Genellikle denge ve dümen vazifesi gören bu yüzgeçler normal bir balıkta 3 tanedirler Dorsal Yüzgeç : Vücudun sırt tarafında yer alan ve genellikle ortaya yakın konumda bulunan bu yüzgeç nadiren iyice geriye itilmiş de olabilir (Esocidae familyasında olduğu gibi). Çoğunlukla tek ise de bazen iki adet (Gobiidae, Percidae, Mugilidae, Atherinidae], bazen da üç adet (Gadidae) olabilmektedir. Ancak şekilleri, büyüklükleri ve uzunlukları çok değişken olabilir. Örneğin, Siluridae familyasında çok küçük iken, Blenniidae familyasında baştan kuyruğa kadar uzanan bir bant şeklindedir. Anal Yüzgeç : Vücudun ventralinde ve anal açıklığın hemen gerisinde yer alır. Bazen hiç bulunmayabilir (Syngnathidae); bazen kuyruk yüzgeci ile birleşerek müşterek bir bant oluşturur (Anguillidae) ; bazen da uzun fakat ayrı bir bant şeklinde (Siluridae} olabilir. Kuyruk Yüzgeci : Kuyruk sapının bitiminde yer alır ve bir kayığın dümeni gibi iş görür. Genellikle iki çatallı ise de bazen tek loplu da olabilir (Bîennüdae, Anguillidae, Gobiidae gibi), îki loplu olduğu zaman da (Cyprinidler'de olduğu gibi) eşit loblu (Homoserk) veya Acipenseridae'de olduğu gibi üst lop daha büyük alt lop daha küçük (heteroserk] olmaktadır. Çoğunlukla bağlantısız ise de bazen dorsal ve anal yüzgeçler ile birleşerek ortak bir bant oluşturabilir (Anguillidae}. Yukarıda sözü edilen tek yüzgeçlerden başka bir de yağ yüzgeci (Adipöz) adı verilen ve ışınları olmayan, etimsi bir yapı daha vardır. Daima vücudun sırt tarafında ve dorsal yüzgecin gerisinde bulunan bu yapı özellikle Salmonidae, Sisoridae, Bagridae ve Ariidae familyaları için karakteristiktir. 2) Çift Yüzgeçler : Bunlar diğer omurgalıların ön ve arka ekstremitelerine karşılık olarak bulunmakta olup, daha ziyade hareketi sağlarlar. Normal bir balıkta iki çeşit çift yüzgeç vardır ; Pektoral veya Göğüs Yüzgeçleri : Bunlar genellikle operkulumların arka tarafında ve göğüs bölgesinde yer alırlar. Göğüs kemeri ile kafatasına sıkıca bağlanmış kuvvetli yüzgeçlerdir. Ventral veya Pelvik Yüzgeçler : Vücudun karın bölgesinde yer alan ve bir kemerle iskelete bağlantısı bulunmayan yüzgeçlerdir. Çeşitli balık familyalarında pektorallere göre ventrallerin yeri çok değişik olabilmektedir, örneğin, ventrallerin başlangıcı pektorallerin arka tarafında olursa (Cyprimdae) abdominal tip ; pektorallerle aynı hizada olursa (Percidae, Gobiidae, Cottidae) thorasik tip ; pektorallere nazaran önde olursa (Pleuronectidae, Gadidae, Blenniidae} jugular tip, adlarını almaktadır. Bu yüzgeçler genellikle balıkların çoğunda mevcut ise de bazı, gruplarda (Anguillidae, Mastacembelidae] bulunmayabilir. Şekil 12a . Dorsal yüzgeç tipleri : A- Ayrı ayrı dikenler şeklinde (Gasterosteus aculeatus) ; B-Birbirinden ayrı iki yüzgeç şeklinde (Afugil cephalus) ; C- Birbirlerine bitişik iki dorsal şeklinde (Pcrca fluaiatilis) ; D- Uzun bir dorsal yüzgeç seklinde ( Blennius fluviatilis) ; E- Küçük bir dorsal şeklinde (Siturus glanis) ; F- ikinci dorsal yağ yüzgeci şeklinde (Sa/mo trutta) ; G- Kaudal ve anal ile birleşmiş şekilde (Anguilla anguilla) Şekil 13 : Anal yüzgeç tipleri : A- Uzun bir anal yüzgeç (Silurus glanis) ; B- Anal yüzgeç yok (Syngnathus abaster) ; C- Kaudal ve dorsal ile birleşmiş }ekilde (Anguilla anguilla). YÜZGEÇ IŞINLARI (Radius) : Kemikli balıkların yüzgeçleri ışın (radius) adı verilen kemiksi çubuklarla desteklenmişlerdir.Genellikle yüzgeç ışınları iki grupta toplanabilirler. Basit ışın veya Diken ışınlar : Bunlar daima yüzgeçlerin başlangiç kısmında (anteriörde] yer alan ve eklemli bir yapısı olmayan düz dikenler şeklindedir. Bazen çok kuvvetli olup, uçları da iyice sivrileşmiştir. Çift dorsali olan balıkların I. Dorsalleri sadece bu ışınları içerirler (Mugilidae, Atherinidae gibi). Yumuşak ışınlar veya Dallı ışınlar : Bunlar ise daima bir yüzgecin basit ışınlarından somra gelirler ve eklemli yapıda olup, serbest uçlarında dallanma gösterirler. Bu dallanma bazen ışının hemen kaidesine yakın yerden başlamakta, bazen da sadece uç kısımda görülmektedir. Gerek basit gerekse yumuşak yüzgeç ışınları, türlere göre farklı sayılarda oldukları için, taksonomik ayrımda önemli bir rol oynarlar. Şekil 14 : Kuyruk yüzgeci tipleri : A- Homoserk ve derin girintili şekilde (Rutilus rubilio); B- Tek loplu ve serbest kenarı düz şekilde (Aphanius burduricus) ; G- Homoserk ve hafif girintili şekilde (Solma trutta) ; D- Tek loplu ve serbest kenarı yuvarlak şekilde (Gobius batrachocephalus) E— Heteroserk şekilde (Acipenser sturio). Şekil 15 : Ventral yüzgeçlerin Pektoral'lere göre konumlan: A-Jugular tip (Platichtfys flesus); B- Thorasik tip (Stizostedion lucioperca) ; C- Abdominal tip (Rutilus rutilus). Şekil 16 : Yüzgeçlerin ışın tipleri. BALIKLARDA EŞEY İŞARETLERİ : Balıklar eşeysel olgunluk derecelerine göre iki kategoriye ayrılırlar Immatür : Henüz eşeysel olgunluğa erişmemiş olanlar, Matür : Eşeysel olgunluğa erişmiş olanlar. İmmatür yani erginleşmemiş olanlar için, şayet farklı cinsteki bireyler arasında morfolojik bir ayrım yapılamıyorsa, yani eşeysel dimorfizm durumu görülmüyorsa gonatlarına bakılarak da erkek-dişi bireyleri ayırmak mümkün olmaz. Matür olanlarda ise, ya gonatlarına veyahut da seksüel dimorfizm (iki şekillilik) karakterlerine bakılarak eşey ayrımı yapmak mümkün olabilmektedir. Daima erkek cinsler için > dişi cinsler için + işareti kullanılmaktadır. Şayet aynı bireyde hem erkek, hem de dişi gonatlar bir arada bulunuyorsa (hermafrodit) bunlar için de > işareti kullanılır. + ANADROMUS : Beslenme periyodunu denizlerde tamamlayıp, üreme zamanında yumurta bırakmak için tatlısuya dönme oIayıdır (Deniz Alası= Salma salarda olduğu gibi). KATADROMUS : Beslenme periyodunu tatlısularda tamamlayıp, üreme zamanında yumurta bırakmak için denize dönme olayıdır (Kefal ve Yılan balıklarında olduğu gibi) STATİONER : Hem üreme, hem de beslenme periyodunun daima aynı ortamda geçirilmesi olayıdır (devamlı tatlısu veya devamlı denizde kalan Tatlısu kefali, Sardalya, Uskumru v.b. de olduğu gibi). TERRA TYPİCA : Herhangi bir türün veya alttürün ilk tavsifinin yapıldığı mahal veya su ortamıdır. STANDART BOY : Burun ucu ile kuyruk yüzgecinin başlangıcı arasında kalan mesafedir. ÇATAL BOY : Burun ucu ile kuyruk yüzgeci girintisinin en derin noktası arasında kalan mesafedir. TOTAL BOY : Burun ucu ile kuyruk yüzgecinin en uzun lobu arasında kalan mesafedir. GÖZ ÇAPI : Gözün merkezinden geçen en uzun kirişin boyudur. Preorhiter mesafe : Burun uzunluğu interorbiter mesafe : Gözler arası mesafe PREDORSAL : Burun ucu ile 1. dorsal yüzgecin başlangıcı arasında kalan mesafedir. POSTDORSAL : Dorsal yüzgeç kaidesinin arka kenarı ile kuyruk yüzgecinin başlangıcı arasında kalan mesafedir. PLORİK UZANTI : Bazı balık gruplarında (Salmonidae ve Mugilidae gibi) mide ile bağırsakların birleşim bölgelerinde yer alan, sayıları türlere göre değişen ve körbağırsak olarak ifade edilen eldiven parmağı şeklindeki uzantılara verilen isimdir. D = Dorsal yüzgeç (Sırt yüzgeci) P = Pekrotal yüzgeç (Göğüs yüzgeci) V = Ventral yüzgeç (Karın yüzgeci) A = Anal yüzgeç (Anus yüzgeci) C = Kaudal yüzgeç (Kuyruk yüzgeci)

http://www.biyologlar.com/baliklarin-anatomik-yapisi

Balıklarda Göçlerle İlgili Davranışı Kontrol Eden Faktörler

Balıkçılık biyolojisi alanında, balık fizyolojisi üzerinde çalışan bilim adamlarından birçoklarının yaklaşık yüzyıldan beri, bu konu üzerine dikkat ve önemle eğildikleri bir gerçektir. Bazı balıklarda gözlenen üreme ile ilgili göçler (migrasyon), tıpkı bazı kuşlar gibi, belirli zamanlarda, hayati önemi büyük ve neslin devamı için, bir zorunluluk olarak yapılan göçlerdir. Bu göçler hangi amaçla olursa olsun iki yönde yapılır. Denizlerden tatlısulara Tatlısulardan denizlere Normal olarak, denizlerde yaşayan, fakat yumurta bırakmak üzere tatlısulara geçen balıklara Potamotok veya Anadrom balıklar denir. Örneğin, Tirsi balığı (Clupeid' lerden Alosa türleri) ; Som balığı (Salmonidler' den Salma salar] Anadrom balıklardır. Buna karşın, tatlısulardan denizlere geçen balıklara'da Katadrom balıklar denir. Avrupa Yılan balığı (Anguilla anguilla] ; Kefal balıkları (Mugilidae) Katadrom balıklardandır. Özellikle, Atlantik ve Pasifik okyanusları gibi, büyük denizlerde, göçlerin balık avcılığı yönünden önemi fazladır. Bu konuda, son 50-60 yıldan beri, gerek kırsal alanlarda (doğada) ve gerekse, laboratuvar koşullarında göçlerle ilgili pekçok araştırma projeleri üzerine gözlem ve deneyler sürdürülmektedir. Bununla beraber, zaman zaman alınan sonuçlarla, ulaşılan mesafe göç olayının mekanizmasını açıklamaya ve sırlarını çözmeye halen yeterli değildir. Gerçek şudur ki, kalıtsal özelliklerinden veya içgüdüsel davranışlarından başlayarak, hormonal etkilere ve bu temel faktörleri etkileyen fizikokimyasal çevre koşullarına kadar, göç olayı ile doğrudan veya dolaylı olarak ilişkili ve araştırılması güç olan pekçok faktör söz konusudur. Hal böyle iken, göç olayını, şimdilik belli bir amacı gerçekleştirmek üzere veya diğer bir deyimle, neslin devamlılığını sağlamak üzere, içgüdüsel bir davranış çerçevesi içinde programlanmış bir seri fizyolojik uyum sağlama dizisi içinde aramak lazım geldiği söylenebilir. Oldukça karmaşık bir uyum dizisi içinde cereyan ettiği sanılan göçle, amaca ulaşmak için, neden bu kadar dolanbaçlı yollar seçilmiş olduğunun cevabı halen bir sır olmakla beraber, yapılan gözlemlerle pekçok ipuçları da gözden kaçmamaktadır. Örneğin, üreyebilmeleri için, iyi beslenebilecek ve risklerden uzak bir ortama göç gereksinimi duyma ve orada beslendikten ve gonadların gelişimini sağladıktan sonra da bunları en uygun bir ortamda bırakarak, yumurtaların döllenmesini sağlama ve sonra da çıkan larvaların metamorfozu ile minyatür bir yılan balığına (elver) dönüştürme olanağına kavuşturmak için hormonal gelişme gereksinimlerini gerçekleştirme v.b. gibi istekleri oluşturabilmek üzere yapılan düzenlemenin, bu hayvanlarda görülen içgüdüsel bir göçü sergilediği düşünülebilir. Zira böyle bir göçün keyfi bir davranış olmayıp, mecburiyet kespeden bir davranışla içgüdüye bağlandığı bir gerçektir. Bu periyodik göç şayet keyfi olsaydı, koşulların değişmesiyle zaman zaman değişebilirdi, oysa ki belli bir program çerçevesi içinde aynı aksiyonun tekrarı ile nesillerin devamı sağlanmaktadır. Bütün bu sorulara, muhtemelen daha da akla yakın bir cevap bulabilmek için olsa gerek ki, göç eden bu balıklar üzerinde giderek artan araştırmalar sürdürülmektedir. Balıklarda, belirtilen amaçla gerçekleştirilen başlıca iki tip göçten söz etmiştik. Sırası gelmişken yukarıda sözü edilen Som bahklarındaki (Sa/mo salar] göçünü ele alalım. Suları oldukça soğuk (5°-6°C) nehirlerde bölgeye göre Kasım - Şubat arası yumurtadan çıkan ve belli bir süre (2 yıl kadar) sonunda okyanusa göç eden ve burada beslenip, belli bir cinsi olgunluğa ulaşarak, yumurta bırakmak üzere tekrar doğdukları yere (nehirlere) dönen balıklarda (Salmonidae familyasından Atlantik Salmonu Salma salar'da. ve Pasifik Salmonu Onchorynchus nerko'da.} gözlenen bu tip göç olayı, yukarıda belirtilen Anadromus göç olarak adlandırılır. Yılan balıklarında (Anguilla anguilla} ise, okyanusların belirli ortamlarında, bu balıkların bıraktıkları yumurtalardan çıkan larvalar (Leptocephalus), belli bir süre (3 yıl kadar) sonunda metamorfoz geçirip, genç bir yılan balığı yavrusu (elver) haline dönüştükten sonra, beslenip cinsel olgunluğa erişmek üzere tatlısulara geçerler. Cinsi olgunluğa erişinceye kadar yaşamlarını burada sürdürdükten sonra, olgunlaşarak yumurta bırakmak ve nesillerinin devamını sağlamak üzere, tekrar doğdukları yerlere (denize) dönerler. Bu tip göçe de Katadromus göç adı verilir. Kuzey Avrupa'da (İsveç, Norveç, Danimarka, Finlandiya ve ingiltere) veya Kuzey-Doğu Amerika kesiminde herhangi küçük bir nehirde doğup ta, yaşamına başlayan Salmo salar türüne mensup bir Som balığı yavrusu ile aynı şekilde Pasifiğe akan nehirlerde yaşayan Onchorynchus türlerinin yavruları, henüz genç sayılabilecek bir yaşta iken (2 yaşında) nehirlerin aşağı kısımlarına doğru göçe başlarlar ve sonunda nehrin onları götürdüğü okyanusa (Salmo salar Atlantiğe; Onchorynchus Pasifiğe) ulaşırlar. Orada 4-5 yıl yaşadıktan sonra, tekrar doğdukları yere, tatlısulara dönmek üzere, uzun bir yolculuğa çıkarlar. Bu sırada nehirlerin akış yönünün tersine yüzerek irili ufaklı pekçok çağlayanlardan geçerek bu yolculukları sonunda, hedeflerine ulaşabilmek için doğdukları yerleri acaba nasıl hatırlayabileceklerdir, hatta bazen binlerce km. ye ulaşan bu dönüş yolunu nasıl bulupta katedebileceklerdir. Göç olayı boyunca ortam koşullarının ne denli değişken çevre koşullarına uyabilmeleri için, balığın metabolizmasında ne gibi değişiklikler oluşacaktır. Alabalıkların, genellikle Atlantik ve Pasifik Salmonu türlerinde gençler (jüvenil) her ilkbaharda, günlerin uzamasıyla beraber yolculuğa çıkar ve nehirlerin alt kesimlerine doğru inmeye başlarlar. Bu arada eğer varsa yollan üzerindeki, göllere de uğrarlar ve orada yine denize doğru yollarına devam ederler. Uzun yıllardan beri, gümüşimsi renkte görülen bu genç bireylerin, adeta kabına sığamazcasına hareketleriyle ilkbaharda nehirlerde 2-3 ay süre ile görülebilmelerinin nedeni de, denize doğru olan bu göçlerden dolayıdır. Yılan balıkları (Anguilla anguilla} için durum, daha da ilginçtir. Yıllar önce, bu balıkların yumurtalarından yeni çıkan larvaları, başka bir balık türü sanılarak, morfolojik görünümüne uygun düşen Leptocephalus adı ile isimlendirilmiş ve sınıflandırmada da bu şekilde yer almıştır. Avrupa yılan balığı (Anguilla anguilla} tülünün bu larvaları, doğdukları yer olan Sargassa denizinden Avrupa'ya doğru yola çıkarak 3 yılda Atlantiği aştıktan sonra, Avrupa kıyılarına ulaştıklarında, geçirdikleri bir metamorfozla tipik bir yılan balığı yavrusuna dönüşürler. Daha önce Leptocephalus diye adlandırılan bu yavruların, larval safhasının, aslında Avurpa yılan balığının yavru safhasından önceki, larval safha olduğu hakikati anlaşılmış ve bu safhaya sehven verilen Leptocephalus tarihi adı da bir hatıra olarak muhafaza edilegelmiştir. Avrupa yılan balıkları (Anguilla anguilla) türü Kuzey Atlantiğin Doğu kıyılarında, Batı Avrupa'da, Akdeniz ve Batı Afrika kıyılarında ve hatta dağılım alanları içine İzlanda, Kanarya adaları, Azor adaları, Madeire adalarını da alırken; Amerikan yılan balığı (Anguilla rostrata) türü ise, Labrador yarımadasından, Meksika körfezinin güneyine, Panama'ya, Antiller'e ve Bermuda'ya kadar uzanan bir dağılım gösterir. Bizi burada doğrudan ilgilendiren husus ise, Avurapa yılan balıklarının ve özellikle ülkemiz karasularına giren Akdeniz yılan balıklarının Sargossa denizinde üreyebilmeleri için, uzun bir yolculuğa çıkmaları ve sadece orada yumurta bırakmalarıdır. Bu bölge; 22° 35° Kuzey, 48°-65° Batı enlem ve boylamları içine girer. Bu alanda yumurta bırakma derinliğinin 300 m. olduğu ve su sıcaklığının da 18°C de sabit kaldığı görülür. Yılan balıkları gibi, çok özel olan tek bir yerde (bölgede) yumurtlama alanları olmasa bile, Alabalıklar da onlardaki gibi, metamorfoz deyimini akla getiren bazı morfolojik ve fizyolojik değişiklikler geçirirler. Her iki tür balık için de, yaşamlarının değişik evrelerinde, farklı ortamlarda bulunabilme yeteneğinin metamorfoz olayı ile yakından ilişkili olabileceği düşünülebilir. Alabalıklara örnek olarak Atlantik türü Som balığı (Salmo salar) türünü alabiliriz. Bu türe ait yumurtalar bırakıldıkları nehir veya derelerde, suyun sıcaklığına bağlı olarak 5 haftadan 21 haftaya kadar sürebilen bir kuluçka (înkübasyon) periyodu geçirirler. Bu sürenin sonunda süratli akan sığ suların tabanında çakıllar arasında Alevin adı verilen sarı torbalı (Vitellüs keseli) larvalar belirir. Bu larvalar ancak, vitellüs kesesi absorbe edildikten sonra postlarval safhaya geçerler. Yavrular, yuvayı terkettikleri zaman, boyları aşağı yukarı 3-5 cm.ye ulaşır. Bundan sonra da sığ sularda yaşamaya devam ederler. Bunlara Fry veya parmak boyu balık anlamına gelen Fingerling adı verilir. Bu yaştaki yavrular, bir süre aquatik küçük organizmalarla (bazı küçük su böcekleri ve diğer omurgasızlarla) beslenirler. Ancak, bunların boyları bir yıl sonra 7.5-10 cm. ye, iki yıl sonra da 12.5-15 cm.ye erişir. Bu yaştaki Salmonlara Parr adı verilir. Bunlar, bu çağda halen vücutlarında larva özelliklerini taşırlar. Çünkü Parr çağındaki bir balığın vücudunda onu karakterize eden 10-11 enine (sırt-karın istikametinde) koyu renkli bandlar bulunur. Bu bandlar arasında da yer yer kırmızı benekler görülür. Ayrıca, solungaç kapağı üzerinde iki adet yuvarlak siyah leke dikkati çeker ve bunlardan birisi, gözün hemen arkasında yer alır. Pullar, ilk yaz süresince, şekil almaya ve pulun ortasındaki çekirdek bölgesi etrafında büyüme halkaları belirmeye başlar, ilk kış geçtikten sonra, pul üzerinde koyu bir halka ayırd edilir. Bu halka, balığın kışın çok yavaş veya hiç büyümediğini gösterir. Bugün, yaş tayininde pul çalışmaları başlı başına bir araştırma konusu olmuştur. Pullardan yararlanarak bir balığın yaşı, büyümesi, biyolojik özellikleri, tatllsularda ne kadar kaldıkları ve denize ne zaman döndükleri gibi bir çok faydalı bilgileri öğrenebiliriz. DAHL'a göre Güney Norveç'te Parr'ların çoğu, 2 veya 3 yaşında iken denize göç ederler. Bununla beraber, daha Kuzeyde bu göç içgüdüsü, bu kadar genç yaşta iken hissedilmez ve Arktik çevreye yakın bölgelerde, bu balıkların bazıları göç etmeden önce, 4 veya 5 yaşına kadar tatlısularda kalabilirler. Hutton'un Wye nehri (ingiltere) için verdiği rakamlara göre; bölgede mevcut balıklardan bir yaşında olanların % 7.5'u iki yaşında olanların ise % 88,5'u göç etmiştir. Ancak % 4'ü üç yaşına kadar nehirlerde kalmışlardır. Bununla bearber 4 yaşındaki Parr'lara ise, Wye nehrinde hiç rastlanmamıştır. Mallock'a göre, Parr'lar kış aylarında sığ sulara geçerler ve taşlar altında istirahat ederler. Hatta erkeklerin bazıları denize göç etmeden önce erginleşerek dölleme olayına dahi katılırlar. Denize göç, 8-17 cm. boya ulaşınca başlar. Bu esnada portakal sarısı renkleri de kaybolur, gümüşi bir renge bürünürler. Parr yaşında iken balığın renk alması, deri içindeki pigment hücrelerinin etkisi ile olur ve bu renk saydam olan pulların altında görülebilir. Böyle bir balığa, denize doğru göç içgüdüsü geldiği zaman, pulların örttüğü ince derinin görünümü, gümüşi bir renkle yer değiştirir. Parr çağında bir balığın ilk defa renk değiştirmesi, bu ilk göç sırasında gözlenebilir. Yeni kazandığı bu gümüşi renk, daha yoğunlaşmaya başladığı zaman Parr'ların renkleri çok koyulaşır. Bununla beraber, eğer gümüşi renkte görülen pullar kaldırılarak bakılacak olursa, zemindeki derinin de gümüşi renkte olduğu kolaylıkla anlaşılabilir, işte bu çağa ulaşmış bir Parr'a Smolt adı verilir. Smolt çağında olan bu balıklar, nehirlerin ağızlarına geldikleri zaman, açık denize doğru süratle açılırlar. Smolt çağında iken, bu balıklar, genç bir Salma trutta'nın deniz formuna çok benzerler. Bununla beraber, Salmo trutta'nın kuyruğu çatallı olup, vücut yüksekliği de boyuna oranla çok fazla değildir. Aynı yaştaki bir S. truttada. vücutta portakal sarısı renk hakim ve devamlıdır. Açık renkli bir hale ile çevrilen kırmızı benekler yanal çizgi boyunca devam ederler. Bu bakımdan Salmo salar'ın smolt çağı ile Salmo trutta'da lateral çizginin altına kadar uzanan pekçok siyah benekler görülür. Açık denizlerde, Smolt çağındaki balıklar Yılan balığı yavrularını ve Ringa balıklarını yiyerek çok çabuk büyürler. Bu nedenle, bu balıkların bir yıl denizde kaldıktan sonra tekrar nehire döndükleri zaman boyları 40 cm.'den aşağı, ağırlıkları da 800 gramdan az değildir. Bu arada bazıları da istisnai olarak çok büyümüş olabilirler. Hatta bunlar arasında, aynı yaşta oldukları halde, 5-6 kg. olanlarına dahi rastlanabilir. Salmonların, denizden tekrar nehirlere döndükleri çağa Grilse adı verilir. Bu yaştaki balıklar, ergin bir Salmon'un bütün özelliklerini içerirler Bundan böyle, bu balıklarda Parr işaretine rastlanmaz. Hutton ve diğer yazarlara göre, bir kış denizde kalan Grilse'e Salmon nazari ile bakılabilir. Grilse'nin ortalama boyu aşağı yukarı 60 cm'yi bulur. Grilse çağındaki birçok Som balığı nehirlere geçmezler. Kış ve ilkbahar süresince denizlerde kalırlar. Aşağı yukarı 4 yaşına geldikleri zaman küçük bir ilkbahar salmonu olarak nehirlere geçerler. Grilse'nin yumurta bırakma çağına da Kelt adı verilir. Salmonların çok zaman, geldikleri nehre döndükleri gözlenmiştir. Johnston (1905), Tay (ingiltere) nehrinde Smolt çağında 5500 Salmon'u markalamıştır. Markalanan bu balıkların büyük bir kısmı, bir yıl sonra, bazıları iki yıl ve diğer bazıları da 3 veya 4 yıl sonra, tekrar aynı nehirde yakalanmışlardır. Yakalanan bu balıkların herbiri, kendi hayat tarihlerini pullarının üzerinde açıkça göstermişlerdir. Şu halde, pulların okunmasıyla, markalama deneyleri sonucunda uzun bir süre denizlerde kalarak geri dönen balıkların, bu süre zarfında gösterdikleri büyüme farklarını ve ne zaman nehirleri terkedip, ne zaman geri döndüklerini öğrenebiliyoruz. Anguilla anguilla (Avrupa yılan balığı) Kuşkusuz 50 yıl öncesine kadar herhangi bir kimse, yılan balığı hayatının esrarengizliği hakkında konuşabilirdi fakat bugün bu esrarı çözmek için yaptığı araştırmalarla bütün dünyada şöhret yapan Danimarkalı büyük biyolog Johansen SCHMIDT'e ve onun büyük deniz ekspedisyonuna katılanlara ne kadar teşekkür edilse azdır. Bununla beraber, Yılan balığının hayat devri, hala ilgi çekiciliğini sürdürmekte olup, daha fazla aydınlatılması gereken bir konu olarak ortada durmaktadır. Anguilla anguilla nın hayat devri kısaca 8 safhada özetlenebilir. Bu safhaları şöylece sıralayabiliriz Şeffaf olan larvanın (Leptocephalus) Sargasso denizinde doğuşu ve kısa bir süre sonra yüzey sularına çıkışı. Buradan, okyanus sularının akıntısına kapılarak Batı Avrupa sularına doğru göç yoluna girmesi. Bu sırada Leptocephalus'un. küçük ve şeffaf bir yılan balığı veya Elver şekline değişmesi (metamorfozu). Yavru diyebileceğimiz bu genç bireyler (Elver) tarafından Batı Avrupa ve Akdeniz sularının istilâsı. Elverlerin sarı yılan balığına değişmesi (metamorfozu). Bunların içsulara geçerek (nehir ve göllere) büyüme safhasına geçişi. Tatlısudan denize dönerken eşeysel organlarının (ovaryum ve testislerinin) olgunlaşmaya başlamasıyla gümüş renkli yılan balığına dönüşmesi (metamorfozu). Üreme göçü için denizlere dönüşü ile gümüş renkli yılan balığının okyanuslara geçişi ve buradan yumurta bırakarak çoğalma (üreme) ve ölüm safhası olan Sargasso denizine gidişi şeklinde özetlenebilir. Yumurta bırakma göçüne iştirak eden bu balıklara balıkçılar Sivri-burunlu yılan balığı adını verirler. Bu balıklar üreme sahasına göç ederlerken ya çok az gıda alırlar veya hiç almazlar. Denizlere göç, Akdeniz ve civarı ülkelerde ve Adriyatik sahillerinde Eylül ayında başlar. Daha kuzeyde (İsveç, Danimarka ve İngiltere’ nin doğu sahillerinde) göl ve dereleri Ağustos ve Eylülde terkederler. İskandinavyadan genellikle Eylül ve Ekimde ayrılırlar. Bütün Akdeniz ve Avrupa sularından göç eden yılan balıklarının hedefi, yumurta bırakmak için yer yer 1000 m. derinliği aşan Meksika körfezine doğru yol almaktır. Yılan balıklarının yumurta bırakma sırları, ancak 20. yüzyılda açıklanabilmiştir. Daha önce, Elvers denen genç bireylerin ilkbaharda Batı Avrupa nehirlerine geçtikleri ve büyük yılan balıklarının da Sonbaharda nehirlerden aşağı göç ettikleri biliniyordu. Bununla beraber, gümüş renkli yılan balıklarının denizlere geçer geçmez kaybolmaları ve bunu takip eden ilkbaharda genç yılan balıklarının (elvers) ortaya çıkması dikkati çekiyordu. Bu iki safha arasındaki boşluk hakkında hiçbir şey bilinmiyordu. O zamanlar Baltık denizinde Sonbaharda gümüş renkli yılan balığı üzerine düzenli bir balık avcılığı yapılıyordu. Bu balıklar o zaman bir takım özel sepetlerle tutulmaktaydı. Bu sepetlerin ağızları Baltık körfezine dönük olarak yerleştirildiklerinde, oldukça çok denecek miktarda balık yakalanmakta, aksi istikamette kondukları zaman (Atlantiğe doğru dönük olunca) hiç balık tutulmamakta idi. İşte ilk defa bu deneyimlerden yılan balıklarının Kuzey denizine doğru göç ettikleri ortaya çıktı. Bundan sonra, Uluslararası Deniz Araştırmaları Sosyetesinin himayesi altında Danimarkalı bazı araştırıcılar bu balıkların denize doğru yaptıkları göç yollarını saptamak amacı ile bunları madeni plakalarla markalayarak yollarını takip etmeye başladılar. Bu esnada, açık denizde yaptıkları birçok sondalamalarla, markalanan bu balıkları, oralarda göç esnasında çeşitli derinliklerde tekrar yakalamayı başardılar. Doğada yapılan bu müteaddit sondalamalarla yılan balıklarının denize doğru muntazam ve düzenli göçler yaptıkları kanıtlanmış oldu. Yapılan araştırmaların sürdürülmeliyle göç süratinin ortalama olarak günde 15 km. yi bulduğu öğrenilmiş oldu. Markalama deneylerinden elde edilen sonuçlara göre 29 günde 367 km. ve 93 günde ise, 1200 km. yol katettikleri anlaşıldı. Bundan sonra birçok yılan balıkları markalanarak, 15 Ağustos 1905 tarihinde Finlandiya'da Tvarminne sahillerinde suya bırakılmışlar ve aynı yıl 16 Aralık ta, bu balıklar Jutland’ın (Danimarka) Doğu sahilinde Helgenes yakınında tekrar yakalanmışlardır. Ergin yılan balıklarının denizlerden nehirlere geçtiği asla gözlenmemiştir. Bu nedenle şu kanaate varılmıştır ki, yılan balıkları herhalde, hayatlarında bir defa yumurta bırakmakta ve sonra denizde ölmektedirler. Bugün yılan balıkları hakkında noksan olan bilgimiz kısmen de olsa tamamlanmış sayılmakta ve bu iki nokta arasındaki boşlukta (doğum yeri ve ölüm yeri gibi) bu suretle doldurulmuş bulunmaktadır.Bu problemin açıklığa kavuşturulmasını Danimarkalı araştırmacı E. J. SCHMIDT e borçluyuz. Leptocephalus (yumurtadan çıkan ilk şeffaf ve zakkum yaprağına benzeyen yılan balığı larvası) ilk defa 1763 te Villiam MORRIS tarafından tavsif edilmiştir. Bundan sonra, bu formdan birçok numuneler Messina boğazından yakalanmışlar ve bütün bu numuneler Leptocephalidae familyası içinde mütalea edilmişlerdir. Leptocephalus bireyleri şeffaf olup, aşağı yukarı, bir zakkum yaprağı şeklinde yassılaşmış görünümdedir. Onun larva safhasında bir balık olduğunu ilk defa CARUS söylemişse de, bunun Kordeia balığı (Trachypteridae) familyasından bir forma ait olduğunu düşünmekle hata etmiştir. Ancak, 1869 da GILL bunun bir yılan balığı larvası olabileceğini açıklamış ve Leptocephalus morrisii'nin bununla ilgisi bulunmadığını, hatta Conger (Migri) yılan balığının larvası olduğunu da söylemiştir. GUNTHER, bu görüşü kabul etmiş, fakat bu larvaları anormal bir şekilde gelişmiş formlar olarak düşünmüştür. 1886 da Fransız Doğa bilgini DELAGE, Leptocephalus morrisii'yi Roscoff laboratuvarında akvaryumda 7 ay canlı olarak beslemeye muvaffak olmuş ve bunun sonunda genç bir Conger yılan balığına dönüşme safhasını yakından gözleme fırsatını bulmuştur. 1904 yılında SCHMIDT in Faroe adalarının batısında bir örnek yakalamasına kadar, yılan balıklarının larval safhası olan Leptocephalus Akdenizin dışında yakalanmamıştı. İkinci örnek, Farran tarafından irlanda'nın Batı açıklarında ele geçirilmiş ve bundan sonra, Kuzey-Doğu Atlantik'te birçok örnekler elde edilmiştir. Daha sonra Schmidt, bu larvaların sistematik bir araştırmasını yapmayı düşünmüş ve bunun içinde Güney Atlantik'te yaptığı araştırmalardan bir sonuç elde edememesine karşın İngiliz adalarının Batısın da 500 kulaç derinlikte oldukça büyük yılan balığı larvaları sürülerine rastlamıştır. Neden bu larvalar daha önce bulunmamışlardı. Çünkü yılan balıkları yumurta bırakmak için okyanusta büyük derinlikler aramaktadır (1000 m. veya daha fazla). Bu derinlikler Baltık ve Kuzey denizlerinde yoktur. 800-1000 m. derinliklerde ısı, hiç değilse, 5-7 °C derecededir. Bu temparatüre, Kuzey denizinde rastlanmaz, ingiltere adaları, su altında kalmış büyük plato veya bir kıta parçası üzerinde bulunduğundan burada deniz, ani olarak derinleşmekte olup, 100, 500 ve 1000 kulaçlık yerler genelde birbirlerine çok yakındır. Larvalar buralardan göz açıklığı küçük olan orta derinlik ağları ile yakalanmışlar ve ilk büyük avlama İrlanda'nın Güney-Batısında (56 ve 45 Kuzey enlemleri arasında) yapılmıştır. Burada 500 kulaç, derinlikte ısı, bütün yıl süresince 9°C dir, larvalar 500 kulaç derinlik boyunca, Faroes'tan İspanyanın kuzeyine kadar olan sahalarda yakalanabilmişlerdir. Böyle bir larva, yılan balığına değişeceği sırada Leptocephalus'un vücut şeklinde bir değişme olmakta, yani vücut genişliği azalmakta, gözler küçülmekte, larva safhasındaki dişler kaybolmakta ve bağırsak kısalmaktadır. Schmidt 1922 de kendisinin hemen hemen son yayınlarında yılan balıklarının çoğalma özelliklerini özetlemektedir. Buna göre, yumurta bırakma, ilkbaharın başlangıcında başlar ve Yaz içinde sona erer. Çıkan küçük larvalar 7-15 mm. civarındadır, larvalar yumurtadan çıktıktan sonra ilk ay çok çabuk bir büyüme gösterirler ve ilk Yaz süresince ortalama boyları 25 mm. ye ulaşmaktadır. Bundan sonra, larvalar su yüzeyine doğru çıkmaya başlarlar. 25 mm. civarında olan bu larvalardan 13-27 kulaç arasındaki derinliklerde pekçok toplanabilmiştir. Hatta bazen bu boyda olan larvalara yüzey sularında da rastlanabilmiştir. İlk yaz süresince bunlara Batı Atlantik'te (50° Batı boylamının batısında) rastlanmıştır, ikinci Yaz, bunlar 50-55 mm.ye ulaşmışlar ve bu çağda iken orta Atlantik'te görülmüşlerdir. Üçüncü Yaz Avrupa sahili açıklarına gelmişler ve bu esnada tam büyümüş larvalar haline ulaşmışlardır. Bu durumda aşağı yukarı 7.5 cm. boya erişmiş olmalarına rağmen, halen, yaprak şeklindeki yassı larva görünümünü muhafaza ettikleri görülmüştür. Sonbahar ve Kış müddetince, geriye doğru bir gelişme geçirerek asıl yılan balığı şeklini alırlar. Bu safha Elver safhasıdır. Bu safhada sahillere Elver'ler (henüz metamorfozu bitirmiş olan yavrular) bundan sonra, yönlerini nehirlere ve içsu membalarına doğru çevirirler. Şimdiye kadar sözünü ettiğimiz Avrupa yılan balığı yani Anguilla anguilla'dır. Amerikan yılan balığının türü ayrıdır. Bu tür Anguilla rostrata adı ile anılır. Bu türün yumurta bırakma sahası ise, Avrupalı yılan balığının yumurta bıraktığı yerin merkezinin Batı ve Güneyinde yer alır, bu saha Batı İndiana'nın Kuzey hattı boyunca uzanan sahadır. Dolayısıyla iki çoğalma mıntıkası birbirinin üzerine isabet eder. Bu nedenle, bu iki türün yumurtalarından çıkan larvalar da orta Atlantik'te birbirleriyle karışırlar. Bu larvalar sonra, nasıl oluyorda birbirlerinden ayrılarak Amerikan yılan balığı lavvaları yönünü Amerika sahillerine, Avrupa yılan balığı larvaları da yönünü Avrupa sahillerine yöneltebiliyor. Amerikan yılan balığının pelâjik larva safhası aşağı yukarı bir yıl içinde sona erer. Bu nedenle, böyle bir larvanın Avrupa'ya uzun bir seyahat yapmasına esasen zaman da yoktur, çünkü katedilecek mesafe onların ergin hale erişme süresinden daha fazladır. Oysaki, Avrupa yılan balığı larvasının gelişme süresi üç yıl sürer. Bu nedenle bu larvaların Amerika sahillerinden çok uzaklara gitmek için zamanları da vardır. Bunlar Atlantik'in Doğu kısmına varınca, Elver safhasına ancak ulaşmış olurlar. Kısa bir süre sonra da sahillere ve içsulara geçmek için ise nehirleri aramaya başlarlar.

http://www.biyologlar.com/baliklarda-goclerle-ilgili-davranisi-kontrol-eden-faktorler

Hayvanlarda Destek ve Hareket Sistemi

I-Deri ve deriye bağlı oluşumlar A-Kemiksi yapılar:Kemiksi özellikler gösterir a-Kıkırdaklı balık pulları b-Kemikli balık pulları c-Sürüngen plakları d-Memeli dişleri(Kıkırdaklı balık pullarına homolog yapıdır) B-Boynuzumsu yapılar:Keratin yapılardır a-Bağa (Kaplumbağalarda) b-Boynuz c-Tüyler d-Kıllar e-Tırnak,Toynak,Pençe C-Deriye bağlı bezler: a-Yağ bezleri b)Ter bezleri c-Süt bezleri d)-Koku bezleri D-Derinin görevleri: a-Örtme ve koruma sağlar b-Ter bezleri ile vücud ısısının ayarlar c-Memelilerde süt bezleri ile gelişimde beslenmede görev alır d-Duyu organıdır e-Kuşlarda tüy oluşumu ile su kayıbını önler ve uçmayı sağlar f-Bazı memeli ve kuşlarda yağ depola¤¤¤¤¤ vücud ısısının korur g-Memeli , kurbağalarda ve bazı omurgasızlarda solunum yüzeyi olarak görev yapar h-Özel koku bezleri ile hayvanlar arasında haberleşme ve etkileşimi sağlar ı-Memelilerde kıl oluşumu ile vücud ısısının korunmasını sağlar k-Tatlı su balıklarında mukus salgıları ile yüzmeyi kolaylaştırır l-Pençe ve tırnak oluşumları ile korunma ve beslenmeyi sağlar m-Balıklarda pul oluşumları ile vücudun su alış verişini engeller ayrıca yüzmeyi kolaylaştırır n-Sürüngenlerde plak oluşumları ile su kayıbını önler o-Bazı omurgasızlarda dış iskeletin oluşumunu sağlar II-İskelet A-Tek hücrelilerde iskelet: Işınlılar,bazı amip türlerinde hücre zarından salgılanan organik salgılara inorganik maddelerin (Ca,Si,Mg vb.) birikimi ile oluşan ışınlar ve evcikler şeklindedir. B-Omurgasızlarda iç iskelet: a-Süngerler,Mürekkep balığı ve derisi dikenlilerde görülür b-Özel hücreler tarafından salgılanan inorganik ,organik veya bunların karışımından meydana gelmiştir c-Üzerlerinde doku veya hücre tabakası bulunur d-Organizmanın büyümesine engel olmaz e-Organizmanın hareketine engel olmaz f-Vücut şeklinin korunmasında rol alır g-Genelde endoderm orijinlidir C-Omurgasızlarda dış iskelet a-Mercanlar,yumuşakçalar,eklem bacaklıların iskeleti bu tiptir b-Deriden salgılanan organik,inorganik veya ikisinin karışımından meydana gelir c-Evcik (Yumuşakçalarda) veya Zırh (Eklem bacaklılarda) şeklindedir d)Zırh şeklinde olanlar büyümeye engel olduklarından zaman zaman değiştirilir e-Evcik şeklinde olanlar büyümeye engel olmazlar büyümeye paralel olarak her yıl yeni ve büyük ilaveler yapılır f-Evcikler CaCO3 ten yapılmış ağır yapılardır.Harekete engel olurlar g-Kabuklularda dış iskelet CaCO3 ten yapılmıştır.Harekete engel olmazlar h-Karada yaşayan eklem bacaklılarda dış iskelet kitinden yapılmış olup hafiftir.(Uçma ve hareket kolayca yapılabilir) ı-Hareketi sağlayan kaslar dış iskeletin iç yüzeyine bağlıdırlar k-Vücud korunması,desteklenmesi, karasal ortamda yaşayanlarda su kayıbının önlenmesi,hareketin sağlanmasında rol alır. l-Madde depolanmasında rol almaz. m-Ektodermal kökenlidir n-Üzerinde vücud örtüsü bulunmaz D-Omurgasızlarda hidrostatik iskelet: a-Solucanlarda ve bazı yumuşakçalarda görülür b-Kan veya doku sıvısının oluşturduğu basınçla meydana gelir c-Vücud şeklinin korunmasında rol alır E-Omurgalılarda iskelet a-Özel dokulardan meydana gelen iç iskelettir b- Büyümeyi engellemez c-Hareketi engellemez d-Hareketi sağlayan kaslar dış yüzeye tutunmuştur e-İnorganik maddelerin (Ca vb.)depolanmasında rol alır f-Bazı dokuların (Kan) oluşumunda rol alır g-Organizma ile beraber büyüme gösterir h-vücud ta hayati organların korunması,şekli oluşması ve hareketin gerçekleşmesinde rol alır. I-Kıkırdaklı balıklar ve omurgalı embriyolarında kıkırdaktan oluşur k-Kıkırdaklı balıklar hariç diğer omurgalı erginlerinde kemikten oluşur l-Mezodermal kökenlidir F-İnsanlarda iskeletin kısımları: 1-Baş iskeleti:Toplam 29 kemik a-Kafatası iskeleti *Alın kemiği(1) *Yan kafa kemikleri(2) *Şakak kemikleri(2) *Art kafa kemiği(1) *Temel kemik(1) *Kalbursu kemik(1) b-Yüz iskeleti *Alt çene kemiği(1) *Sapan kemiği(1) *Üst çene kemikleri(2) *Elmacık kemikleri(2) *Burun kemikleri(2) *Tırnaksı kemikler(2) *Boynuzsu kemikler(2) *Damak kemikleri(2) c-Dil kemiği(1) d-Kulak kemikleri(6) 2-Gövde iskeleti:Toplam 57 kemik a-Omuz kemeri *Köprücük kemikleri(2) *Kürek kemikleri(2) b-Kalça kemeri Sağda ve solda kalça ,oturga ,çatı kemiklerinin birleşmesinden oluşmuş Leğen kemiklerinden(2) meydana gelir c-Omurga: *Boyun omurları(7)(Atlas ve eksen omurları burada bulunur) *Sırt omurları(12) *Bel omurları(5) *Sağrı omurları(5 Omur birleşmiş)(1) Kuyruk sokumu omurları(4 Omur birleşmiş) (1) d-Kaburgalar(24) *Göğüs kemiği(1) 3-Üyeler iskeleti:Toplam 120 kemik a-Ön üyeler *Pazu kemiği(1) *Ön kol kemiği(1) *Dirsek kemiği(1) El bilek kemikleri(8) *El tarak kemikleri(5) *El parmak kemikleri(14) b)Arka üyeler *Uyluk kemiği(1) *Diz kapağı kemiği(1) *Baldır kemiği(1) *Kaval kemiği(1) *Ayak bilek kemikleri(7) *Ayak tarak kemikleri(5) *Ayak parmak kemikleri(14) İnsan iskeletinde toplam 206 kemik bulunur.Bu sayı bazı bilim adamlarına göre ölçüt alınan normlara göre değişiklik gösterir. III-Eklemler: İskeleti oluşturan kemik yapıların birbirleri ile bağlandığı ve kemikler arası hareketin gerçekleşmesini sağlayan yapılardır. Özelliklerine göre üç çeşittir. a-Oynamaz eklemler:Aralarında bulunan bağ dokusu aracılığı ile birbirlerine dişli yüzeylerle hareket etmeyecek şekilde bağlanmışlardır. Örnek:Kafatası kemikleri,Kalça kemerini oluşturan kemikler.Alt çene kemiği hariç yüz kemikleri. b-Yarı oynar eklem:Aralarında bulunan kıkırdak yastıklar sayesinde kısıtlı harekete sahip eklemlerdir. Örnek:Omurlar,El ve ayak bilek kemikleri c-Oynar eklemler:Aralarında yer alan özel eklem yapısı ile geniş açılar oluşturacak şekilde hareket edebilen eklemlerdir.Eklem bölgelerinde eklem sıvısı denen sinovial sıvı bulunur. Örnek:Omuz,Kalça,Parmak kemikleri arasındaki,diz,dirsek eklemleri. Kemikleşmede rol alan yapılar: 1-Hormonlar: a)STH b)Kalsitonin c)Parathormon 2-Vitaminler:A-C-D vitaminleri 3-Dengeli ve yeterli beslenme 4-Kalıtım 5-Spor 6-Güneş ışınları IV-Kaslar A-Omurgasızlarda kaslar ve hareket: a-Süngerler ve sölentera grubuna ait canlılarda kas özelliğine sahip hücrelerle hareket sağlanır.Özelleşmiş kas dokusu bulunmaz b-Solucanlarda yumuşakçalarda ve derisi dikenlilerde hareket düz kaslarla sağlanır. Vücud hareketinin yavaş olmasının nedeni budur c-Eklem bacaklılarda vücud hareketi çizgili kaslarla sağlanır.Hareket hızlıdır. B-Omurgalılarda kaslar ve hareket: *Omurgalılarda kaslar vücud hareketinde ve bazı organların hareketinde rol alır. *Beyin,karaciğer,dalak,böbrek,pankreas ,kılcal damarlar,akciğerler gibi organların yapısında kas bulunmaz. *Bazı organların (Kalp,yemek borusu,mide,ince ve kalın barsaklar,idrar kesesi ve kanalları) yapısını oluşturur. *Mezoderm orijinlidir *Kas hücreleri asetil kolinle uyarılır C-Kasların görevleri: 1-Hareket 2-Madde taşınması 3-Şekil ve korumanın gerçekleşmesi 4-Isı üretimi D-Kasılan kaslarda görülen fizyolojik değişmeler (Huxley in kayan flamentler teorisi) I-Gevşeyen kas Gevşeyen kaslarda görülen değişmeler: 1-A bandı değişmez 4- Sarkomerin boyu uzar 2- I bandı uzar 5-Z çizgileri uzaklaşır 3- H-bandı belirginleşir II-Kasılan kas: Kasılan kaslarda görülen değişmeler: 1-A bandı değişmez 4-Z çizgileri yaklaşır 2-I bandı kısalır 5-Sarkomerin boyu kısalır 3-H bandı ortadan kalkar E-Kasılan kaslarda görülen kimyasal değişmeler Kasılan kaslarda: 1-ATP yıkımı artar 2-Kreatin fosfat yıkımı artar 3-Glikoz yıkımı artar 4-Glikojenin hidrolizi artar 5-Laktik asit oranı artar 6-CO2 oranı artar 7-Isı yükselir 7-Sarkoplazmada Ca oranı artar F-Kaslarda enerji kaynakları(sırası ile) 1-ATP 2-Kreatin fosfat 3-Glikoz 4-Glikojen 5- Laktik asit 6- Yağ asitleri 7- Protein G-Kaslarda enerji kullanımı (Aktif ise) sırası ile: 1.ATP 2.Kreatin fosfat 3-O2 siz solunum 4-O2li solunum Not:Normal şartlarda kaslarda O2 li solunum yapılır.Yüksek performanslı kas hareketleri başladığında ilk önce O2 li solunumla karşılanan enerjinin yerine zamanla O2 siz solunumla elde edilen enerji alır. Kas kasılması ile ilgili grafikler: 1-Tek sarsı grafiği. Yorgun kas grafiğinin özellikleri: 1-Gizli evre uzar 2-Kasılma şiddeti düşer 3-Gevşeme tam olmaz 4-Sarsı süresi uzar 3-Tam olmayan tetanos Birikim) Kaslara ard arda uyaranlar gönderildiğinde kaslar tam gevşemeden gelen uyarılarla tekrar kasılır.Bu kasılma önceki kasılmadan daha şiddetli gerçekleşir.Gittikçe artan şiddetle kasılan kaslar bir süre sonra uyarılardan etkilenmez ve yorgunluk gösterir. 4-Tam tetanosFizyolojik tetanos) Kaslara devamlı uyaran gönderildiğinde gittikçe artan bir şiddetle kasılırlar.Kaslar bu sürede kasılı kalırlar. Bir süre sonra yorgunluk gösterirler.Arda arda gelen uyarılarla oluşan sarsılar birbirleri ile kaynaşarak tek bir sarı gibi görülür. Kaslarda kasılmanın başlaması: 1-Motor plaklardan asetil kolin salgılanır 2-Asetil kolin kas hücresi zarının Na iyonlarına geçirgenliğini artırır 3-Kas hücresi zarından içeri Na iyonları girerek aksiyon potansiyelini başlatır. 4-Aksiyon potansiyeli sarkoplazmik retikulumlar da depolanmış Ca iyonlarının sarkoplazmaya geçmesine neden olur 5-Ca iyonları Aktin-Miyozin kompleksleri arasına yayılarak kasılmanın başlamasına neden olur. 6-Kasılma bittikten sonra Ca iyonları sarkoplazmik retikuluma geri pompalanır.(Aktif taşıma) Not:Kasılmanın enerji kaynağı ATP 1-Miyozinin aktin flamentini çekmesinde (Çoğu) 2-Ca iyonlarını sarkoplazmik retikuluma pompalamak 3-Na iyonlarını kas hücresi zarından dışarı pompalamak için kullanılır Memeli vücudunda bulunan kasların uyaranlara verdikleri tepkilerin hızında önemli farklar vardır.Bu kasların uyaranlarla oluşturdukları sarsı süreleride farklıdır. I=Hızlı tepkilerin oluşumunda rol alan kaslar (Göz kasları) II-Orta hızlı tepkilerin oluşumunda rol alan kaslar (Hareket kasları) III-Yavaş tepkilerin oluşumunda rol alan kaslar (Denge kasları) Hareketin oluşumunda kasların çalışma şekli. 1-Antagonist çalışma:Bir hareketin oluşması için biri kasılırken diğeri gevşeyen kasların çalışma biçimidir. 2-Sinerjit çalışma:Bir hareketin oluşması için birlikte kasılıp birlikte gevşeyen kasların çalışma biçimidir. Not:Bir hareket için antogonist olan kaslar başka bir hareket için sinerjit olabilirler.

http://www.biyologlar.com/hayvanlarda-destek-ve-hareket-sistemi

Omurgalı Ve Omurgasız Hayvanlar Hakkında Ayrıntılı Bilgi

Omurgalılarda kıkırdaktan, kemikten ya da her ikisinden oluşan ve hiçbir hayvan grubunda rastlanmayan bir iç iskelet sistemi vardır. Bu iskelet gelişim boyunca vücuda destek sağlayarak büyümenin sınırlarını genişletir. Bu nedenle omurgalıların çoğu, omurgasızlara göre daha iri yapılıdır. İskelet en ilkel türlerin dışında kafatası, omurga ile kol ve bacak uzantı çiftlerini kapsar. Omurga ile omurgaya bağlanan kol ve bacak kemikleri vücudu destekler.Hareket kemiklere tutunmuş kasların etkinliğine bağlıdır. Hareketin yanı sıra sindirim, görme, dolaşım ve vücut ısısını koruma gibi pek çok işleve katkıda bulunan kas dokusu aynı zamanda vücudun dış çizgilerini belirler. Vücudun dış örtüsü, deri ve türevleri olan tırnak, pul, kıl, post, tüy gibi hem çevreye uyum sağlamaya hem de iç bölümleri korumaya yöneliktir. Omurgalıların üreme yöntemlerinde görülen farklılıklar sudan bağımsız bir gelişme sürecine uyarlanmalarıyla ilgilidir. Bütün omurgasızlarda eşeysel yoldan gerçekleşen üreme, bir yumurtanın döllenmesi ve bir embriyonun olgunlaşmasıyla ortaya çıkar. Döllenme ve gelişmenin 3 temel yolu vardır. İlki yumurtlayan hayvanlarda döllenmiş yada döllenmemiş yumurtalar dış ortama bırakılır. Yumurtaları dişinin içinde açılan hayvanlarda ise yavrular dişinin vücudunda beslenmeksizin canlı doğar. Sonuncu olarak doğuran hayvanlarda embriyon dişinin üreme sisteminin özelleşmiş bir bölgesinde yuvarlanarak belirli bir süre beslenip geliştikten sonra vücuttan ayrılır. 1-Kuşlar Kuşlar, Aves sınıfını oluşturan sıcakkanlı omurgalıların ortak adıdır. Vücutlarını örten ve başka hiçbir hayvan grubunda rastlanmayan yapıdaki tüyleri en ayırt edici özelliklerini oluşturur. Ön bacakları uçmaya uyarlanarak kanat biçimini, tüylerle örtülü ve dişsiz olan alt ve üst çeneleri uzayarak gaga biçimini almıştır. Yumurtalarını kalkerli bir kabuk örter. Gözleri, çevreyi algılamada kullandıkları en gelişmiş duyu organlarıdır. Uçma yetenekleri sayesinde kuşlar tüm yeryüzüne dağılmıştır. Yeryüzünün herhangi bir yerindeki kuş türlerinin sayısı genel olarak uygun yaşama ortamlarının çeşitliliğine ve bölgenin büyüklüğüne bağlıdır. Dünyada günümüzde 8000’e yakın tür kuş bulunmaktadır. Kuşların beslenme biçimleri de, türleri kadar çeşitlidir. Beslenme bakımından kuşları ana gruplarda toplarsak: Yelyutanlar, kırlangıçlar, ve çobanaldatanlar gibi böcekle beslenenler; akbaba, balıkçıl, yalıçapkını, sumru gibi etobur olanlar ve tohum, meyve, balözü gibi besleyici değeri yüksek bitkisel maddelerle beslenenler. Az sayıda tür ise yaprak ve tomurcuk yer. Bacaklarının ve gagalarının dış yapısına bakarak sınıflandırılırsa eğer koşarkuşlar, perdeayaklılar, uzunbacaklılar, tavuksular, güvercinsiler, yırtıcıkuşlar, tırmanıcıkuşlar, ötücükuşlar gibi daha çeşitlilik elde ederiz. Uzun zaman boyunca bilim adamları kuşlar böyle sınıflandırıldılar. Günümüzdeki bilim adamlarıysa kuşları hem iç anatomilerini, hem dış özelliklerini hesaba katarak daha çok sayıda ama daha anlamlı bölümlere ayırmaktadır. Kuşlarda, memelilerinkine benzeyen dolaşım sisteminde 4 boşluklu (2 kulakçık, 2 karıncık) bir yürek bulunur. Ne var ki erişkinde sağ büyük aort yayı vardır. (Oysa memelilerde bu yay soldadır.) Merkezi sinir sistemi karmaşıktır; beyin sürüngenlerinkinden daha iridir; beyin yarım yuvarları ve beyincik çok gelişmiştir; beyin yarım yuvarlarında çizgili cismin merkezi çok karmaşıktır. Koku alma organı kuşlarda önemsiz bir rol oynadığı sanılır. İşitme duygusu iyi gelişmişse de algılanan sesler memelilerinkinden daha azdır. Ama sesleri çok gelişmiştir; her türün çeşitli sesleri ve çoğunlukla belli bir şarkısı vardır. Ses organı memelilerinkinin tersine gırtlak değil soluk borusunun bronşlara ayrıldığı yerde ya da, bazen, soluk borusunda bulunan göğüs gırtlağıdır. Üreme açısından kuşları incelersek, yumurtayla ürerler. Genellikle bir yuvaya bırakılan yumurtaların sayısı türden türe değişir. (1-20 arasında, hatta daha çok) Embriyonun normal gelişmesi için yumurtanın belli bir sıcaklıkta bulunması gerekir. Bazı ender istisnalar dışında (iriayaklıgiller) bu sıcaklık kuluçkaya yatırılarak elde edilir. Kuluçkaya çoğu zaman dişi, bazen hem erkek hem dişi hem erkek, bazen de yalnızca erek kuş yatar. Kuluçkaya yatan kuşun karnında genellikle kuluçka levhaları gelişir, bu levhaların sıcaklığı derinin geri kalanından daha yüksektir. Kuluçkaya yatma süresi, yumurtanın boyuyla orantılı olarak 12 günle (bazı ötücü kuşlar ve ağaçkakanlar) 80 gün (kivi) arasında değişir. Toplu yaşama alışkanlığı türden türe büyük bir çeşitlilik gösterir. Bazıları hep bir arada yaşar ve koloniler halinde yuva yapar; bazıları üreme mevsiminde birbirlerinden ayrılır; normal zamanlarda yalnız yaşayan bazılarıysa yuva kurmak için bir araya gelirler. Başlıca etkinlikleri katı içgüdülere dayanırsa da, kuşlarda tanıma, seçme, uyum gibi yetenekler ve çok güçlü bir bellek vardır. Yerleşim olarak kuşlar, kutuplara ve dağlardaki sürekli karlar sınırına kadar yerkürenin bütün bölgelerinde yaşarlar. Deniz kuşları bütün okyanuslarda bulunursa da hiçbiri üreme sırasında karalardan vazgeçemez. Hem tür, hem sayı bakımından kuşların en çok oldukları yerler yağışlı tropikal ülkelerdir. Soğuk ve ılıman bölgelerdeki kuşların çoğu kışı burada geçiremez ve bu nedenle az çok düzenli göçler yaparlar. 2-Sürüngenler Reptilialar; beden sıcaklığı değişken, amniyonlu, dörtayaklı omurgalılar sınıfı olarak adlandırılır. Sürüngenler amfibyumlar ile kuşlar ve memeliler arasında bir evrim basamağını oluşturur. Eldeki kanıtlar kuşlar ve memelilerin sürüngen atalarından doğduğunu göstermektedir. Adları yürüyüş biçimlerinden gelir; karınları yerden biraz yukarda dursa bile bacaklarının yatay ve kısa olmasından dolayı sürünerek hareket ederler. Yılanlar dışında hepsi 4 bacaklıdır.Sürüngenlerin çoğunda bulunan çok küçük kancalarla donanmış tırnaklar yada pullar tırmanma sırasında önemli bir işlev görür. Ayrıca kuyruklar dallara sarılarak sıkıca tutunmayı sağlar. Sürüngenlerin iyice keratinleşmiş bir derisi vardır, üzeri dışderi kökenli pullarla kaplıdır ve içinde hemen hemen hiç salgı bezi yoktur; hatta altderi kimisinde kemikleşmiştir. (kaplumbağaların bağası) Kafatası bir tek artkafa lokmasıyla omurgaya eklemlenir. 2 kulakçık ve kısmen iki boşluğa ayrılmış bir karıncıktan oluşan (timsahlarda birbirinden ayrıdır) kalpten 2 aort yayı çıkar. Akciğer karmaşık yapıdadır, ama arka tarafında, peteksiz bölümler bulunur (hava keseleri). Sindirim borusunun başlıca özellikleri şunlardır: genellikle kalın bir dil, beslenme rejimine uyarlanmış dişler (yalnızca timsahlarda diş yuvası vardır ve kaplumbağaların ağzı bonuzsu bir gaga biçimindedir) ve arkada sidik ve üreme yollarının açıldığı dışkılık. Duyu organları sürüngenlerde birtakım özellikler gösterir; örneğin Jacobsob organı(ya da ek koklama organı) yılanlara, çatal dilleriyle yakın çevrelerini hemen yoklama olanağı sağlar. Gündüzcü sürüngenlerin retinasında koni biçimindeki hücreler pek çoktur (renkleri görme). Yılanlardan başka bütün sürüngenlerde tek kemikçikli ve kolumelalı bir ortakulak bulunur ve içkulak bir koklea halinde karın-kuyruk doğrultusunda uzanır. Tuatara adındaki tür dışında tüm sürüngenlerin erkeklerinde çiftleşme organı vardır. Türlerin çoğu yumurtlayarak ürerken bazılarında yumurtalar dişini içinde açılır ve canlı yavrular doğar. Birkaç türde ise dişinin içindeki yavrular memelilerin etenesine benzer bir organ aracılığıyla beslenmektedir. Toplam tür sayısı 6 bin dolayında olan günümüz sürüngenleri sıcak ve ılıman bölgelerde geniş bir coğrafi dağılım göstermekle birlikte en çok tropik kuşakta bulunur. Bir kertenkele türü ile bayağı engereğin kuzeye doğru yayılma sınırı, aynı zamanda tüm sürüngenlerin de kuzeyde ulaşabildiği en uç noktalardır. Bu 2 türün coğrafi dağılımı Avrasya’da Kuzey Kutup Bölgesi’ne değin girer. 3-Amfibyumlar Amfibyum kelimesi latincedeki amphi, her ikisi ve bios, yaşamın birleşiminden oluşmuştur ve 2 ayrı ortamda yaşayan anlamına gelir. Amfibyumlar amniosuz, alantoitsiz, embriyonlu, hiç değilse yaşamlarının başlangıcında solungaç solunumlu, bugünkü türlerinde fanersiz derili, 4 bacaklı omurgalılardır. Ayrıca evrimsel gelişmede balıklar ile sürüngenler arasındaki basamağı oluştururlar. Amfibyumların çoğu, önce su ortamında bir lavra (tetari yada iribaş) evresi yaşar, daha sonra başkalaşma geçirerek karada yaşayan erişkin biçimine dönüşür. Yaşayan amfibyumlar, aralarında önemli yapısal farklar olan 3 gruba ayrılır: Gymnophiona takımından ayaksız kertenkeleler; Urodela takımından sirenler ve çöreller: Anura takımından kurbağalar. Ayaksız kertenkeleler solucana benzer; bacakları ve kuyrukları yoktur; basit bir bağırsakları, ince ve pürüzsüz derilerinin içine gömülmüş olan küçük gözleri vardır. Sert ve yuvarlakça kafası, toprağı kazmasına yardımcı olur. Bölütlü gövdesi, yarıklarla birbirinden ayrılmış dairesel boğumlardan oluşur. Her 2 gözün yanındaki küçük çukurların içine gömülmüş 2 dokungaçları ve çenelerinin iç yanındaki çepeçevre kemiklerin üstüne dizilmiş birkaç sıra dişleri vardır. İkinci gruptan olan sirenler ile çöreller, özellikle ABD’nin güneyinde ve Meksika’da çok bol bulunur. Sirenler arka bacağı olmayan, ama ön bölümlerinde bir göğüs kemeri ile iki ön bacağı olan uzun gövdeli su hayvanlarıdır. Solungaçlarıyla solunum yapar ya da su yüzeyindeki hava kabarcıklarını yutarlar. Gözleri pürüzsüz derilerine gömülüdür, dişleri ise üst damakta sıralanır. Kuyruk yüzgeçleri suda ilerlemelerine yardımcı olur. Çörellerin hem ön, hem arka bacakları, kuyrukları, pürüzsüz derileri ve belirgin bir boyunları vardır. Dişler her 2 çenede ve üst damakta yer alır. Bazı çörel türleri, solungaçlı birer lavra olarak bütün yaşamlarını suda geçirirler. Kara ve su kurbağaları, amfibyumların en büyük grubunu oluşturur. Bu hayvanların en belirgin özelliği, arka bacaklarındaki 3 bilek kemiğinin uzayarak, hayvanın zıplamasına ve yüzmesine yardımcı olan birer bölüm oluşturmasıdır. Dişler genellikle altçenede bulunur. Salgı bezleriyle kaplı olan derileri genellikle pürüzsüz ve yumuşaktır; karada yaşayan bazı türlerin derisi pürüzlü ve kuru olabilir. Üreme açısından bakarsak: ayaksız kertenkelelerde ve çörellerde üreme genellikle iç döllenmeyle olur. Ayaksız kertenkelenin erkeği, sindirim borusunun alt ucundaki dışkılığın bir bölümünü dışarıya doğru uzatarak spermlerini dişinin içine boşaltır. Çörellerde ise, erkeğin jelatinden bir kese içine döktüğü spermleri, dişi kesesiyle birlikte dışkılığın içine çeker. Buna karşılık, kara ve su kurbağalarının çoğunda dış döllenme vardır; erkek, yumurtalarını döken dişiyi sıkıca kavrayarak spermlerinin yumurtaların üzerine serper. Amfibyumların yumurtaları genelde kabuksuz olduğundan genellikle suya yada nemli bir ortama, örneğin çamurların arasına yada dişinin sırtına bırakılır. Amfibyumlar yeryüzünün her yerine yayılmış olmakla birlikte en çok tropikal bölgelerde bulunur. Sulak yerlerde ve genelde yalnız yaşarlar. 4-Balıklar Balık, tatlı ve tuzlu suda yaşayan, evrimleşme çizgileri farklı, soğukkanlı omurgalıların genel adıdır. Bu terim, bir sınıflandırmadan çok bir yaşam biçimini tanımlar. Bugün yaşayan balıklar genellikle 5 sınıf altında toplanır. Bu sınıflar, hava soluyan hayvanların 4 sınıfı olan amfibyumlar, sürüngenler, kuşlar ve memeliler kadar birbirinden farklıdır. Yaklaşık 450 milyon yıllık bir geçmişi olan balıklar, bu süre boyunca, hemen her çeşit su ortamına uyum sağlayacak biçimde gelişmiştir. Kara ortamına geçiş sürecinde büyük bir değişime uğrayarak 4 ayaklı kara omurgalılarına dönüştüklerinden, aslında kara omurgalılarının ilk ataları bu su canlılarıdır. Balık dendiğinde genellikle, yüzgeçleri olan, solungaçlarıyla solunum yapan, gövdesi kaygan ve suda hareket etmeye elverişli olan su hayvanı akla gelir. Ne var ki, bu tanıma uymayan balıkların sayısı, uyanlarından çok daha fazladır. Bazılarının gövdesi uzunlamasına genişlemiş, bazılarınınki kısa kalmış, özellikle dipte yaşayanlarda yassılaşmış, birçoğunda da yanlardan basılmıştır. Ağızlarının, gözlerinin, burun deliklerinin ve solungaçlarının konumu da türden türe büyük bir değişiklik gösterir. Balık vücudunun temel yapısı ve işlevi bütün öbür omurgalılarınkine benzer. Kara omurgalılarının vücudunu oluşturan 4 temel doku balıklarda da vardır: Dış yüzeyleri kaplayan epital doku, bağ ve destek doku (kemik, kıkırdak ve lifsi dokularla türevleri), sinir dokusu ve kas dokusu. Tipik balık vücudu, yüzmeye uyarlanmış aerodinamik profilli ve iğ biçimindedir: baş, gövde ve kuyruk bölümlerinden oluşur. Yaşamsal önemdeki organları içeren gövde boşluğu genellikle vücudun ön alt yanındadır. Bu boşluğun arka ucunda, anüs yüzgecinin tabanının hemen önünde, dışkıların boşaltıldığı anüs deliği bulunur. Omurilik ve omurga, kafa iskeletinin arka bölümünden başlayıp sırt, gövde boşluğu ve kuyruk bölgesinden geçerek kuyruk yüzgecinin tabanında sonlanır. Balıklarda çok değişik üreme biçimleri görülmekle birlikte, en yaygın olanı dişinin suya bıraktığı sayısız, küçük yumurtanın vücut dışında döllenmesine dayanır. Açık denizlerdeki yüzey balıklarının yumurtaları genellikle suya asılıymış gibi duru; kıyı ve tatlı su balıkları ise yumurtalarını deniz dibine yada bitkilerin arasına bırakır; hatta bazı türler bir salgıyla yumurtalarını kayalara yada bitkilere yapıştırır. Yumurtaları dölleyecek olan spermalar erkeklerin gövde boşluğundaki 2 (bazen 1) erbezi içinde üretilerek , süt kıvamındaki ve rengindeki bir sıvıyla suya boşaltılır. Kemikli balıklarda, erbezlerinin her birinden çıkan bir sperma kanalı, anüsün arkasındaki ürogenital deliğe, köpekbalıklarında ve vatozlarda ise dışkılığa açılır. Ayrıca bazı balıklarda, erkeğin spermalarını dişinin yumurta kanalına boşaltmasını (iç döllenme) sağlayan bir tür çiftleşme organı vardır. Balıklara duyu organları açısından bakarsak; koku duyuları, hemen hemen tüm balıklar için büyük önem taşır. Çok küçük gözlü bazı yılanbalıkları, besininin yerini bulabilmek için görmeden çok koku duyusuna güvenir. Tat duyusu da balıkların çoğunda çok gelişmiştir; yalnız ağız boşluğunda değil, başın ve vücudun bazı bölümlerinde de tat alma organları bulunur. Beslenme, tehlikelerden kaçınma ve üreyerek soyunu sürdürme açısından belki de en önemli organ gözdür. Balıkların gözü temel yapısı ve işleviyle bütün diğer omurgalılarınkine benzese de, çok değişik yaşam koşullarına uyarlanmış olduğundan değişik özellikler gösterirler. Karanlık ve loş ortamlarda yaşayan balıkların gözleri genellikle büyüktür. Ama başka bir duyusu aşırı gelişerek baskın duruma geçerse gözlerin işlevi azalır. Onlarda ses algılama ve denge, birbirleriyle çok yakın bağıntısı olan iki duyudur. Suyun içerisinde kolayca yayılan ses dalgaları, özellikle düşük frekanslı dalgalar, balıkların baş ve gövde içi sıvıları ile kemiklerine çarparak işitme organlarına iletilir. Balıklarca algılanabilen ses frekanslarının alanı insanlarınkinden çok değişiktir; bu da sesin sudaki yayılma hızından ileri gelir. Bir çok balığın, dişlerini birbirlerine sürterek yada başka yollarla birtakım sesler çıkarıp birbirleriyle iletişim kurdukları sanılmaktadır. 5-Memeliler Mammaliaları, sıcakkanlı omurgalılar sınıfı olarak tanımlayabiliriz. Dişiler yavrularını yalnız bu gruba özgü yapılar olan meme bezlerinin salgıladığı sütle besler. Memelilerin öbür önemli ayırt edici özellikleri arasında deri türevi olan kıllar, alt çenenin kafatasına eklenme biçimi, kalp ve akciğerleri karın boşluğundan ayıran kaslı bir diyaframın varlığı, yalnız sola dönen aort yayının bulunması, olgunlaşmış alyuvarların çekirdeksiz oluşu sayılabilir. Memeliler evrim sürecinde boyut, biçim, yapı ve davranış özellikleri bakımından çok büyük bir çeşitlilik kazanmıştır. Memeli hayvanlarda gelişmeye yönelik başlıca üstünlük yavruların, ana babalarının deneyimlerini öğrenme yeteneğidir. Yavru memelilerin beslenmek için annesine bağımlı oluşu bir eğitim süresini gerektirir. Bu ise başka hiçbir canlı grubunda rastlanmayan ölçüde çevre koşullarına uyarlanmayı sağlayan davranış esnekliğine yol açar. Memelilere has özelliklerin başında deri salgı bezlerinin bulunması gelir. 3 tip deri salgıbezi vardır: kılları temizleyen yağ bezleri; ter salgılayan ve hem boşaltımda hem de beden ısısını düzenlemede rol oynayan ter bezleri; yavruların beslenmesini sağlayan süt bezleri. Ayrıca memelilerde çok sayıda boynuzsu oluşuma rastlanır: pullar, tırnaklar, toynaklar, boynuzlar; fanerlerin en niteleyici olanları, yalnızca onlarda bulunan kıllar ve tüylerdir. Kıllar kürkü oluşturur; kürkün bulunması bu hayvanların sıcakkanlı (beden sıcaklığının değişmemesi) olmasını sağlar (tüylerin ve teleklerin bir ısı yalıtkanı görevi yaptığı kuşlarda da aynı özelliğe rastlanır). Beslenme davranışlarında görülen özelleştirme diş oluşumunu da belirler. İlkel memeliler kesmeye ve koparmaya uyarlanmış dişleri uzun ve sivri uçludur. Otçulların özelleşmiş yan (azı) dişlerinde karmaşık değme yüzeyleri ve genişlemiş taç bölümü dikkat çeker. Ayrıca bu dişler aşınmanın etkilerini değişik yollardan en aza indirecek özellikler taşır. Genel olarak memelilerin çoğu heterodonttur ve hepsi de alveollü 3 çeşit dişleri vardır: kesici dişler, köpek dişleri, azı dişleri (küçük ve büyük azılar). Temel diş formülü olarak 44 dişten oluşan domuzun diş formülü kabul edilir. Memelilerin, genellikle, birbiri arkasına çıkan iki tip dişleri vardır; sütdişleri (geçici dişler) ve kalıcı dişler. Memelilerin kalbinde kuşlarda da görüldüğü gibi sağ ve sol karıncık tümüyle birbirinden ayrılmıştır. Bu gelişim iki ayrı kan dolaşımını olanaklı kılar. Oksijen yüklü kan akciğerlerden kalbin sol kulakçığına geldikten sonra sol karıncığa geçer ve dokulara gönderilmek üzere aorta pompalanır. Alyuvarlar en yüksek düzeyde oksijeni taşıyacak biçimde evrimleşmiştir. Olgunlaştıklarında çekirdeklerinin kaybolması da oksijen taşıma kapasitelerini yükseltir. Yalnızca memelilerde görülen bazı başka özellikler de iç organlarda ortaya çıkar: beden iç boşluğu (sölomlu) kaslı bir diyaframla ikiye ayrılır (karın boşluğu ve göğüs boşluğu). Merkez sinir sistemi yeni bir beyin bölgesinin (neokorteks; bu bölgeye nasırlı cisim, Varol köprüsü yada beyincik yarımküreleri gibi yapılarda eklenmektedir) bulunması nedeniyle çok gelişmiştir. Dişilerde üreme organının yapısı memeli gruplarına göre değişiklik gösterir. Eteneli memelilerde üreme organı dölyatağının biçimine bağlı olarak 4 temel tip altında toplanabilir. Kemiriciler ve Lagomorpha takımında tümüyle ayrılmış 2 dölyatağı birbirinden bağımsız olarak dölyoluna açılır. Etçillerde de dölyatağı büyük ölçüde ikiye ayrılmakla birlikte dölyoluna tek bir kanalla bağlanır. Toynaklıların birçoğunda dölyatağının dallanmış dip bölümü iyice kısalmıştır, gövde bölümü ise ortaktır. İnsan da aralarında olmak üzere üstün yapılı primatlarda dölyolu basitleşmiş, öbür gruplarda görülen dallanma tümüyle ortadan kalkmıştır. Omurgasızlar Omurgasızlar omurgalıların dışında kalan bütün hayvanları kapsar. Günümüz sınıflandırmalarında bir altfilumu oluşturan Vertebrata (omurgalılar) dışındaki hayvanlar, eskiden Invertebrata (omurgasızlar) grubunda toplanıyordu. Ama artan bilgilerin ışığında böylesi bir sınıflandırma yapay duruma düşmüş ve omurgasızlar adı bir sınıflandırma düzeyini gösterecek biçimde kullanılmaz olmuştur. Varlığını sürdüren hayvanların yüzde 90’ ından çoğu omurgasızdır. Boyutları, ancak mikroskop altında görülebilen tekhücreliler ile dev kalamarlar arasında değişir. Omurgadan ve kasların bağlandığı sert bir iç iskeletten yoksun olmalarına karşın birçoğu sağlam bir dış iskeletle korunmuştur. 1-Süngerler Süngerler latincede Porifera olarak adlandırılır. Yaklaşık 5 bin türü tanımlanmış, suda yaşayan hayvan filumu olarak genelleme yapabiliriz. En ilkel çok hücreli hayvanlar arasında yer alan süngerler, genellikle dallanmış biçimleri ve kısa süren lavra evreleri nedeniyle bitki sanılmış, hayvanlara özgü yapı ve özellikleri ilk 1755’te çıkarılmıştır. Süngerlerin yalnız 20 kadar türü (Spongilla cinsi) tatlı sularda, geriye kalan büyük bölümü denizlerde yaşar. En derin denizlerde bile rastlanabilen süngerler, en çok denizlerin tropik ve astropik kesimlerinde yaygındır. Birçok türün uzunluğu birkaç santimetreyi aşamazken, bazılarının boyu 2m’ yi geçmektedir. Süngerlerin belirli organları, dokuları, özgül biçimi, belli bir bakışımı yoktur. Ortadaki sindirim boşluğunu saran iki katlı bir çeperden (dış deri ve iç deri) oluşan (diploblastik hayvanlar) çok hücreli canlılardır;iç deri (endorm) yakalı kamçılı hücrelilerden (koanosit) oluşur. Bu hayvanlarda sinir sistemi yoktur. Hayvanın içinden geçen ve onun mikrofaj beslenmesini sağlayan su akımı, çok sayıda delikten girer; delikler titreyen sepetçiklere, onlarda bir merkezi girişe açılır. Su oradan, anusa benzetilebilecek büyükçe bir delikten (oskulum) dışarı çıkar. Dış ve iç hücre katmanları arasında mesoglea denen ve içinde serbestçe hareket eden amipsi hücrelerin (amibosit) bulunduğu jölemsi bir katman yer alır. Süngerler 3 sınıf altıda toplanır: Calcispongiae (Calcarea), Hyalospongiae (Hexactinellida) ve Demonspongiae. Calcispongiae yada kalkerli süngerlerin üyeleri, kalsiyum karbonat iğneciklerinden kurulu iskeletleriyle ayırt edilen deniz süngerleridir. Hyalospongiae yada silisli cam süngerlerinin iskeleti silisli ve genellikle 6 eksenli iğneciklerden kuruludur. İğnecikler kesintisiz bir ağ oluşturacak şekilde birleşebilir. Demonspongiae yada silisli süngerler 4.200 dolayında türdeki en geniş sünger sınıfıdır. İskeletleri sponjin denen, yalnızca süngerlere özgü bir madde içerebilen bu sınıf üyelerinin çoğu sığ sularda yaşar. Süngerlerde bulunan amipsi hücreler küre biçimli yumurtaları üretir. Döllenmeden sonra oluşan lavralar gövdelerini çevreleyen kirpiklerin yardımıyla uygun bir yüzeye tutunana dek yüzerler. Burada hızla gelişen lavra çok geçmeden erişkin sünger hayvanına dönüşür.Bazı türler tomurcuklanma yoluyla eşeysiz olarak da ürer. Tomurcuklar daha sonra ana süngerden ayrılarak gelişimini bağımsız bir biçimde sürdürür. 2-Örümceğimsiler Arachnidalar, Arthropoda (eklembacaklılar) filumunun, başta örümcekler, akrepler, akarlar, keneler ve uyuz böcekleri olmak üzere, 70 bin kadar etçil ve karada yaşayan omurgasız türüdür.. Arachnida üyelerinin en belirgin özellikleri, iyi gelişmiş bir baş bölümü ile sert (kitinleşmiş) bir dış iskeletten oluşan bölütlü gövde yapısı ve çift sayıdaki eklemli gövde uzantılarıdır. Büyüme sürecinde birkaç kez kabuk (dış iskelet) değiştiren bu hayvanların gövdesi başlıca 2 bölümden oluşur: Kabaca böceklerin baş ve göğüs bölümlerine karşılık düşen ve sefalotoraks yada ön gövde (prosoma) denen başlı-göğüs ile art gövde yada opistosoma denen karın bölgesi. Ön gövde 6, karın 12 bölütten oluşur. Başlı-göğüs bölgesindeki 6 çift uzantının ilk çift genellikle kavrama organıdır; örümceklerde, zehir çengelleri denen bu kısa uzantının ikinci bölütü zehiri fışkırtmaya yarayan bir saldırı organına dönüşmüştür. Dokunma ayakları ve çene ayakları adıyla da bilinen ikinci çift (pedipalp), ya bacağa benzer dokunma organıdır yada hayvanın avını yakalamasına yarayan, kıskaca benzer kavrama organıdır. Bazı türlerde, dokunma ayaklarından her birinin en alt bölütü kesici yada parçalayıcı bir organa dönüşerek, beslenme sırasında ağız parçalarına yardımcı olur; örümceklerde, dokunma ayaklarının en uç bölümü özel bir çiftleşme organı görevini üstlenir. Arachnida sınıfının yaşayan 11 takımı, yeryüzündeki dağılımlarına göre 3 büyük grup içinde toplanabilir. Araneida (örümcekler), Opiliones, Pseudoscorpiones (yalancı akrepler) ve Acarina (keneler, akarlar, uyuz böcekleri) üyeleri dünyanın her yerine yayılmıştır. Kuzey bölgelerinde oldukça seyrek, buna karşılık tropik ve astropik bölgelerde çok bulunan türler, Scorpionida (akrepler), Solifugae (böğler yada poylar), Amblypygi (kuyruksuz kamçılı akrepler) ve Uropygi (kuruklu kamçılı akrepler) takımındandır. Çok dar ve sınırlı bir dağılım gösteren takımlar ise Palpigradi, Ricunulei ve Schizomida’dır. Arachnida sınıfından eklembacaklıların kur yapma ve çiftleşme davranışları oldukça ilginçtir. Genelleme yapmak pek kolay olmamakla birlikte, erkek çoğunlukla spermini dişiye doğrudan aktarmaz. Bazı türlerin erkeği spermini yere yada ağına bırakır; akrep ve yalancı akrepler, içinde sperma hücresinin bulunduğu bir sıvı damlacığını taşıyan, jelatinsi yapıda bir sperma kesesi oluştururlar. Çoğu türlerde erkek kimyasal bir madde salgılayarak dişiyi eşleşmeye çağırır; görüşü keskin olan türlerde ise göz alıcı renkleriyle dişini ilgisini çekmeye çalışır. Arachnida üyelerinin büyük bölümü yumurtayla, bazı türler (örn. akrep) ise doğurarak ürer. Bu türlerde, döllenmiş yumurtalar dişinin içinde gelişir ve yavrular canlı olarak doğar. Analık duygusu pek gelişmemiştir ama, dişi akrep en azından kabuk değiştirinceye kadar yavrularını sırtında taşır. Akarlar ve kenelerin gelişme ve büyüme çevrimi, Arachnida sınıfının öbür üyelerine göre biraz daha değişiktir. Bu türlerde yumurtadan çıkan 6 bacaklı lavra (kurtçuk), erişkin duruma gelmeden önce bir yada birkaç kez başkalaşım evresinden geçer (nemf). Acarina üyelerinin çoğu yumurtlar; bazıları ovovivipardır, yani yumurtlama sırasında yada hemen ardından yavrular yumurtadan çıkmaya hazırdır; bu türler arasında döllenmesiz çoğalmaya da (partenogenez) rastlanır. Beslenme alışkanlıkları da türler arasında oldukça büyük değişiklikler gösterir. Opiliones takımının bazı üyeleri uzun bacaklarıyla avlarının peşinde koşar yada otların arasında yiyecek ararken, yalancı akrepler bir ava rastlayıncaya değin ağır ağır dolaşırlar. Bazı kamçılı akrepler daha çok geceleri avlanır, gerçek akrepler ile örümcekler ise avını yakalamak için sessizce beklemeyi tercih ederler. Arachnida üyeleri içinde en değişik beslenme alışkanlığına sahip grup, salgıladığı ipek iplikçiliklerini bazen bir avlanma aracı , bazen bir tuzak gibi kullanan örümceklerdir; ağ kuran türler genelde avın tuzağa düşmesini sabırla beklerken, bazı örümcek türleri de avlanmak için çok ilginç yöntemler geliştirmişlerdir. 3-Derisidikenliler Echinodermatalar, gövdeleri ser ve dikenli bir kabukla örtülü çok sayıda deniz hayvanını kapsayan filumdur. En derin okyanus çukurlarından gelgit bölgelerine kadar denizlerin bütün derinliklerinde görülebilen derisidikenlilerin 20’yi aşkın sınıfı tanımlanmıştır; bu sınıflardan çoğunun soyu tükenmiş, yalnızca beş sınıftan 6 bin kadar tür bugüne dek varlığını koruyabilmiştir. Derisidikenlilerin bugün var olan bu 5 sınıfı Crinoidea (denizlaleleri ve tüy yıldızlar), Asteroidea (deniz yıldızları), Ophiuroidea (yılan yıldızları), Echinoidea (deniz kestaneleri) ve Holothuriodea (deniz hıyarları)’dır. Bazı uzmanlar Asterozoa altfilumu içindeki Asteroidea ve Ophiuroidea sınıflarını, aralarındaki yakın ilişkiye dayanarak Stelleroidea sınıfının altsınıfları olarak kabul ederler. Derisidikenlilerin en belirgin özelliği, kalsiyum karbonattan oluşan iskeletleri ve erişkinlerde beşli ışınlı bakışım gösteren gövde yapısıdır. İskelet yapısı ya deniz kestanelerinde olduğu gibi sert levhaların kaynaşmasıyla oluşmuş, içi oyuk bir kabuk biçimindedir yada pürüzsüz, çok sayıda ayrı ayrı kemik levhacık kaslarla birbirine bağlanmıştır. Deniz laleleri ile tüy yıldızlarda her iki iskelet biçimi birlikte görülür; asıl gövde bölümünde iskelet levhacıkları kaynaşmış, sap bölümünde ise eklemli bir yapı kazanmıştır. Yumuşak gövdeli deniz hıyarlarında ise, iskelet levhacıkları iyice küçülerek mikroskobik parçacıklara bölünmüştür. Yaşayan derisidikenlilerin bütün sınıflarda egemen olan bakışım (simetri) düzeni, genellikle 5 eksenli olan ışınsal bakışımdır; soyu tükenmiş türlerde görülen iki yanlı bakışım ise, yaşayan türlerden çoğunun yalnızca lavra evresine özgüdür. Ununla birlikte, deniz kestanelerinin bazı türleri erişkinlikte iki yanlı bakışımı korurken, erişkin deniz hıyarları da dıştan iki yanlı, içten ışınsal (beşli) bakışım gösterir. Özellikle savunmaya, ayrıca istenmeyen parçacıkların vücuttan atılmasına yarayan kıskaçsı organlar (pedisel) deniz kestanelerinde ve deniz yıldızlarında bulunduğu halde, öbür 3 sınıfın üyelerinde bulunmaz. Deniz kestanelerinde ayrıca 40 iskelet levhası ile kaslardan oluşan karmaşık yapılı bir çiğneme aygıtı (Aristo feneri) vardır. Derisidikenlilerin çoğu ayrı eşeylidir. Üreme genellikle spermanın yumurtayı döllemesiyle eşeysel yoldan gerçekleşir; yalnız deniz yıldızları ile deniz hıyarlarının birkaç türünde bölünmeyle eşeysiz üreme görülür. Eşeyli üremede yumurta ve spermalar denize dökülür ve döllenme su içinde gerçekleşir. Dişiler genellikle yılda bir kez ve milyonlarca yumurta döker. Döllenen yumurtalar, yumurtanın iriliğine bağlı olarak iki ayrı gelişme çizgisi izler. Az besin içeren küçük yumurtalardan serbestçe yüzebilen lavralar çıkar; bunlar bir süreliğine planktonlarla beslendikten sonra başkalaşım geçirir ve deniz tabanına yerleşir. Daha bol besin içeren iri yumurtalarda, embriyon gelişmesini yumurta içinde tamamlar ve lavra evresinden geçmeksizin doğrudan erişkine dönüşür. Derisidikenlilerin çoğu, kopan gövde parçalarını kolayca yenileyebilir.Örneğin denizyıldızlarında, ortadaki gövde diskinden küçük bir parçanın kalmış olması koşuluyla, tek bir koldan yeni bir birey gelişebilir. Derisidikenlilerin büyük bölümü, dibe çökelmiş yada yüzen çok küçük organik maddelerle, denizkestaneleri ile denizyıldızlarının birçoğu ise bitkilerle beslenir. Yalnız bazı deniz yıldızları özellikle yumuşakçalara dadanan etçil hayvanlardır. 4-Çok bacaklılar Çok bacaklılar, çok ayaklılar olarak da bilinir. Omurgasızların Arhropoda (eklembacaklılar) filumundan Diplopoda (kırkayak) , Chilopoda (çıyan), Psuropoda ve Symphyla sınıfları ile soyu tükenmiş Achipolypoda grubunun üyelerine verilen ortak addır. Bazı uzmanlar bu hayvanları Myriapoda sınıfı altında toplar ve yukarıda sözü edilen sınıfları birer altsınıf olarak kabul eder. Küçük bir grup olan çok bacaklıların günümüze değin 11 bin yaşayan türü sayılmıştır. Çok bacaklılar bir çift duyarga, çiğneyici çeneler ve solunum trakerleri gibi birçok çift bacakla donanan kara eklembacaklıları sınıfıdır. Bir çok bacaklının çoğunlukla birbirinin aynı birçok halkasının her biri bir yada iki çift bacak taşır. Cinsellik deliği ya bir tanedir ve arkada bulunur (Chilopoda sınıfı) yada iki tanedir ve öndedir (üyelerinin her halkasında iki bacak bulunan kırkayaklar ve gelişmemiş sineklere benzeyen Symphyla alt sınıfı). Bütün çok bacaklılar yumurtlayarak ürer. Çok bacaklılar genellikle seyrek görülen hayvanlardır. Bazıları geniş kitlesel göçlerle dikkat çekerken, bazıları da ev ve öbür yapıların kuytu köşelerinde barınır. Yaşayan 4 sınıfı ile tropik ve ılıman bölgelere büyük ölçüde dağılmış olan çok bacaklılar, bazı yerlerde toprağın organik bölümünü (humus) kaplayarak toprak faunasında öne çıkarlar. Çeşit ve sayıca en çok ormanda bulunursalar da, çıyanlar başta olmak üzere kimi kırkayak türleri otlak yada yarı kurak çevrelerde bulunur. 5-Solucanlar Solucan sınıfı Platyhelminthes (yassı solucanlar), Anelida (halkalı solucanlar), Aschelminthes (yuvarlak solucanlar) ve Pogonophora (sakallı solucanlar) filumlarını kapsar. Bazen Aschelminthes grubunu oluşturan Nematoda (iplik solucanlar), Rotifera, Gastrotricha, Kinorhyncha ve Pripalida sınıfları filum düzeyine yükseltilerek sınıflandırılmaktadır. Yer solucanları, Oligochaeta sınıfından halkalı solucanların karada yaşayan en tanınmış üyeleridir. Solucanların gövdesi ince uzun, silindir biçiminde yada yassılaşmış ve genellikle uzantılardan yoksundur. Uzunlukları 1mm ‘nin altından başlayarak 15m’yi aşabilir. Denizlere, tatlı sulara ve karalara yayılmış olan bu hayvanların bir bölümü asalak, öbürleri serbest yaşar. 6-Böcekler Böcekler Arhropoda (eklembacaklılar) filumunun Insecta (böcekler) sınıfını oluşturur. Böcekler hayvanlar aleminin en geniş filumudur: hem birey sayısı hem de uyum sağlama ve yeryüzüne dağılım açısından. Böcekler sınıfı 2 alt sınıfa ayrılır: Apterygota (kanatsız böcekler) ve Pterygota (kanatlı böcekler). Apterygota altsınıfının Protura, Thysanura (kılkuyruk), Diplura ve Collembola (yay kuyruk) gibi 4 takım içinde sınıflandırılan üyeleri ilkel, kanatsız ve genellikle başkalaşmasız böceklerdir; bunlarda, erişkinlerin ağız parçaları baş kapsülüne tek bir noktada eklemlenir. 27 takımdan oluşan Pterygota altsınıfının üyeleri daha üstün yapılı, kanatlı, kanatlı ve başkalaşma geçiren böceklerdir; bunlarda, erişkinlerin ağız parçaları baş kapsülüne iki noktada eklemlenir. Bu altsınıfın iki bölümünden biri olan Exopterygota, yarı başkalaşmalı böcekleri içerir ve 17 takıma ayrılır: gün sinekleri, hamamböceği, cırcırböceği, kulağa kaçanlar, cadı çekirgeleri, eşkanatlılar, termitler, ısırıcı bitler, tahta kurusu... Altsınıfın ikinci bölümü olan ve tüm başkalaşmalı böcekleri içeren Endopterygota bölümü ise 10 takıma ayrılır: deve sinekleri, kelebek, arı, karınca, sinekler,pireler... Bütün eklem bacaklılarda olduğu gibi, böceklerin de bacakları eklemli, gövdeleri bölütlü ve genellikle bir dış iskeletle korunmuştur. Bu sınıfın üyelerini eklembacaklıların öbür sınıflarından ayıran temel özellikler ise şunlardır: Öbür eklembacaklılarda gövde 2 bölümden oluşurken, böceklerde baş, göğüs ve karın olmak üzere 3 bölümden oluşur; Öbür eklembacaklıların hiçbirinde kanat bulunmazken, bu sınıfın üyelerinin çoğu kanatlıdır; öbür eklembacaklılardaki en az 4 çift bacağa karşılık böceklerin 3 çift bacağı vardır. Nitekim bazı uzmanlar böcekler sınıfını, altı bacaklı anlamına gelen Hexapoda terimiyle adlandırır. Böceklerin başlıca özelliklerinden biri olan kanat yapısı ise, sınıflandırma ve adlandırmada temel olarak alınır: Düzkanatlılar, yarım kanatlılar, kın kanatlılar, pul kanatlılar, zar kanatlılar gibi. Böceklerin yaşam çevrimi genellikle yumurtayla başlar. Türlerin çoğunda, çevre koşulları elverişli olmadıkça lavra yumurtanın içinden çıkmaz ve türden göre ya duraklama durumuna geçerek gelişmesini erteler yada gelişmesini tamamladıktan sonra uyku durumuna geçerek koşulların düzelmesini bekler. Yumurtadan çıkan lavra, kitinli kabuğu sertleşinceye değin hava yutarak şişer. Bu dış iskelet bir kez sertleştikten sonra artık büyümediği için, böcek geliştikçe bu daralan kabuğu atıp, yeni ve daha geniş bir kabuk oluşturarak birkaç kez deri değiştirir. Böceklerin lavra biçimleri 5 grupta toplanabilir : tırtıla benzeyen lavralar, tombul ve kıvrık lavralar, uzun,yassı ve hareketli lavralar, telkurduna benzeyen lavralar ve bacaksız lavralar. Hemen hemen bütün böceklerde eşeyli üreme, bazılarında döllenmesiz çoğalma, bir bölümünde de tek eşeylilik görülür. 7-Yumuşakçalar Latince adı Molusca dır. Tipik bir yumuşakçanın bedeni bir baş, bir iç organlar kütlesi ve bir ayaktan oluşur; bunların hepsi manto denilen bir zarla kaplıdır. Mantonun başlıca görevi kavkı salgılamaktır. Kavkı iki çenetli, koni biçiminde, helezon gibi kıvrık, deri altında körelmiş durumda, birçok levhaya bölünmüş (kiton), sarmal bölgelere ayrılmış (Nautilus) olabilir; kavkı erişkinde büsbütün yok olabilir ama embriyonda muhakkak bulunur. Yumuşakçalarda bakışım hemen hemen iki yanlıdır; beden bölütlü değildir, ama bazı organlarda bölütlenme izlerine rastlanır Genellikle etli olan ayak çoğunda sürünerek yürümeye (karından bacaklılar), yeri delmeye (iki çenetliler), yüzmeye ve besinleri yakalamaya yarar(kafadan bacaklılar). Yumuşakçalar beş sınıfa ayrılır: İlkel yumuşakçalar(kiton), karındanbacaklılar (genelde sarmal kavkılıdırlar), Scaphopoda (sayıca çok azdırlar), iki çenetliler ve kafadan bacaklılar(ahtapot,mürekkep balığı). Sölom iki boşluk halindedir; birinde eşeysel bez, ötekinde perikart bulunur. Yumuşakçaların yumurtaları bol vitellüslü olduğundan genellikle iridir. Yumurtalar genellikle çok karmaşık organlarda ayrı ayrı yada bir arada bulunabilir. Lavra yüzücüdür ve bir perdeyle kaplı örtülü bir evre geçirir; bu evre kafadan bacaklılarda yoktur ve karından bacaklı kara yumuşakçalarında lavra iri bir vitellüsle örtülüdür. 8-Kabuklular Kabukluların iki çift duyargaları, birleşik gözleri, çoğunlukla göğüsle kaynaşmış bir başları vardır. Bu sınıfa ıstakoz, yengeç gibi solungaçlarla donanan eklem bacaklılar dahildir. Kabuklular temel özellikleriyle öbür hayvanlardan ayrılır. Bedenleri bir baş ile iki ayrı bölgede toplanan (göğüs ve karın) bir dizi bölüt (yada halka) içeren bir gövdeden oluşur. Bölütlerin sayısı gelişmiş kabuklularda 19 yada 20’dir. Çoğunlukla bir yada birçok göğüs bölütüyle kaynaşarak baş, bir başlıgöğüs oluşturur. Göğüs bölütlerinin her birinde, pereiopot adı verilen ve çiğneyici organlara, kıskaçlara yada ayaklara(yürümeye yada yüzmeye yarar) dönüşebilen bir çift eklenti vardır. Malacostraca cinsinin her kalın bölütünde pleopot denen bir çift eklenti bulunursa da öbür öbeklerin üyelerinde genelliklebu eklentilere rastlanmaz.

http://www.biyologlar.com/omurgali-ve-omurgasiz-hayvanlar-hakkinda-ayrintili-bilgi

BALIKLAR

Solungaçları ile solunum yapan, vücut ısıları çevreye bağlı olarak değişen, soğuk kanlı, yürekleri çift gözlü, çoğunun vücudu pullu,genellikle yumurta ile üreyen, suda yaşayan omurgalı hayvanların genel adı. Bir kulakçık ve karıncıktan meydana gelen kalplerinde daima kirli kan bulunur. Kalpten çıkan kirli kan solungaçlarda temizlendiğinden, vücutta temiz kan dolaşır. Ağızdan alınan sun, solungaçlardan dışarı atılırken suda çözülmüş oksijen, osmozla kana verilir. Bu arada suda bulunan besinler ise yutulur. Köpek balıklarında su hem ağızdan hem de ilk solungaç yarığından alınır. Tuzlu su balıkları su içtikleri halde, tatlı su balıkları su içmezler. Gerekli su ihtiyaçlarını solungaç zarlarından osmozla alırlar. Deniz balıkları içtikleri suyun tuzunu böbrekle değil, solungaçları ile ayırır. Balıklarda göğüs ve karın yüzgeçleri çift, sırt, kuyruk ve anal yüzgeçleri tektir. Balıkların harekette önemli rol oynayan değişik kuyruk tipleri mevcuttur. Çatallanmış kuyruk tipine “difiserk”, çatallı olup eşit parçalı olana “homoserk”, köpek balıklarında olduğu gibi çatalları eş olmayan kuyruk tipine de “heteroserk” denir. Balıklar omurgalı canlılar içerisinde sayıca en fazla olanıdır. Çalışmalarda balık türünün 40.000 kadar olduğu söylenmektedir. Balıkların günümüzde sportif ve akvaryumdaki değeri yanında büyük bir protein kaynağı olması ticari değerini arttırmaktadır. Balıkların yeryüzündeki dağılımları o kadar geniştir ki, sıcak tropikal sularda, acı sularda, tatlı sularda, ışığın ulaştığı dağ derelerinde veya insanların henüz ulaşamadığı oldukça karanlık ve derin sularda yaşayabilmektedir. Üç türlü beslenme görülür. Herbivor (otçul), karnivor (etçil) ve omnivor (hem et hem de bitkisel besin yiyenler). Yalnız çenelerinde değil, bütün ağız boşluklarında ve yutaklarında sıralanış ve şekil olarak birbirinden farklı birçok diş bulunur. Bu genelde beslenme şekillerine göredir. Bazılarında farinks (yutak) dişleri gelişmiştir. Yanlız Mersin balıklarında ve Demetsolungaçlılarda diş bulunmaz. Balıklar nasıl yüzer? Her balık vücudunun elastikiyeti cinslere bağlıdır. Mesela; yılan balığı vücudunu bir yılan gibi hareket ettirebilir. Bütün balıklar kuyruklarını her iki yana da hareket ettirebilir. Kuyruk her iki yana hareketi sırasında geri ve yandaki suyu iter. Suyun bu hareketlere olan tepkisi balığın ters yönde hareket etmesine sebep olur. Kuyruğun başka bir vazifesi de balığın yana yatmasını önlemektir. Bunun yanı sıra hareket yönünde sabit kalmasını sağlar. Yüzgeçlerin açısının değiştirilmesi ile balık aşağı ve yukarı yüzebilir. Bu mekanizma ayrıca uçaklardaki gibi işler. Ön yüzgeçler hızı düzenleme yönünden fren etkisine sahiptir. Balığın besin değeri: Balık etinin besleme özelliği fazladır. Çünkü, kasaplık hayvan etine nazaran yağ oranı düşük, protein oranı yüksektir. Ayrıca vitamin bakımından da zengindir. Bilhassa A ve B vitaminleri fazladır. Balığın önemli diğer bir özelliği de fosfor bakımından zengin bir besin maddesi olmasıdır.      

http://www.biyologlar.com/baliklar

EVRİMİN MEYDANA GELMESİNDE ROLÜ OLAN FAKTÖRLER

1- Ortam Koşulları Canlılar, yer ve onu çevreleyen atmosferin “biyosfer” olarak tanımlanan dar bir kalınlığında yaşarlar. Toprakta tüm canlılık, ağaç köklerinin ulaşabildiği derinliğe kadar uzanır. Biyosfer içinde yaşam, belli başlı deniz, tatlı su, ve kara ortamlarında yer almaktadır. Hava, kaldırma kuvvetinin zayıflığı nedeniyle sürekli kullanılan bir yaşam ortamı olmamıştır. Bu ortamlar içinde, canlılığın gelişmesi için en uygun olanın, deniz ortamı olduğu düşünülmektedir. Denizler, yeterli kaldırma kuvveti ile canlılara sağladığı kolaylık yanında; ozmotik basınç farkından doğan olumsuzluğun tatlı suya göre daha az olduğu; sıcaklık, ışık ve elementlerin dağılımı gibi fiziksel ve kimyasal koşulların, kara ortamına göre tekdüze (homojen) olduğu bir ortamdır. Kara ortamı, fiziksel ve kimyasal koşullar bakımından yıllık, mevsimlik, günlük ve saatlik değişiklikler gösteren bir ortamdır. Kara ortamında, zamansal ve coğrafik boyutlarda karşılaşılan farklı koşullar (heterojenite) nedeniyle ortaya çıkan ekosistem (= Yerin bir bölgesinde canlı ve cansız varlıkların birlikte oluşturdukları ekolojik birlik) çeşitliliği, tatlı su ve deniz ortamlarına göre çok daha fazladır. Kara ortamına uymuş (adaptasyon) canlıların tür sayısının su ortamına uymuş canlılardan fazla olmasının başlıca nedeni, karasal ekosistemlerin çeşitliliğinin fazla oluşudur. Yaşam ortamlarında, basınç, sıcaklık, ışık, nem, O2, CO2, tuzluluk derecesi, H konsantrasyonu, besinsel elementler, organik ve toksik maddeler bilinen belli başlı çevresel değişkenlerdir. Tür (=Morfolojik olarak yeterli ölçüde biribirlerine benzeyen ve kendilerine benzer yavrular meydana getiren canlılar) düzeyinde ve hatta bireysel olarak her canlı için, bu değişkenlerin bulunabileceği en düşük (minimum); en yüksek (maksimum) ve en uygun (optimum) değerleri vardır. Canlılar için bulundukları ortam koşullarında meydana gelen değişiklikler yaşamsal öneme sahiptir. Örneğin, tam başkalaşım (holometaboli) geçirerek erginleşen ve sonunda bir kelebek olan Şpek Böceği (Bombyx mori) nin gelişimi, bütünüyle çevresel koşulların kontrolu altındadır. Yumurtalar, Dut Ağacının yapraklanmasına sebep olan çevresel koşullara (özellikle sıcaklığa) bağlı olarak açılarak kurtcuk (larva)lar meydana gelirler. Kurtcuklar beslenme konusunda Dut yapraklarına öylesine bağımlıdırlar ki, bulamadıkları durumda başka bitkilerin yaprakları üzerinde beslenemediklerinden ölürler (monofag canlı). Çünkü, Dut yaprağının kimyasal kompozisyonu, Şpek Böceği kurtcuklarının bu yaprakları ısırması, hatta yutması için özel bileşikler içermektedir. Canlılar, bir ekosistem içinde rastgele bulunmak yerine, Şpek Böceği-Dut Ağacı örneğinde olduğu gibi, bir ilişkiye dayalı olarak bir arada bulunurlar. Ekosistem içinde, aralarında kurdukları karşılıklı ilişkilere dayalı olarak bir arada bulunan populasyon (=Belli bir bölgede yaşayan aynı türden canlılar) ların meydana getirdiği topluluk (community), adeta bir canlı gibi değişen çevresel koşullara uymaya çalışır. Bunu yaparken, bazı populasyonlarını kaybedebileceği gibi çevresel koşulların yeni kompozisyonuna uyum sağlayan yeni populasyonları da üretebilir. Hatta, bir türe ait eski ve yeni populasyonlar arasındaki fark tür düzeyinde olabilir. Bu ortam şartlarının neden olduğu bir türleşme ya da evrimleşmedir. 2- Eşeyli Üreme Eşeysiz üreme canlılar arasında görülen ilkel bir üreme şeklidir. Eşeysiz üremenin bilinen 3 şekli, spor oluşturma (bazı bakteriler ve mantarlarda), tomurcuklanma ( örneğin Chlorohydra viridissima da) ve ikiye bölünme ( örneğin Amip gibi) dir. Bu şekilde üreyen canlılar, genotipik olarak kendilerini kopyalarlar ve populasyonu meydana getiren fertler, kalıtsal özellikleri bakımından biribirlerinin aynıdır. Tomurcuklanma ve spor oluşturma şekillerinde canlının bir bölümü veya oluşturduğu sporlar sonraki dölü meydana getirdiği halde; ikiye bölünerek üreme şeklinde canlının tamamı bölünmeye uğradığı için, bu çoğalma şeklinin eşeysiz üremenin en ilkel şekli olduğu düşünülmektedir. Ancak, konumuz açısından önemli olan, eşeysiz çoğalmanın bütün örneklerinde meydana gelen fertlerin genotipik olarak aynı özelliklere sahip olmasıdır. Buna karşın, eşeyli üreme genotipik olarak farklı kompozisyona sahip olan fertler arasında (erkek ve dişi) gen alış-verişini sağlayan bir çoğalma şeklidir. Bu çerçevede, erkek ve dişi fertler tarafından meydana getirilen ve her biri farklı dizilişte ve haploid sayıda (bir organizmayı oluşturan somatik hücrelerin sahip oldukları kromozom sayısı “2n” nın yarısı olan “n” sayıda) kromozoma sahip olan eşey hücreleri (sırasıyla sperm ve yumurta) birleşerek yavru hücre (zigot = iki gametin birleşmesinden meydana gelen, “2n” kromozoma sahip diploid hücre) yi meydana getirirler. Burada evrim açısından önemli olan, farklı genetik kompozisyona sahip olan fertlerin meydana getirdikleri ve bu kompozisyonun yarısına sahip olan eşey hücrelerinin birleşmesinden yeni ve orijinal bir genotipin meydana gelmesidir. Örnekle açıklamak gerekirse, diploid kromozom sayısı 6 olan bir canlının kromozomlarından 3 ü babadan, 3 ü anneden gelmektedir. Dolayısıyla bu canlı 23 = 8 farklı kromozom kombinasyonunda gamet meydana getirebilmektedir. Zigotun meydana gelebilmesi için gerekli olan karşı cins de 8 farklı kromozom kombinasyonunda gamet oluşturabilmektedir. Böylece, erkek ve dişi gametlerin birleşmesi durumunda, meydana gelebilecek farklı kromozom kombinasyonuna sahip fertlerin sayısı 8 X 8 = 64 dür. Bu canlının insan (2n = 46) olduğu düşünülürse, erkek ve dişilerde farklı kromozom kompozisyonundaki gametlerin sayısı 223 olduğundan bu gametlerin birleşmesiyle meydana gelebilecek farklı kromozom kompozisyonunda fert sayısı 223 X 223 = 246  70 tirilyondur. Bu örnek, aynı zamanda tek yumurta ikizleri dışında, kardeşlerin neden biribirlerine benzemediklerini açıklar. Eşeyli çoğalmada canlılar gen alış-verişini, sperm ve yumurta hücrelerinin oluşumu sırasında geçirdikleri mayoz bölünmesi (redüksiyon bölünmesi) nin "diploten / profaz" evresinde karşılıklı gelen ana ve babaya ait kromozomlar arasındaki parça değişimi (crossing-over) ile sağlarlar. Böylece, erkek ve dişi eşeylerin gonad hücreleri arka arkaya geçirdikleri bir mayoz ve bir mitoz bölünmesi sonunda 4 spermatozoon ve l yumurta hücresi meydana getirirler Her canlı, üyesi olduğu tür için özel olan sayıda kromozoma sahiptir. Örneğin insanda bu sayı 46 dır. Mayoz bölünmesi, eşey hücrelerinin kromozom sayılarını yarıya indirerek, bunların birleşmesinden meydana gelen döllenmiş yumurta (zigot) da kromozom sayısının tür için karakteristik olan sayıda kalmasını sağlayan bir bölünmedir. Bu özelliği ile mayoz bölünme, örneğin insanda kromozom sayısının ardışık her dölde 46, 92, 184,... şeklinde artmasını önlemektedir. Mayoz bölünmenin, birbirinden kesin sınırlarla ayrılamayan dört evresinden ilki olan Profaz evresinde sırasıyla, kromozomlar iplik şeklinde görünür hale gelirler (Leptoten); anne ve babadan gelen homolog kromozomlar fermuar kapanması gibi, bir ucdan başlayarak boydan boya karşılıklı gelirler (Zigoten); "sinapsis" olarak tanımlanan bu işlem sonunda "bivalent" adı verilen kromozom çiftleri oluşur. Bivalenti oluşturan kromozomlar kısalıp kalınlaşırken kromatidlerine ayrılırlar (Pakiten). Bivalenti oluşturan kromozomlar kısalıp kalınlaşma sırasında biribirleri üzerine öylesine burulup bükülürler ki, homolog kromozomların kromatidleri arasında kesişmeler meydana gelir (Diploten). Kesişme noktaları (chiasma) nda meydana gelen kopmalara bağlı olarak, homolog kromozomların kardeş olmayan kromatidleri arasında genlerin karşılıklı olarak değiştirilmesiyle anne ve babadan gelen kalıtım materyali karışmış olur (crossing-over). Böylece, anne ve babanın sahip oldukları karakter çeşitliliği içinden farklı gen kompozisyona sahip yeni gametler; ya da çevresel koşullara karşı alternatif zigot oluşturacak farklı gametler meydana gelmiş olur (Diakinez). Çekirdek zarının yok olmaya başlamasıyla mayoz profazı sona ermiş olur. Metafazda, sentromerler hücrenin iki ayrı kutbunda yerlerini alırlar. Sentromerler arasında iğ iplikleri oluşur. Bivalentler iğ iplikleri üzerinde, sentromerleri ekvatoryal düzleme eşit uzaklıkta olacak şekilde dizildikten sonra, kromozomlar fermuar şeklinde biribirlerinden ayrılmaya başlarken kesişme noktaları uçlara kayar (terminalizasyon). Anafazda, homolog kromozom çiftleri biribirlerinden tamamen ayrılarak karşılıklı kutuplarda toplanırlar. Telofazda, Şğ iplikleri yok olurken bivalentlerin yarımları etrafında çekirdek zarları oluşmaya başlar. Mayoz bölünmede yukarıdaki şekilde tanımlanan evrelerin süreleri farklıdır. Bundan sonra, anne ve babanın kromozom sayısının yarısına (insanda n=23) sahip olan 2 erkek ve 1 dişi eşey hücresi, yukarıda da belirtildiği gibi, geçirdikleri mitoza benzeyen ikinci bir bölünmeyle 4 spermatozoon ve 1 yumurta hücresi meydana getirirler. Bu şekilde oluşan her gamet ve onların birleşmesinden meydana gelen her fert, ortam koşullarına uyma açısından ait olduğu türün yeni bir şansıdır. Buna karşın eşeysiz üremeyle çoğalan bir populasyon değişen ortam koşullarına uyma konusunda, farklı genotipe sahip bireyleri bulunmadığından yok olma tehlikesiyle karşı karşıyadır. Nitekim, tür sayıları karşılaştırılırsa, eşeyli çoğalan türlerin sayısı, daha yakın bir geçmişe sahip olmalarına rağmen eşeysiz çoğalan türlerin sayısından daha fazladır. Örneğin, herhangi bir kelebek populasyonu laboratuvar koşullarında yetiştirilmek istenirse, bireyler laboratuvarda yetiştirme kafesleri içinde kendi aralarında döllenmek zorunda kalacaklarından, bir süre sonra populasyon içinde heterozigot (homolog kromozomlarda belli bir karakter üzerinde etkili olan karşılıklı genlerin farklı yönde etkiye sahip olması) fertlerin sayısı azalacak ve populasyon küçülecektir. Bunu önlemek için, başka laboratuvarlardan getirilen fertlerin populasyona karıştırılması gerekecektir. Nitekim, heterozigot fertlerden oluşan populasyonların bulundukları ortamdaki büyüme yeteneklerinin homozigot (homolog kromozomlarda belli bir karakter üzerinde etkili olan karşılıklı genlerin aynı yönde etkiye sahip olması) fertlerden oluşan populasyonlardan fazla olduğu bilinmektedir. Şnsan populasyonlarında da yaşanan buna benzer olaylar vardır. Ekonomik veya kültürel gerekçelerle kendi içinde kız alıp-veren bir populasyonda görülen küçülme veya zayıflığın nedeni, populasyon içinde homozigotluğun artmasına karşın, heterozigotluğun azalmasıdır. 3- Bireysel Değişiklikler (Varyasyon) Türler arasındaki farklar dışında, aynı tür içinde veya aynı ana ve babadan meydana gelmiş fertler arasında çeşitli karakterler (morfolojik, fizyolojik ve karşı eylem) bakımından görülen farklara bireysel değişiklik (varyasyon) denir. Aynı türden bireylerin, saç, deri ve göz renginde olduğu kadar boy uzunluğu ve şişmanlık, hatta zorluklara karşı dayanma gücü gibi karakterleri arasındaki farklar; tek yumurta ikizleri arasında en az olmak üzere, karşılaştırılan örnekler arasındaki akrabalık derecesinin azalmasıyla ters orantılı olarak artar. Yapılan çalışmalar, bu karakterlerde meydana gelen değişikliklere, canlıyı oluşturan tüm karakterleri kontrol eden ve dölden döle aktarılmasını sağlayan kalıtsal nitelikli iç faktörler(genotip) ile canlının içinde yaşadığı ve fiziksel, kimyasal, biyolojik özellikleri bulunan dış faktörler (çevresel) in neden olduğunu göstermiştir. Ana çizgileriyle nasıl işlediği aşağıda anlatılan, bu iç ve dış faktörlerin birlikte etkisi altında meydana gelen canlıya fenotip denir. A- Genotipik değişiklikler (Mutasyonlar) Bir populasyonun herhangi bir dölünde görülen değişikliğin sonraki döllerde de görülmesine kalıtsal (genotipik) değişiklik, bu değişikliği meydana getiren kromozomlardaki yapısal ve sayısal değişikliklere de Mutasyon denir. Mutasyonlar organizmanın eşey hücrelerinde veya somatik hücrelerinde meydana gelebilir. Eşeyli çoğalan canlılarda, eşey hücrelerinde meydana gelen mutasyonların kalıtsal niteliği olmasına karşın, somatik hücrelerde meydana gelen mutasyonların ilgili hücre, doku veya organizmada meydana getirdiği değişiklikler (kanserleşme gibi) dışında kalıtsal bir etkisi bulunmamaktadır. Örneğin, siyah gözlü bir Sirke Sineği (Drosophila sp.) populasyonunda nadiren 1-2 tane kırmızı gözlü sinek ortaya çıkabilir. Bunların kendi aralarında çaprazlanmasıyla, populasyon içinde kırmızı gözlü fertlerin sayısı artar. Hatta, nesiller sonra populasyon tamamen kırmızı gözlü bireylerden oluşabilir. Böylece, bu populasyonun tamamı kalıtsal bir değişikliğe uğramıştır. Bir kural olmamakla birlikte kalıtsal değişiklikler derecelenme göstermezler. Örneğin, siyah ve kırmızı gözlü sinekler arasında kahverengi gözlü fertlere rastlanmaz. Ancak, ortaya çıkması çok sayıdaki genin işleyişine bağlı olan karakterlerde derecelenme görülebilmektedir. Genlerin mutasyona uğrama dereceleri farklıdır. Örneğin, Drosophila sp. de göz renginde değişikliğe neden olan mutasyon kolay meydana gelmesine ve sık görülmesine karşın, metabolik işlemleri kontrol eden genlerde mutasyon ender olarak meydana gelmektedir. Canlılar arasında mutasyona uğrama sıklığı bakımından da fark bulunmaktadır. Bu oran, bakterilerde 1.10-7; Meyve Sineğinde 1.10-5 hücre ve insanda 1.10-4 hücre düzeyindedir. Mutasyonlar, crossing-over dışında, kromozomlarda oluşan sayısal ve yapısal değişiklikler ile genlerin moleküler yapısında meydana gelen değişiklikleri kapsar. Bunlardan, kromozomların gen sırasında meydana gelen yapısal değişiklikler ve genlerdeki moleküler değişikliklerin mutasyon etkisinin, kromozom sayısında meydana gelen değişikliklere oranla yüksek olduğu, gen fizyolojisi alanında yapılan çalışmalarla ortaya konmuştur. a) Defisiyens ve Delesyon: Kromozomdan parça eksilmesi durumunda yapılan adlandırmadır. Kromozomun ucundan parça eksilmesi “Defisiyens”, uçlar arasında bir bölgeden parça eksilmesi “Delesyon” olarak adlandırılmaktadır. Şekil 2a da kromozomda meydana gelen iki kırılma sonunda kırıklar arasındaki parçanın kaybına neden olan mutasyon (delesyon) görülmektedir. b) Duplikasyon: Homolog kromozomlar arasında parça değişmesi sonunda, kromozomlardan birinde bir bölümün tekrarlanmasıdır. Şekil 2a da homolog Kromozomlardan birinde oluşan iki kırıkdan sonra ortaya çıkan asentrik parçanın, homolog kromozomların diğerinde oluşan bir kırığa yerleşmesi sonunda mutasyona uğramış, eksik ve tekrarlı parçalara sahip yeni homolog kromozom çifti görülmektedir. c) Şnversiyon: Kromozomdan kopan bir parçanın 1800 dönerek eski yerine ters olarak yerleşmesidir. yapışan parçanın sentromerli olması durumunda “perisentrik inversiyon”; sentromersiz olması durumunda “parasentrik inversiyon” olarak tanımlanır. d) Translokasyon: Homolog olmayan kromozomlar arasında, kromozom parçalarının tek yönlü (basit) veya çift yönlü (resiprokal) olarak yer değiştirmesidir. Herhangi bir canlıda, bir karakterin genotipik özelliklerini belirleyen nükleotid grubu “gen” olarak isimlendirilmektedir. Bu tanıma göre, bir canlıya ait herhangi bir karakter çok sayıda nükleotid‟in kontrolu altında meydana gelmektedir. Dolayısıyla, bir geni meydana getiren nükleotid‟lerden birine ait baz‟da (adenin, guanin, timin veya sitozin) meydana gelen herhangi bir kimyasal değişiklik gen mutasyonu olarak adlandırılmaktadır (Şekil 2b). Bu şekildeki bir değişikliğe, radyomimetik madde veya mutagen olarak isimlendirilen; X ,  ve ultraviyole ışınları gibi değişik dalga boyunda radyasyonlar veya hardal gazı ve kolşisin gibi kimyasallar sebep olmaktadır. Gen mutasyonuyla, genellikle baskın (dominant) genler çekinik (resesif) gen haline gelirler ve canlı için çoğu kez zararlı olurlar. Zararlı gene sahip olan fert, var olan koşullar içinde çoğalamadan ölür ve söz konusu gen, populasyonun gen havuzunu terkeder. Bir başka durumda, mutant gen var olan çevresel koşullara karşı etkisiz (nötr) kalmasına rağmen, zamanla değişen ortam koşullarında fenotipe bir avantaj sağlayabilir ve doğal seçimle bu genin populasyonun gen havuzu içindeki sıklığı artar. B- Fenotipik değişiklikler (Modifikasyonlar) Herhangi bir karakter için kalıtsal olarak biribirinin aynı olan canlılarda ortam etkisine bağlı olarak meydana gelen değişiklikler fenotipe özgü olduklarından “fenotipik değişiklik” veya “modifikasyon” olarak adlandırılır. Kalıtsal bir temele dayanmadığı için evrim üzerine bir etkisi bulunmamasına rağmen bir değişiklik (varyasyon) olması nedeniyle, genotipik değişikliklerden farkının belirtilmesi için üzerinde durulacaktır. Bilindiği gibi, tek yumurta ikizleri kalıtsal özellikleri bakımından biribirlerinin aynıdır. Şkizler bebeklik döneminde anneleri tarafından bile zor ayırd edilmelerine rağmen, ilerleyen yaşlarıyla birlikte elde ettikleri fırsatlar ve bulundukları ortamların farklılığına bağlı olarak, morfolojik ve psikolojik özellikleri bakımından ayırd edilmeye başlarlar. Şleri yaşlarda ekonomik, sosyal, kültürel ve morfolojik özellikleri bakımından biribirinden farklı iki ayrı fenotip meydana gelir. Bir arı kovanında hepsi dişi olmakla birlikte kraliçe ve işçiler arasındaki fark da çevresel koşullara bağlı olarak meydana gelmektedir. Döllenmemiş yumurtalardan erkek arılar, döllenmiş yumurtalardan kraliçe veya işçi arılar meydana gelmektedir. Döllenmiş yumurtalardan çıkacak bireylerin kraliçe ya da işçi olmaları yumurtaların bırakıldıkları petek gözünün niteliklerine bağlıdır. Sıradan gözlere bırakılan yumurtalardan işçi arılar meydana gelirken; Niteliği diğerlerinden farklı olan ve işçi arılar tarafından farklı bir ihtimam gösterilen petek gözüne bırakılan yumurtadan kraliçe meydana gelir. Bu örnekte, bireyler arasında kalıtsal farklılık bulunmamasına rağmen, beslenme şekline (çevresel koşullar) bağlı olarak arılar arasında bir kast farkı meydana gelmiştir. Fenotipik değişiklikler derecelenme de gösterebilirler. Örneğin, kendi çiçek tozu ile döllenen bir Fasulye bitkisinde, aynı bakla içindeki dane (tohum) ler büyüklüklerini belirleyen genotipleri bakımından aynıdır. Ancak, her dane gelişmesi için gerekli olan hacim, su, besin ve ışık miktarı gibi çevresel faktörlere farklı derecelerde sahip olduklarından büyüklükleri farklı olmaktadır. Burada önemli olan, bir bakla içindeki danelerin en büyüğü ve en küçüğü arasında daha küçük, daha büyük gibi ara dereceler göstermeleridir. Bir canlıda, erken gelişim evrelerinde çevresel bir etkiye bağlı olarak meydana gelen ve kalıtsal değişikliklere benzeyen fakat, dölden döle geçmeyen değişikliklere “fenokopi” denir. Örneğin, uterusda, embriyonik gelişimin radyasyona daha duyarlı olduğu evrelerde iyonizan radyasyona maruz kalan memeli embriyolarında sonradan görülen anormallikler; bireyin yaşaması ve verimliliği (fertilitesine) üzerinde etkili değil ise, bu anormalliklerin yavrulara taşınmadığı görülür. Yani, etki kalıtsal (genotipik) değil fenotipiktir. Tarım, hayvancılık ve insan sağlığı amacıyla zararlı böceklere karşı yürütülen mücadele yöntemlerinden biri de “radyasyonla kısırlaştırılmış fertlerin salıverilmesi” yöntemidir. Bir Pamuk zararlısı olan Spodoptera littoralis kelebeğinin kısırlık dozunun araştırılmasında; 40 Gy  radyasyonuna (60Co) maruz bırakılan yumurta, larva ve pupalar erginleştikten sonra bireyler arasında nadiren de olsa görülen kanat büküklüğü anormalliğinin kelebeklerin daha sonraki döllerine taşınmadığı, yani radyasyona bağlı olarak meydana gelen değişikliğin fenokopi kapsamında olduğu görülmüştür. 4- Doğal ayıklanma Genotipik olarak biribirinin aynı olan tek yumurta ikizleri dışında, eşeyli çoğalan tüm canlılar biribirlerinden farklıdır. Aralarında, besin, yaşama alanı, barınak ve eş bulma gibi gereksinimler için bir rekabet vardır. Rekabete, parazit ve yırtıcıların baskısına karşı avantaj sağlayan genotipik özelliklere sahip organizmaların hayatta kalmalarına ve kendilerinden sonraki nesilleri meydana getirmek üzere çoğalmalarına karşın; benzer özelliklere sahip olmayanların ölmesine veya üreyememesine sebep olarak, populasyonun gen kompozizyonunun zaman içinde, gereksinimlere uygun olarak değişmesine neden olan biyolojik işlem “doğal ayıklanma” olarak tanımlanabilir. Doğa, koşullarına uygun olan değişiklikleri koruma, elverişsiz olan değişiklikleri uzaklaştırma eğilimindedir. Doğal ayıklanma, Darwin‟in teorisinde yer verdiği, evrime yol açan başlıca mekanizmadır. Doğal ayıklanma sonunda hayatta kalanların üreme (özellikle eşeyli üreme) üzerindeki baskısıyla, populasyona avantaj sağlayan değişiklikler (mutasyonlar); gelecek döllere geçer ve populasyonun gen havuzunda zaman içinde birikerek sonunda populasyonun değişmesine yol açarlar. Bu evrimsel bir değişmedir. Doğal ayıklanma olayını anlatabilmek için, bu konuda klasikleşmiş bir örneği kullanmak yararlı olacaktır. Endüstrileşmeye bağlı olarak gece kelebeklerinde meydana gelen renk değişikliğini izlediği bir çalışmasında Kettlewell, 1848 yılında önemli derecede endüstrileşmiş bir şehir olan Manchester de normal olarak açık renkli, benekli kelebeklerden oluşan Biston betularia populasyonu içinde 1 adet siyah renkli mutant kelebek buldu. Aynı populasyon üzerinde 1895 yılında yaptığı gözlemde ise kelebeklerin %99 unun siyah renkli olduğunu gördü. Aradan geçen zaman içinde, mutant form populasyon içinde normal formun yerini almıştı. Normalde açık renkli olan kelebeklerin, sanayiden kaynaklanan kurumla kararmış olan ağaç kabukları üzerinde avcı kuşlar tarafından kolayca farkedilerek avlanmalarına karşın, koyu renkli kelebekler ortama uyduklarından sağ kalabilmişlerdir. Kettlewell, mutant genin tekrar sayısındaki artışa doğal seçimin sebep olduğunu göstermek için, 1957 yılında, etiketlediği koyu ve açık renkli B. betularia bireylerini Manchester de kuşların bol bulunduğu bir alana ve Dorset'deki bir ormana salıverdi. Bir süre sonra, yakalanan etiketli bireylerden siyah renklilerin Manchester de; normal renklilerin Dorset de yaşayabildiklerini belirledi. Buna göre, kuvvetli bir olasılıkla B. betularia nın siyah mutantları 1848 yılından önce de meydana geliyordu, fakat hava kirliliği olmadığından, açık renkli likenlerle örtülü ağaçlar üzerinde koyu renkli mutantlar avcı kuşlar tarafından kolayca farkedildiklerinden, populasyon içindeki koyu renk geni avcı kuşların baskısı altında bulunuyordu. Ancak, sanayi devriminden sonra likenlerin yok olmasıyla, koyu renkli ağaç kabuğu üzerinde görünür hale gelen açık renkli kelebekler avcı kuşlar tarafından avlandıklarından bu kez populasyon içindeki açık renk geni avcıların baskısı altında kalmıştır Doğal ayıklanma, bir dölden sonrakine geçen genlerin tekrar sayısında meydana getirdiği değişiklikle, belli genlerin farklı derecede dölden döle geçmesine yardım ederek türleşmeyi sağlar. Böylece, süregelen çevresel koşullar içinde en etkili gen birliklerinin oluşmasına yardım eder ve fenotipde çevresel uyumla ilgili değişiklikleri meydana getirir. Populasyon içinde, aile dışı (genotipik olarak uzak) bireyler arasında meydana gelen birleşmelere (outbreeding) bağlı olarak heterozigotluk; aile içi (genotipik olarak yakın) bireyler arasında meydana gelen birleşmelere (inbreeding) bağlı olarak homozigotluk gelişir. Bilindiği gibi, homozigotluk fenotipde çekinik genlerin karşılıklı gelme şansını artıran ve populasyon içinde genotipik çeşitliliği azaltan; heterozigotluk ise bunun tersine, fenotipde çekinik ve dominant genlerin karşılıklı gelme şansını artıran ve çevresel koşullara karşı daha dayanıklı bir populasyon meydana getirmek üzere genotipik çeşitliliği artıran bir olgudur. Çevresel koşullar, doğal seçim mekanizmasıyla populasyonu isteği doğrultusunda değişmeye zorlar. Populasyonun gen havuzu içinde çevresel koşullar için elverişli genotipler doğal seçimle belirlenir ve gen havuzunda tutulur. Bu işlem sürecinde, çevresel koşullara rağmen populasyonda Resim 1. Biston betularia nın açık ve koyu renkli fertleri solda likenle kaplı bir ağaç gövdesi, sağda yalın ağaç kabuğu üzerinde. zayıflığa neden olan genler populasyonun gen havuzundan uzaklaşır. Yani, doğal seçim sonunda genotipik çeşitliliğin bir bölümü kaybedilir. Bu arada, çevresel koşullara karşı populasyonu avantajlı veya dezavantajlı kılmayan genler (nötr genler), genellikle gen havuzundaki varlıklarını sürdürürler. Çevresel koşullar değişmediği sürece populasyon için bir sorun yoktur. Ancak, bir değişme söz konusu olduğunda, populasyonun hayatta kalabilmesi sahip olduğu alternatif genlerin fazlalığına bağlıdır. O zamana kadar çekinik veya nötr durumda kalmış olan genlerin sayısı, populasyonun yeni koşullara uyma konusunda sahip olduğu yaşamsal alternatiflerdir. Doğada kendiliğinden meydana gelen ve çevre koşullarına daha iyi uyum sağlayan fertlerin seçiminden başka, yarış atları ve daha verimli bitkiler elde etmek gibi ekonomik amaçlara yönelik olarak insan eliyle yürütülen “yapay seçim” çalışmaları da bulunmaktadır. Bilimsel deneylerde kullanılmak üzere istenen niteliklere sahip yavruların kendi aralarında ve ana-babalarıyla çiftleştirilmesiyle, istenen özellikleri verecek genler bakımından homozigot fertler elde edilir. Yapay seçimin en ileri ürünü “arı döl” (inbred ırk) dür. Kendileşme sonunda oluşan homozigotluk, genellikle bulunduğu canlının yaşama yeteneğini azaltmaktadır. Bu şekilde elde edilen populasyonun fertleri dayanıksızdırlar ve özenli bakıma muhtaçtırlar. Doğal seçime benzer sonuçlar veren, fakat oluşumu farklı olan bir başka olay "genetik sürüklenme" (genetik drift) dir. Genellikle küçük ve ayrı kalmış populasyonlar için önemli olan bu olay, gen tekrar sayılarının doğal seçim yerine tesadüfe bağlı olarak değişmesidir. Doğal seçim bakımından bireye avantaj sağlamayan ve kan gruplarını veren genlerin populasyon içindeki tekrar sayıları üzerinde, genetik sürüklenmenin belirleyici olduğu ileri sürülmektedir. Örneğin, koyu renkli kurbağalardan oluşan bir populasyon içinde ortaya çıkan açık renkli iki kurbağa, karayolunu geçerken kaza sonucu ezilip ölseler ve bu kurbağalar evvelce ürememiş olsalar, populasyonun, bu kurbağaların sahip oldukları açık renk genini kaybetmesi tamamen tesadüfe bağlı olarak meydana gelmiştir ve doğal seçimle bir ilgisi yoktur. Ancak, bir populasyonda oluşan herhangi bir değişiklik, doğal seçim ve genetik sürüklenmenin ortak etkisi altında meydana gelmektedir. 5- Uyum (Adaptasyon) Yerin biyosfer kalınlığı içinde, canlıların morfolojik ve fizyolojik bakımdan uyabilecekleri çok çeşitli ortamlar bulunmaktadır. Bir populasyon, bir organizma veya genel olarak bir canlı organizasyonun içinde bulunduğu koşullara uygun olarak değişmesi “uyum” olarak tanımlanır. Uyum, bir ölçüde ferdi yeteneğe bağlı olarak ve bir ölçüde de genetik bakımdan heterojen olan populasyonlarda, B. betularia örneğinde olduğu gibi, doğal seleksiyona bağlı olarak meydana gelmektedir. Bir populasyonun fertleri, bulundukları ortamın koşullarında meydana gelen değişiklik sonunda, özel koşullara sahip olan farklı ekosistem ya da biyomlara göç edebilirler. Göç eden populasyonlar, sahip oldukları gen havuzu içindeki çeşitliliğe bağlı olarak, meydana getirdikleri çeşitli gen kompozisyonlarına sahip bireyler arasından yeni koşullara uygun genotiplerle bulundukları ortama uyarlar. Bu şekilde farklı ortam koşulları için meydana gelen genotipik uyumlar, canlılarda büyük bir çeşitliliğin ortaya çıkmasına neden olmuştur. Başlangıçda aynı türe ait olan fertlerin dağılarak farklı ortamlarda, farklı ekolojik koşullara uymuş “ekotip” ler meydana getirmesine neden olan evrimsel değişme “adaptif radyasyon” olarak tanımlanır. Doğadaki bitki ve hayvan türleri, genellikle kendileşme yerine eşeysel yolla çoğalırlar. Ayrı eşeyli bir türün farklı populasyonlarına ait fertleri arasında gerçekleşen çiftleşmeler populasyonların gen havuzu içindeki gen çeşitliliğini artırmaktadır. Bir populasyonun gen havuzunda sahip olduğu gen çeşitliliği ne kadar fazla ise, değişen ortam koşullarına dayanabilen fertler üretme ve dolayısıyla populasyonun varlığını sürdürebilme şansı o kadar fazladır. Canlılar arasında genotipik uyumun çeşitli şekillerine rastlanmaktadır. Örneğin, Şsveç‟in kuzeyindeki dağlık bölgelerden getirilen Solidago virgaurea bitkisinin, güneydeki deneme bahçelerine ekildikten sonra da, buradaki türdeşlerine göre boylarının kısa kalması ve erken çiçek açması bir genotipik uyumdur. Kuzeyde yazlar kısa olduğundan, bitkinin soyunu devam ettirebilmesi için çiçeklenme, tohum tutma ve tohumlarının olgunlaşması süratli olmak zorundadır. Bitki başardığı genotipik uyumla bu koşullara dayanabilmiştir. Ancak söz konusu uyum genotipik olduğundan, kuzeyde kazandığı özelliklerini yaz mevsimi uzun süren güneydeki tarlalarda değiştirmemiştir. Afrika‟da yaşaşan yerli insanların derilerinin koyu renkli olması da genotipik bir uyum örneğidir. Bu insanların derilerinde yaygın olarak bulunan melanin pigmenti, derinin daha alt tabakalarında bulunan hassas hücreleri kuvvetli güneş ışınlarının zararlı etkisinden korur. Ancak bu örnekteki uyum da genotipik olduğundan, Afrika yerlilerinin daha az güneşli kuzey ülkelerine gitmesi onların deri renginde bir değişikliğe neden olmaz. Böcekler, canlılar aleminde tür çeşitliliği en fazla olan sınıftır. Böylesine zengin tür çeşitliliğine sahip oluşları, çok çeşitli ortam koşullarına uymak zorunda kalmış ve bunu başarmış olmaları ile açıklanabilir. Diğer nedenler, yaşam süreleri kısa olduğu için birim zaman diliminde çok sayıda döl vermeleri ve her defasında çok sayıda yavru meydana getirebilmeleridir. Bilinen canlı türlerinin yarıdan fazlasını kapsayan (yaklaşık 750 000 tür) böcekler sınıfında, 3 çift yürüme bacağına sahip olmaları, her bacağın 5 segmentten (koksa, trohanter, femur, tibia, tarsus) yapılmış olması gibi ortak özellikler yanında; türler arasında, yaşadıkları ortamın gereklerine ve beslenme şekillerine göre önemli farklar da vardır. Örneğin, bal arısı (Apis mellifica) nın son ayak segmentinde pürüzlü yüzeylerde tutunabilmesi için kitin bir çengel, düz yüzeylerde tutunabilmesi için çengelin hemen arkasında “arolium” denen bir yapışma tabanı bulunur. Buna karşın, dana burnunda (Gryllotalpha gryllotalpha) ön bacaklar kazmaya uygun şekle dönmüştür. Böceklerin ağız parçaları esas olarak, 1 çift mandibul, 1 çift maksil ve labiumdan ibarettir. Ancak, çeşitli gruplarda beslenme şekillerine uygun olarak, örneğin hamam böceğinde (Periplaneta americana) çiğneyici, bal arısında (Apis mellifica) yalayıcı – emici, kelebeklerde (Lepidoptera takımı) emici ve sivri sineklerde (Culex pipiens) sokucu – emici işlevi yerine getirecek şekilde değişmiştir (Şekil 3). Aralarındaki işlevsel farka rağmen bu organların embriyonik gelişimleri arasında görülen benzerlik “homologi tarzı benzerlik” tanımlanmaktadır. Bu karşılaştırma yöntemi, “analogi tarzı benzerlikler” ile birlikte “Evrimin Kanıtları – Morfolojiden sağlanan kanıtlar” başlığı altında tartışılacaktır. Uyum, bazı canlılarda bir korunma mekanizması olarak gelişmiştir. Ağaç kurbağası (Hyla spp.) yeşil rengi ile ağaçlar üzerinde, tarla kuşları kanat ve kuyruk desenleriyle bulundukları zemin üzerinde, pisi balığı değişik zeminlere uygun olarak rengini değiştirerek, gece kelebekleri kanat desenleriyle gündüz üzerine kondukları ağaçlar üzerinde, avcıları tarafından farkedilemezler. Özellikle böcekler arasında görülen ve “mimikri” olarak adlandırılan korunma amaçlı bir başka uyum şeklinde, canlılar renk, şekil ve hareketleriyle kendilerini zehirli hayvanlara benzeterek, yırtıcı hayvanları, özellikle kuşları korkutarak korunmaya çalışırlar. 6- Ayrı kalma (izolasyon) mekanizmaları Belli bir coğrafik bölgeyi kullanan aynı türden canlılara “populasyon” adı verilir. Aşağıda anlatılan doğal engeller nedeniyle, bir populasyonu meydana getiren bireyler kendi aralarında çiftleşerek, fertil bireyler meydana getirme olanağını kaybedebilirler. Böylece, söz konusu engel öncesinde, aynı gen havuzunu kullanan populasyon yerine; engel sonrasında farklı gen havuzlarına sahip birden fazla populasyon meydana gelebilir. Sonuçda, biribirinden ayrı kalan populasyonlar, içinde bulundukları koşullara uygun şekilde değişerek kendi gen havuzlarını oluştururlar. Bu gen havuzu, engel öncesindeki gen havuzunun ve/veya engelden sonra meydana gelen diğer populasyonların gen havuzunun kompozisyonlarından farklı olabilir. Alt tür, ırk veya ekotip olarak tanımlanan ilk farklılıklar; populasyonların gen havuzu kompozisyonlarının giderek farklılaşması sonunda, kendi aralarında çaprazlanamayan yeni türlerin ortaya çıkmasına neden olabilir. a) Coğrafik ayrı kalma Başlangıçda aynı populasyona ait olan bireylerin; yüksek sıradağ, nehir, biribiriyle ilişkisini kaybetmiş göller ve denizlerle ayrılmış kara parçaları gibi engellerle, farklı ortamları kullanan populasyonlara bölünmeleri Örneğin, Şsviçre, Şskandinavya ve Şngiltere göllerinde, tatlı su balıklarından Salvelinus genusunun farklı tür ve ırklarına rastlanması; başlangıçda aynı türe ait olan bireylerin coğrafik bir engele bağlı olarak biribirlerinden ayrı kalarak gen alış verişinde bulunamamaları ve farklı ortamlarda hayatta kalmak için değişerek farklı populasyonları, giderek farklı ırkları ve farklı türleri meydana getirdikleri şeklinde açıklanmaktadır. Orta Anadoluda dişli sazan olarak bilinen Cyprinodontidae familyasından Aphanius anatolias Leidonfrost, 1921 (Kosswigichthys asquamatus Sözer, 1942) türünün, Gölcük Gölü (Isparta), Burdur Gölü (Burdur), Acı Göl (Afyon) ve Hazar Gölünde (Elazığ) bulunduğu bilinirken bu cins içinde Aphanius burduricus Akşıray, 1948 olarak tanımlanan türün endemik olarak Burdur Gölünde bulunduğu bilinmektedir. Bu türün, yukarıdaki örnekde olduğu gibi bir taraftan bulunduğu ortamın koşullarına uyarken, diğer taraftan ana populasyon ile gen alış verişinin son bulması sonucunda giderek farklılaştığı düşünülmektedir. Güney Amerikada Ekvador kıyılarından 600 mil uzakta bulunan Galapagos adalarında yaşayan Fringillidae familyasından Geospiza türlerinin Güney Amerika ana karasında yaşayanlardan farklı olmasını Darwin; volkanik olan bu adaların ana karadan uzakta meydana gelmiş olmasına rağmen bu adalara ulaşan Geospiza türünün ana kara ile arasında gen alış verişinin son bulması ve adalarda yaşayan Geospiza türlerinin, bulundukları koşullara uygun gen çeşitliliğine sahip populasyonlar meydana getirmesi sonunda, giderek farklılaşan populasyonların farklı türlere dönüştüklerini savunmuştur. Coğrafik ayrı kalma sonunda ortaya çıkan türleşmeye bir başka örnek Limantria dispar kelebeğinde görülmektedir. Yaprağını döken ağaçların, özellikle meşe ağacının zararlısı olan L. dispar Avrupanın batısından Japonyaya kadar geniş bir alanda dağılmıştır. Bu türün biribirine yakın olan populasyonları (örneğin, Anadolu ne Şran yarımadası populasyonları) kendi aralarında fertil yavrular meydana getirirlerken, Avrupa ve Japon adalarında yaşayan populasyonların kendi aralarında çiftleşemedikleri ve bazı morfolojik farklarla biribirlerinden ayrıldıkları bildirilmektedir. Bu durum, gen alış verişini engelleyecek şekildeki bir coğrafik uzaklığın türleşmeye neden olabileceğini göstermektedir. Coğrafik ayrı kalma sonunda ortaya çıkan türleşme “allopatrik” türleşme olarak da adlandırılmaktadır. Benzer bir ayrı kalma şekli, Avrupa ve Asyada yaygın olarak bulunan Parus major adlı kuş türünde görülmüştür. Bu türün doğuya yayılan iki kolundan biri Himalaya dağlarının kuzeyinden, diğeri güneyinden geçerek Çin‟e ulaşmıştır. Şki göç yolu üzerindeki kuşlar arasında çiftleşmenin başarılamaması, aralarında çiftleşme açısından bazı engellerin meydana geldiğini göstermektedir. b) Ekolojik ayrı kalma Aynı coğrafik bölge içinde farklı ortam koşullarına uymuş olan populasyonlar arasında ekolojik nedenlerle ayrı kalma söz konusu olabilmektedir. Coğrafik ayrı kalmada olduğu gibi, ekolojik ayrı kalmada da, populasyonlar bulundukları ortamların farklı oluşu nedeniyle bir araya gelemezler ve gen alış verişinde bulunamazlar. Örneğin, Afrika da yaşayan Anopheles cinsi sivrisineklerden A. melas türü yumurtalarını tuzlu sulara bırakırken, A. gambiae tatlı su birikintilerine bırakmaktadır. Kuzey Amerikada yaşayan Peromyscus cinsi sıçanlardan P. maniculatus bairdii nin göl kenarındaki kumluklarda, P. maniculatus gracilis in ormanlarda yaşadığı bildirilmektedir. Aynı coğrafik bölge içinde farklı habitatlara uymuş canlılara bir başka örnek, Drosophila cinsidir. D. quinaria orman içi nemli alanlardaki meyvalar üzerinde; D. palustris bataklıklarda çürüyen bitkiler üzerinde; D. transversa ise yıllık bitkilerin bulunduğu kuru alanlarda mantarlar üzerinde beslenirler. Bu örneklerde adı geçen tür ve alt türlerin “adaptif radyasyon” sonunda; yumurta bırakma, yaşam alanı seçme ve beslenme gibi konularda yaptıkları tercihlerle, belli ekolojik nişlere uyum sağladıkları ve aralarında buna bağlı olarak gen alış verişi kesildiğinden ayrı kaldıkları ileri sürülmektedir. “Simpatrik” türleşme olarak da bilinen bu ekolojik ayrı kalma şekli ile ilgili olarak; Bursa, Uludağda yaşayan Kınkanatlılar üzerinde yapılan bir çalışmada, dağın farklı yüksekliklerinde Carabus cinsinin farklı alt türlerine rastlandığı bildirilmiştir. Türleşme olasılığı bulunan bu alt türlerin meydana geliş nedeni, yüksekliğe bağlı olarak değişen çevresel koşullardır veya farklı alt türlere ait canlıların, bulundukları yüksekliğe ve bununla değişen çevre sıcaklığına bağlı olarak üreme dönemlerinin farklı zamanlarda olması ve bu nedenle aralarında gen alış verişinin kesilmiş olamasıdır. c) Cinsel ayrı kalma Pek çok türün erkek ve dişi eşeyleri arasında, birleşme öncesinde gerçekleştirdikleri davet ve beğeni davranışları vardır. Biribirinden ayrılma sürecindeki populasyonlar, aynı zaman ve yerde bulunmalarına rağmen, birleşme yönündeki istek ve kabullerini doğru değerlendiremedikleri için birleşemezler. Duyu organlarıyla algılanan bu durum “cinsel ayrı kalma” olarak isimlendirilir. Örneğin, Şpek böceği Bombtx mori nin dişileri tarafından abdomenindeki salgı bezlerinden salgılanan feromon, ancak bu türün erkekleri tarafından antenlerindeki koku alma organlarıyla tanınır ve birbirinden uzakta olan erkeğin dişiyi bulmasını sağlar. Hatta, farklı türün dişilerine sürülen bu feromonla, Bombyx mori erkeklerini farklı türden bir dişiyle birleşme konusunda kandırmanın mümkün olduğu bilinmektedir. Feromonların güçlü etkisinden tarımsal mücadelede de yararlanılmakta ve bir zararlı böceğe ait bireyler türe özgü feromonların kullanıldığı koku tuzaklarıyla toplanmakta ve zararlı populasyonun üremesi kontrol altına alınabilmektedir. Görmeye bağlı olarak, bazı türlerde karşı cinsin görünüşü ve karşı cins tarafından algılanan davranışları birleşmenin gerçekleşebilmesi için gereklidir. Örneğin, Equus caballarus (kısrak) ile Equus asinus somaliensis (eşek) arasında normal koşullarda güçlükle gerçekleşen birleşme, gözlerin bağlanması durumunda kolaylaşmaktadır. Kadife kelebeği olarak bilinen Eumenis semele nin erkekleri, cinsel isteklerini göstermek için, önlerinden geçen türdeş dişileri izlediği gibi, başka böcekleri ve yere düşen yaprakları bile izlerler. Bu davranışın bir cinsel davet olduğunu ancak türdeşi bir dişi algılayabilir ve birleşmek için yere konar. Cinsel ayrı kalma ve bundan sonra anlatılacak olan ayrı kalma şekilleri, morfoloyik yapıları biribirine benzeyen türlere ait fertlerin aynı yer ve zamanda bir arada bulunmaları nedeniyle bir çeşit davranış kompleksine dönüşebilir. Onlarca yıl eskiye ait bir bilgi olarak, Şznik ve Küçükçekmece gölleri ile Kağıthanede yaşadığı bildirilen üç dikenli balık, Gasterosteus aculeatus erkeği, üreme mevsimleri olan Nisan ve Haziran ayları arasında, bitki kök ve liflerini, böbrekleri tarafından salgılanan yapışkan iplikle tutturarak meydana getirdiği ceviz veya yumruk büyüklüğündeki yuvayı su dibine veya bitkiler arasına kurar. Bu dönemde erkeğin dorsali mavi-yeşil, abdomen ve operkulumu kiraz kırmızısı rengindedir. Bu görünümdeki erkeğin kurduğu yuvaya dişi tarafından 80-100 yumurta bırakılır ve yumurtalar erkek tarafından korunur. Bu örnekte olduğu gibi, dişinin yumurta bırakması için erkekten beklenenler, adeta bir görünüş ve davranışlar kompozisyonudur. Kuşlarda ve böceklerde görülen ileri derecede renklenme ve kuşlarda görülen çok çeşitli ötme şekillerinin, birer ayrı kalma mekanizması olarak geliştiği düşünülmektedir. Örneğin, Danaburnunun farklı alt türlerinden Nemobius fasciatus fasciatus, N. f. socius ve N. f. linnulus erkek ve dişilerinin kendi alt türlerine ait sesleri tanıyarak uyarıldıkları bildirilmiştir. Türleşme sonunda cinsel ayrı kalmaya neden olan mekanizmalar, daha belirginleşir ve küçük bir ayrıntıda yapılacak yanlışlık karşı cins tarafından farklı şekilde değerlendirilir ve ferdin hayatına mal olabilir. Örümceklerde birleşme öncesi davranışlar arasında, erkek örümceğin dişi önünde yaptığı dans hareketleri önemli bir yer tutar. Türe özgü olan dans veya benzeri hareketlerde yapılan yanlışlık erkeğin ölümüne neden olabilmektedir. d) Mekanik ayrı kalma Hayvanlar aleminde tür sayısı en fazla olan canlılar böceklerdir ve biyosferin hemen her yerinde bulunurlar. Bu yaygınlık ve çeşitlilik aynı zaman ve yerde birden fazla tür ve alt türün bulunmasına neden olur. Buna bağlı olarak, ayrı kalma mekanizmaları ve özellikle mekanik ayrı kalmanın böcekler arasında çok geliştiği düşünülmektedir. Hatta, aynı türe ait erkek ve dişilerin dış genital organlarının bir anahtar-kilit uyumu sergilediği görülmektedir. Bu anlatılanlardan anlaşılacağı gibi, mekanik ayrı kalma; biribirine yakın türler ve hatta aynı cinsin türleri arasında, dış ve/veya iç genital organlar arasındaki fark nedeniyle, verimli bir birleşmenin gerçekleşemeyişini tanımlar. e) Gametik ayrı kalma İç ve dış döllenme yapan hayvanlarda, spermatozoonlar karşı eşeyin genital organlarına veya ortama bırakıldıktan sonra; sperm ve yumurta hücrelerinin birleşmesine herhangi bir şekilde engel olan mekanizmalar “gametik ayrı kalma” olarak adlandırılmaktadır. Gametler düzeyinde; Yumurta hücresi tarafından salınan ve “ginogamon” adı verilen kimyasal madde, kendi türünden bireylere ait spermatozoonları uyararak kendine çeker, yabancı bir türe ait spermatozoonları ise aglutine eder. Spermatozoonlar tarafından salınan ve “androgamon” adı verilen kimyasal madde ise, yumurta hücresi tarafından salınan ve yabancı spermatozoonları aglutine eden ginogamonların bu etkisini durdurmaya çalışır. Ayrıca, yumurtayı dölleyebilmek için yumurta zarını eritir. Görüldüğü gibi gamonların etkileri türe özeldir. Ancak, olgunlaşmamış yumurta ve spermlere ait gamonların aynı kalitede olmadıkları bilinmektedir. Fizyolojik olarak, dişi genital organların durumu spermatozoonların hareketi, canlı kalabilme ve yumurtaya ulaşma gibi özellikleri üzerinde etkilidir. Örneğin, spermlerin hareketi üzerinde etkili olan vajina ve uterus ortamının pH ve ozmolarite değerleri türe özgü değişiklikler gösterebilmektedir. Bağışıklık bakımından, genel olarak, bir organizmaya giren yabancı madde organizma tarafından red edilir veya zararsız hale getirilir. Bu yabancı madde, elimize batan bir kıymık gibi çevresinde oluşturulan iltahapla dışarı atılır veya midyenin içine giren kum tanesinin etrafını sedefle sarması gibi zararsız hale getirir. Benzer şekilde, yabancı bir türe ait olan spermatozoonlar dişinin genital organı için yabancı bir maddedir ve yabancılığın derecesine göre dişi genital sisteminin koruma mekanizması uyarılabilir. Örneğin, Drosophila türleri arasında yapılan çaprazlamada, yabancı spermatozoonların uterusda şişmeye neden olarak yumurtalara ulaşamadıkları görülmüştür. Gen alış verişi sona ermiş olan populasyonlar arasında görülen bu ayrı kalma mekanizmaları aslında, türlerin biribirleriyle karışmasını önleyen mekanizmalardır. Buraya kadar anlatılan ayrı kalma mekanizmalarına rağmen, farklı türlere ait spermatozoon ve yumurta hücrelerinin birleşerek zigotun meydana geldiği durumlarda; türlerin karışmalarını önlemek üzere “melezlerin erken ölümü” ve “melezlerin kısır oluşu” gibi iki mekanizma daha bulunmaktadır. f) Melezlerin erken ölümü Zigotu meydana getiren türler arasındaki akrabalık derecesi ile zigotun erken ölümü arasında ters bir ilişki bulunmaktadır. Tür veya alt tür düzeyinde yakın olan canlılar arasında meydana gelen zigotun ölümü geç evrelerde; Takım veya aile düzeyinde farklı olan canlılar arasında meydana gelen zigotun ölümü erken evrelerde görülmektedir. Örneğin, Triton polmatus dişisi ile T. cristatus erkeği arasındaki çaprazlamadan meydana gelen melezler fertil hale gelmeden ölmelerine karşın; Echinodermata ve Mollusca gibi uzak gruplara ait canlılar arasında yapılan çaprazlama sonucunda meydana gelen zigotun, ilk segmentasyon bölünmesinde babadan ve anneden gelen kromozomlarını kaybettikleri bildirilmektedir. Bazı çaprazlamalardan meydana gelen melezler arasında sadece erkek veya dişi bireylerin yaşadıkları görülmüştür. Örneğin, Drosophila melanogaster dişisi ile D. simulans erkeği arasında yapılan çaprazlamadan kısır dişiler meydana gelmekte, erkekler ölmektedir. Bu, nadir olmayan ve gen akışını azaltan bir olay olması bakımından ayrı kalmaya hizmet eden önemli bir mekanizmadır. g) Melezlerin kısır oluşu Farklı türler ve biribirinden ayrı kalarak farklılaşmış populasyonlar arasında görülen bir diğer ayrı kalma mekanizması, meydana gelen melezlerin kısır olması şeklindedir. Melez, kural olarak, genotipleri biribirinin aynı olmayan ana babanın birleşmesinden meydana gelen yavrulara verilen isimdir. Geniş manada ve bu tanıma göre, homozigot olan populasyonlar dışında kalan bütün canlılar melezdir. Ancak bu başlık altında konu edilen, bir türün farklı iki alt türüne veya iki türe ait organizmalar arasında meydana gelen yavrulardır. Bu konuda en çok bilinen örnek, Equus caballarus dişisi (kısrak) ile eşek, Equus asinus somaliensis erkeği arasındaki çaprazlamadan meydana gelen “katır” ile, Equus caballarus erkeği (aygır) ile Equus asinus somaliensis dişisi arasındaki çaprazlamadan meydana gelen “bardo” dur. Katır nadiren fertil olmakla birlikte, katır ve bardo kendi aralarında kısırdırlar. Genel olarak kısırlığın nedeni çok çeşitli olmakla birlikte, genital organların (testis ve yumurtalık) körelmiş olması veya mayozda karşılıklı gelen homolog kromozomların, aralarındaki benzemezliğe bağlı olarak eşleşememesi başlıca kısırlık nedenleridir. Eşleşememeye neden olan benzemezlik, katırın gonatlarında I. Mayoz bölünmenin zigoten evresinde allel genlerin farklı kromozomlarda yer almalarından kaynaklanmaktadır. Fertil melez oluşumu balıklar arasında da görülen bir olaydır. Genellikle yapay veya koşulları bozulmuş ortamlarda ve ebeveyn türlerin çok yakın akraba olduğu durumlarda; yani adaptif radyasyon sonunda ortaya çıkan ekotipler veya ayrı kalma mekanizmaları gelişmekte ve henüz tamamlanmamış olan yakın akraba populasyonlar arasında meydana gelmektedir. Bir ölçüye kadar biribirlerinden ayrı kalmış populasyonlar arasında meydana gelen melezler; sağlıksız oluşları ve kendi aralarında veya ebeveynleriyle birleştirilmeleri sonunda elde edilen yavru veriminin melez olmayanlardan az olması nedeniyle populasyondan elenirler. Laboratuvar koşullarında meydana getirilen canlı melezler, doğal olarak asla meydana gelmezler.

http://www.biyologlar.com/evrimin-meydana-gelmesinde-rolu-olan-faktorler

Kemikli Balıklar ( OSTEICHTYES )

Bunlarda iskelet, en azindan belli kisimlarda kemik yapida oldugundan, kemikli baliklar anl..... gelen Osteichtyes adi verilmistir. Vücutlari dermis tabakasindan meydana getirilmis pullarla örtülüdür. Vücut çok degisik sekillerde olabilir. Yüzgeçleriyle yüzer, solungaçlariyla da solunum yaparlar. Tatli, tuzlu, aci, çok soguk ve çok sicak olmak üzere degisik su artamlarinda yasamlarini sürdürürler. Bazi zooloji kitaplarinda, kikirdakli baliklarin daha ilkel oldugu ve kemikli baliklarin bunlardan meydana geldigi belirtilir. Yalniz bu eski varsayim, günümüzde elde edilen fosil kayitlariyla çeliski göstermektedir. Çünkü ilk kikirdakli balik fosilleri orta devoniendeki, ilk kemikli balik fosilleri ise siluriendeki kayalar arasinda bulunmustur. Bu nedenle kemikli baliklarin, kikirdakli baliklardan daha eski oldugu ve bunlarin da kikirdakli baliklar gibi Ostracodermi-Placodermi arasi özellige sahip bir atadan meydana geldigi varsayilmaktadir. Karakteristik özellikleri: 1) Derileri mukus maddesi salgilayan bir çok salgi bezi içerir. Genellikle vücut dermis tabakasindan meydana gelmis Ganoid, Cycloid ve Ctenoid pullarla kapli, bazilari tamamiyla pulsuzdur. Çok az bir kisminda ise pullar mine tabakasi ile örtülüdür. Istisnalar disinda tek ve çift yüzgeçleri hemen hemen her zaman mevcuttur. Yüzgeçleri kemik veya kikirdak halindeki yüzgeç isinlariyla desteklenir. 2) Agizlari çogunlukla terminaldir ve disler ihtiva eder. Çeneleri çok iyi bir sekilde gelismistir ve kafatasina eklemlidir. Basin dorsal tarafinda ve herbir yanda iki tane burun deligi vardir ve bu delikler çogunlukla agiz boslugu ile irtibatli degildir. Gözler büyüktür ve göz kapaklari yoktur. 3) Iskeletleri kemik yapidadir. Yalniz mersin baliklari (Acipenser) ve Kasik burunlu mersin (Polydon) gibi diger bazi baliklarda iskelet kikirdak halindedir. Çok sayida omurlari vardir. Kavdal yüzgeç genellikle homoserktir. Omurlar içerisindeki notokord kalintilari çogunlukla mevcuttur. 4) Kalpleri bir karincik ve bir kulakcik olmak üzere iki gözlüdür. Ayrica Sinus venosus ve Conus arteriosus bölgeleri de bulunur. Kalplerinde yaniz kirli kan mevcuttur. Aort yaylari dört çifttir. Alyuvarlari oval ve çekirdeklidir. 5) Solunumlari farinks boslugunun herbir yanindaki kemik yapili solungaç yaylari üzerinde yer alan solungaçlarla yapilir. Solungaçlari bir kapak seklinde örten operkulumlari vardir. Çogunlukla solunuma yardimci bir hava keseleri (yüzme kesesi) veya akcigerli baliklar (Dipnoi)'da akciger benzeri organlar gelismistir. Bazilarinda hava kesesinin yutakla baglantisi olmasina karsin, bazilarinda bu baglanti yoktur. 6) Hepsinde beyinden 10 çift sinir çikar. Beyindeki koku alma loblari cerebrum küçük, görme loblari ve cerebellum çok büyüktür. 7) Vücut sicakligi sabit degildir, çevreye bagli olarak degisiklik gösterir (Poikilothermus). 8) Ayri eseylidirler. Tipik olarak çift halde bulunan gonadlari vardir. Genellikle ovipardirlar. Bazilari ise ovovivipar veya vivipar olabilirler. Bazi istisnalar disinda döllenme dis döllenme seklinde olur. Yumurtari küçüktür, en fazla 52 mm. çapinda olabilir, yedek besin maddesi türlere bagli olarak büyük degisiklikler göstermektedir. Segmentasyon meroblastik sekildedir. Embriyo tabakalari yoktur. Bazilarinda yavrular (postlarva evreleri) erginlere benzerlik göstermezler. Kemikli baliklar, kemik iskelet, pullar, bazi kemik plakalar, yüzme kesesi ve daha iyi gelismis beyine sahip olmalarindan ötürü, kikirdakli baliklardan daha evrim geçirmis bir grup olarak kabul edilirler. Kavdal yüzgeçleri genellikle köpek baliklarindaki heteroserk durumunu kaybederek ya homoserk yada difiserk bir sekil kazanmistir. Ayrica fosil baliklarda bulunan Cosmoid veya Ganoid pullardan meydana getirilmis zirh, bugünkü baliklarda kaybolmustur. Beyin, dermal ve kikirdak kemiklerden olusmus gerçek bir kafatasi ile kusatilmistir. Kemikli baliklarin çogunda yüzgeçler dermal yapida olan çok sayidaki paralel yüzgeç isinlari tarafindan desteklenir. Yalniz jeolojik devirlerde yasamis olan Crossopterygii örneklerinde çift yüzgeçlerin orta kisminda lob seklinde kalin bir yapi bulunmaktadir. Bazilarinda ise çift halde bulunan yüzgeçlerin vücut ile eklem yapabilmesi için kalça ve omuz kemerleri tesekkül etmistir. Büyük bir olasilikla bu kemerler, daha sonra karasal omurgalilardaki üyelerin iskeletini meydana getirmislerdir. Hava keseleri akciger seklinde olan bazi kemikli baliklarda burun delikleri yutakla baglantili oldugundan sig bataklik sularinda hava ile rahatlikla solunum yapabilirler. Bazi örnek türler: Huso huso (Mersin morinasi), Sardina pilchardus (Hakiki sardalya), Salmo trutta (Alabalik), Esox lucius (Turna baligi), Synodus saurus (Zurna baligi), Serrasalmus piraya (Piranha), Cyprinus carpio (Sazan), Eloktrophorus elektricus (Elektrikli yilan baligi), Tinca tinca (Karabalik), Silurus glanis (Yayin baligi), Exoccetus volitans (Uçan balik), Gadus euxinus (Mezgit), Hippocampus guttalatus (Deniz ati), Gambusia affinis (Sivrisinek baligi), Trachurus trachurus (Istavrit), Coryphaena hippurus (Yunus baligi)

http://www.biyologlar.com/kemikli-baliklar-osteichtyes-

Balıkların Fizyolojik, anatomik ve morfoloji yapıları sindirim, üreme,

Suda yaşayan, solungaçlarla solunum yapan ve yüzgeçleri bulunan omurgalı hayvanların genel adı. Balıkların yüzgeçleri iki çeşittir. Yanlarda çift olarak dizilmiş yüzgeçler, karada yaşayan omurgalıların ön ve arka üyelerine denktir: Solungaç kapaklarının arkasında gövdeye bağlanmış olan birinci çift, ön üyeleri karşılar ve göğüs yüzgeçleri diye adlandırılır. Karın çevresi kemiklerine bağlanan ikinci çiftse arka üyeleri karşılar ve karın yüzgeçleri diye adlandırılır. Tek ve dikey doğrultuda olan ikinci çeşit yüzgeçlerse sırtta, kuyruğun altında ve ucunda yer alırlar. Bazı türlerde yüzgeç bulunmaz, bazılarındaysa yüzgeçlerin yalnızca bir çeşidi vardır. Birçoğundaysa üç, dört, altı, sekiz, hatta on iki yüzgeç bulunur. Sırt ve anüs yüzgeçleri, en çok biçim değişikliği gösteren yüzgeçlerdir. Sözgelimi, sırt yüzgeci çoğunlukla tektir ve bazen başın hemen arkasından kuyruk yüzgecine kadar uzanır. Kuyruk yüzgeciyse, bazı balıklarda tam bir üçgeni anımsatacak biçimde, bazılarında yuvarlak, bazılarında elips biçiminde uzamıştır; çoğunlukla da çatallanmıştır ve eşit lopludur (bazı balıklarda yüzgeci oluşturan loplar eşit değildir). BALIKLARIN BİÇİMİ Balıkların genel biçimi, yaşama biçimlerine uygundur. Az çok mekik biçiminde olan bedenlerinde, baş, gövdeyle,aralarında öbür omurgalıların boynuna benzer hiçbir daralma olmaksızın birleşir. Levreğin, uskumrunun, sazan balığının biçimi, balıkların çoğunun biçimi konusunda bilgi verirse de , beden biçiminde hem genel olarak, hem de ayrıntılar açısından birçok değişiklik gözlenir. Beden bazen, yılanbalıklarında olduğu gibi, aşağı yukarı silindir biçiminde ya da elektrikli yılan balıklarındaki gibi, gümüş bir şerit biçimindedir; bazen de, deniz iğnelerininki gibi çok yüzlüdür ya da kirpi balıklarınınki gibi küremsi bir şişme gösterir. Yassı balıklar (dilbalığı, pisi balığı), yanlardan yassılaşmış balıklardır; vatozlarsa sırt-karın yönünde yassılaşmışlardır. ANATOMİ Balıkların iskeleti, dokunun niteliği bakımından, oldukça büyük çeşitlilik gösterir; bu da kemikli balıklar, lifli kıkırdaklı balıklar ve kıkırdaklı balıklar arasındaki farkları açıklar. Kemikli balıkların kemikleri çok sıkı liflerden oluşmuştur ve liflerdeki kireçli madde, dokularda hiçbir aralık kalmayacak kadar boldur. Kemikler kesinlikle bağdaşık yapıdadır ve öbür hayvanlardaki ilik adı verilen yağ karışımlı jelatini içermezler. Lifli kıkırdaklı balıkların iskeletinde, kireçli madde, iskelet öğelerinin temelini oluşturan kıkırdak içindeki lifler tarafından biriktirilir; ama, kemik dokusununkinden o kadar azdır ki, hiçbir zaman sertleşmez ve kemikli balıkların özelliği olan kemik bağdaşıklığını kazanmaz. Kıkırdaklı balıkların iskeletlerinin dokusuysa, her zaman çok yumuşaktır. MORFOLOJİ Balıklar arasında derisi bütünüyle çıplak, pulsuz türlere de rastlanır. Yılanbalığının pulları küçüktür ve bedenini kayganhale getiren kalın sümüksü bir maddenin oluşturduğu tabakanın altında gizlenmiştir. Bazı balıklarda pulların çapı 5-6 cm kadar olabilir. Kaygan, bazen dikenli ya da bölmeli olabilen pullar öylesine serttir ki, balık kemikten bir kılıfla kaplanmış gibidir. Vatozların derisindeki pullar, az çok çıkıntılı bir dikenin tabanını oluştururlar. Kirpi balıklarında bir dikenler, balık şiştiği zaman dikleşirler ve uzunlukları 4-5 cm'yi bulur. Pulların yapısı balıkların çeşitli takımlarında öylesine belirgindir ki, Agassiz, bu özelliği balıkların sınıflandırılmasına temel olarak almıştır. KASLAR Balıkların kas sistemi çok gelişmiştir. Gerçekten bedenlerinin en büyük bölümü çoğunlukla kaslardan oluşur. Dolgun liflerin oluşturduğu kaslar, genellikle beyaz, ama bazı türlerde de farklı renklerdedir. Balıklarda, kuyruk başlıca ilerleme organıdır. Düşey yüzgeçler gerçek bir kürek işlevi gören kuyruğun alanını yalnızca genişletmeye, oysa yan yüzgeçler, yani göğüs ve karın yüzgeçleri, hareketin yönünü etkileyerek hayvanı dengede tutmaya yararlar. Bu çeşitli organlar, balıkların genellikle büyük bir hızda yüzmelerini sağlarlar. Sözgelimi kılıçbalığının ve yelken balığının hızları yaklaşık olarak saatte 100 km'dir. Bazı türler, göğüs yüzgeçlerinin olağanüstü gelişmesi sayesinde sudan sıçrayarak belli bir süre havada kalabilirler. FİZYOLOJİ Balıklar kırmızı kanlıdır; elips biçiminde olan kan yuvalarının büyüklüğü, türlere göre değişir. Dolaşım sisteminde, bir kulakçık ile bir karıncıktan oluşan bir yürek vardır. Kulakçık kirli kanı alır; karıncık da solunum sistemine gönderir. Solungaçlarda oksijenlenen kanın büyük bir bölümü, uzun bir sırt damarında (ana atardamar ya da aort) toplanarak organizmaya dağılır. Böylece kan, memeli hayvanlarda ve kuşlarda olduğu gibi, dolaşım sistemini baştan sona geçerken solunum sistemini de bütünüyle aşar; ama yürekten sadece bir kez geçer. Balıklar solungaçlarla solunum yaparlar. Solungaçlar birbiriyle karşı karşıya gelebilecek biçimde her iki yanda dörder tanedir. (ama kıkırdaklı balıkların çoğunda, beşer solungaç vardır.) Ağzın içinde, birbirini izleyen iki solungaç arasında, suyun geçebildiği ve solunum sistemi mukozasının yüzeyine ulaşabildiği geniş bir yarık bulunur. Böylece, solungacın çok sayıdaki yaprakçıkları, suyun içinde kolayca kalkar ve yüzer. Ama balık sudan çıkarıldığında, bütün solungaç yaprakçıkları birbirinin üstüne yığılır ve balık ancak solungaçlarının küçük bir bölümüyle ve nemli oldukları sürece solunum yapar. Bir başka deyişle, balık suyun dışında kısa sürede ölür (ama yılanbalıkları gibi bazı türler, doğal ortamlarının dışında oldukça uzun süre yaşarlar). SİNDİRİM SİSTEMİ Balıklarda sindirim sisteminde büyük farklılıklar gözlenir. Bütün balıklarda görülen karaciğer genel olarak büyüktür ve yumuşak bir dokudan oluşur. Kıkırdaklı balıkların dışında, pankreasın yerini ya mide ile bağırsağın birleştiği mide kapısının çevresinde bulunan özel bir dokudan oluşmuş körbağırsaklar ya da bağırsağın başlangıcında bulunan bu dokunun kendisi alır. Ağzı donatan dişler de büyük ölçüde değişkenlik gösterir. Yalnızca birkaç türde hiç diş bulunmaz. Dişler genellikle avı tutmaya ya da parçalamaya yarar. Balıkların çoğu hayvansal besinlerle beslenirler. Yırtıcı olanların bir bölümü, kendi türlerinden olanları bile ayırt etmeksizin balıklara saldırarak beslenirler. Bazılarıysa kabukluları ve yumuşakçaları yer. Az sayıda balık türüyse bitkicildir ya da midelerini mikroskobik hayvancıklarla dolu suların çamurlarıyla doldururlar. Balıkların böbrekleri omurga boyunca uzanır. Ama sidik torbası göden bağırsağının üstündedir ve memelilerdekinin tersine, anüs ile üreme açıklığının arkasından dışarı açılır. SİNİR SİSTEMİ Balıkların beyni, bedene oranla çok küçüktür ve beyni oluşturan çeşitli bölümler eşit olmayan biçimde gelişmiştir. Bununla birlikte, beyinden çıkan sinirlerin dağılımı, öbür omurgalılarınkiyle tam bir benzerlik gösterir. Duyu organları arasında, genellikle büyük olan göz, geniş ve çok açık olan gözbebeğiyle dikkati çeker. Derin deniz balıklarının gözleri ya körelmiş ya da çok gelişmiştir. Kulağın yapısı yalındır: Yalnızca iç kulaktan oluşur. Kokualma organı, tabanı kıvrımlı bir zarla çok düzenli biçimde döşenmiş kapalı bir uçla son bulan, iki boşluktan oluşur; balıklar kokulara karşı çok duyarlıdırlar (hiç akıntı olmasa bile uzaktan yemin bulunduğu yere doğru hareket ederler) Buna karşılık, tat alma pek gelişmemiştir. Balıkların dili kemiktendir ve yapısında çok az sinir yer alır. Ayrıca, balıklar besinlerini ağızlarında tutmazlar. Dokunma duyusu son derece gelişmiştir. Böylece balıklar, şaşırtıcı bir keskinlikle, suyun en küçük titreşimlerini hissedebilir ve geldikleri yeri belirleyebilirler. Dokunmanın başlıca merkezi, omurgaya koşut olarak gövde boyunca uzanan ve yan çizgi adı verilen bir oluk içindedir. Dokunma duyusuna dudaklar da yardımcı olabilir. ÜREME Balıklarda yumurtalar genellikle beden dışında döllenir (yani ovipardırlar). Son derece ince, suyu ve dölleyici sıvıyı geçiren bir zarla kaplı olan yumurtaların büyüklüğü değişkendir. Bazı türler bir milyondan çok yumurta yumurtlar. Bütün bu yumurtalar iki zarla sarılmış bir vitellüsten oluşurlar; bazı köpekbalıklarında bir eten vardır. Dişi yumurtlama dönemindeyken, yumurtalar çok büyük bir gelişme gösterirler ve aşağı yukarı büyün karın boşluğunu doldururlar. Erkekte balık sütü denilen sperma içinde aynı şey söz konusudur. Üreme sırasında dişi ve erkek balıklar, olağan üstü etkinlik gösterirler: Su bitkilerini hareket ettirir, kıyılara yaklaşırlar ve dişi, sığ yerlere yumurtalarını döker. Yumurtalar bırakılır bırakılmaz, erkek balıklar onları döllerler. Sonra erkek ve dii, yumurtalarını bırakıp giderler. Ama, diken balıkları, horozbinalar, yayın balıkları gibi bazı balıkların yuva yapma içgüdüsüyle yumurtalarını koruduğu görülür. Bazı türlerde erkek ve dişi, yavruların çevresinde durur ve bir tehlike sezinledikleri anda onları geniş ağızlarının içine alarak korurlar. Bazı balık türleriyse çiftleşirler ve yumurtalar ana karnında açılır (yani ovovivipardırlar); yavrular kısa bir kanalla dışarı çıkarlar. Yalnızca köpekbalıklarında, yumurtalıktan ayrı, çoğunlukla gerçek bir dölyatağıyla son bulan uzun yumurtalık kanalları vardır. Köpekbalıkları ya canlı yavrular ya da bağsı bir maddeyle sarılmış büyük yumurtalar üretirler.

http://www.biyologlar.com/baliklarin-fizyolojik-anatomik-ve-morfoloji-yapilari-sindirim-ureme

YILAN BALIĞI BİYOLOJİSİ VE YETİŞTİRİCİLİĞİ

Yılan balıkları eski yıllardan beri insanların ilgisini çekmiştir. Su bulunan bir çok yerde yılan balığına rastlandığı halde yumurtlama ve yavrulama sırasında izlenememesi, yumurtalı veya karnında yavru bulunan bir balığa rastlanamaması bu ilginin çok eskiden beri doğmasına neden olmuştur. Dünyadaki toplam yılan balığı istihsali; Avrupa yılan balığı (Anguilla anguilla ) (1990-1991) 23 950 ton, Japon yılan balığı ( Anguilla japonica ) 109 100 ton, Amerikan yılan balığı ( Angıilla rostrata ) 2 850 ton, diğer yılan balığı türleri ise 1 500 ton olup toplam 137 400 tondur. Dünya su ürünleri istihsalinde çok önemli bir yer tutan yılan balıkları ülkemizde yetiştiricilikte bir yer bulamamıştır. İç su ve dalyanlarımızdan 400 ton yılan balığı yakalanmıştır (DİE, 1997). Yılan balıklarının büyük bir ekonomik önemi vardır. Özellikle fümesi sevilerek yenmekte olduğundan Avrupa’ya ihraç edilmekte ve ülkemiz için önemli bir döviz kaynağı oluşturmaktadır. Bu çalışma, yılan balığı yetiştiriciliği için gerekli bilgilerin derlenmesi ile oluşturularak ülkemiz için konunun önemini açıklanmıştır. Bu bilgilerin ışığında hiç de azımsanmayacak potansiyele sahip olduğumuz yılan balığı yetiştiriciliği konusunda devlet desteği ile gerekli girişimlerin yapılması önem arz etmektedir. Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Coğrefik Dağılım Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Avrupa Yılan Balığının Yaşam Döngüsü Yılan balıklarının biyolojik döngüsünde başlıca üç nokta vardır. - Bu üç yılan balığının yaşam süresi oldukça uzundur(Avrupa yılan balığında 15 yıla kadar) - Yalnızca bir kez ürerler. - Hayatlarının büyük bir kısmı tatlı sularda geçer. Denizde uzun bir göç süresi vardır. Yumurtlama alanı Yılan balıklarının doğal ortamda üremesi gözlemlenememiştir. Ancak markalanan bireyler Atlantik okyanusunda takip edilmiştir (Tesch, 1973) ve pek çok avlama sahası ayrıntılı olarak incelenmiştir. Danimarkalı Schmidt 1904-22 yılları arasında yaptığı çalışmalar sırasında Avrupa yılan balığının yumurtalarını Meksika körfezine bıraktıklarını ispatlamıştır. İlk göç Avrupa yılan balıkları Bermuda adalarının güneydoğusunda tam olarak bilinmeyen bir derinlikte üremektedirler. En küçük larvalara (7 mm) 75 ile 300 metre derinlikler arasında rastlanmıştır. Leptosefalus larvaları ilk bahar başında yumurtadan çıkarlar ve Golfstrim akıntıları ile Avrupa kıyılarına doğru göç ederler. Bu sırada 75 mm boya sahip olan leptosefaluslar metamorfoz geçirirler ve söğüt veya defne yaprağı şeklinden yılan balığını andırır silindirik bir şekil alırlar. Başlangıçta şeffaf bir görünümde olan yılan balıklarında , 7-8 ay sonra pigmentleşme gerçekleşir ve akarsulara girerler. Hayatlarının ilk dönemine denizde başlarlar ve bu aşamada planktonik bir hayat sürerler. Yavrular su hareketlerine karşı direnç gösteremezler. Yanlardan yassılaşmış bir vücuda sahip olan leptosefalusler büyük gözlere ve büyük dişleri olan geniş bir ağza sahiptirler. Bu aşamada karnivordurlar ve besinlerini zooplanktonlardan sağlarlar. Larvalar gece gündüz periyodunda, farklı derinliklerde bulunurlar. Geceleri yüzeye yakın yerlerde (35-130 metre) yakalanırken gündüzleri 300-600 metre derinlikler arasında dağılım gösterirler. Leptosefaluslar Avrupa kıyılarına doğru yaklaştıkça büyümelerini tamamlamış olurlar. İlkbahardan yaza kadar İspanyanın kuzey kıyısından, Feroe adalarının batı kıyılarına kadar dağılım gösterirler. Metamorfozu başlamamış bireylere metamorfozu devam etmekte olan bireylerin bulunduğu kıyılardan çok daha uzakta rastlanmıştır. Genel olarak leptosefaluslerin kıta sahanlığına yaklaşmaları iki buçuk yıl sonra olur. Yumurtadan şeffaf elver konumuna yaklaşık üç yılda gelmektedirler ( Tesch, 1987). İlk Metamorfoz Larvaların büyük bir çoğunluğu metamorfoz sürecini kıta sahanlığında, ağustos-eylül aylarında tamamlarlar. Bu metamorfozda aşağıdaki değişikliklere rastlanmaktadır. - Ağırlık ve boyda meydana gelen bir azalma. Örneğin leptosefalus safhasında olan (tanesi yaklaşık 1,5 g) 75 mm boyundaki larvaların yaklaşık 700 tanesi 1 kg gelirken, elver haline geçmiş aynı boy larvaların yaklaşık on misli vücut ağırlıklarından kaybettikleri ve 7 000 tanesinin 1 kg geldiği görülür. - Morfolojik değişimi, Söğüt yaprağı şeklinde yassı olan leptosefaluslar silindirik bir yapıya ulaşırlar. Bu şekildeki yılan balığı yavrularına elver adı verilir. - Beslenme durur. Planktonik larvada bulunan dişler kaybolur. - Ağırlığı azalır ve sindirim organları kısalır. - Troid ve hipofiz etkinliğinin artması ile endokrin sistemin çalışmasının değişmesi, davranış değişikliğine, Gel-git akıntılarına ve tatlı sulara olan duyarlılığın artmasına ve iç sulara göç etmesine sebep olur. Tatlı suya ilk göç (anadrom göç) Şeffaf elverler su akıntılarını takip ederek kıyı sularında toplanırlar. Metamorfoz ergin yılan balığına benzeyinceye kadar devam eder. Pigmentasyon sonucunda sırt kısmı zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara “sarı” yılan balığı denir. Sarı yılan balıklarının tatlı suda büyümesi On dört on beş yıl kadar süren bu aşamada sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenmenin başlaması pigmentasyonun son safhasında ve ağırlık artışı başladığında ortaya çıkar. Beslenme karnivor olarak bentik omurgasızlarla ve belli bir boyu aştıktan sonra diğer balıklarla olmaktadır. Büyüme oldukça yavaştır. Yılan balığının gelişimi yaşadığı ortam şartlarına bağlıdır. Dişiler, erkek bireylerden boy olarak daha uzun olup, erkekler 50 cm den küçük, dişiler 45-150 cm arasında, nadiren 200 cm boy ve 4-6 kg ağırlığa kadar ulaşmaktadırlar. Buna rağmen çoğunlukla, yakalanan dişilerde ağırlık 250-400 gram ve boy 70-80 cm kadardır. Gonatların dişi yönünde gelişmeye başlaması 15-20 cm. den itibaren olmaktadır. Cinsel farklılaşmanın başlıca belirtileri cinsiyet organları üzerinde görülmez. Büyümedeki farklılaşma ve erkek bireylerin nehir ağızlarında kalırken dişi bireylerin kaynağa yakın yerlerde bulunması ile cinsiyet ayırt edilir. Göç etme eğilimindeki bu farklılaşma çok erken safhalarda, şeffaf elver yada elver aşamasında görülür. İkinci metamorfoz Deniz suyuna geçmek üzere ikinci kez ortam değiştirmeleri sırasında yılan balıklarında oluşan morfolojik değişiklikler beş başlık altında toplanabilir. - Kahve rengi ve zeytin yeşili olan vücut rengi değişir, karın gümüşi beyaza döner. Sırt ve yüzgeç rengi koyulaşır. Dalgalı renklenme kaybolur. Yılan balıklarının tüketici tarafından en çok talep edildiği şekli gümüşi yılan balığı safhasıdır. - Etlerindeki yağ oranı artarak vücut ağırlığının % 30’ unu geçebilir. Bu yağlanma yılan balığının Saragossa’ya doğru yaptığı uzun göçe dayanmasını sağlar. - Tesch’e göre göz çapı iki katı kadar artar. Bu sayede daha az riskli bir yolculuk yapar. Bununla birlikte ışıktan kaçma davranışı ortaya çıkar. - Pektoral yüzgeçler yuvarlak şekillerini kaybederek erken olgunluk döneminde sivrileşirler. - Son olarak olgunlaşmanın ilerlemesi ile cinsel organlar gelişir. Vücutlarında çok fazla yağ depolarlar. Diseksiyon yapılarak cinsiyet teşhis edilebilir. Gonatların gelişimi deniz ortamına geçtikten sonra gerçekleşir. İkinci göç ( katadrom göç) Bu, yılan balıklarının doğduğu yere geri döndüğü üreme göçü olup, Anguilla anguilla için 5000 km. dir. Gümüşi yılan balıkları sonbaharda, tatlı suları terk ettiklerinde gonatlar hala tam olarak olgunlaşmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Tatlı suda yakalanan örneklerde sindirim sisteminin köreldiği ve işlevini yitirdiği gözlenmiştir. Gümüşi yılan balıkları Saragossa’da ki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaştığı süreye kadar denizde beslenmeden hayatta kalabilmektedirler. Hayatlarında bir kez yaptıkları üreme sonucunda yaşam süreçleri son bulur. Yılan balıklarının bu göç sırasında yönlerini nasıl buldukları günümüzde hala bilinmemektedir. Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. · Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. · Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. · Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Durgun Su Yöntemi Japonya ve Tayvan’da kullanılan en eski ve yaygın olan metottur. Balıkların oksijen ihtiyaçlarını su içindeki fitoplanktonlar ile karşılanması bu yetiştirmenin temel prensiplerinden biridir. Geceleri oksijen miktarını çok dikkatli bir şekilde takip edilmesi gerekir. Özellikle fazla balığın stoklandığı, suyun sıcaklığının fazla olduğu dönemlerde, konunun önemi daha da artmaktadır. Suya oksijen kazandırmak için suyu karıştıran makineler yada basınçlı hava veren düzenek kullanılır. Bu yetiştirme yönteminde havuzlara çok az (%10) su verilir. Verilen suyun havuz suyunu karıştırmaması havuzun bir köşesinden girip, diğer köşesinden dışarı çıkması sağlanır. Böylece havuzdaki plankton varlığının korunması ve suyla sürüklenip gitmesi önlenmiş olur. Bu yetiştirme yönteminde metre karede 2- 4 kg balık yetiştirilebilir. Başarılı bir yetiştirme için su sıcaklığının 23-30 °C arasında olması gereklidir. Bu şartlarda iki yıl veya daha az sürede 150-200 grama ulaşması gerekir. Bu ağırlığa Tayvan’da 1,5 yılda , İngiltere’de 4 yılda, Japonya’da 2 yılda ulaşır. Güney Ege ve Akdeniz’de yılın 8-9 ayı su sıcaklığı 20 °C den yukarıda tutulabileceğinden yılan balığı yetiştiriciliği bu bölgelerimizde karlı olabilir. Yılan balıklarına 12 °C nin altında yem verilse dahi gelişme olmaz. Bu yetiştirme yönteminde havuz alanı 3-4 dekar arasında tutulur. Akarsu Yöntemi Akarsu yönteminde havuzların alanı 150-300 m² dir. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyunun olması gerekir. Birim sahada yetiştirilebilecek balık miktarı verilebilecek oksijene, dolayısıyla suya bağlı olarak değişir. Yöntemin başarılı olabilmesi için su sıcaklığının 23 °C üzerinde olması gerekir. Bu yetiştirme yönteminde üretime alınacak balıkların başlangıç olarak ağırlıklarının yaklaşık 30 g. olması tavsiye edilmektedir. Çünkü suyun hızla değiştiği ortamda yavrularda gelişme iyi olmamaktadır. Bu yöntemle yetiştiricilik yapan işletme sayısı oldukça azdır. Ağ Kafeslerde Yetiştirme Yöntemi Japonya’da ağ kafeslerde yapılan sazan ve alabalık yetiştiriciliğinin aynısıdır. Bu amaçla bu havuzlar iç sularda ve göllerde kullanılmaktadır. Japonya’da Şizouka balıkçılık deneme istasyonunda derinliği 1,5 m olan 8 mm göz açıklığında ağlar ile ağ havuzlarda yapılan deneme oldukça olumlu sonuçlar vermiştir. Bu denemede toplam 23,3 kg yılan balığı konulmuş, 38 gün sonra 38,6 kg balık, ortalama 180 g ağırlıkta hasat edilmiştir. Bu çalışmada dondurulmuş uskumru eti kullanılmış olup, yem dönüşüm katsayısı 7,35 bulunmuştur. Bu denemede ortalama su sıcaklığının 25,5 °C, tuzluluğun %0 21, birim alandaki verim 7,7 kg olarak tespit edilmiştir. Tünel Yöntemi Bu metotla ticari bir işletme kurulmamış olmakla beraber tünel yöntemi ile yılan balığı yetiştirilebileceği denemelerle gösterilmiştir. Bunda amaç, yılan balığının karanlık saklanacak yeri bulunan doğal ortamına benzeyen bir alanın sağlanmasıdır. Bunun için balıkların gündüz saklanmasının mümkün kılacak karanlık tüneller suya yerleştirilir. Havuzlarda ılık akarsu yöntemi kullanılmıştır. Sirkülasyon Yöntemi Devamlı olarak sirküle edilen suyun kullanılması, yetiştirme çalışmalarında olumlu sonuçlar alınmıştır. Bu tür bir çalışmada iki adet havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan su devamlı olarak bir motopomp vasıtası ile filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel temizlenmesinin yanı sıra biyolojik temizleme de gerçekleşir. Filtre kumu ve taşlarındaki bakteriler balıkların atıklarındaki nitrit, nitrat ve amonyak gibi toksik kimyasal bileşikleri azota kadar indirgeyerek zararsız hale getirirler. Bu tür bir çalışmanın başarılı olabilmesi için kullanılan havuzların kapasitesi, filitrasyon yüzeyi, filtre yapan temizleyici kütlenin kalınlığı, kullanılan pompaların kapasitesi, su kalitesi, sudaki oksijen miktarı, sıcaklık ve artık yemlerin temizlenmesi gibi pek çok konuyla ilgilidir. Bu tür bir yetiştirme yöntemi, ancak kullanılacak suyun kısıtlı olduğu yerlerde düşünülebilir. Bu yöntemle küçük bir alanda fazla miktarda balık üretimi mümkün kılınabilir. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: - Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. - Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. - Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. - Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. - Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. - Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. - Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. - Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. - Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; - Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7' nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme sırasında sık sık boylama yapılır. Bu şekilde büyüme daha iyi olur. Yetiştiriciliğin son safhası büyütme havuzlarında gerçekleşir. 660 m² havuza her biri 10 g olan ( 100 adedi 1 kg ) 300 kg balık yani m² ye 50-60 balık konur. Burada amaç 150-200 g ağırlığında pazarlanacak bireyler elde etmektedir. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. 30- 40 cm ye kadar erkek ve dişi bireyler arasında büyüme bakımından bir fark yoktur. Bu uzunluktan sonra özellikle avrupa yılan balığı erkek bireylerin büyümesinde bir düşüş görülür (Şekil x ). Erkekler en fazla 50 cm büyürler. Bu boydaki ağırlık 100-120 g dır. Dişi bireyler 50-70 cm ye kadar boya ve 300-500 g ağırlığa kadar büyüyebilirler. Erkek dişi arasındaki oran erkek lehine 20:1 dir. Cinsiyet farklılaşması 14-20 cm arasında olur. Bu boya kadar balık aynı zamanda hem erkek hem de dişi cinsiyet hücrelerini taşır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. KAYNAKLAR Alpbaz, A.,Hoşsucu, H., 1988, İç Su Balıkları Yetiştiriciliği, Ege Üniv. Su Ürünleri Y.O. Yay No:12, 1-98 s. İzmir. Anonim, 1985, Yılan Balığı, T.C. Ziraat Bankası Ege Bölge Müdürlüğü, Su Ürünleri Çalışmaları/1, (Çev) Hakkı Çakır, 62 s., İzmir. Çelikkale, M.,S., 1994, İç Su Balıkları ve Yetiştiriciliği, Cilt 1, 2. Baskı, Karadeniz teknik Üniv. Sürmene Den.Bil Fak. Yay NO: 2, 337-362 s Trabzon. DİE., 1991, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1583, Ankara 1995, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1995, Ankara 1997, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1995, Ankara Gault, J., 1986, L’élevage de l’anguille,(in) Aquaculture, (ed) Barnabe, G., Technique et Documantation-Lavoisier, 739-771 pp, Paris. Geldiay,R., Balık, S., 1996, E Ege Üniv. Su Ürünleri Fakültesi, Yay No:16, 2. Baskı, E.Ü. Basımevi, 204-209 s, İzmir. Tesch, F.,W., 1983, Der Aal, Biologie und Fischerei, Verlag Paul Parey, 340p, Hamburg und Berlin. Usui, A., 1974, Eel Culture, Fishing News (Books), Ltd.,186 p, England. Kaynak; tarim.gov.tr

http://www.biyologlar.com/yilan-baligi-biyolojisi-ve-yetistiriciligi

ALABALIK BİYOLOJİSİ ve YETİŞTİRME TEKNİKLERİ

A.Ü. Ziraat Fakültesi Su Ürünleri Bölümü. 06110 ANKARA Yaşam ortamı bakımından berrak, temiz, serin ve oksijen yönünden zengin suları tercih eden alabalık halkımız tarafından özel likle etinin lezzetli oluşuyla anımsanan balıklar arasında bulunmaktadır. Alabalık türleri sistematikte Salmonidae familyasında yer alırlar. Morfolojik bakımdan yağ yüzgeci ile karakterizedirler. Salmonidae familyasında ekonomik yetiştiricilik ve doğal suların balıklandırılması için önem arz eden çeşitli alabalıklar üç cinsin türleridir. Bu cinsler : a- Salmo b- Salvelinus c- Oncorhynchus Dünya genelinde ençok tanınan alabalık türleri aşağıda gösterilmiştir (Bruno ve Poppe 1996). - Salmo salar Linnaeus (Atlantik Salmonu) - Salmo trutta f.trutta Linnaeus (Deniz alabalığı) - Salmo trutta f.fario Linnaeus (Dere alabalığı) - Oncorhynchus mykiss Walbaum (Gökkuşağı alabalığı) - Salvelinus fontinalis Mitchill (Kaynak alabalığı) - Salvelinus alpinus Linnaeus (Alp alabalığı) - Salhvelinus namaycush Walbaum (Göl alabalığı) Ülkemizin yerel alabalık alt türleri ise şöyle sıralanabilir (Çelikkale 1994). - Salmo trutta macrostigma Dumeril (Anadolu Dağ alabalığı) - Salmo trutta abanticus Tortonese (Abant alabalığı) - Salmo trutta caspius Kessler ( Aras alabalığı) - Salmo trutta labrax Pallas (Karadeniz alabalığı) - Salmo trutta f.lacustris Linnaeus (Göl alabalığı) Yukarıda belirtilen alabalık türleri içerisinde yetiştiriciliği en yaygın olanı Kuzey Amerika kökenli Gökkuşağı alabalığı olmuştur. Gökkuşağı alabalığı ile Kaynak alabalığı hemen hemen aynı yıllarda yaklaşık 120 yıl önce Kuzey Amerika’dan Avrupa’ya getirilmelerine karşın kültür koşullarına uygun niteliklerinden dolayı Gökkuşağı alabalığı yetiştiriciliği hızlı bir artış göstermiş ve günümüzde bir endüstri haline gelmiştir. Gökkuşağı alabalığının yetiştiriciliğe uygun özel likleri aşağıdaki başlıklar halinde belirtilebilir (Steffens 1981). - Gökkuşağı alabalığının çevre koşullarına çok iyi uyum göstermesi yanında özel likle yüksek sıcaklıklara oransal olarak dayanıklı olması, - Aktif yem alması nedeniyle yemlenmesinin kolay olması ve yemi değerlendirmesinin daha iyi olması yönünden iyi bir büyüme göstermesi, - Daha yüksek ilkbahar sıcaklığında dere alabalığı ve kaynak alabalığı gibi diğer alabalık türlerine göre daha kısa süreli kuluçka dönemine sahip olması. Gökkuşağı alabalığının Türkiye’de yetiştiriciliği ise 1970’li yıllarda kamu ve özel girişimciler tarafından başlatılmıştır. Dünya genelindeki kültür balıkçılığının gelişimine koşut olarak ülkemizde de özel likle üstün yetiştirme avantajları nedeniyle Gökkuşağı alabalığı üretimi büyük aşamalar katetmiştir. Önceleri küçük işletmeler tarafından gerçekleştirilen Gökkuşağı alabalığı üretimi, 1990’lı yıllardan itibaren entegre üretim tesislerine dönüşmüştür. Hatta günümüzde ülkemiz Gökkuşağı alabalığı üreticileri Avrupa’ya füme halinde işlenmiş ürün ihraç eder duruma erişmişlerdir. SU KOŞULLARI Alabalık yetiştiriciliğinde kullanılacak su kaynağının orijini ve kalitesinin yüksek nitelikte olması arzulanan bir olgudur. Kaynak Tipleri Alabalık yetiştiriciliğinde yararlanılan su kaynaklarının başlıcaları şunlardır (Leitritz 1974). - Kaynaksuları - Dere veya ırmak suları - Göl veya gölet suları - Yeraltı suları Kaynak Suları Kaynak suları genellikle yerkürenin yüzeysel yada derin katlarından çıkmalarına bağlı olarak kaliteleri farklılık gösterir. Yaklaşık 40 m gibi yüzlek katlardan çıkan kaynak sularının miktar ve kalitesi yağmur ve kuraklığa bağlı olarak değişkenlik gösterir. Fakat oksijen düzeyleri yüksek, CO2 miktarları düşük, su sıcaklığı ise 6-12 oC arasındadır. Yer kabuğunun 1000 m ve daha derin tabakalarından köken alan kaynak sularının miktar ve kalitesi aynı, fakat ekseriya oksijen miktarları litrede 4 mg’ın altında, CO2 düzeyleri ise litrede 50 ppm’in üzerinde, su sıcaklığı ise 8-10 oC seviyesindedir. Dere veya Irmak Suları Irmak veya derelerin kaynaktan ilk birkaç yüz metrelik kesimlerinin su kalitesi aynı ve kirlenmemiştir. Orta ve alt kesimleri ise tarım, gübreleme, endüstri ve evsel atıkların etkisi altındadır. Fakat dere ve ırmakların su kalitesindeki belirtilen bu olumsuzluklara karşın, su miktarları çok fazladır. Kaliteli bir kaynaktan köken alan dere veya ırmak gibi akarsular litrede 8 mg’ın altında CO2’e sahip olmakla birlikte, sıcaklıkları yıl bazında 6-12 oC arasında oldukça değişkendir. Göl veya Gölet Suları Bu tip suların kalitesi de endüstriyel ve tarımsal faaliyetlerin etkisiyle mevsimsel olarak farklılık gösterir. Göl suları da yüksek düzeyde oksijen ve düşük miktarda CO2 içermeleriyle tanınırlar. Fakat 10 m den daha derin göllerde yaz aylarında su kütlesinin yüzey kesimlerinde su sıcaklığı 20 oC’a yükselebilir, yüzeyin yaklaşık 4 m altında ise 15-16 oC sıcaklıkta su bulunur. Yeraltı Suları Genelde kaynak veya iyi kalitede dere suyuna yakın kalitede sulardır. En büyük avantajları daima aynı miktar ve kalitede olmalarıdır. Fakat yerüstüne çıkarmada ekseriya yüksek düzeyde enerji giderine gereksinim duyulur. Ayrıca oksijen yönünden zenginleştirmeye de gereksinim vardır. Su Kalitesi Alabalık yetiştiriciliğinde ideali, yetiştirme ortamındaki balıklara düzenli bir şekilde daima aynı kalitede su temin etmektir. Aynı zamanda su miktarı ile kalite arasındaki sıkı ilişki de gözardı edilmemelidir. Bu bakımdan su miktarındaki ani değişimlerin suyun mevcut kalite değerlerini olumsuz veya olumlu yönde etkileyebileceği unutulmamalıdır. Alabalık yetiştiriciliğinde su kalitesine ilişkin suda incelenmesi gereken çeşitli parametrelerin sınır değerleri Tablo 1’de gösterilmiştir (Lindhorst-Emme 1990). Kuluçka Evinde Su Kriterleri Döllenmiş yumurtaların kuluçkasının gerçekleştirileceği kuluçka evine verilecek suyun kalitesine daha fazla özen göstermenin yararları yadsınamaz. Alabalık yumurtalarının kuluçkası ve larvaların gereksinimi için mümkün olduğu kadar temiz ve kirlenmemiş su kullanılmalıdır. Bu bakımdan kuluçka evine verilen suyun önceden filtre edilmesinde fayda vardır. Kuluçka evinin büyüklüğü döllenmiş yumurta miktarı ve kullanılan kuluçka gereçlerinin tipine bağlıdır. Orta büyüklükte bir kuluçka evinin su gereksinimi saniyede 3-5 litredir. Kuluçka evinde kullanılacak suya ilişkin uygun değerler Tablo 2’de gösterilmiştir (Lindhorst-Emme 1990). Su Miktarı ile Balık Üretimi İlişkisi Balık üretim miktarını, su kalitesi ile birlikte temel olarak suyun miktarı yani debisi etkilemektedir. Fakat bunlarla birlikte balık üretim miktarında yetiştirme sistemi ve kullanılan teknik donanımlarda etkilidir. Örneğin 1000 m2 havuz yüzlemi için saniyede 8 litre kaynak veya iyi kalitede dere suyuna gereksinim vardır. Bu örnekte teknik donanımlardan yararlanmaksızın 400-500 kg alabalık üretilebilir. Fakat ilave olarak havalandırma gibi ilave tekniklerden yararlanıldığında ise yılda 1500-2000 kg alabalık üretmek mümkün olabilir. 1000 m2’den büyük ve 3 m’den derin havuzlarda, küçük havuzlara oranla daha az suya gereksinim vardır. Böyle havuzlarda rüzgarın etkisiyle suyun kalitesi olumlu etkilenebilirse de işçilik yönünden büyük havuzlarda çok büyük güçlüklerle karşılaşılır. Diğer yandan akarsu kanallarında yetiştiricilikte geleneksel havuz yetiştiriciliğine göre 10-20 misli daha fazla suya gereksinim vardır. Yani 1000 m2 yüzleminde akarsu kanalında alabalık yetiştiriciliği için saniyede 80-160 litre suya ihtiyaç vardır. Alabalık üretiminde işletme tiplerine göre stoklama miktarları Tablo 3’de görülmektedir (Lindhorst-Emme 1990). Alabalık üretiminde ana ilke kullanılan suyun miktar ve kalitesinin esas alınarak üretim miktarının saptanmasıdır. Buradan yola çıkılarak önceleri havuzlarda su değişiminin günde 3-5 defa gerçekleşmesiyle saniyede 1 litre suyla yılda 50-75 kg mutfaklık balık üretilebileceği şeklindeydi. Fakat günümüzde yaygın kanı saniyede 1 litre suyla 100-150 kg sofralık balık üretilmesine dönüşmüştür (Bohl 1982). Günümüzde balık üretim miktarı genellikle m3’de kg olarak ifade edilmektedir. Havuzlarda değişimin günde 3-5 defa gerçekleşmesiyle 3-5 kg/m3 balık üretilebilir. Daha yoğun üretimde bu miktar 1 m3 suda 10 kg’a yükselmektedir. 0,30-0,50 m derinlikteki havuzlarda suyun saatte 3 defa değişimiyle m2’de 20 kg (=40-60 kg/m3) balık üretilebilmiştir. Hatta Fransa’nın Brötanya yöresinde havalandırmalı havuzlarda m3’de 100 kg balık üretimi gerçekleştirildiği bildirilmiştir (Bohl 1982). Benzer üretim miktarlarına su değişiminin saatte 5-10 defa gerçekleştirildiği tanklarda m3’de 50-100 kg’la ulaşılmıştır (Steffens 1981). Alabalık üretiminde su miktarı kadar kullanılan suyun sıcaklığı ve yetiştirme ortamına stoklanan bireylerin ortalama canlı ağırlığının dikkate alınması gerekmektedir. Bu faktörlerin dikkate alınmasıyla saniyede 1 litre su girişiyle yoğun üretim koşullarında üretilebilecek balık miktarları Tablo 4’de sunulmuştur (Steffens 1981). Belirli bir miktar su ile üretilebilecek balık miktarının saptanmasında yararlanılan bir diğer kriter suyun oksijen içeriğidir. Buradaki birinci temel ilke toplam 1 kg alabalığın 1 saatte tükettiği oksijenin esas alınmasıdır. Bu yöntemde 50 g’dan küçük balıkların toplam 1 kg’nın 1 saatte 500-600 mg oksijen tükettiği, 50 g’dan daha büyük balıkların ise toplam 1 kg’nın 1 saatte 400-500 mg oksijen tükettiklerinin dikkate alınmasıdır. Ayrıca kullanılan suyun havuzlardan çıkışta litrede 6 mg oksijen içermesi zorunludur. Havuzlara giren suyun içerdiği oksijen ile çıkış suyunun kapsadığı oksijen arasındaki miktar balıkların tüketebileceği kullanılabilir oksijeni ifade eder. Bu veriler esas alınarak (Steffens 1981), Örneğin havuzlara girişte litrede 11 mg oksijen içeren debisi saniyede 100 litre olan bir su kaynağı ile 50 g’dan küçük balıklar stoklandığında üretilebilecek sofralık balık miktarını hesaplamak gerekirse, Oksijenden yola çıkılarak üretilecek balık miktarını hesaplamada ikinci temel ilke 1 kg yemin balık tarafından tüketilmesinde harcanan oksijenin esas alınmasıdır. Bu tip hesaplamada yararlanılan formül aşağıda gösterilmiştir (Bohl 1982). d = debi = litre/sn 2= Beslenme fizyolojisi bakımından saptanmış katsayı Bu formüle göre havuzlara girişte litrede 11 mg oksijen içeren debisi saniyede 100 litre olan bir su kaynağı ile, günde %2 oranında yemlemeyle üretilebilecek balık miktarını saptamak gerekirse, Balıklar, günde canlı ağırlıklarının %2’si oranında yemlendiğine göre; Buraya kadar belirtilen veriler doğrultusunda saniyede 1 litre suyla genel olarak 100-200 kg pazarlık balık üretilebileceğini belirtebiliriz. DAMIZLIK BALIKLAR Damızlık populasyonu işletmenin sofralık balık üretiminin %1’i kadar yeterlidir. Yani 400 ton üretim kapasiteli bir işletmede 1 ton damızlık balık bulundurulacak demektir. Damızlık balıklar günlük su değişiminin defalarca olacağı kaliteli suyun verildiği havuzlara m2’ye 1-2 kg stok yoğunluğunda yerleştirilir. Erkek / dişi oranı 1: 5 ila 1 : 8 olmalıdır. Genellikle erkekler 2, dişiler ise 3 yılda cinsel olgunluğa ulaşır. İşletmenin yumurta üretim kapasitesini saptamada kg dişi başına 2000 Adet yumurta hesaplanır. Damızlığa ayrılacak bireylerin seçimi ön büyütme döneminden başlayarak gerçekleştirilmelidir. Ayrılan balıkların yetiştirilmesine devam edilerek populasyon içersinden damızlık balık ayrımında belirgin özel likler aranmalıdır. Bu nitelikler: - Hızlı büyümeyle birlikte yemi iyi değerlendirme, - Hastalıklara karşı dayanıklılık, - Düzgün ve uyumlu vücut formu, - Yüksek üreme verimi (Sayıca fazla ve çapı büyük yumurta, kaliteli sperma vb.) - Cinsi olgunluğa geç ulaşma. Yukarıdaki özel likler dikkate alınarak seçilen damızlık balıklar, damızlık havuzlarında kaliteli pelet yem yanında taze balık, karides gibi yaş yemle de beslenmelidir. Damızlık balıkları yemlemede aşırıya kaçılmamalıdır. Damızlıklar yılda yaklaşık 0,5 kg artış göstermelidir. Yoğun yemleme gonad ürünlerinden özel likle yumurtalarda yağ dejenerasyonuna neden olabilir (Bohl 1982). Damızlıkların Verimi Üç yaşındaki damızlık balıkların ortalama ağırlıkları 1-2 kg arasındadır. Dişi balıklar 6. yaşına kadar birbirini takip eden 4 üreme peryodunda kullanılır. Çünkü canlı ağırlık artışıyla birlikte damızlık balıkların kg vücut ağırlığına düşen yumurta miktarı azalır. Örneğin 6 yaşındaki balıklarda bu miktar kg canlı ağırlık için 1200 adet yumurtanın altına iner. Fakat çapı daha büyük yumurtalardan satış avantajı daha fazla olan canlılıkta larva elde edilir. Bu nedenle 4-5 yaşındaki dişiler her yönüyle büyük ekonomik değere sahiptir. Yapılan araştırmalar 3 yaşlı erkeklerin spermasının hiçbir zaman 4-5 yaşlı erkeklerin spermasının kalitesine ulaşamadığını göstermiştir. Fakat 3 yaşlı erkeklerin sperması miktar bakımından daha fazladır. Bu bakımdan yetiştiriciler damızlık balık giderini de dikkate alarak 3 yaşındaki erkekleri tercih ederler (Lindhorst-Emme 1990). Dişi damızlıkların yumurta verim özel liklerine ilişkin temel bilgiler aşağıdaki şekilde sıralanabilir (Steffens 1981). - Damızlık balıktan elde edilen toplam yumurta miktarı balık büyüdükçe artış gösterir. Örneğin 3 yaşında 750 g ağırlıkta balıktan 1800 adet yumurta elde edilirken; 4 yaşında 1300 g ağırlıkta balıktan 2500 adet yumurta alınır. - Balık büyüklüğü arttıkça kg vücut ağırlığına düşen oransal yumurta miktarı azalır. Örneğin 3 yaşında 750 g ağırlıktaki balıkta kg canlı ağırlığa düşen yumurta sayısı 2400 adet olurken; 4 yaşlı 1300 g ağırlıkta balığın kg canlı ağırlığa düşen yumurta sayısı ise 2000 adettir. - Yumurta sayısı, yemin miktar ve kalitesiyle etkilenebilir. - Yumurta sayısının bireylerde farklılığında genetik koşulların etkisi çok büyüktür. - Yaşlı ve büyük balıklar genç ve küçük balıklara oranla daha büyük yumurta geliştirirler ve bu suretle daha kuvvetli larva oluşumunu sağlarlar. Örneğin 178 g ağırlıkta 2 yaşlı balıkta yumurta çapı 3,9 mm olurken, 2700 g ağırlıkta 7 yaşlı balığın yumurtasının çapı ise 5,7 mm dir. Özgün bir çalışma sonucunda elde edilen damızlık dişilerin yumurta verimleri ve erkek damızlıkların sperma (süt) miktarlarına ilişkin veriler Tablo 5’de gösterilmiştir (Lindhorst-Emme 1990). Damızlıkların Cinsiyet Ayrımı Gökkuşağı alabalıkları kökenlerine göre yılın farklı dönemlerinde yumurtlama olgunluğuna erişirler. Yılın erken döneminde yumurtlayanlar Temmuz/Ağustos, Orta dönemdekiler Kasım/Aralık, geç dönemdekiler Mart/Nisan’da üremeye hazırdırlar. Damızlık balıklar üreme sezonundan 4 hafta önce cinsiyet ve yaşlarına göre ayrılmalıdır. Bu ayrım işleminde erkek ve dişi balığın vücut yapısına bakılır. Dişilerde karın daha şişkindir. Cinsiyet deliği etrafı kırmızı renkte görünümdedir. Üreme zamanı erkeklerde alt çene öne doğru uzamış ve bir kanca şeklinde yukarı kıvrılmıştır. Erkeklerde vücut daha yassıdır. Özellikle erkekler üreme zamanı yaklaştığında yanal çizgi boyunca daha koyu ve parlak kırmızı bir şerit taşırlar (Ekingen 1975,Özdemir 1994). SAĞIM VE YUMURTALARIN DÖLLENMESİ Balık üretiminde damızlık balıklara üreticiler eliyle hafif bir masaj uygulanarak dişi balıklardan yumurta ve erkek balıklardan süt (spermatozoa içeren beyazımsı renkte sıvı) alım işlemi sağım olarak adlandırılır. Sağım döneminden 2-3 hafta önce damızlıklara verilen yem miktarı azaltılır. Damızlık balıklarda sağıma hazırlığa yönelik son kontrollerin yapılmasından sonra, yani sağımın bir hafta öncesinde ise yemleme tamamen kesilir. Yumurtlama olgunluğuna ulaşmayan damızlıklar ise bir hafta boyunca canlı ağırlıklarının %0,5’i gibi düşük oranda yemlenir (Greenberg 1969, Wiesner 1968). Sağımda damızlıklara zarar vermemek, işlemi çabuk ve seri olarak gerçekleştirmek ile sağımı yürüten kişinin fazla güç sarfetmeden, çok sayıda damızlık balığı sağabilmesi için damızlıklara narkoz uygulanabilir. Damızlık balıkları bayıltmada anestezik olarak sıkça kullanılan preparatlar (Atay 1987, Bohl 1982). - MS-222 (Tricainemethansulphonat) - Trichlormethylpropanol (TCMP) - Quinaldin (2 Methylchinolin) Belirtilen anesteziklerden suda kolay eriyen MS-222 1:20.000-1:30.000 (1 g+ 20-30 lt su) konsantrasyonlarında kullanılır. Balıklar sağımdan birkaç dakika önce anestezik madde bulanan suya yerleştirilirler. Sağım işlemi bittikten sonra balıklar tekrar oksijen yönünden zengin temiz suya bırakılırlar ve burada 2-3 dakika içinde normale dönerler. Alabalık üretiminde sağımın ana kuralı işlemin kuru koşullarda gerçekleştirilmesidir. Çünkü yumurtanın su ile teması halinde spermanın yumurtaya giriş kapıcığı olan mikropil 1-2 dakika içersinde kapanır. Ayrıca erkek balıktan elde edilen sütün içerdiği spermatozoa’lar suda yaklaşık 1 dakika kadar yaşabilirler. Bu nedenlerle sağımda damızlık balıkların bir bez yada en iyisi havlu ile kurulanmasıdır. Alabalık sağımında dikkat edilmesi gereken bir diğer konu balıkların uygun sağım zamanının saptanmasıdır. Tam olgunluğa ulaşmış dişi alabalık sudan çıkarılıp kuyruğu aşağı gelecek şekilde tutulduğunda yumurtalar kendiliğinden akmaya başlar (Baran 1977, Erençin 1977). Genellikle sağımda balığın sırtının sağan kişiye dönük olması geleneksel tutuş şeklidir. Damızlık balıkların sağımı balığın boyutuna göre tek veya iki kişi tarafından gerçekleştirilir. Birkaç dişinin yumurtası küçük hacimli plastik kaba sağılır ve bu yumurtaların üzerine de birden fazla erkeğin sütü sağılır. Dişi balıklar yılda bir defa sağıldıkları halde, erkekler 15 gün ara ile birkaç defa sağılabilirler (Brown ve Gratzek 1980). Plastik bir küvete sağlan yumurta-süt karışımı elle veya plastik bir kaşıkla karıştırılır. Daha sonra bu karışım üzerine bir miktar temiz su ilave edilir. Yaklaşık 5 dakikada döllenen yumurtaların bir küvet içerisinde 30-45 dakika süreyle su alıp şişme işleminin tamamlanması beklenir. Bu evrenin sonunda yumurtalar birkaç defa temiz su ile yıkanarak kuluçka gereklerine yerleştirilir (Atay 1980). Kuluçka Balık üretiminde döllenmiş yumurtalardan embriyonal evrelerin (Morula, Blastula ve Gastrula) gelişimiyle yumurtadan larva çıkışının tamamlanmasına kadar geçen süreç kuluçka (Incubation) işlemi olarak adlandırılır. Gökkuşağı alabalığının döllenmiş yumurtalarının kuluçkası için uygun su sıcaklığı 7-10 oC arasındadır. Yumurtalardan larva çıkış süresi gün-derece olarak ifade edilir. Gün-derece; günlük ortalama su sıcaklıklarının toplamı olarak larva çıkış süresinin belirtilmesidir. Örneğin 10 oC su sıcaklığında larvalar 30 günde yumurtadan çıktığında, gün derece 300’dür. Buna göre döllenmiş yumurtalardan kaç gün sonra larva çıkabileceğinin gün-derece olarak göstergeleri farklı alabalık türlerine göre Tablo 6’da sunulmuştur (Bohl 1982). Kuluçka döneminde 10 oC su sıcaklığında gökkuşağı alabalığının döllenmiş yumurtalarından 32 ila 36 gün sonra vitellus keseli (yedek besin keseli) larvalar çıkar. Larvaların çıkışında su sıcaklığı ile birlikte kalıtsal etki ve damızlıkların yaşı yanında, suyun oksijen içeriği ve ışık yoğunluğu gibi çevresel faktörlerde etkilidir. Alabalık yumurtaları embriyonal gelişme sürecinde ışık etkisine karşı aşırı duyarlıdırlar. Bu bakımdan direkt güneş ışığından korunmaları gerekir. Kaliteli damızlıklardan elde edilen yumurtaların optimum koşullarda kuluçkasında kayıp oranı yaklaşık %10-20 olabilir. Büyük işletmelerde bu oran %20-30’u aşmamalıdır (Bohl 1982, Steffens 1981). Kuluçka Süresinde Koruyucu Önlemler Döllenmiş yumurtaların kuluçka döneminde su sıcaklığı, oksijen miktarı, suyun temizliği, ışık gibi faktörlere özen göstermekle beraber, ölü yumurtaların ayaklanması da çok önemlidir. Çünkü ölen yumurtalarda saprolegnia sp. mantarları kısa sürede infeksiyona neden olur ve sağlıklı yumurtalara bulaşarak onların da ölmelerine neden olurlar. Bu hastalık odağı ölü yumurtalar, sağlıklı yumurtaları zedelemeden cımbız (yumuşak ahşap materyalden özel imal edilenler tercih edilmelidir), özel pens yada maşalar, tıpta kullanılan lastik puarların ucuna 15-20 cm boyunda cam boru takılarak hazırlanan özel pipetler, ölü yumurtaların sifon edilmesi, tuz eriyiği (%10, 7’lik tuz eriyiğinde-960 g NaCl/8 lt su-ölü yumurtalar 3 dakikada dibe çökerler) ve fotosel sistemi ile çalışan elektrikli seçicilerden yararlanılarak ayıklanabilir. Fakat yinede fazla işçilik gerektirmesine rağmen en iyi sonuçlar elle temizlemeyle elde edilmektedir. Ölü yumurtaların canlı yumurtalardan ayrımında hangi yöntem tercih edilirse edilsin, bu işlem yumurtaların göz lekeli döneminde gerçekleştirilmelidir. Döllenmiş yumurtalar göz lekeli döneme 200-220 gün-derece sonra ulaşırlar. Gözlekeli dönemde yumurtaların mekanik işlemlere duyarlılıkları azalır. Fakat döllenmeden yaklaşık 8 saat geçtikten sonrası ile göz lekesi oluşana kadar ki dönemde ise yumurtalar fevkalade duyarlıdırlar. Kuluçka döneminde mantarlaşmaya karşı koruyucu olarak kimyasal maddelerle yumurtaları ilaçlamak faydalı olmaktadır. Bu amaçla kullanılan kimyasal maddeler Tablo 7’de belirtilmiştir (Steffens 1981). Bu maddelerin tamamı kuluçka sisteminin giriş suyuna ilave edilirler. Koşullara göre belirtilen tedavi 2 günde bir veya daha fazla süre arayla da uygulanabilir. Kuluçka döneminde yumurtalara saprolegnia infeksiyonuna karşı en yaygın kullanılan kimyasal madde Malachit yeşilidir. Çoğunlukla oxalat formu, kristalize veya sıvı konsantrasyonu kullanılmaktadır. Maalesef günümüzde henüz Malachit yeşilinin yerini alacak zararsız ve aynı değerde bir kimyasal madde bulunamamıştır. Bu dezenfeksiyon maddesinin son on yıldan beri yoğun şekilde kanser etkisinden bahsedilmekte ve kullanılırken özenli davranılması gerektiği belirtilmiştir. Özellikle pazarlık balık üretiminde kullanımı yasaklanmıştır. Çünkü balığın etinde insan sağlığı için zararsız düzeye inene kadar 108 gün geçmesi gerekmektedir. Bu nedenle Almanya’da Malachit yeşilinin satışı 1988 yılı sonundan itibaren veteriner hekim reçetesine bağlanmıştır. Ayrıca kullanımı da yumurta ve larva dönemi ile 6 cm boyunda yavru balıklarla sınırlandırılmıştır (Baur ve Rapp 1988, Lindhorst-Emme 1990, Schlotfeldt ve Alderman 1995). Balık yumurtalarının yüzeylerinde infeksiyon etkenlerinin bulunabildiği ve böylece hastalıkların yayılmasında rol oynadıkları bilinmektedir. Bu nedenle işletmelerin yumurta satışlarında, yumurtaların taşınmasından önce dezenfeksiyon işlemini uyguladıklarını garanti etmeleri istenmektedir. Bu hedefe yönelik olarak iyot preparatlarıyla banyo işlemine tabi tutulan yumurtaların, bu işlemin uygulanmadığı yumurtalara oranla daha az mantarlaştıkları bildirilmiştir (Bohl 1982). İyot içeren dezenfeksiyon maddesi olarak yaklaşık %1 aktif iyot kapsayan Actomar K30 önerilmektedir. Alabalık yumurtalarının bu maddeyle dezenfeksiyonu için ideal iki dönem vardır. Birinci uygulama zamanı döllenmeden 10 saat sonra yeşil yumurta dönemi, daha da iyi olan 2.ci dönem ise yumurtaların gözlekeli devresidir. Belirtilen dezenfeksiyon işlemi için 1 litre suya 15 ml Actomar K30 ilave edilir ve yumurtalara banyo uygulanır. Actomar K30 ile hazırlanan banyo solüsyonunun etkinliği rengi ile anlaşılır. Kullanılan eriyiğin rengi kahverengiden-sarıya kadar kullanılabilirliğini gösterir. Açık sarı renk oluştuğunda ise etkinliği garanti edilemez, hatta bazen tamamen etkisizdir (Baur ve Rapp 1988, Bohl 1982, Schlotfeldt ve Alderman 1995). Kuluçka Tipleri Alabalık üretim tesislerinde yaygın olarak kullanılan kuluçka tipleri ve temel nitelikleri Tablo 8’de belirtilmiştir. Tablo 8. Kuluçka tipleri Kuluçka gereci Su gereksinimi Kapasite Kuluçka kanalı 15-25 lt/dak. 100.000 Adet yumurta Zuger şişesi 1,5-3 lt/dak. 30-50.000 Adet yumurta Kuluçka dolabı 1,2-2 lt/dak. 100.000 Adet yumurta Kuluçka kanalları En eski ve halen günümüzde de yaygın olarak kullanılan kuluçka gereçleridir. Birkaç metre uzunluğunda kanal ve içerisine konulan özellikle tabanları gözenekli materyalden yapılan, yumurta yerleştirilen tablalardan (Kasetlerden) oluşur. Tablalar arasında kanalda enine bölmeler vardır. Bu sistemde su tablaya alttan girer ve yumurtaların oksijenini sağladıktan sonra üstten çıkar. Kuluçka kanallarının boyları farklı olmakla birlikte 2-3 m uzunluk tercih edilmektedir. Yumurta tablaları ise 45x45 cm boyutunda kare şeklindedir. Yumurta tablalarının tabanı için 1,5 mm çapında yuvarlak delikleri olan alüminyum materyal kullanılması daha uygundur. Yumurta tablaları kuluçka kanallarına üst üste değil, birbiri ardı sıra konulmalıdır. Kuluçka kanallarına 4-7 adet yumurta kaseti yerleştirilir. Bu kasetlere suyun kalitesine göre kuluçka için yumurtalar tek kat konulduğunda 5000 adet, çift kat konulursa 10.000 adet yumurta bırakılır. Kuluçka kanallarının herbirisine kuluçkanın ilk günlerinde 15 lt/dak. su girişi sağlanırken, bu miktar yumurtalardan larva çıkışına yakın 25 lt/dak düzeyine yükseltilir (Bohl 1982, Çelikkale 1994, Lindhorst-Emme 1990, Steffens 1981). Bu tip kuluçkalıklar alt kısımları huni şeklinde olan, ilk kullanan kişinin ismine atfen zuger şişesi olarak adlandırılan ve genellikle 6,5-8 lt kapasiteli gereçlerdir. Daha az yer kaplayan, daha az suya gereksinim duyan ve kurulmaları kolay olan bu gereçlerin, kapasiteleri 30.000 ile 50.000 adet yumurtadır. Taban kısımları açık olan ve ters yerleştirilen bu şişelerin, huninin alt kesimi gibi daraltılmış boğaz kısmından verilen su girişinin basıncının yumurtalara zarar vermemesi için, ağız kısmına 3 cm yüksekliğinde cam boncuklardan (yaklaşık 6 mm çapında veya aynı büyüklükte çakıl taşları) oluşan bir katman yerleştirilir. Normal boyutta bir zuger şişesi için 1,5-3 lt/dak. su gereklidir. İki zuger şişesi için 0,25 x 0,50 m, çift sıralı 8 zuger şişesi için ise 0,50 x 1.00 cm’lik alana gereksinim vardır. 8-10 zuger şişesine yerleştirilen yumurta miktarı, kanal sistemi kuluçkalıklarda 36 adet kuluçka kanalına konulan yumurta miktarına eşdeğerdedir. Belirtilen miktarda kuluçka kanalı için, kuluçka evinde 35 m2 yer ayırmak gerekir. Ayrıca zuger şişeleri fiyat bakımından da daha uygundur (Bohl 1982). Kuluçka dolaplarının kullanımı son yıllarda özel likle büyük kapasiteli işletmelerde hızla artmaktadır. Buna neden olarak çok az alana gereksinim duymaları, kaliteli, fakat az miktarda su kullanımı ve işçilik giderinden tasarruf gösterilebilir. Kuluçka dolapları damlalıklı ve vertikal akışlı dolaplar olmak üzere iki tiptir. Damlalıklı dolaplarda yumurtaların larva çıkışından kısa süre önce dışarı alınarak kuluçka kanallarında tablalara yerleştirilmesi zorunludur (Ekingen 1975). İkinci tipte ise larvalar yemleme dönemi öncesine (serbest yüzme) kadar dolabın tepsilerinde tutulabilmektedir. Bunlar Veco (İSVİÇRE)-Dolapları olarak adlandırılırlar. Bu dolapların yumurta tablaları tepsi şeklinde daireseldir. Her dolapta 10 tepsi bulunur. Her tepsi şeklindeki yumurta tablasına 10.000 adet yumurta konur. Bu dolapların su girişi üsttendir, önce birinci tepsiye su dolar, daha sonra ikinci vd. ne devam eder. Bu dolaplarda 100.000 adet yumurta için 1,2-2,0 lt/dak. su yeterli olmaktadır (Bohl 1982). Kuluçka döneminin sona erdiği günlerde 25-35 gün-derecede yada bir başka ifadeyle 10 oC su sıcaklığında 2,5 günde yumurtaların tamamından larva çıkışı tamamlanır. Bu arada ortamdaki yumurta kabukları sifonlanarak günde iki defa yumurta tablalarının delikleri tıkanmaması için ayıklanmalıdır. Yumurtadan çıkan larvalara Vitellus keseli larva denilir. Bunlar besin kesesi olarak da adlandırılan keselerini su sıcaklığına göre 12-17 günde tüketirler. Bu dönemde larvaların barındırıldığı gereçlerden en azından her iki gündebir beyaz renkli ölü yumurtalar yada ölen keseli larvalar vaya deforme ve anomalili larvalar sifonlanarak uzaklaştırılmalıdır. Belirtilen temizlik işlemi yapılmadığı durumda hızlı bir şekilde mantar enfeksiyonu ile karşılaşılır (Lindhorst-Emme 1990) Larvaların serbest yüzme dönemine ulaşmaları, besin keselerinin çoğunu tüketmeleri, larvaların yemlenmeye başlanmaları için önemli göstergelerdir. Vitellus keseli larvaların %10’u yem alma gücüne ulaştığında yada besin keselerinin 2/3’lük kısmını tükettiklerinde ve serbest yüzmeye başladıklarında yemlenmeye başlanmalıdır. Larvalar belirtilen evreye ulaştıklarında, kuluçka kanallarında yumurta tablaları arasındaki bölmeler kaldırılır, tablalarda bulunan larvalar yavaş bir şekilde kanallara stoklanırlar (Bohl 1982, Çelikkale 1994, Igler 1990, Steffens 1981). Serbest yüzme devresine ulaşmış ve suda aktif hareket eden larvaların bakım ve beslenmelerine özen gösterilerek ortalama 1 g canlı ağırlığa kadar yetiştirilmeleri genel olarak “ön büyütme” olarak tanımlanır. Bu devre 60-80 günde tamamlanır. Bu dönemde yetiştirme ortamı olarak daha ziyade büyütme kanalları kullanılır. Ayrıca ön büyütme dönemi kuluçka evinde tank yada kanallarda gerçekleştirilir. Su değişimi, stok yoğunluğuna ve su kalitesine bağlı olarak 4-8 kez/saat, olmalıdır. Belirtilen koşullarda stok yoğunluğu 100.000 larva/m3 sudur. Larvaların yemlenmesine her 30-60 dakikada bir günde 12 saat devam edilir. Bu dönemde kayıp oranı yaklaşık %30-35’dir. Optimum üretim koşullarında hasatta üretim hedefi en azından 1 g bireysel ağırlıkta m3’de toplam 25 kg veya 25.000 ön büyütülmüş yavru olmalıdır (Steffens 1981). Ön büyütme döneminde larvaların yetiştirilmesinde aşağıdaki önlemlerin alınmasında fayda vardır (Çelikkale 1994). - Kaliteli su temini, - Direkt güneş ışığından korumayla birlikte dolaylı aydınlık sağlama, - Yavruların köşelerde veya belli noktalarda birikmelerinin önlenmesi, - Yemlemenin sık olarak yapılması, fakat her defasında azar azar verilmesi ve yem artıkları ile dışkıların sürekli temizlenmesi gibi konularda özen gösterilmelidir. Alabalık larvalarının ön büyütülmesinde genellikle 3-4 m uzunluk ve 40-80 cm genişlikte kanallar kullanılmaktadır. Genelde betonarme inşa edilirlerse de, hijyenik açıdan polyester kanallar tercih edilmelidir. Populasyonun stok yoğunluğu, kullanılan suyun miktar ve kalitesine bağlıdır. Bu kanallarda su değişiminin optimum düzeyi saatte 4-8 defa olmalıdır. Derinlikleri 30-80 cm olan bu kanallarda su yüksekliği balık boyutuna koşut olarak yükseltilir. Örneğin 3,60 m uzunluk, 40 cm genişlik, 17 cm su derinliğinde kanala yaklaşık 30.000 adet gökkuşağı alabalığı larvası, yani 122.000 larva/m3 stoklanarak yemlenebilir. Yemleme dönemindeki larvalarda genellikle 100.000 adet/m3, yani 100 adet/lt stok miktarları uygulanır. Belirtilen stok miktarları uygulandığında kanallarda saatte 4-8 defa su değişimi için 1-2 lt/sn/m3 su gereklidir. Bu koşullar altında, 8-10 oC’lik su sıcaklığında 8 günlük yemleme sonunda stokta 50.000 yavru/m3, 15 günlük yemlemeden sonra ise 20.000-30.000 yavru/m3 şeklinde seyreltme yapılır (Bohl 1982). Kapasitesi 2-4 m3, genelde polyester olan, fakat beton yada eternitten de imal edilen kanal tipi tanklarda iyi düzeyde oksijen içeren suyla 30.000-60.000 adet larva 6-8 hafta beslenir. Bu tanklara su girişi 20-40 lt/dak./m3 su, olmalıdır. Stok yoğunluğu 8-12 adet larva/lt. Bu tanklarda taban eğimi %1,5-2 olduğunda iyi temizlenme olanağı yaratır (Lindhorst-Emme 1990). Bu tanklarda üst kısımdan basınçla geren su, tank içindeki suyu dairevi bir hareket halinde tutar. Dolayısıyla bu tankların her tarafında oksijen hemen hemen aynı düzeydedir. Bu tanklarda su çıkışı tabanın ortasındadır. Su çıkış kısmı üzerine 15-20 cm çapında 3,5-4,0 mm göz açıklığında, paslanmaz metalden yapılmış bir süzgeç yerleştirilir. Tankın alt kısmına yerleşmiş olan su çıkış borusu hareketli bir dirsekle dış kısmından yükselmektedir. Bu hareketli dirseklerle tank içindeki su seviyesi kolayca ayarlanabilmektedir. Diğer taraftan tankın tabanında orta su çıkış kısmına doğru yaklaşık %5 meyil vardır. 2 m çapında ve yaklaşık Fingerling (Parmak Büyüklüğünde Balık) Yetiştiriciliği Parmak büyüklüğünde yavru balık üretiminde stok materyali olarak ön büyütmesi yapılan genellikle en azdan 0,5-1 g bireysel ağırlıkta ve 4-5 cm boyunda yavrular kullanılır. Eğer ön büyütmesi yapılan yavruların stoklandığı havuzlarda ve kullanılan suda dönme hastalığına neden olan parazitin (Myxosoma cerebralis) sporları varsa, yavruların boyu en azından 6-7 cm olmalıdır. Çünkü belirtilen büyüklükteki yavruların omur ve kafa kemiklerinin kıkırdak kısımları oldukça dayanıklılık kazanmıştır ve deforme olmaz hale gelmiştir (Bohl 1982). Parmak büyüklüğünde yavru balıkların yetiştiriciliği yapılan bütün üretim donanımlarının, yavru balıklar stoklanmadan önce hijyenik yönden önlemlerinin alınması zorunludur. Bu önlemlerin başında dezefenksiyon gelir. Dezenfeksiyon etkisi sıcaklığa bağlıdır. Genel bir kural olarak, dezenfeksiyon maddesinin etkisi için 20 oC’da 30 dakika, 12 oC’da 1 saat, 4 oC’da 2,5 saat süre gereklidir. Dezenfeksiyon maddesi olarak genellikle formaldehyd (Ticari adı Formol) tercih edilir. Konsantrasyon olarak %5’lik eriyik (5 kısım Formol + 32 kısım su) önerilmektedir. Metal olmayan materyaller için NaOH (Sodyum hidroksit) %2 oranında, yani 20 g NaOH (Sud kostik) 1 litre suya ilave edilerek kullanılmaktadır (Bohl 1982, Baur ve Rapp 1988). Beton kanallarda finrgerling yetiştiriciliği Mevcut kapasiteyi daha iyi değerlendirmek için, 7-10 m uzunluk, 0.80-1 m genişlik ve 0,80-1 m derinlikte beton kanallar parmak büyüklüğünde yavru üretiminde kullanılmaktadır. Su koşullarına ve her 10 dakikada su değişiminin gerçekleşmesine bağlı olarak stok yoğunluğu 2000-5000 adet ön büyütülmüş yavru/m3 tercih edilir. Bu durumda hasatta elde edilen ürün 50 kg/m3 olur ve yavru balıkların bireysel ağırlıkları 10-15 g yada 30 g’a ulaşabilir. Bu tip yetiştiricilikte yavruların defalarca yemlenmesi çok zaman alırsada, aynı zamanda günde iki defa temizlik yapılmalıdır (Bohl 1982). Yavru yetiştirme kanallarının 8-10 m uzunluk ve 1-2 m genişlikte olanları fingerling üretimi için esas yönünden uygundur. Bu kanallarda su değişimi en azından 5-20 dakika sürede gerçekleşmelidir. Kanalların savaklarında 3,5 mm çapında delikli materyal kullanılmalıdır. Su değişimine göre stok yoğunluğu 2000-5000 adet/m3, yavru yada daha yüksek olabilir. Hasatta balık büyüklüğü ve su koşullarına göre 50 kg/m3 veya özel likle daha iyi koşullarda 100 kg/m3, ürün elde edilebilir (Steffens 1981). Havuzlarda fingerling yetiştiriciliği Parmak büyüklüğünde yavru balık yetiştiriciliği uygun koşullarda havuzlarda da yapılabilir. Bu havuzların betonarme yapılması daha uygundur. Dikdörtgen konumdaki havuzların genişlik/uzunluk oranları yaklaşık ¼-1/6 olmalıdır. Bu havuzlarda kullanılan suyun kalite ve miktarına bağlı olarak stok yoğunluğu 60-100 adet ön büyütülmüş yavru/m3 (ortalama 1 m derinlikte) şeklinde düzenlenir. Bu tip üretimde 50.000 adet fingerling yetiştiriciliği için yaklaşık 10 lt/sn suya gereksinim vardır. Ayrıca hafif asidik karakterde 3-5 lt/sn suyla, örneğin 450 m2 yüzleminde ve 1,5-2,3 m derinlikte havuzda ek havalandırma koşullarında 60.000-80.000 adet yavru ortalama 12-15 cm (2-3 kg/m2) boya kadar üretilir (Bohl 1982). Ağ kafeslerde fingerling yetiştiriciliği Ağ kafeslerde parmak büyüklüğünde yavru yetiştiriciliği pazarlık boyutta (sofralık) balık yetiştiriciliği kadar uygun değildir. Bunun en büyük nedeni fingerling yetiştirilecek kafeslerde ağ göz açıklığının küçük olma zorunluluğudur. Çünkü ağın gözleri küçüldükçe ağlar daha çabuk tıkanır ve böylece su değişimi engellenir. Ayrıca kafeslere stoklanacak yavru balıkların genellikle ön beslemesi yapılmış ortalama 1 g ağırlıkta olmaları nedeniyle, kafesten kaçmamaları için 4 mm göz açıklığında ağlar gereklidir (Beueridge 1987). Belirtilen sorunlar dikkate alınarak ağ kafeslere stoklanacak yavruların en az 2 g ağırlıkta ve ağ göz açıklığının 6 mm olması daha uygundur. Ağ kafeslerde parmak büyüklüğünde yavru yetiştiriciliğinde stok yoğunluğu 300-500 adet/m3, yavru önerilmektedir. Bu tip yetiştiricilikte uygun su koşullarında yavru balıklar 8-10 cm boy yada 50 g ağırlığa kadar büyütülebilirler. Yalnız yavru balıklar büyüdükçe 1 cm balık boyu için 1 mm ağ göz açıklığı temel alınarak kafesin ağ torbası periyodik olarak yenilenmelidir (Kieckhäfer 1983, Steffens 1981). Pazarlık (Sofralık) Alabalık Yetiştiriciliği Yavruların fingerling (Parmak büyüklüğünde balık) üretiminde amaç, 140-150 günlük yemleme döneminde yavruları en azından ortalama 10 g bireysel ağırlığa ulaştırmaktır. Fakat daha iyisi 30 g bireysel ağırlığın üstüne çıkmak olmalıdır (Steffens 1981). Pazarlık alabalık üretiminde genel olarak sofralık balık büyüklüğü 250-330 g/adet (4 yada 3 adet/kg) olarak kabul edilmektedir. Mutfaklık balık yetiştiriciliğinde havuz, kanal ve kafes sistemleri kullanılır (Bohl 1982, Çelikkale 1994, Steffens 1981). Havuzlarda sofralık alabalık üretimi Bu havuzların ölçüleri, kullanılan suyun miktarı ve kalitesi ile havuz yapılan arazinin topoğrafik durumu ve toprak yapısına göre büyük değişiklik gösterir. Havuzların beton yapılmasında zorunluluk yoktur. Toprak yapısı killi ve suyu tutma özel liğinde ise havuzların kullanımı, beton havuzlara bakarak daha fazla işçilik gerektirirse de, sabit yatarım gideri daha azdır. Beton havuzlarda dezenfeksiyon ile bakım daha kolay, yemleme ve balıkların kontrolü daha iyi, fakat yapım gideri ise yüksektir (Atay 1995, Çelikkale 1994, Emre ve Kürüm 1998). Pazarlık alabalık besiciliğinin gerçekleştirildiği havuzların boyutları, genellikle 20-50 m uzunluk, 4-12 m genişlik ve en fazla 1.20 m derinlikte olmalıdır. Uygun stok yoğunluğu su değişimine ve kalitesine göre saptanır. Ayrıca yemleme, havuz hijyeni, teknik donanım kullanımı (Örneğin havalandırma gibi), üretim süresi gibi faktörlerde stok miktarını saptamada dikkate alınmalıdır (Lindhorst-Emme 1990, Steffens 1981). Optimum yetiştirme koşulları ve tam değerli pelet yem kullanımı ile gökkuşağı alabalığı yetiştiriciliğinde 8 aylık üretim sürecinde tüketim ağırlığına ulaşılabileceği beklenmelidir (Bohl 1982). Sofralık balık üretim miktarı genellikle kg/m3 olarak ifade edilir. Örneğin havuzlarda su değişimi günde 3-5 defa gerçekleştiğinde 3-5 kg/m3, balık üretilebilir. Yarı yoğun üretim koşullarında ise bu miktar 10 kg/m3’e yükselir. Derinliği 30-50 cm olan havuzlarda su değişiminin saatte 3 defa gerçekleştiği durumda 20 kg/m2 (=40-60 kg/m3) balık üretilir (Bohl 1982). Havuzlara verilen su miktarı esas alınarak da stok miktarı hesaplanabilir. Buna göre iyi kalitede 1 lt/sn’lik su girişine göre hasatta 100-150 kg sofralık balık üretileceği hedefine yönelik stoklama yapılır. Pazarlık alabalık büyüklüğü 200-250 g baz alınarak, 1 lt/sn debi için 400-600 adet fingerling stoklanır (Çelikale 1994). Kanallarda sofralık alabalık üretimi Derinlikleri 50-65 cm, genişlikleri bir kaç metre olan, betondan yapılan, uzunlukları birkaç yüz metre, su değişiminin saatte 2-3 defa gerçekleştiği üretim tesisleridir. Taban eğimi 30 m’de 10-20 cm dir. Birkaç yüzmetre uzunluğundaki bu kanallar ızgaralarla yaklaşık 30 m’lik bölümlere ayrılır. Üretim kapasiteleri genellikle 24-32 kg/m3’dür (Steffens 1981). Bu kanal tipi havuzlar, mekanik yemlemeye hastalıklarla savaşa ve otomatik seleksiyona uygun balık üretim tesisleridir (Atay 1995). Yavru balıkların pazarlık boyuta kadar büyütülmesinde suyun akış hızı 1,5-3 cm/sn olmalıdır. Benzer veriler Amerikan kaynaklarına (Westers’e göre) tablo 9’da belirtilmiştir (Bohl 1982). Bir hektar yüzleminde kanal tipi havuzlarda 1000 lt/sn su ile 100 ton alabalık üretilir. Bu hesaplama havuzlarda yarı intensif yetiştiricilik yöntemindeki 100 kg balık/lt/sn su ile hesaplanan geleneksel eski üretim miktarına eşdeğerdir (Bohl 1982). Kafeslerde sofralık alabalık üretimi Ağ kafeslerde yetiştiricilik göller, baraj gölleri, göletler, kum-çakıl göletleri, akarsu gölcükleri ve büyükçe yapılmış sulama kanallarında, belirli çerçevelere takılmış ağ kafesler içinde, balıkların kontrol altında büyütülmeleridir. Ülkemizde denizlerimizde ağ kafeslerde çipura ve levrek yetiştiriciliğine koşut olarak, son yıllarda kamunun da yönlendirmesiyle özel girişimciler tarafından tatlısu kaynaklarımızda da ağ kafeslerde alabalık yetiştiriciliği hızla yaygınlaşmaya başlamıştır (Atay 1994). Kafeslerde alabalık yetiştiriciliğinde öncelikli olarak su koşullarının uygun olması gerekir. Buna ilişkin koşullar Tablo 10’da özetlenmiştir. (Ruhdel 1977). Tablo 10. Ağ kafeslerde alabalık yetiştiriciliğinde su koşulları Nitelik Miktar Su sıcaklığı 20 oC’nin altında Oksijen 6 mg/lt’nin üzerinde (sabahları) PH 8’in altında NH4 0,5 mg/lt’nin altında Zehirli madde Olmamalı Su derinliği 4 m’nin üzerinde Oksijen tüketimi 600 g/ton/saat Kafesin yerleştirildiği ortamın tabanı ile kafesin ağ torbasının alt kısmı arasında en az 1 m aralık olmalıdır. Kafesin ağ torbası su ortamında geometrik şeklini tam olarak koruyamayacağından hacminin yaklaşık %15’i kaybolur. Kafesler uzun süre aynı yerde konuşlandırıldıklarında gölün yada göletin su kalitesini etkilerler. Sığ göllerde her üretim peryodunda kafeslerin yeri değiştirilmelidir. 10 m’den derin göllerde ise yer değiştirmeye gereksinim yoktur. Ağ kafeslerin büyüklükleri çok farklı olmakla birlikte 5 m x 5 m x 5 m boyutları en çok kullanılanıdır. Ağ kafesin göz açıklığı balığın boyunun 1/10’u olmalıdır. Ağ göz açıklığının bir başka ifadeyle pratikte 1 cm alabalık boyu için 1 mm ağ göz açıklığı esas alınır. Ağ kafeslere en azından ortalama 40 g ağırlıkta yavru balıklar stoklanır. Yılın Mart ayında stoklanan yavrular Haziran ayı ortalarında, Eylül ayında stoklanan balıklar Aralık ayında hasat edilirler (Bohl 1982, Kieckhäfer 1983, Ruhdel 1977). Normal su koşulları altında ağ kafeslerde stok yoğunluğu 50-100 adet ortalama 40 g ağırlıkta yavru balık/m3 olarak planlanır. Bu durumda hasatta üretim miktarı 20-30 kg/m3 olarak gerçekleşir. Örneğin Orta Avrupa göl ve baraj göllerinde ağ kafeslerde yetiştiricilikte ağ göz açıklığı 14 mm olarak düzenlenir. Stok yoğunluğu olarak 90 adet 40 g ağırlıkta yavru/m3 esas alınır. Bu koşullarda 100 ton alabalık üretimi için 4x3x3 m boyutlarında yaklaşık 180 kafese gereksinim vardır. Uygun koşullar altında stok yoğunluğu 100 adet fingerling/m3, olarak uygulanabilir (Steffens 1981). Ağ kafeslerde yetiştiricilikte 17-20 oC su sıcaklığında, gökkuşağı alabalıklarında ortalama 35 g ağırlıkta stoklanan yavrular yüksek büyüme oranıyla 300 g ağırlığa ulaşmışlardır. Bu durumda 2,5 ayda 265 g ağırlık artışı sağlanmış, yani yavrular günde 3,5 g büyümüşlerdir (Bohl 1982). Ağ kafeslerde yetiştiricilikte ortalama 50 g’lık balıkların, 90-100 yemleme gününde 250 g olan sofralık büyüklüğe ulaştırmak hedeflenmelidir. Bu hedefe yönelik olarak 20 m3’lük kapasiteli ağ kafese 500-1800 adet yavru balık yeterlidir. 20 m3 kapasiteli ağ kafeslere 700 adetten az balık stoklandığında, 1000 veya 1200 adet balık stoklamaya oranla büyüme daha yavaş olmuştur. Fakat 20 m3 kapasiteli ağ kafeslere 1200 adetten fazla balığın stoklanması da önerilmemektedir. Belirtilen maksimum stok yoğunluğu esas alındığında 1200 x 250 g= 300 kg balık üretilir. Aynı koşullarda bir sezon daha üretim yapıldığında 300 x 2= 600 kg yıl sürecinde alabalık üretimi gerçekleştirilir. Göllerde ağ kafeslerde yılda 600 kg sofralık alabalık üretildiğinde ortama balıklar tarafından bırakılan dışkı 1 hektar havuz yüzleminin kendini temizleme gücünü etkilemez (Kieckhäfer 1983). Ağ kafeslerde alabalık yetiştiriciliğinde Kieckhäfer’e (1983) göre m3’e ortalama 50 g ağırlıkta yavrulardan 60 adetten fazla stoklanmamalıdır. Bu stoklama miktarı uygulandığında ise 250 g sofralık balık bireysel hasat ağırlığına göre 15 kg balık/m3 ürün elde edilir. Fakat literatür verilerine (Mann 1974, Falk 1968) göre 20-30 kg/m3, mutfaklık alabalığı ağ kafeslerde üretmek olasıdır (Kieckhäfer 1983). Ağ kafeslerde gökkuşağı alabalığı yetiştiriciliği deniz ortamında da gerçekleştirilebilir (Atay 1994). Çünkü gökkuşağı alabalıklarının tuz konsantrasyonuna toleransları balıklar büyüdükçe artmaktadır. Yavru balıkların ağırlıkları 50 grama ulaştığında %0 12-15 tuz konsantrasyonunda, %0 0-1’lik konsantrasyona oranla büyümeleri %70 daha iyi olmaktadır. Parmak büyüklüğünde yavru balıklar sofralık balık büyüklüğüne kadar ‰30 tuzlulukta ve bununda üstünde konsantrasyonda deniz suyunda beslenebilirler (Steffens 1981). ALABALIKLARIN BOYLANMASI Alabalıkların sınıflandırılması yada boylarına göre ayrılması özenle uygulanması gereken bir işlemdir. Çünkü alabalıkların karnivor karakterde olmaları nedeniyle, balıklar arasındaki büyüklük farkı aşırı boyutlara ulaştığında, büyük bireylerin küçükleri yemeleri (Kannibalizm) olgusuyla karşılaşılır. Bu sakıncanın yanında verilen yem büyük balıklar tarafından alınır ve küçük balıklar ise yetersiz düzeyde beslenirler. Böylece yem dağılımının dengesiz olması bakımından büyük balıklar ile küçük balıklar arasındaki büyüklük farkı giderek artar. Sonuçta birim canlı ağırlık artışı için tüketilen yem miktarı (yem değerlendirme değeri) artar, bir başka tanımla yem değerlendirme oranı (FQ yada FCR= Food Conversation Rate) olumsuz yönde etkilenir (Vollmann-Schipper 1975). Alabalık üretiminde yavru balıkların boylarına göre ilk seleksiyonu, larvaların 6-8 hafta beslenmesinden sonra, yani ön büyütme dönemi sonunda yavruların yaklaşık 1 g ağırlığa ulaştığında gerçekleştirilmelidir. Bu işlemin uygulanmasında sabit yada ayarlı ayırma kutuları kullanılır. Belirtilen gereçler daha çok miktarı az ve boyu küçük yavruların sınıflandırmasında kullanılır. Eğer iyi bir gelişme elde etmek, kanibalizme engel olmak ve aynı büyüklükte balık elde etmek isteniyorsa seleksiyon yapmak zorunludur. Bütün balıklar aynı büyüklükte olurlarsa, günlük yem gereksinimi daha doğru ve havuzun toplam kapasitesi daha kolay tahmin edilir (Atay 1995, Bohl 1982). Hem yavru balıklar hem de daha büyük balıkları sınıflandırmada ise ızgaraları ayarlanabilen, havuzlara ve kanallara monte edilebilen boylama sistemleri kullanılabilmektedir. Bu sistemin ızgara aralığını 1,6-21 mm arasında ayarlamak mümkündür (Atay 1995). Ayrıca alabalıkları aynı anda ikiden fazla boya ayırmak için su püskürtme ve titreşim esasına göre çalışan sınıflandırma makinalarından da yararlanılabilir. Belirtilen boylama gereçlerinden farklı olarak kapasitesi büyük üretim tesislerinde ise; ayırmayı hızlandırmak, zaman ve işçilikten tasarruf etmek için; üretim tesisi dışında kurulan, su akıntısı verilebilen ve balıkları yakalama sırasında boylama yapabilen sistemlerin kullanılması önerilmektedir (Vollmann-Schipper 1975, Igler 1990). Yavru Alabalıkların Sınıflandırılması Alabalıkların boylanmasının pratikte iki önemli yararı vardır. Bunlar: 1- Farklı boyuttaki balıkların ayrılmasıyla kannibalizm önlenir. 2- Özellikle yavru balıklar satış için sınıflandırılmış olur. Yavru balık üreticileri yavru balıkları satış için pratikte 6 sınıfa ayırmaktadırlar. Bu sınıflar ve balık boyutları Tablo 11’de sunulmuştur (Lindhorst-Emme 1990). ALABALIKLARIN YEMLENMESİ Gökkuşağı alabalıklarının yemlenmesinde öncelikli olarak aşağıdaki faktörler dikkate alınmalıdır (Ruhdel 1977). a- Su sıcaklığı b- Suyun oksijen içeriği c- Suyun alkalinitesi d- Stok yoğunluğu Yemin İçeriği Gökkuşağı alabalığının yetiştiriciliği için optimum su sıcaklığı 15-20 oC olmasına karşın, yemlemeye uygun su sıcaklığı ise 14-16 oC’dır. Gökkuşağı alabalıklarının larva yeminde %40, yavru yeminde %30 ve sofralık balıkların yeminde ise %30 protein bulunması genel kullanım oranlarıdır. Bu oranlar larva yeminde %50’ye, mutfaklık balık beslenmesinde %46’ya kadar yükseltilebilmektedir. Yemleme metodu, su ve işletme koşullarına göre seçilir. Alabalık yemlerinde yağ içeriği başlangıçta %4-5 oranında önerilmektedir. Rasyonda protein miktarının yüksekliği ile birlikte yağ oranı %8’e kadar artırıldığında, yem değerlendirme ve balığın et kalitesi iyileşir. Alabalık pelet yemlerinde %8-12 oranında yağ ve %42-50 oranında protein üst sınır olarak kabul edilmektedir (Ruhdel 1977). Avrupa’da tanınmış bazı firmaların ürettikleri alabalık ticari besi yemlerinin içerikleri Tablo 14’de gösterilmiştir (Lindhorst-Emme 1990). Yem Tüketimi Dağılımı Alabalık üretim tesislerinde yem tüketimi işletme giderleri içerisinde yaklaşık %50-60 oranıyla en büyük payı oluşturur, İşletme giderinin yaklaşık 2/3’ünü oluşturan yemin yıl sürecinde kullanımının üretim dönemlerine göre dağılımı Tablo 15’de görülmektedir (Lindhorst-Emme 1990). Tablo 15’de görülen dönemlerden kuluçka evinde larvaların yemlenmesi günde 8-12 defa yapılmalıdır. Yem balıklara su yüzeyine serpilerek verilmelidir. Larva besiciliği döneminde 2000 adet larva için yem gereksinimi ilk bir ay yaklaşık 1 kg, ikinci ay ise 2 kg olarak hesaplanmalıdır (Bohl 1982). Daha sonraki dönemlerden yavru yetiştiriciliğinde yemleme sıklığı günde 3-4 defa, pazarlık balık besiciliğinde ise günde 2 defa olmalıdır. Balıklara haftada bir gün yemleme yapılmamalıdır (Ruhdel 1977). Yemin Boyutu Alabalıkların yemlenmesinde özel likle larva ve yavru dönemlerinde yemin boyutunun balıkların ağız açıklığına uygunluğu çok önemlidir. Bu konuya ilişkin veriler Tablo 16’de gösterilmiştir (Lindhorst-Emme 1990). Yemleme ve Su Sıcaklığı Alabalık besiciliğinin bütün evrelerinde su sıcaklığının etkisi yadsınamaz. Çünkü su sıcaklığı en başta suyun oksijen yönünden doymuşluğunu etkilemekle birlikte, aynı zamanda balıkların metabolizma hızına da tesir etmektedir. Yavru yetiştiriciliğinin ilk haftalarındaki yemlemede, su sıcaklığının etkisine ilişkin özgün örnek Tablo 17’de görülmektedir (Lindhorst-Emme 1990). Tablo 17’deki verilerin elde edilmesinde 4 m3 hacminde kanal tipi küvetlerde, yetiştirme için ideal su sıcaklığı olan 15 oC’da başlangıçta 100.000 adet olan stok yoğunluğu, 5. haftadan itibaren 60.000 adete indirgenmiştir. Yemleme Zamanı Ön büyütmesi yapılmış yavruların ilkbahar yaz döneminde, parmak boyunda yavru balık boyutuna kadar beslenmesinde, günlük yemleme öğünleri aşağıdaki gibi olmalıdır. 1. Yemleme 07.00-08.000 saatlerinde 2. Yemleme 11.00-12.00 saatlerinde 3. Yemleme 14.00-15.00 sularında Sonbahar döneminde fingerling dönemine ulaşan yavru balıklar ise aşağıda gösterilen saatlerde günde iki defa yemlenirler. 1. Yemleme 08.00-09.00 2. Yemleme 13.00-14.00 Yemleme (Besi) süresi Alabalık yetiştiriciliğinde bir diğer önemli konu yavru balıkların ne kadar süre beslenerek pazara sunulabileceğidir. Bu konu tamamen su ve yemleme koşullarıyla balığın kalıtımsal kökenli büyüme performansına bağlı bir durum olanak kabul edilse de, Tablo 18’de normal koşullarda gerçekleşmesi olası besi süreleri verilmiştir (Lindhorst-Emme 1990). Yem Değerlendirme Oranı Balık yetiştiriciliğinin verimliliğinin ölçütü olarak birim balık üretimi için harcanan yem miktarı kullanılmaktadır. Çünkü balık üretiminde girdilerin büyük çoğunluğunu yavru, işçilik ve yem giderleri oluşturmaktadır. Bu üç gider içerisinde de en büyük paya yem sahiptir. Belirli koşullar altında farklı kalitede 3 çeşit yemle yürütülen gökkuşağı alabalığı besiciliğine ilişkin veriler Tablo 19’da görülmektedir (Lindhorst-Emme 1990). Tablo 19’da görülen veriler irdelendiğinde birim balık üretimi için harcanan yem, yani yem değerlendirme oranı kadar, yemin fiatınında çok önemli olduğu anlaşılmaktadır. Yemleme Oranı Alabalık üretiminde başarılı besiciliğin temelini balıkları canlı ağırlıklarının %’si olarak doğru oranda yemlemek oluşturur. Yemleme oranını saptamada stok miktarı, su kalitesi ve miktarıyla birlikte, yetiştirme ortamında su değişimi gibi bir çok faktör dikkate alınabilir. Fakat balıklara günlük olarak verilecek yem miktarını saptarken iki ana ilke unutulmamalıdır. Bu iki ilke (Igler 1990): 1- Balıkların yem alımı su sıcaklığına bağlıdır. 2- Balıklar büyüdükçe yem gereksinimi oransal olarak düşer. Su sıcaklığı baz alınarak alabalık populasyonuna canlı ağırlıklarının %’si olarak günlük verilecek yem miktarı Tablo 20’den yararlanarak saptanır (Kieckhäfer 1983). Alabalıkların beslenmesinde günlük olarak verilecek yem miktarını tespit etmede, yine su sıcaklığının esas alındığı, fakat balıkların ortalama bireysel ağırlık ve boylarına göre gruplandırıldığı ve pratikte uygulanan yemleme oranları Tablo 21’de gösterilmiştir (Igler 1990). Alabalık Yemleme Yöntemleri En eski yemleme şekli olan elle yemleme halen kullanılan bir yöntemdir. Bu yöntemle yemlemede, balıklar özenle yavaş bir şekilde yemlenmeyi gerektirdiği için işçilik giderini artırır. Alabalık yetiştiriciliğinde büyük kapasiteli işletmelerde ve işçilik ücretinin yüksek olduğu ülkelerde yaygın olarak otomatik yemlikler kullanılmaktadır. Yem otomatları içerisinde en çok kullanılanlar, sarkaçlı yemlikler, yürüyen band sistemi ile çalışan yemlikler ve hava basınçlı yem otomatlarıdır (Çelikkale 1994). Sarkaçlı yemliklerde bir yem deposu, yemin düşmesini ayarlayan bir mantar, mantara takılan ve su içerisine uzayan bir çubuk bulunur. Balık havuzda yüzerken çubuğa dokunduğunda belli miktar yem suya dökülür. Bu sistemi balık 1-2 günde öğrenebilmektedir (Kieckhäfer 1983). Band sistemi yemliklerde, saat benzeri mekanizma yardımıyla yürüyen band üzerine yem konur. Band ilerledikçe yada döndükçe bandın yanlarından suya yem dökülür. Bu bandlar çalar saatlerin belirli zamana ayarlanarak kurulmasına benzer şekilde çalışırlar ve belirli zaman aralıklarıyla yavru yada özel likle larva yetiştirme kanallarına düzenli bir şekilde yem bırakırlar (Bohl 1982). Hava basınçlı yemliklerde, yem deposu havuz kenarındaki plastik bir boru üzerine yerleştirilmiştir. Yem deposu boru içine yem dökülecek şekilde boruya bağlıdır. Bir kompresör yardımıyla borunun, bir kenarından belli sürelerde hava basılır ve boru içine dökülmüş olan yem havuza fışkırtılır. Her havuz başına yerleştirilen bu sisteme merkezden otomatik olarak kumanda edilir (Lindhorst-Emme 1990). ALABALIKLARIN TAŞINMASI Alabalıkların yavru ve sofralık boyutlarında canlı olarak taşıma kaplarına konulmazdan önce uyulması gereken ilkeler aşağıda 4 madde halinde belirtilebilir. 1- Alabalıkların havuzlardan hasat sonrasında aşırı stresli oldukları bilinmeli, 2- Balıkların solungaçları temiz olmalı, 3- Balıklara havuzun taban yapısının kokusu sinmiş olabilir. Özellikle havuzlarda bulunan alg, çamur ve balçık vd. leri direkt olarak balığın etini etkiler. 4- Balıkların sindirim sistemi boş olmalıdır. Çünkü taşıma sırasındaki stresin etkisiyle balıkların barsak içeriğinin taşıma suyuna boşaltılmasıyla oluşacak bulanıklık taşımada büyük sorunlar yaratır (Lindhorst-Emme 1990). Alabalıkların taşıma sürecinde en büyük gereksinimleri oksijendir. Fakat diğer taraftan suyun oksijen içeriğinin su sıcaklığına göre değişken olduğu bilinen bir olgudur. Farklı su sıcaklıklarında oksijen doymuşluğu ve alabalıkların belirli süreçte tükettikleri oksijen Tablo 22’de özetlenmiştir (Koch et.al. 1976). Alabalıkların canlı olarak taşıması aşamasında taşıma gereçlerindeki balıkların oksijen gereksinimleri, oksijen tüplerinden yararlanarak taşıma suyuna oksijen verilerek karşılanır. Piyasada satılan oksijen tüplerinin özel likleri Tablo 23’de gösterilmiştir (Lindhorst-Emme 1990). Alabalıkların farklı büyüklük dönemlerinde taşınmalarında belirli sürede gereksinim duyulan oksijen miktarları Tablo 24’de görülmektedir (Lindhorst-Emme 1990). Alabalıkların canlı olarak taşınmaları öncesi havuz yada yavru yetiştirme kanal veya tanklarından yakalanmalarında ve taşıma kaplarına stoklanmalarında yararlanılan kepçelerde kullanılan ağ materyalin iplik kalınlığı ve ağ göz açıklıkları Tablo 25’de gösterildiği gibi olmalıdır (Lindhorst-Emme 1990). Yavru Balıkların Taşınması Alabalık yavruları özel likle küçük dönemlerinde plastik torbalarda oksijen ilave edilerek taşınırlar. Plastik torbalar 50 cm genişlik ve 1.20 m yükseklik boyutlarında dayanıklı materyalden üretilmiş olmalıdır. Plastik torbaların 1/3’üne temiz, soğuk su konur; 2/3’üne ise saf, gaz formunda oksijen doldurulur. Bu torbalarla 10-15 lt su içerisinde, 4-6 hafta yemlenmiş 1000 adedi 400-700 g olan 2000-3000 adet yavru emniyetli bir şekilde taşınabilir. Fakat yavruların taşınma ortamının su sıcaklığının, bulundukları havuz suyu sıcaklığı ile aynı olması zorunludur. Dayanıklı plastikten üretilen torbalarla 15-20 lt su hacminde 12-15 cm boyda olan 100 adet, toplam 2,5-3 kg yavru balığın taşınması mümkündür (Lindhorst-Emme 1990). Alabalık yavruları oksijen yönünden zenginleştirilmiş taşıma kaplarında (tanklarında) da taşınabilir. Bu tip taşımada 30-40 lt su hacminde 8000-10.000 adet yem alma yeteneğinde yavru taşınması mümkündür. Bu yavruların 1000 adedi toplam 120-160 g ağırlıktadır. Aynı koşullarda 3-4 hafta yemlenmiş 1000 adedi 400-700 g ağırlıkta olanların ise 4000-5000 adedi taşınabilir. Alabalık yavrularının yukarıda belirtilen ağırlıkta olanlar için bu koşullar altında taşınma süresi 1-2 saattir. Daha uzun süreli taşımalarda taşınacak yavru balık miktarı %10-20 oranında azaltılmalıdır. Taşıma tanklarının kapasitesi 100 lt olduğunda, 10-12 kg ön büyütmesi yapılmış yavru veya 15-20 kg parmak büyüklüğünde balık (Fingerling) taşınabilir. Sofralık Balıkların Taşınması Sofralık alabalıklar plastik torbalarda 15-20 lt su hacminde 250 g bireysel ağırlıkta 20 adet, yani toplam 5 kg ağırlığa kadar taşınabilir. Sofralık alabalıkların tanklarda taşınmasında 100 lt su hacminde 20-25 kg stok miktarı esas alınır. Daha fazla miktarda pazarlık balık taşımada ise kasalarına tank monte edilen kamyon, kamyonet ve ağır vasıtalardan yararlanır. Bu araçlarla taşımada araçta bulunan oksijen tüplerinden taşıma tanklarına düzenli bir şekilde oksijen verilir. Bu tip endüstriyel şekilde pazara alabalık sunmada 500 lt suda 75 kg yada 100 lt su içinde 150 kg alabalık taşınır. Belirtilen kapasitede tanklardan araçların çekiş gücüne göre bir adet yada birden fazla tank konabilir. Tam donanımla tankların monte edildiği ağır vasıtalarla oksijen miktarına bağlı olarak 4000 km yada daha fazla uzaklıklara 50-60 saat sürede sorunsuz olarak mutfaklık alabalık taşıyabilmek olasıdır (Lindhorst-Emme 1990). Çekici güçleri 1,5 ton ile 32 ton arasında değişen taşıma vasıtaları ile pazarlık balık taşınabildiği gibi küçük yavruları (larva) ve büyükçe yavruları (Fingerling) da taşımak olanak içerisindedir. Fakat 500 lt’de 75 kg, 1000 lt’de 150 kg, olarak belirtilen sofralık alabalık miktarlarını, larvalar için 2/3 ve parmak büyüklüğünde yavrularda ise 1/3 oranında azaltmak gereklidir. Ayrıca bu miktarlarda balıkların kondisyonu, taşıma süresi ve su sıcaklığına bağlı olarak değişiklik yapmak gerekebileceği de unutulmamalıdır. Alabalık Yumurtalarının Taşınması Gökkuşağı alabalığının yetiştiriciliğin dünya genelinde yayılmasında, döllenmiş yumurtalarının uygun koşullarda sorunsuz bir şekilde kıtalararasında kolayca taşınabilmesinin önemi yadsınamaz. Gökkuşağı alabalığının yumurtalarının döllenmesinden sonra 24-36 saat içerisinde daha çok kısa mesafelerde işletmeler arası taşındığı bilinmektedir. Bu sürede yumurtalar henüz duyarlı döneme ulaşmamışlardır. Fakat gökkuşağı alabalığı yumurtaları en emin bir şekilde göz lekesi oluştuktan sonra en uzak  Doç.Dr.Fikri AYDIN

http://www.biyologlar.com/alabalik-biyolojisi-ve-yetistirme-teknikleri

Sazan Balığı Biyolojisi ve Yetiştirme Teknikleri

Ilıman iklim bölgelerinin ekonomik öneme sahip türü olan sazan (Cyprinus carpio Linnaeus, 1758), sıcağı sevmesinin yanında soğuğa da dayanıklı olup, entansif yetiştiricilik için çok uygundur. Az miktarda oksijene gereksinim duyması ve yetiştirme sırasında boylama, kepçeyle yakalanma ve tartım gibi işlemlere duyarlı değildir ve kolayca yaralanmaz.4-30°C arasındaki su sıcaklığı değişimlerine kısa sürede uyum sağlar (1). Sazan müstesna bir çevre toleransına sahiptir. 20 °C’nin üzerinde optimum büyümesine karşın, uzun süre <1 °C su sıcaklığına ve ani sıcaklık değişikliklerine maruz kaldığında da yaşayabilir. Sazan ‰5 tuzlulukta (2) ve 5-9 arasındaki pH’larda rutin olarak büyümektedir (3). Tuzluluk deneysel olarak ‰12’ye çıkarıldığında da büyümesini sürdürmektedir (4). Türkiye’nin bütün bölgelerinde bulunan ve içsu balıkları üretimimizin önemli bir kısmını oluşturan türdür. Üretimin büyük kısmı Ege, İç Anadolu ve Güney Anadolu bölgesinden sağlanır. Ege bölgesindeki bazı su kaynaklarında l. yılda 350 g, 2. yılda 1500 g’ın üzerine ve 3. yılda da 2.5 kg’ın üzerine çıkabilmektedir. Sazan pazar büyüklüğüne Ege bölgesinde ikinci yılın sonunda, Avrupa koşullarında ise, bunun iki misli sürede ulaşabilmektedir (5). Aynalı sazan olarak da adlandırılan kültür sazanı, doğal sazanının kültüre alınmış formudur. Doğal sazana göre daha yüksek sırtlı, tıknaz, vücudunun büyük kısmı pulsuz, pulları vücudunun değişik bölgelerine dağılmış ve yuvarlak, hızlı gelişen ve yapay yetiştiricilik koşullarına iyi uyum gösteren ve yem değerlendirmesi yüksek olan bir türdür. Türkiye’de 1970 yılından beri yetiştiriciliği yapılmaktadır (6). Ancak, son yıllarda yeterli ilgiyi görmemektedir. 1988 yılında içsu balıkları yetiştiriciliğinin %50'sinden fazlasını (%55.48) oluştururken, son 10 yılda içsu balıkları üretimindeki payı gittikçe gerilemiş ve 1998 yılında %2.85'e düşmüştür (Tablo 1). Doğal Yaşam Ortamı, Yaş ve Büyüme Özellikleri Doğal yaşam alanı havuzlar, göller ve nehirlerdir (9). Su sıcaklığı ve yem durumuna bağlı olarak hızlı büyüyen bir balıktır. 20-25 yıl hatta 35-40 yıl yaşadıkları ve boylarının 1 m’nin üzerine çıktığı ağırlıklarının ise 25-30 kg’a ulaştığı bildirilmektedir (5,6). Beslenme Özellikleri Sazan dipten beslenen omnivor bir balıktır. Besinlerini bentik su hayvanları, planktonlar, bitki parçaları ve bitkisel artıklar oluşturur. Dipteki küçük su canlılarını çamurla birlikte alıp, çamuru geri atar. Bu nedenle, çamur içinde oyuklar açar. Büyük sazanların bazı küçük balıkları yedikleri de gözlenmiştir (10). En iyi yem alımı ve değerlendirmesi, 16-25 °C su sıcaklıklarında ve özellikle 23-24 °C'de olur (6). Üreme Özellikleri Doğal ortamda gruplar halinde, göller ve yavaş akan nehirlerde su sıcaklığı 18-22 ºC olduğunda yumurtlar. Bitkilere yapışan yumurtalardan 3-4 günde larva çıkışı olur (9). Yumurtlama Mayıs-Temmuz ayları arasında su sıcaklığı 18-20 ºC’ye ulaştığında sığ ve bol bitkili su kesimlerinde olur. Sazanın üremesinde en önemli faktör su sıcaklığı olduğundan, Kuzey ülkelerinde nadiren ürer veya hiç üremez. Yumurtlama bir haftada tamamlanır. 1 kg vücut ağırlığına 200-300 bin yumurta bırakır. Yumurtaları şeffaf ve yapışkan olup yaklaşık 1 mm çapındadır. Şişmiş yumurtanın çapı 1.6 mm kadardır. Su bitkilerinin üzerine bırakılan yumurtalar 3-4 günde (60-70 günxderece) açılır. Yumurtadan çıkan larvaların boyu, 5 mm’dir. Yumurtadan çıkan larvalar 1-3 gün süreyle tutunma organları ile su bitkilerine tutunurlar. Bu süre sonunda, su yüzeyine çıkarak yüzme keselerini hava ile doldurup, yüzmeye ve yem almaya başlarlar. Önceleri bitkisel ve hayvansal planktonlarla (algler, rotiferler, küçük kabuklular) beslenirler. Boyları 18 mm olduğunda bentik organizmalarla beslenmeye başlarlar (10). Sazan yetiştiriciliğinde Su ve Toprak Özellikleri Su Özellikleri Su miktarı (Suyun debisi) Sazan yetiştiriciliğinde en az, havuzları sürekli dolu tutacak, havuz tabanı ve duvarlarından sızmayla ve yazın buharlaşmayla oluşan kayıpları ve havuzlarda tüketilen oksijeni karşılayacak miktarda (0.5-1.0 lt/dk/ha'lık) su gereklidir. Su miktarı, havuz toprağının özelliğine ve iklim koşullarına göre değişmekle birlikte, havuz çıkışında oksijen miktarı 5-6 mg/lt'nin altına düşmeyecek şekilde olmalıdır. Havuzlara verilen su miktarı ne kadar fazla olursa stoklama yoğunluğu da o kadar fazla olur (1,5,6,11). Su kaynağı Sazan üretiminde akarsu, kaynak suyu, göl suyu, yeraltı suyu veya kısaca soğuk olmayan bütün sular kullanılabilir (5). Akarsular, yüksek miktarda oksijen ve besleyici madde içermelerine rağmen, sel ve taşkınlara açık olmaları ve tarım ilâçları sızıntılarını taşıma riskleri nedeniyle, dikkatli kullanım gerektirir. Ayrıca, evsel veya sanayi atık sularıyla kirlenme riskine ve mevsimlere bağlı olarak su seviyesindeki düşmelere de dikkat edilmesi gerekir. Gerektiğinde akarsudan alınan suyun havuzlara verilmeden önce dinlendirilmesi gerekebilir. Durgun sular sıcaklıkları nedeniyle, sazan üretiminde en çok tercih edilen sulardır. Özellikle üreme zamanında kullanılmalıdırlar. Kaynak suları oksijence fakir oldukları gibi zehirli gazlar içerme riskine de sahiptirler. Su sadece oksijen açısından fakir olduğunda, suya düşüler yaptırılmak suretiyle oksijen miktarı artırılabilir. Bu şekilde, zararlı gazların bir kısmı da uçurulabilir. Fazla miktarda zehirli gaz veya demir ve kurşun gibi ağır metal içeren sular, sazan yetiştiriciliği için uygun değildirler. Kaynak suları sel, taşkın ve yağmurlarla bulanarak mil ve çamur taşımadıkları gibi parazit ve hastalık mikrobu da taşımazlar. Artezyen suları ve pompa ile çıkarılan yeraltı suları da sazan üretiminde kullanılabilir. Ancak, yeraltı sularının yetiştiricilikte kullanılması düşünüldüğünde, maliyet analizinin iyi yapılması gerekir. Sıcaklığı uygun olmak koşuluyla birçok su kaynağının sazan üretiminde kullanılması mümkün olduğundan, sazan üretimi için belirli ölçülerle sınırlandırılmış herhangi bir su kaynağı tavsiye etmek zordur. Sazan üretiminde su kalite kriterleri Suyun kireç kapsamı ve pH değeri Havuz yetiştiriciliğinin başarılı olabilmesi, suyun doğal besin maddelerince zengin olmasına bağlıdır. Suyun besin maddesi bakımından zenginliği (doğal verimliliği), içerdiği kireç miktarına bağlıdır. Suyun kireç kapsamı, asit bağlama kapasitesi (ABK) ile ölçülür. 1 lt suda 28 mg CaO varsa, suyun asit bağlama kapasitesi, 1 demektir. Sazan yetiştiriciliğinde, ABK=1.5 (42 mg CaO/lt) olması gerekir. ABK<0.5 olan sular az verimli ve ABK=0.5-1.5 arasındaki sular orta derecede verimli ve ABK>1.5 olan sular verimli olarak sınıflandırılır. Ancak, ABK>6 olmamalıdır (5). Sazan yetiştiriciliği için pH, 5.5-10.5 optimum 7-8 arasında olmalıdır. Sudaki kireç miktarı artınca, pH değeri de artar. Ancak, pH değerinin yüksek olması, her zaman için suda fazla kireç olduğu anlamına gelmez. Fitoplankton ve su bitkileri yoğun olduğunda, özellikle yazın fotosentez sonucu ortamdaki CO2 miktarı ve buna bağlı olarak pH değeri artar. Bunun sonucunda, suyun kirecinin fazla olduğu kanısına varılabilir. Günlük ölçümlerde pH değeri, 6.5-8.5 arasında ise, sudaki kireç miktarı yeterli demektir. pH düşük olduğunda, suyun kireçlenmesi gerekir (5,11). Suda 4>pH>11 olduğunda, balık yetiştiriciliği için uygun değildir. Bu tip suları yetiştiricilik için uygun hale getirmek masraflı olur. pH<4 olan sular, balıklarda yem alımını azalttığı gibi serbest H+ iyonu oluşturmaları nedeniyle hücreleri geçirimsiz yaparlar ve ileri safhalarda balık ölümlerine neden olurlar. Ayrıca, fitoplankton ve zooplanktonların gelişmelerini durdurarak suyun biyolojik beslenme kapasitesini azaltır. Suda yeterli kireç olmaması, pH’yı düşürdüğü gibi, balıkların pul ve kemik formasyonlarında bozukluklar meydana getirir (5). Oksijen miktarı Sazan havuzlarında oksijen miktarı, 5-6 mg/lt’nin altında olmamalıdır. Havuzdaki oksijenin büyük kısmı havuza gelen suyla az bir kısmı (1.5 g O2/m2/ gün; büyük göllerde 4.8 g O2/m2/gün) da yüzey havalanmasıyla sağlanır. Havuza giren oksijen ne kadar yüksek olursa, stok miktarı da o kadar yüksek olur. Suyun oksijeninin yeterli olmadığı durumlarda, suya havuz girişinden önce şelaleler şeklinde düşüler yaptırılarak oksijen miktarının arttırılması yoluna gidilir. Havuz suyundaki oksijen sadece balıklar tarafından değil, sudaki organik maddeler, mikroorganizmalar ve geceleri de su bitkileri tarafından tüketildiğinden özellikle yaz aylarında sabahın erken saatleri oksijen yetersizliği açısından kritiktir. Suyun sıcaklığı arttıkça, oksijen tutma kapasitesi azalmaktadır. Bu nedenle, havuzlarda su sıcaklığıyla birlikte, havuz çıkış suyundaki oksijen içeriğini de devamlı izlemek gereklidir. 1 kg ağırlığındaki bir sazan için 300-500 mg O2/lt/saat gereklidir (5). Su sıcaklığı Su sıcaklığı üreme, beslenme ve metabolik faaliyetler için önemlidir. Sazan, su sıcaklığının 18-20 ºC’ye yükselmediği sularda üreme şansı bulamaz. 18-20 ºC ve üzerindeki sıcaklıklarda entansif olarak yem aldığından devamlı büyür. Bu nedenle, sıcaklığın düşük olduğu Avrupa’da 3-4 yılda yemeklik büyüklüğe gelmesine karşın, sıcak ülkelerde 1-1.5 yılda yemeklik büyüklüğe ulaşabilmektedir. Çünkü, Avrupa’da sazanın büyümesine uygun dönem 3-4 ay iken, Türkiye’de Karadeniz’de 6 ay, Ege ve Akdeniz bölgesinde ise 7-8 aydan fazladır. Bu nedenle, Türkiye’de sazan üretimi için çok uygun koşullar vardır (5, 6). Su kirliliği oluşturan çeşitli zararlı maddeler Sazan üretilen sulara evsel ve endüstriyel atık sular karışmamalıdır. Özellikle DDT (29.4 mg/lt), Aldirin, Endrin (0.057 mg/lt), Malathion (100 mg/lt), Metasytox ve civalı bileşiklerin küçük miktarları dahi öldürücü olabilmektedir. CO2 miktarı, 2 mg/lt’den fazla olmamalıdır. H2S, 0.5 mg/lt olduğunda zararlı ve 5-6 mg/lt’den fazla olduğunda da öldürücü etki yapmaktadır. 1-2 mg/lt, nitrit öldürücü etki yapmaktadır. 0.2-0.4 mg/lt amonyak yavrularda ve 0.6 mg/lt amonyak ise küçük balıklarda öldürücü etki yapmaktadır. Deterjanların etkileri türlerine göre farklı olmakla birlikte, 5.0-10.0 mg/lt’lik miktarı yumurta ve spermaları tahrip etmektedir. Fenoller, balıklar için kuvvetli zehir etkisi gösteren bileşiklerdir. Demir ve kurşun gibi ağır metaller ve bileşikleri öldürücü etki yapmaktadır. Demirli bileşikler yumurtaların üzerine çökerek yavru çıkışına engel olurlar. İyot, klor ve azot gazları da çeşitli hastalıklara neden olurlar. Katran ve yağlar, barsakları ve kan dolaşımını etkilerler. Havuz arazisi ve toprağın özellikleri Havuz yapılacak arazinin toprağı ne kadar iyi olursa, havuz da o kadar verimli olur. Su kaynağı havuz arazisinin içinde olduğunda, kökü kurutulamayan su bitkileri havuz tabanını kaplayacağından, havuz temizlenip boşaltılarak dezenfekte edilemez. Bu nedenle, su kaynağı veya su birikintileri olan yerler, havuz yapımı için uygun değildir. Havuz geçirgen olmayan killi ve balçık topraklarda inşa edilmelidir. Kumlu ve geçirgen topraklar havuz yapımı için uygun değildir. Organik maddeyle beslenen topraklar havuz yapımı için uygundur. Organik madde bakımından fakir olan topraklar ahır gübresi veya tarımsal artıklarla gübrelenmeyi gerektirir. Sazan havuzu yapılacak arazinin kara tarımına uygun olmaması, su tutma kapasitesinin yüksek olması ve toprağın doğal verimliliğe sahip olması gerekir. Sazan üretimi için; - İşletmeye yıl boyu yeterli su temin edecek akarsuya veya su kaynağına yakın, - Sel baskınlarına karşı doğal veya yapay engellerler bulunduran, - İlerideki genişlemelere uygun büyüklükte ve rüzgâr almayan, - Su sızmasını önlemek için en az l m derinlikte killi ve kireçli olan, - Büyük taş ve ağaç kökleri olmayan, - Suyun havuzlara doğal olarak akışını sağlayacak eğime sahip, - Hafriyatı kolay ve fazla hafriyat gerektirmeyen ve - Pazara ulaşımın kolay olduğu bir işletme yeri seçilmesi yapılacak masrafları en aza indirir (5). SAZAN ÜRETİMİNDE KULLANILAN HAVUZLAR Toprak havuzlar, fitoplankton, zooplankton ve diğer su canlılarının gelişmesi için uygun olduğundan, sazan yetiştiriciliğinde tercih edilmektedir. Havuz yetiştiriciliğinde, besin maddelerinin %50'si havuzlardan ve %50'si de yapay yemlerden sağlanmaktadır (12). İsrail'de verimliliğin %20'sinin havuzlardan, %20'sinin gübrelemeden ve %60'ının da yapay yemlerden ileri geldiği hesaplanmaktadır (13). Toprak havuzlar doğal besin kaynağı oldukları gibi, yatırım maliyetleri de düşüktür. Avrupa koşullarında ekstansif üretimde 600 kg/ha verimin 2/3'ünün havuz verimliliğinden ve 1/3'ünün de yapay yemlemeden kaynaklandığı kabul edilir. Buna göre, toprak havuzlarda, l kg sazan üretimi için 3-4 kg hububatla tamamlayıcı yemleme yapılması gerekir (5). Yapılış Şekillerine Göre sazan havuzları Teras şeklinde havuzlar Meyilli arazilerde kurulan, üç tarafları duvarla çevrili ve alt duvarı yan duvarlarından yüksek olan havuzlardır. Arazi meyilinin çok olduğu durumlarda yan duvarlar yüksek yapılmalıdır. Su baskını tehlikesi nedeniyle, havuzların dere ve akarsu yataklarına yapılması uygun olmaz (5,6). Baraj tipi havuzlar Akarsu eteği, bataklık ve benzeri düz yerlerde yapılan dört duvarlı havuzlardır. Havuz arazisinin toprağı yumuşak olduğundan, duvarları teras ve baraj tipi havuzlara göre daha geniş olmalıdır (5,6). Çeltik tavası şeklinde havuzlar Sel tehlikesi olmayanan küçük akarsu etekleri veya derelere enine duvar (set) inşa edilerek yapılan su toplama göletine benzer havuzlardır (5,6). Kullanım amaçlarına göre sazan havuzları Yumurtlatma havuzları Yumurtlatma havuzları; işletmenin tipine, kurulduğu arazinin büyüklüğüne ve kapasitesine göre farklı büyüklüklerde olabilir. Yumurtlatma havuzlarının işletmenin güneşli ve rüzgârsız yerine tesis edilmesi ve etrafının yüksekçe çitle çevrilmiş olması, doğal yemlerin gelişmesi ve larvaların zararlılardan korunması açısından önemlidir. Sazanların yumurtlamasında, su girişinin müstakil olduğu Dubisch ve Hofer tipi havuzlar kullanılmaktadır (5,6,11). Dubisch havuzları Dubisch tipi, en yaygın yumurtlama havuzudur. Dubisch havuzlarının etrafında meyilli duvarları boyunca 30-40 cm genişliğinde 20-30 cm derinliğinde dört tarafını çevreleyen bir kanal vardır. Havuzun ortasında yumurtlama yatakları olarak adlandırılan otlu kısım bulunur. Dubisch havuzları kare şeklinde genellikle 100 m2 nadiren 250 m2 büyüklüğündedir. Havuzun derinliği ortada 30-40 cm ve yan kanallarda 60-70 cm’dir. Dubish havuzları yumurtlama mevsimi dışında kuru tutulur. Havuzun orta kısmına suya dayanıklı sert çayır otları (Lolium perenne) ekilerek su doldurma zamanına kadar büyümeleri sağlanır. Otların boyu, 10 cm kadar olmalıdır. Damızlık balıklar otlar üzerine yumurtladıktan sonra su seviyesi düşürülerek, damızlıkların otsuz kanallarda toplanması ve buradan kolayca alınmaları sağlanır. Yumurtalar açılıp larva çıkışı olduktan bir hafta sonra larvalar, yumurtlama havuzlarının alt tarafındaki larva havuzlarına su akışıyla kayıpsız olarak alınır. Hofer havuzları Hofer havuzları genellikle soğuk bölgelerde kullanılır. Hofer havuzlarının duvarları su çıkış savağının önünde 0.8-1.0 m yüksekliktedir. Havuz tabanı yanlara doğru eğimlidir. Sığ kesim balıkların yumurtlama yeri olup, su bitkileri ile örtülüdür. Balıklar eğim nedeniyle, kendileri için uygun olan yumurtlama derinliğini ve ani hava değişikliklerinde de kendileri için uygun korunma yerini seçme şansı bulurlar. Ön yavru büyütme (larva) havuzları Larva havuzları, 100-1000 m2 büyüklüğünde, larvaların 3-8 hafta (genellikle 4-5 hafta) süreyle tutuldukları küçük ve sığ havuzlardır. Ancak, küçük olmaları kontrol açısından tercih edilmelidir (5,6,11). Yavru büyütme havuzları Yavru büyütme havuzları; yavruların 5-6 cm oluncaya kadar tutuldukları, larva havuzlarından biraz daha büyük (400 m2 ile 5 ha arasında genellikle 1 ha'dan küçük) ve su giriş-çıkışının fazla olmadığı havuzlardır. Kışı soğuk geçen ve kışlatma havuzu bulunmayan işletmelerde, yavru büyütme havuzlarının kıyı kesimlerinde derinlik 1.5-2.0 m yapılarak yavruların kışı sorunsuz olarak geçirmeleri sağlanır (5,6,11). Büyütme havuzları Bir yaşlı sazanların stoklandığı derinlikleri 1.0-3.0 m arasında değişen havuzlardır. Büyüklükleri 4000 m2’den hektarlara kadar değişir. Ancak, 400-500 m2 büyüklükte çok sayıda küçük havuz yapılması kontrolün kolay olması nedeniyle tercih edilmelidir (5,6). Bakım ve besleme havuzları İki yaşını tamamlayan sazanların stoklanarak pazar ağırlığına ulaştırılması için yoğun olarak beslendikleri havuzlardır (5). Kışlatma havuzları Kış mevsiminin uzun sürdüğü soğuk bölgelerde kullanılır. Sazan balıkları su sıcaklığı 10-12 °C’nin altına düşünce, kışlatma havuzlarına alınırlar. Kışlatma havuzlarında yemleme yapılmadığından stoklama oranı yüksek tutulur. Kışlatma havuzlarının derinliği, 2-3 m arasında, büyüklüğü ise stoklanacak balık miktarına göre değişir. Kışlatma havuzlarında stoklama; 5-10 adet /m2 S1 ve 2-4 adet /m2 S2 olacak şekilde yapılır. Oksijen tüketiminin artmaması için havuzların tabanında bitki ve çamur olmamalıdır. Ayrıca, su sirkülasyonunun iyi olması için su giriş ve çıkışı diagonal olarak yapılmalı ve su akışı yüksekten olmalıdır. Havuz duvarlarında %45 meyil olmalıdır. Su sıcaklığı 10 °C’nin üzerine çıktığında, sazanlar kışlatma havuzlarından alınır (5,6,11). Stok ve pazarlama havuzları Üretim havuzlarından hasat edilen balıkların pazarlanıncaya kadar bir kaç gün süreyle tutuldukları 500-1000 m2 büyüklüğünde, zemini toprak, beton veya taş blokaj havuzlardır. Havuzlara bol miktarda temiz su verilerek balıklardaki muhtemel çamur kokusu giderilmiş olur. Stok ve pazarlama havuzlarında tutulan balıklara yem verilmediğinden, pazarlama süresinin çok uzun olmamasına dikkat edilmelidir. Aksi halde, balıklarda ağırlık kaybı olur. Stok ve pazarlama havuzlarına 5-15 kg/m2 oranında stoklama yapılır. Su akışı, havuz suyunu en az günde iki defa değiştirecek şekilde düzenlenir. 1 kg balık için 10-15 lt/dk'lık su akışı, çamur kokusunun giderilmesi için yeterli olur (5). Damızlık havuzları Damızlık havuzlarının büyüklükleri işletmenin damızlık ihtiyacına göre değişir. Derinlikleri, 1 m kadardır. Damızlık havuzlarına verilecek su temiz ve sıcaklığı 15-17 °C olmalıdır. Üreme dönemi yaklaştığında su sıcaklığı çeşitli uygulamalarla 18-20 °C'ye çıkarılır. Sazan Havuzlarının Yapısal Özellikleri Havuz büyüklüğü Küçük havuzlar, büyük havuzlardan daha verimlidir. 10 hektardan büyük havuzlar da iyi bakım ve gübreleme ile 1 hektar büyüklüğündeki havuz kadar verimli olabilir. Büyük havuzlarda mekanizasyon, verimli ve ucuz işgücü temin eder. Ancak, hastalıklarla mücadele bakımından büyük havuzlar daha masraflıdır. Büyük havuzlarda dezenfeksiyon zordur. Sazan havuzları alabalık havuzlarına göre daha büyüktür. Ancak, son yıllardaki eğilim, az sayıda büyük havuz yerine çok sayıda küçük havuz kullanma şeklindedir. Küçük havuzların en önemli avantajı, denetimin kolay olması ve herhangi bir hastalık görülmesi durumunda az sayıda balığın zarar görmesidir. Ancak, havuz büyüklüğünü su, arazi, toprak özellikleri ve işletmenin tipi gibi değişik faktörler etkilediğinden havuz büyüklüğüyle ilgili kesin bir ölçü vermek zordur. Asya'dan Uzak-Doğuya gidildikçe sazan havuzları küçülmektedir. Avrupa'da 5.000 m2'den büyük, Güney Avrupa'da ise 4-5 hektara varan büyüklüktedir. Çinde 1.000-4.000 m2 arasında olan sazan havuzları, sazanın en iyi geliştiği Java adasında, 30 m x 50 m boyutlarındadır. Afrika'da aile işletmelerinde ise daha küçüktür. Görüldüğü gibi sazan havuzlarının büyüklüğü bölgenin özelliklerine göre değişmektedir (5,6,11). Havuz derinliği Sazan havuzlarının derinliği de arazi ve toprak özellikleri, iklim durumu ve hafriyat giderleri gibi ekonomik faktörlere bağlıdır. Genel kural, balık büyüdükçe havuz derinliğinin arttığıdır. Büyük sazanlar 30 cm'den daha sığ kıyıları kullanamazlar. Büyük sazanların yerleştirildiği havuzlarda sığ kıyılar mümkün olduğu kadar az olmalıdır. Büyütme havuzlarının derinliği 50-100 cm besleme havuzlarının derinliği ise, 150 cm civarında olmalıdır. Sığ havuzların faydaları olduğu kadar zararları da vardır. Faydaları; - Daha iyi ışık geçirgenliği ve daha yüksek sıcaklık sağlamaları, - Fitoplankton gelişmesini teşvik etmeleri, - Daha iyi su sirkülasyonu ve daha iyi havalanma sağlamaları ve - Az hafriyat gerektirdiklerinden ucuz olmaları şeklinde sıralanabilir. Sakıncalı yönleri ise, - Soğuk bölgelerde havuz yüzeyinin buz tutması nedeniyle buz tabakası altında kısa sürede oksijen yetersizliği görülmesi, - Saz ve kamış gibi sert su bitkilerinin gelişmesinin hızlı ve büyük miktarda olması, - Havuza gelen suyun azalması veya kısa vadeli kesilmesi durumunda alçalan su seviyesinin balıklar için zararlı olabilmesi, - Doğal yem üretimi için havuzlara verilen gübrenin büyük kısmının sazlar ve kamışlar tarafından tüketilmesi ve - Küçük balıkların sazlar ve kamışlar arasına yerleşen yılan ve kaplumbağalar tarafından zarar görme riski olarak sayılabilir (5,6). Havuz duvarları - setler Sazan havuzlarının duvarlarının meyili; duvarın hafriyatına ve yığılacak toprak miktarına, toprağın yapısına, havuz büyüklüğüne ve bölgenin iklim koşullarına göre 1/2-1/4 arasında değişir. Meyil 1/2'den fazla (b>45°) olduğunda, duvar toprakları havuz içerisine dökülür. Havuz alanı büyüdükçe meyil de 1/2'den 1/4'e düşer. Duvarların dış tarafında 1/1'lik meyil olması yeterlidir (5). Havuz duvarları yığma toprak olduğunda, iyi sıkıştırılmış olmalıdır. Toprağın yığıldığı taban kısmında ot, humus tabakası ve çalı benzeri bitkiler bulunmamalıdır. Yığma yapılacak yüzeydeki ot ve bitkiler 15-20 cm derinliğe kadar temizlenir. En iyisi, duvar yapılacak kısımda 1.0-1.5 m genişliğinde ve 30-40 cm eninde bir şerit açmak ve killi toprağı bu şerit üzerine yığmaktır. Yeterince killi toprak bulunamazsa, duvarın 40-50 cm genişliğindeki kısmının killi topraktan yapılması uygun olur. Duvar toprağı az killi ve geçirgen ise duvar daha kalın yapılmalı ve ot tohumu ekilip kuvvetlendirilerek erozyon önlenmelidir (5). Havuz yapımında taban verimli, yan duvarlar ise verimsiz topraklardan yapılmalıdır. Havuz duvarları, %5-10 oturma ve çökme payı dikkate alınarak su seviyesinden 40-60 cm kadar yüksek olmalıdır. Havuz duvarlarının taban ve üst kısımlarının genişliği, arazinin meyiline, toprağın yapısına, havuzun büyüklüğüne, işletmenin tipine ve kapasitesine bağlı olarak değişir. Yemleme ve hasatın kolay olması için havuz duvarlarının üst kısımları geniş olmalıdır. En iyisi birkaç havuza hizmet edecek şekilde havuz aralarında 3-4 m genişliğinde, betondan veya sertleştirilmiş setler yapılmasıdır. Bu şekilde, araç geçişi de sağlanmış olur. Sızmaya ve çatlamaya neden olacağından, havuz duvarlarına ağaç dikilmemelidir. Rüzgârın oluşturacağı toprak erozyonunu önlemek için ağaç dikilmesi gerekiyorsa, duvarların arka tarafında emniyetli mesafe bırakılmalıdır (5,6) Çevre kanalları Sazan havuzlarındaki çevre kanalları, besin maddelerinin su akıntısıyla havuzdan akıp gitmesini önlemek ve havuzları sel ve taşkından korumak için yapılır. Çevre kanalları, balık hasatının rahat yapılabilmesi için hasat çukuruna devamlı su sağlanmasında da yardımcı olur. Çevre kanallarının derinliği ve genişliği, havuzun büyüklüğü ve suyun debisine göre değişir. Çevre kanallarının yapımında yağmur suyu da dikkate alınmalıdır. Çevre kanallarının meyili, kanalın derinliğine bağlıdır. Kanal derinliği arttıkça meyil azalır. Çevre kanallarının kenar meyili genellikle 1/1'dir. Ancak, gevşek topraklarda ve büyük su akıntısı tehdidi olan yerlerde meyil, 1/1.5 olmalıdır. Aşınma nedeniyle, çevre kanallarının havuz duvarlarına çok yakın olarak inşa edilmemesi gerekir. Kanallardaki aşınmayı önlemek için kanal tabanına kil takviye edilir. Çevre kanalları su sızdırdıklarında, havuzlar tam olarak kurutulamayacağından, iyi bir bakım ve dezenfeksiyon yapılamaz. Çevre kanallarının su sızdırması durumunda, havuzdaki su seviyesi düştüğü gibi havuzun çukur yerleri su ile dolduğundan, buralardaki saz ve kamışların sürekli büyüme olanağı bulmaları nedeniyle, ot savaşı engellenir (5). Havuz tabanı Sazan havuzlarının tabanında ‰3 meyil olması yeterlidir. Eğim, ‰1'den az olduğunda, havuz suyu tamamen boşaltılamaz. ‰5'den fazla meyil olduğunda, havuzun verimli çamur tabakası derinlere doğru kayar. Havuz tabanının ortasında ana drenaj (su boşaltım) kanalı bulunur. Kanalın büyüklüğü ve derinliği havuz büyüklüğüne göre değişir. 1-3 ha büyüklüğünde havuz için 45-60 cm derinlik ve 90-140 cm genişlik yeterlidir. Havuzların bakım, dezenfeksiyon ve gübreleme işlemlerinin makinayla ve kolaylıkla yapılmasını sağlamak için havuz tabanında sayıları havuz büyüklüğüne göre değişen ve ana drenaj kanalına açılan kenardan ortaya doğru balık sırtı şeklinde boşaltım kanalları bulunur (5). Su girişi ve çıkış savakları Su akışının kontrolü, havuza yabancı ve zararlı balık girişini engellemek için gerekli önlemlerin alınmasına olanak sağladığından, havuza su girişinin mümkün olduğu kadar yüksekten olması arzu edilir. Havuzdan su çıkışı, boşaltım savakları ile sağlanır. Boşaltım savakları havuz suyunun seviyesinin ayarlanmasına ve havuz suyunun boşaltılmasına hizmet eder. Çıkış savağı, ahşap veya betondan yapılır. Çıkış savağı, ana drenaj kanalının sonunda ve havuz duvarının alt kısmından (duvardan) biraz içeridedir. Duvarla savak arasındaki mesafenin en az 30-50 cm olması önerilir. Su çıkış savağı dikdötgen prizma şeklinde olup, arka arkaya üç kapağın konulmasına yarayan 3 yiv (yuva) bulunur. 1. yive balıkların kaçmasını engellemek için demir tel ızgara, 2. ve 3. yivlere 10-20 cm genişliğinde ve üst üste konulduğunda su sızdırmayacak şekilde birbirine geçmeli tahta kapaklar yerleştirilir. 1. yive yerleştirilen tel ızgara havuzdaki su derinliği kadar yükseklikte olabileceği gibi su yüzeyinden tabana doğru belli bir yüksekliğe kadar da olabilir. Tahta kapaklar, havuzdaki su seviyesini ayarlamaya ve havuz suyunu tabandan veya üstten boşaltmaya yarar. Su çıkış savağının tabanına balıkların zarar görmemesi için tercihen plastik su tahliye borusu monte edilir (5). Balık toplama yeri ve hasat çukuru Balık hasat çukuru, ana tahliye kanalının bitiminde su çıkış savağının önünde ana tahliye kanalı genişletilerek ve derinleştirilerek daha derin ve geniş kanal şeklinde yapılabilir. Hasat çukurunun tabanı ve duvarları taş blokaj veya betondan yapılır. Çevre kanalından sürekli gelen taze suyla beslenme şansı ve çevre kanalının bir parçası olarak düşünülmesi nedeniyle, hasat çukuru genellikle havuz dışına yapılır. Bu durumda, su çıkış borusunun çapı, 25-30 cm olmalıdır.Hasat çukurunun boyutları, havuzun büyüklüğüne ve işletmenin kapasitesine (hasat edilecek balık miktarına) bağlı olarak değişir. 10 ha büyüklüğündeki bir havuz için 0.5-1.0 m eninde ve 2.30-2.00 m boyunda bir hasat çukuru yeterlidir. Hasat çukurunun temel özelliği, hasatın kolay yapılmasını sağlamasıdır. Hasat çukurunda hasat edilen balıklar, yakınındaki toplama yerine taşınarak taze suya yerleştirilirler. Böylece çamur kokusundan arındırılmış olurlar (5,6). SAZAN HAVUZLARININ BAKIMI VE GÜBRELENMESİ Sazan Havuzlarının Bakımı Sazan havuzlarının bakımı günlük, aylık ve yıllık olarak yapılır. Sazan havuzlarının bakımı kısa ve uzun süreli onarımları ve verimi arttırmak için yapılan işleri kapsar. Havuzların kısa süreli bakımı; su giriş-çıkışının, su boşaltım savağının ızgaralarının, kanal ve havuz duvarlarının ve balık ölümlerinin kontrolünü içerir. Yıllık bakım; sonbaharda balık hasatından sonra havuzların onarımını ve verimi artırma çalışmalarını kapsar. Boşalan havuzların kış boyunca gereken bakım ve onarımları yapılarak, bir sonraki üretim periyoduna hazırlık yapılır. Doğal gıdanın önemli kısmını oluşturan zooplantonlarla havuz tabanındaki sinek larvaları ve kurtların yeterli miktarda gelişmesi için havuz tabanı kurutulup sürülür. Toprağın aktif hale getirilmesi için kireçleme yapılır (5,6). Havuz tabanının kurutulması Havuz tabanının verimi, 5-10 cm'lik çamur tabakasından ileri gelir. Verimli olan bu tabaka kalın olduğunda kuruyuncaya kadar beklemelidir. Kalınlığı nedeniyle kuruma sağlanamıyorsa, fazla çamur paletler veya havuz kenarından çalışabilen ekskavatörler yardımıyla havuzdan alınmalıdır. Havuz tabanından alınan çamur atımayıp, havuz duvarlarının üzerine veya uygun bir yere yığılır. Önce, birkaç defa sönmemiş kireçle muamele edilir daha sonra fosfatlarla karıştırılır. Bu çamur yığını birkaç yıl sonra kompoze çamur olarak yavru havuzlarının gübrelenmesinde kullanılır. Havuz tabanının kurutulmasında en büyük rolü, ana ve tali drenaj kanalları oynadığından, yıl boyu gelen çamurla tıkanmış olabilirler. Boşaltılıp temizlenmeleri gerekir. Balık hasat çukuru da çamurla dolmuş olabileceğinden, temizlenir. Su tahliye boruları da kontrol edilerek varsa arızaları giderilip gelecek üretim sezzonuna hazır hale getirilirler. Havuz tabanının kurutulmasının temel amacı, çamur içerisindeki organik maddenin oksijen ile mineralizasyonunun sağlanması ve bitki besin maddesi haline dönüşerek gelecek yılın doğal gıda üretimi için kullanılmaya hazır hale getirilmesidir. Havuz tabanının kuruda kalacağı süre çamurun miktarına ve yapısına, havuzun özelliğine ve iklim koşullarına bağlıdır. Yeterli havalanma olması için 8-14 günlük kuruma süresi yeterlidir. Çok kısa süre yetersiz, çok uzun süre ise doğal gıda üretme özelliğinin kaybolmasına (steril olmasına) ve rüzgârlarla sürüklenmesine neden olur (5,6). Havuz tabanının sürülmesi Havuz tabanındaki çamur kurutulurken, havuz tabanının sürülmesi ihmal edilirse, sadece havuz tabanının yüzeyindeki toprak havalanır. Havuz tabanındaki toprağın sürülmesi birçok yönden faydalıdır. 1- Toprağın ufalanmasını sağlayarak havalanma yüzey alanını genişletir. Oksijen girişini kolaylaştırarak gerçek kuruma sağlanır. Böylece, mineralizasyon toprağın daha derininde ve hızlı olur. 2- Çamur tabakası sürülmezse, çatlar. Oluşan çatlaklarda nem tutulur ve havalanma engellenir. Geçirgen topraklarda çatlaklar geçirimsiz tabakaya kadar ulaşır ve havuz tabanı su sızdırır duruma gelir. Yağmur sularıyla yıkanan besin tuzları çatlaklardan aşağılara iner. Çamur tabakasının sürülmesi, bu olumsuzlukları engeller. 3- Fazla miktarda ot gelişmişsazan havuzları boşaltıldığında, kalın bir bitki tabakası havuz tabanını örter. Bitkilerin altındaki çamur tabakası kuruyamaz. Havuz tabanının kuruyup havalanabilmesi için bitkilerin parçalanması gerekir (5,6). Havuz tabanında verimli olan 5-10 cm'lik çamur tabakasının işlenmesi gerekir. Sürme işlemi, özellikle kumlu tabanlarda derin yapılırsa verimsiz tabaka üste çıkmış olur. Bu durumda, havuz tabanı hem verimsiz hale gelir hem de su sızdırır (5,6). Havuz tabanının kireçlenmesi Sonbaharda balık hasatından sonra havuz tabanının kireçlenmesi, aktiviteyi artırmak, dezenfeksiyonu ve gübrelemeyi sağlamak için yapılır. Havuz tabanında yeterli çamur varsa, sönmemiş kireç kullanılır. Su ile birleşince, kireç kaymağına dönüşen sönmüş kireç havuz tabanındaki toprağı tutarak verimli hale getirir. Ayrıca, virüsleri, balık kurdu ve sazan biti gibi parazitlerle bulaşıcı mikropların ölmesini sağlar. Dezenfeksiyon için %85 oranında CaO içeren sönmemiş kireç balık hasatından sonra 2.000-2.500 kg/ha olacak şekilde ufalanarak nemli havuz tabanına serpilir. Kuru havuz tabanına serpilecek sönmemiş kireç, toprağın aktivitesini sağlayamayacağı gibi dezenfeksiyon etkisi de göstermez. Dezenfeksiyon için verilecek toplam kireç miktarı, 8-15 gün aralıklarla 2-3 defada verilmelidir. Çamurun aktif hale gelmesi için de kirecin aralıklarla verilmesi gereklidir. Bir defada fazla kireç verilmesi tabanı verimsiz hale getirir. İşin kolayına kaçarak kireç torbalarının kümeler halinde dökülmesi, kirecin yanmasına neden olur. Kirecin dezenfeksiyon ve gübreleme etkisi yetersiz kalır (5,6,14). Sazan Havuzlarında Ot Mücadelesi Sazan havuzlarındaki yabani otların; - Balıkların hareket alanını daraltma, - Havuz tabanının balıklar tarafından karıştırılmasına engel olma, - Doğal yem üretimini geliştirmek için verilen gübrelerin büyük kısımını tüketme, - Balık düşmanları (kaplumbağa, yılan, zararlı kuşlar v.b.) için barınak oluşturma, - Havuzların denetimini ve hastalıkların gözlenmesini zorlaştırma, - Havuzları gölgelendirerek ışığın tabana ulaşmasını engelleme, - Geceleri oksijen tükettiklerinden özellikle yaz aylarında sabahları oksijen azlığına neden olma ve - Balık hasadını ve havuzu kuruya alma zamanında havuz tabanında yapılacak bakım çalışmalarını zorlaştırma gibi sakıncaları olduğundan, başarılı bir sazan yetiştiriciliği için su bitkileri ile mücadele edilmesi gerekir (5,6,11). Mekanik yöntemle ot mücadelesi Havuzdaki saz ve kamış miktarı havuz derinliği arttıkça artar. Havuzlar kuruya alındığında, orak, tırpan veya büyük işletmelerde ot biçme makinası kullanılarak biçilmeleri gerekir. Havuz kenarlarındaki otları yok etmek için yakma veya büyük baş hayvanları otlatarak yenilebilenleri yedirmek gerekir. Ancak, bu otların çoğu hayvanlar tarafından tüketilmediğinden, fazla miktarda biçilmeleri gerekir. Kimyasal yöntemle ot mücadelesi Kimyasal ot mücadelesi, işçi ücretleri çok pahalı olan yerlerde uygulanabilir. Ot mücadelesinde kullanılacak kimyasal maddelerin seçiminde; - Balıklara etkisi, - Bitkilere etkisi, - Doğal yemlere (fitoplankton ve zooplankton) etkisi ve - Fiyatı dikkate alınmalıdır. Kimyasal ot mücadelesinde; - Havuz toprağının sterilize edilmesi, - Uçaktan ilâçlama ve - Kimyasal maddelerin havuzda çöktürülmesi teknikleri kullanılabilir. Toprağın sterilize edilmesi, ekonomik olmadığı gibi toprağın verimliliğini de azaltır. Kökü derin olmayan bitkiler için bileşimlerinde %80 etkicil madde bulunan bitki öldürücüler (herbicid) kullanılabilir. Bunlar suda 5-10 g/lt dozda hazırlanarak pülverizatörlerle püskürtülürler. 1 lt eriyik, 10 m2 için yeterlidir. En uygun uygulama zamanı, yağmurlu havalardır. İyi sonuç alınabilmesi için mekanik mücadele (biçme) yapılmış olmalıdır. Kökü derinde olan bitkiler için suda tamamen çözünen ve kısa sürede toprağa geçen sodyum klorat (NaClO3) kullanılır. Ticari olarak Atlacide ismiyle satılmakta ve %59 oranında NaClO3 ihtiva etmektedir. Bir diğer herbicid olan Ekron %60 oranında NaClO3 ihtiva etmektedir. Gerek Atlacide ve gerekse Ekron yanıcı olduklarından, geriye kalan miktar (%39 ve %40) yanıcı olmayan madde ilave edilir. 200-300 g Atlacide veya Ekron 1 lt suda eritilir ve pülverizatörle püskürtülür. Uçakla mücadele büyük havuz arazilerinde yapılır. Uçakla mücadelede, içinde 2-4 Dichlorphenoxy acetate ihtiva eden ve ester ilave edilerek kullanılan Shell-8 ilâcı püskürtülür. Özellikle seyrek dağılmış küçük ve genç bitkiler üzerinde etkilidir. Kimyasal maddeleri suda çöktürme yöntemi, havuzdaki derin köklü ve kuvvetli bitkilerin yok edilmesinde kullanılır. Geniş yapraklı bitkiler için 2-4 Dichlorphenoxy Acetate kullanılır. Scirpus (sandalye sazı), Cyperus (şehvet veya venüs otu) ve Tipha cinsi otlar için 2-4 Dichlorophenoxy Acetata ester katılırak kullanılır. Polygonu (çaban değneği) ve benzeri bitkiler için 2-4-5-T veya 2-4-5- Trichlorophenoxy Acetate kullanılır. Potamogeton (su sümbülü) ve Ceratophyllum için sodyum arsenit ve bazı alg filizleri için CuSO4 kullanılır. Biyolojik ot mücadelesi Biyolojik ot mücadelesinde, Çin kökenli sazanlar kullanılır. Bunlardan en çok tercih edileni, ot sazanıdır (Ctenopharyngodon idella). Larva döneminde zooplanktonla beslendikten sonra 3-10 cm olduklarında, bitkisel gıdalarla beslenmeye başlarlar. 1 kg canlı ağırlık artışı için 25-35 kg yumuşak su altı bitkisi veya 20-30 kg (türe bağlı olarak 60 kg’a kadar) su üstü bitkisi tüketirler. Böylece değersiz olan su bitkilerini değerli balık etine dönüştürürler. Ot miktarına bağlı olarak 150-200 adet/ha ot sazanı stoklanabilir. Ot sazanlarının gelişmeleri de iyidir. Kuvvetli fitoplankton gelişmesi olan havuzlarda gümüş sazanı (Hypopthalmichthys molitrix Valenciennes) kullanılır. Gümüş sazanları yumurtadan çıktıktan 10-12 gün sonra suyu süzerek fitoplanktonla beslenmeye başlarlar. 250 g ağırlığındaki bir gümüş sazanı saatte 30-35 lt su filtre eder. 35-45 mg/lt alg bulunan bir havuzda saatte 1.3 g taze alg tüketir. Sazan Havuzlarının Gübrelenmesi Sazan havuzlarında gübreleme; - Balık üretimi, rüzgâr, toprağa sızma, yıkanma ve havuzdaki kaba bitkiler tarafından harcanan doğal besin maddelerinin (fitoplanton ve zooplanton) tekrar havuza kazandırılması ve - Düşük asit bağlama kapasitesi (ABK) ve pH değerlerinin yükseltilmesi ile tesbit edilmiş besin maddelerinin serbest kalarak kullanılabilir hale gelmesi için yapılır (5,6,11). İnorganik gübreler Kireçli gübreler Havuzların kireçle gübrelenmesi; - Havuz toprağı ve buna bağlı olarak havuz suyunun asitliğinin giderilmesi, - Havuz suyunun asit bağlama kapasitesinin yükseltilmesi, - Suya CO2 temin edilmesi, - Toprakta bağlı bulunan bitki besin maddelerinin serbest kalması, - Bitkisel ve hayvansal organizmalar için gerekli Ca++ miktarının temini, - Havuz suyundaki Na, K ve Mg iyonlarının zararlı etkilerinin giderilmesi, - Sudaki organik ve inorganik asitlerin nötralizasyonu ve - Nitrifikasyon (amonyumlu bileşiklerin nitrit ve nitrata dönüşümü) amacıyla yapılır. Kireçle gübrelemede; kireç taşı (CaCO3), sönmemiş kireç (CaO), sönmüş kireç (Ca (OH)2) ve kalsiyum siyanamid (CaCN2) kullanılır. Kireç; - Kuru havuzun tabanına, - Havuzdaki suya ve - Havuza akan suya karıştırılır. Ancak, solungaç çürüğü hastalığının kontrolü için havuz suyunun, havuz toprağının ıslahı ve parazit kontrolü için havuz tabanının kireçlenmesi daha uygundur. Havuz tabanına uygulanacak kireçleme, balık hasadından sonra ve havuz tabanı hafif nemli iken yapılır (Tablo 2). Tablo 2’den de görüldüğü gibi havuz tabanına verilmesi gerekli kireç miktarı 250-4000 kg/ha arasında ve ortalama 750 kg/ha’dır. Parazit kontrolü için ise, 100-1500 kg CaO/ha veya 1000 kg CaCN2/ha verilmesi uygundur. Havuz toprağının ıslahı için 200-400 kg CaO/ha verilmesi önerilmektedir. ABK’ni 1 birim artırmak için 200-300 kg CaO/ha gereklidir. CaO, ince öğütülmüş olarak nemli havuz toprağına serpilmelidir (5,6,11,14). Kireçtaşı CaCO3 kullanıldığında, Tablo 2'deki değerlerin 2 katı kullanılmalıdır (14). Havuz suyunda pH>6.5 olduğunda kireçleme yapılması gerekmez. pH<6.5 olduğunda birkaç günde bir eşit miktarda 200 kg/ha CaO verlimesi gerekir. Çiftlik gübresiyle gübrelenen ve yoğun besleme yapılan küçük havuzların suyu kireç bakımından fakir ise, her ay 170-220 kg/ha CaO havuz yüzeyine serpilmelidir (5,6,14). Havuzlara kireç uygulaması, - Toprağın organik ve inorganik bileşikleri ve bitki besin maddelerinin fosforla birleşip stabil bileşikler oluşturmaması için fosfatlı gübre kullanımından ve - Balıkların ölmemesi için havuzlara balık stoklanmasından en az 2-3 hafta önce yapılmalıdır (5,6,11). Fosfatlı gübreler Havuzlara fosfatlı gübrelerin kullanılması için kireçleme işleminden sonra belirli bir süre geçmesinin yanı sıra havuzların otsuz olmasına da dikkat edilmelidir. Ot yoğun olursa, fosforun büyük kısmı otlar tarafından kullanılacağından balıklar için hiç bir yararı olmaz. Sazan havuzlarında fosfatlı gübre olarak süper fosfat veya saf fosfor asiti bakımından süper fosfata eşdeğer olan Thomas unu yada Rhenaniaphosphat ve Hyperphos kullanılır. Thomas unu suda geç eridiğinden, Mayıs-Haziran aylarından itibaren verilmelidir. Kullanılması gereken fosfatlı gübre miktarı, bileşimlerindeki P2O5 miktarına göre değişmekle birlikte, 50 kg/ha P2O5 olacak şekilde hesaplanır. 300 kg/ha süper fosfat veya Thomas unu, 250 kg/ha Rhenaniaphosphat ve 200 kg/ha Hyperphos kullanıldığında, 50 kg/ha P2O5 verilmiş olur. Havuzlar yeni inşa edilmişse miktarlar iki katına çıkarılır. Bu gübreler ayrı ayrı veya birlikte (Şubat’ta Thomas unu, Mayıs’ta süper fosfat gibi) uygulanabilirler. Havuza akan suda eritilerek verilebilecekleri gibi, havuz yüzeyine toz halinde serpilerek de verilebilirler (5,6,11). Azotlu gübreler Azotlu gübreler havuzun doğal verimliliğinde protein yapı taşı olarak görev yapar. Ancak, ekonomik olup olmadıkları tartışılmaktadır. Çamurlu topraklarda bulunduğu gerekçesiyle, Avrupa’da kullanımından vazgeçilmiştir. Azotlu gübre kullanılması gerektiğinde, %20 azot ihtiva eden sıvı amonyak (NH3) tercih edimlmektedir. İsrail’de 4 birim Azot ile 1 birim fosforun iyi sonuç verdiği ve 2 haftada bir azotlu gübrelerden amonyum sülfatın 500 kg/ha olarak uygulandığı bildirilmektedir. N:P, 4.1 veya 6:1 olduğunda iyi sonuçlar alınmaktadır. Suyun asitliğinin düşük olduğu havuzlarda sıvı amonyak, alkali özellikteki sularda ise nispeten asitidik olmasından dolayı amonyum sülfat kullanılması uygundur. Bataklık havuzlar sülfat bakımından zengin olduklarından, sülfatlı gübre kullanılmasına gerek yoktur (5,6,11). Organik gübreler Çiftlik gübresi Havuzlara uygulanması gereken çiftlik gübresi miktarı, 5-30 ton/ha arasında değişir. Şerbet halinde birkaç m3/ha olarak verilmektedir. Kullanılması gereken en uygun gübre veya şerbet miktarı, yetiştirici tarafından uygulamaların sonuçlarına göre saptanır. Çiftlik gübrelerinde fazla miktarda amonyak bulunduğundan pH’yı yükselterek balık zehirlenmelerine neden olacağından, Kış aylarında veya İlkbahar başlangıcında verilmeleri gerekir. Kümes hayvanlarının gübreleri havuzlarda 48 saatte çözündüklerinden inek gübrelerinden daha iyidir. Çiftlik gübreleri içinde bulunan ve çiftlik hayvanları tarafından sindirilmemiş besin maddeleri balıklar tarafından değerlendirilmektedir. Bu nedenle, çiftlik gübresi verildiği günler havuzlardaki balıklar yemlenmezler. Balık bulunan havuzlara çiftlik gübresi verilirken, gübre tüm havuz sahasına yayılmayarak belirli yerlere kümeler halinde (0.04 m3/ha) ve haftada bir dökülmelidir. Aksi halde fazla oksijen tüketerek balık ölümlerine neden olurlar. Özellikle yazın sıcaklık nedeniyle havuzdaki oksijen miktarı da düşeceğinden, Kışın veya İlkbahar başlangıcında verilmelidir. Uzun süre yapay gübre kullanılarak entansif üretim yapılan havuzlarda çiftlik gübresi kullanılmasına gerek yoktur. Çitlik gübreleri genellikle yavru havuzlarında doğal yem (fitoplankton ve zooplankton) üretmek amacıyla kullanılırlar. Bu amaçla, içinde birkaç cm su bulunan havuz tabanına 5-10 m’de bir yığınlar halinde dökülürler. Daha sonra su seviyesi yükseltilerek plankton gelişimi sağlanır. Yavrular yerleştirilmeden önce su seviyesi normal durumuna yükseltilir ve planktonların havuzlardan akıp gitmemesi için su çıkışına ince gözlü elekler yerleştirilir (5). Yeşil gübreler Haziran-Temmuz’da su doldurulacak yavru havuzlarının tabanı İlkbahar’da larva veya yavru yerleştirilmesinden yaklaşık 2 hafta önce sürülerek, hububat tohumları (bakla, yonca, burçak, vb.) ekilir. Bunlar azot toplayıp depo ederek havuz tabanını ıslah ederler. 20-30 cm yüksekliğindeki bu bitkiler çürüyüp gübre olurlar. Çürümeyi hızlandırmak için kireç kullanılabilir. Yoğun yeşil gübre kullanılması oksijen yetersizliğine neden olabileceğinden, dikkatli olunması ve miktarın iyi düzenlenmesi gerekir. Havuzların gübrelenmesinde, aşağıdaki konulara itina gösterilmesi gerekir. - Kireç iyice öğütülerek nemli havuz tabanına dağıtılmalıdır. - Kullanılacak kireç miktarı, çamur tabakasının kalınlığına göre belirlenmelidir. - Thomas unu İlkbahar başlangıcında süperfosfat Yazın kullanılmalıdır. - Süperfosfat ve kireç farklı zamanlarda kullanılmalıdır. - Tavuk gübresi kullanıldığında, miktar az olmalıdır. - İdrar havuz tabanına serpilmeli, hayvan gübresi kümeler halinde veya çamurla karıştırılarak uygulanmalıdır. - Yeşil gübreleme, havuz kuruya bırakılıp tabanı sürüldükten sonra yapılmalıdır. - Tek başına kireçleme, gübreleme için yeterli olmadığından, diğer gübreler de kullanılmalıdır (5). SAZAN YEMLERİ VE BESLEME Sazan yetiştiriciliğinde en çok uygulanan yöntem, en eski olmasına rağmen durgun su yetiştiriciliğidir. Sazanlara verilecek günlük yem miktarı; havuzda mevcut doğal yemin miktarına ve balık populasyonunun besin maddesi ihtiyacına bağlıdır. Havuzdaki doğal yemin miktarı; - Havuzun verimliliğine, - Çevre koşullarına ve - Mevsimlere bağlı olarak değişir. Besin maddesi ihtiyacı ise, - Su sıcaklığına, - Balık büyüklüğüne ve - Stoklama oranına bağlıdır. Bu faktörler dikkate alınıp sazan havuzlarında tamamlayıcı yemleme yapılır (5). Tamamlayıcı Yemler Yeşil bitkiler Sazanlar yeşil yemlerin genellikle yumuşak kısımlarını tüketirler. Ancak, yeşil yem bitkileri, tek başına tamamlayıcı yem olarak kullanılmazlar. Genellikle rasyon içerisinde verilirler. Sulu yemler Sazan yetiştiriciliğinde tamamlayıcı yem olarak kullanılan suyu yemler, her türlü mutfak artıklarından oluşur. Kök ve yumru yemler Kök ve yumru yemlerden en çok kullanılanı, patatestir. İnsan tüketimi için kullanılmayan küçük ve parçalanmış patatesler, sazan beslemede kullanılır. Patatesin su kapsamı yüksek olduğundan, 4 birim patates 1 birim mısıra eşdeğerdir. Dane yemler Dane yemler, sazan beslemede kullanılan en önemli tamamlayıcı yemlerdir. Fiyatları zamana ve bölgeye göre değiştiğinden, insan tüketimi için değeri az ve fiyatı uygun olan dane yemler balık yemi olarak kullanılır. Dane yemler kırılmış veya ıslatılmış (yumuşatılmış) olarak özellikle büyüme mevsiminin başlangıcında ve henüz balıkların iştahının az olduğu zamanda verilirler. Yaz sonunda sular ısındığında, kırılmadan ıslatılmış olarak verilirler. Baklagil daneleri proteince zengindir. Bileşimindeki alkoloidler nedeniyle ahır hayvanları için uygun olmayan acı bakla, sazan için zararsız ve oldukça değerlidir. Mısır, sazan için uygun bir dane yemdir. Mısırla besleme yapılırken mısırın öğütülmesine gerek yoktur. Öğütme sonunda hazmolması yükselmediği gibi lezzeti de azalmaktadır. Mısır kaba yemle karıştırılacaksa, öğtülmesi veya kırılması faydalı olur. Arpa, daima ıslatılmış olarak verilmelidir. Arpa tek başına tamamlayıcı yem olarak veriliyorsa, sert arpa hariç öğütülmesi gerekmez. Buğday, %15 protein ve %74.3 nişasta değerlidir ve hemen hemen mısırla aynı besleme değerine sahiptir. Bazen çiğnenmeden ve hazmolmadan dışarı atıldığından, kırılması gerekebilir. Ancak, kırma işlemi, lezzetini azaltmasına rağmen, tüketim miktarını ve ağırlık artışını önemli düzeyde etkilemez. Buğday, mısırın yerine kullanıldığında %7-10 oranında fazla verilmesi gerekir. Pirinç, mükemmel bir sazan yemi olup, %85-89 oranında hazmolur. İnsan tüketimi için uygun olmayan kırık pirinçler ve pirinç artıkları sazan yemi olarak kullanılabilir. 4.5-8.0 kg pirinçle 1 kg ağırlık artışı hesaplanır. Yulaf, tek başına tamamlayıcı yem olarak kullanılmaz. Lezzetli olması nedeniyle, karma yemlerde mısırın 3/4'ü yerine kullanılabilir. Mısırın tamamı yerine kullanıldığında, mısırın 3/4'ü kadar ağırlık artışı sağlar. Yulaf ortalama %11.5 protein ihtiva eder ve nişasta değeri 58'dir. Dane yemler, düzenli rasyonlar içinde verilmelidir. Proteince zengin yemler karbonhidratça zengin yemlerle birlikte verilmelidir. Karma yemlerdeki proteinin 1/7-1/8'inin dane yemlerle karşılanması uygundur. Değirmencilik kalıntıları Değirmencilik kalıntıları ortalama %12 ham protein içerirler. Yaklaşık olarak 4 kg değirmencilik kalıntısı ile 1 kg sazan üretimi hesaplanır. Pelet yemler Pelet yemler, sazan üretim tekniğine göre tamamlayıcı yem veya tam yem olarak kullanılırlar. Normal pelet yemler 1-3 dk içerisinde suda eriyip dağıldıklarından, diğer yemlere üstün özelliklerini kaybederler. Karma pelet yemlere %4-5 oranında buğday glüten unu katılması, peletlerin en az 20 dk suda dağılmadan kalmalarını sağlar. Buğday glüten unu pelet bağlayıcı özelliğinin yanı sıra rasyona protein katkısı da sağlar. Glüten unu pahalı olduğundan, rasyona %10-12 oranında iyi öğütülmüş buğday unu da katılabilir. Peletin suda dağılmaması rasyona katılan buğdayın ıslatılma derecesine bağlıdır. %3-5 oranında buharla preslenen peletler, suda yaklaşık 20 dk dağılmadan kalırlar. Pelet bağlayıcı olarak buğday glüten unu kullanılmasınnın başlıca sakıncaları; pahalı olması, proteininin lisin ve metionince fakir olması nedeniyle dengelenmesinin zor oluşu ve yaş olarak kullanılması zorunluluğudur. Pelet yem rasyonlarına %10-15 oranında balık unu katılması, üretim miktarını etkiler. Rasyona katılan balık unu %20'yi geçtiğinde, miktarı önemli miktarda artmaktadır. Ancak, balık unu artışı ile elde edilen balık üretimi artışını ekonomik açıdan değerlendirmek gerekir. Bunun yanı sıra protein kaynağı olarak balık unu kullanılmadığında da önemli sorunlar yaşanmaktadır. En önemli sorun, alternatif protein kaynağı bulmaktır. Balık ununa göre ucuz olan değirmencilik kalıntıları ile yemi ucuzlatmak mümkündür. Entansif sazan üretiminde protein ve enerji kapsamı yüksek yemler kullanılır. Sazan yemlerinin yapısal özellikleri Tablo 3'de toplu halde verilmiştir. Sazanların Yemlenmesi Sazan balıklarına verilecek günlük yem miktarı; - Balık büyüklüğü, - Su sıcaklığı, - Su miktarı, - Su kalitesi (suyun O2 miktarı), - Stoklanan balık sayısı, - Besleme süresi ve - Üretim tekniğine göre düzenlenir. Balık ağırlığına göre verilecek yem miktarı, Tablo 4'de gösterilmiştir. Pratik olarak su sıcaklığının1/10'u oranında (25 °C su sıcaklığında %2.5, 20 °C su sıcak-lığında %2) yemleme yapılabilir. Yemin fazla sayıda öğünde verilmesi iş gücünü artır-makta ancak, yemin iyi değerlendirilmesini sağlamakta ve büyümeyi artırmaktadır. Yetiştiricilikte sabah ve akşam üzeri olmak üzere iki yemleme uygulanmaktadır (6). SAZANLARDA YAVRU ÜRETİM TEKNİKLERİ Sazan üretiminde; kontrolsüz, yarı kontrollü ve tam kontrollü olmak üzere üç şekilde yavru üretimi yapılabilir (5,6) Kontrolsüz Yavru Üretim Teknikleri Doğal sulardan yumurta ve larva toplama Sazanın doğal olarak bulunduğu su kaynaklarının kıyı kesimlerindeki otlar yumurtlama mevsiminde kontrol edilir. Yumurtlama işlemi gerçekleştiğinde, yumurtalı otlar toplanıp yetiştirme havuzlarına getirilir. Larva çıkışı burada sağlanır. Yumurtadan çıkan larvalar ince gözlü tülbent kepçelerle toplanırlar. İkinci bir uygulama ise, su kaynaklarının kıyı kesimindeki otlar üzerindeki yumurtalardan çıkan ve kıyıda sürüler halinde dolaşan larvalar ince gözlü tülbent kepçelerle toplanır. Doğal sulardan yumurta ve larva toplama, Uzakdoğu ülkelerinde uygulanmaktadır (5). Yetiştirme havuzlarında yavru üretimi Farklı büyüklüklerdeki balıkların karışık olarak bulundukları yetiştirme havuzlarında, üreme olgunluğundaki balıklar havuzun sığ ve otlu kısımlarına yumurtlarlar. Larva çıkışı aynı havuzda olur. Ancak, bu yöntemde oldukça fazla miktarda yumurta ve larva kaybı olur. Havuzda yumurtlama için gerekli otlu kısım yoksa, havuzun sığ kesimlerine ot yerleştirilir. Yumurtlama işlemi olunca otlar larva çıkışı için başka havuza nakledilir. Bu yöntem, Japonya’da yarı kontrollü olarak uygulanmaktadır. Ot ve ot benzeri naylon kırpıntılar bambu kamışın ortasına bağlanmakta ve yumurtaların yapışması sağlanmaktadır. Bambu kamış, yumurtaların yapışması için su altında kalacak şekilde yerleştirilir. Yapay ot materyali yumurtlama zamanında sık sık kontrol edilerek, yumurtlama olduğunda yumurtaların açılması için larva havuzlarına nakledilir (5). Yarı Kontrollü Üretim Yapay yuvalarda yavru üretimi Bu yöntemde, çeşitli yapay yuvalar (çam dalları, ot veya sap balyalar) birkaç adet olacak şekilde damızlık balıklarla birlikte havuza yerleştirilir. Damızlıklar yumurtalarını bırakınca, yapay yumurtlama yuvaları başka bir havuza yerleştirilerek açılma burada sağlanır. Diğer bir uygulama ise, yumurtlama işleminden sonra damızlıkların havuzdan alınması ve larvaların yem alma devresine kadar aynı havuzda tutulmasıdır. Bu işlem, büyük bir havuzun köşesinde birkaç metrekarelik küçük bir havuzcuk düzenlenerek de yapılabilir. Havuzun kapısı açılarak yem alabilir duruma gelen larvaların büyük havuza dağılması sağlanır (5). Hapa ve kakabanlara yumurtlatma ve yavru üretimi Bu sistemde yavru üretimi, stok havuzlarına yerleştirilen 1 m derinliğinde ve havuza bambu sırıklarla tutturulmuş hapa adı verilen bez havuzlarda gerçekleştirilir. Güney-Doğu Asya ülkelerinde uygulanan bu sistemde, bez havuzun tabanına ot yerleştirilir. Su sıcaklığı 18-20 °C’nin üzerine çıktığında, akşam üzeri damızlık sazanlar havuza yerleştirilir. Yumurtlama genellikle ertesi sabah olur. Ancak, yumurtlamayı kontrol altına almak (yumurtlamayanların da yumurtlamasını sağlamak) için 1-2 gün beklenir. Daha sonra, yumurtalı otlar buradan alınarak açılma havuzlarına nakledilirler. Hapalara benzeyen ve kakaban adı verilen bir sistem de Endonezya ve civarındaki ülkelerde kullanılmaktadır. Kakabanlar 20-30 m2 büyüklüğünde, sert tabanlı çamursuz, milsiz ve otsuz havuzlara yerleştirilir. Kakabanlarda yumurta toplayıcı materyal olarak taze çayır otları, lifli bitkiler veya yapay lifler kullanılabilir. 1-2 m uzunluğunda ve 4-5 cm çapında üzerine yumurtlama lifleri bambu sırıklar arasına yumurtlama lifleri sıkıştırılır. Bunların 6-7 tanesi biraraya getirilerek kaldırılabilecek kadar bir küme oluşturulur. Hazırlanan bu kakabanlar bambu sırıklar üzerine yerleştirilerek havuza bırakılırlar. Bambular kakabanları su içerisinde yüzer durumda tutarlar. Ancak, liflerin ağırlığı ile bir miktar su içerisine batarlar. Her kakaban için 5-8 adet dişi damızlık hesaplanır. Kakabanlar büyük havuzlarda 5-6 m boyunda sırıklara asılarak yerleştirilebilir. Sırıklar 50-60 cm yüksekliğinde iki kazık üzerine oturtularak havuzlara su doldurulduğunda kakabanlar suyun 10-15 cm altında kalmış olur. Damızlıklar havuzlara yerleştirilince, havuza az miktarda su akışı sağlanır. Daha sonra kakabanlar yumurtlama olup olmadığı açısından kontrol edilirler. Yumurtlama olunca, yumurtalarla dolan kakabanlar açılma havuzuna nakledilip yerlerine yeni kakabanlar yerleştirilir (5). Yumurtlama havuzlarında yavru üretimi Dubisch ve Hofer, en çok kullanılan yumurtlatma havuzlarıdır. Yıl boyu kuruda kalırlar. Havuzlara su doldurulmadan önce, kireçle dezenfekte edilirler. Yumurtlama havuzlarında su sıcaklığı 18-20 °C’nin üzerine çıktığında, Damızlık balıklar, yetiştirme veya damızlık havuzlarından alınırak eşeysel olgunluk açısından tek tek kontrol edilirler. Damızlıklar yumurtlama havuzlarına yerleştirilmeden önce 15 dk süreyle tuz banyosunda tutulurlar. Bu şekilde, yumurtadan çıkacak yavrulara deri ve solungaç parazitlerinin bulaşması önlenmiş olur. Yumurtlama havuzlarına yerleştirilen damızlıklar 24-28 saat sonra yumurtlarlar. Yumurtlama faaliyeti, havuz dışından da gözlenebilir. Damızlık dişiler damızlık erkekler tarafından takip edilir. Dişi ve erkek balıklar takip sırasında otlar üzerinde dönmeye başlarlar. Dişiler sırt yüzgeçlerini açarak dolaşırlar. Yumurtlama anından önce su yüzeyinde köpüklenme görülür. Yumurtlama sırasında su şakırtısı duyulur. Yumurtlama oyunu adı verilen bu su şakırtısı sırasında dişi balık yumurtalarını otlar üzerine atar ve yumurtalar erkek balığın döktüğü sütle döllenir. Yumurtlama partiler halinde olduğundan, 5-10 saat sürer. Bu süre sonunda, otlar kontrol edilir. Otlar üzerinde yoğun yumurta görüldüğünde, yumurtlamanın bittiği anlaşılır. Havuzdaki su seviyesi düşürülerek damızlık balıkların Dubisch havuzunun yan tarafındaki otsuz kanallara inmesi sağlanır. Damızlıklar buradan kolayca alınırlar. Larvalar 4-5 gün bu havuzlarda kalırlar. Besin keselerini tüketip yüzme keselerini havayla doldurduklarında, dışarıdan yem almaya hazır hale gelirler ve larva havuzlarına nakledilirler (5). Tam Kontrollü Yavru Üretimi (Yapay Üretim) Yapay üretim için damızlık stok, ebeveynleri iyi kalitede olan bireylerden seçilerek muhafaza edilir. Yapılacak seçimde; - Hızlı büyüme, - Yemi iyi değerlendirme, - Yağ oranının düşük olması ve - Hastalıklara karşı dayanıklılık dikkate alınması gereken başlıca özelliklerdir. Damızlık stok seçildikten sonra havuzlara yerleştirilir. Erkek ve dişi balıklar ayrılarak stok yoğunluğu, hektara 500-1000 balık olacak şekilde düzenlenir. Balıklar, %15-18 oranında hayvansal protein içeren %20-25 proteinli pelet yemle beslenir. Pelet yemler; %2 vitamin karışımı ve %1 mineral madde de içerir. Vitaminlerden özellikle A ve E bulunmalıdır. Üremeden iki hafta önce balıklara %5-10 oranında çiğ et veya katı pişmiş yumurta verilir. Balıklar günde vücut ağırlıklarının %2-5’i oranında beslenirler. Eşeysel olgunluğa ulaşmış balıklar 35- 70 cm boy ve 2500-10.000 g ağırlıktadır. Avrupa’da dişi balıklar 3-4, erkek balıklar 2-3 yaşında eşeysel olgunluğa ulaşırlarken, tropik iklimlerde dişiler 1-2, erkekler 1 yaşında olgunlaşırlar. Olgun dişi balıkların karın kısmı geniştir. Olgun erkek balıkların karın bölgesine basınç uygulandığında süt kolay bir şekilde alınıyorsa, hipofiz enjeksiyonu için en uygun zamandır. Sazan balıklarında tam kontrollu yavru üretimi, hipofiz uygulamasıyla gerçekleştirilir.. Hipofiz bezi balıkların kafalarından çeşitli yöntemlerle kışın veya en iyisi İlkbaharda çıkarılır. Hipofiz bezi çıkarılacak balıklar 1 kg veya daha ağır olmalıdır. Doğada bu ağırlığa ulaşmış olan sazanlar 3 yaşından büyüktürler (5,6,15). Hipofizin çıkarılması ve muhafazası Hipofiz bezi, burgu şeklindeki özel aletlerle iki gözün ortasından burgulanmak suretiyle alınabileceği gibi kafanın çeşitli şekillerde (örneğin; kafatasının keskin bir testere veya bıçak ile yatay olarak) açılması ile de alınabilir. Hipofiz orta beynin hemen altında Cellaturcica adı verilen kemik odacık içerisinde yer alır. Mercimek tanesi büyüklüğünde ve beyaz renktedir. Bir pens yardımıyla itana ile çıkarılır. Çıkarılan hipofiz bezi aseton içerisinde 10-12 saat ve oda sıcaklığında da 10-12 saat bekletilip kurutularak, buzdolabında muhafaza edilir. 4-5 saatlik asetonda bekletme süresinin amaca uygun olduğu bildirilmektedir (5,6,15). Hipofiz uygulanacak balıkların yönetimi - Balıklar yumurtlamadan bir gün önce kuluçkahaneye taşınır. - Yumurtlayacak balıklar inorganik materyalden yapılmış tanklara yerleştirilir. - Dişi ve erkek balıklar kuluçkahanede ayrılarak plastik yada beton tanklara alınır. - Alan istekleri, 0.5-1 m2 /bireydir. - Tanklar, 5-10 m2 büyüklüğünde ve 1-1.2 m derinlikte olmalıdır. - Su ihtiyacı, balık başına dakikada 4-6 lt/dk'dır. - Suyun oksijen içeriği, 6-8 mg/lt olmalıdır. - Su sıcaklığı, 20- 22 °C olmalıdır. - Sağımdan önce sakinleştirici verilebilir. - Sakinleştirici olarak 1:10.000‘lik MS 222 (Sandoz) kullanılır. - Sakinleştirici uygulandıktan 5-10 dk sonra balıklar yüksek düzeyde oksijen içeren taze suya transfer edilir. Hipofiz enjeksiyonu - Dişilerde ovülasyonu, erkek bireylerde ise süt üretimini teşvik etmek için sazan hipofiz hormonu kullanılır. - Hipofiz, dişiler için her kg vücut ağırlığına 4-4.5 mg olarak uygulanır. - Sazan hipofizi havanda toz haline getirilerek ‰ 6.5‘luk tuz çözeltisinde çözülür. - Her balık için 2 ml tuz çözeltisi kullanılır. - Dişilere hormon uygulaması, iki aşamada yapılır. - Yumurta alımından 24 saat önce, hormonun %10 ‘u uygulanır. - Yumurta alımından 12-14 saat önce, su sıcaklığı 21-22 °C olunca, hormonun %90’ı uygulanır. - Enjeksiyon, ince uçlu bir iğne ile sırt kasları arasına yapılır. - İğne çekilmeden önce enjeksiyon bölgesine hafif bir masaj yapılarak, enjekte edilen çözeltinin dışarı çıkması önlenir. - Ovülasyon periyodu esnasında açık kalacak olan yumurta kanalından olgun yumurtaların dökülüp kayıp olmasını önlemek için ikinci hormon enjeksiyonu yapılırken ovidukta dikme işlemi uygulanır. - Ovidukt’un dikilmesi işlemi, ameliyatlarda kullanılan gereçlerle yapılır. - Erkek balıklara hormon uygulaması Yrd. Doç. Dr. A. Şeref KORKMAZ

http://www.biyologlar.com/sazan-baligi-biyolojisi-ve-yetistirme-teknikleri

ÇİPURA (Sparus aurata Lin., 1758) BALIĞININBİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Şahin SAKA-Kürşat FIRAT Ege Üniversitesi Su Ürünleri Fakültesi Yetiştiricilik BölümüYetiştiricilik Anabilim Dalı İskele-Urla, 35440 İZMİR GİRİŞ Günümüzde Akdeniz Bölgesi’nde oldukça iyi bir pazara sahip olan çipura balığına ait çalışmalar uzun yıllardır devam etmektedir. Yetiştiricilik çalışmalarında elde edilen bilgiler ise daha birçok konunun çalışılması gerektiğini ortaya çıkarmaktadır (Tandler ve Helps, 1985, Conides, 1992). Çipuraların fizyolojisi ve biyolojisi üzerine yapılan çalışmalar diğer türlere oranla daha azdır. Laboratuar şartlarında çalışmaların zorluğu ve çipura balığının kültür koşullarında üretiminin oldukça güç olması bu türle ilgili araştırmaları olumsuz etkilemiştir (Freddi ve ark., 1981, Camus ve Koutsikopoulos, 1984, Tandler ve Helps, 1985, Francescon ve ark., 1988 ). Ülkemizde bu tür ile ilgili çalışmalar larval dönem yaşama oranının arttırılması, larva yetiştirme protokollerinin hazırlanması, gelişim oranının yükseltilmesi ve hastalıkların tedavisi konularında devam etmektedir. ÇİPURA (Sparus aurata, Lin., 1758) BALIĞININ BİYOLOJİSİ Chrysophrys aurata sinonimi ile de adlandırılan çipura, Phylum: Vertabrata Subphylum: Pisces Clasis: Osteichthyes Ordo: Perciformes Subordo: Percoidei Familya: Sparidae Genus: Sparus Species: aurata (Linneaus, 1758) şekli ile sistematikteki yerini almıştır. Klimatik yapıdan çipura balığına tüm Akdeniz’de rastlanmakla birlikte doğu ve güney doğu Akdeniz ülkelerinde, Kanarya Adaları'nda, İngiltere kıyılarında, Verde Burnu’nda ve nadir olarak Karadeniz kıyılarında rastlanır. Genellikle tropikal, subtropikal ve ılıman kuşaklarda yayılım gösteren çipura deniz fenogramlarının bulunduğu kumlu–çamurlu ve çamurlu ortamlarda yaşamını sürdürür. Bunun yanı sıra nehir ağızlarına ve lagüner bölgelere de girer (FAO, 1987). Ülkemizde daha çok güney sahilleri ve Ege kıyılarında yayılım gösterir. 30-50 gram olanları ince lidaki, 100 gram olanları lidaki, 100-180 gram olanları kaba lidaki, 200 ve üzeri ağırlıkta olanları da çipura olarak adlandırılır (Alpbaz, 1990). 0-3 yaş arası çipuraların mide içerikleri incelendiğinde bu türün karnivor bir form olduğu ve özellikle ergin bireylerin Crustacea ve Mollusca familyasına ait türlerle beslendiği ortaya çıkmıştır. Sırt yüksekliği fazla olup lateralden yassılaşmış simetrik bir yapıya sahiptir. Baş iri, burun küt ve ağız terminal konumlu olup düzdür. Alt çenede dişler önde 4 adet kanin, arkada 4 sıra molar, üst çenede ön tarafta 4 adet kanin, arkada ise 3 sıra molar şeklindedir. Üst dudak, alt dudağa oranla daha kalın olup gözün başladığı noktanın paralelinde biter. Gözler orta derecede gelişmiştir. Göz çukuru önündeki mesafe, göz çapından en az iki kat daha uzundur. Gözler arasında V şeklinde yıldızsı bir bant vardır. Operkulum ve prooperkulum pullarla kaplıdır. Yanal çizgi hafif eğimli olarak operkulumdan kaudal yüzgece kadar kesintisiz olarak devam eder. Yanal çizgi üzerinde 73-85 adet pul bulunur. Dorsal yüzgeç anal yüzgeçten daha uzundur. Pektoral yüzgeç anüse kadar uzanır. Kaudal yüzgeç homoserk yapıdadır. Bu tür için yüzgeç formülü D XI/13-14, A III/11-12, P I/5, V 5/5 şeklindedir. Renk dorsalde gri-esmer, ventralde gümüşidir. Pektoral yüzgecin dorsalinde ve operkulum üzerinde kırmızı-menekşe renkli bir leke karakteristiktir. Hermafrodit özellik gösteren çipuralar 8. aylarında ovaryum oluşumlarıyla birlikte dişi özellik gösterirler. 12. ayda üremenin ilk sezonunda tüm bireyler erkek karakterdedir. Gonadın ventralinde olgun testiküller belirir. Gonadın dişi kısmında ise hiçbir gelişme gözlenmez. 23-24. aylardaki balıkların ikinci üreme periyodunda ise bireylerde erkeklikten dişiliğe geçiş söz konusudur. Bu dönemde gonadlarda belirgin bir olgunlaşma gözlenmektedir. Bu cinsiyet değişimi ani olmamakla birlikte özellikle 3. yaştaki bireyler intersex özelliğindedir. Ancak bu cinsiyet değişimi populasyonun tamamında değil sadece yaklaşık olarak %80’inde gözlenmektedir ki kalan %20’lik oran populasyonun ve devamının sağlanabilmesi için genetiksel bir emniyet marjı olarak nitelendirilebilir. Bu tip bir cinsiyet değişimine protandrik hermafroditizm adı verilmektedir. Bütün bu değişimlere genetik ve çevresel faktörler ile beslenme özellikleri etki yapmaktadır. Çipuraların üreme periyodu ülkemizde Ekim-Aralık ayları arasında olup en iyi gelişim 22-25 °C aralığında gözlenmektedir. Yaşayabilecekleri sıcaklık aralığı 3-34 °C, tuzluluk değeri ise ‰5-40 olarak belirtilmiştir. ‰1 tuzluluğa kadar yaşayabildikleri Chervinski ve Chanin (1985) tarafından bildirilmiştir. Genellikle 5-25 m arası derinliklerde yayılım gösterirler. Yaşları ilerledikçe derinlerde yaşamayı tercih ederler. Bunun için dalyan alanlarında ergin bireylere rastlanmaz. Yaz aylarında 0.5-9 m derinliğe kadar olan sığ sulara giriş yapan çipuralar, kış aylarında 35-40 m derinliğe kadar inerler. 2 yaşını aşan bireyler daha da derin sulara inebilmektedirler. Maximum boyları 70 cm’ye ulaşan çipuraların ortalama uzunlukları 25-40 cm. arasındadır. ÇİPURA BALIĞI YETİŞTİRİCİLİĞİ Çipuralarda Üreme Fizyolojisi Çipura balıklarının gonad gelişimi hermafrodit özellik gösterir. 21±3 oC de yapılan çalışmada 4 aylık çipuraların gonadlarında sitolojik ve topoğrafik olarak hiçbir farklılaşma olmadığını bildirmiştir. 5. ayda topoğrafik farklılaşma başlar. Bu dönemin başlangıcında konjektif doku (bağlayıcı doku) gonadın dorsalinde ve ventralinde gelişimi başlatır. Ortada merkezi bir boşluk vardır. Bu kısmın dorsalinde ovaryum, vetralinde testiküllerin oluşumu başlayacaktır. Ancak bu farklılaşma çok zor ayırt edilir. Bu iki kısım germinal hücre yuvaları ile birleşir. Çok sayıda ovogonium birleşmesi ile oluşan ovijel lameller görülür. Ancak bu ayda oositler deformasyona uğrar ve gonad merkezinin kenarında ovujel lameller şeklinde bir yatakta kalır. Gonadın ventralinde 5 aylık balığa göre daha fazla spermatogonium vardır. Ovogoniumlar bir yatak içinde sıkışmışlardır. 10-11. aylarda, gonadın ventral kısmında spermatogenez aktivitesi gelişerek sürmektedir. Testiküller tüplerdeki spermetozoitler spermatogoniumlardan yola çıkarak germinal hücrelerin bulunduğu bölüme yerleşir. Testiküller kısım gonadın dorsal kısmını çevirmeye başlar ve büyür. Spermatozoit kanalı uzayan merkezde olup spermatozoitlerin toplandığı kısımdır ve ovaryum ile testiküllerin arasındadır. 1-2 dişi germinal hücre yatağı merkezin kenarında sıkışıp kalır. Bunlar ovogoniumlardır ve oositleri mayoz bölünmesi ile primer vitellogenesis olayının oluşmasını sağlayacaklardır. 12. ay üremenin ilk sezonudur. Populasyonun tüm bireyleri erkek özelliği gösterir. Gonadın ventral kısmında olgun bir testikül vardır. Ancak düşük bir RGS değerine sahiptir. Spermatozoitlerin doldurduğu tüplerde spermiasyon olayı meydana gelir. Gonadın dişi kısmında ise hiçbir değişme gözlenmez ve iyice küçülmüştür. 13-16. aylar arasında cinsiyet dönüşümü başlar. Gonadın spermatozoit kısmında gonadların boşalıp dinlenme fazı başlar. Testiküler tüplerde yalnızca spermatogoniumlar vardır. Ovaryum kısmında ise ovogoniumlar hızlı bir şekilde çoğalmaya başlar. Primer oositler hızlı bir şekilde previtellogenesis dönemine girer. 16. ayda ovaryum gonadın %80'lik bölümünü kaplar. Dorsal kısımda oosit hücreleri previtellogenesisi tamamlar ve vitellogenesise geçer. Aynı zamanda ventraldaki spermatogoniumlar ölerek dejenerasyon başlar. 23-24 aylarda üremenin ikinci periyodunda dişiler olgun bir gonada sahiptir. Ventral kısımda ise dejenere olmuş bir testikül yer alır. Populasyonun geriye kalan %20'lik kısmında cinsiyet dönüşümü durur. Gonadın dorsal kısmındaki oositler atresiye uğrar ve dorsaldaki gelişim ventraldeki gelişimin içine sıkışır (Zohar ve diğ., 1984). Doğal koşullarda iki yaşında dişi özelliği gösteren anaçlar üç yaşında intersex özelliği taşırlar. Bu bireylere hormon müdahalesi yapılırsa erkek olarak görev yaparlar. Aksi halde 4 yaşında dişi özelliği gösterirler. Bu cinsiyet dönüşümleri bulundukları populasyonun dişi erkek oranına göre gecikmeler gösterebilir. Çipura balıklarının erkek bireylerinde spermatogenesis tamamlandığında dişilerin çoğunda oosit hücrelerinin olgunlaşması ve yumurtaların atılması için gereken hazırlık devam etmektedir. Çipura erkeklerinden ekim ve mart ayları arasında sperm almak mümkündür. Anaçlarda Yumurta ve Sperm Gelişimi Çipuralarda ovaryumlardaki yumurta hücresinin gelişimi 7 aşamada meydana gelir : * - İlkel yumurta hücreleri çok küçük olup boyutları 8-12 mikron arasındadır. Hücreler mitoz bölünme ile çoğalır. * - Yumurta hücresinin etrafında folikül oluşmuştur. Bu hücrenin ikinci katını oluşturur. * - Hücrelerin boyutları 40-200 mikron büyüklüğe ulaşır. Etrafları folikül ile tamamen çevrilidir. * - Vitellogenesis başlamıştır. Yumurta çapı 200-350 mikron arasındadır. Lipoid maddelerin stoplazma içinde birikimi başlamıştır. * - Stoplazma lipoid damlacıklarla doludur. Vitellogenesis hızlanmıştır. Yumurta büyüklüğü 300-350 mikron arasındadır. * - Yumurta sarısı tabakası lipoid damlasının ikinci halkanın oluşmaya başladığı yer olan hücre kenarına doğru iter. Çekirdek içi maddeler protein sentezinde ve besin maddesi birikiminde rol oynayan çekirdek içi maddelerin çekirdek zarına yapıştığı görülür. Yumurta çapı yaklaşık 600 mikrondur. Vitellogenesis tamamlanmıştır. Yumurta çapı 700-800 mikron arasındadır. Çekirdek içi maddeler merkeze doğru çekilmeye başlamıştır. Mikropil deliği bu dönmede oluşmuştur. Yumurta değişime uğramaksızın birkaç hafta bu durumda kalır. Uygun şartlar sağlandığında folikül tekasındaki kasların kontraksiyonu ile ovulasyon meydana gelir. Eğer biotik ve abiotik şartlar uygun değilse foliküllerin deformasyonu ile yumurtaların emilimi ortaya çıkar. Testislerin oluşumu içerisinde (Bkz. 3.1.) spermlerin gelişimi spermatogoniumların aktif olarak testis kanalları duvarlarında çoğalması ile başlar. Önce spermatogoniumlardan primer spermatozittler, onlardan da sekonder spermatozitler meydana gelir. Testiküller kanal boşluklarında toplanan ve burada uygun koşullar oluşuncaya kadar bekleme pozisyonuna giren spermler gonadotropin etkisi ile döl vermeye hazır hale gelirler. Anaçlar ve Yumurtlama Anaç olarak 2-6 yaşındaki çipuralar kullanılır. Anaç olabilecek bireyler genç dönemlerinde seçilerek büyütülebileceği gibi doğal ortamdan olta ve pareketa ile yakalanabilirler. Anaçlardan yumurta doğal şekilde serbest ve müdahaleli (Hormon Uygulamalı-Dekalaj) olarak sağlandığı gibi kullanılmamakla birlikte sağım yöntemi ile de alınabilir. Yetiştiricilik ortamında tutulan erkeklerde spermatogenezis tamamlanmış olmasına rağmen, dişilerde oositler sadece vitellogenezis’in son safhasında gelişme gösterdiğinden ve sonra hızlı bir atresiye (dejenerasyon) uğradığından doğal ortamdan yakalanan anaçların kullanılması daha iyi sonuçlar vermektedir. Çipura dişileri ardışık yumurtlarlar. Vücut ağırlığının her kilogramı için ortalama 20.000-30.000 adet yumurta verecek şekilde 3-4 aylık periyotta hemen hemen her gün yumurta verirler. Böylece çipura dişilerinin fekonditeleri sezonluk her kg vücut ağırlına karşılık 2-3 milyon yumurtaya ulaşabilir. Anaçlar 4-7 m3' lük tanklara yoğunluğu 10-15 kg/m3 olacak şekilde stoklanır. Mevsim dışı yumurta elde etmek için tanklar, ışıklandırmanın ve sıcaklığın kontrol edilebileceği sistem ile donatılmalıdır. Stoklamada dişi erkek oranı anaç balığın durumuna göre 1:1, 1:2 veya 2:3 kg olacak şekilde ayarlanır. Balıklar günde 1-3 kez vücut ağırlığının (kg) %1-1.5’u kadar kalamar etine dayalı kuru pelet yemle beslenmelidir. Bunun yanı sıra taze midye sübye ve kalamar etleri ile de beslenebilirler. Verilen yemler %50-55 protein ve %10-15 deniz orjini canlıların yağlarından oluşmalıdır. Yağlar en az %5 n-3 HUFA içermeli ve temel olarak 22:6n-3 (DNA) tipinde olmalıdır (Zohar ve diğ., 1995). Bu diet yumurtlamaya başlamadan en az 1-2 ay önce anaçlara verilmelidir. Su sıcaklığı yumurtlama döneminde 16-18°C arasında tutulmalıdır. Spermatogenesis erkeklerde tamamlandığında, dişilerin çoğunda oositlein olgunlaşması ve yumurta atılması için gerekli hazırlıklar devam etmektedir. Spermotogenez ve oogenez arasındaki bu fark hormon kullanımı ile oositlerin gelişim hızlandırılarak kapatılabilir. HCG hormonunun çipuralarda bağışıklık sistemini harekete geçirdiği, bu yüzden çipuranın olgunlaştırma gonotrophini için homolog radioimmunoussay (RIA) sistemi ile ölçüm teknikleri geliştirilmiştir. RIA kullanıldığında görülmüştür ki dişi çipuraların yetiştiricilik ortamında yumurta vermemesinin nedeni Gth’ın hipofizde birikmesine rağmen kan dolaşım sistemine girmemesidir. Bu olay yumurtlamanın başlaması için gonadotropin releasing hormonlarının (GnRH veya GnRHa) kullanılabileceğini göstermiştir. Bunun sonucunda çalışmalar polypeptitler ve proteinlerin yeni polymer tabanlı üretimleri üzerine kaymıştır. Bu sistemler çipuralar üzerinde uzun Gth salgısı ve başarılı bir yumurtlama için çok etkilidir (Gordin ve Zohar, 1978, Zohar ve Gordin, 1979, Zohar ve ark., 1989a, 1989b, 1990a). Çipura balıklarında yapılan çalışmalarda HCG 800-1500 IU/kg, GnRH 1-20 mgr/kg olacak düzeyinde kullanılmaktadır. Çipuralarda 1 mgr/kg olacak şekilde yapılan hormon uygulamasının yumurtlama periyodunu uzattığı, anomaliyi azalttığı, 7.5 mgr/kg tek enjeksiyon GnRH uygulamasının dişilerde %80 üzerinde yumurtlamanın teşvikini sağladığı tespit edilmiştir. Çevresel koşulların optimum olarak sağlanması ile birlikte, yumurtlama tüm yıl boyunca elde edilebilmektedir. Yumurtlama, hormon uygulamasından 48-72 saat sonra başlar. Hormon uygulamasından sonraki birkaç gün içinde, günün farklı zamanlarında yumurtlama meydana gelebilir. Yumurtlama başladıktan sonra yaklaşık 1 hafta içinde populasyon içindeki dişilerin yumurtlama zamanı aynı döneme rastlamaktadır. Yumurtlama genellikle gün batarken ve 24 saat aralıklarla olur. Yumurtlayacak populasyon strese karşı çok hassas olduğundan yumurtlama süresince stres faktörleri ortada kaldırılmalıdır. Yumurtlama sezonu süresince oositlerin bir kısmı vitellogenesis safhasına başlarken diğer bir kısmı vitellogenesisin son safhalarını geçirir. Bu yüzden vitellus maddesi yılın birkaç ayında yumurtalıklarda devamlı olarak bulunmaktadır. 3-4 aylık yumurtlama periyodu süresince, dişi çipuralar vücut ağırlığı başına toplam 0.5-2 kg. yumurta bırakır ki bu değer vücut ağırlığının 0.5-2 katına eşittir. Bu uzun ve zor yumurta üretimi sadece yüksek kaliteli ve enerji veren besinler tarafından desteklenebilmektedir. Çipura anaçlarına verilen besinin içeriği, yumurta ve larvalarının kalitesini direkt olarak etkiler. Canlı yumurtaların kalitesi fekondite, yağ damlası sayısı, larva çıkış oranları ve normal larvaların yüzdesi ile ortaya çıkar ki bu durum ancak anaçların kaliteli yemler ile beslenmeleriyle mümkündür. Yumurta Özellikleri ve Embriyolojik Gelişim Canlı yumurtalar ortalama 0.9-1 mm çapında ve saydamdır. Normalde tek yağ damlası içeren yumurtaları pelajik özellik gösterir. Koryon şeffaf ve ince olup mikropil deliği yaklaşık 14 mikrondur. Cansız ya da döllenmemiş yumurtalar birkaç saat içinde opak renge dönüşür ve tankın dibine çöker. Yumurtlama tankından canlı yumurtaları toplamak için tekli ve çiftli reküparatör sistemleri kullanılabilir. Çiftli sistemde ilk kollektöre atık maddeler toplanır. Buradan geçen su diğer kollektörde bünyesinde bulundurduğu canlı yumurtaların toplanmasını sağlar. Temin edilen yumurtalar alındıkları ortamla aynı sıcaklıktaki inkübatör tanklarına yerleştirilmelidir. Sıcaklık farkı ±0.5 0C dereceyi geçmemelidir. İnkübasyon sıcaklığı 16-18 0C arasında olmalıdır. İnkübatörlerde doğal deniz suyu tuzluluğu kullanılmalıdır. Yumurtalar inkübatörlere ortalama 1500-2500 adet/lt olacak şekilde konulur. İnkübasyon süresince ışık kullanılmaz. İnkübatörlerin bulunduğu tanklarda saatte %40-60 su değişimi uygulanır. Ortam karanlıktır. Çipura yumurtalarının 18 0C embriyolojik gelişimleri Tablo 1'de verilmiştir (Alpbaz, 1990). Çipuralarda Prelarval ve Postlarval Dönem Çipura prelarvaları, yumurtadan çıktıklarında yaklaşık 2.6-2.8 mm boydadırlar. Vitellüs kesesi çapları ise 0.9-1 mm’dir. Vitellüs kesesinin posteriorunda 0.2-0.22 mm çapında bir yağ damlası bulunur. Ağız ve anüs kapalıdır. Baş vücuda oranla küçük, gözler büyük ve pigmentsizdir. Pigmentasyon sarı ve siyah olup sarı pigmentler başta birkaç tane, post-anal ve medio-ventralde bir sıra olarak bulunur. Vitellüs kesesi baş kısmının altında, su geçirmez bir zar ile sıkışmıştır. Yüzgeçlerden yalnızca pektoral yüzgeç bir taslak halinde önceleri yatay sonra dikey konumlu olarak 3. günde oluşur. Tek yüzgeçlerin yerine başın üstünde başlayan ve tüm vücudun medio-dorsali boyunca uzanıp kuyruk uçundan medio-ventrale dönüp vitellüs kesesine kadar uzanan primordial yüzgeç bulunur. Bu yüzgeç larvanın yüzeyini genişletip su üstünde kalmasını ve O2 ihtiyacını karşılar. Denge organı olan otositler gözlerin arkasında olup, burun delikleri tam gelişmemiştir. Sindirim sistemi düzensiz olmakla beraber, sindirim sistemi düz bir boru şeklindedir. Pankreas ve karaciğer oluşmuş fakat salgı bezleri ve lipit rezervleri mevcut değildir. Ağız açılmadan önce vitellüs kesesinin çoğu absorbe edilir. Prelarvalarda boydaki toplam artış ile vitellüsün azalması çok yakından ilişkili olup sıcaklığın etkisi altındadır. Çabuk tüketilen vitellüs boyda ani artış yaratmasına rağmen larva için iyi değildir. Düşük sıcaklıkta vitellüs absorbsiyonunda boy geç uzamakla birlikte toplam boy artışı fazla olmaktadır. Bu dönemde larvanın hareketinin az olması enerji tüketimini düşürür ve harcanan enerji larvanın organel gelişiminde kullanılır. Çok düşük sıcaklıklarda ise larva vücudunda deformasyonlar görülür. Larvanın ağız-anüsünün açılması ve gözlerde pigmentasyonun meydana gelmesi ile postlarval evre başlar. Hava kesesi oluşumu dördüncü günden itibaren gözlenebilir. Kesenin normal gelişiminin ilk safhası larva beş günlük ve 4 mm boyda iken meydana gelir. Eğer şişme gerçekleşmezse kese ilkel görünümünü korur ama fonksiyonel olmaz. İkinci gelişim safhası 13-15. günlerde yaklaşık 7-8 mm boyda meydana gelir (Chatain,1989b, Chatain ve Guschemann, 1990). Larva 5-6 mm boya ulaştığında preoperküler dikenler görülür. 7-8 mm boy uzunluğuna erişildiğinde önce kaudal, sonra dorsal ve anal olmak üzere tek yüzgeçler oluşur. 13 mm boyda yüzgeçler son şeklini alır. Bu dönemde melanaforlar tüm vücutta yatay siyah bantlar oluşturacak şekilde toplanır. Çipura Larva Yetiştirme Dönemleri Yumurtaların embriyolojik gelişimini tamamlayıp larvaların çıkması ile birlikte larva yetiştiriciliğide başlar. Larva yetiştiriciliği biyotik, abiyotik ve yabancı biyotik faktörlerin kontrol altına alındığı akuakültür tesislerinde yapılmaktadır. Larval Dönem Çipura prelarvaları yoğun üretim koşullarında 80-100 adet/lt olacak şekilde tanklara yerleştirilir. Tanklar silindir-konik yapıda olup polyester veya fiberglas malzemeden üretilmiştir. Hacimleri 2m3’ten 15 m3’e kadar değişim gösterebilir. Bu tankların seçimi üretim kapasitesi ve uygulanacak larva yetiştirme tekniği ile ilgilidir. Su sıcaklığı 16-18 0C olup ortam karanlıktır. Oksijen değeri 5-6 mg/lt dir. Su girişi alttan, çıkışı ise üsttendir. 16-18 0C su sıcaklığında çipuralarda prelarval dönem 3. günde sona erer ve postlarval dönem başlar. Çipura larva yetiştiriciliğinde açık devre ve kapalı devre sistemler kullanılmaktadır. Bunun yanı sıra değişik hacimlerde İngiliz tekniği olarak ta adlandırılan alg kullanımına dayalı yeşil su tekniği uygulanmaktadır. Açık devre sistemlerde su kriterleri larvanın gerek duyduğu şartlara göre ayarlanır ve üretim tanklarına gönderilir. Yeşil su tekniği uygulandığında bu tanklara verilen debi oranları azaltılmalıdır. Bu teknikle yazın planlanan üretimlerde debi azlığına bağlı olarak tanklardaki suyun ısınmasının engellenmesi için ortamın soğutulması gereklidir. Aksi halde alg bozulmaları ortam suyunun amonyak dengesini bozarak kitlesel ölümlere neden olur. Çipuralar larval dönemde çok hassas bir üretim çalışması istediğinden su değişimlerindeki dalgalanmaların minimum düzeyde olması istenir. Bunun için hem enerji yönünden tasarrufun sağlanması hem de üretim kalite ve kantitesinin arttırılması için kapalı devre sistemlerin kullanılması gereklidir. Kapalı devre sistem tankların da larvalar tarafından kullanılan su önce toplama tankına gelir. Burada istenilen özellikte ve gerekli miktarda taze su yenilenmesi yapıldıktan sonra, mekanik temizlik için kum filtresine geçer. Beraberinde getirdiği süspansiyon haldeki partikül maddelerden ayrılan su ultraviyole filtreye gönderilir. Ultraviyole filtreden geçen su bu sırada bünyesindeki tüm canlı organizmalardan (bakteri, mantar, parazit, bazı virüsler vs.) temizlenerek biyolojik filtreye girer. Balık dışkıları, yem atıkları ve ölü balıklardan dolayı yükselen amonyak miktarını normal düzeye indirilmesi bu aşamada aerobik bakteriler tarafından yapılır. Amonyak önce nitrite daha sonrada balıklar için zararlı etkisi olmayan nitrata indirgenir. Bu aşamalardan geçen su havuzlara geri dönmek üzere sistemi terk eder. Biyolojik filtre çıkışında 1.2-1.8 mg/lt’ye düşen sudaki oksijen miktarını 5-6 mg/lt’ye ulaştırmak ve bünyesinde getirdiği azot gazı fazlasını atmak için saturasyon kolonları kullanılmalıdır. Saturasyon kolanlarının içerisine havalandırma sistemleri de kurulabilir. Bazı kapalı devre sistemlerin kurulmasında ultraviyole filtreler biyolojik filtrelerden sonra kullanılsa da havuzlarda gelişen patojen veya patojen olmayan mikroorganizmaların biyolojik filtrelere yerleşerek zaten zayıf yapıda olan aerobik bakterilerin yerini alması sistemin çalışmasını olumsuz etkiler. Kapalı devre sistemler, suyun ısıtılmasında veya soğutulmasında kullanılan enerji açısından avantajlıdır (Timmons ve Losordo, 1994). Bunun yanı sıra kapalı devre sistemlerde, özellikle çipura gibi zor bir larva dönemi geçiren türlerin üretiminde suyun fiziksel ve kimyasal değişimleri ani farklılıklar göstermez. Kapalı devre sistemlerde suyunun her gün analizleri yapılarak amonyak miktarı kontrol edilmelidir, aksi halde ani ve kitlesel ölümler ile karşılaşılır. Çipura larva yetiştiriciliği çalışmalarında kullanılan su sıcaklık aralığı 18-22 0C arasında değişim göstermiştir. Su sıcaklığı ilk 15 günlük dönem içerisinde 18-20 0C arasındadır. Sıcaklık 15. günden itibaren arttırılarak 22 0C’ye getirilir ve larval dönem sonuna kadar bu sıcaklık değeri korunur (Tablo 2). Levrek larva yetiştiriciliğinde uygulan tuzluluk düşürme tekniği çipura larva yetiştiriciliğinde uygulanmamaktadır. Oksijen değeri 5-6 mg/lt dir. Su girişi ilk 10 gün tank dibinden daha sonra tank yüzeyinden yapılır. Larvalar ağız ve anüsün açıldığı postlarval evreye kadar karanlıkta tutulur. 18 0C su sıcaklığında çipuralarda prelarval dönem 3. günde sona erer ve postlarval dönem başlar. 2. günde tankların üzerinde biriken yağ tabakasının temizlenmesi için yüzey temizleyicileri tank yüzey genişliğine göre 1 veya 2 adet olacak şekilde yerleştirilir. Bu hava kesesinin ilk dolumu için çok önemlidir. Aydınlanma süresi ve yoğunluğu larvaların gelişimini, hava kesesi oluşumunu, ve yaşama oranının etkiler. Larvaların gelişimi artan aydınlatma koşullarında yükselirken, sürekli aydınlatma balıkların yaşama gücünü düşürür. Larva tanklarına ağız açılana kadar ışıklandırma uygulanmaz. Işıklandırma süresi ve şiddeti 3.günde 3 lüks, 4.günde 30-50 lüx, 5-10. günde 600 lüx, 11. günde ve sonrasında 1500 lüx olarak ayarlanır. Aydınlatma süresi ilk gün 12 saat olup daha sonra 24 saat ışıklandırma uygulanır (Equip Merea, 1987). Henüz yoğun üretimde kullanılmamakla birlikte 12-14 saat arası ışıklandırma süresi ve ‰30-32 arası tuzlulukta larva üretimlerin yaşama oranlarına olan etkileri çalışılmaktadır. Çipura larval dönem beslemede rotifera (Brachionus plicatilis) ve artemia (Artemia sp.) kullanılır. Bunun yanı sıra larva tanklarına alg uygulaması yapılmaktadır. Alg uygulaması ortama verilen rotiferlerin canlılığını koruduğu gibi, ortamın pH dengesini sağlaması ve larvaya loş bir ortam yaratması açısından önemlidir. Bunun için Chorella ve Nannochloropsis sp türü algler ml’de 5-7x105 hücre yoğunluğunda kullanılabilir. Çipuraların ağız açıklığı küçük olduğundan (?100 μ) larva beslemede small tip rotiferler kullanılmalıdır. Bu rotiferlerin boyutları 40-80 mikron arasında değişim gösterir. Larvalara 3-5. günler arasında 15 adet/ml, 5-12. günler arasında 10-12 adet/ml, 12-15 günlerde 8-10 adet/ml, 15-20. günlerde 6-8 adet/ml, 20-30. günlerde 4-6 adet/ml ve 30-35. günlerde 2 adet/ml rotifer ile besleme yapılır. Çipuralara ancak 15 günden itibaren artemia nauplii ile beslenecek büyüklüğe ulaşırlar. Dünya üzerindeki rezervleri tükenmekle beraber Venezüella orjinli artemia yumurtalarının kullanımı, nauplilerin boyutlarının küçük olmasından dolayı larva yaşama oranını arttırır. Günümüzde aquakültür tesislerinde yoğun olarak kullanılan ve Artemia Systems’in üretiği AF tip artemiaları ile besleme yapılmaktadır. Kullanılan AF tip artemiaların nauplii boyları yaklaşık 480 μ, enleri ise 165-175 μ arasında olup 10 mg/gr’dan daha fazla miktarda HUFA içerirler. Yumurtadan çıkan naupliilerin protein oranları %48-52, yağ oranları %19.3-21, karbonhidrat oranları %12-13, kül miktarları %8.1-8.7 ve nem oranları %4.8-5.2 arasında değişim gösterir. 30. günden sonra kullanılan EG tip artemialar ise daha düşük oranda protein miktarına (%45-47) ve daha az doymamış yağ asitleri (5-7 mg/g HUFA) oranına sahiptirler. Ayrıca boyutları daha büyük olup boyları 500-520 μ, enleri ise 175-190 μ arasındadır. Levrek larva yetiştiriciliğinde kullanılan EG1 formları boyca (740-780 μ) ve ence (225-240 μ) büyük olduğundan çipura larval dönemde kullanılmaz. Bu formlar sövraj döneminde kullanılmaktadır. Artemia nauplii 15-20 günler arasında ortama 0.5 adet/ml, 20-25. günlerde 1 adet/ml ve daha sonrada 40. güne kadar 2 adet/ml olacak şekilde verilir. Larval dönem sonunda uygulanan yetiştirme tekniklerine göre başarı oranı % 3-27 arasında değişim gösterir. Tablo 2’de alg tekniği uygulamalı larval dönem çipura yetiştirme protokolü verilmiştir. Sövraj (Mikropartikül Yemlere Geçiş) Dönemi Larval dönemim tamamlanması ile birlikte 40-42 günler arasında larvalar canlı yemden mikropartikül yeme adapte olacakları sövraj bölümüne alınırlar. 40 günün sonunda larval yetiştiriciliği biten larvaların karma yemlere adaptasyonu için kullanılan bu bölümde işletmenin kapasitesine göre belirlenmiş sayıda 10-15 m³ lük tanklar kullanılır. Tankların dip kısımları koniktir olup silindir yapıdadır. Tankların iyi dizayn edilmesi ve yeterli hacime sahip olması balıkların tanktaki pozisyonunu, yem tanktaki dağılımını, yem alımını ve su sirkülasyonunu etkilemesi açısından önemlidir. Tankların iç kısmı gel-coat kaplı olup bu yüzey sayesinde mikroorganizmaların kolonileşmesi engellenebilir. Sövraj bölümleri de istenildiği taktirde kapalı devre sistem kurularak çalıştırılmaktadır. Fakat bu bölümde su debisinin fazla olması, kullanılan yemin su kalitesini çabuk bozması, larvanın ürettiği azotlu bileşiklerin oranının artması ve hastalık riskinin yüksekliğinden dolayı açık devre sistemler bir çok tesiste tercih edilmektedir. Su çıkışları merkezi ve diptendir. Balıkların yaşına bağlı olarak su çıkışlarına yerleştirilen krepinlerin göz açıklıkları 500µ,1000µ ve 2000µ arasında değiştirmektedir. Havuzlarda 1500-2000 lüx aydınlatma uygulanır. Ünitede aydınlatma süresi 16 saat olup otomatik olarak zamanlayıcılar yardımıyla ayarlanmaktadır. Mikropartükül yeme alıştırma dönemi, balıkların 25-30 mg ağırlığa ulaştıkları 40-42 günlerde başlar. Bu dönemde havuzlardaki balık yoğunluğu litrede 10-12 adettir. Saf oksijen kullanıldığı durumlarda bu oran 18-20 adet/lt kadar çıkabilir. Bu dönem beslemede kullanılan artemia HUFA bakımından zenginleştirilmelidir. Bunun için EG tip artemia naupliileri 24 saat boyunca SELCO türevli zenginleştirici maddeler ile beslenerek büyütülür. SELCO ürünleri yüksek oranda HUFA (200 mg/gr), vitamin, antioksidan ve yağ (%60-65) içerirler. 24 saat sonunda metanauplii formuna gelen artemiaların boyutları 740-780 μ, enleri ise 225-240 μ arasında değişim gösterir (Artemia Systems, 1991). Sövraj sırasında kullanılan mikropartikül yemler ise % 56-64 ham protein, % 11-12 ham yağ, %11.4-11.7 kül, 5 1.4 ham selüloz, % 10 nem ve yeterli miktarlarda vitamin-mineral madde içermelidir. Mikropartikül yemler 80 mikron büyüklükten başlayarak larva gelişimine göre kullanılır (Tablo 3). Çipuralar levreklere oranla daha hızlı mikropartikül yeme adapte olabilmektedirler. Sövrage uygulaması 10-12 gün devem eder. Larvalara verilen günlük artemia miktarı azaltılırken mikropartikül yem oranı arttırılır. Bu dönemde besleme oranı %8-10 arasındadır Çipuralar aşırı kanibalistik özellik gösterdiklerinden dolayı ortamda mutlaka yeterli miktarda yem bulunmalı ve balıklar sürekli boylanmalıdır. Sövraj bölümünü terk etmeye hazırlanan larvaların ağırlığı 300-350 miligrama ulaşır. Sövraj boyunca su sıcaklığı 20-22 0C olup tanklarda su debisi %50-100 arasında değişim gösterir Çipuralar sövraj dönemine daha çabuk ve hızlı adapte olmaktadırlar. Larva yaşama oranı sövraj başarısına göre % 85-95 arasındır. Sövrajı tamamlayan balıklar ön büyütme ünitesine alınarak burada doğal deniz suyu ortamına adapte edilirler (Divanach ve diğ., 1986, France Aquaculture, 1987, Çörüş, 1993). Ön Büyütme Ön büyütme ünitesinde kullanılan tank özellikleri sövraj bölümü ile aynıdır. Bu bölümde açık devre su sistemi kullanılmaktadır. Gelişim özelliklerine göre 60-70 günlerde sövraj ünitesini terk eden yavrular boylarına ayrıldıktan sonra ön büyütme ünitesine alınırlar. Ayrıca boylama sırasında hava keseli ve hava kesesiz bireylerde birbirinde ayrılır (Chatain ve Corrao, 1992). Bu bölümde ağ kafeslere çıkarılmak için gerekli olan 1.5-2 gram ağırlığa kadar büyütülürler. Ancak ülkemiz koşullarında yavru bireyler 0.5-1 gram arasında da kafes sistemlerine çıkarılmaktadır. Ön büyütme ünitesinde de balıklar sürekli gözlenmeli ve kanibalizmin engellenmesi için sık sık boylama yapılmalıdır. Balıklara verilen su sıcaklığı 20-22 0C olup 16 saat ışıklandırma uygulanır. Yemleme otomatik yemlikler ile yapılmaktadır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Tanklara 3000-5000 adet/m3 arasında yavru stoklanabilir. Su değişimi balık büyüklüğüne ve stok yoğunluğuna göre saate %50-150 arasında değişmektedir. Yemleme oranı %7 başlayıp %3 kadar düşme gösterir (Tablo 3). Yaşama oranı hastalık çıkmadığı süre içinde %90-95 arasındadır. Büyütme Kuluçkahanelerden ve özellikle ülkemizde doğal ortamdan temin edilen çipura yavruları porsiyonluk boyuta getirilmek üzere karasal ve denizel ortama kurulan yetiştirme sistemlerde farklı teknikler kullanılarak büyütülür. Bunlar içinde en çok kullanılanı yarı entansif ve entansif yetiştirme yöntemidir. Şu anda ülkemizde ekstansif yöntem Avrupa ülkelerindeki düzeyde değildir. Özellikle Bodrum ve Savran bölgelerinde yarı entansif üretim yapan çipura işletmeleri mevcuttur. Ekstansif Yetiştirme Yöntemi Bunun için açık denizden, kıyısal bölgelerdeki lagünlerden ve denize bağlantısı olan acı su birikintilerinden faydalanılır. Açık denizlerde yapılan yetiştiricilikte genel olarak deniz yosunları ve yumuşakçaların üretimi yapılmaktadır. Kıyı bölgedeki lagüner alanlarda ise başta çipura, levrek, kefal ve yılan balığı gibi türlerin yetiştiriciliği yapılır. Yavrular ilkbahar dönemlerinde barınmak ve beslenmek üzere lagüner alanlara girerler. Bu dönem içinde bir çok zoo ve fitoplanktonun yanı sıra küçük balık, karides yavruları mamun, sülines, midye ve akivades ile beslenirler. İzmir Körfez bölgesi dalyanlarına 2-10 gram ağırlıkta giren çipuralar, sonbaharda 80-120 gram ağırlığa ulaşırlar. 100 gram ağırlıkta girenler ise 200-300 gram ağırlığa kadar ulaşabilirler. Bu ağırlık artışları dalyan sahasının verimliliği ile ilgilidir. Çipuralar kış aylarına doğru dalyan sahasının soğuması ile daha sıcak olan derin sulara kaçma eğilim gösterirler. Deniz ile bağlantılı noktalara kurulan kuzuluk sistemlerinden yakalanan bu bireyler pazara sunulacağı gibi, canlı olarak yakalanıp toprak havuz ve ağ kafes sistemlerinde de büyütülebilir. Ekstansif yetiştiricilikte beslemeye ve çevre şartlarının kontrolüne ihtiyaç duyulmaz. Ancak bu alanlar kendi içinde parsellenerek derinleştirilebilir ve su değişimi sağlanabilir. Özellikle İtalya sahillerinde yoğun olarak valikültür adı verilerek yapılan bu teknikte dışarıdan besin takviyesinde de bulunulmaktadır. Böylece küçük boylarda dışarıya kaçarken yakalanan yavrular kışlatılarak ağırlık kazanmaları sağlanmaktadır. Bu sistemlere dışarıdan da yavru takviyesinde bulunulur. Ekstansif lagün yetiştiriciliğinde 80-100.000 hektarlık alanlarda bir senede türlere göre 100-500 kg/hektar ürün elde edilebilir. Yarı Entansif Yetiştirme Yöntemi Bu sistem havuz yetiştiriciliği olarak ta adlandırılır. Genellikle balık ve eklembacaklıların yetiştiriciliğinde kullanılır. Bu sistemde toprak ve beton havuzların yanı sıra portatif yapıdaki polyester veya polymerden yapılmış branda havuzlardan yararlanılır. Ayrıca kıyısal alanlar ağ ile çevrilerek üretimde yapılmaktadır. Bu sistemlerde günlük su değişimleri kontrol altında olup ürün miktarının arttırılmasında oksijeneratörlerden yararlanılır. Toprak havuzlarda ise son yıllarda jeo-membran sistemi uygulanmaktadır. Su debisinin artırılmasına bağlı olarak bu sistemlerden stok yoğunluğu arttırılarak entansif amaçlı olarak ta yaralanılabilir. Ancak sistemde meydana gelecek aksaklıklar üretimi olumsuz etkiler. Bu yüzden stoklama yoğunluğunun düşük tutulmasında fayda vardır. Stok yoğunluğu beton havuzlar, brandalı havuzlar ve iç kısmı jeo-membran kaplı küçük hacimli toprak havuzlarda 2-5 kg/m3 arasındadır. Büyük yapıdaki toprak havuzlardan 1-4 ton/hektar ürün edilebilir. Entansif Yetiştirme Yöntemi Dünyada ve ülkemizde yoğun olarak kullanılan bu yöntemde yüzer ağ kafes sistemlerinde yetiştiricilik yapılmaktadır. Akuakültür çalışmalarının gelişmesine paralel olarak birim alandan daha çok verim almayı sağlaması acısından su içerisinde yetiştirme sistemleri geliştirilmiştir. Günümüzde kıyısal alanlarda, açık denizlerde ve okyanuslarda bile güvenlik içinde kurulabilecek sistemler planlanmaktadır Günümüzde kıyı ötesi kafeslerde 2500-6000 m3' arası değişen hacimlerde tek bir sistemde yıllık 150 ton üretim yapılabilmektedir. Bu sistemlerde su kalitesinin kıyısal bölgelere göre çok daha iyi olması, işletmenin kendini ve başkalarını kirletme etkisinin az olması, birim alana daha yoğun stoklama imkanının olması, daha hızlı balık gelişiminin sağlanması, uzun vadede ekonomik olması ve yüksek kapasite balık stoklanabilmesi gibi özellikler bu sistemleri çekici hale getirmektedir (Özden ve diğ., 1998). Kafes sistemlerinde sabit kafesler, yüzer kafesler, dalgıç kafesler ve döner kafesler kullanılmaktadır. Ağ kafeslere kurulduğu yerin özelliklerine ve su kalitesinin durumuna göre 15-30 kg/m3 arasında stoklama yapılabilir. Balıkların hızlı şekilde gelişimi için besleme teknikleri ve su sıcaklığı önemli rol oynar. Besleme rejimlerinde yem kalitesinin yanı sıra balıkların ağırlıkları ile su sıcaklığı arasındaki ilişki dikkatli takip edilmelidir. Bu dönemde kullanılan yemlerdeki protein %46-52, selüloz %2-4, ham kül %12-13, ham yağ % 10-11, kalsiyum % 1.4-2.2, ve fosfor %1.15-1.5 arasında değişim göstermelidir. Bunun yanı sıra vitaminler ve iz elementler yeterli miktarda kullanılmalıdır. Tablo 4'te çipura balıklarının ağırlıklarına göre 16-25 C'de besleme oranları ve balıkların konulması gereken ağ göz açıklıkları verilmiştir. Kafeslerde düğümsüz ağ kullanılması solungaç takılmalarının engellenmesi, pul dökülmesi ve vücutta meydana gelen çizilmelerin önlenmesi için faydalıdır. Ege Bölgesi koşullarında 4 aylık süreyi akuakültür tesislerinde geçiren çipura yavrularının ağ kafeslere çıktıktan itibaren 12-14 aylık sürede 3-4 gram ağırlıktan 350-400 gram ağırlığa ulaşmaktadırlar. Bu süre ve ağırlık artışı yetiştirme ortamının ekolojik şartlarına, kullanılan yemin içeriğine, balık stok yoğunluğuna, hastalık etkenleri ve larva kalitesi göre değişim gösterebilir. SONUÇ Çipura larva yetiştiriciliğinde günümüzde halen istenilen yaşama oranları sağlanamamıştır. Oldukça zor ve hassas bir üretim tekniği isteyen çipuraların başarı oranın arttırılmasında; ortam suyunun fiziko-kimyasal yapısının sürekli kontrol edilmesi, ani değişimlerden kaçınılması, yumurtaların temininde pestisitlerden, metalik iyonlardan, hipoklorid ve diğer kirliliklerden arındırılmış ortamlar yaratılması, hormon uygulamalarına dikkat edilmesi ve canlı yumurtaların inkübasyona alınmadan önce dezenfekte edilmesi, yumurta ve larva stok yoğunluğunun optimum oranlarda tutulması, ani abiyotik değişimlerden ve mekanik şoklardan kaçınılması, larval aşamada ışık yoğunluğunun çok iyi ayarlanması, postlarval döneme geçmeden önce tank yüzeyinde biriken yağ tabakasının yüzey alanı hesaplanarak hava süpürgeleri ile ortamdan uzaklaştırılması, 12-14 günler arasında ortam şartlarında değişim olmadan bazı larva tanklarının yaşama oranları diğer tanklardan önemli oranda düşük ise bu tankların klorlanarak iptal edilmesi, hava kesesi gelişimi süresince su şartları ve ortam düzeninde ani değişimler olmaması, larvalara verilen canlı yem kaynakları olan rotifera (Brachionus plicatilis) ve artemiaların (Artemia sp.) gerekli yağ asitleri ve vitaminler ile zenginleştirilmesi, larva tanklarına uygulanan debinin larva yaşı ile doğru orantılı olarak arttırılması, debi hesaplarının yapılmasında larva hızı ve direncinin göz önüne alınması, özellikle hava kesesinin fonksiyonel olmamasına bağlı olarak deformasyona uğrayan larvaların 70-80. günlerde birbirinden ayrılması, bu ayırma tekniklerinin yavrular ağ kafeslere gönderilmeden önce mutlaka yapılması, hastalık etmenlerine karşı gerekli önlemlerin alınması, içerik yönünden yüksek besin değerine sahip yemlerin sövraj, ön büyütme ve büyütme dönemlerinde kullanılması başarının arttırılmasında yararlı olacaktır. Tüm bu koşullar yerine getirilmeye çalışılsa da üretimin çeşitli safhalarında değişik sorunlarla karşılaşılacaktır. Geliştirilen üretim tekniklerinin takibi ve ülkemiz koşullarına uygulanması sayesinde kalite ve kantite her geçen gün artacaktır. LİTERATÜR - Artemia Systems, 1991. User’s guide Artemia Systems N.V. Belgium - Alpbaz, A.G., 1990. Deniz Balıkları Yetiştiriciliği. Ege Üniversitesi Su Ürünleri Yüksekokulu Yayınları No. : 20. - Camus, P., Koutsikopoulos, A., 1984. Incubation experimentale et developpement embryonaire de la daurade royale Sparus aurata (L.), a differentes temperatures. Aquaculture, 42, 117-128. - Chatain, B., 1989b. Problems Related to the Lack of Functional Swimbladder in Intensiv Rearing of Dicentrarchus labrax and Sparus auratus. Advances in Tropical Aquaculture. 699-709. - Chatain, B., Guschemann, N., 1990. Improved Rate of Swimbladder on Mortality of Dicentrarchus labrax During Weaning. Aquaculture 78: 55–61. - Chatain, B., Corrao, D., 1992. A Sorting Method for Eliminating Fish Larvae without Functional Swimbladders. Aquaculture, 107. 81-88. - Chervinski, J., Chanin, Y. 1985. Gilthead sea bream (Sparus aurata L.) a candidate for culture in ponds- Laboratory experiments. Bamidgeh 37 (2), 42. - Conides, A., 1992. Effects of salinity on growth, food conversion and maintenance of young gilthead sea bream, S. auratus. PhD thesis, University of Athens, Greece, 185 pp. - Çörüş, İ., 1993. Fransa’ da Levrek (Dicentrarchus labrax) Balığı Larvası Haçeri Sistemleri. E. Ü. Fen Bil. Ens. - Divanach, P., Kentouri, M., Dewarrin, G. 1986. Sur le sevrage et l’ evolution des perfomaves biologiques d’ alevins de daurades, Sparus auratus provevant d’ elevage extensif, apres replacement des nourrisseurs en continue par des distributeurs libre service. - Equipe Merea, 1987. Maitrise de la Qualite des Alevins de loup (Dicentrarchus labrax) Produits en Elevage Intensif. La Pis. Française, 85: 17–23. - FAO,1987. Identification sheets for the Mediterranean and Black Sea.Fishing Area 37.1343-1375. - France Aquaculture, 1987. Elevage Larvaire du Loup en Conditions Intensives. Rapport Interne. Centre National D’ Aquaculture Monastır, 87.07, 1-23. - Freddi, A., Berg, L.,Bilio, M., 1981. Optimal salinity-temperature combinations for the early life stages of gilthead sea brea, Sparus aurata. J. World maric. Society 12, 130-136 - Gordin, H.; Zohar, Y., 1978. Induced spawning of Sparus aurata (L.) by mean of hormonal treatments. Annales Biologie Animale Biochimie Biophysique, 18, 985-90. - Özden, O., Güner, Y., Alpbaz, A. G., Altunok, M., 1998. Kıyı Ötesi Ağ Kafes Teknolojisi. E.Ü. Su Ürünleri Fakültesi Dergisi. Cilt:15 Sayı:1-2 - Tandler, A., Helps, S., 1985. The effect of photoperiod and water exchange rate on growth and survival of gilthead sea bream (Sparus aurata) from hatching to metamorphosis in mass rearing system. Aquaculture 48, 71-82. - Timmons, M.,B., Losordo, T.M., 1994. Aquaculture Water Resume Systems: Engineering Design and management. Elsevier Science B.V., New York - Zohar, Y., Gordin, H., 1979. Spawning kinetics in the gilthead sea bream, S. aurata L. after low doses of human chorionic gonadotropin. Journal of Fish Biology, 15, 665-70. - Zohar, Y., Harel, M., Hassin, S., Tandler, A., 1995. Broodstock Management and egg and larval quality.94-118. Editors: Bromage, R., Roberts, R. Blackwell Science Ltd. Cambridge UK. - Zohar, Y.; Billard, R.;Weil, C., 1984. La reproduction de la daurade et du bar: Le cycle sexuel et l’induction de la ponte. In aquaculture de bar et des Sparides, (eds R. Billard; G. Barnabe), pp. 3-24. INRA Press, Paris. - Zohar, Y.;Tosky, M.; Pagelson, G.; Finkelman, Y., 1989a. Induction of Spawning in the Gilthead Sea bream, Sparus aurata, using [D-Ala6-Pro9NET] –LHRH: Comparison with the Use of hCG. Israel Journal of Aquaculture, 4, 105-13. - Zohar, Y., Goren, A., Tosky, M., Pagelson, G., Liebovitz, D., Koch, Y. 1989b. The bioactivity of gonadotroin-releasing hormones and its regulation in the gilthead sea bream, Sparus aurata, in vivo and in vitro studies. Fish Physiology and Biochemistry, 7, 59-67. - Zohar, Y., Breton, B., Sambroni, E., Fostier, E., Tosky, M., Pagelson, G., Liebovitz, D. 1990a. Development of homologous radioimmunoassay for a gonadotropin of the gilthead sea bream, Sparus aurata. Aquaculture, 88, 189-204.

http://www.biyologlar.com/cipura-sparus-aurata-lin-1758-baligininbiyolojisi-ve-yetistirme-teknikleri

Mutasyon Örnekleri Nelerdir

1) Kılsız Köpekler Köpeklerde kıllar üzerinde etkili FOXI3 isimli bir gen bulunur. Science dergisinin Eylül 2008 sayısında yayınlanan bir makaleye göre (bkz: kaynaklar), kromozom 17 üzerinde bulunan bu gende meydana gelen 7 ekleme tipi mutasyon sonucunda eskiden kıllara sahip olan köpekler kıllarını dökmektedirler. FOX genlerinin memelilerde genel olarak embriyonik gelişimi kontrol ettiği bilinmektedir. 2) Atlardaki overo Geni Atlarda eşey hücrelerinin çalışmasından sorumlu overo isimli bir gende meydana gelen bir kromozomal büyütme (amplifikasyon) tipi mutasyon sonucunda doğan taylarda sindirim sistemi bozukluklarına rastlanır ve bu mutasyon sonucunda doğan tay kısa sürede ölür. Dolayısıyla bu mutasyon, hem kalıtsal mutasyonlara hem de ölümcül mutasyonlara örnektir. 3) E. coli Bakterisinde Laktoz Kullanımı E. coli bakterisi normal olarak laktozu parçalayamaz (laktoz intoleransı). Ancak Boston Üniversitesi'nden Prof. John Cairns ve ekip arkadaşlarının yaptıkları ve New Scientist dergisinde yayınlanan bir çalışma sonucu, Mu isimli bir bakteriyofaj (bakterileri enfekte eden bir virüs) kullanılarak genetik materyalde bulunan beta-galactosidase geninde meydana getirilen bir mutasyon sayesinde bakterilerin laktozu sindirebilmeye başladıkları ortaya çıkmıştır. Daha sonradan farklı yöntemlerle benzer deneyler tekrarlanmış ve aynı sonuçlara ulaşılmıştır. Bu da bakteriler açısından bir faydalı mutasyon örneği olarak karşımıza çıkmaktadır. 4) HIV (AIDS Virüsü) Direnci 2001 yılında yapılan bir araştırmanın sonucuna göre, insanlarda bulunan CCR5 isimli bir gende meydana gelen 32 silinme tipi mutasyon sonucu bu gen açısından homozigot bireylerde HIV direnci, heterozigotlarda ise HIV belirtilerinin ortaya çıkmasında gecikme meydana geldiği ispatlanmıştır. Bu, faydalı mutasyonlara bir örnektir. 5) Orak Hücre Anemisi Orak hücre anemisi, çoğumuzun bildiği üzere, vücudumuzda oksijen taşıyan hemoglobin molekülünde meydana gelen bir nokta mutasyon sonucunda, beta-globin genindeki tek bir Adenin'in Timin'e dönüşmesi sonucunda meydana gelir. Buna Tek Nükleotit Çokbiçimliliği (Single Nucleotide Polymorphism - SNP) denir. Bu mutasyon sonucu 6. pozisyondaki Glutamik Asit isimli bir aminoasit, Valine isimli bir diğerine dönüşür. Ancak ilginç bir şekilde, bu genetik bozukluğa heterozigot olarak sahip olan Sahara Altı Bölge'deki bireylerin, dişi sivrisinek ile taşınan sıtma (malaria) hastalığına dirençli oldukları keşfedilmiştir. Bu da faydalı mutasyonlara örnektir. Bazı bilim düşmanı evrim karşıtları bu konuyu "faydalı mutasyonlar"dan saymamakta ısrar etmektedirler, çünkü orak hücre anemisinin yeterince kötü bir hastalık olduğunu, dolayısıyla sıtmaya engel olsa da bir şeyi değiştirmeyeceğini ileri sürerler. Bu, onların ne kadar bilimden uzak bir yaşam görüşü olduklarını göstermektedir. Elbette ki orak hücre anemisi kötü bir durumdur, bir hastalıktır, tereciye tere satmaya çalışmanın anlamı yok, bunu herkes biliyor. Ancak bu hastalığa tarafsız olarak bakıldığında ve doğrudan etkileri incelendiğinde, sıtma gibi bir hastalığa yaklanmaya engel olduğu görülmektedir. Üstelik sıtma, Afrika'daki ilaç bulamayan insanlar için orak hücre anemisinden çok daha ölümcüldür. Kaldı ki burada mutasyonun etkileri incelenmektedir ve bu mutasyon, zaten bir olumsuzluk doğurmaktadır; ancak öte yandan faydalı bir etkisi de vardır, ölüm sürelerini sayısal olarak düşürmektedir. 6) E. coli Bakterilerinde Sıcaklık Değişimine Bağlı Evrim Bennett, Mittler ve Lenski'nin Evolution dergisinde yayınladıkları bir araştırmaya göre araştırmacılar 2.000 nesil boyunca 37 santigrat derecede yaşamaya uygun E. coli bakterisi yetiştirmişlerdir. Daha sonra bu popülasyondan 3 örnek popülasyon alınıp 32 derecede, 37 derecede ve 42 derecedeki ortamlara yerleştirilmiş ve bir 2.000 nesil daha geçmesi beklenmiştir. Bu nesillerin adaptif başarıları (evrimsel değişimleri) sürekli takip edilmiştir. İlk anda 32 dereceye bırakılan nesle göre, 2.000'inci nesil %10 daha adaptif başarıya sahip bireylerden oluşmuştur, yani popülasyon içerisinde yeni sıcaklığa yönelik bir evrim süreci gerçekleşmiştir. Benzer şekilde, 42 dereceye bırakılan ilk nesle göre, 2.000'inci nesil %20 daha başarılıdır. 37 derecede bırakılan bireylerde hiçbir adaptif değişim gözlenmemiştir. Bu durumun nesiller içerisinde meydana gelen mutasyonlara bağlı bir çeşitliliğin seçilmesinden ve birikmesinden kaynaklandığı tespit edilmiştir. Bud a faydalı mutasyonlara bir örnektir. 7) Chlamydomonas Cinsi Algde Karanlığa Adaptasyon Graham Bell isimli meşhur popülasyon genetikçisi (isim sadece bir tesadüftür, telefonu icat eden Bell ile alakası yoktur) fotosentetik bir alg olan Chlamydomonas ile çalışmıştır. Bu cins, aydınlıkta normal bir şekilde yaşayıp büyür. Ancak karanlıkta da, eğer ortamda asetat varsa, bunu karbon kaynağı olarak kullanarak büyümeyi sürdürebilir. Bell, birkaç yüz nesil bekleyerek hangi alglerin karanlıkta büyüme konusunda başarılı, hangisinin başarısız olduğunu tespit etti ve bunlardan örnekler alarak birbirlerinden ayırdı. Daha sonra karanlıkta büyüme konusunda başarısız olanları karanlıkta ve zorlu şartlarda bıraktı. Belli bir kırılma yaşandıktan sonra, popülasyonun normal yaşam süreci ve nesilleri içerisinde meydana gelen mutasyonlardan bazılarının karanlıkta yaşama ve asetatı kullanma açısından avantaj sağladığını gördü. Sadece 600 nesilde ilk başta başarısız olan algler, nesiller içerisinde belli tip mutasyona sahip olanların avantajlı konuma geçip üremeleri sayesinde karanlıkta yaşamaya adapte olmayı başardı. Bu da faydalı mutasyonlara örnek olarak verilebilir. 8) Chlamydomonas Cinsi Alglerde Büyüklüğün Evrimi Bir üstteki örnekte bahsettiğimiz Bell, karanlıktan sonra bir başka deney için aynı cins algleri kullandı. Algleri çok ince delikli bir filtreden geçirdi ve sadece deliklerin üzerinde kalabilen, büyük bireyleri seçti, deliklerden geçebilenleri eledi. Bu seçtiklerini yaşatıp üretmeyi sürdürürken, küçük olanların üremesine engel oldu. Sadece 40 nesil içerisinde popülasyondaki bireylerin büyüklüğünün, iki misline yakın artış görülmüştür (fenotipik skalada 1 puan). Hatta Bell, filtresinin yeterince iyi olmamasından ötürü büyükleri seçmekte zorlandığını belirtmiş ve makalesinde deneyin daha iyi yapılabilmesi için daha hassas filtrelerin kullanılması gerektiğini açıklamıştır. Böyle yapılacak olursa, genetik çeşitliliğe bağlı seçilim sonucu oluşan evrimin daha kolay görülebileceğini söylemiştir. Bu çeşitliliğin muhtemelen mutasyonlara bağlı olarak sağlandığını ve sadece daha büyük bireyler olacak şekilde genlere sahip bireylerin hayatta kalıp üreyebilmelerinden ötürü boyutların değiştiğini izah etmiştir. 9) Maya Mantarlarında Mutasyona Bağlı Evrim Hansche ve Francis, Genetics dergisinde 1972, 1973 ve 1975 yılında yayınladıkları makalelerde Saccharomyces cerevisiae türü mantarlarla çalıştıklarını ve bu canlılarda gözlemledikleri mutasyona bağlı evrimi izah etmişlerdir. Öncelikle bir kemostat (kimyasal olarak aşırı dengeli ve mikroorganizmaların oluşumuna izin veren ortam) içerisinde maya mantarları yetiştirmişlerdir. Mayalar bu ortamda 180 nesil boyunca gayet yavaş bir şekilde çoğalmışlardır. Ancak 180. nesil civarından sonra aşırı bir birey artışı, aşırı bir üreme gözlenmiştir. Araştırmacılar bu noktadan önceki ve sonraki bireylerin genlerini kontrol etmişler ve permeaz enziminin (mantar hücresinin zarından madde geçişlerini kontrol eden enzim) üretilmesini sağlayan gende meydana gelen bir mutasyondan ötürü yeni nesildeki ilk bireylerin ortamdaki fosfatı önceki nesillere (atalarına) göre çok daha kolay hücre içerisine aldıklarını tespit etmişlerdir. Mutasyonlar burada da sona ermemiştir. 180. nesilden sonra yaklaşık 400 nesil boyunca hızlı artış sürmüş; ancak 400. nesil civarında artış daha da hızlanmıştır. Yine genler kıyaslandığında, bu ilk mutasyona sahip bireylerden oluşan nesil içerisinde, ikinci bir mutasyonun meydana geldiği görülmüştür. Bu mutasyonun fosfataz (fosfatın kullanımını sağlayan enzim) enzimini üreten genlerde bir değişim olduğu fark edilmiştir ve yeni nesildeki mutant bireylerin fosfatı çok daha kolay sindirebildikleri gözlenmiştir. Bu mutasyon sonrasında fosfatazın optimal olarak çalıştığı pH aralığı, ortamdaki pH'ın değişimine paralel olarak değişmiş, evrim geçirmiştir. Dahası da var. Aradan 800 nesil daha geçtikten sonra, yine aşırı bir artış görülmüştür ve yine genetik analiz yapılmıştır. Bu artışın sebebi çok daha ilginçtir. Aslında asla koloniler halinde yaşamayan bu maya hücreleri, bu mutasyondan sonra bir araya gelerek koloniler halinde yaşamaya başlamışlardır. Bu mutasyonun kemostatın kendi dengesini sağlamak için gerekenden fazla hücre bireylerini mekanizmanın dışına atarak öldürmesine karşı avantaj sağladığı görülmüştür. Yani koloni olan bireyler daha büyük yapılar oluşturarak kemostatın içerisindeki emme mekanizmasını atlatabilmişlerdir. Bunu sağlayan mutasyon, popülasyon içinde hızla yayılmıştır. Deney defalarca tekrarlanmış ve her seferinde benzer mutasyonlar, farklı sırayla ortaya çıkıp seçilmiştir. Hatta bir denemede, daha orjinal bir mutasyon meydana gelmiş ve bir gen çiftlenmesi tipi mutasyon sonucunda fosfataz enzimini üreten genler sayıca iki katına çıkmışlardır, böylece mayalar daha fazla fosfat sindirebilmeyi başarmışlardır. 10) E. coli Bakterisinde Her 26 Mutasyondan 3'ü Faydalıdır! Bilindiği gibi canlılarda mutasyonları değil de, etkilerini gözlemek çok zordur, çünkü çok uzun sürede, yüzlerce, binlerce, on binlerce nesil sonra etkileri görülebilir. Bu sebeple bakteri, alg ya da mantar gibi canlıları denek olarak kullanmak iyidir, çok hızlı ürerler ve nesilleri çok hızlı geçer, en azından bizimkine göre çok daha hızlı. İşte Lenski ve Remold, PNAS dergisinde 2001 yılında yayınladıkları bir makalede, E. coli bakterileri üzerinde yıllar yılı yaptıkları araştırmaların sonuçlarını yayınladılar ve bütün detaylarıyla verilen genetik araştırmaların, her 26 mutasyondan en azından 3 tanesinin nesle doğrudan faydalı bir etki yarattığı gösterilmiş oldu. Bu da %12'lik bir dilim demektir. Bu, bizlerin yukarıda tanımladığı yüzdelerin gerçekte daha da iyimser olabileceklerini göstermektedir. Hatırlayacak olursanız mutasyonların %70-90'ı nötr, %8-9'u ani zararlı, %1-2'si ani faydalı olarak tanımlanmıştı. Ancak bu araştırmada, faydalı mutasyonların oranının %12'ye kadar çıkabildiği gözlenmiş, geri kalan mutasyonların 20-21'inin nötr (yaklaşık %81'i), geri kalan %7 civarı da zararlı olduğu gösterilmiştir. Bunlar, mutasyonların düşündüğümüz kadarıyla zararlı veya nötr olmayabileceğini net bir şekilde ortaya koymaktadır. 11) Bakterilerde Antibiyotik Direnci Bildiğiniz gibi doktorlar, bir antibiyotik aldığınız zaman onu mutlaka ama mutlaka sonuna kadar (veya önerilen süre boyunca) kullanmanızı tembihlerler, asla erken kesmemeniz gerektiğini vurgularlar. Eğer erken keseceğiniz bir durum olacaksa da hiç başlamamanızı tavsiye ederler. Bunun çok basit bir nedeni vardır: Evrim. Vücudunuzdaki tipik bakterilere karşı geliştirilen antibiyotikler, bu bakterilerin ölmesini sağlayan kimyasalları içerir. Siz, antibiyotiği aldığınızda, ilaç vücudunuza yayılarak bakterilerin hücre zarlarında bulunan reseptörlere tutunur ve onları yok etmeye başlar veya savunma sisteminizin bu bakterileri daha kolay tanımasını sağlar. Ancak bakteriler, çok hızlı üreyen canlılar oldukları için ve hem üreme sırasında, hem üreme sonrasında prokaryotik yapıda olmalarından ötürü mutasyonlara çok açık olmalarından dolayı genetik yapıları çok hızlı değişebilmektedir; yani çok hızlı evrim geçirebilmektedirler. Bu sebeple kimi zaman, erkenden öldürülmezlerse, bireyin vücudu içerisinde üreyen bu bakterilerin reseptörleri değişim geçirir (genleri değiştiği için). Bu yüzden de antibiyotikler bu bakterileri öldüremez, çünkü tanıyamazlar. İşte tam olarak bu sebeple, hastalığın tesbitinden sonra en azından yaklaşık 5 gün boyunca, günde bir veya birkaç defa (doktorun reçetesine bağlı olarak) antibiyotik alınır ve bu bakteriler hemen, çok fazla bölünmelerine ve üremelerine izin vermeden öldürülmeye çalışılır. Bu müdahale geciktiği sürece, bakterilerin reseptörleri evrimsel süreçlerle farklılaşır. Antibiyotiğin kullanımı sırasında, ilk 2-3 gün, antibiyotiğin içerisindeki kimyasalın doğrudan tanıdığı bakteriler öldürülür -ki bunlar, genelde patojen (hastalık yapıcı) bakterilerin büyük bir kısmını oluşturur. Bu sebeple bu 2-3 günlük kullanım sonrasında hasta kendini iyi hissedebilir. İşte bu sırada ilaç kesilecek olursa ve savunma sistemine ek yardım ortadan kaldırılırsa, ilacın ilk etapta yok edemediği daha dirençli varyasyonlar (Evrimsel çeşitlilikten ötürü) hızla yeniden çoğalmaya başlarlar. Bu defa vücudu kuşatan popülasyon, ilaçtaki kimyasallara daha dirençli olan popülasyon ve torunları olacaktır. Yine ilaç alınır ve yine kullanım süresinden önce kesilirse, yine göreceli olarak dirençli olanların ölümü sağlanmadan kesilmiş olur ve giderek daha dirençli bakteriler hayatta kalır ve çoğalırlar. Bu konu, her zaman bilim düşmanları tarafından çarpıtılır ve sanki mutasyonların doğrudan faydalı etkisiyle bakteriler bir anda antibiyotik direnci kazanmışlar gibi lanse ederler. Halbuki bakterilerdeki bu çeşitliliğe çoğu zaman mutasyonlar katkı sağlasa da, diğer tüm çeşitlilik mekanizmaları da katkı sağlamaktadır. 12) Tarım Zararlılarında (Haşerelerde) DDT Direnci Bu da, tıpkı bakterilerde antibiyotik direnci gibi sadece mutasyonlara yüklenerek Evrimsel Biyoloji'yi akılları sıra "tesadüflere" hapsetmeye çalışan zihniyetin çarpıttığı bir mevzudur. Tarım alanlarında sayısız böcek bulunur. Bunların bir kısmı tarım ürünleri için faydalı, bir kısmı ise zararlıdır. Ancak en nihayetinde hiçbiri insan için çalışmaz, kendi hayatlarını sürdürmeye çalışan canlılardır. İşte bunlardan zararlı olanları insan yok etmek ister ki tarım alanları zenginleşsin. Ancak evrim, bu kadar kolay atlatılabilen bir olgu değildir, hele ki tarım alanları gibi devasa alanlarda, belki trilyonlarca böcek bireyin yaşadığı ve belki de milyonlarca farklı popülasyonun bulunduğu ortamlarda. İnsan, her zamanki gibi "yok etme" yöntemini tercih eder ve bu canlıların sinir sistemlerini felç edecek veya onları zehirleyecek gazları kullanarak mücadele etmeye çalışır. Ancak üretilen DDT gibi meşhur kimyasallar, genellikle bir tür böceğin, sadece genel özelliklerine göre belirlenir (sinir sistemleri, reseptörleri, hücre yapısı, biyokimyasal özellikleri, vs.). Halbuki her canlıda olduğu gibi, Evrim'in Çeşitlilik Mekanizmaları sayesinde böcekler içerisinde de devasa bir çeşitlilik bulunmaktadır. DDT gibi ilaçlar ortama sıkıldığında, türlerin içerisindeki ortalama özelliklere sahip bütün böcekler gerçekten de ölür ve ziraatçiler, böceklerden kurtulunduğu sanarlar. Halbuki aradan birkaç ay geçtikten sonra, aynı veya benzer böceklerin sayısı birden artar; çünkü eski türün içerisindeki her birey DDT'nin içerisindeki kimyasallara aynı derecede dirençsiz değildir. Bazıları, şans eseri kendilerinde var olan genetik farklılıklardan ötürü (gerek crossing-over, gerek mutasyonlar, gerek transpozonlar, gerek plazmidler sonucu elde edilir) DDT'ye karşı dirençlidirler ve hayatta kalırlar. Bunların üremesi ve diğerlerinin ölmesi sonucu, bunlardaki DDT direncini sağlayan genler popülasyon içerisinde hızla yayılır. İşte bu sebeple, bir sonraki dönem DDT sıkıldığında, neredeyse hiçbir böceğin ölmediği ya da bir önceki duruma göre çok daha azının öldüğü görülür (çünkü her ne kadar dirençliler kendi aralarında üreseler de, genetik kombinasyonlardan ötürü yine dirençsiz bireyler de doğabilir belli oranlarda). İşte bu sürekli sürdürüldüğünde, DDT ve farklı tip ilaçlara giderek direnç kazanan popülasyonlar ve nesiller elde edilir. Bilim düşmanları bunu "Evrim değil, adaptasyon." olarak değerlendirirler. Halbuki, kimyasalların çeşidi ve sayısı arttırılıp, bu süreç devam ettirildiği müddetçe böceklerin giderek farklı özellikleri de, kimyasal direnciyle birlikte sürüklenerek farklılaşacak ve yüz yıllar sonunda elde edilen bireyler, eğer hala sağ iseler, ilk başta müdahale eden bireylerle çiftleşemeyecek kadar farklılaşacaklardır. İşte bu, türleşme, bunun daha da uzun müddette sürmesi ise evrimdir. 13) Hudson Nehri'ndeki Tomcod Balıklarında PCB Direnci PCB isimli bir kimyasal madde balıkları zehirlemesiyle meşhurdur. PCB maddesi hücredeki AHR-2 reseptörüne bağlanarak işlemi başlatır. Üzerine PCB bağlanan reseptör de DNA'yı gereksiz yere aşırı uyararak toksik yanıta neden olur. Ama AHR-2 reseptörünün PCB maddesine bağlandığı bölgeyi bozan bir mutasyon balığın hayatını kurtarır. PCB reseptöre bağlanamaz, reseptör de gidip DNA'yı uyaramaz ve balık hayatta kalmayı başarır. Tomcod balıklarını inceleyen bilim insanları, PBC kimyasalıyla kontamine olmuş Hudson Nehri'ndeki balıklarda AHR-2 proteinin 2 aminoasidinin silinmiş olduğunu gördüler. Bu nasıl olmuştur? Rastgele mutasyonlar AHR proteinini değiştirmişlerdir, 2 aminoasidini silmişlerdir ve PCB'ye bağlanamayan bir protein varyantı oluşmuştur. Dünya'nın hemen her yerinde Tomcod balıkları PCB'ye maruz kalmaları halinde hemen ölüyorlar ama Hudson popülasyonundaki bu silinme mutasyonu sayesinde Hudson'daki balıklar zehir içinde rahatça yaşıyor. 100 sene kadar önce PCB yokken nehirdeki balıkların hepsi bu kimyasala duyarlıydı. Şimdi ise %95'inden fazlası dirençlidir. Yani rastgele mutasyon hayatta kalma ve üreme hızını artırdığı için popülasyon içindeki temsil oranını yükseltti. Kısaca bu da bir faydalı mutasyon örneğidir. Örnekler sonsuz sayıda arttırılabilir. Ancak bu kadar örnek, mutasyonların nasıl çeşitlilik yarattığını anlamak için yeterli olacaktır. Görüleceği üzere mutasyonda nesillerden birinde meydana gelen, tek bir bireyde ya da birkaç bireyde oluşabilecek bir mutasyon, eğer avantaj sağlıyorsa, üremeler sonucu hızla popülasyona yayılarak evrime sebep olabilmektedir. Eğer bu tekil değişimler, nesiller içerisinde birikecek olursa, binlerce nesil sonra alınan bir birey, deneyin en başında elimizde bulunan bireyden o kadar farklı olacaktır ki bu, eşeyli üreyen canlılar için artık bu ikisinin birbiriyle üreyememesi anlamına gelir. İşte bu, Evrim'dir. KAYNAKLAR 1.ARN 2.New Scientist 3.Nature Genetics 4.A Mutation in Hairless Dogs Implicates FOXI3 in Ectodermal Development, Cord Drogemuller, Elinor K. Karlsson, Marjo K. Hytonen, Michele Perloski, Gaudenz Dolf, Kirsi Sainio, Hannes Lohi, Kerstin Lindblad-Toh, and Tosso Leeb. Science 321, 12 September 2008: 1462. 5.Bennett, A.F., Lenski, R.E., & Mittler, J.E. (1992). Evolutionary adaptation to temperature I. Fitness responses of Escherichia coli to changes in its thermal environment. Evolution, 46:16-30 6.Contribution of individual random mutations to genotype-by-environment interactions in Escherichia coli, Susanna K. Remold and Richard E. Lenski 7.Francis, J.E., & Hansche, P.E. (1972) Directed evolution of metabolic pathways in microbial populations. I. Modification of the acid phosphatase pH optimum in Saccharaomyces cervisiae. Genetics, 70: 59-73. 8.Francis, J.E., & Hansche, P.E. (1973) Directed evolution of metabolic pathways in microbial populations. II. A repeatable adaptation in Saccharaomyces cervisiae. Genetics, 74:259-265. 9.Hansche, P.E. (1975) Gene duplication as a mechanism of genetic adaptation in Saccharaomyces cervisiae. Genetics, 79: 661-674. evrimagaci.org

http://www.biyologlar.com/mutasyon-ornekleri-nelerdir

LEVREK (Dicentrarchus labrax Lin., 1758) BALIĞININ BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Yrd.Dç.Dr. Kürşat FIRAT & Şahin SAKA Ege Üniversitesi Su Ürünleri Fakültesi Yetiştiricilik BölümüYetiştiricilik Anabilim Dalı İskele-Urla, 35440 İZMİR GİRİŞ Su ürünleri yetiştirme teknolojisinin gelişimi ile beraber levrek kültürü üzerindeki çalışmalarda yoğunlaşmıştır. Ülkemizde önceleri çipura balığının besiye alınması ve daha sonrada larva üretimine geçilmesini takiben, levrek larvalarının kültür çalışmalarında yoğun artışlar gözlenmiştir. İlk defa Fabre-Domerque (1905) tarafından levreklerin yapay yolla üretilebileceği bildirilmiş olup, Barnabé (1971) levreklerin hormon müdahelesi ile kontrol altına alınabileceğini rapor etmiştir. Aynı araştırmacı (1972) levrekleri jüvenil hale kadar getirmeyi başarmış ve bugün Avrupa ülkelerinde yumurtadan pazar boyuna kadar geniş bir endüstri kolu haline gelmesine öncülük etmiştir. Ülkemizde ise levrek larva yetiştiricilik çalışmaları 1984 yılında özel bir işletme ve E.Ü. Su Ürünleri Fakültesi'nde başlamıştır. 1980'li yılların sonunda üretimlerini binli rakamlar ile ifade eden akuakültür tesisleri günümüzde yıllık larva üretimlerini milyonlara dayanan rakamlar ile ifade etmektedirler. Levrek larva üretiminde sağlanan bu gelişim, yeni türlerin aquakültürüne de öncülük etmektedir. LEVREK(Dicentrarchus labrax, L. 1758) BALIĞININ BİYOLOJİSİ Morone labrax ve Roccus labrax sinonimleri ile de adlandırılan levrek, Phylum : Vertabrata Subphylum : Pisces Classis : Osteichthyes Subordo : Percoidei Familia : Serranidae Genus : Dicentrarchus Species : labrax (Linneaus, 1758) şekliyle sistematikteki yerini almıştır. Levrek balıkları, tüm Akdeniz'den, İngiltere'nin kuzey sahillerine ve Kanarya Adaları'na kadar yayılım gösterir. Deniz fenogramlarının bulunduğu kumlu, çamurlu-sığ biotoplarda, sıcaklığa ve tuzluluğa karşı gösterdiği toleransı ile nehir ağızlarında ve lagüner bölgelerde yaşayan bir littoral bölge balığıdır. Havaların soğuması ile birlikte kışlamak için derin sulara göç ederler. Karnivor bir tür olan, bazen yalnız bazen de küçük sürüler halinde dolaşan levreklerin genç dönemlerinde eklem bacaklılardan Crangon, Gammarus ve Ligia gibi küçük karidesleri, ergin dönemlerinde küçük balıklardan özellikle Sardina türünü, kafadanbacaklılardan Sepiola ve Loligo'yu, eklembacaklılardan Carnicus, Crangon sp. ve Macropipus türlerini tercih ettiği yakalanan bireylerin mide içeriklerinden alınan örneklerden ortaya çıkmaktadır (FAO, 1991). Vücudu lateralden hafif yassılaşmış olan levrek balığının derisi ktenoid pullarla kaplıdır. Sikloid pullar ense ve yanaklar üzerindedir. Yanal çizgi üzerinde 65-80 arası pul bulunur. Birinci solungaç yayı üzerindeki brankiospin sayısı 18-27 arası değişir. Dorsal yüzgeç araları geniştir. Dorsal yüzgeçte 8-10 adet diken ışın mevcuttur. II. dorsalde 1 diken ve 10-14 adet yumuşak ışın bulunur. Muzoda pul yoktur. Operkulumda gri-siyah leke mevcuttur. Preoperkulum ve operkulum üzerinde sert diken ışınlar vardır. Renk dorsalde koyu gri-esmer, ventralde beyazdır. Göz kemiğinin üstünde siyah lekeler mevcuttur. Ağız geniş, dişler damakta ve dilde bulunur. Renkleri sırt kısmında koyu gri-esmer, yanlarda gümüşi, karın bölgesinde beyazdır. Ergin bireylerin sırt kısmı lekesiz koyu renkte olurken, gençlerde bazen siyah lekeler olabilir. 1 m'ye kadar uzayabilen boyu ortalama 50 cm. olup, ağırlığı da 12 kg' a ulaşabilir (Uçal ve Benli, 1993). Tatlı sularda büyüyebilirler, fakat üreyemezler. Levrekler 5-28 °C arası sularda yaşayıp 12-14 °C arasında yumurta bırakırlar. Doğal ortamda 1 kg'lık bir dişinin 293.000-358.000 adet yumurta bırakabildiği bildirilmişlerdir (Kennedy ve Fitzmaurice, 1972). Tuzluluk değişimlerine karşı dayanıklı olup, ‰3 tuzluluktan ‰50 tuzluluğa kadar yayılım gösterir. ‰0 tuzluğa adapte olabilir. Levreklerin düşük tuzluluk şartlarına adaptasyonu üzerine birçok çalışma yapılmış olup, bunlar adaptasyon teknikleri, düşük tuzlulukta beslenmeleri ve gelişimleri üzerinedir (Loy ve ark., 1996, Dendrinos ve Thorpe, 1985, Johnson ve Katavic, 1984). Levrek balıkları 1 yaşına gelene kadar gonadlarında bir gelişim gözlenmez. 13-15. aylarda testiküllerde ve ovaryumlar da farklılaşma başlar. Doğal şartlar altında levrekler hayatlarının ikinci yılında sperm salgılayabilirler. Ancak RGS değeri düşüktür. 3. yılda ise ergin bir birey gibi yüksek oranda sperm sağlayabilirler. Ovaryumlardaki farklılaşma, erkeklerde olduğu gibi 13-15 aylar arasında başlar ve nispeten daha uzun sürer (Brusle ve Roblin, 1984). Dişiler doğal şartlar altında ancak 3. yılda yumurta bırakabilir. Büyüme hızı bir yaş grubu bireylerinde en fazla durumdadır. Cinsi olgunluk dönemlerinde ağırlık artışının dişilerde erkeklerden daha fazla olduğu saptanmıştır. Üçüncü yaştan sonra alınan besinler gonad gelişiminde kullanılır. Akdeniz'de erkekler 2-3 yaş 25-30 cm boyda, dişiler 3-5 yaş, 30-40 cm boyda, Atlantik’te ise erkekler 4-7 yaş ve 32-37 cm boyda, dişiler ise 5-8 yaş ve 38-42 cm boyda cinsel olgunluğa ulaşırlar (Alpbaz, 1990). Levrek balıkları Akdeniz' de Ocak-Mart ayları arasında yumurta bırakırlar. LEVREK BALIĞI YETİŞTİRİCİLİĞİ Anaçlar ve Yumurtlama Anaçlarının tutulduğu tanklar, anaçların büyüklüğüne ve stok yoğunluğuna bağlı olarak değişim gösterir. Akuakültür ünitelerinde büyük, orta ve küçük hacimli anaç havuz sistemleri kullanılmaktadır. Büyük sistemler yoğun olarak Japonya ve kuzey doğu Asya ülkelerinde 50-100 m3 hacimlerde kullanılmakta ve tesis dışında kurulmaktadır. Orta büyüklükte hacime sahip tanklar Avrupa ülkelerinde kullanılmakta olup tesis içinde yer almaktadır. Tankların hacimleri 15-30 m3 arasındadır. Bunların ayrıca filtrasyon, ısıtma ve soğutma sistemleri de mevcuttur. Küçük hacimli sistemler ise 10-20 m3 arasında olup Akdeniz sahasındaki ülkelerde kullanılmaktadır (Licas, 1988). Bu tankların tüm sistemleri çevresel şartlara karşı kontrol altındadır. Tanklar genellikle koyu renkte olup yuvarlaktır. Anaç bireyler yetiştiricilik yolu ile yada doğal ortamdan çeşitli avlama metodları ile yakalanabilir. En ideali paraketa ile yapılan avcılıktır. Ağ ile yakalanan bireylerde adaptasyon dönemin de yoğun ölümler görülür. Anaç bireyler yumurtlama döneminden önce yüksek kalitede taze yem ile kalamar, sübye ve karides etine dayalı pelet yemlerle günde 1-3 kere vücut ağırlığının (kg) %1-1.5’ğu kadar beslenmelidir. Verilen yemler %50-55 protein ve %10-15 deniz orijinli canlıların yağlarından oluşan içeriğe sahip olmalıdır. Yağlar en az %5 n-3 HUFA içermeli ve temel olarak 22:6n-3 (DNA) tipinde olmalıdır. Bu durum yumurta kalitesini doğrudan etkiler. Balıklar 10-15 kg/m3 olacak şekilde stoklanır. Dişi erkek oranı anaç balığın durumuna göre 1:1, 1:2 veya 2:3 kg olacak şekilde ayarlanır. Tanklara saatte %10-20 arası debi uygulanır. Su sıcaklığı 14-15 0C olmalıdır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Yumurtaların pelajik yapısından dolayı tankların su çıkışları yüzeydendir. Bunun için tankların üst çıkışına 500 mikron göz açıklığına sahip tank içine yerleştirilmiş reküparatör sistemleri konulur. Anaç bireylerden doğal yollarla, sağım yöntemiyle ve hormon müdahalesi ile yumurta temin edilebilir. Sağım yöntemi yumurtaların küçük olmasından ve döllenme oranının düşüklüğünden dolayı uygulanmamaktadır. Yumurtaların doğal periyot içinde hormon müdahalesi olmadan alınması kaliteyi olumlu etkiler. Bunun yanı sıra doğal ortamdan yakalanan bireylerin yumurtlamaya teşvik edilmesinde hormon kullanımı oldukça başarılı sonuçlar vermektedir. Ayrıca levrek anaçlarına fotoperiyot uygulanması ile doğal yumurtlama zamanları değiştirilerek yılın çeşitli dönemlerinde yumurta sağlanabilir. Levrek balıkları hormon uygulamalarına karşı hassastır. HCG ile teşvik edilen anaçlarda kuvvetli bir bağışıklık sistemi oluşur. Hipofizden gonadotrapin (GtH) salgılanmasındaki başarısızlıktan dolayı daha önceden kullanılan anaçlarda yumurtlama ve yumurtaların oluşumu sırasında sorunlar oluştuğunu saptanmıştır. HCG enjekte edilen anaçlarda hipotalamus hipofiz eksenindeki eksilme sonucunda, anaçlarının yumurtalarını oluşturmasında azalma görülür. Bunun sebebi hipofizde gonadotropin seviyesinin artmasına rağmen dolaşım sistemine salgılanmamasıdır. LH-RH ve LH-RHa’nın çeşitli türlerin plazmalarındaki gonadotropin (GtH) düzeyini yükselttiği ve HCG hormonuna göre daha avantajlı olduğu saptanmıştır (Alvarino ve diğ., 1992a, 1992b). Bu hormonların HCG hormonuna göre avantajları şunlardır. 1. GnRH (LH-RH) balığın kendi GtH üretimini sağlar. 2. Küçük moleküllüdür. GnRH kolayca sentezlenebilir ve saf olarak temin edilebilir. 3. Yumurtlama sırasında kullanılan miktar azdır. 4. GnRH türlere göre düşük miktarda kullanılabilir. 5. Küçük polipeptidlidir ve bağışıklık yapmaz. Levreklerde LH-RH’ın uygulanmasında yumurta çapının 650 mm civarında olması istenir. Bu dönemde yani vitellogenesis safhasında toplam 10 mgr/kg olacak şekilde, 12 saat ara ile uygulanması sonucunda ilk 48 saat içinde ovulasyon görülebilir. Uygulamanın gündüz başlaması ovulasyonun hızını artırırken, gece başlaması yüzdesini etkiler. Levrek balıklarında yapılan çalışmalarda HCG 500-1800 IU, LHRH 1-20 mgr/kg olacak düzeyinde kullanılmasının yumurta kalitesi ve kantititesi üzerinde olumlu etkisi olduğu saptanmıştır (Barnabé ve Paris, 1984, Barnabé ve Barnabé-Quet, 1985, Alvarino ve diğ., 1992a,1992b). Anaçlarda Yumurta ve Sperm Olgunlaşması Üreme dönemine giren levrek balıklarının gonadlarında yumurta hücrelerinin oluşması ve atılması dört temel periyotta olur. a) Pregametik Periyot: Haziran ve Ekim aylarında gonadlarda olgunlaşma yoktur. b) Gametogenesis: Ekim ve Ocak aylarında oosit sitoplazmasında yağ damlacıkları, az sayıda yağ globülleri ve kortikol alveolleri görülür. Kasım-Aralık aylarına kadar yağ damlasında büyüme görülmekle birlikte erkeklerde sperm elde edilmesi mümkündür. c) Yumurtlama Periyodu: Ocak ayında başlar, Mart ayında biter. Bu dönemde yumurtalar dışarı atılır. d) Dinlenme Periyodu: Nisan-Mayıs ayları arasında gözlenir. Ovaryumlar da atretik oosit’ler, testislerde artık yapılar gözlenir. Levreklerin ovaryumlarındaki yumurta hücresinin gelişimi ise 12 temel aşama ile açıklanır. 1. Aşama: İlkel yumurta hücresi (Ovogenium) çok küçük bir yapıdadır. Fakat buna nazaran büyüklüğü diğer hücrelerden daha fazladır. Hücrenin çapı 10-12 µ arasındadır. Hücrelerde mitoz bölünme ile çoğalma görülür. 2. Aşama: Yumurta hücrelerinin çapları 12-20 µ ulaşır. Her yumurta hücresinin etrafında folikül oluşmaya başlamıştır. Folikül hücrelerin ikinci katını oluşturur. 3. Aşama: Bu dönemde sitoplazmanın homojenliği bozulmuştur. Hücre çekirdeğinin (Nukleus) bölümlenmesi ile çekirdeğin dış kısmının şekillenmesi başlamıştır. Hücre çekirdeğinin çapı 5-8 µ arasındayken, hücrenin bu aşamada çapı ise yaklaşık 20 µ civarındadır. 4. Aşama: Hücre içerisinde stoplazmik üç zon birbirinden ayrılmıştır. Bunlar kortikal zon, granüler yapılı orta zon ve tanecikli prinüller zon dur. 5. Aşama: Bu dönemde ilk oosit zarı farklılaşmaya başlamıştır. Ayrıca yumurta sarısının meydana gelmesi ve toplanması olarak bilinen previtellogenesis’in de ilk başlangıcı bu aşamada görülür. Bu sırada hücre çapı 30-50 µ arasındadır. 6. Aşama: Çekirdek zarında ilk yağ damlacıkları ve çekirdek çevresinde loplar meydana gelmeye başlar. Bu olay yumurta çapı yaklaşık 100 µ olduğunda başlar ve yumurta 300-350 µ gelinceye kadar devam eder. 7. Aşama: Vitellüsün iki farklı yapısının belirginleşmeye başladığı bu dönemde yumurta zarının şekillenmesi de başlamıştır. Yaklaşık 100 µ çapındaki yumurta hücresinde yağ damlacıkları ve yumurta sarısı üretimi hızla devam eder. 8. Aşama: Yumurtanın çapı yaklaşık 200 µ’dur ve vitellüsün iki karışımı görülmektedir. 9. Aşama: Bu aşamada yağ damlacıkları yumurta sarısı tarafından hücre kenarına doğru itilir ve vitellüsün üç karışımı izlenebilir. 10. Aşama: Yumurta çapı 350-400 µ civarında olup vitellogenesis sona ermiş ve çekirdek kutba doğru yönelmiştir. 11. Aşama: Yumurta 500-550 µ boya ulaşmış ve mikropil deliği bu aşamada meydana gelmiştir. Yumurta içinde vitellüs, hücre duvarı ve yağ damlası net şekilde görülmektedir. 12. Aşama : Yumurtanın gonadlardaki bu gelişiminden sonra yumurta herhangi bir değişime uğramaksızın 1-2 ay bekler. Dışarıya doğru çıkıntı yapmasına neden olurlar. Böylece folikül tekasındaki kasların kontraksiyonu ile ovulasyon meydana gelir. Eğer biotik ve abiotik şartlar uygun değilse foliküllerin deformasyonu ile yumurtaların emilimi ortaya çıkar. Levrek balıklarında spermlerin gonadlarda ki gelişimi spermatogoniumların aktif şekilde testis kanalları duvarlarında çoğalması ile başlar. İlk önce spermatogoniumlardan primer spermatozitler, onlardan da sekonder spermatozitler meydana gelir. Testiküler kanal boşluklarında toplanan ve burada uygun şartlar oluşuncaya kadar bekleme pozisyonuna giren spermler, gonadotropin etkisi ile dışarı atılmaya hazır hale gelir. Testislerde hareketsiz halde bekleyen spermler su ile temasa geçince hareketlenirler. Yumurta Özellikleri ve Kalite Kriterleri Kemikli balıkların yumurta boyları türlere ve türlerin kendi içindeki bazı koşullara göre değişiklik gösterir. Türün yumurta çapı büyüdükçe yumurta sayısı azalır, çıkan larvanın boyu ve yaşama oranı artar. Döllenmiş yumurtalar pelajik, küresel ve saydamdır. Yumurtanın kalitesi, yumurtanın yüzebilirliği, yağ damlası sayısı, açılım oranı ve normal yapıdaki larva miktarı ile orantılıdır. Levrek yumurtalarında biri merkezi konumlu olmak üzere ortalama 4-5 adet yağ damlası bulunur. Levrek yumurtalarının çapları ortalama 1150±85 µ, yağ damlalarının çapı ise 360-420 µ arasındadır. Yumurta çapları bölgelere göre değişim gösterir. İngiltere kıyılarında yumurta çapları 1.07-1.32 mm arasında ölçülmüştür. Akdeniz kıyıları boyunca yumurtaların çapları daha küçük (1.02-1.296 mm) olarak tespit edilmiştir. Kuzey Denizi'nde ise bu değerler 1.386 mm’ye kadar ulaşmıştır. Yumurta çapı su sıcaklığı ve besin içeriği ile ilişkilidir. Kış aylarındaki düşük sıcaklıkta doğal üreme periyodunda alınan yumurtaların diğer zamanlarda sabit sıcaklıklarda elde edilen yumurtalara göre daha büyük olduğu saptanmıştır. Aynı tür içindeki yumurtaların boyutları arasındaki farklılıklar anaçların beslenmesine, büyüklüğüne, yumurtlama zamanına, hormon uygulamalarına, ortam koşullarına, genetik faktörlere ve bölgesel farklılıklara bağlıdır. Bunlar aynı zamanda kaliteyi ve kantiteyi etkileyen faktörler arasında yer almaktadır. Yumurtalarda morfolojik ve genetiksel bozukluk yok ise inkübasyon koşulları aynı olduğunda yumurtanın büyük veya küçük olması larva çıkış oranını değiştirmez. İnkübasyona alınacak yumurtaların kaliteli olması ileride çıkacak larva kalitesi için çok önemlidir. Bu bozukluklar inkübasyon öncesinde ve inkübasyon süresince belirlenmelidir. Reküparatörlerden alınan yumurtaların %40’tan fazlası ölü ise bu grup üretime zorunlu kalınmadıkça alınmamalıdır. Blastomer bölünmelerinin eşit olmasına dikkat edilmeli, eksik bölünmelerin olup olmadığı tespit edilmelidir. Çok sayıda yağ damlası içeren yumurtalar yine zorunlu kalınmadıkça üretime alınmamalıdır. Yumurta içinde nokta şeklinde parçacıklar görülmesi ve blastoporun çıkıntı yapması embriyonik gelişim esnasında meydana gelen olumsuzluklardan kaynaklanan diğer bozukluklardır. Yumurtaların İnkübasyonu Uygun ortam şartlarında anaçlar tarafından bırakılan yumurtalar reküparatörlerden hassas biçimde toplanır. Yumurtalar toplama, tartım ve canlı-ölü ayrılması aşamalarında hava ile mümkün olduğunca az temas ettirilmeli ve çok miktarda yumurtanın üst üste birikmesi engellenmelidir. Yumurtalar uzun süre nakil edilecekler ise 15-20 litrelik plastik kaplar kullanılır. 24 saatlik bir taşıma için litreye 20.000 adet, 6 saatlik bir taşıma için ise litreye 80.000 adet yumurta konulur. Taşıma işlemi döllenmeden sonraki ilk 24 saat içinde yapılmalıdır. Taşıma kapları içerisindeki suyun oksijen değeri 9-11 mg/lt' ye yükseltilmelidir. Plastik kabın 3/2'sine su ve yumurta konulur. Kabın 3/1’ne ise saf oksijen basılır. Taşıma işlemi sonucunda açılım oranı %50-70 arasında değişmektedir. Yumurtalar inkübasyona alınmadan önce gerek duyulursa dezenfeksiyon işlemine tabi tutulmalıdır. Bunun için %5' lik Iadophor çözeltisinden bir litre deniz suyuna 10 ml konur ve yumurtalar içinde 8-10 dakika bekletilir. Ayrıca bu işlem için çinko içermeyen Malahit yeşili ile de 5 mg/lt oranında 40-60 dakika arası uygulama yapılarak tatbik edilir. Canlı yumurtalar temin edildikten sonra bunların inkübasyona alma işlemi başlar. İnkübatörlerin konulacağı havuzlar değişik yapıda olabilir. Yumurtaların inkübasyonu için en uygun sistem race-way tipinde olan havuzlara inkübatörlerin yerleştirilmesidir. Ayrıca larva tankları veya diğer yapıdaki tanklarda da bu işlem yapılabilir. Hassas bir çalışmanın yapılabilmesi ve kontaminasyonun engellenmesi için akuakültür tesisinde inkübasyon ünitesinin ayrı olması gereklidir. Bu ünitenin büyüklüğü ve ekipmanları tesis için gerekli yumurta miktarına göre dizayn edilir. İnkübatörlerin konulacağı tankların iç kısımları koyu renkli ve jel-kot kaplıdır. Kullanılan inkübatörlerin hacimleri 50-200 lt arasında değişebilir. İnkübatörler polyesterden yapılmış olup silindir koniktir. Silindir kısmı 300 m’luk plankton bezi ile kaplı olup konik kısım polyesterdir. Her inkübatöre alttan ayrı su girişi yapılabildiği gibi, bunların yerleştirildiği havuzlara da su giriş ve çıkışı direkt olarak yapılır. Tanklara gelen su önce 5 m' luk, sonrada 1 m'luk kartuş filtrelerden geçerek U.V. filtreye giriş yapar. Buradan da tanklara dağılır. Yapılan çalışmalarda levrek yumurtalarının ‰29-47 tuzlulukta çatladığı görülmüştür. Fakat iyi bir yumurta açılımı için tuzluluğun hem levrek hem de çipura yumurtaları için ‰34-38 arasında olması gerekir. ‰34 tuzluluğun altında yumurtalar semi-pelajik özellik gösterirler ve ‰33 tuzluluğun altında da tamamen çökerler. Levrek yumurtaları için en iyi inkübasyon sıcaklığı 14-16 0C arasındadır (Freddi, 1985). Temin edilen yumurtalar alındıkları ortamla aynı sıcaklıktaki inkübatör tanklarına yerleştirilmelidir. Sıcaklık farkı ±0.5 0C dereceyi geçmemelidir. Yumurtalar inkübatörlere ortalama 3000-5000 adet/lt olacak şekilde konulur. İnkübasyon süresince ışık kullanılmaz. İnkübatörlerin bulunduğu tanklarda saatte %40-60 su değişimi uygulanır. Su değişimi olmadan yapılan inkübasyonlar da açılım oranları %30-40 olarak tespit edilmiştir. Normal akışkanlı suda ise açılım %75-85 arasında olmaktadır. Yumurtaların Embriyolojik Gelişimi Spermin yumurtaya girmesi ile başlayan döllenme olayı, inkübasyon süresi adı da verilen embriyonun yumurtadan çıkışına kadar devam eden süreç ile son bulur. Tablo 1' de 15 ve 17 0C de levrek yumurtalarının embriyolojik gelişimleri diğer araştırmacılar ile birlikte verilmiştir. Levreklerde Larval Dönem Yumurtaların embriyolojik gelişimlerinin tamamlanması ve yumurta kapsülünü terk etmesi ile birlikte larval safhaya geçilir. Prelarval Evre Levrek larvalarının yumurtadan çıktıklarında ağız ve anüsleri kapalıdır. Larvalar pasif durumdadır, baş aşağı dururlar ve kendi vitellüs keselerinden sağladıkları enerji ile hayatlarını sürdürürler. Yumurtadan çıkan levrek larvalarının boyları 3.4-3.6 mm arasındadır. Vitellüs kesesi boyu 1.1-1.3 mm uzunluğundadır. Yağ damlası çapı ise 0.5-0.7 mm arasındadır. Ağız ve anüs kapalı olduğundan dışarıdan besleme söz konusu değildir. Larvanın sadece vitellüs kesesinden beslendiği bu döneme lecithotrophik periyot adı verilir. Vitellüs kesesi vücudun anteriorunda yer alır. Yağ damlası ise vitellüs kesesinin posteriorundadır. Anüs vücudun yaklaşık olarak ortasında yer alan 14-15. miyomerler altında yer alır. Su sıcaklığı vitellüs kesesinin tüketiminde ve ağız ile anüsün açılmasında en önemli faktördür. Pigmentasyon burunda, besin kesesinin ön kısmında, kuyruğun ventralinde, bağırsağın üstü boyunca, ağız bölgesinde ve anüsün üst tarafında yıldızsı yapıda belirginleşmeye başlamıştır. Pektoral yüzgeçler oluşmuştur, fakat kullanılmaz. İlk 24 saat içinde spazmadik yüzme vardır. İlk gün sonunda larvanın baş bölgesi yukarı doğru kalkar. Vitellüs absorbsiyonu devam etmektedir. Tuzluluğun düşürülmesi süresince ve vitellüsün absorbsiyonu ile larvalar tank ortamında yukarıdan aşağıya doğru homojen şekilde dağılırlar. Yumurtadan çıkmış prelarvaların davranışsal tepkileri esas olarak koklama duyusuna, ikincil olarak ise yanal çizgiye dayanır. Koku alma plakoidleri inkubasyonun 80. saatinde epidermal hücre katları içinde kabarcık şeklinde görülür. 65. saat civarında başın yan tarafında neusomast’lar görülür. Yumurtadan çıktıktan sonra vücut yüzeyinin yan tarafında 8 neuromast görülür. Yanal çizgideki neuromastlar baştakilerden daha büyüktür. Operkulum kenarlarında, gözlerin arasında ve kuyruk yarım dairesinde bulunurlar. Yanal çizgide de serbest neuromastlar mevcuttur. Larvanın tüm vücudunu saran bir primordial yüzgeç bulunur. Yüzgeç başın hemen arka kısmından başlayıp tüm kuyruğu geçer ve besin kesesinde son bulur. Yüzgeç ışınsız bir deri kıvrımı şeklindedir. Bu sayede larva suda hem yüzebilirliğini hem de gerek duyduğu O2 ihtiyacını karşılar. Yumurtadan henüz çıkmış larvaların ağız epitelyumu düzensiz bir şekilde ve yassı hücrelerden meydana gelen tek bir tabakadan oluşur. 3. güne doğru yer yer iki sıra hücreye rastlanır. Sindirim tüpü düz bir boru şeklinde ve 10 m kalınlığındadır. Sindirim tüpünün dorsalinde pankreas, ventral bölgesinde karaciğer farklılaşmamış küçük tomurcuksu yapıdaki hücrelerden oluşur. Mide bu dönemde bir kıvrım ve bir boğum ile belirlenir. Bağırsağın çapı mideninkinden daha fazladır. Bağırsak çeperi yumurtadan çıktıktan itibaren düz bir form izler. 1 ve 2. günlerde tek bir tabaka hücre vardır. 3. gün yoğun bir mitoz bölünme ile bu hücreler iki-üç tabaka haline gelir. Ağzı açılmamış larvanın bağırsak hücre çapları 40 hm dan daha küçük lipoprotein partiküllerinin taşınımını ve sentezini yapabilir (Diaz ve diğ., 1997). Lecithotropik dönemin sonunda larva bağırsak hücreleri fonksiyonel olmasına rağmen gelişim yavaştır. Vitellüs bol ve ana yağları içermesi ile temel besleyici rol oynar. İlk beslemeden sonra bağırsak hücreleri 200 hm çaplı lipoproteinleri sindirebilir. Lecithotropik dönem boyunca iç rezervler yavaş yavaş azalır ve sindirim kapasitesinin artması ile lecithoexotropik periyot denilen hem iç hem de dış besleme başlar. Bağırsak, larvada bir kapakçıkla postvalvular ve prevalvular bağırsak olmak üzere iki bölgeye ayrılır. Karaciğerdeki hepatik hücreler ilk günle beraber görülmeye başlar ve 10 m kalınlığındadır. 3. günden itibaren epetetial kanal ile larvaların sindirim tüpüne bağlanırken boyuda 110 m’a ulaşmıştır. Bu dönemde pankreasta gelişim proksimal, karaciğerde ise distal yöndedir. 2. günde sindirim tüpü 50 derecelik bir acı ile dönme hareketi yapar. Bununla beraber karaciğer sol laterale kayarken, pankreasta sağ laterale yerleşir. Safra kesesi karaciğer tarafından sarılır. Sindirim tüpünün dorsal bölümünde hava kesesinin ilk oluşumu başlar. Pankreas mesodermik hücre katmanları tarafından çevrilir. Hücre yapısı pyriformdur. Karaciğerde ise üçüncü günle beraber hepotoblast polirizasyon sonucu değişim redükte olunur. Bu dönemde henüz larva içinde organ oluşumları olduğundan sindirim olması söz konusu değildir. 3. günle beraber gözlerde pigmentasyon açıkça görülür. Hareket hala su debisi ile beraber olup larvalar 20-30 sn' de bir 2-3 sn yüzme hareketi yapar. Postlarval Evre Postlarval evre 15-16 0C 5.günde sonunda ağız ve anüsün açılması ile başlar. Bu dönmede ağız içinde mukositler oluşur. Bunlar ilk önce mukusla kaplanmış epitelium çukurları gibidir. Selüler çeperleri incedir. 7. güne doğru çene kıkırdakları ve kasları oluşmaya başlar. Salgı bezleri tam oluşmadığından sindirim mekanizması mükemmel değildir. Sindirim tüpü epitel yapıda dört-altı sıra hücreden oluşur ve kalınlığı 45 mikrondur. 8. güne doğru hücre sıra sayısı altı-sekiz adete ulaşır. Bu sırada bağırsak emici hücreleri işlevlik kazanmıştır. Bu dönem içinde 10-11. günlerde phanin dişlerin ilkel formları oluşmaya başlar. Mide bu dönemde daralmış bir yapı izleyerek boğumlaşmıştır. Bağırsaklara geçişi sağlayan valf mevcuttur. Midesel alt mukozayı çevreleyen kas dokusu bu günlerde iyice belirginleşmiştir. 12-15. günlerde rectum epitel hücrelerinin görülmesi proteinlerin yavaş yavaş emilmeye başlandığını gösterir. Protein emilimi pinoitosis ile hücre zarından yapılır. Yağların emilimi prevalvular bağırsaktan yapılmaktadır (Deplano ve ark., 1991). Karaciğer 13-14. günle beraber glikojeni depolayacağı bölgeyi oluşturur. 20. günle birlikte sindirim kanalı 60 µ boyuta ulaşır. Doğal olarak bu dönmede larvanın canlı yemler ile beslenmesi gerekir. Besin kesesinin çoğu absorbe olmasına rağmen az miktarda yağ damlası mevcuttur. Larva bu dönemde 60 derecelik açı içerisindeki besinleri görüp algılayabilir. İki gözün kesiştiği bölgedeki yansıması algıladıktan sonra 5-7 mm geri çekilme yaparak yılanvari şeklinde bir hareket ile avına saldırır ve tek hamlede yutar. Koku sistemleri ve yanal çizgi avlanmada diğer yardımcı faktörlerdir. Hava kesesi ilk dolumu da bu günlere rastlar. Hava kesesi oluşumu ve gelişimi, levrek larvalarında yaşama yüzdesini ve gelişimi sınırlayıcı temel fizyolojik yapıdır. Levrek genel olarak fizoglist türler içinde gösterilse de hava kesesi ile sindirim tüpünü birbirine bağlayan duktus pinomatikus’un post larval dönemde kopması ile parafizoglist türler içinde yer alır (Chatain, 1986). Levreklerde hava kesesi sindirim tüpünün dorsal diverkülünden köken alır. Üçüncü günde elektron mikroskobu ile hava kesesinin gelişen yapısı görülebilir. Larva 5.2 mm boya geldiğinde pankreasın sol tarafından gelişmeye başlar. Bu dönemde hava kesesi duktus pinomatikus ile sindirim tüpüne bağlıdır. Bu gelişim su sıcaklığıyla doğru orantılı olarak 5-6. günlerde şekillenir. Pankreas sağ taraftan hava kesesini sararken kese sindirim kanalının üstünde horizontal ve vertikal yapıda gelişmesine devam eder. Larva 5.8 mm boya ulaştığında vertikal büyüme açıkça görülür. Hava kesesinin gelişimi esnasında vitellüs kesesi ve yağ damlası hacimlerinde küçülme olur (Fırat, 1995). 5.2-6 mm boylarda hava kesesi içinde ilk hava kabarcığı görülür. Larva su yüzeyinden ilk hava kabarcığını yutarak kesesini şişirir. Hava kesesi hacim olarak büyümüş ve üzerinde peritenium parçaları şekillenmiştir. Hava kesesinin şişmesi iki safhada meydana gelir. Birinci safhada kendi içinde iki bölümde açıklanır. İlk dönem kırılgan bir hava kabarcığının olduğu şişme dönemdir. Hava kabarcığı kese hacmiyle sınırlanmamıştır. İkinci dönemi ise, ilk şişme olmadığında kesenin içinin loş ve karanlık bir yapı göstermesiyle tanımlanır. Bazen kese şişme gösterdiği halde içinde hava kabarcığı gözükmez. Bu şişme gibi gözüken yapı kese hücre duvarının kalınlaşmasından kaynaklanır. Bu anormal keseler lümenlerinde gaz yerine eosinofil jelatinöz madde içerir (Paperna ve diğ., 1977). Epitelyum hücrelerinin hipertrofisinin bileşimi ile oluşmuştur. İlk şişme olmadığı taktirde kese gelişimi şişmeden önceki dönemde durur ve fonksiyonelliğini kaybeder. Bu aşamadan sonra kesenin gelişimi imkansızdır (Chatain ve Dewavrin, 1989). Kese uzunluğu larva uzunluğunun % 3-5' i kadardır. İlk şişmenin gerçekleşebileceği maksimum. boy 6.5 mm' dir. 10.5 mm boyda kese içinde hava kabarcığı çok net bir şekilde görülürken, larva 11-12 mm boya ulaştığında ilk hava kabarcığının arkasında birincisinden daha küçük bir hava kabarcığı görülür ki buda ikici safhayı oluşturan bölümdür. Bu hava kabarcığı fizyon yoluyla ilk hava kabarcığı ile birleşerek keseye elipsoidal bir görüntü kazandırır ve keseyi arkaya doğru uzatır. Hava kabarcığı artık tek bir yapı gösterir. Bu dönemde kese boyu total uzunluğu 14 mm olan larva boyunun %10-12' si kadardır. 13-15 günlerde duktus pinomatikus dejenere olarak sindirim tüpünden ayrılır. Bundan sonra hava kesesinin doldurulması gaz bezi ve retya mirabilya ile gerçekleşir. Levrek Larva Yetiştirme Dönemleri Yumurtaların embriyolojik gelişimini tamamlayıp larvaların çıkması ile birlikte larva yetiştiriciliği de başlar. Larva yetiştiriciliği biyotik, abiyotik ve yabancı biyotik faktörlerin kontrol altına alındığı akuakültür tesislerinde yapılmaktadır. Larva yetiştirme periyodu larval dönem, sövraj (mikropartikül yeme geçiş) ve ön büyütme olarak üç bölümde gerçekleşir. Larval Dönem Prelarval dönemde, larvalar yoğun üretim koşullarında 80-200 adet/lt, olacak şekilde larva tanklarına yerleştirilir. İdeal stok yoğunluğu 100-125 adet/lt’dir. Tanklar silindir konik yapıda olup polyester malzemeden üretilmiştir. Hacimleri uygulanan tekniğe göre 2 m3'ten 15 m3'e kadar değişim gösterebilir. İdeal larva tankları 4-6 m3 hacmindedir. Havuzların iç yüzeyleri gel-coat ile kaplı olup koyu renklidir. Larvaların kolay izlenmesi için tanklara lomboz açılmalıdır. Havuzların etrafı rahat çalışmaya elverişli olmalı, alttan ve üstten su çıkışları mevcut olmalıdır. Bu tankların seçimi uygulanacak larva yetiştirme tekniği ile ilgilidir. Levrek larva yetiştiriciliğinde açık devre ve kapalı devre sistemler kullanılmaktadır. Açık devre sistemlerde su kriterleri larvanın gerek duyduğu şartlara göre ayarlanır ve üretim tanklarına gönderilir. Balıklar tarafından kullanılan su daha sonra deşarj edilir. Saatte %5 değişim ile başlayan su debisinin larva dönem sonunda saatte %50 çıktığı düşünüldüğünde kullanılan su miktarına bağlı enerji tüketiminin fazlalığı ortaya çıkar. Kapalı devre sistemlerde ise tanklarda kullanılan su önce toplama tankına gelir. Burada gerekli su yenilenmesi yapıldıktan sonra tuzluluğu tekrar ayarlanır. Buradan kum filtresine geçer ve beraberinde getirdiği süspansiyon haldeki partikül maddelerden ayrılarak ultraviyole filtreye gönderilir. Bu işlem sırasında bünyesindeki tüm canlı organizmalardan (bakteri, mantar, parazit, bazı virüsler vs.) arınarak biyolojik filtreye girer. Balık dışkıları yem atıkları ve ölü balıklardan dolayı yükselen amonyak miktarı bu aşamada aerobik bakteriler tarafından önce nitrite daha sonrada balıklar için zararlı etkisi olmayan nitrata indirgenir. İşlemleri tamamlayan su havuzlara geri dönmek üzere sistemi terk eder. Ancak havuzlara ulaşmadan önce bünyesinde getirdiği azot gazı fazlasını atmak ve oksijence %100 doygunluğa ulaşmak için saturasyon kolonlarından geçerek havuzlara gelir. Saturasyon kolonlarına girmeden önce suyun oksijen değeri 1.8-2.3 mg/lt'ye kadar düşmektedir. Bu sayede suyun O2 değeri tekrar 5-6 mg/lt’ye ulaşmaktadır. Ayrıca saturasyon kolonlarının içinde havalandırma sistemleri de mevcuttur. Kimi kapalı devre sistemlerde ultraviyole filtreler biyolojik filtrelerden sonra kullanılsa da havuzlarda gelişen patojen veya patojen olmayan mikroorganizmaların biyolojik filtrelere yerleşerek zaten zayıf yapıda olan aerobik bakterilerin yerini alması sistemin çalışmasını olumsuz etkiler (Timmons ve Losordo, 1994). Kapalı devre sistemler, suyun ısıtılmasında veya soğutulmasında kullanılan enerji açısından avantajlıdır. Bunun yanı sıra kapalı devre sistemlerde, larvalar için tehlikeli olan suyun fiziksel ve kimyasal değişimleri ani farklılıklar göstermez. Deniz ortamında özellikle yazın planlanan üretimlerde görülen bakteri patlamalarına karşı üretimi korur. Özellikle levrek larva yetiştiriciliğinde kullanılan düşük tuzluluk tekniğinin uygulanması ve tatlı su tasarrufu sağlanması yönünden avantajlıdır. Bununla birlikte kapalı devre suyunun her gün analizleri yapılarak amonyak miktarı kontrol edilmelidir, aksi halde ani ölümler görülebilir. Yetiştiricilikte sistem farkı gözetilmeksizin larva için gerekli olan fiziksel-kimyasal koşullar ve besleme özellikleri optimum düzeyde olmalıdır. İlk on günde ağız ve anüsün açılması, sindirim tüpünün faaliyete geçmesi ve hava kesesi doldurulması gibi çok önemli fizyolojik gelişimlerin olması ve larval başarıyı direkt olarak etkilemesi açısından yüksek sıcaklıkta çalışılmaktan kaçınılmalıdır. Su sıcaklığı ilk dönem 15-16 0C olup ortam karanlıktır (Bertolini ve diğ, 1991) (Tablo 2). Levrek larva yetiştiriciliğinde uygulan tuzluluk düşürme tekniği yaşama oranının olumlu yönde etkilemektedir (Johnson ve Katavic, 1986). Bunun yanı sıra hava kesesi oluşturma yüzdesini arttırması ve buna paralel olarak deformasyonun azalması bu tekniği daha da kullanılır hale getirmiştir. Tuzluluk ilk günden itibaren tedrici olarak düşürülür ve 5. günde doğal deniz suyu tuzluluğundan ‰26 tuzluluğa ulaşılır. 5-17. günler arasında bu tuzluluk değerinde sabit kalınır. 17-23. günler arasında aynı şekilde tuzluluk kademeli olarak arttırılarak doğal deniz suyu tuzluluğu düzeyine çıkarılır. Tuzluluk artırımında hava kesesi hipertrofisi ile karşılaşıldığında ‰26 tuzluluğa geri dönülmelidir (Saka, 1995). Oksijen değeri 5-6 mg/lt’dir. Türbitite miktarı 8.5-12 ITU'yu aşmamalıdır. Larva tanklarında nitritin (NO2) 0.013-0.016 mg/lt, nitratın (NO3) 0.062-0.068 mg/lt arsında olması üretim için idealdir (Equınoxe, 1990). 15-16 0C su sıcaklığında levreklerde prelarval dönem 5. günde sona erer ve postlarval dönem başlar. Ağız açılmadan önce tankların üzerinde biriken yağ tabakasının temizlenmesi için yüzey temizleyicileri tank yüzey alanına göre 1 veya 2 adet olarak yerleştirilir. Bu hava kesesi gelişimi için çok önemlidir. Larvalara uygulanan aydınlanma süresi ve yoğunluğu larvaların gelişimini, hava kesesi oluşumunu ve yaşama oranının etkiler (Cerqueria ve Chatain, 1991). Larva gelişimi artan aydınlatma koşullarında artarken, sürekli aydınlatma balıkların yaşama gücünü düşürür. Larva tanklarına prelarval evrede ışıklandırma uygulanmaz. Işıklandırma süresi ve şiddeti 5.günde 12 saat-50 lüks, 11.günde 13 saat-140 lüx, 17. gün ve sonrasında 16 saat–920 lüx olarak ayarlanmalıdır (Equipe Merea, 1990). Larval dönem beslemede canlı yem kaynakları olan rotifera (Brachionus plicatilis) ve çeşitli orijine sahip artemiaların (Artemia sp.) nauplii ve metanauplii formları kullanılır (Barnabé ve Guissi, 1993). Dünyanın çeşitli bölgelerinde farklı orijinlere sahip artemia yumurtaları temin edilmektedir. Bunların açılım oranları, besin içerikleri, bir gramdaki yumurta sayıları ve açılım sonrası nauplii boyları değişim gösterir. Artemia Systems’in ürettiği ve larva üretim tesislerinde yoğun olarak kullanılan AF tip artemiaların nauplii boyları yaklaşık 460-480 μ olup, 10 mg/gr’dan daha fazla miktarda HUFA içerirler. Bu artemiaların enleri 165-175 μ arasında değişim gösterdiğinden ağız açıklığı 400-420 μ olan levrek larvalarında ilk günden itibaren de kullanılabilir. Fakat bir haftalık dönemde rotifer ile besleme yapılması yaşama oranını olumlu etkiler. AF tip artemia naupliilerinin protein oranları %48-52, yağ oranları %19.3-21, karbonhidrat oranları %12-13, kül miktarları %8.1-8.7 ve nem oranları %4.8-5.2 arasında değişim gösterir. İkinci aşamada yine yoğun olarak kullanılan EG tip artemia naupliileri ise daha düşük oranda protein miktarına (%45-47) ve daha az doymamış yağ asitleri (5-7 mg/g HUFA) oranına sahiptirler. Ayrıca boyutları daha büyük olup 500-520 μ arasındadır. 16. günden itibaren EG1 olarak kullanılan artemia formları ise EG tip artemia naupliilerinin 24 saat boyunca SELCO türevli zenginleştirici maddeler ile beslenerek büyütülmesi ile elde edilir. SELCO ürünleri yüksek oranda HUFA (200 mg/gr), vitamin, antioksidan ve yağ (%60-65) içerdiklerinden larva gelişiminde önemli rol oynarlar. 24 saat sonunda metanauplii formuna gelen artemiaların boyutları 700-750 mikron arasındadır (Artemia Systems, 1991). Larvalara verilen canlı yemlerin tipleri ve mililitredeki oranları Tablo 2'de gösterilmiştir. Larval dönem sonunda yumurta kalitesine de bağlı olarak uygulanan yetiştirme tekniklerine göre başarı oranı %40'a kadar ulaşabilir. Sövraj (Mikropartikül Yemlere Geçiş) Dönemi Larval dönemin tamamlanması olarak kabul edilen 38-42 günler arasında larvalar canlı yemden mikropartikül yeme adapte olacakları sövraj bölümüne alınırlar. Bu bölümde işletmenin kapasitesine göre belirlenmiş sayıda 10-15 m³’lük tanklar kullanılır. Tankların dip kısımları koniktir. Su çıkışları merkezi ve diptendir. Balıkların yaşına bağlı olarak su çıkışlarına yerleştirilen krepinler göz açıklıkları 500, 1000 ve 2000 mikron arasında değiştirmektedir. Havuzlarda 1500-2000 lüx aydınlatma şiddeti sağlayacak ışıklandırma sistemleri mevcuttur. Ünitede aydınlatma süresi 16 saat olup otomatik zamanlayıcılar yardımıyla ayarlanmaktadır. Mikropartikül yemlerin dağıtımında otomatik yemlikler kullanılmaktadır. Bu bölümde de açık devre ve kapalı devre sistemler kullanılabilir. Ortama girilen toz yem su kalitesini çok hızlı değiştirdiğinden kapalı devre sistemlerde su kalitesinin sürekli kontrolü sağlanmalıdır. Hastalık risklerinin azaltılması yönünden açık devre sistemlerin bu aşamada kullanılması daha faydalı olmaktadır. Tanklara verilen su mutlaka kum ve ultraviyole filtreden geçirilerek larvalara verilmelidir. Bunların yanı sıra tanklarda saf oksijen girişi, debi metre, saturasyon kolonları ve yüzey temizleyicilerinin bulunması üretimi olumlu yönde etkiler. Mikropartükül yeme alıştırma dönemi, balıkların ortalama 19-21 mm total boya ve 35-40 mg ağırlığa ulaştıkları 38-42 günlerde başlar. Bu dönemde havuzlardaki balık yoğunluğu litrede 10-12 adettir. Saf oksijen kullanıldığı durumlarda bu oran 18-20 adet/lt'ye kadar çıkabilir. Mikropartikül yeme geçiş döneminde kullanılan Artemia’lar metanauplii II formunda olup HUFA bakımından larval dönemde metanauplii I formunda olduğu gibi zenginleştirilir. Levrek balıklarının sövrajında kullanılan mikropartikül yemler ilk dönem 80-150 mikron büyüklükten başlayarak larva gelişimine göre 500 mikron büyüklüğe kadar kullanılır. Sövraj uygulaması 15-16 gün devem eder. Larvalara günlük verilen artemia miktarı azaltılırken mikropartikül yem miktarı arttırılır. Bu dönemde mikropartikül yem besleme oranı canlı ağırlığın %8-10 kadardır. Sövraj boyunca su sıcaklığı ortalama 20 0C olup, tanklarda su debisi %50-100 arasında değişim gösterir. Ölümler sövrajın ilk günlerinde toz yeme adapte olamamaya bağlı olarak artma eğilimindedir. Larva yaşama oranı normal şartlar sağlandığı taktirde ortalama % 80-90 arasında değişim gösterir (Equipe Merea, 1990). Sövrajı tamamlayan larvalar ortalama olarak 350-400 mg ağırlığa kadar bu bölümde kaldıktan sonra ön büyütme ünitesine alınır. Ön Büyütme Bu sistemde kullanılan tankların teknik özellikleri sövraj ünitesinde kullanılan tanklar ile aynıdır Gelişim özelliklerine göre 70-80. günlerde sövraj ünitesini terk eden yavrular boylanarak, hava keseli ve hava kesesiz bireyler birbirinden ayrılır. Ön büyütmede kapalı devre sistem kullanılmaz. Balıklar burada ağ kafeslere çıkarılmak için gerekli olan 1.5-2 gram ağırlığa kadar büyütülürler. Ancak ülkemiz koşullarında yavru bireyler 0.5-1 gram arasında da kafes sistemlerine çıkarılmaktadır. Ön büyütme ünitesinde balıklar sürekli gözlenerek, hastalık risklerine karşı gerekli önlemler alınmalıdır. Ön büyütme ünitesinde de hacimleri 10-15 m3 arasında değişen silindir tanklar kullanılmaktadır. Su sıcaklığı 19-21 °C olup 16 saat ışıklandırma uygulanır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Tanklara 3000-5000 adet/m3 arasında yavru stoklanabilir. Su değişimi balık büyüklüğüne ve stok yoğunluğuna göre saate %80-150 arasında değişmektedir. Yemleme oranı %6 başlayıp %4 kadar düşme gösterir. Yaşama oranı hastalık çıkmadığı süre içinde %90-95 arasında değişim gösterir. Büyütme Akuakültür tesislerinden veya doğal ortamdan temin edilen levrek yavruları porsiyonluk boyuta getirilmek üzere karasal ve denizel ortama kurulan tesislerde farklı teknikler kullanılarak büyütülür. Ekstansif Yetiştirme Yöntemi Bunun için sahil şeridinde bulunan, dalyan ve gölet gibi doğal alanlardan yararlanılır. Buralarda yavru temini tamamen doğadan olup, ortamda diğer türlerle birlikte polikültür yapılmaktadır. Bahar aylarında daha bol besin içeriğine sahip olan dalyan alanlarına giren yavrular, yaz sonunda suların soğuması ile birlikte sıcaklığı sabit olan derin sulara göç ederler. Bu sırda dalyan sahasının çıkışına kurulan kuzuluklardan yakalanırlar. Yeterli pazar boyuna gelmeyen bireyler dalyan sahalarında yada kafes ünitelerinde besiye alınabilir. Bu amaçla dalyan alanları kendi içinde bölünerek derinleştirilir ve motopomplar ile su değişimi sağlanır. Özellikle İtalya sahillerinde yoğun olarak bu tür sistemlere rastlanmaktadır. Valikültür adı verilen bu teknikte dışarıdan besin takviyesinde de bulunulmaktadır. Bu tür alanlarda yatırım maliyetleri düşük olmasına rağmen sistemin kontrol zorlukları ve birim alandan alınan ürün miktarının az olması sistemi olumsuz yönde etkiler. Ancak ülkemizde dalyan sahalarında ortalama 20-50 kg/hektar olan verim, bu tür yapılarda hektar başına ortalama 200 kg olmaktadır. Su kalitesinin ve besleme tekniklerinin yükseltilmesine bağlı olarak 500 kg/hektar ürüne kadar çıkılabilmektedir. Yarı Entansif Yetiştirme Yöntemi Bu sistemler karasal alanlarda kurulu olan toprak veya beton havuz sistemleri ile portatif olarak kullanılan branda havuzları kapsamaktadır. Havuzların şekilleri ve büyüklükleri değişik yapılarda olabilir. Bu sistemlerde su değişimi ve beslenme kontrol altındadır. Su kalitesini arttırma için sistemlere oksijeneratörler eklenebilir. Ayrıca toprak havuzlar jeo-membran madde ile kaplanmakta ve su geçirmeyen özelliğe sahip olmaktadırlar. Bu sayede su debisi yükseltilmesi ile stoklama yoğunluğu arttırılmaktadır. Toprak havuzlarda hektar başına 1-4 ton arası ürün alınabilir. Bu oran beton havuzlarda ve iç yüzeyi kaplı toprak havuzlarda 2-5 kg/m3 arasında değişmektedir. Entansif Yetiştirme Yöntemi Dünyada ve ülkemizde yoğun olarak kullanılan bu yöntemde yüzer ağ kafes yapılarında yetiştiricilik yapılmaktadır. Akuakültür çalışmalarının gelişmesine paralel olarak birim alandan daha çok verim almayı sağlaması acısından su içerisinde yetiştirme sistemleri ağırlık kazanmıştır. Günümüzde kıyısal alanlarda, açık denizlerde ve okyanuslarda bile güvenlik içinde kurulabilecek sistemler planlanmaktadır. Günümüzde kıyı ötesi kafeslerde 2500-6000 m3' arası değişen hacimlerde tek bir sistemde yıllık 150 ton üretim yapılabilmektedir (Özden ve diğ., 1998). Kafes sistemleri sabit kafesler, yüzer kafesler, dalgıç kafesler ve döner kafesler olarak 4 ana grupta toplanır. Ağ kafeslere kurulduğu yerin özelliklerine ve su kalitesinin durumuna göre 15-30 kg/m3 arasında stoklama yapılabilir. Balıkların gelişiminde besleme ve su sıcaklığı önemli rol oynar. Besleme rejimlerinde yem kalitesinin yanı sıra balıkların ağırlıkları ile su sıcaklığı değerleri dikkate alınarak günlük besleme yapılmalıdır. Büyütme döneminde levreklerde kullanılan yemlerde protein %46-52, selüloz %2-3, ham kül %12-13, ham yağ % 10.5-11.5 kalsiyum % 1.6-2.2 ve fosfor %1.4-1.5 arasında olması, bunun yanı sıra vitaminler ve iz elementlerin yeterli miktarda kullanılması gelişimi olumlu yönde etkiler. Ege Bölgesi koşullarında 4 aylık süreyi akuakültür tesislerinde geçiren levrek yavrularının ağ kafeslere çıktıktan itibaren 14-15 aylık sürede 3-4 gram ağırlıktan 370-420 gram ağırlığa ulaşmaktadırlar. Bu süre ve ağırlık artışı yetiştirme ortamının ekolojik şartlarına, kullanılan yemin içeriğine, balık stok yoğunluğuna, hastalık etkenleri ve larva kalitesi göre değişim gösterebilir. SONUÇ Kompleks bir yapı izleyen levrek yetiştiriciliğinde meydana gelen sorunlar canlının gelişiminin yeteri kadar bilinmemesinin yanı sıra yönetim ve üretim tekniklerinin eksikliklerinden de meydana gelmektedir. Üretimlerde temin edilen yumurta ve larvaların kalitesi uygun şartlar sağlanarak kontrol altında tutulmalıdır. Cinsiyet kontrolü çalışmaları, suni seks dönüşümü için ideal periyodunun tayini ve ploidlik manuplasyonları için uygun deneysel şartlar (örneğin; monoseks üretimi için ginogenezis) üzerinde çalışılması gereken konulardır. Bu çalışmalara, premature dişilerin varlığının engellenmesi, deformasyon oranlarının azaltılması ve gelişimin yükseltilmesinin eklenmesi ile yeni ufuklar açılacaktır. Ayrıca, soy ve yumurtlamanın kalitesi üzerine anaç beslemenin etkileri ile ilgili çalışmalar oldukça hızlamıştır. Bu çalışmaların direkt sonucu, yumurta ve larval üretimin etkisini net bir şekilde arttıracaktır. Bunun yanı sıra ileri genetik çalışmalara hız verilerek, anaç seçim programları, çiftleştirme özellikleri ve yüksek kalite yem formulasyonları üzerine çalışmalar planlanmalıdır. Yetiştiricilik kalite ve kantititesinin arttırılması gelecekte uygulanacak bu tekniklerin başarısı ile ilgilidir. LİTERATÜR Artemia Systems, 1991. User’s guide Artemia Systems N.V. Belgium Alpbaz, A., G., 1990. Deniz Balıkları Yetiştiriciliği. E.Ü. Su Ürünleri Y.O. No: 20 Alvarino, J.M.R., Carrillo, M., Zanuy, S., Prat, F., Mananos, E., 1992a. Pattern of sea bass development after ovarian stimulation by LHRHa. Jour. of Fish Bio., 41, 965-70. Alvarino, J.M.R., Zanuy, S., Prat, F.Carrillo, M.,&Mananos, E., 1992b. Stimulation of ovulation and steroid secretion by LHRHa injection in the sea bass (Dicentrarchus labrax): effect of time of day. Aquaculture, 102, 177-86. Barnabé, G., 1971. Bases biologiques et ecologiques de l’aquaculture. Lavoisier-Tec. Doc. 55 pp. Barnabé, G., Rene, F., 1972. Reproduction Controlle du Loup Dicentrarchus labrax et Production en Masse D’alevins. C.R.Acad Sci, 275: 2741-2744. Barnabé, G. 1976. Chronologie de la morphogenese chez le loup ou bar Dicentrarchus labrax (L.) (Pisces, Serranidae) obtenu par reproduction artificielle. Aquaculture 8 : 351 - 363. Barnabé, G., Paris, J., 1984. Ponte avancée et ponte normale du loup Dicentrarchus labrax (L.) a la Station de Biologue Marine et Lagunaire de Séte. In L’Aquaculture du Bar et des Sparidés (eds. G. Barnabé & R. Billard), pp. 63-72. INRA, Paris. Barnabé, G., Barnabé-Quet, R., 1985. Avancement et amélioration de laponte induite chez le loup Dicentrarchus labrax (L.) a l’aide D’un analogue de LHRH injécte. Aquaculture, 49, 125-32. Barnabé, G., Guissi, A., 1993. Combined effect of diet and salinity on European sea bass Larvae D. Labrax. J. World Aqua Soc. 24 (4) :439-450. Bertolini B., Boglione G., Cataudella S., Finoia M.G., Marino G., Monaco G., 1991. Temperature induced developmental anomalies in sea bass (Dicentrarchus labrax) embryos and larvae. Acta Embryological Morphological Exp., 12 (1):77-79. Brusle, J., Roblin, C., 1984. Sexualite du loup Dicentrarchus labrax en condition d'elevage controle. In l'Aquaculture du bar et des Sparides. /eds Cerqueria, V. R., Chatain, B., 1991. Photoperiodic effects on the growth and feeding rhythm of European sea bass (Dicentrarchus labrax), larvae in intensive rearing. Larvi’ 1991 Fish and Crustacean larviculture symposium, 15: 304-306. Chatain, B., 1986. La vesie natoire chez Dicentrarchus labrax et Sparus auratus. aspects morphologiques du developement. Aquaculture 53: 303-311. Chatain, B, Dewavrin, G. 1989. Influence des anomalies de development de la vessie natatoire sur la mortalite de D. labrax au cours du sevrage. Aquaculture 78:55-61 Dendrinos, P., Thorpe, J. P., 1985. Effects of Reduced Salinity on Growth and Body Composition in the European Bass D. labrax( L.). Aquaculture 49(1985) 333-858, 25p. Deplano, M., Connes, R., Diaz, J. P., Barnabe, G., 1991. Variation in the Absorption of Macromolecular Proteins Larvae of the Sea Bass Dicentrarchus labrax L. During transition to the Exotrophic Phase. Marine Biology 110, 29 36 (1991). Devauchelle, N., Coves, D. 1988. The characteristics of sea bass (Dicentrarchus labrax) eggs: Description, biochemical composition and hatching performances. Aquatic Living Resourch. 1 : 223- 230. Diaz, J.P., Guyot, E., Vigier, S., Connes, R., 1997. First event in lipid absorption during post-embryonic development of the anterior intestine in gilthead sea bream. Journal of Fish Biology, Vol.51, No.1, pp.180-192. Equinoxe, 1990. Le magazine des reources vivan les de la mer. No.31 IFREMER Nantes-France pp.42-43 Equipe Merea, 1990. L’ elevage intensif du loup, Dicentrarchus labrax. Tec. Rapor. Chemin de Maguelone Palavas-France. Fabre-Domerque, B., 1905. Introduction a l'etude de la pisciculture marine, In ''Travail du Laboratoire de Zoolpgie Maritime de Concarneau''. Vuibert et Nony Ed. Paris, 205-243 FAO, 1991. Fiches FAO d'identification des especes. Zone de Peche 37. Medit. et M. noire Fırat, K. 1995. Levrek (D. Labrax) Larvalarında (0-45 gün) Hava Kesesi Oluşumu ve Larval Gelişim Üzerine Olan Etkileri. Doktora Tezi. E.Ü. Fen Bil. Ens. Freddi, A., 1985. Sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) larval rearing. FAO. Projet Regional Mediterraneen de Developpement de L’aquaculture, 62 pp. Jennings, S., Pawson, M. G., 1991. The Development of sea bass, Dicentrarchus labrax, eggs in relation to temperature. Journal of Marine Bilogie 71: 107 - 116. Johnson, D. W., Katavic, I., 1984. Mortality, Growth and Swim Blader Stress Syndrome of Sea Bass (Dicentrarchus labrax) Larvae Under Varied Environmental Conditions. Aquaculture 38(1984) 67-68. Johnson, D., Katavic,I., 1986. Survival and growth of sea bass larvae as influenced by temperature, salinity and delayed inital feeding. Aquaculture. 52 : 11-19. Kennedy, M., Fitzmaurice, P., 1972. The biology of the sea bass (Dicentrrachus labrax, in Irish waters. Journal of Marine Biological Association of the UK, 52, 557-597. Licas, D., 1988. Marine hatchery technology-Systems Reviews. In aquaculture Engineering Technologies for the Future. IchemE Symposium Series No: 111, pp. 65-76.EFCE Publication Series No: 66, Stirling, UK. Loy, A., Cataudella, S., Corti, M., 1996. Shape Changes During of the Sea Bass, (Dicentrarchus labrax L.) in Relation to Different Rearing Conditions. Envir. Biol. Fish. New York. Marino, G., Boglione, C., Finoia, M. G., Bronzi, P., Monaco, G., Bertolıni, B.& Cataudella, S. 1991. Effect of incubation temperature on embriyonic development and hatching of Dicentrarchus labrax (L.) eggs. Larvi ‘91-Fish and Crustacean Larviculture Symposium, EAS, 15 : 230 - 232. Özden, O., Güner, Y., Alpbaz, A. G., Altunok, M., 1998. Kıyı Ötesi Ağ Kafes Teknolojisi. E.Ü. Su Ürünleri Fakültesi Dergisi. Cilt:15 Sayı:1-2 Paperna, I., Colorni, A., Gordın, H., Kıssıl, G., 1977. Disease of Sparus aurata in Marine Culture at Elat. Aquaculture, 10: 195-213. Saka, Ş. 1995. Levrek (D. Labrax) Larva Yetiştirme Teknolojisinde Tuzluluk Değişimlerinin Üretime Etkileri. Doktora Tezi. E.Ü. Fen Bil. Ens. Saka, Ş., Fırat, K., Kamacı, O. 1999. The Development Of European Sea Bass (Dicentrarchus labrax L.) Eggs In Relation To Temperature. TÜBİTAK Türk Veteriner ve Hayvancılık Dergisi (Baskıda) Timmons, M.,B., Losordo, T.M., 1994. Aquaculture Water Resue Systems: Engineering Design and management. Elsevier Science B.V., New York Salvatorelli, F. B. G., Santulli, A., D’ Amelio, V., 1989. Otogenetic variation of same enzymes in Dicentrarchus labrax. Boll. Zool. 56 . 1 - 6. Uçal, O. 1985. Levrek ( Dicentrarchus labrax L. ) biyolojisi ve fingerling seviyesinde yetiştirilmesi. Doktora Tezi. E. Ü. Fen Bil. Ens. Uçal, O., Benli, H.A., 1993. Levrek balığı ve yetiştiriciliği. Tarım ve Köy İşleri Bakanlığı Su Ürünleri, Araştırma Enstitüsü Müdürlüğü. Bodrum. Seri A, Yayın No. 9, 72 s.

http://www.biyologlar.com/levrek-dicentrarchus-labrax-lin-1758-baliginin-biyolojisi-ve-yetistirme-teknikleri

OMURGASIZ HAYVANLAR SİSTEMATİĞİ

Canlılarla ilgili problemler ele alındığında organizmalar sınıflandırmak ve onları gruplara ayırmak zorunluluğu ortaya çıkmaktadır. Yeryüzünde milyonlarca canlı varlık vardır ve bunun yanı sıra geniş ölçüde bir çeşitlilik de görülür. Sınıflandırmanın Tarihçesi İnsanlar yaradılışlarından itibaren çevrelerinde bulunan bitki ve hayvanları öğrenmeye çalıştılar. İlk insanlar, bitki ve hayvanları kendileriyle olan ilişkisine göre tanıdıklarından, o zamanlarda yapılmış olan sınıflandırmalar fazla derin olmayan günlük tecrübe ve gözlemlere dayanıyordu. Daha sonra bilgiler arttıkça onların bir esasa göre sınıflandırılması ihtiyacı ortaya çıkmıştır. Milattan önce 4. asırda filosozofiyi ilk teklif eden Aristo ilk bilimsel sınıflandırmayı yapmıştır. Aristo ve öğrencisi Theophrastus bitkileri ot, ağaçcık, ve ağaçlar; hayvanları da havada, suda ve karada yaşayan kuşlar, balıklar, balinalar ve böcekler olmak üzere 4 gruba ayırıyorlardı. Böcekleri de ısırıcı, emici, kanatlı ve kanatsız olarak gruplamışlardır. Canlıları sınıflandırmada çeşitli gelişme ve kademelerden sonra John Ray (1627-1705) belli bir tür kavramı geliştirmiştir. Ona göre tür, ortak ataları olan, benzer bireylerin bir grubudur. Ray çok az farklılıkları olan çeşitli organizmaların aynı türe sokulabileceğine inanıyordu. Böylece canlılarla ilgili gözlemler türlerle ilgili bir hipotezle birleştiriliyordu. Ray ve onu destekleyenler tabiattaki türlerin sayısının değişmez olduğuna inanıyorlardı. Tür anlamı Ray’den sonra değişmiştir. Linnaeus.dan sonra Lamarck hayvanları 8 klasise ayırmış, hayvanlar için omurgalı ve omurgasız tabirini kullanmış daha sonra Cuvier (1796-1832) mukayeseli anatomiden faydalanarak hayvanları Vertebrata, Mollusca, Arthropoda, Radiata olmak üzere 4 ana gruba ayırmıştır. Sistematik bir esasa göre, yapı benzerliği esas alınarak bitki ve hayvanların sınıflandırılması ilk defa İsveçli biyolog Carl Von Linnaeus tarafından yapılmıştır (1707-1778). Sistematiğin babası olarak tanımlanan Linnaeus, Systema Naturae (1758) adlı yapıtında hayvanlar alemini sınıf, takım, cins ve türlere göre gruplara ayırmıştır. Linnaeus.un diğer bir önemi binominal nomenclature denen metodu kurmasıdır. Bu metoda iki adla adlandırma denir. Yani her çeşit canlı iki isimle anılır. Bunlardan birincisi yani o hayvanın ait olduğu cins (genus-çoğulu genera)’ın adı büyük harfle, tür adı ise küçük harfle yazılır. Her ikisi de latincedir. Dünyanın her yerinde bu şekilde kullanıldığından anlaşma zorluğu ve karışıklık olmaz. Linnaeus de tür sayısının değişmez olduğuna inanmıştı. Bugün tür¸ ortak atadan gelen, birbiriyle çiftleşebilen, doğurgan yavrular meydana getiren, kendi aralarında nesil veren dolayısı ile gen alışverişinin devam ettiği tabii topluluklara (Yani doğal populasyonlar) ait gruplar olup çok benzer diğer gruplardan üreme bakımından izole bireyler topluluğu olarak tanımlıyoruz. Belirli bir ekolojik nişe sahip olan bu populasyonlar, yapı ve işlevleri ile birbirine benzeyen fiziksel ve kimyasal koşullara benzer tepki gösterirler. Sınıflandırmada Kategoriler Sistematikte en küçük grup tür olduğuna göre yapı taşı da türdür. Türler birleşerek genusları onlar da sırasıyla daha büyük grupları oluştururlar. Örneğin 1. Tür - Species - Homo sapiens 2. Cins - Genus - Homo 3. Aile - Family - Hominidae 4. Takım - Ordo - Primates Super- Class - Enteria 5. Sınıf - Class - Mammalia 6. Phylum - Þube - Chordata 7. Regnum - Alem - Animale Bir canlı türünün tam olarak sınıflandırılabilmesi için en az 6 gruptan söz edilmesi gerekir. Bazı durumlarda ara gruplardan da faydalanılır. Böyle ara gruplar için Alt= sub, Üst = super terimleri kullanılır. Örneğin Sub species = Salmo trutta abanticus = Abant gölünde yaşayan bir tür alabalık. Ayrıca tür adını ilk kez kullanan araştırıcının adı da 2. isimden sonra ilave edilir. Leptinotarsa decemlineata (Say, 1879) Hayvanlar Alemini Sınıflandırmada Esas Alınan Başlıca Özellikler Hayvanlar alemini sınıflandırmada esas, hayvan populasyonları arasında var olan akrabalık ilişkileridir. Linnaeus’den sonra sistematik üzerine olan çalışmalar ilerlemiş evrim teorisinin kabul edilmesiyle de, yani Darwin.le, zoologlar evrimsel orijini birbirine çok yakın olan organizmaları bir gruba koymak suretiyle daha çok, doğal ilişkilere dayanan bir tasnif sistemi kurmaya çalışmışlardır. Yapısal benzerliklerin çoğu evrimsel akrabalığa bağlı olduğundan organizmaların modern tasnifi birçok bakımdan Linnaeus’nin ortaya koyduğu mantıki yapı benzerliğine uymaktadır. Özet olarak modern sistematik yapılırken hayvanların yanlız dış görünüşlerinden değil, karşılaştırmalı anatomilerinden ve embriyonal gelişmelerinden faydalanılarak evrimsel gidişlerine uygun akrabalık derecelerine göre sınıflandırma yapılır. Bu sınıflandırmada hareket noktası olan temel kavramlar şunlardır : Homoloji : Birbiriyle hiç ilgisiz gibi görünen bazı yapılar incelenecek olursa birçok temel köken benzerlikleri ortaya koyulabilir. Örneğin; fokun  yüzme ayağı, yarasanın kanadı, insanın kolu. Bunlardan ilki yüzmeye, ikincisi uçmaya, üçüncüsü yakalamaya yarar. Ancak bunların iç yapısı, kemik ve kasları incelenirse her üçünün de kökten birbirine benzediği görülür. Yüzme ayağı, kanat ve kol aynı orijinlidir, fakat zamanla her biri temel örneğe kıyasla belirli bir görevi yerine getirmek için değişmiştir. Orijinleri aynı olup yani aynı kökenden gelen ancak değişik işler görebilecek şekilde farklılaşarak evrimleşmiş yapılara homolog yapılar denir. Sınıflandırmada özellikle homolog yapılar göz önünde tutulur. Bunun dışında daha farklı benzerlikler de vardır. Örneğin hayvanlarda kanat; sinek ve yarasa kanadının her ikisi de uçmaya yarar. Ancak bu benzerlik yüzeyseldir. Benzerliklerin yüzeysel olduğu ve hemen hemen aynı işi gören yapılara analog yapı denir. Fakat bunların embriyonal dönemlerdeki durumları birbiriyle kıyaslanırsa tamamen farklı kökenden oldukları görülür. Orijinleri tamamen ayrı olan bu yapıları, evrimsel gidişleri, benzer işi gördüklerinden, birbirine benzeyen duruma getirmiştir. Yüzeysel olan bu benzerliklerin doğal sınıflandırmada hiçbir önemi yoktur. Fizyoloji ve biyokimyadan da yararlanılarak canlılar arasındaki akrabalık tesbit edilir. Son zamanlarda, biyologlar protein yapılarının benzerliğinden yararlanmışlardır. Hayvanların bir hücreden veya çok hücreden yapılmış olması yüksek kategorilerde önemli bir temel karakter olup böyle bir ayırım sonucunda hayvanlar alemi Protozoa ve Metazoa olmak üzere 2 büyük subregnuma (veya Regnum yani Aleme) ayrılır. Embriyodaki hücre tabakası , Diploblastik, (Porifera, Coelenterata.) Triptoblastik (diğerleri); Simetri (bilateral, lateral) ve segmentasyon büyük grupları sınıflandırmadaki ayırıcı özelliklerdir. Sindirim, dolaşım ve sinir sisteminin olup olmaması (Protozoa ve Porifera.da yok; Coelenterata ve Platyhelminthes’de sindirim gastrovasküler boşluk halinde, ağız açıklığı vardır, diğerlerinde sindirim borusu hem ağız hem de anüs var) ve söz konusu grubun kendine has morfolojik karakterleri yine başlıca ayırıcı özelliklerdendir. Aristo zamanından beri biyologlar canlılar dünyasını en basit anlamda bitkiler ve hayvanlar olmak üzere 2 aleme ayırmışlardır. Buna göre derinliğine düşünülürse birçok türü, mikroskop altında gözlenebilen ve bir hücreli organizmalardan pek çoğunu bitki veya hayvanlar aleminden birine dahil etmek kolay bir iş değildir. Bundan bir asır önce Alman biyolog Ernest Haeckel birçok özellikler bakımından bitkilerle hayvanlar alemi arasında yer alan bütün bir hücreli organizmaları kapsayabilen Protista’yı üçüncü bir alem olarak teklif etmiştir.Uzun süre dünya biyologlarının pek rağbet etmediği bu teklif ilk bakışta sınıflandırmayı basitleştireceği yerde daha da güç duruma sokacağı ortaya konmuştur. Çünkü bitki benzeri olan bazı protistalar bitkilerle çok yakın ilişki kurarlar. Birçok grup (veya türler) gösterdikleri  bazı karakterler nedeniyle bitkilerle hayvanların arasında yer alırken diğer karakterleri nedeniyle hem bitki hem de hayvanlardan çok farklı bir durum gösterirler. Hatta farklı biyologlar tarafından Protista alemi içerisinde gösterilen organizmalar da farklı olabilmektedir. Bazı sistematikçiler Protista içerisine sadece birhücreli formlar koydukları halde bazıları mantarları, çokhücreli algleri hatta bakteri ve mavi yeşil algleri de Protista.ya dahil etmektedirler. Daha yakın zamanlarda bazı biyologlar Monera diye dördüncü bir alem açılmasının uygun olacağını savunmuşlardır. Monera alemi, bakteriler ve mavi yeşil algler gibi pek çok ortak karakterlere sahip organizmaları içine almaktadır. Prokaryot maviyeşil alglerde çekirdek zarı bulunmadığı gibi mitokondri, kloroplast gibi zarla çevrilmiş organeller de bulunmaz. Diğer taraftan bitki ve hayvan bütün Protista’lar Eukaryottur ve çekirdek zarıyla çevrilmiş gerçek nukleus ihtiva ederler. Bitki ve hayvanlar arasında pek çok temel benzerlikler vardır : 1. Her ikisinde de yapı ve fonksiyon birimi hücredir. 2. Her ikisinde de metabolik olayların çoğu ortaktır. Ancak her iki grup çok bariz ve farklı bazı yollarla birbirinden kesinlikle ayrılır. 1. Bitki hücreleri hücreyi çevreleyen ve bitkiye destek vazifesi gören selülozdan ibaret sert bir hücre çeperi salgılar. Hayvan hücrelerinde böyle bir çeper yoktur. Ancak bazı bitkilerde selüloz çeper bulunmadığı gibi (bir grup hayvanda da) tunicat gibi ilkel Chordatlar.da hücrelerin etrafında aynen bitki hücrelerinde olduğu gibi, selüloz çeper vardır. 2. Bitki büyümesi genellikle sınırsızdır. (Bu büyüme ömür boyu aktif büyüme fazında kalan bazı bitki hücreleri ile gerçekleştirilir, tropik bitkilerde devamlı, ılıman bölge bitkilerinde ise daha çok ilkbahar ve yaz aylarında). Hayvanların çoğunda son vücut büyüklüğü belli bir büyüme devresi sonunda ortaya konmuş olur. Ancak timsahlar, kaplumbağalar ve istakozlar uzun süre büyümelerini devam ettirirler. 3. Hayvanların çoğu hareket eder, bitkiler ise istisnalar dışında 4. En önemli fark ise gıda temin etmeleridir. Bitkiler yeşil renkli klorofil pigmenti yardımı ile fotosentez yapar. Fotosentez ile suyu parçalayabilmek için ısı enerjisini kullanırlar ve neticede karbondioksiti karbonhidrata indirgerler. Klorofil ihtiva etmeyen mantarlar ve bakteriler bu kaideye uymazlar (bazı yüksek organizasyonlu bitkiler). Evrimsel olayların asırlar önce cereyan etmiş olması ve ilk formlara ait fosillerin yetersiz olması nedeni ile bugün bile önemli bitki ve hayvan phylumları arasındaki evrimsel yakınlık hakkındaki görüşler açık değildir. Örneğin, virus ve bakterilerin diğer organizmalara olan evrimsel yakınlığı fazla bilinmediği gibi önemli alg ve mantar cinsleri arasındaki akrabalığa dair eldeki mevcut deliller de yetersiz olup önemli Protozoa cinsleri ile çok hücreli hayvanlar arasındaki akrabalık ilişkileri hakkındaki bilgiler de henüz kesin değildir. Hayvan gruplarını incelerken; hücre tabakalaşmasını, solunum olup olmamasını, metameri durumunu, sindirim sistemini ele alıp kendine özgü morfolojik karakterleri vurgulayacağız. Canlılar alemi bitkiler ve hayvanlar olarak (genel bir ifade ile) ele alınmakta son zamanlarda aşağıdaki gibi gruplandırılmaktadır. I. Alem : Monera II. Alem : Protista - Birhücreliler III. Alem : Fungi - Mantarlar IV. Alem : Plantae - Bitkiler V. Alem : Animalia - Hayvanlar I. Alem : MONERA Prokaryot olan bu organizmalar çekirdek, çekirdek zarı, plastit, mitokondri ve tubuler yapı taşımayan, kamçıları olmayan ancak kamçı benzeri uzantılar taşıyan, birhücreli canlılardır. Bölünme ya da tomurcuklanma ile eşeysiz ürerler, kalıtsal madde alışverişi konjugasyon, transformasyon, transdüksiyon veya plasmit değişimi ile gerçekleşir. Eubacteria ve Archaebacteria şeklinde iki gruba ayrılırlar. 2700 farklı türü bilinmektedir. II. Alem : PROTİSTA Ökaryot canlılar olan (Yani zarla çevrili çekirdek, kamçı, sil, yalancı ayak ve organel içeren) bir ve çok hücreli fotosentetik algler, çok çekirdekli ya da çok hücreli heterotrof bazı mantarlar, bir hücreli ökaryotik canlıları içerir. Fotosentez, absorbsiyon ya da doğrudan yeme ile beslenirler. Eşeyli ya da eşeysiz çoğalırlar. 60.000 yaşayan, 60.000 de fosil türü ALT ALEM (SUBREGNUM): PROTOZOA Protozoa (Eski yunanca protos = birinci; zoon = hayvan) bir hücreli mikroskobik hayvanlardır. Bir protozoon’ın yapısı çokhücreli hayvanların (birhücreye) bir hücresine karşılıktır fakat fonksiyon bakımından çokhücreli bir organizmanın bütün temel görevlerini yapar. Birhücrelilerin hepsi çok küçük mikroskobik hayvanlar olmakla beraber büyüklükleri oldukça değişiktir. Bazıları 2-3 mikron boyunda olup çoğu 250 mm. den daha küçüktür. (Nadir olarak 15-16 mm. boyunda olanlara da rastlanır Sporozoa’dan Porospora gigantea ). 30.000’den fazla bir hücreli hayvan türü bilinmektedir. Bunlar tatlı sularda, denizlerde, rutubetli topraklarda yani sulu ortamda yaşarlar. Bir kısmı da diğer hayvanların vücudunda parazittir. Kuru yerlerde ancak kist halinde bulunurlar. Bu geçici bir korunma durumu olup aynı zamanda birhücrelilerin yayılması bakımından da avantaj sağlar. Þöyle ki bu durumda kuş, böcek ve rüzgarla her yere taşınabilirler. Denizde yaşayanlarda kuruma tehlikesi olmadığından genellikle kist oluşumu yoktur. Vücutları stoplazma ve nukleustan ibarettir. Stoplazma ekto ve endoplazma olmak üzere 2 kısma ayrılmıştır. Dışta yer alan ektoplazma granülsüz veya çok az granüllü ve yoğun, iç kısımda bulunan endoplazma ise granüllüdür. Ekto ve Endoplazma arasında geçiş vardır. Genellikle hücre zarı yani Pelikula (veya Pellicula) altında ektoplazma, anterior uçta cytostom (hücre ağızı) ve cytopharynx bulunur. Besin stoplazma içine geçerken etrafında bir zar şekillenerek koful oluşur. Sindirim bu kofulun içinde gerçekleşir. Posterior uçta cytopig (hücre anüsü) bulunur. Hücre anüsü bir çok kamçılıda ve özellikle sillilerde görülür. Hücre anüsü çok dar yapılı olduğundan, varlığı ancak dışkılama sırasında belirlenebilir. Bir veya daha fazla nukleuslu olabilirler. Tek nukleuslu formlara monoenergid , çok nukleuslulara da polyenergid adı verilir. Bir hücrelilerde bütün hayatsal olaylar organellerle yapılır. (Belirli bir ödevi olan stoplazma farklılaşmalarına organel denir.) Hareket organelleri pseudopod (yalancı ayak), flagellum (kamçı), sillerdir (kirpik). Pseudopodların yeri değişken olup vücudun herhangi bir yerinde teşekkül edebilir ve kaybolur. Buna karşın kamçı ve kirpikler yeri ve şekilleri sabit olan daimi organellerdir. Sporozoa ve Ciliatlar.da vücudun uzayıp kısalması myonem adı verilen kas lifleri ile yapılır. Parazit birhücrelilerde hareket organeli genellikle yoktur. Bununla birlikte bir kısmı (gelişimin erken evrelerinde) yer değiştirebilirler. Kayma şeklinde olan özel bir yöntem ile hareket edebilirler. Kirpik ve kamçılar hareketten başka duygu organı vazifesini de görürler. Bundan başka bazı flagellatlarda göz vazifesini gören ve ışıktan etkilenen kırmızı renkli stigma vardır. Ciliatlar.ın bir çoğunda uyartı nakleden organeller de tesbit edilmiştir.Bunlar sillerin dip cisimlerini birbirine bağlayan ektoplazmik fibrillerdir. Bir hücrelilerin bazılarında örneğin amiplerde vücut ince bir zarla örtülüdür. Plasmolemma adı verilen ve çok ince olan bu zar madde alış verişini düzenler. Fakat hayvanın vücuduna belirli ve sabit bir şekil vermez. Buna karşın bir çok tek hücrelilerde korunma ve destek organelleri vardır. Bu organeller sayesinde vücut şekilleri sabit kalır. Koruma ve Destek Organelleri: Yapılarına göre iki türlüdür. 1. Euplasmatic : Stoplazmanın farklılaşmasından meydana gelen organeller; fibriller aksopodların eksen çubukları radyolenlerin iç kapsülleri, pelikula vs. 2. Alloplasmatic : Stoplazmanın salgı maddesinden meydana gelen organeller; örtüler, kabuklar, evcikler, kistler ve iskeletler. Örtü ve kabuklar vücut yüzeyine yapışıktır. Evcikler ise yalnız belirli yerlerde yapışıktır. Kistler: Bunlar ya yalnız organik maddeden (jelatin, pseudokitin, sellüloz) veya inorganik maddeden SiO2 ve Ca2CO2 den yapılmıştır. Tatlısu protozoonlarında ve bir çok parazitlerde görülen geçici korunma organelleridir. Bunlar yaşamaya elverişli olmayan zamanlarda ve bazen çoğalma esnasında meydana gelirler. Kist meydana geleceği zaman hayvan bütün organellerini kaybeder. Yuvarlak bir şekil alır. Kendi etrafına saldığı jelatinli tabaka sertleşir. Böylece kist meydana gelmiş olur. Normal şartlar başlayınca kist parçalanır ve yeniden organeller teşekkül eder. Beslenme (4 tiptir) I. Ototrof : Bitkilerdeki fotosenteze karşılıktır. Yani anorganik maddeleri organik hale koyar. (Bir kısım flagellatlarda) II. Saprozoik : Erimiş haldeki organik maddelerle geçinirler. Bu maddeler bakteriler tarafından parçalanmış olan organik maddeler vücut sıvıları ve barsak sıvılarıdır. (Parazit yaşayanlar ve renksiz flagellatların bir kısmı). III. Miksotrof : Hem organik ve hem anorganik maddelerle geçinirler (Euglena). IV. Heterotrof : Katı organik maddelerle beslenir (serbest yaşayan birhücrelilerin çoğu). Beslenme ile ilgili organeller. Cytostom (Hücre ağzı), Cytopharynx (yemek borusu) Ciliatlar.da besin stoplazma içine geçerken bir sıvı vakuolü teşekkül eder. Sindirim bu vakuol içersinde olur. Artık maddeler vücudun herhangi bir yerinden veya hususi bir yerden (Cytopig ) dışarıatılır. Boşaltım organeli : Osmoz sonucunda ve besin maddeleri ile birlikte stoplazma içersine giren fazla suyun dışarı atılmasına yarayan Kontraktil vakuollerdir. Deniz formlarında çok nadir olarak bulunur; parazitlerde yoktur. Esas olarak tatlı su protozoonlarında mevcuttur. Katı atıklar çok defa stoplazmada biriktirilir. Öyle ki bu durum bir çeşit atık pigmentasyonuna (renklenmesine) neden olur. Çoğalma 11 1. Bölünme : Enine (Ciliata) veya boyuna olmak üzere (Ekseri flagellatlarda) ikiye bölünme. 2. Tomurcuklanma : İkiye bölünmenin bir modifikasyonuna tomurcuklanma adı verilir. Öncelikle tomurcuk taslağı meydana gelir. Bu taslak ana hayvanın büyüklüğüne erişince koparak ondan ayrılır veya koloniler oluşur. 3. Multible bölünme : Nukleus bir çok defalar bölünür. Sonra stoplazma nukleus sayısı kadar parçalanır. Çoğalma neticesinde fertler bazen bir arada kalarak kolonileri meydana getirirler. Cinsiyet ve Döllenme : Cinsiyet olayları bütün gruplarda görülür. Döllenme çok hücrelilerdeki gibi cinsiyeti farklı iki hücrenin haploid sayıdaki kromozomlarının birleşmesiyle 3 şekilde olabilir. 1. Konjugasyon, 2. Autogamie, 3. Kopulasyon Kopulasyon : Yüksek organizasyonlu hayvanlarda olduğu gibidir. Birleşen hücrelere gamet, birleşme mahsulüne zigot denir. Basit halde, kopulasyon yapan gametler normal vegetatif fertlerden farklı değillerdir. Yani bunlarda gametleri verecek olan fertler bir çoğalma safhası geçirmeden doğrudan doğruya gametlere değişirler. Böyle bir kopulasyonda eşeysel bir çoğalmadan bahsedilemez. Çünkü redüksiyon Diğer durumda ise gametler vegatatif fertlerden farklıdır. Esas ferdin ikiye bölünmesi (mayoz bölünmesi neticesinde) meydana gelir ve kromozom sayısı yarıya iner. Birbiri ile birleşen gametler ya görünüşleri aynı isogamet (isogamie) veya farklı anisogamet (anisogamie)’dir. Anisogamide yedek besin maddesi içeren gamete dişi veya macrogamet diğerine de erkek ya da microgamet denir. Sporozoonlarda izogamiden çok hücrelilerdeki oogamie’ye kadar bütün tipler görülür. Konjugasyon : Yalnız Ciliat’larda görülen özel bir döllenme şeklidir. 12 Autogamie : Kendi kendini döllemedir. Ekseriya bir kist içinde meydana Bazı tek hücrelilerin yapısı çok basit olduğu halde diğer bazıları çok kompleks bir yapı gösterir. Kompleks yapılı birhücrelilerde bütün hayatsal olaylar çeşitli organellerle yapılır. Protozoon’lar hareketlerini sağlayan yapının çeşidine göre sınıflandırılır. SUBREGNUM PROTOZOA 1. Class - Flagellata (Mastigophora) Kamçılılar 2. " - Sarcodina (Rhizopoda) Kökbacaklılar 3. " - Sporozoa (Sporlular) Hareket organeli yok, parazit 4. " - Ciliata (Infusoria) Kirpikliler Sub Class Protociliata " Euciliata " Suctoria Barnes ve Demirsoy.a göre de Phylum (Şube) : Sarcomastigophora 1. Class : Flagellata (Mastigophora) Kamçılılar 2. Class : Sarcodina (Rhizopoda) Kökbacaklılar Phylum Sporozoa Sporozoa (Sporlular) Hareket organeli yok, parazit Phylum Ciliophora - Ciliata Ciliata (Infusoria) Kirpikliler Subclass Protociliata Euciliata Suctoria 13 I. Class - FLAGELLATA (Mastigophora) , Kamçılı hayvanlar Flagellatlar bir veya birkaç kamçıya sahiptirler. Kamçı hareketi temin eder ve besin almaya yarar. (Çıkış yeri Flagellata sistematiğinde önemlidir). Nukleus zarından veya stoplazma içindeki dip taneciğinden (bazal granül) çıkar. Burada bir de kamçı kesesi teşekkül etmiştir. (Dip taneciği bazı flagellatlarda bölünme anında ikiye ayrılır, kutuplarda iğ iplikleri meydana getirir). Flagellatlarda kamçının dip kısmına yakın bir yerde göz lekesi (stigma) denen kırmızı pigmentli bir organel vardır. Bu organizmalarda karbonhidrat depo eden cisimcikler stoplazmada yer alır. Plastidler genellikle serbest yaşayanlarda bulunur. Kloroplast içerenler güneş ışığında besin yapabilirler. Bu karakterleri nedeniyle bitki olarak da sınıflandırılırlar. Ancak hepsinde selüloz bir hücre çeperi yoktur. Çoğalma uzun eksen boyunca bölünmek suretiyle eşeysizdir. Bölünme ön uçtan başlar, nukleus mitozla bölünür, organeller bölünür. Eşeysel çoğalma tam olarak ancak bir kaç Zooflagellat.da saptanmıştır. (Son zamanlarda yapılan çalışmalar çoğalma olaylarının günün karanlık peryodunda olduğunu göstermektedir). Klorofilleri olmasına rağmen yaşadıkları ortamda bazı amino asitlerin mevcut olmasını isterler. Flagellatlar ototrof, heterotrof bazısı da saprofit olarak yaşar. Katı haldeki besin maddeleri ile beslenen türlerde, besin vücudun ön kısmında, kamçı dibinde bulunan ağız yolu ile vücuda girer. Þimdiye dek bildiklerimizden bu grubun hem bitki hem de hayvansal organizmalara ait özellik gösterdiği anlaşılmaktadır. Bu özellik evrim bakımından bitki ve hayvanların aynı orijine sahip olduklarını destekler durumdadır. Bazı flagellatlar, örneğin Eudorina ve Volvox koloni teşkil eder, Volvox’lar, çok hücreli hayvanların embriyo gelişmelerinin blastula safhasına benzer. Tek hücreliler ve çok hücreliler arasında geçit gibi görülürler. 14 Uygun olmayan şartlar altında kist teşkil ederler veya palmella safhasına geçerler. Palmella safhasında kistlerden farklı olarak metabolizma devam ettiği gibi bölünme ve çoğalma olayları da görülür. Vücut küre şeklini alır ve kamçılar kaybolur. Tatlısu flagellatlarında boşaltım organeli olarak kontraktil vakuol bulunur. Bunlar ya tek ya da vakuol sistemi halindedir. Fazla suyun dışarı atımında da kullanılır. Flagellatlara yağmur suları, birikinti suları, dam olukları, nehir ve göl gibi sularda rastlanır. Bazıları hayvan ve insanlarda parazittir. 60.000 kadar flagellat türü bilinmektedir. Ordo - Cystophlagellata : Doğrudan gözle görülebilecek büyüklüktedirler. Pelikula ile örtülü vücut içi jelatinli bir madde içerir mahtut bir bölgede stoplazma toplanmıştır. Noctiluca   miliaris : 1-1,5 mm. çapında bir veya iki kamçılı ve genellikle küre biçimindedirler. Stoplazma vücudun ön kısmında bulunur ve küçük bir bölgeyi kaplar. Vücudun geri kalan kısmını jelatine benzer bir madde doldurmuştur. Stoplazma, jelatinsi madde içine ağ şeklinde uzantılar gönderir. Başka organizmaları yiyerek geçinir. Stigma ve plastidleri Çoğalmaları ikiye bölünme veya zoospor meydana getirmek suretiyle olur. Zoosporlar birleşerek zigotu teşkil eder. Çok sayıda Noctiluca bir araya gelirse, ışık salmaları nedeni ile yakamoz denen olayı meydana getirirler. Denizde pelajik yaşarlar. Ordo - Euglenoidina : İğ şekilli, oval, uzun vücutlu olup vücut yüzeyi kalın bir pelikula ile örtülüdür, renkli veya renksiz olabilirler. Renklilerde parlak yeşil kromatofor bulunur. Euglena   viridis : Oval görünüşlüdürler. Yeşil renkli kromatoforları ince uzun olup bir merkez etrafında toplanmıştır. Bol oldukları zaman su 15 yüzünde hareket ederler. Yeşil lekeler meydana getirirler. Stigma ve boşaltım organeli olan kontraktil koful, vücudun ön kısmında yer almıştır. Astasia sp. Kromatoforsuz ve çoğu stigmasızdır. Ordo - Phytomonadina : Sabit şekilli, oval ve uzun flagellatlar olup vücut yüzeyi ince veya kalın olabilen selüloz zarla örtülüdür. Stigmaları vardır. İki kamçılı olup çanak şekilli bir kromatoforları vardır. Soliter yaşarlar veya koloni teşkil ederler. Nematod gibi diğer omurgasızların bağırsaklarında kamçısız olarak bulunan parazit türleri de vardır. Volvox : Tatlısularda yaşarlar ve koloni teşkil ederler. Bir kolonide 4-128 fert bulunur. Bazı türlerde 20 bin kadar fertten oluşan koloniler de görülür. Kolonide hareket belirli bir bölgeden öne doğru görülür. Yüzlerce fert küre üzerinde sıralanmıştır. Her fert ucu küre merkezine uzanan 6 köşeli jelatin bir piramit içindedir. Komşu fertler stoplazma köprücükleri ile irtibatlıdırlar (Fertler küre veya yassı şekillidirler). Çoğalma eşeyli veya eşeysiz olabilir. Koloninin ön kısmında bulunan fertler çoğalma kabiliyetini kaybetmiştir ve beslenme işini görür. Her bir fertte aynı delikten çıkan eşit uzunlukta 2 kamçı, stigma, çanak şeklinde kromatofor ve kontraktil vakuol Gonium : 4-16 fertlik koloni teşkil ederler. Eudorina : Genel olarak 32 nadiren 16 fertlik koloniler teşkil eder. Ordo - Protomonadina : Parazit flagellatlardır. Hayvan karakteri gösterirler. Küçük renksiz, 1-2 kamçılı, ameboid hareketli olup çoğu besinini pseudopod teşkil ederek veya basit bir ağızla alır. Soliter veya koloni halinde yaşarlar.Bu takım içerisinde yer alan bir familya (Coanaflagellatidae) ön tarafında birbirine çok yakın mikrovilluslardan oluşmuş .Collare. = yakalık taşırlar. Kamçı, bu yakalığın içinde bulunur. Coanaflagellatlar,süngerlerin koanositlerine benzediklerinden belki çok hücrelilerin köken aldığı hat olabilecekleri düşünülmektedir. 16 Leismania : Bu genus’a bağlı türlerin bazısı böceklerde bazısı omurgalılarda yaşar ve önemli hastalıklara neden olur. Leishmania donovani (Visceral Leismaniasis): Kala-azar hastalığının etkenidir. Hindistan, Güney Rusya, Çin, Türkistan, Irak ve Akdeniz havzasında görülür. Başka memleketlerde hem çocuk hem de büyükler hastalığa yakalanabildikleri halde Akdeniz havzasında bilhassa 4 yaşın altındaki çocuklarda görülür. Parazit memeli konakçısında dalak, karaciğer, kemik iliği, barsak ve lenf bezlerinin kan hücrelerinde (reticulaendothelial) bulunur. İnsan vücudundaki hücrelerde kamçısını kaybetmiştir. Hücre içinde çoğalır, çoğalma sonucu hücreler patlar, genç fertler yeni hücrelere geçer. Bir kısmı da dolaşım sistemine geçer, ara konakçı sinek (Phlebotomus) böyle bir kanı emince hastalık etkenini alır. L. donovani sinek vücuduna geçince kamçılı hale geçer, orta barsakta (mide) çoğalır oradan ön barsağa ve tükrük bezlerine geçer. Hastalarda karaciğer ve dalak şişer. Kansızlık baş gösterir. Düzensiz nöbetler sonucu hasta tedavi edilmezse öldürücüdür. Leishmania tropica : Asya, Afrika, İran, Arabistan ve Türkiye.de bulunur. Avrupa memleketlerinden (İspanya, İtalya, Yunanistan ve nadiren Fransa’da rastlanır). Yurdumuzda Güney ve Güneydoğu illerinde vardır. Ara konakçısının insektisitler ile hemen hemen ortadan kaldırıldığı yerlerde çok nadir olarak ortaya çıkar. Böceklerden (Diptera) ara konakçısı Phlebotomus papataci dir. Parazit ara konağın orta barsak epitelinde çoğalır, ön barsağa doğru yayılır, epipharynxe yerleşir ve nihayet sineğin bir insanı ısırması ile memeli konukçuya geçmiş olur. Memeli konukçularındaki kuluçka süresi birkaç gün, haftalar ve hatta bazen 3-4 yıl olabilir. Deride önce sivilce şeklinde bir kabarcık daha sonra birkaç santimetrelik yara meydana gelir. (Bir yıl içinde yara kurur ve bir leke bırakır. Onun için hastalığın bir başka ismi "Yıl- çıbanı" veya "Þark- çıbanı"dır. Bazı hallerden sonradan bakterilerinde yaraya girmesi ile yara daha çok büyüyebilir. Þark çıbanı el, yüz, ayak gibi örtülmeyen yerlerde 17 Trypanosoma : Bu genus omurgalı hayvanlarda kan paraziti olan türleri ihtiva eder. Serbest olarak kanda yaşar onun dışında diğer sistemlerde de görülür. (Konakçılar arasında kan emen omurgasız hayvanlar vasıtasıyla yayılır). Parazit, omurgalı hayvanın vücudunda tam bir Trypanosoma karakteri gösterir. Burada parazitin vücudu uzar, iki uç sivrileşir, dalgalı bir zar içinde uzanan kamçı görünür. Trypanosoma türleri bütün hayvanlarda bulunabilir, ancak insanda ve evcil hayvanlarda patogendir. (muhtemelen bu konakların yeni olması nedeniyle) Hastalık yapan türler tropik bölgelerde yaşar. Trypanosoma lewisi : Fare kanında bulunur. Patojen değildir. Trypanosoma   brucei : Sığırlarda nagana hastalığına sebep olur. Güney Amerika.da görülür. Trypanosoma   gambiense : Afrika da uyku hastalığının etkeni olup en önemli patogen trypanosomalardandır. Glossina palpalis denen çeçe sineği ile taşınır.Parazit, sineğin sindirim kanalında çoğalır, gelişimini tamamlar. Tükrük bezine geçer. Sinek insanın kanını emerken paraziti memeli konukçusuna bulaştırır. Düzensiz aralıkla nöbet başlar. Hastanın ateşi yükselir, lenf bezleri şişer, Parazitin metabolizma sonucu meydana getirdiği maddeler hastada felç yapar ve "uyku" haline neden olur. Sinir sistemini istila ettiğinde genel olarak öldürücüdür. Termit ve selülozla (simbiyoz) beslenen diğer böceklerin barsaklarında yaşayan ve Beta glikosidaz enzimi salgılayan ve böylece selülozu glikoza çeviren birçok flagellat türü bilinmektedir. II. Class : SARCODİNA (Rhizopoda) Bu sınıfa dahil hayvanlarda vücut şekilsiz olup simetrisiz olduğu gibi küresel simetri gösterenler de vardır. Flagellatlar.dan daha basit olup, gelişim dönemlerinde bazen kamçı içerirler. Yine Flagellatlar.dan farklı olarak vücut yüzeyinde pelikula bulunmaz . Vücut ordolara göre çıplak 18 veya kabukludur. Stoplazma bariz biçimde ekto ve endoplazma kısımlarına ayrılmış veya ayrılmamıştır. Nukleus bir veya daha fazladır. Hareket ve besin alma organeli çeşitli tipteki yalancı (Pseudopod) ayaklardır. Yalancı ayaklar loblu (lobopod), iplik gibi (filopod) ağ (retikulopod) şeklinde yahut desteklidir (aksopod). Deniz ve tatlısularda yaşarlar. Tatlısularda yaşayanlarda l-2 kontraktil koful vardır. Bazılarında kabuk, evcik, bazılarında stoplazma içinde SiO2 den ibaret iskelet bulunur. Çoğalmaları ikiye veya daha fazla parçalara bölünme ya da tomurcuklanma ile olur. I. Ordo: Amoebozoa : Stoplazma ekto ve endoplazmaya ayrılmış hareket loblu lobopod veya iplik filopodlarla olur, bunlar ya bir yerden çıkar veya vücut yüzeyine dağılmıştır. Subordo - Amobina Amoeba (Çıplak amipler) : Bu subordo’nun en tipik örneği amip cinsidir. Amipler tatlısularda yaşarlar. Çapları 200-300 mikron kadardır. Stoplazma ekto ve endoplazma olarak belirli bir şekilde ayrılmıştır, bir veya birkaç tane besin vakuolü, küre şeklinde bir kontraktil vakuol (nadiren 2-3) ve disk şeklinde nukleusları vardır. Pseudopodları lobopod veya filopod şeklinde olup bu harekete amoeboid hareket denir. Amoeboid harekete birçok Protozoa.da rastlandığı gibi kan hücrelerinden akyuvarlarda da görülür. Pseudopodun meydana geldiği bölgede endoplazmanın kolloid hali değişir. Gel halindeki endoplazma sol haline geçer. Amibin kontraksiyonu ile arka bölgede sol haline geçen endoplazma pseudopod istikametinde akar. Amip sudaki besin parçasını çevirir ve onu içine alır. Sindirim vakuol içinde olur. Sindirilmeyen artıklar hücrenin herhangi bir bölgesinden dışarıya atılır. Çoğalma eşeysizdir. İkiye bölünme tomurcuklanma ve multible bölünme ile olur. Amoeba   proteus : Çapı 200-500 mikron olan en büyük amip türlerindendir. 19 Amoeba vespertilio : En çok görülen tatlısu formlarından biridir. Entomoeba coli : İnsan kalın barsağında kommensal olarak yaşar. Besin kofulu içinde yemiş olduğu bakteri maya ve diğer mikroorganizmalar vardır. Entomoeba   histolitica : İnsanlarda amipli dizanteriyi yapar. Barsak epitelini yer. Parazit barsak boşluğunda iken minuta adını alır. Minutalarda besin kofulu içinde bakteri yoktur (E. coli.den farklı). E. histolitica kistleri su vs. ile alınır. Kistler sindirim borusunda açılarak amipler barsak dokularına girer. Barsak duvarına yerleştikten sonra magna adını alır. (Barsak epitelini ve alyuvarları yediği için vakvuolde alyuvarlara rastlanır). Minutalar barsak boşluğunda kist teşkil eder ve ancak yeni bir konağa (insana) geçtiği zaman açılır. Subordo - Thecamoeba (Kabuklu amipler) Bu grupta kadeh, şişe yumurta vs. şeklinde olan bir kabuk meydana getirilir. Kabuğun organik maddesine dışardan alınan anorganik maddeler de karışır. Pseudopodların dışarı uzanabilmeleri için kabukta bir tane büyük veya daha fazla küçük delik bulunur. Arcella   vulgaris - Nukleus 2 veya daha fazladır. Saat camına benzeyen kabukları vardır. Pseudopodlar filopod cinsindendir. Difflugia : Balon şeklinde olan kabukları yabancı cisimlerle sertleşmiştir. Pek çok türü vardır. 2. Ordo - Foraminifera : Vücut plazmasında bariz bir ektoplazma ayrımı yoktur. Dallanan pseudopodları vardır. Hepsi kabukludur ve kabuğun üzerinde çok sayıda küçük delik bulunur. İlksel formlar kum, kitin, sünger spiküllerinden, yüksek formlar ise kalsiyum karbonattan yapılmış kabuk içerirler. Kabuk boşluğu ya tek bir odacıktan ya da ara bölmeler ile birbirinden ayrılmış olan bir çok odacıktan oluşmuştur. Foraminifer kabuklarının deniz dibinde birikmesi ile tebeşir ve kalker tabakaları 20 teşekkül etmiştir Denizlerde yaşarlar. (18.000 türü bilinmektedir). Pseudopodların hepsi ya büyük delikten çıkar veya buna ilave birçok küçük delik bulunur. Salyangoz kabuğu biçimindedir. Bölünerek çoğalırlar. Bir veya daha çok sayıda küçük nukleus içerirler. Ammodiscus - Kabuk bir odacıklı olup kumdan yapılmıştır. Az veya çok helezonlu boru şeklindedir. Nummulites - Çap 19 cm. büyük fosil formlar bu cinstendir. Kabuk mercimeğe benzer üzerinde ikinci bir kabuk vardır. Foraminiferlerden Fusulinidae familyası birinci zamanın son devrinde oldukça kısa bir süre (75 milyon yıl) içerisinde büyük bir gelişme göstermiş ve sonra yok olmuştur (bunların bazıları sığ deniz tabanını kaplayan çapı 2 cm. kadar olan büyük tek hücrelilerdir). Genellikle bu fosillere petrolün bulunduğu yataklarda rastlanır. (Bir petrol kuyusu kazılırken tortul kayaları arasında birbirini izleyen ince tabakalar halinde Fusilinidae türlerinden oluşan katlar görülür. Tabakalardaki (belli bir kısmı içinde bulunan) türlerin incelenmesiyle sondaj yapılan yerde paleozoik tabakada ne kadar ilerlendiği tahmin edilebilir. 3. Ordo - Heliozoa (Güneş hayvancıkları) - Küre şeklindedirler. Stoplazma ekto ve endoplazma bölgelerine ayrılmışlardır. (Dıştaki ektoplazma bir veya daha çok vakuollüdür. Endoplazma orta bölgede granüllü olup nukleuslar yer alır). Çoğu tatlısularda yaşar, vücut çıplak veya kabuk kafesle örtülüdür. Pseudopod destekli tipinde (aksopod) olup, ekto-endoplazma sınırından, ya da nukleustan hatta çok nukleuslu türlerde herbiri bir nukleustan çıkar. (Hususi bir destek noktasından çıkar). Actinosphaerium - Örtü ve iskeleti yoktur. Oldukça büyük çapı= l mm. Aksopodların eksen çubukları ekto-endo stoplazma sınırında olup endoplazmada 200 veya daha fazla nukleus var. (Ektoplazmada 2-14 kontraktil koful yer alır. Kokmuş bataklık sularında bulunur. 21 Clathrulina - Küre şeklinde büyük delikli pseudokitinden iskeletleri vardır. Boru şeklinde uzun bir sapla kendilerini tespit ederler. 4. Ordo - Radiolaria - Stoplazmaları iç ve dış olmak üzere kapsül ile iki bölgeye ayrılır. (Kapsül organik madde ve pseudokitinden yapılmıştır) kapsül üzerindeki delikler vasıtasıyla iki stoplazma bölgesi temas halindedir. Genellikle silisyum dioksitten pek azında da stransiyum sülfattan yapılmış (kalsiyum aliminyum silikatta olabilir) değişik şekillerde hayvanlar aleminin en güzel ve zarif iskeletlerini salgılarlar. Başlıca iskelet elementleri iğne, diken, dallı veya çatallı çubuklar ve muhtelif şekilde delinmiş küreledir. (Bunlar kapsülün iç ve dışında bulunabilirler) Bu iskeletler okyanus tabanında çamur haline gelir ve basınçla çakmak taşı gibi silisli kayalara dönüşür. Endoplazmada bir veya daha çok nukleus, yağ damlacıkları, ektoplazmada besin vakuolleri, pigmentler ve yağ damlaları (Tek hücreli alg) yer alır. Bir kısımdan çok sayıda pseudopodlar çıkar. Pseudopodlar çoğunlukla filopod veya aksopod tipindedir (bu ordoda kontraktil vakuol yok). Dış tabakalarını genişleterek suda farklı seviyelere iner ve çıkarlar. Denizlerde yaşarlar, genellikle plankton hayvanlardır. Heterotrofturlar, flagellatlar ve diatomeler ile beslenir. Theopilium - İskelet miğfer şeklinde-Akdeniz.de Heliosphaeera - İskelet kafes şeklinde - Akdeniz.de III. Class - SPOROZOA (Sporlular) Omurgalı ve omurgasız hayvanlarda hücre içi ve hücre dışında yaşayan parazitlerdir. Her tür belirli bir konakçıda yaşar. Yuvarlak veya oval bir hücreye benzerler. Tek bir nukleusları vardır. Parazit olduklarından hareket ve boşaltım organelleri yoktur. Sporozoonlar konakçı vücudunda bir süre eşeysiz olarak çoğalır. Bu tarz çoğalmaya Schizogonie ana sporozoona Schizont ve bölünme sonucunda 22 meydana gelen genç hayvana da Merozoit denir. Merozoitler sağlam konukçu hücrelere hücum ederler diğer hücreleri aşılarlar. Merozoitlerin büyümesi ile yine eşeysiz çoğalan Schizont’lar veyahut eşeyli olarak çoğalan gamontlar teşekkül eder. Parazit organizma ancak eşeyli çoğalma yani Sporogonie yolu ile başka konukçulara geçme imkanını bulur. Yaşam döngüleri üç bölüme ayrılabilir; 1. Sporogonie (eşeysiz çoğalır) 2. Schizogonie (eşeysiz çoğalır) 3. Gametogonie (eşeyli çoğalır). Bu ayrımda, schizogonie safhası iki bölüme ayrılarak schizogonie ve gametogonie olarak incelenmektedir. Schizogonie periyodunun sonuna doğru bazı gametler makro ve mikrogamete dönüşerek eşeyli çoğalırlar. Bu safha eşeysiz ve eşeyli iki bölüme ayrıldığından bir farklılık oluşmaktadır. Gamontlar çoğunlukla bölünerek veya doğrudan doğruya gametleri (mikro ve makro gamet) meydana getirir. Gametlerin birleşmesi ile ortaya çıkan zigot yardımı ile parazitin geçişi olur. Zigot’un etrafı koruyucu sert bir kabukla örtülür onun için buna Spor da denilir. Sporozoa adı buradan gelmektedir. Zigot=spor, içinde çok sayıda genç fert teşekkül eder. Spor başka bir konakçıya geçince muhafaza parçalanır ve genç Sporozoitler serbest hale geçer. Büyüyerek schizont haline gelir. Bazı türlerde zigotun bir konakçıdan diğerine geçişi kan emen bir ara konakçıyla olur. Bu halde zigot etrafında kabuk bulunmaz. Sporozoanın çoğunda, bir hayat devri içinde schizogonie ve sporogonie birbirini tabip eder. Bu çoğunlukla konakçı değişimi ile birlikte görülür. Ordo - Coccidiomorpha : Hücre içi parazitidirler. Hayvanların barsak epiteli veya iç organlarında yaşarlar. Eimeria - küçük bir çiyan cinsi olan Lithobiusların barsak epitelinde yaşar. Ayrıca kümes hayvanlarının barsaklarında da yaşar. Plasmodium - Anopheles cinsinden dişi bir sivrisinek bir insanı soktuğunda deride açtığı deliğe biraz da tükrük akıtır. Şayet bu sinek plazmodiumlu ise tükrük içerisinde bulunan sporozoidler kana geçer ve eritrositlere girerler. Sporozoidler eritrositin içinde büyüyerek amip şekilli 23 bir schizont haline geçerler. Oradan karaciğere geçer, burada multible füzyon (çok parçaya bölünme) geçirerek merozoitler oluşur. Bu şekildeki çoğalmaya Schizogonie denir. Bu faz yaklaşık 10 gün sürer, çıkan merozoitler tekrar karaciğer hücrelerine saldırarak schizogonie ile çoğalabilirler. Merozoitler daha sonra eritrositlere saldırırlar ve burada tekrar schizogonie geçirirler. Eritrositin içi merozoidlerle dolunca parçalanır ve serbest kalan merozoidler schizogonie’yi tekrarlamak üzere diğer eritrositlere girerler bu bir süre devam ettikten sonra schizontlar merozoitlere kıyasla daha büyük olan ve daha çok besin maddesi ihtiva eden erkek ve dişi gamontlara değişirler. Gamontlar ancak ara konak vazifesi gören bir sivrisineğin barsağına geçebilirlerse gelişmelerine devam ederler. Bu zamanda erkek gamontlar multiple bölünmeyle 4 veya 8 mikrogamet meydana getirir. Dişi gamontlar olgun makrogametlere değişirler. Döllenme sivrisineğin barsak boşluğunda olur. Zigot uzundur ve amoeboid hareket eder. Buna ookinet zigot denir. Ookinet sivrisineğin barsak epitelinden geçerek barsak kaslarına yerleşir ve etrafı kalın bir kılıfla çevrelenir. İçerde multiple bölünme ile pek çok sayıda sporozoid meydana gelir. Kılıfın patlaması ile serbest hale gelen sporozoidler sivrisineğin vücut boşluğundan geçerek tükrük bezlerine gelirler. Böyle bir sivrisineğin insanı sokması ile Plasmodium’un hayat devresi tamamlanmış olur. Nöbetler daima merozoidlerin kan içine dökülmesi zamanına rastlar. İlk nöbetten bir hafta sonra gametler teşekkül eder. Gamontlu kan emmek sureti ile sivrisinekler enfekte olur. sivrisinekteki gelişme 10-20 gün arasındadır. Enfeksiyondan sinek etkilenmez. Plasmodium   vivax : 48 saatte bir alyuvarlar parçalanarak merozoitler kana geçer. Alyuvarların patlamasından önce titreme, patlamasından sonra ateş gelir. Bu parazitin neden olduğu sıtmaya Tersiana denir. Plasmodium   falciparum (Lavenaria malaria) : Tropik sıtmaya sebep olur. 48 saatte schizogoni devresi tamamlanır. Eritrositlerin birbirine yapışması sonunda kılcal damarların tıkanma tehlikesi vardır. Beyin ve kalp damarları tıkanırsa ölüme sebep olur. 24 Plasmodium   malaria : Schizogoni devresi 72 saattir. Quartana tipi sıtmaya neden olur. Sıtma tedavisi 17. asırda cinchona denen bir ağaç kabuğunun Peru’dan Avrupaya getirilmesi ile başlar. O zamandan beri kinin, malarya tedavisinde kullanılmaktadır. Denilebilir ki bu ilaç insanlar tarafından keşfedilen ilaçlar arasında son zamanlarda keşfedilen sülfamidler ve antibiyotikler dahil en fazla nisbette insan hayatı kurtarmıştır. 2. Ordo - Gregarinida : Birçok omurgasız hayvanın barsak ve vücut boşluklarında parazit olarak yaşarlar. Gragarina   blattarum : Hamam böceklerinin barsaklarında parazit olarak yaşarlar. Vücutları epimerit, protomerit ve deutomerit olmak üzere üç bölümlüdür. Epimerit çengellidir. Hayvanın tutunmasına yardım eder. Nukleus bir tane olup deutomerit bölümünde yer alır. IV. Class : CILIATA (Infusoria) Birhücreli hayvanların en yüksek organizasyonlu grubunu teşkil ederler. Vücutları oval, küre, silindir, vazo vs. gibi değişik şekillerde olup pelikula ile sarılmıştır. Bazıları üzerini örten zarın (pelikula) elastiki olması sebebi ile şekillerini değiştirebilir. Stoplazmaları ektoplazma ve endoplazma bölgelerine ayrılmıştır. Ektoplazmada kirpikler (sil), miyonemler, besin alma ile ilgili olan organeller, kontraktil vakuoller ve savunma organeli olan trikosistler bulunur. Endoplazma granüllü bir sıvı halindedir. Burada besin kofulları yedek besin depoları (glikojen ve yağ) ve nukleuslar görülür. Hareket organeli olan siller beslenmede de etkili kısa iplikçiklerdir. Bunlar ektoplazmada bulunan dip taneciklerinden çıkarak pelikula’yı deler ve yüzeye geçerler. Uzunlamasına ve diagonal olarak sıralanmış vaziyettedirler. Ciliat’ların bir kısmı da dip taneciklerini birbirine bağlayan 25 ipliksi bir sistem mevcuttur. Siller yapı ve fonksiyonları bakımından flagellatların kamçılarına benzerlerse de boyları kısa ve sayıları fazladır. Vorticella gibi bazı Ciliat gruplarında düz veya çizgili kas liflerinden ibaret miyonemler vardır. Bu lifler sayesinde bütün vücut veya bazı kısımları kontraksiyon yapabilir. Heterotrofturlar, bazıları bakteri, küçük birhücreliler ve çürümüş besinler ile geçinir. Bunlarda peristom bölgesindeki tüylerin hareketi ile ağıza doğru bir su akımı oluşturulur. Besinler titrek tüylerin hareketi ile cytostom ve huni şeklindeki cytopharynxten geçer. Bu arada küresel biçimde toplanan besin koful içine alınır. Besin kofulları stoplazma içinde belirli bir yönde hareket ederler. Sindirilen besinler koful membranından stoplazmaya geçer, artık maddeler ise sitopig’den dışarı atılır. Tatlısularda yaşayan türlerin ektoplazmasında ve belli yerlerde kontraktil kofullar vardır. Paramecium’da kontraktil koful etrafında daire şeklinde sıralanmış toplayıcı kanallar vardır. Trikosistler, korunma organelidir. Bunlar ektoplazmada, vücut yüzeyine dik olarak sıralanmış oval veya çomak şeklinde küçük organellerdir. Mekanik veya kimyasal uyartı karşısında pelikulada bulunan delikten fırlatılarak sivri uçlu uzun iplik halini alırlar. Paramecium gibi bazı cinslerde bu organeller bütün vücutta, yahut vücudun belli bölgesinde bulunur (Didinium). Endoplazmada Macronukleus ve Micronukleus vardır. Macronukleus beslenmede rol oynar. Micronukleus, çoğalma ile ilgilidir, sayısı l-80 kadar olabilir. Bölünmeleri enine ikiye bölünme şeklindedir. Nadiren boyuna olur. Macronukleus amitoz, micronukleus mitozla bölünür. Vorticella ’da olduğu gibi yeni teşekkül eden fertler bir araya gelerek koloni meydana 26 getirebilirler. Yalnız Suctoria alt-sınıfında tomurcuklanma ile çoğalma görülür. Ciliatlar.da Protociliata hariç hepsinde eşeysel çoğalmaya benzetebileceğimiz konjugasyon görülür. Konjugasyonda bireyler ağızlarınının bulunduğu kısımdan yan yana gelerek bir çift teşkil ederler. Bu sırada çiftteki her organizmanın macronukleus’u parçalanarak kaybolur. Mikronukleus’lar ise, üst üste iki defa bölündüğünden her bir fertte 4 nukleus meydana gelir. Bunlardan üçer tanesi stoplazma içinde erir. Geriye kalan birer nukleus bölünerek ikişer nucleus meydana getirir. Bu sırada yan yana gelmiş olan iki ciliat’ın hücre zarı eriyerek arada bir stoplazma köprüsü teşekkül etmiştir. Her iki organizmanın nukleuslarından birisi stoplazma köprüsü yolu ile diğerine geçer ve orada bulunan nukleus ile birleşir. Bundan sonra fertler birbirinden ayrılır. Bu dönemden sonra örneğin Paramecium caudatum ’da üç bölünme ile 8 nukleus teşekkül eder. Bunlardan üç tanesi kaybolur. Geriye kalanlardan 4’ü macronukleuslar.ı bir tanesi de micronukleus.u meydana getirir. Paramecium ve micronukleus bölünür. Macronukleuslar taksim edilir. Paramecium ve micronukleuslar tekrar bölünür. Neticede bir macro bir micronukleusu olan 8 Paramecium meydana gelir. Ciliata sınıfı 3 alt sınıfa ayrılır: l- Subclass; Protociliata 2- Subclass; Euciliata 3- Subclass; Suctoria 1- Sub Class Protociliata : Vücut şekilleri yuvarlak veya yassı olup siller vücudun her tarafında bulunur. Hücre ağzı ve kontraktil koful yoktur. Nukleus iki veya daha çok bölünme ile ve konjugasyonla değil kopulasyon şeklinde eşeyli olarak çoğalırlar. Kurbağaların larva ve erginlerinde nadiren de diğer soğuk kanlı ve omurgalılarda barsak parazitidirler. 27 Opalina ranarum : Vücut yassı ve çok nukleuslu su kurbağalarının son barsağında parazittir. 2- Subclass Euciliata : Hücre ağzı vardır, genç ve ergin safhaları kirpikli olan Ciliatlardır. 1- Ordo - Holotrichia : Basit yapılı siller kısa ve eşit boyda bunlar ya boyuna sıralar halinde bütün vücut yüzeyini kaplar veya kemer oluşturacak şekilde sıralanırlar. Ağız yüzeyde veya içeri çökük bir çukur (peristom) dibindedir. Paramecium : Bu grubun en çok bilinen cinsidir. Þekli nedeniyle terliksi hayvan olarak da adlandırılır. En çok rastlanan türleri; Paramaecium bursaria- geniş ve yassı olduğundan yeşil renkli görülür (zooklorel= yeşil renkli alg, stoplazmada simbiyoz olarak bulunur). Paramecium caudatum : En çok rastlanan türdür. Colpidium colpoda : Şekil olarak böbrek gibidir. Dileptus: Ön uçta uzun ve kontraktil bir hortum bulunur, arka uç sivri, macronukleus tespih tanesi gibi bir veya birçok kısımlıdır. 2 - Ordo - Spirotricha : Peristomun sağından veya ön kenarından cytopharynx’e inen adoral membranal bölge içeren tüm Ciliatlar bu grupta yer alır. Kirpikler kaynaşıp zar şekline dönmüştür. Sub Ordo 1- Heterotrichae - Kirpikler vücudun her tarafında eşit ve uzun sıralar oluşturacak tarzda dizilmiştir. Ayrıca ağzın bulunduğu bölgede cytopharynx.e kadar devam eden bir kirpik bölgesi vardır Stentor (Borozan Hayvanı) : Vücut huniye benzer biçimdedir. Ağızları vücudun geniş tarafında olan ağız çukurunun (peristom) dibindedir. Membranel bölgesi peristomun etrafını sardıktan sonra helezonlar teşkil ederek sitofarinse iner. 28 Genellikle kendilerini bir yere iliştirirler ancak buradan ayrılarak serbest yüzdükleri görülür. Macronukleus tesbih şeklinde olup micronukleus bir veya birden fazladır. Balantidium : Omurgalı (Domuzlarda) ve omurgasız hayvanların barsaklarında parazit olarak yaşar. Sub Ordo 2-Entodinomorpha : Sınıfın en kompleks grubudur. Vücudun arka ucunda değişen sayı ve biçimde dikenimsi uzantılar yer alır. Ağız bölgesinden başka diğer bölgelerde de membranal bölgeler vardır. Entodinium : Siller yalnız adoral bölgede yer alır. Sığır, koyun, deve vs. geviş getiren hayvanların sindirim sisteminde yaşar. Arka ucu uzantılıdır. Ophryoscolex : Arka uçtaki uzantıların dışında bazı türlerde ön uçta da diken çelenkleri vardır. Daha çok keçilerde bulunur. Stylonychia : Arka uçta 3 uzantı vardır. Tatlısularda bulunur. 3 - Ordo - Peritrichia : Siller diğer ordolara göre daha azalmıştır. Vücudun ön ucunda daire biçiminde peristom vardır ve burada etrafı sillerle çevreli iç ve dış sil kemeri oluşturur. Adoral bölgedeki siller dalgalı bir zar görünümünde. Bazılarında vücudun arka tarafında halka şeklinde sıralanmış siller bulunur ve genellikle vücutları bir sapta tutunmuştur. Çoğalmaları diğer Ciliatlardan farklı olarak boyuna bölünme iledir. Konjugasyonda görülür. Vorticella : Saplı ve çan biçimindeki vücutta siller yalnız ön tarafta iki sıra helezon oluşturacak tarzda dizilmiştir. At nalı şeklindeki macronukleus’un girintisinde küçük bir micronukleus bulunur. Sap ile kendini bir yere tutturur ve sapta bulunan esnek iplikler (miyonem) ile ileri geri hareket edebilir. Kontraktil vakuol bir tanedir. Vorticella microstoma - Pis sularda görülür. Vorticella nebulifera - Temiz sularda. 29 3 - Sub Class Suctoria : Gençleri serbest yüzer ve kirpikli Ciliatlara benzer. Ergin safhada silleri yoktur. Yerine emme tentakülleri meydana gelmiştir. Doğrudan doğruya veya sap ile kendilerini bir yere tesbit ederler. Sap kutikuladan yapılmıştır. Uzayıp kısalamaz. Bir adet oval biçimli uzun veya dallı macronukleus veya daha fazla sayıda micronukleus bulunur. Besin alma organelleri emme tentakülleridir, bunlar ektoplazmanın tüp şeklindeki uzantılarıdır. Stoplazmalar ekto ve endo olmak üzere ikiye ayrılır. Emme tentakülleri avın üzerine yapışır ve av felce uğratılır. Sonra da emilir. Eşeysiz çoğalma iç ve dış tomurcuklanma ile olur. Eşeyli çoğalma ve konjugasyon da görülür. Ephelota   gemmipara : Emme tentaküllerinden başka sivri uçlu tentakülleri de vardır. Denizlerde yaşarlar. SUB-REGNUM : METAZOA Protozoaların dışında METAZOA adı altında toplayabileceğimiz diğer hayvan phylumlarında vücut çok hücreden yapılmıştır. Gelişmeleri sırasında çeşitli embriyo tabakaları ve bunlardan da farklı organlar teşekkül eder. Phylum : PLACOZOA En ilkel çok hücreliler olarak kabul edilirler. 1883 yılında Avrupa.daki bir deniz akvaryumunda küçük, hayvana benzer serbest yaşayan bir canlı bulundu ve adına Trichoplax adhaerens dendi. Bu canlı, yassı vücutlu (bazen küremsi) 0.1-3 mm çapında, gevşek yapılı, kasılgan, mezenşime benzeyen ince iç hücreleri örtmüş monosilli epitel hücreleri ile çevrilidir. Kenar kısımları düzensiz, amipler gibi şekil değiştiren hücrelerden oluşmaktadır. Renksizdirler. Üzerindeki silleri ile çok yavaş olarak sürünür gibi hareket ederler. Bir hücreli ve algler ile beslenirler. Bölünme ve tomurcuklanma ile eşeysiz olarak çoğalırlar. DNA miktarı bugüne kadar bilinen hayvanların hepsinden daha azdır. Birçok araştırmacı bunları süngerler ile birlikte incelemeyi teklif etmektedirler. 30 Phylum : PORİFERA (Spongaria) Süngerler radiyal simetrilidir. Farklılaşmış bir organ sistemleri yoktur. İlk defa Aristo tarafından hayvanlar alemi içersine ilave edilen bu canlılar, sonradan uzun yıllar bitkisel organizmalar olarak kabul edilmiş hatta bazıları cansız olduklarını iddia etmiştir. 18. Asrın başlarında Zoophyta grubu içersine konulmuş daha sonra Linnaeus bunları Coelenterata grubu içersine yerleştirmiştir. 19. asrın başlarında phylum Porifera adı altında ayırt edilerek hayvanlar alemindeki bugünkü yerini almıştır. Ancak bugün bile süngerlerin sistematik yeri münakaşalıdır. Birçok araştırmacı tarafından Protozoa ve Metazoa gibi ayrı ve bunlara eşit anlamda Parazoa adı altında incelenmektedir. Süngerlerin çoğu denizde (larvaları hariç) sesil olarak yaşarlar. Ufak bir grubu (Spongilidae familyası) tatlı sularda bulunur. Sahillerde ve derin sularda kendilerini taşlar, mercan resifleri, bitkiler veya herhangi bir sert yüzey üzerine tesbit ederler. Çeşitli vücut şekilleri de (vazo, kadeh, torba veya şekilsiz kümeler halinde) bazen de çeşitli cisimlerin üzerini örten kabuk şeklinde olur. Boyları birkaç mm. ile iki m. arasında olup çok değişiktir. Renkleri genellikle kirli sarıdan (kirli beyaz, gri, yeşil, mavi, kırmızı, hatta) siyaha kadar olur. Genellikle çoğalan fertler ana hayvandan ayrılmayarak koloni meydana getirirler. Soliter yaşayanları da vardır. Bütün metazoonlardan çok daha ilkel bir yapı şekli ile Protozoa kolonisinden biraz daha ileri hücresel yapı gösterirler. Tüm çok hücrelilerin atası olan Protozoa.nın koloni teşkil eden flagellat grubundan süngerler alınmış ancak bir yan kol olarak kalmışlardır. Yüksek organizasyonlu hayvanlardan herhangi birinin süngerlerden gelmiş olduğuna dair bir kanıt yoktur. Uyarmalara karşı duyarsız olduğu sinir sistemi ve sindirim boşluğu bulunmayan tek Metazoa phylumu olduğu bilinmekteydi. Ancak son elektromikroskobik çalışmalarla bir sinirsel düzenlenmenin olduğu gösterilmiştir. 31 Basit yapılı bir süngerde vazo şeklinde olan vücut ortada geniş bir boşlukla bunun etrafını saran ince bir çeperden teşekkül eder. Sünger kapalı olan dip kısmıyla vücudunu bir yere tesbit eder. Serbest kalan taraftaki deliğe osculum ortada kalan boşluğa da osculum boşluğu gastral boşluk veya spongocoel denir. Sünger vücut hücreleri yapı ve görevleri farklı iki tabaka meydana getirir. Vücut çeperi gastral ve dermal olmak üzere iki tabakadan yapılmıştır. Gastral tabaka : Osculum boşluğunu çevreleyen bu tabaka bir epitel gibi yanyana gelmiş başka hiçbir grupta görülmeyen kamçılı ve hunili hücrelerden (choanocyte) yapılmıştır. Bunlar, kamçıların devamlı burgu hareketiyle osculum boşluğundaki suyu harekete getirir ve su ile birlikte sürüklenen besin maddelerini içlerine alarak sindirirler. Dermal tabaka : Bu tabakanın dış yüzeyi büyük ve yassı Pynacocyte (Pinakosit) hücrelerinden yapılmıştır. Bu hücrelerin arasında Porocyte denen por hücreleri bulunur. Por hücreleri dermal tabakasından başlayıp osculum boşluğuna kadar devam eden uzun hücrelerdir. Ortalarında hücre içi bir kanal uzanır ve kanalın bir ucu vücut yüzeyinden dışarıya diğer ucu ise iç boşluğa açılır (Bu kanala ostium adı verilir). Dermal tabaka esasında mezenşim karakterinde olup, esas kısmı peltemsi bir yapı gösteren ara madde yani matrixten yapılmıştır. Bu kısım içinde Amoebocyte hücreler yer alır. Amoebocyte hücrelerin çeşitli tipleri vardır. Örneğin cinsiyet hücrelerinin orijinini teşkil eden ve regenerasyonda rol oynayan archeocyte hücreleri; besin maddesini bir yerden diğer bir yere nakleden gezici hücreler ve sünger iskeletini teşkil eden skleroblast ve spongioblast hücreleri. Süngerlerde su vücuda porlardan girer ve choanocyteler aracılığı ile osculumdan dışarı atılır. Özel bir sindirim kanalı olmadığından choanocyteler tarafından yakalanan besinler burada sindirilir (hücre içi sindirim şeklinde). 32 Süngerlerin besinini mikroskobik organizmalar ve organik parçacıklar (ölmüş bitki ve hayvan artıkları) teşkil eder. Süngerlerde yapı bakımından 1- Ascon, 2- Sycon ve 3- Leucon olmak üzere üç tip ayırt edilir. Yapı bakımından basit olan sünger Ascon tipinde olanıdır. Bu süngerlerde gastral boşluk ile dış ortam arasında vücut çeperine kat eden kısa ve düz kanallar bulunur. Sycon tipte vücut duvarı içersinde tüp şeklinde çöküntüler meydana gelmiştir. Bu çöküntülerin etrafında choanocyteler yer alır. Leucon tipte vücuttaki mezenşim tabakası çok kalındır. Vücut duvarının içersinde odacıklar oluşmuştur. Bu odacıklar etrafında choanocyteler yer alır. Bütün sünger tiplerinde vücut desteğini sağlayan iskelet mevcuttur. Bu, spongin liflerinden yapılmıştır. İskelet genellikle iğne şeklinde spiküller veya ağdan yapılmıştır. Mezenşim içersinde yer alan özel hücreler tarafından meydana getirilirler. Spiküller kalkerli ve silisli maddelerden yapılmış olup skleroblast hücreleri tarafından meydana getirilir (Spiküller eksen ve ışın sayısına göre tiplere ayrılır ve buna göre süngerler arasında bir ayırım yapılır). Lif ağı şeklinde olan iskelet ise bileşimi kollagene benzer bir protein olan sponginden yapılmıştır. Spongin spongioblast adı verilen hücreler tarafından salınır. Çoğalma : Eşeyli ve eşeysizdir. Eşeysiz çoğalma 1. tomurcuklanma ile olur ve koloniler meydana gelir. Tatlısularda yaşayan süngerlerde iç tomurcuklanma yani gemmula adı verilen özel bir eşeysiz çoğalma görülür. Tatlısu süngerleri bulundukları suyun kuruması ve donması gibi uygun olmayan yaşama şartlarında ölmeye mahkumdurlar. Bu gibi hallerde tatlısu süngerlerinde gemmula (iç tomurcuklar) meydana getirilir. Gemmula teşekkül edeceği zaman özel arkeositler (Amoebocyteler) bir araya gelir ve dışında epidermis hücreleri bulunan toplu iğne başı gibi yuvarlak ve kabuğu değişik ortam şartlarına dayanıklı olan sarı renkli 33 tanecikler gemmula meydana gelir ve ortam şartları normale dönünce tam bir sünger halini alırlar. Gemmula teşekkülü kurak mevsimlerde tatlısu süngerlerinde türlerinin devamını sağlar. Diğer bir eşeysiz çoğalma 2. Regenerasyon.dur. Yaralanan ve kopan yer Amoebocyte ile tamir edilir. (Bununla birlikte yavaş da seyredebilir. Bazen aylar yıllar alır.) Parçalanan kısımlar Amoebocyte hücre yardımı ile hemen onarılır. 3. Eşeyli çoğalma: Yumurta ve spermalarla olur. Ekserisi hermafrodittir. Dışardan su ile birlikte gelen sperma evvela bir choanocyte içine girer ve buradan yumurtaya iletilir. Döllenme ana hayvanın mezenşimi içinde olur. Döllenmeden sonra segmentasyon başlar (totalegual). Çoğalan hücreler bir blastula meydana getirirler. Silli epitel ihtiva eden embriyo kanala geçerek ana hayvanı terk eder. Bir süre serbest yüzdükten sonra invaginasyon ile dış yüzeydeki kamçılı hücreler içe dönerek vücudun iç yüzeyini örter. Daha sonra kendini bir yere tesbit eden larva ergin bir sünger halini alır (zoocoğrafik dağılış bu yol ile sağlanmış olur). Süngerler diploblastik olmakla beraber embriyonun ektodermi ergin ferdin iç kısmını, endodermi ise dış kısmını örtmüş olur. Bu durum süngerlerin karakteristik özelliğidir. Solunum : Amoebocyte hücreleri O2 ’yi vücut mezenşimi içinde vücuda dağıtır. CO2 ’yi de dışarı atar ve solunumla ilgili olaylar hücre içinde cereyan eder (Protozoa gibi). Süngerler çok basit organizasyonlu olmaları nedeniyle yüksek bir regenerasyon yeteneğine sahiptir. İpek parçadan geçirilen süngerin her parçası yeni bir sünger meydana getirebilir. 3 sınıf ayırt edilir. 1- Class - Calcarea (Calcispongia) 2- " - Hexactinellide 3- " - Demospongia 34 1- Class - CALCAREA Spikülleri Ca2CO3’den yapılmıştır. Vücut yüzeyi sert kıllarla örtülüdür. Hepsi denizlerin derin olmayan kayalık sahillerinde bulunurlar. Birkaç milimetre ile 15 cm. kadar yükseklikte olan küçük formlardır. Grantia : 2,5 cm. boyunda basit silindir şeklindedir. Akdeniz ve Atlantik sahilinde bol bulunur. (Sycon tipinde iskelet kalkerden yapılmıştır.) Leucosolenia : Grantia’ ya benzer, daha küçük, kanal şekli daha karışıktır. Akdeniz (Çok sayıda türü var.) 2 - Class - HEXACTİNELLİDA : Camlı süngerler. Spiküllerini ya ayrı ayrı veya silisli bir madde ile lehimleyerek ağ meydana getirirler. Radiyal simetrili silis sipiküllerinden yapılmıştır. Euplectella   aspergillum : Venüs sepeti sıcak denizlerde yaşar (güzel görünüşlü). 3 - Class - DEMOSPONGİAE : Deniz ve tatlı sularda yaşar. Ticari önemi olan bütün süngerler bu gruptandır. En büyük süngerlerdendir. İskeletleri spongin denen ve bir çeşit protein olan keratin liflerinden meydana gelmiştir. Denizde yaşayan formlar 150 cm. kadar olabilir. Bazılarında silispikül vardır. Euspongia officinalis (Banyo süngeri) : Karışık yapılıdır. Spongin lifleri ve diğer anorganik maddeler ağ şekilli iskelet oluşturur. Lifler ıslakken yumuşak, kuruyunca sertleşir. (Hayvanın oluşumundan sonra canlı kısım parçalanır, döğülür ve hazırlanır.) Memleketimizde Akdeniz’den toplanır. Spongilla   lacustris : (Spongiller ağ tarzındadır) Kanal sistemli Leucon tipinde karışıktır. Büyük formlar hoş olmayan kokuları ince dikenli iskeleti ve tadı nedeniyle özellikle balıklar tarafından yenmez. Küçük formlar birkaç yıl büyükler ise 50 yıl veya daha fazla yaşar. Ayrıca bir 35 takım canlıların Annelid, Crustacea vs. barınağıdır. Sonuç olarak hücre tabakaları Diploblastik, coelom yok, metameri yok, sindirim sistemi, hücre içi morfolojik karakterleri farklılaşmış organ sistemi yok. PHYLUM : COELENTERATA Doku ve kısmen organların bulunduğu ilk hakiki metazoalardır. 1- Embriyolarında iki bariz hücre tabakası (diploblastik) mevcuttur. Kelime olarak coel= boşluk, enteron= sindirim sistemi anlamına gelir ki bu grubun üyeleri içi oyuk kese biçiminde ve 2- ışınsal simetrili vücut yapısına sahiptir. 3- İç kısım dışarıya bir ağızla açılan sindirim boşluğudur. Coelenterata adı da bu nedenle verilmiştir. Phylumun öteki adı knidaria ise bu gruba 4- özgü knidoblast ’ ların varlığına dayanmaktadır. Bu grubun bütün diğer yüksek organizasyonlu hayvanlarla aynı kökenden geldiklerine ve bunların atası olduğuna inanılmaktadır. Sebep olarakta yüksek organizasyonlu hayvanlar gibi bunların da dışarıya bir ağızla açılan iç sindirim boşluğunun varlığı gösterilmektedir. Protozoonların Ciliatlardan geldiğine inanılır. Çünkü Coelenterata larvaları (Planula) silli yapısı ve serbest yüzen tek hücresi ile Ciliatlara benzetilmektedir (Süngerlerde ise böyle bir durum yok yan dal halinde kalmış). 5- Bu grupta ilk gerçek doku gelişimi görülür. Aynı zamanda epitel, bağ, kas, sinir dokuları ve üreme organları bulunmaktadır. Sindirim boşluğunu kaplayan hücrelerin oluşturduğu tabaka (Gastrodermis) endodermden, dışını örtenler ise epidermis (ektoderm) dir. Yüksek organizasyonlu hayvanların aksine bu ikisi arasında mezoderm tabakasının hücresi yoktur. 6- Aradaki mesoglea denen, boşlukta hücresiz veya çok az hücre kapsayan jelatimsi bir matrix ile doldurulmuştur. Epidermis genellikle yassı bir hücre tabakası, dışı ince bir kutikula ile örtülü veya siller ve kamçılar içerir. Buradaki epitel kas hücreleri vücudun kontraksiyonunu sağlar. Özellikle ağız ve tentakül civarında duygu hücreleri dağılmıştır veya toplanarak duygu epitelini oluştururlar. Duygu hücrelerinden, bundan başka, ağız ve tentaküllerde 36 knidoblastlar yer almıştır. İntertestial hücreler tomurcuk ve diğer hücreleri oluştururlar. Bu phylumdaki (dimorfizm) hayvanların çoğunda iki tip fert görülür ve genel olarak bu, iki tip döl değişimi ile ortaya çıkar. Bunlardan sesil yaşayana polip serbest yaşayana meduz adı verilir. 7- Metagenez yani döl değişimi eşeyli ve eşeysiz çoğalmanın biri ardından tekrarlanmasıdır. Polipten eşeysiz olarak meduzlerin, meduzden eşeyli olarak poliplerin oluşumu metagenez olarak bilinir. Meduz vücudunun yanlarında küçük birer çıkıntı halinde gonadlar bulunur. Dişi gonad, yumurtaları; erkek gonad, spermaları meydana getirir. Döllenme suya dökülen spermatozoonların ovaryum içindeki yumurta hücresi ile döllenmesi sonucu olur. Polip tomurcuklanma ile eşeysiz olarak meydana gelir. Bazen meduz bazen de polip nesli bulunmayabilir. Tomurcuklanma en çok rastlanan çoğalma tarzıdır. Ayrıca 8- regenerasyon kabiliyeti çok yüksek küçük bir parça kısa bir zamanda bir fert oluşturur. Polip torba şeklinde olup ortada gastral boşluk ve bunu çevreleyen çeperden meydana gelir. Ağız peristom adı verilen bölgenin ortasındadır. Bunun aksi tarafı ile kendilerini tesbit ederler. Peristomun kenarında yakalama kolları tentaküller yer alır. Meduz ters dönmüş bir polip şeklindedir ve bir şemsiyeye benzer. Üst taraf Uxumbrella polip vücuduna, alt taraf subumbrella ise peristoma tekabül eder. Þemsiye sapının üzerinde kısa bir ağız borusu manubrium yer alır. Sub ve Uxumbrella sonunda tentaküller yer alır. Gastral boşluk çevresinde halka kanal ise basit ve dallanmış kanalları ihtiva eder. Bu phylumun en önemli özelliklerinden biri de knidoblast denen hücrelerin içinde yakıcı kapsüllerin (nematocyte) bulunuşudur. Yakıcı kapsüller mikroskobik hücre organlarıdır. Kitine benzeyen bir maddeden yapılmış ve dışında knidosil denen bir iğne taşır ve bu iğnenin besine dokunuşu ile nematosit dışarı fırlatılır. Fırlamada besin hayvanından gelen kimyasal etkenin olduğu zannedilmektedir. 37 Yakıcı kapsüller üç tiptir. 1- Penetrante : Öldürücü kapsüller (minyatür şırıngayı andırır fırlatıldığında hyphotoxin akıtır). 2- Volvante: Sarıcı kapsüller (avını ya paralize eder ya da öldürür). Kapsül içinde kapsüle bağlı bir ip var. Hayvana sarılır kaçmasını önler. 3- Glutinante: Yapışkan kapsüller (avlamadan başka hidranın takla atar gibi hareketinde tentakülün sert zemine yapışmasını sağlar). Vücut duvarında Ektoderm hücreleri arasında epitel kas hücreleri bulunur. Bunlar elastikiyeti sağlar. Vücudun ve tentakülün hareketi. Bundan başka peristom orta ağız sahası ile tentakül hücreleri üzerinde duygu hücreleri Bu hücreler ya toplanarak duygu epiteli teşkil ederler ya da epitel hücreleri arasına dağılmıştır. Duygu hücreleri sinir hücreleriyle irtibattadır. Bunlar polarize (kutuplaşma) olmadıklarından uyartıları her yöne naklederler. Beyin ve omurilik gibi merkezileşme yok. Ektoderm hücreleri arasında İnterstitital adı verilen enbriyonal hücreler de vardır. Bunlar knidositleri meydana getirirler, cinsiyet hücreleri değişirler, regerenasyon ve tomurcuklanma ile diğer hücre tüplerini verirler. Knidoblast hücreleri yakıcı kapsüller ihtiva eder. Endoderm kısmında çok vakuollü ve uçları ekseriya iki kamçılı hücreler bulunur. Bunlara besin hücreleri denir. Bunların arasında sayıca daha az olan bez hücreleri vardır. Avlarını canlı olarak yakalarlar. Yakalanan avlar evvela nemotocytler ile uyuşturulur, öldürülür ve sonra yutulur. Sindirim kısmen hücre içinde kısmen de hücre dışında yapılır. Vücut boşluğuna alınan madde endodermden çıkarılan enzimlerle kısmen sindirilir. Daha sonra besleyici hücre pseudopodlar ile besini hücre içine alarak (interselular olarak) sindirir ve besin maddesi diffüzyonla diğer hücrelere iletilir. Artıklar ağız yolu ile atılır. 38 Solunum: Suda erimiş 02 vücut duvarındaki ektoderm hücreleri ile alınır ve CO2 i dışarı verir. Endodermde bu olayı tekrarlar. 1) Hydrozoa, 2) Scyphozoa, 3) Anthozoa olmak üzere 3 sınıfa (class) ayrılır. 1. Sınıf HYDROZOA : Döl değişimi vardır. Ekto ve endoderm arasındaki ara tabakada hücre bulunmaz. Cinsiyet hücreleri ektoderm kökenlidir. Hem polip hem meduz dölü var. Bir hidroid polipin vücudu kaide, sap ve esas vücut kısmı olmak üzere 3 bölgeden yapılmış olup gastral boşluk ince bir tüp gibidir. Kaide, vücudu tesbite yarayan küçük bir tutunma kısmıdır. Koloni teşkil eden formlarda kaidenin etrafında zemin üzerine yayılan boru şeklinde uzantılar, stolon vardır. Stolon koloniyi sabit tutmaya yaradığı gibi tomurcuklanma ile üzerlerinde yeni fertler de oluşabilir. Soliter poliplerde stolon yoktur. Hidromeduz umbrellasının kenarında tentatüller bulunur. Bundan başka Uxumbrella ile subumbrella sınırında şerit şeklinde bir saçak (velum) vardır. Velum Obelia dışındaki hidromeduzlar için karakteristiktir. Meduzların sinir dokusu poliplere nazaran daha iyi gelişmiştir. Duyu organları genel olarak statositlerdir. Meduz ve meduzitler ayrı eşeylidir. Gonadlar manibriumun çeperinde veya radyal kanalların da altlarında bulunur. Cinsiyet hücreleri ekseriya dışarıya bırakılır. Döllenme ve gelişme nadiren ana hayvanın vücudunda olur. Meduzlar plankton (deniz yüzeyinde) halinde yaşarlar. Yalnız hidralarla bazı koloni teşkil eden formları tatlısuda yaşar. 1. Ordo - Hydroida : Umbrellaları genel olarak yüksektir. Gonatları manibriyum etrafında teşekkül eder. (Soliter veya koloni teşkil ederler). Kolonide iş bölümü vardır. Poliplerin bir kısmı besin almaya yarar (hidront); bir kısmı ise üremeyi temin eder. Buna üreme polibi gonangium denir. Üreme polibi 39 üzerinde cinsiyet fertleri gonoforlar meydana gelir. Hidroid poliplerinin koloni teşkil edenlerinde ektoderm kökenli bir kitin dış iskelet bulunur. Bu iskelet bazen sapların ve stolonların etrafını çeviren bir ince boru halindedir. Bunun dışında bazı hallerde hydrantların etrafında bir dış iskelet (hidroteka veya hydrotheca) bulunur. Bu şekilde hydrantlar tehlike halinde kendilerini teka içine çekebilir. Bazen tekalarda 1 veya daha fazla parçalı kapak bulunur. 1- Fam : Hydridae : Soliter yaşarlar. 5-6 tentakülden ibaret bir tentakül çelenkleri vardır. Gastral boşluk tentaküllerin içine kadar uzanır. Meduz dölü yoktur. Dünyanın her tarafında göl veya gölcüklerde yaşarlar. Teka bulunmaz. Hydra vulgaris : Tatlısuda yaşar. Hydra viridis Chlorohydra viridissima : Endoderm hücrelerinde simbiyont olarak yaşayan yeşil renkli zooklorelleri ihtiva ettiğinden yeşil renklidir, berrak suda yaşar. 2- Fam : Campannularidae : Hidrantların etrafında yer alan çan biçimindeki hidrotekaları ile tanınırlar. Obelia : Tek bir bireyle yaşama başlayan fert zamanla çok dallı koloniler meydana getirir. 3 - Fam : Sertullaridae : Sapsız olan hidrotekalar 1-4 parçalı kapak ihtiva ederler. Hydrantlar tamamen teka içerisine çekilebilir, tekalar karşılıklı ve dönüşümlü dizilir. Sertularella 4 - Fam - Plumularidae : Koloni dalları tüy şeklindedir. Hydrotekalar dallar üzerinde bir sıra üzerinde bir tarafı daha yapışarak dizilir. Kapak yoktur. Genellikle meduz dölü yoktur. (Eşeysel fertler meduzoidler halinde kolonilere bağlı kalır). Aglophenia 2 - Ordo : Siphonophora 40 Yüksek polimorfizm gösteren suda yüzen veya sabit olan bu grup şekilleri değişmiş polip ve meduz tipleri ihtiva eder. Zehirlidir. Physalia - Serbest yüzen en tehlikeli deniz analarındandır. Zehiri kobra yılanınkine yakın olup , büyük ızdırap verir. 2. Class : SCYPHOZOA Genellikle büyük deniz analarının bulunduğu gruptur. Vücutları 4 ışınlı bir radial simetri gösterir. Mezoglea tabakası hücreli bir jelatin tabakası halindedir. Eşey hücreleri endodermden oluşur. Döl değişim vardır. Ancak polip dölü gerileyerek önemini kaybetmiş meduz dölü önem kazanmıştır. Bu grupta (umbrellanın kenarında velum yoktur) Subumbrellanın ortasındaki dört köşeli kısa bir manibriumun ucunda dört köşeli ağız vardır. Ağzın köşe kısımları genellikle uzayarak kısa veya uzun olabilen ağız tentaküllerini meydana getirir. Sifo meduzlarda duygu cisimlerine rhopalium adı verilir. Vücut kenarları eşit bölmeler halinde loblara ayrılmış ve Rhopaliumlar kenar lopları arasındaki girintilerde yer almıştır. Bazılarında ışık verme kabiliyeti vardır. Birçoklarında mesoglea içinde zooksantel ve zookloreller yer alır. Hepsi karnivordur. Bu hayvanlar çana benzer vücutlarının açılıp kapanması, nabız atışı şeklinde bir hareketle yayılırlar. Vücutları kase, kadeh, borozan, kubbe, tabak, piramit, küp şeklindedir. Ordo - Semaeostomeae Umbrellanın tabak veya kase şeklinde olması ve kısa manibrium ile diğer ordolardan ayrılır. Aurelia (deniz anası): Bütün dünya denizlerine dağılmıştır. Ters dönmüş bir kaseye benzer. Aurelianın periferinde eşit bölümler halinde 8 lob bulunur. Bu loblar arasındaki girinti kısmında rhopalium denen 8 adet duygu organı yer alır. Subumbrellanın merkezinden kısa bir manibrium uzanır. Ortasında kase şeklinde ağız açıklığı bulunur. Manibriumdan 4 ağız tentakülü çıkar ve su içerisinde uzanır. Bu kollar üzerinde çok sayıda yakıcı hücre yer alır. Aurelia’nın besinini teşkil eden küçük 41 hayvansal organizmalar bu kolların yardımı ile yakalanır. Mide umbrella bölgesinin hemen hemen yarısını kaplayan at nalı şeklinde 4 gastrik cep ihtiva eder. Bu gastrik ceplerin iç yüzeylerinde de yakıcı hücreler yer alır. Gastrik ceplerin dış kenarlarında sekizi dallı bir kanal sistemi vardır. Bunlar periferde halka kanallarla birleşir. Bu sistem hem sindirim hem de sindirilen besinin sirkülasyonu ile ilgilidir. Üreme bilindiği gibi meduzlarda eşeylidir. Gastrik ceplerin tabanında parlak pembe renkte gonatlar yer alır. Bunlardan gametler teşekkül eder (Endodermden). Gametler olgunlaşınca gastrik cepler içine dökülürler ve buradan ağız yolu ile dışarı atılır. Yumurta suda döllenir ve az bir zamanda kirpikli bir planula larvası meydana gelir. Kısa bir süre serbest yüzdükten sonra kendisini sert bir zemin üzerine tesbit eder ve genç bir polip gelişir. Daha sonra polibin serbest ucunda enine bölünmeler ile tomurcuklar ephyra meydana gelir. Ephyra’ların kenarları 8 girinti ile parçalara ayrılmıştır. Az sonra her bir ephyra ana fertten ayrılır. Vücudun altı üstüne döner ve bu suretle serbest yüzen bir meduz meydana gelir. Ve aynı devrede devam eder. Aurelia   aurita   - 5-40 cm. boyda olup bütün Avrupa denizlerinde yaşar. Büyük sürüler teşkil ederler. 3. Class : ANTHOZOA (Mercanlar) 6000 türü ile en geniş sınıftır. Pharynx ve mezenterin gelişmiş olması ile farklıdır. Pharynx tüp şeklinde olup dış ortamı gastrovasküler boşluğa bağlar. Mezenter gastrovasküler boşluğun içinde septumlar biçiminde ve arada mezoglea bulunan iki gastrodermis tabakasından yapılmıştır. Bitki benzeri tamamıyla polip evresindeki sölenteratlar olup denizlerde yaşarlar. 6-8 veya çok ışınlı vücut bilateral simetrilidir. Yalnız polip dölü bulunur ve çoğu koloni halinde yaşarlar. Gastral boşluk oluşmuş bölmeler odacıklara ayrılmıştır. Mercanların hemen hemen hepsinde iskelet ektodermik veya mezenşimik olup ektoderm hücrelerinin kalkerli veya keratinli salgılarından meydana gelir. Çoğalmalar eşeysiz yani 42 tomurcuklanma ile veya eşeylidir. Eşey hücreleri endodermden meydana gelir ve ayrı eşeylidirler. Denizlerde bulunur. Soliter veya koloni halinde sesil olarak yaşarlar. Koloniyi bağlayan ana doku mezoglea ve gastrodermal tüplerdir ve koloninin alt yarısını yapıştırır. Mercan kayalıklarında olduğu gibi ölü iskeletlerinden oluşan resifler (üstündeki bireyler canlıdır) yuva ödevi görür. Sıcak denizlerde bulunurlar (Deniz gülü, deniz kırbacı, deniz yelpazesi, deniz kalemi, mercan başlıca örneklerdir). Phylum - CTENOPHORA (Taraklılar) Knidositleri bulunmayan sölenterlerdir. Yalnız iki tentakülleri vardır. Vücutlarının yanlız bir boşluk ihtiva etmesi, organ sistemlerinin bulunmayışı sinir sisteminin subepitel oluşu ile knidlilere benzerler. Denizlerde 100 kadar türü olup ceviz büyüklüğündeki küçük hayvanlardır. Bir jel kütleyi çevreleyen iki hücre tabakasından oluşurlar. Ekto ve endoderm arasındaki jel kütle mezogleaya benzer olup daha gelişmiştir ve içinde hücre bulunur. Dış yüzey tarağa benzeyen ektoderm kökenli 8 sıra kirpikle örtülmüştür. Bunların yardımı ile su üstünde hareket ederler. Vücudun üst kutbunda primer eksenin ucunda karmaşık yapılı bir duygu organı yer alır. Vücut yüzeyindeki tarak benzeri organlar radial simetrili, iç organları ise bilateral simetrilidir. Bu organ hücrelerine bağlanan 4 kirpik demeti ile dengelenen kalker tanecikler kirpiklere daha çok yüklenir ve duygu hücrelerini uyarırlar. Bu durum bazı kirpiklerin daha çok vurularak normal duruma dönmesini sağlar. Sinir sistemi epidermis altında yer alan dağınık bir sistem şeklinde olup bir ağ halindedir. Duygu organında kirpiklere uzanan sinir uzantıları vuruşları kontrol eder. Ağız vücudun alt tarafındadır. Sindirim boşluğu gastrovasküler boşluk halindedir. Sölenterlerden başlıca farklılıkları çok değişik larva gelişimine sahip olmalarıdır. Hepsi hermafrodittir. Çoğu parlak renklidir. Boşaltım sistemi henüz gelişmemiştir. Hem sölenterlerde hem de bu grupta büyük regenerasyon yeteneği görülür. Ktenoforların hepsi karnivordur. 43 Pleurobranchia   ileus - Az çok küre biçiminde ve 13 mm. boyda olup kuzey denizi ve Atlas Okyanusu.nda bulunur. COELEMATA (Bilateria) Sölomatlar bilateral simetrili muhtemelen yerde sürünen hayvandan türemiştir, çünkü bunların ağızları aşağı doğru yönelik olarak vücut ventral ve dorsalde farklılaşmış böyle olunca bileteral simetri doğmuştur. Duyu organları öne yönelmiş bunu sinir sistemi izlemiş ve hayvanın hareket ettiği yönde bir baş ortaya çıkmıştır. Organların oluşumuna mezoderm de katılmıştır ve mezodermle astarlanmış ikinci bir karın boşluğuna rastlanır (Coelom). Phylum : PLATYHELMİNTHES (Yassı kurtlar) Vücutları dorso-ventral olarak yassılmış, genellikle yaprak şeklinde ve yumuşak yapılı olan hayvanlardır. Tatlısu, deniz ve karalarda yani nemli ortamlarda serbest olarak yaşayan türlerden başka parazit olanları da vardır. Gastrodermis ve epidermis arası (blastocoel) mezenşim dokusu ile doldurulmuştur. Yassı kurtlar vücudun ventral bölgesinin orta kısma yerleşmiş tek açıklık olan ağızla, dışarı ile ilişkili bir gastrovasküler boşluğa sahiptir. Bu boşluk bazen dallanmış da olabilir. Dolaşım sistemi yoktur. Bu nedenle de sölenterlere benzerlerse de simetri durumlarının farklılığı, gonatların da taşıma kanallarının oluşu ve boşaltım organlarının varlığı ile onlardan ayrılır. En dışta epitel tabaka ve salgıladığı kutikula ile siller olup, vücut derilerinin altında bir epitel ve kas tabakası yer alır. Bu tabaka ile barsak arasındaki boşluk yıldız şekilli hücrelerin meydana getirdiği (ve aralarında boşluklar bırakan) blastocoel ile doludur. (Blastocoel intercelular boşluk bırakan yıldız şekli hücrelerden oluşmuştur ve bütün organlar bu doku içine gömülüdür). Sindirim sistemi sert bir yutak ve orta barsak olarak ayırdedilir. Anüs yoktur (ağız her iki maksatla da kullanılır). Torba halinde olan barsak parazit içermez. Boşaltım organı protonefridium tipinde ve dallı bir kanal sistemi halindedir. Protonefridiumlar yüzlerce alev hücresi içerir, çift ya da tek, bazen de çok 44 sayıda delikle dışarı açılır. Bu delikler vücudun karın tarafında ya da son kısmında bulunurlar. Protonefridiumlar vücudun su miktarını da düzenlerler. Sinir sistemi ağ şeklinde olup bazen de bir beyin ganglionu ile ondan çıkan sinir kordonları biçimindedir. Vücutları dışta ektoderm, içte endoderm ve bu iki tabaka arasında organların bir çoğunu meydana getiren mezodermden oluşur. Bu organlar kaslı bir yutak, basit gözler, duygu organları, bir beyin ganglionu, bir çift birbirine bağlı karın sinir şeridi ve üreme organlarıdır (ovaryum ve testisler, bunlarla ilgili kanallar, penis ve vaginadır). Sölenterlerin aksine yüksek organizasyonlu hayvanlar gibi bilateral simetrili olup belirli bir ön ve arka uca sahiptirler. Hareket vücut yüzeyindeki kirpiklerle, kısmen de toprak solucanlarına benzer şekilde kas kasılmalarıyla yapılır. I - Class - Turbellaria Tatlı su, tuzlu su ve rutubetli topraklarda serbest yaşarlar. Boyları 0.1-500 mm. arasında değişir. Fam: Planariidae :Yassı vücutludurlar,belirli bir baş bölgesi ayırdedilmez. Fakat ön taraf daha geniş olup duygu organı, göz, statosit, tentaküller içerir. Ağız karnın orta bölgesindedir. Başın iki yanı kulak gibi çıkıntılı olup, bazen iki yanında tat ve koku çıkıntıları bulunur. Düz bir boru halinde olan yutak (pharynx) bazen etrafı kas kılıfı ile çevrili ve ağızdan dışarı çıkarılarak ava sokulan bir boru halindedir.Derileri bir tabakalı yumuşak ve silli epidermis şeklindedir. Dışarı doğru kutikula salınmaz. Derideki kas kılıfı kontraksiyonu ile sürünerek hareket eder (karın tarafındaki yoğun siller yaşlanma sonucu azalır veya suda dalgalanarak yüzen planariadaki gibi). Sillerin hareketi vücut çevresindeki suyun hareketini dolayısı ile solunumu kolaylaştırır. Boşaltım organı protonefridiumlardır. Protonefridium vücudun iki yanında uzanan çok dallı iki kanaldan oluşur. Vücut dokusu içine kadar ulaşan ve bu kanallarla ilgili her bir küçük kanal ucunda kirpik demetine sahip olan alev hücreleri vardır. Üremeleri enine bölünme ile eşeysiz ve hermafrodit olduklarından karşılıklı döllenme ile eşeylidir. Hepsi karnivordurlar (böcek, solucan yer). 45 Turbelleryalarda çok yüksek regenereasyon kabiliyeti vardır. Solunum vücut yüzeyi ile yapılır. Planaria - Vücut benekli gri ve siyaha yakın renklerde olup 5-25 mm. uzunluktadır. Bunları bıçakla keserek öldürmek hemen hemen olanaksızdır. Bir planaryadan kesilip ayrılan en küçük parçalar bile yenilenme yetenekleri sayesinde eksik kısımlarını tamamlayarak yaşamaya devam ederler. Kesilen parçanın baş kısmına olan uzaklığı yenilenme yeteneğinin başarısını etkiler. Yenilenme, paranşim içinde yer alan neoblastlar tarafından yapılır. II - Class - TREMATODA Ergin haldeyken çeşitli hayvan ve bazen insanların iç organlarında parazit olarak yaşarlar. Yapı olarak turbelleryalara benzerlerse de parazit yaşamalarından dolayı konakçıya yapışmaya yarayan bir ya da daha fazla vantuza ve kirpikler yerine kalın bir dış tabakaya yani kutikulaya sahip olmaları ile onlardan ayırt edilirler. Turbellaryaların bütün hayat boyunca muhafaza ettikleri silli epitelleri trematodların sadece larva döneminde görülür. Yer yer diken ve pullar bulunur. Sindirim, boşaltım ve üreme organları turbellayalara benzer. Ancak ağız ön uçta yer alır. Genellikle hermofrodit hayvanlardır. Beslenmeleri ağız ve barsakla, büyük kısmında ise sadece vücut yüzeyi ile gerçekleşir. Ordo - Digenea Fam. Fasciolidae -Vücutları dorso-ventral yönde yassılaşmış olup, 10 mm. kadar büyüklüktedirler. Biri ağız çevresinde diğeri ise karın ortasında olmak üzere iki vantuzları vardır. Karın vantuzunun yeri familya ayrımında kullanılır. Cins-Distomum : Bu cinse bağlı türler geviş getiren hayvanlarda görülür ve karaciğer sülüğü veya karaciğer kelebeği olarak isimlendirilirler. Tesadüfen insanlara geçerek ölüme sebep olabilir. Distomum lanceolatum (Küçük Karaciğer Kelebeği): Ergin halde koyun, keçi, sığır, at karaciğerinde bulunur. Gelişme safhasında salyangoz ve 46 karınca olmak üzere iki ara konukçusu vardır. Boyu en fazla 1 cm. kadardır. Yassı vücutludur. Önde yer alan ağız bir ağız vantuzu (çekemi) içinde bulunur (geriye doğru barsağın uçları kapalıdır). Ağız vantuzunun gerisinde karın vantuzu yer alır. Parazit konukçu hayvana bu vantuz vasıtası ile tutunur. İki vantuz arasında eşey deliği bulunur. Hermofrodittirler. Bir çift olan testislerden çıkan kanallar birleşerek bir tek kanal (vas defferens) oluşturur ve penise açılır (Penis, penis kesesi içindedir). Dişi üreme organını küçük bir ovaryum, kısa bir oviduct ve uterus takip eder ve penisin yanından dışarı açılır. Bir fert binlerce yumurta meydana getirir. Yumurtalar konukçu hayvanın safra salgısı ile dışarı atılır. Yumurta açılır, içinde tam olarak gelişmiş sillerle örtülü bir miracidium larvası çıkar ve besini ile birlikte kara salyangozunun sindirim kanalına geçer, yumurta kabuğu erir; miracidium larvası serbest hale geçer ve orta barsak duvarına yerleşerek Sporosist meydana getirir (Bunun içinde ikinci bir sporosist dölü), daha sonra içerde serkaria dölü meydana gelir. Serkarialar vena vasıtası ile salyangozun solunum organı boşluğuna gelir ve burada (grup halinde) kistler oluşur. Her kistte 300 kadar serkaria vardır. Kistler solunum organından mukusla dışarı atılır ve otlara yapışır. Bu otu karınca (Formica) yerse metaserkariaya değişir. Bu hayvan koyun keçi vs. tarafından yenirse kist midede açılır ve mide duvarını deler. Vena yolu ile karaciğere gider, safra kanalına yerleşir ve erginleşir. Yumurtalar safra ile barsağa gelir, oradan dışkı ile dışarı atılır. Konakçının zayıflamasına ve ölümüne neden Fasciola   hepatica: Boyu 20-30 mm. kadardır. Koyun, keçi ve sığırların safra kesesinde bulunur. Halk arasında karaciğer kelebeği denir. Kutikula üzerinde diken gibi kabartılar vardır (kirpikli epitel). Dışkı ile konukçunun vücudundan atılan yumurtalar ancak su ile temas ettiği takdirde açılır ve içinden miracidium larvası çıkar (larva su içinde serbest yüzerken). Limnea cinsinden su salyangozuna girer, karaciğere yerleşerek sporosist oluşturur. Sporosistin içindeki embriyonal hücreler redia’ları 47 bunlar da serkariaları meydana getirir. Serkarialar salyangozun barsağı yolu ile dışarı atılır. Bunlar su kenarında bir bitkiye tutunur ve orada kist haline geçer. Otu yiyen konukçu hayvanın midesinde kist açılır, serkaria karaciğere geçerek safra kanalı ve kesesine yerleşir. Yumurtaları idrar yollarında iltihaba sebep olur. Distomum 5-6 mm. en çok 1 cm boyda olmasına karşın bunlar 20-30 mm. boyda olduklarından safra kanallarını kolayca tıkayabilir. Barsak Distomum.daki gibi iki kola ayrılarak aşağı iner ve yanlara doğru kollar oluşturur. Opisthorcis sinensis : (Çin karaciğer kelebeği) İnsan, köpek, kedi, fok ve balık yiyen memelilerin safra kanallarında bulunur. Miracidium ve serkarialar için ana konak salyangoz ve balıktır. Oryantal bölgelerde yaygındır (İnsan dışkısı karışmış sularla sulama nedeni ile) safra ve karaciğerde tahribat yapar. Echinostoma   (Schistosoma)   haematabium: Erkek büyük ve kalın vücutlu olup vücut ventralinde boydan boya bir yarık taşır. Dişi iplik şeklinde daha ince olup erkekteki bu yarık içinde yaşar. İnsanların toplardamarlarında parazit olarak bulunur. Sıcak ülkelerde ara konak su salyangozu olup özellikle pirinç tarlalarında su ile temastaki insan derisinden girerek yumurtalarını kana bırakırlar. Biraraya geldiğinde böbrekten atılamayıp iltihap ve kanamaya neden olur. III. Class - CESTODA (şeritler) Endoparazittirler. Ergin halde omurgalıların barsaklarında, nadiren karın boşluğunda parazit yaşarlar. Dar ve yassı şerit şeklindeki hayvanlarda önde başın bulunduğu kısma scolex denir. Scolex baş ve boyun kısımlarını kapsar. Bu kısımda parazitin konukçu hayvana tutunmasına yarayan çengel ve vantuzlar bulunur. Vücudun geride kalan kısmı seri halinde proglottis denen bölmelerden ibarettir. Proglottisler boyun kısmından tomurcuklanma ile meydana gelirler. Bu nedenle en yaşlı proglottisler en sondadır. Bunlar zaman zaman atılır. Bütün vücut yüzeyi kutikula ile örtülüdür. Kutikulanın altında sırasıyla kaide (bazal) membranı ve bunun altında dış tarafta halka, iç tarafta ise boyuna 48 uzanan kas liflerinden oluşmuş kas tabakaları bulunur. Bunun dışında parenşim kaslar da bulunur. Boşaltım organları protonefridiumlardır. Sinir sistemi başta enine bir ganglion ile geriye doğru uzanan iki sinir şeridinden meydana gelmiştir ki bunlar ana boşaltım kanallarının dışında uzanırlar. Barsak sıvısı içinde yaşadıklarından sindirim sistemi ve ağız yoktur besinlerini barsaklardan osmos yolu ile alırlar. Hermafrodittirler ve proglottislerin her birinde erkek ve dişi üreme organları vardır. Her bir proglottis kendisi ya da başka bir proglottis ile çiftleşebilir. Döllenmiş yumurta ile dolan proglottis kopar ve konakçı vücudundan atılır. Ordo- Cestodes Fam.- Taeniidae Taenia   solium: (domuz tenyası) Ergin halde insan ince barsağında yaşar. Ara konakçısı domuzdur. Ara konağın sindirim kanalına geçen yumurtanın kabuğu erir serbest kalan onkosfer (kancalı embriyo larvası) barsak epitelini delerek kas dokusuna geçer ve sistiserkus (kist) meydana getirir. Böyle bir domuz eti iyi pişirilmeden yenirse, kist barsakta erir, scolex dışarı çıkarak barsak duvarına tutunur. Bundan sonra proglottisler gelişmeye başlar. Ergin halde boyu 3-4 m. kadardır. Taenia   saginata : (Sığır tenyası) Bu şeridin ara konakçısı yalnız sığırdır ve ergin halde insanda bulunur. Sığır etinde bulunan larva şekline Cysticercus adı verilir. Larvalı sığır eti çiğ veya az pişmiş olarak yendiği zaman insanın ince barsağında 8-10 m. boyunda olan şerit meydana gelir. Pişmeden veya az pişmiş olarak yendiği zaman parazit alınmış olur. Domuz şeridine benzer ancak kanca yoktur. Bu şeritler besine ortak olarak insanı zayıflatır. B12 vitamini sömürür, fakat aynı zamanda meydana getirdiği toksik maddelerle kansızlık ve sinir bozukluklarına sebep olur. Parazitleri düşürmek için ilaç verilir. Ama scolex düşmedikçe 2,5 - 3 ay içinde şerit tekrar eski halini alır. 49 Echinococcus   granulosus: (Köpek tenyası) İnsanlar için en tehlikeli olan şerit köpek tenyasıdır. Ergin halde köpeklerde bulunan bu şeridin gelişmesinde ara safha koyunda ve insanda geçer. Köpekle oynayan bir çocuğu, köpek yaladığı zaman yumurtaları kolayca alabilir. Yumurtalar çiğ olarak yenen sebze ve meyvalardan da alınırlar. O zaman parazitin larvası insanın özellikle ak ve karaciğerinde bazen bir çocuk başı büyüklüğünde kistler meydana getirir. İçerisinde birçok scolex oluşur. Kistler çiğ et yiyen köpeklerin barsağında ergin şerit haline geçer. Bu parazit evcil hayvanlarda büyük ekonomik zararlara sebep olur. Kistler delindiği zaman kanla nakledilen scolexler vücudun başka yerlerinde yeni kistler meydana getirirler. Bunlar kalp ve beyine, diğer önemli organlara geçtiği zaman hastanın durumu çok ciddi bir hal alır. Kistlerin tedavisi ancak operasyonla mümkün olmaktadır. PSEUDOCOELOMATA Blastocoel ergin dönemde vücut boşluğu biçiminde gelişir, pseudocoel denen bu boşluk bütünüyle periton zarla astarlanmamıştır. Madde iletimi, azotlu atıkların depolanması, gametlerin gelişme ortamı, eşey bezleri ve organların gelişme ortamı görevlerini üstlenmiştir. Vücut örtüleri tek tabakalı epiteldir. Kaslı yutağın ve anüslerinin gelişmiş olması bu hayvanları Platyhelmintlerden ayırır. Regenereasyon yetenekleri yoktur. Phylum- NEMERTEA (Hortumlu solucanlar) Bazı literatürde class olarak alınmaktadırlar; en yakın akrabalarının Platyhelmintler olduğu düşünülmektedir. Platyhelmintler ile Annelid arasında özelliklere sahiptirler. Paranşime sahip olması, rhabdit benzeri salgı salgılayan silli epitel ile örtülü olması ile Platyhelmintlere, dolaşım sistemlerinin oluşması ve anüse sahip olmaları ile de Annelidlere benzerler. Vücutları yassı veya yuvarlak olup belirli bir baş bölgesi gelişmemiştir. Küçük bir gruptur (550 tür) hemen hepsi denizlerle serbest olarak yaşar. Parazit değillerdir; bu nedenle de fazla bir ekonomik önemleri yoktur; ancak evrimsel açıdan ilk organ sistemlerinin 50 görüldüğü bu grupta boy ortalama 5-20 cm. olup siyah ya da renkli çizgileri olan hayvanlardır. Gruba adını veren proboscis (hortum) vücudun ön ucuna açılan içi boş ve besin yakalanmasında kullanılan kaslı bir tüptür. Bu grupta görülen ilk önemli gelişme bir uçta besin almaya yarayan bir ağız aksi tarafta artıkların atılmasını sağlayan anüs ve arada bir özafagus ve barsakla tam bir sindirim sisteminin bulunmasıdır. Su ve metabolik artıklar yassı kurtlarda olduğu gibi alev hücreleri (protonefridium) ile atılır. Diğer bir gelişme sindirim ve dolaşım işlevlerinin ayrılması olup ilk dolaşım sisteminin bu grupta görülmesidir. Bu sistem vücut boyunca uzanan birbirine enine damarlarla bağlanmış kaslı 3 tüpten meydana gelmiştir. Kalp ve kılcal damarlar yoktur. Kırmızı kan hücreleri içeren gruplar vardır. Kan hareketi, vücut kontraksiyonu ve kaslı kan damarlarının kasılması ile olur. Vücudun ön ucunda sinir halkası ile birbirine bağlanmış iki grup sinir hücresinden (ganglion) meydana gelen bir beyin yer alır. Ayrı eşeylidirler. Regenereasyon yetenekleri var. Gelişmeleri metamorfozla olup larvasına "pillidium" larvası denir. Cerebratulus marginatus: Yassı vücutlu olup 30-40 cm. boydadır. Akdenizde yaşar. Memleketimizde Ankara tavşanlarında rastlanmaktadır. Aschelminthes 1. Phylum: Rotifera 2. Phylum: Nematoda 3. Phylum: Nemotomorpha 1. Phylum - ROTİFERA (Rotatoria) Bunlara döner solucanlar da denir. Bütün dünya deniz ve tatlısularda taban cisimcikleri üzerinde ve alglerde bulunur; bir kısmı da planktoniktir. 51 Laboratuvarlarda Protozoa kültürlerinde de rastlanır. Protozoonlardan daha büyük, mikroskobik hayvancıklardır. Vücutları baş, gövde ve ayak olmak üzere 3 bölgeye ayrılır. Vücut ince bir kitin tabakası ile kaplı olup genellikle arka uçta bir ayak yer alır. Hayvanın tespit edilebilmesi salgı bezleriyle olur. Başta kenarı sillerle çevrili bir disk organı vardır. Buna tekerlek organı da denir. Bu organ harekete ve besin almaya yarar. Rotatorlar saydamdır. Hareket halindeyken iç organları görülür. Ağızdan sonra kaslı farinx (mastax) gelir. Farinx, kutikular bir çeneye sahip olup 7 parçadan oluşmuştur. Öğütücü mide kitinden öğütücü dişler içerir. Daha sonra kaslı mide yer alır. Sindirilmeyen maddeler anüs ile sonlanan bir barsakla dışarıya atılırlar. Başaltım organı protonefridiumdur. İyi gelişmiş bir sinir sistemi vardır. Dişiler partenogenetik olarak çoğalabilirler. Yumurtalar döllenmeden gelişebilir. Erkekleri dişilerinden daha küçüktür. Rotifera’lar arasında şekil ve yaşadıkları yerler bakımından çok büyük değişiklikler vardır. Göl sularında bulunanların vücudu uzun yapılıdır. Arka kısımları çatal şeklindedir (bu hayvanlar ağızlarının etrafında bulunan kirpiklerle suda yüzerler ve solucan şeklinde hareketler yaparlar). Diğer bazı Rotifera’lar silindiriktir ve içinde yaşayabilmek için kendilerine bir kabuk örerler, bu şekilde dış etkilerden kendilerini korumuş olurlar. Bu durum onların çok yaygın olmalarını sağlar. Rotiferlerde yalancı bir coelom bulunduğundan Nematoda ve Gastrotrichia.larla çok yakın akrabalıkları olduğu kabul edilmektedir. Rotifer ve Gastrotrichialar sabit hücreli hayvanlardır. Embriyonik gelişme sonunda mitoz durur. Büyüme ve regenereasyon görülmez. Yalnızca birkaç gün yaşarlar ve yaşlanma başlar ancak günde birkaç saat sodyum sitrat içinde tutulurlarsa insanlardaki gibi yaşlanma nedeni olan kalsiyum tümüyle alınır ve yaşam süresi uzatılabilir. Bu alanda yapılacak deneyler ile insanın ömür uzunluğunun uzatılabileceği sanılmaktadır. Rotatorlar kuru olarak yani latent safhada yılarca canlı tutulabilir. - 272° C.da 8 saat yaşarlar. Bu nedenle deneylerde de kullanılabilirler. 52 Fam - Philodinidae Philodina - Tatlı ve durgun sularda serbest olarak yaşarlar. Sürünerek hareket eden birçok rotator ihtiva ederler. Fam - Brachionidae Gövde kase şeklinde olup vücudunda çıkıntı şeklinde küçük dikenler bulunur. 2. Phylum - NEMATODA Rotifera ve Gastrotrichia ile akraba oldukları ileri sürülmektedir. 10.000 den fazla türü olan bu grup üyeleri denizlerde, tatlısularda, toprakta bitkisel ve hayvansal çürümüş maddeler içinde bulunur. Gruplar farklı ortamlarda yaşamalarına karşın vücut organizasyonları çok benzer. Vücutları uzun ve segmentsizdir; ön kısmı yuvarlak arka kısmı iğ şeklinde sivri, yassı veya çatallıdır. Büyüklükleri çok değişir, serbest yaşayan gruplar 1 mm. kadardır, parazit yaşayan at barsak nematodu 35 cm., Floria medinensis ise 2 metredir. Çoğu hayvan ve bitki parazitidirler. Hemen hemen her toprakta ekonomik önemi büyük olan çok sayıda nematod Başta halka biçimli bir serebral ganglion buradan karın tarafına inen sinir kordonları bulunur. Nematodlarda sindirim sistemi düz bir boru şeklindedir. Ön uçta ağız, arkada anüs bulunur. Bilindiği gibi bu grupta vücut duvarı ile sindirim sistemi arasında yer alan vücut boşluğu, pseudocoel (yalancı boşluk) tipindedir (hakiki coelomda bulunan mezodermik tabaka yoktur). Vücutları kalın fakat çok esnek olan epidermis tarafından salgılanan kalın, üstü partiküllü birkaç tabaka olabilen kutikula ile kaplanmıştır. Silli epitel yoktur. Yalnız boyuna kasları gelişmiştir. Bu nedenle kolaylıkla yılan gibi sürünerek hareket ettikleri halde zorlukla yüzerler. Ergin devrede hücre bölünmesi (mitoz) durur. Ancak hayvan hücre büyümesi ile gelişir. Genç bir nematodun ergin hale gelmesi sırasında kutikula büyümeyi engeller. Bu nedenle kutikula periyodik olarak değiştirilir (gömlek 53 değiştirme). Bu bir nevi deri değiştirmektir. Bu grupta genellikle ergin oluncaya kadar 4 kez deri değiştirme görülür. Her organ belli sayıda hücre içerir. Regenereasyon yoktur. Nematodların çoğu ayrı eşeylidir. Bu durum hayvanlar aleminde ilk defa görülür ve eşeyli olarak ürerler. Erkek eşey açıklığı anüsten, dişinin ise ön ventral taraftan (bir çift olarak) açılır. Fam - Ascaridae - Oldukça kalın vücutludurlar. Ascaris lumbricoides   (barsak solucanı): İnsanlarla domuzların ince barsağında (30 cm. yuvarlak açık pembe renkli) yaşarlar. Ayrı eşeylidirler. Parazit yaşadığı için ağız ve anüs küçülmüş olup, dolaşım sistemleri Döllenme vücut içinde olur, erkekten alınan spermalar uterusa gelerek yumurtayı döller. Sert bir kabuk ile çevrilen yumurtalar yaşadığı hayvanın barsağına inerek dışarı atılır, yumurtaların gelişebilmesi için birkaç hafta nemli toprak veya suda kalması lazımdır. Yumurtalar henüz dışkı içinde iken içlerinde küçük kurtçuklar gelişir. Bu yumurtalar domuz veya insan besinine karışarak alınırsa ince barsakta açılır. Genç kurtlar ince barsağı delerek kan damarlarına buradan da kalp ve akciğere geçerek, bronşlara girerler. Oradan hava boşluğuna ve yemek borusuna tekrar bronşa geçerek erginleşirler. Genç kurtlar çok sayıda ise iltihap, sıtma, kanama gibi nöbetlere sebep olur. Bir dişi askaris günde 200.000 döllenmiş yumurta bırakır. Ascaris   megalocephala (at askarisi) 20-30 cm. boyda olup at barsaklarında parazittir. Fam. Anguillulidae Tarımda ekonomik önemi olan türleri içerir. Anguillula tritici : Buğday zararlısı Anguillula dipsaci : Çavdarda zararlı Heterodera : Pancar ve domateste zararlı 54 Fam. Filariidae İplik kalınlığında ince uzun vücutludurlar. Erginleri lenf dokularında yaşar. Birkaç cm. boydadır. Küçük larvalar kana karışır ve kan emen sineklerle yeni konağa geçer. Filaria - Çoğu bağ dokusu içinde genellikle derinin altında yaşar. Filaria bancrofti - İnsanların lenf sisteminde yaşar ve lenf damarlarını tıkar (Dokularda şişme görülür vücudun altı ve bacaklar şişer). Fil hastalığı elephantiasisi yapar. İnsandan insana geçimi sinek ile olur. Fam. Trichinellidae Trichinella   spiralis: Hayat devresinin bir kısmını insanda geçirip, domuz ve sıçan ince barsağında parazit olup kana, dokulara, çizgili kaslara geçip orada kalker kist oluşturur. Kurtçuklar birkaç yıl sonra yeni konukçuya geçer, kistler sindirilir. Larvalar ince barsakta erginleşir ve hastalık Trichinosis başlar, barsak çeperlerinin delinmesi ateş ve ishal yapar. İkinci safha larvalar kas dokusuna yerleşir. Kas faaliyeti durur. Ağrılar başlar ölüm görülebilir. Fam. Strongylidae - Vücutları silindir şeklinde bazen de iplik gibidir. Kenarları ekseriye dişli olan büyük bir ağız kapsülü içerir. Ancylostoma   duodenale   (Kancalı kurt) Anemiye neden olur. Erginler insan ince barsağında beş sene kadar kalabilir. Barsağın mukozası ile beslenir ve dişleri ile barsak tümörlerini eritir. Fam. Oxyuridae - Çok küçüktür. Gelişmelerinde taşıyıcı ara konak yoktur. Omurgalı hayvanlarla arthropodların barsaklarında yaşarlar. Ağızlarının kenarı düz veya dudaklıdır. Oxyuris - Çoğu 3 dudaklı olup dişilerde vücudun arka ucu iğne gibi uzun ve sivri, erkeklerin ise küttür. Oxyuris   vermicularis - İnsanlarda genellikle çocuklarda görülen parazitlerden biridir (dişiler 2-5 mm, erkekler ise 9-12 mm. boyunda olur). 55 Genç hayvanlar ince barsakta, erginleri kör barsak ve kalın barsakta yaşarlar. Genellikle geceleri yumurta ile dolu dişiler anüsten çıkarak anüs çevresine binlerce (13.000 kadar) yumurta bırakırlar. Normal halde bunlar gelişerek larvaları meydana getirirler. Larvalar henüz yumurta kabuğundan çıkmamış bir halde ağız yolu ile insana geçtikleri taktirde 14 günde ergin hale gelirler. Parazitlerin cilt üzerindeki hareketleri kuvvetli bir kaşıntı yapar. Bazen kaşınan yerlerden tırnak aralarına giren yumurtalar bilhassa küçük çocuklarda parmakların ağıza sokulması ile tekrar aynı konağa döner. Önemli enfeksiyonlara sebep olur. 3. Phylum - NEMATOMORPHA Vücutları iplik şeklinde ve çok uzun olan çoğunlukla kaynak sularında rastlanan kıl kurtlarıdır. İki uçta biraz yassılaşmış olan vücut silindirik bir yapı gösterir. Larva parazitken, erginleri serbest yaşar. Vücutları hipodermis tarafından salgılanan kutikula tabakası ile örtülüdür. Hipodermis bir hücre sırasından meydana gelmiştir ve altında hücreleri epitel şeklinde sıralanmış bir kas kılıfı yer alır. Kas kılıfı yalnız boyuna uzanan liflerden yapılmıştır. Vücudun ön ucunda bulunan ağız ya çok küçülmüş veya tamamen kapanmıştır. Barsak karın sinusunun içinden geçer. Bütün vücut boyunca uzanan sindirim borusu ergin hayvanlarda yer yer körelmiş olabilir. Bu hayvanlarda özel bir boşaltım aygıtı yoktur. Hepsi ayrı eşeylidir. Yumurtalarını suya ve su bitkileri üzerine uzun iplikler halinde bırakırlar. Yumurtalardan küçük larvalar çıkar, bunlar böcekler tarafından besin ile alınırlar. Larvalar bu hayvanların sindirim borusundan vücut boşluğuna geçerler ve orada metamorfoz geçirerek süratle ergin boya ulaşırlar ve konağı terk ederek serbest olarak kaynak suları içinde yaşarlar. Fam- Gordiidae (tel kurtları) Gordius aquaticus - Kahve renkli bir tel şeklindedir. Avrupada bulunur 56 PHYLUM - GASTROTRİCHA Rotiferlere çok benzerler, ancak tekerlekler organı yoktur. Vücutları karın tarafı yassı bir şişeye benzer. Ön uçları baş şeklinde arka uçları çatallıdır. Vücut yüzeyi ince bir kutikula ile örtülüdür ve yüzeyde diken, pul gibi çıkıntılar görülür. Vücut yüzeyinde bazı bölgeler (karın yüzeyi ve ön uca yakın kısım) sillidir. Karın tarafındaki silli bölge yan yana uzanan iki şerit meydana getirir. Baş kısımda da kamçılardan meydana gelmiş dört püskül bulunur. Deride birçok bezler vardır. Ağız ön uçtadır. Sindirim borusu düz olarak arka uca kadar uzanır ve anüs ile sonlanır. Boşaltım organı vücudun yanlarında yer alan 7 çift protonefridiumdur. Boşaltım kanalları dolanmaz, ancak çok kıvrımlıdır. Sinir sistemi ön barsağın yan kısmında yer alır, iki parçalı beyin ve bundan ayrılan bir çift sinir kordonundan meydana gelir. Ancak mikroskopta görülebilen küçük hayvanlar olup havuzlarda, durgun sularda ve çok azı denizlerde yaşarlar. Besinleri bakteri ve alglerdir. Bu phylumda da rotororlarda olduğu gibi hücre sayısı sabittir. Bir kısmı hermofodittir. Bir kısmı da partenogenetik çoğalan dişilerden meydana gelmiştir. Erkeklere PHYLUM - BRYOZOA (Yosun hayvanları) Bir kısmı yosunlara çok benzer diğer bir kısmı da kayalar üzerinde ince dantelli kabuklar şeklinde görünürler. Genellikle koloni meydana getiren sesil hayvanlardır. Bazı türler kalsiyum karbonattan meydana gelen koruyucu bir kılıf salgılarlar. Ağız; üzerinde tentaküller bulunan daire veya at nalı şeklinde lopofofor adı verilen bir kenarla çevrelmiştir. Sindirim borusu "U" harfi şeklindedir (bu sebeple anüs ağıza yakındır). Hermofrodit hayvanlardır. Tatlısuda yaşayanlar statoblast adı verilen tomurcuklanma ile ürerler. 2 gruba ayrılırlar: 1. Entoprocta, 2. Ectoprocta 57 1. Entoprocta- Hakiki karın boşluğu (Coleom) yoktur. Yerine yalancı coelom (Pseudocoelom) mevcuttur. Anüs lopofoforun içindedir. 2. Ectoprocta- Gerçek coelom vardır ve anüs açıklığı lopofoforun dışında kalır. Kolonilerinde avicularium adı verilen ve kuş gagasına benzeyen bir organ bulunur. Kaslarla hareket eder ve ses çıkararak açılıp kapanır. Küçük hayvanların koloni üzerine yerleşmesine engel olur. PHYLUM - BRACHİOPODA (Kandil kabuklular) Kökeni eski devirlere dayalı, kaslarla açınıp kapanan ve kalsiyum karbonattan meydana gelmiş kabukları ile midyelere benzerler. Ancak midyelerde kabuk vücudun sağında ve solunda, bu grupta ise hayvanın altında ve üstünde yer alır. Alttaki kabuk bir sap kısmı ile sağlam bir zemine tutunur ve hepsi denizde yaşar. Sesil hayvanlardır. Jeolojik devirlerde çok daha zengin (3.000 tür) tür sayısına sahip olmakla birlikte bugün 200 kadar türle temsil edilirler. Ağızın iki yanında sillerle çevrilmiş lopofofor kolları tentakülleri bulunur. Boşaltım organları sindirim sistemi kontraktil çalışan kalp, gerçek coelom boşluğu vardır. Yumurtadan çıkan larva sillerle örtülüdür. COELOMATA Bu hayvanlar periton denen mezodermal zar ile yani epitelle tamamen çevrilerek astarlanmış ikinci bir karın boşluğu içerirler. İç organlar bu boşluk içinde yerleşmiş yine peritonla astarlanmışlardır. Coelomatlar ergin dönemde bilateral simetrilidirler. PHYLUM - ANNELİDA Tatlısu, deniz ve karada yaşayan halkalı kurtların bir kısmı diğer hayvanlarda parazittirler. Vücut homonom segmentlere ayrılmıştır. Gerçek coelom ve mezoderm (schizocoel) ihtiva ederler. Sindirim, boşaltım, üreme ve sinir sistemleri vücut boyunca uzanır veya kısmen metameri gösterir. 58 1. Annelitlerde deri ve kas çok iyi gelişmiştir. Vücut en dışta epidermisin bir salgısı olan kutikula ile sarılmıştır. Bunun altında tek tabakalı bir epidermis bulunur. Ondan sonra halka kaslar daha sonra da boyuna kaslar yer alır. 2. Sindirim sistemi Genel olarak önde ağızla başlayan ve anüsle sonlanan uzun bir boru şeklindedir. 3. Dolaşım sistemi kapalıdır. Barsağın üstünde, mezenter içinde uzanan kontraktil bir sırt damarı ile barsak ve karın sınırı arasından geçen bir karın damarından meydana gelir. Sırt ve karın damarı vücudun ön ve arkasında birleştikleri gibi her segmentte bu iki damarı birbirine birleştiren halka şeklinde damarlar vardır. Bazı hallerde sırt damarından başka halka damarlardan bazıları da kontraktil olabilir. Bu taktirde bunlara kalp adı verilir. Kan sırt damarında arkadan öne doğru karın damarında da önden arkaya doğru akar. Kan plazmasında az miktarda kan hücresi ve erimiş halde hemoglobin bulunur. Annelitlerde damar sistemi olmayan birkaç basit form da mevcuttur. 4. Solunum, deri ve bazı sucul gruplarda solungaçlarla yapılır. 5. Boşaltım organı segmental sıralanmış nefridium’lardır. Her segmentte bir çift nefridium vardır. Organları silli bir huni (nefrostom) ile coelom boşluğundan başlarlar ve huninin devamı olan silli boşaltım kanalı da aynı segmentten veya onu takip eden segmentin ventral kısmından dışarıya açılır. Nefridiumlar boşaltım maddelerinden başka coelom boşluklarına geçen eşey hücrelerini de dışarı taşırlar. 6. Sinir sistemi vücudun ön kısmında bulunan bir çift serebral ganglion ile başlar. Buradan ayrılan iki konnektif yutağın etrafını bir halka gibi sardıktan sonra ilk segmentin ventral bölgesinde yer alan karın ganglion çifti ile birleşir. Vücut boyunca her segmentte 1 ganglion çifti bulunur. Bir önceki segmentte bulunan ganglion çiftlerini birleştiren sinir ipliklerine konnektif, aynı segmentte bulunan iki ganglionu birleştiren ipliğe komisur denir. Annelitler ve Artropodlar için karakteristik olan bu tip sinir sistemine ip merdiven sinir sistemi denir. 59 7. Üreme, ayrı eşeyli veya hermafrodit olabilir. Bazı türlerde eşeysiz üreme de görülür. Gelişmelerinde bazı gruplarda sillerle kaplı bir trochophora larva evresi vardır. 8. Mezodermik orijinli olan coelomun içi bir epitel tabakası ile örtülü olup gerçek bir karın boşluğu meydana getirir. Vücut ile barsak arasında kalan coelom boşluğu yani epitel tabakanın barsağa dayanan kısmına splanchopleura, vücut duvarının kas kılıfına dayanan kısmına ise somatopleura adı verilir. 9. Annelitlerde genelde yüksek bir regenereasyon yeteneği vardır. I. Class- POLYCHAETA l. Hemen hemen hepsi denizlerde yaşayan, hafifçe dorso ventral yassı kurtlardır. 2. Belirli bir baş bölgesi vardır. Çenenin değişimi ile meydana gelmiş olan pharynx çevresinde prostomium ile örtülen bir peristomium gelişmiştir. Başın ön kısmı çevresinde 4 çift tentakül var. 3. Parapodiumun bulunması ile karakteristiktir. Parapodun üzerine çok sayıda kitin kıllar (setae) bulunur. 4. Kan kırmızı renkte olup nedeni kan sıvısında erimiº halde bulunan hemoglobin ve ameobosit hücreleridir. 5. Ayrı eşeylidirler. Her üreme mevsiminde coelom epitelinden geçici olarak ovaryum ve testisler meydana getirilir. Döllenme suda olur. Yumurtadan trochophor larvası çıkar. Sub.Class - Errantia Farinkslerini torba gibi ağızdan dışarıya uzatılabilir ve genellikle kitin çene veya diş ihtiva eder. 1-2 çift gözleri vardır. Vücut homonom segmentlidir. Geçici olarak borular içerisinde yaşıyorlarsa da genellikle serbest hareket ederler. 60 Fam. Nereidae Nereis Nereis diversicolor - (deniz kurdu) 8-8.5 cm. boyda olup. Avrupa denizlerinde bulunur. Nereis virens - Kum kurdu veya midye kurdu. Sub.Class - Sedentaria Segmentlere göre vücutları 2 veya 3 farklı bölgeye ayrılır. Gözleri ya çok küçüktür veya hiç bulunmaz. Devamlı olarak boruların içinde yaşarlar. Bazıları kuma gömülürler. Arenicola Arenicola marina - Boyu 12-15 cm. olup olta yemi olarak kullanılır. Akdeniz ve Atlas Okyanusu.nda yaşar. II. Class - OLYGOCHAETA 2000 kadar türü vardır. Tatlısularda ve nemli toprakta yaşar. Belirli bir baş bölgesi yoktur. Yarık biçiminde olan ağız ön uçta, anüs ise arka uçta yer alır. Barsak bütün sırt boyunca uzanan typhlosolis adı verilen girintiye sahiptir. Bu yapı barsakta emilim yüzeyini arttırmaktadır. Barsağın etrafında yer alan Chloragen hücreleri, karaciğer gibi ödev görüp, glikojeni sentez ve depo ederler. Class’ın ismi harekette rol oynayan Setae’lardan ileri gelir. Setaeları kaslar hareket ettirir. Parapod bulunmaz Polychaetlerden farklı olarak hermafrodittirler. Bununla birlikte eşeysiz çoğalan türler de vardır. Her solucan hem dişi hem erkek olabilir. Ancak döllenme vücut içinde olur. Yumurta içinde küçük bir solucan gelişir. Gelişmeleri esnasında, trochophor larvası yoktur . Olygochaetaların en belirgin özelliklerinden biri genellikle eşeysel olgunlaşma sırasında delikler civarında, 6, 7 segmenti kapsayan ve vücudu bir halka gibi saran clitellumun bulunmasıdır. Gelişme sırasında bir madde salınır. Bu, karından birbirine dönük olan hayvanların birbirine bağlanmasını sağlar. Bu kısımda ortalama 32. segmentten geriye 6-7 segmenti kapsar ve burada epidermis çok bezli ve şişkin bir hal alır. Her 61 segmentte kısa kitin setalar vardır. Clitellumda intersegmental boğumlar ve kıllar belirsizleşir veya tamamen kaybolur. Vücut yüzeyi ince bir kutikula ile örtülüdür. Bunun altında epidermis daha içte biri halka şeklinde diğeri de boyuna uzanan liflerden meydana gelmiş 2 kas tabakası ve coelom epiteli bulunur. Karada yaşayanlarda bazı segmentlerde sırt tarafta birer por bulunur. İç tarafta coelom boşluğuna açılan bu porlara coelom ve sırt porları denir. Kuruma tehlikesi olduğu zaman coelom sıvısının bir kısmı buradan dışarıya verilerek derinin nemli kalması sağlanır. Yüksek regenereasyon kabiliyetleri vardır. Besinleri Fam. Tubifidae Çok ince yapılıdırlar . Tubifex tubifex Tatlısularda. Suların dibinde başları dip çamuruna gömülü arka uçları serbest olarak yaşarlar. Boyları 8,5 cm. kadar olabilir. Fam. Lumbricidae - (Toprak solucanları) vücut kılları S şeklinde kıvrık ve sivri uçludur. Her segmentte 8 kıl bulunur. Bunlar yanlarda birer çift boyuna sıra teşkil edecek şekilde sıralanır. Dişi genital por 15, erkek genital porları ise genellikle 14’üncü segmentten dışarıya açılır. Lumbricus terrestris - Boy 30 cm. segment sayısı 140-180 kadar tarla ve bahçe toprakları içinde bulunur, clitellum 31-37 segmentler arasında yer alır. L. rubellus - Boy 15 cm. kadar, clitellum 26-32 segmentler arasında yer alır. Genellikle çürümüş yapraklar arasında bulunur. III. Class - HIRUDINEA Parazittirler ve vücutları sabit sayıda segment içerir. Derilerindeki sekonder bölmeler sebebiyle her iç segment dışta 2-14 halka gösterir. Hirudo medicinalis eskiden beri tıpta kullanılır. Vücutta belirgin bir baş bölgesi yoktur. Bugün bu hayvanlardan elde edilen hirudin maddesi kanın pıhtılaşmasını önlediğinden geniş ölçüde faydalanılmaktadır. Sülükler tatlısularda yaşarlar. Vücutları dorso ventral yassılaşmıştır. Vücudun her iki ucunda anterior ve posteriorde birer vantuz bulunur. 62 Sülükler vantuzlarla tutunarak ileri doğru hareket eder. Ön vantuzun içinde ağız, ağzın arkasında 3 köşe teşkil edecek şekilde sıralanmış 3 kitin diş bulunur. Bu dişlerle yara açıp kan emer. Kan emenlerde tükrük bezi salgısı kanın pıhtılaşmasını önleyen ferment içerir. Sindirim kanalında yan cepler vardır. Bunun için bir defa kan emince aylarca besin almadan yaşayabilir. Hermafrodittirler (Eşeysiz çoğalmazlar). Paraziter yaşama uygun olarak Parapodium veya setaeları yoktur, regenerasyon kabiliyetleri çok azdır, Trochophora larva dönemi Fam. Hirudinidae Hirudo medicinalis - Tıpta kullanılır. Boyu 15 cm. kadardır ve tatlısularda yaşar. Limnatis nilotica - 8-10 cm. boyda olup çeşme yalaklarında yaşar, memeli ve insana geçer. Burun ve ağız boşluklarına yapışarak kan emer. Phylum - ONYCHOPHORA Tropik bölgelerde yaygındırlar. Taşlar altında ağaç kovuklarında rastlanan geceleyin faal olan hayvanlardır. Vücut annelitlere benzer şekilde homonom segmenlidir. Ancak bu segmentler dış boğumlarla birbirlerinden ayrılmadıkları için dıştan görünmezler. Taşıdıkları üyeler segmentlerin yerini işaret eder. Ayrı bir baş bölgesi yoktur. Vücudun ön kısmında ventral olarak yerleşmiş ağız ve yanlarında papillalar bulunur (dorsalde anten gibi bir yapı). Dorsalde göz yer almıştır, ayaklar poliket parapodlarını andırır. Ancak yürümeye yaradığından homolog değildir. Ayrı eşeylidirler. Döllenme ve yumurtaların gelişmesinin bir kısmı vücut içindedir. Dolaşım açık olup kalp dorsaldedir. Kan kısmen hemocoel içinde dolaşır. Solunum püskül trakelerle olur. Boşaltım organı nefridiumlardır. Bu özellikleriyle arthropodlar ile annelitler arasında bir karakter gösterirler ve Arthropodaya geçişi oluştururlar. Fam. Peripatidae 63 Peripatus - Boyları 5 cm. olup geceleri faaldirler. Phylum - ARTHROPODA (Eklem bacaklılar) Karada, tatlı ve tuzlu sularda, havada yaşarlar. Ekvatordan kutuplara kadar geniş bir yayılış alanına sahiptirler. Arthropodlar, homonom segmentli olan annelidlerin aksine Heteronom segmentlidirler. Yani embriyo dönemlerinde muhtelif vücut bölgelerindeki segmentler değişik şekilde gelişerek bir takım bölgeler meydana getirmiştir. Bu bölgeler baş , toraks ve abdomen olmak üzere üç kısımdır. Arthropodlardaki simetri, annelidlerde olduğu gibi, bilateraldir. Hareket değişik sayıdaki segmentlerden yapılmış bacaklarla sağlanır. Kasları enine çizgilidir. Kontraksiyon süratli olduğundan, hareket de çabuk olur. Deri, kutikula ve Ca tuzlarının birikimi ile olağanüstü sertleşmiş ve bir dış iskelet meydana getirmiştir. Dış iskelet harekete engel olmamak için segmentler arasında kesintili olup yerini ince deri kıvrımlarına bırakır. Kaslara destek ödevini görür, zaman zaman atılır ve alttaki deriden yeniden meydana getirilir ki buna deri değiştirme denir. Böylelikle dış iskelet hayvanın büyümesine engel olmaz (her larva ergin hale gelinceye kadar belirli sayıda deri değiştirir. Bu sayı türe, sıcaklığa ve besine göre değişik olup 5-7 kadardır. Lahana kelebeğinde sıcaklığa göre 3-5, güvede ise besine göre 4-40 defa deri değiştirilir). Arthropodlarda her segmentte bir çift ekstremite yer alır. Ancak birçok grupta segmentler kaynaşmış olup dolayısıyla ekstremite sayısı segment sayısını belirler. Başta: Antenler, ağız ekstremiteleri ve gözler bulunur. Toraksta yer alan ekstremiteler hareketi sağlar ve çeşitli gruplarda yürüme, çoğalma, duygu organı, koşma gibi çok değişik görevleri görür. Sindirim borusu vücut boşluğunda serbest olarak uzanır. Dolaşım sistemleri açıktır. Kan kısmen damarlarda kısmen de vücut boşluklarında dolaşır. Boşaltım organları koksal bezler, maksil bezleri, anten bezleri veya böceklerde olduğu gibi malpiki boruları şeklindedir. 64 Solunum suda yaşayanlarda solungaç veya boru ve kitap şeklindeki trakelerle yapılır. Sinir sistemi beyin, yutak konnektifi ve karın ganglionlarından meydana gelmiştir. İp merdiven şeklindeki duyu organları iyi gelişmiştir. Antenler, basit ve bileşik gözler işitme organları ve denge organları bulunur. Ayrı eşeylidirler. Döllenme genellikle içte olur. Bazılarında partenogenez de görülür. Genel organizasyon ile Arthropodalar muhtemelen Annelidaya benzeyen vücudu segmentli kurt (larva) gibi bir atadan köken almışlardır. Bu köken canlıda, çok basit yapılı olan baş muhtemelen duyu kıllarını taşımaktaydı. Ağız ventral tarafta yerleşmiştir. Prostomiumun gelişmesindeki ilk basamak bir çift ventral üye yeni bacakların her vücut segmentinde meydana gelmesi ve hareketin buna ilavesidir. İkinci aşama da buna paralel biçimde başta duyu organları olan göz ve antenlerin gelişimidir. Phylum Oncopoda ve Onycophoranın yaşayan örnekleri bunu göstermektedir. Arthropoda evriminde üçüncü basamak bacakları oluşturan kısımların birbiriyle eklem oluşturacak biçimde bölümlere ayrılmasıdır. Bu gelişme birinci çift extremitelerin ağıza gıda atmaya veya almaya yarayacak şekilde gelişmesini dolayısı ile birinci vücut segmenti ile başın birleşmesini sağlamıştır. Trilobita’da anten ve gözler bu kademede iyi gelişmiştir. Bu kademeye yakın bir noktada Arthropodalar farklı iki dala ayrılır. Birinci grup Cheliserata yani örümceklerin bulunduğu grup diğeri ise (Insecta) böcekler Mryapodlar ve Crustaceae.leri içeren Mandibulata.dır. Günümüzde yaşayan eklembacaklılar iki altşubeye ayrılırlar. Antensiz olanlar keliser (cheliser) taşımaları nedeniyle Chelicerata altşubesine dahil olup bu grupta akrepler, örümcekler ve akarlar yer alır. Anten taşıyanlar ise, ağızın gerisinde yer alan ilk üye çiftinin mandibula olması nedeni ile Mandibulata altşubesi içerisinde incelenirler ve bu grup içerisinde böcekler, kabuklular, kırkayaklar ve çıyanların bulunduğu myriapoda grubu yer alır. 65 Zoologların çoğu böyle bir gruplandırmayı kabul etmektedir. Bununla birlikta bazı sistematikçiler Mandibulata altşubesi, birbirleri ile yakın akrabalıkları olmadıkları ileri sürülen grupları içerdiğinden yapay bir birlik oluşturmaktadırlar. Büyük bir olasılıkla Arthropoda evriminde, Mandibulata ve Chelicerata şeklinde iki daldan çok dört ana dal mevcuttur. Bu dallar; Trilobita (soyu tükenmiş), Chelicerata, Crustacea ve Uniramia altşubeleri ile temsil edilmektedir. Uniramia içerisinde kırkayaklar, çıyanlar ve böcekler yer alır. Diğer üç altşubenin üyeleri sucul olmasına karşın Uniramia karada evrimleşmiştir. Uniramia türleri mandibula ve bir çift anten taşırlar; Uniramia ismi bu hayvanların üyelerinin dallanmamış olduğuna ya da dallanmamış atasal bir üyeden köken aldığına işaret Bazı görüşlere göre, Uniramia üyelerinin ya da tüm altşubelerin farklı Annelida benzeri atadan köken aldığına ilişkin, karşılaştırmalı morfolojiden elde edilen bazı kanıtlar vardır. Eğer bu doğru ise, Arthropoda superphylumu (üstşube) olarak düşünülüp, Trilobita, Chelicerata, Crustacea ve Uniramia, şube (phylum) düzeyine yükseltilebilir. Arthropoda.nın polifiletik olduğu görüşünü bazı uzmanlar ve özellikle bir çok entomolog kabul etmemektedir. Arthropoda phylumunun sistematiği 1. Sub.phylum TRİLOBİTOMORPHA 2. Sub.phylum MANDİBULATA Class : Crustacea Sub.class : Entomostraca Sub.class : Malacostraca Grup Myriopoda Class Chilopoda Class Diplopoda Class Symphyta Class Pauropoda 66 Class Insecta 3. Sub.phylum CHELİCERATA Subphylum - TRİLOBİTOMORPHA (Fosil Formlar) Class - Trilobita Bütün arthropodlar içerisinde en ilkel gruptur. Hepsi denizlerde yaşamış olan bu grubun bugün yaşayan temsilcileri yoktur. Toraks segmentlerinde 1’er çift üye vardır. Son segment üyesiz telsondur. Başta 1 çift anten vardır. Sonra gelen 4 segmentin her biri segmentli üye taşır. Bu grupta vücut tipik olarak birisi dorsal, diğeri ventral, diğer ikisi de yanlarda olmak üzere 3 bölge halindedir ve bu bölgelerin herbiri lobus olarak adlandırılmıştır. Bu nedenle trilobit denmiştir. Subphylum - CHELİCERATA Vücut Cephalothorax (Baş ve toraks) ve abdomen olmak üzere iki kısımdan oluşmuştur. Cepholothorax’da 6 çift ekstremite bulunur. Bunlar : 1. çift Chelicer (ağızın ön tarafında) 2. çift Pedipalpus 3.- 6. çift Yürüme bacağı I. Class - Arachnida 1. Ordo - Scorpionida (Akrepler) Cephalothoraks 6 segmentlidir, abdomen iki kısım olup preabdomen 7, dar ve uzun olan post abdomen 6 segmentten oluşur. Abdomen Cephalothorakstan büyüktür, cephalothorax abdomene bütün genişliği ile bağlanır. Oldukça gelişmiş olan pedipalpusların dip tarafı geniş olup besinin ağıza alınmasına yardım eder. Pedipalpusun uçları kıskaçlıdır (örümcekten farkı) avlarını pedipalpleri ile avlar chelicerleri ile parçalayıp yerler. Chelicer ise küçük ve ucu makas şeklindedir (3 parçadan yapılmıştır). Postabdomenin son segmentindeki telson kısmında zehir iğnesi ile zehir bezi yer alır. Preabdomenin ventralinde 1. sternitin 67 ortasında genital kapak, genital delik ve 2. sternit üzerinde pectin adı verilen dokunma ve bulma organı olarak kabul edilen bir çift tarak bulunur. 3, 4, 5 ve 6. sternitte kitap trakelerine ait birer çift solunum deliği vardır. Akreplerde yürüme bacaklarında göze çarpan özellik ön bacakların diğerlerine göre küçük oluşudur. Cephalothoraks’ın ön orta kısmında 2 median göz ve yanlarda 2-5 tane nokta göz bulunur. Bileşik gözler daha iyi gelişmiştir. Ağız pedipalpler ile bacaklar arasındaki artrium içinde ve üst dudağın altındadır. Akreplerde yumurta dişinin vücudunda açılır ve yavru olarak dışarıya çıkar (doğuruyormuş gibi ancak uterus yoktur). Yavru sırtta taşınır ve bakılır. 700 türden 4 tanesi Türkiye’de vardır. Fam. Buthidae Buthus gibbosus - Batı, Orta ve Doğu Anadolu’da bulunur 6 cm. kadar boydadır. Androctanus crassicauda - Güney ve Güneydoğu Anadolu’da (Adıyaman) bulunur. Bizdeki akreplerin en büyüğüdür. Fam. Scorpionidae Pandinus imperator - Ülkemizde bulunmaz. Dünyanın en büyük akrebi olup Afrika’da yaşar 22 cm. kadar boydadır. Scorpio maurus fuscus - Kuzey Anadolu’da bulunur 6 cm. boydadır. 2. Ordo - Solpugida (Örümcek benzeri) Cepholothorax abdomenle tüm genişliği ile birleşir. Abdomen segmentlidir. Zehir bezleri yoktur. Hızla kaçarlar. Görünüşleri korkunçtur. Halk arasında büyü denir. 3. Ordo - Areneida (Örümcekler) Vücut, cephalothoraks ve abdomenden oluşur. Cephalothoraks ile abdomen dar bir bel (pedicel) bölgesi ile ayrılır. Abdominal bölgede segmentasyon kaybolmuştur. Yalnızca bir familyada segmentasyon görülür. Cephalothorax, karapaks denilen daha sert bir kitinle kaplıdır. Gözlerin sıralanışı sistematikte önemlidir. Bu kısımda 3-4 çift ocel göz 68 bulunur. Cheliserleri tipiktir. Geniş bir kaide kısmı ile kıvrık bir çengel kısmı vardır. Zehir bezinin salgısı bir kanal ile dışarı akıtılır (bu salgı sindirimde rol oynar). Pedipalpus kıskaçlı değildir ve kaide kısmı geniştir. Besin almada kullanılır. Erkekte uç kısım şişe şeklindedir. Kopulasyon sırasında spermleri alır ve dişiye nakleder. Dişide bu kısım çengel şeklindedir. Yürüme bacakları coxa, trochanter, femur, patella, tibia, metatarsus, tarsus segmentlerini içerir. Tarsus segmentinin apexinde çengel biçiminde dişler bulunur. 4. çift bacağın metatarsusu üzerinde 2 sıra halinde tarak şeklinde dikenler bulunur ki buna calamistrum denir. Yine bacakların tarsus kısmında bir çift çengel tarak şeklinde çıkıntılar yer alır. Bu yapılar ağlar üzerinde kolaylıkla yürümeyi sağlar. Örümcek bacaklarının çoğunda diken ve tüy bulunur ki bu sistematikte önemlidir. Abdomenin arka ucunda, anüs önünde 4-6 çift konik çıkıntı halinde görülür, son kısmında ağ papilleri yer alır. Koninin uç kısmında küçük deliklerden oluşmuş cribellum levhası yer alır. Ağı yapan sıvı buradan salınır. Opistosomada (abdomende) ventralde öne yakın bir kısımda eşey açıklığı ve bunun yan taraflarında da kitap trake şeklinde solunum organları yer alır. Boşaltım organları (Prosomada) Cephalothorax’ta yer alan 7 çift koksal bezleridir. Ayrı eşeylidir. Yırtıcı, dişi erkeği yer Fam. Aviculariidae- Büyük örümcekler Zehirli kuş ve memelilere dahi saldırırlar. Avicularia avicularia - Kuş örümceği. Fam. Theridiidae- Bütün dünyaya yayılmış vücut küre şeklinde bacaklar ince, zehirleri ölüme neden olur. Latradectus congulobatus- Boyu küçük petrol renginde karnının üstü kırmızı ayakların son parçası esmer kırmızı Akdeniz sahillerinde bizde de olabilir. Zehiri çok kuvvetli halk korkar. Latradectus lugubris, Güney Rusya Türkistan, İran ve Türkiye.de. Çok zehirlidir. At, deve ve sığırlarda ölüme sebep olur. Fam. Lycosidae Koşucu örümcekler, 69 Hognatarantula- boyu 3-3.5 cm. açık kirli kahve rengi kırmızı renkleri var. Halk arasında büyü denir. 4. Ordo- Acarina- (Kene ve uyuz böcekleri)- Toprak ve suda serbest bir kısım da sıcak kanlı hayvanların parazitidir. Cephalothorax ile abdomen birleşmiştir. Vücut segmenti hemen tamamen kaybolmuştur. Ağız yapıları delici ve emici tipte değişmiştir. Delici formlarda ve celiserler delme dikeni stilet şeklini almıştır. Pedipalpusların kaide parçası ve üst dudak bu kısım etrafını bir kılıf gibi sarar. Solunum püskül trakeler ile. Vücut ve bacaklarda kıllar bulunur. Boşaltım birkaç türde koksal bez. Genelde malpiki tüpleriyle yapılır. Bir kısmı basit bir kalp içerir. Diğerlerinde kalp yoktur. Kıl düzenim ve sayısı sistematikte önemlidir. Fam. Ixodidae- Sert kabuklu gerçek keneler Ixodes ricinus. Göz yok, pedipalp 3, 4 parçalı tokmak şeklinde hortum var. Evcil hayvan paraziti kan emer. Bacakların ucu çengelli ve tutunma alanı içerir. Fam. Argasidae- Yumuşak vücutlu keneler Argas   persicus tavuklarda evlerde çatılarda veya parazit hayvan yuvasında yaşarlar. Fam. Eriophyidae- Bitki özsuyu ile beslenen keneler. Eriophyes pini-sarı çamda düğüm şeklinde mazı oluşumuna sebep Fam. Phyllocoptidae- Uzun kurt şekilli yaprakların sararma ve dökülmelerine neden olur. Phyllocoptrata oleivorus (Turunçgil pas akarı)- Turunçgil meyvalarının kabuklarını tahrip eder. Kabuk kalınlaşır, meyvalar küçük kalır, suyu azalır, asit miktarı artar, dal ve yaprakların bazı hastalıklara hassasiyeti Fam. Tetranychidae- Birçok tür. Bitki .zsuyu emer. Tükrükle temasa geçen bitki hücrelerinde marazi gelişme ve büyümeler olur. Tetranychus ulmi- Avrupa kırmızı örümceği- Kışı yumurta halinde geçirir. Yaprakların renginin değişmesine ve vaktinden önce dökülmesine 70 neden olur. Mahsül azalır ve meyve kalitesi düşer. Elma, armut ve şeftali ağaçlarında görülür. Fam. Sarcoptidae (Acaridae)- Uyuz böcekleri mikroskobik hayvanlardır. Boşaltım organları küçülmüş kalp yoktur. Vücut tıknaz ince derili, ağız extremiteleri kısa bir emme konisi gelişir, Deri içinde veya üstünde yaşar. Sarcoptes scabiei- İnsanda, parlak kirli sarı yalnız dişisi insan epidermisi altında birkaç mm. ile 3-4 cm. arasında tüneller açar ve burada yumurtlar. Sarcoptes canis- Köpekte yatay tüneller açarak uyuz hastalığı Pseuroptes ovis- Koyunda Subphylum - MANDİBULATA Chelicerata’lardan farklı bu grupta anten, mandibul ve maxil vardır. Aynı zamanda bileşik göz ihtiva ederler. 1- Class - Crustacea- Sert kabukludurlar. Büyük bir kısmı denizlerde bir kısmı tatlısularda rutubetli bataklık yerlerde, az bir kısmı da acı sularda yaşar. Kaya, bitki veya hayvanlara yapışık olarak bulundukları gibi parazit olanları da vardır. Parazitlerin bir çoğu o kadar şekil değiştirmişlerdir ki erginlerinde sınıf karakterini görmek mümkün değildir. Bulundukları grup ancak biyolojk gelişmelerini takip etmekle anlaşılır çünkü biyolojik gelişmelerinde tipik ve ortak larva tipleri vardır. Vücut genel olarak baş (cephalo), göğüs (toraks) ve karın (abdomen) olmak üzere 3 kısma ayrılır. Baş birbiriyle kaynaşmış bir biçimde 5 segmentten meydana gelmiştir. Ancak bu segmentlere karşılık gelen ekstremiteler görülür. Bazen baş, toraksın 1. ve 2. segmenti ile veya tümü ile birleşmiş olabilir. Baş ile göğsün birleşmesi sonucunda cephalothorax meydana gelir. Başla toraks arasında bariz bir sınır yoktur. Başın arka kenarındaki dorsal deri katlanmasının geriye doğru uzaması sonucu oluşan, iki parçalı bir kabuk şeklinde carapax bütün vücudu içine alır. Bazen de vücudun bir kısmını örten dorsal bir kabuk şeklindedir. Değişik şekilli olan toraks (2-60) segment ihtiva eder. 71 Genellikle abdomen segmentleri dıştan görülebilecek şekilde belirgindir. Başta sırası ile 2 çift anten, 1 çift mandibula, 2 çift maksil yer alır Bu sınıfa özel bir karakter veren antenlerin 1. çifti 2. çiftten çok küçük, diğer üyelerin aksine bir kollu olup duyu almaçlarını içerir. 2. çift antenler yarık ayak biçiminde hareket eder ve yakalamayı sağlarlar. Antenlerden başka bu kısımda gözler vardır. Çoğunda bileşik gözler bir sap üzerinde olup özel kaslarla hareket ettirebilir. Başta bulunan 1 çift mandibula ile 2 çift maksilla ağız ekstremiteleridir. Besin almaya yararlar. Crustacea ekstremiteleri yarık ayak veya çatal ayak şeklindedir (Tipik olan ekstremitelerin kaide kısımları coxa ve precoxa’ dan ibaret olup bundan sonra 5 parçalı bir endopodit kısmı ile kama şekilli bir exopodit kısmı bulunur. Bu ekstremitelerin iç ve dış kollarında çeşitli şekilde uyartılar bulunabilir). Toraks ayakları (thorocopodlar) muhtelif grupların yaşayışına göre değişik biçimlidir. Yüzme ve besin toplamak gibi işlevleri yerine getirirler ve bunlar yarık ayak tipindedir. Bazı gruplarda abdomendeki ekstremiteler kaybolmuş bazılarında gelişmiştir. Bunlara pleopod denir ve yüzmeye, sıçramaya yararlar. Vücudun son kısmında üye olmayan telson denen bir çıkıntı vardır ve furka isimli 2 uzantı taşır. Birkaç parazit form hariç hepsi ayrı eşeylidir. Gelişmelerinde genel olarak metamorfoz görülür. Yumurtalardan nauplius (gelişme safhası) larvası çıkar. Bu larva, yumurta şeklinde 3 çift ekstremite alında ocel göz ve segmentsiz olan vücudu ile karakteristiktir. Bundan başka metanauplius, zoea ve mysis larva tipleri de görülür. Boşaltım organı 1 çift anten bezi ve 1 çift maxil bezidir. Gelişmiş Crustacea.lerde dolaşım sistemi sırttaki kalp dışında arter ve venaları da geliştirecek biçimde evrimleşmiştir. Solunum organı olarak abdomen bacakları üzerinde ve toraks bacakları bazalinde solungaçlar yer almış olup basit formlarda bu görevi deri almıştır. Ayrı eşeylidirler. 72 Sub. Class- Entomostraca- Segment sayısı çok değişik olup vücudun son kısmında çatal şeklinde uyartıları alan furca bulunur. Parazit formlar hariç, derileri fazla sertleşmemiştir. 1. Ordo- Phyllopoda- Fam. Branchipodidae- Uzun vücutludurlar. Carapax’ları yoktur. Abdomende ise ekstremite yoktur. Ucunda bölmesiz 2 furka bulunur. Branchipus schaefferi- Tatlısularda yaşar. Uzun ve hafifçe yanlardan basık bulunan vücutları 1 cm. boyundadır. 2. Ordo- Cladocera (Su Pireleri)- Vücut yanlardan basık ve 2 yan parçadan oluşmuş bir carapax ile örtülüdür. Baş bunun dışında kalır ve karın tarafına doğru yönelmiştir. Vücut az sayıda segmentli olup segment sınırları belirli değildir. Fam. Daphniidae- 7-8 mm. boyundadırlar. Balık yemi olarak önemlidir. Daphnia magna-, Bütün dünyada, küçük durgun göl, havuzlarda ve tatlısularda bulunur. Daphnia longispina - Ülkemizde Gölbaşı.nda tespit edilmiştir. Daphnia pulex- Bütün Avrupada 3. Ordo Copepoda - (Kürek Ayaklılar)- Sularda serbest yaşayanları olduğu gibi parazit olanları da vardır. Vücut yapıları yayılış tarzına göre değişmiş, bazıları Crustacea.den ziyade kurda benzer bu ancak gelişme safhalarından anlaşılır. Bunlarda carapax görülmez. Bunların birinci antenleri uzun ve kuvvetlidir. Erkeklerin l. çift antenlerinden biri (sağdaki) diğerine nazaran daha kuvvetlidir. Fam. Centropagidae, Tatlısu ve denizlerde yaşarlar. En az 24 segmentli antenleri iplik gibi uzundur. Diaptomus emiri - Emir gölünde dişiden 7 tek yumurta salkımı var. Fam. Cyclopidae (tepegöz) Çoğunluk tatlusuda yaşar. l. çift antenlerin her ikisi de erkek bireylerde dişiyi tutmaya yarar. Boyu thorax cephalo uzunluğunu geçmez. Dişide l çift yumurta salkımı bulunur. Cyclops stenur Çubuk barajı, Emir gölü.nde bulunur. 73 4. Ordo Cirripedia (Sülük ayaklılar) erginleri denizde yaşayan hayvanlar üzerinde yengeç, balina vs. veya taş, gemi, tekne iskele gibi yerlere kendilerini tespit ederler. Birinci anteni tutunma organı şeklinde olur. Bu kısım vantuz gibi genişlemiştir. Bazılarında tespit yeri bir safiha gibi genişler, bazılarında da bir sap gibi uzar. Vücutları 2 parçadan oluşmuş bir carapax ile tamamen örtülüdür. Bunun altında kalker plakaları bulunur. Yumurtadan nauplius larvası çıkar bir müddet sonra bu larva cypris larvasına dönüşür. l. anten bu dönemde iyi gelişmiştir. Bu dönemde deniz dibine çökerek kendini tesbit eder. Balanus- Genellikle vapurlara yapışırlar. Yenir. Sub.Class Malacostraca Cephalothorax ve abdomen olmak üzere 2 kısımdan meydana gelen vücut, sabit sayıda segmentten oluşur. (Gövde daima l4 segmentlidir yalnızca Lepostrakada da 15 segmentten yapılmıştır) Başta 5, toraksta 8, abdomende 6, nadiren 7 segment bulunur. Segmentlerin herbirinin dorsal kısmına tergum ventral kısmına sternum denir. Bunlar da yanlarda pleuron denilen kısımlarla birleşirler. Bazılarında cephalothorax segmentlerinde kalkan şeklinde bir karapax bulunur. Bütün extremitler ve abdomen karapaxın dışındadır. Abdomenlerinin son kısmı çoğunluk yassı bir telson ile sonlanır. Extremite ve ganglion ihtiva etmez. l çift büyük birleşik göz, alın gözü erginde yok. Bazen kollar çok dallı. Mandibulalarda çiğneyici kısımlar meydana gelmiştir. Toraksta 8 çift abdomende 6 çift ekstremite vardır. Toraks ayakları yarık ayak şeklindedir. ve yürümeyi sağlarlar. Abdomendekiler ve telson yüzmeyi sağlar. Solunum solungaç ile yapılır. Istakoz, karides gibi Crustacea.lerde sindirim sistemi çok iyi gelişmiştir. Squiilla- Akdenizde yaşar. Ordo-Decapoda (On ayaklılar) Crustacealer içinde en evrimli olan gruptur. Vücut baş ve thorax segmentlerinin oluşturduğu büyük bir cephalothorax ve abdomenden oluşmuştur. Cephalothorax’ın sırt tarafında büyük kalkan şeklindeki carapax vücuda yapışık yanlarda ve karına doğru sarkar. Baş carapax’ın altına çekilmiştir. Carapax rostrum denen öne doğru sivri bir uzantı meydana getirir. Vücut segmentleri veya kuyruk 74 yüzgeçleri yassı ve geniş bir alan oluşturup karına doğru kıvrıktır. Torakstaki ilk üç ekstremite besin sağlamak üzere maxilliped şeklinde değişikliğe uğramıştır. Birinci çift diğerlerinde büyük, ucu daima makaslıdır; 5 çift dış kollarını kaybederek bir kollu, yürüme bacağı haline dönüşmüştür. Bu grupta abdomen şekil ve büyüklüğü çok değişiklik gösterir. Bazılarında uropod ve telsondan meydana gelmiş bir kuyruk yüzgeci bulunur. Abdomende yüzmeye yarayan 5 çift pleopod vardır (karında bulunan birinci yüzgeç ayağı dişide çok küçülmüş veya kaybolmuştur. Erkekte ise protopodit ve endopodit kısımları kaynaşarak spermanın dişiye iletilmesini sağlarlar). Sinir sistemi gelişmiştir. Baş ganglionu ile ventral özofagusun altında 6 ganglionun kaynaşmasından meydana gelmiş subözöfegal ganglion bulunur. Karın ganglionları da kaynaşmıştır. l. antenlerinin kaide kısmında da ilk parçada denge organları statositler bulunur. Solunum larvalarda vücut yüzeyi, ergin de solungaçlarla yapılır. Boşaltım 2. antenlerin kaide kısmına açılan anten bezleri ile yapılır. Gelişimlerinde metamorfoz görülür. Zoea, metazoe larva safhaları ile çeşitli larva tipleri görülür. Sub.Ordo - Natantia Vücut hafifçe yanlardan basık, rostrum iyi gelişmiş toraks bacakları zayıf, abdomen bacakları ise iyi gelişmiş olup yüzücüdürler. Abdomen cephalothoraxtan uzun ve kuyruk yüzgeci içerir. Familya : Carididae Palaemon serratus (karides) yenir. Sub.Ordo - Reptantia Vücut sert karın yönünde yassıdır (Üstten basık). Rostrum küçük veya yoktur. Yürüme bacakları iyi gelişmiş ve ilk çiftinde makas gibi büyük kıskaç vardır ve hepsinden kalındır. Fam. Palinuridae (Zırhlı kabuklular) - Kutikula kalın olup zırh gibi vücudu sarar. Carapax üzerinde dikenler bulunur. Karın ayakları yüzme bacağı şeklinde ve zayıf dişilerde yumurta taşımaya yarar. Amacura - Vücut yuvarlak abdomen gelişmiştir. Carapax epistomla kaynaşmaz, rostrum gelişmiştir. Yürüme bacaklarının ilk üç çifti makaslı, birincisi çok kalındır. Fam. Nephropsidae 75 Homarus vulgaris (Astacus gammarus) - Istakoz. Koyu mavi renkli 30-45 cm. Yenir. Pişirince kızarır, yosunlu kayalık sahillerde bulunur. Fam. Potamobiidae Potamobius (Astaculus) fluviatilis - Tatlısu ıstakozu (yenir). Anumura - Abdomen iyi gelişmemiş ve yumuşak telson körelmiştir. Carapax epistomla kaynaşmaz. 3. yürüme bacağı makaslı değildir. Fam. Paguridae (Keşiş Istakozları) Abdomen yumuşak olduğundan diğer hayvanlar tarafından kolaylıkla yenir. Deniz salyangozlarının boş kabukları içerisine yerleşirler. Brachyura (Yengeçler)- Vücutları dorso-ventral yassılaşmış, kısa ve yassı olan abdomen cephalothorax’ın altına doğru kıvrılmıştır. Carapax epistomla kaynaşır. Kuyruk yüzgeçleri yoktur. Dişilerde abdomenin son segmenti yuvarlak, erkeklerde sivridir. Yürüme bacağının ilk çifti daima makaslıdır. 3. çiftte hiçbir zaman makas yok. Fam. Canciridae Cancer pagurus (pavurya) - Akdenizde 9-12 cm. yenir. Fam. Majiidae Maja- Deniz örümceği 12-18 cm. Bazı memleketlerde yenir. Fam. Potamonidae (tatlısu yengeci) - Cephalothorax enine oval biçimdedir, yüzme bacakları yoktur. Potamon fluviatilis - 5 cm. yenir. Göl ve nehir kenarlarında taş dibinde. Fam. Portunidae- (yengeç) İyi yüzücüdürler. Yürüme bacaklarının son kısımı levha şeklini almış yüzme bacağı haline gelmiştir. Portunus puber (Çalpara) - Karadenizde, tatlısularda bulunur. ORDO ISOPODA (Tesbih böcekleri), Boyları 1 mm. ile 25 cm. arasında değişir. Vücut dorso-ventral basıktır. Carapax hiçbir zaman tam olarak gelişmemiştir. Karada yaşayanlarda kitin tabakası çok sertleşmiştir. Baş toraksın birinci segmenti ile kaynaşmıştır. Toraks 7 veya 6 segmentlidir. Abdomen çok kısa ve segmentleri birbirine kaynaşmıştır. 76 Asellus   aquaticus - Tatlısuda bulunur. Boy l2 mm. kadardır. Kör kuyu mağara, derin göllerde yaşar. Oniscus   murarus (Asellus) (Duvar tesbih böceği)- 12 - 17 mm boyda kerpiç duvarlarda, mahsenlerde, serlerde, rutubetli depo, kiler, çürümekte olan bitki altında veya sağlam bitki üzerinde yaşarlar. ORDO-AMHIPODA - Dış görünüş olarak çok değişik şekilli olanları vardır. Çoğunda vücut yandan basıktır. 5- 20 mm büyüklüktedir. Baş toraks’ın 1 ve 2. segmenti ile kaynaşmıştır. Deniz ve tatlısularda yaşarlar. Ayrı eşeylidirler. Gelişmelerinde metamorfoz yoktur. Fam. Gammaridae Vücutları incedir. Suda karınlarının hareketiyle süratle yüzeler. Hızla akan acı ve tatlı sularda yaşarlar. Gammarus pulex - Boyu 12 -17 mm. Ülkemizde de tespit edilmiştir. MYRIAPODA’LAR Myriapodalar bir sınıf; Pauropoda, Symphyla, Diplopoda ve Chilopoda da ordo olarak ele alınıyordu. Sonra bu ordolar arasındaki benzerlik ve farklılıkların bir class seviyesinde olduğuna karar verildi. Biz de bu grupları class olarak inceleyeceğiz ancak bu classlara dahil olan hayvanların myriapodalar olarak ortak karakterleri şunlardır. Bu hayvanların hepsi karada yaşarlar. Vücutları baş ve gövde olmak üzere ikiye ayrılmıştır. Başta bir çift anten iki üç çift ağız ekstremiteleri ve değişik sayıda nokta göz bulunur. Myriapodlarda yavaş yavaş böcek başı gelişimi görülür, maksillalar kaynaşarak labiumu oluşturur. Solunum trake ile yapılır. Boşaltım organı malpiki borularıdır. Vücut değişik sayıda segment içerir. Her segmentte bir veya iki çift exremite bulunur. Myriapoda grubunu dört sınıfta inceleyeceğiz, Pauropoda, Symphyla, Diplopoda, Chilopoda. Class. Pauropoda - Genital açıklık (üçüncü segmenttedir) vücudun ön ucuna yakındır. Küçük boylu yuvarlak yassı şekildedirler. Antenleri farklı olarak iki kolludur. Ağız extremiteleri l çift mandibul ile l çift zayıf maxildir. Maxiller alt dudağı oluşturmak üzere kaynaşmıştır. Dolaşım 77 sistemi, gözleri ve trakeleri körelmiştir. Nemli yerlerde ormanlarda yaşarlar. Kutikula kitin içermez. Fam. Pauropodidae Pauropus huxlegi l-l,5 mm. dir. Rutubetli yerlerde yaşar. Class. Symphyla Genel olarak küçük boyludurlar (1-8 mm). Vücutları yumuşak ve pigment bulunmadığından beyazımsı, renksizdir. Genital açıklık üçüncü segmentte öndedir. Başta l çift ve bir kollu çok segmentli iplik şeklinde uzun anten bulunur. Bu grup Apterygotlara benzeyen bir sınıftır. Ağız l çift mandibula, l çift maxilla ve bir de ağız kapağı şeklinde labiumdan (2. maxil) ibarettir. Gövdeyi oluşturan segmentlerden birer çift ekstremite çıkar. Solunum organları püskül trakeler halindedir (Bu grup böceklere köken teşkil ettiği için önemlidir). Vücudun arka ucunda 2 büyük uzantı ve uçlarında ağ bezlerine ait kanallar açılır. Dünyanın her tarafında bulunur. Hareketlidirler. Işıktan kaçarlar. Scutigerella immaculata Class- Diplopoda (Kırk ayaklar) Çoğunluk uzun boyda ve silindirik yapılı hayvanlardır. Genital açıklık ön uçtadır. Deri fazla miktarda Ca2C03 içerdiğinden serttir. Tergit, sternit, pleura bölgeleri iyi gelişmiştir. 2,5 mm.den. 28 cm.’ye kadar olabilirler. Ağız parçaları l çift mandibula ile l çift 2. maxilla’dır. (l. maxilla bulunmaz). Başta l çift anten yer alır. Antenler çok kısa 8 parçalıdır. Genel olarak vücutları çok sayıda segmentten meydana gelmiştir. Bu segmentlerden ilk 4 çifti toraksı oluşturur (ilk defa) bu segmentlerden l. de ekstremite yoktur. Diğer 3’ünde l’er çift ekstremite vardır. Bacaklar karının orta çizgisine yakın yerinden çıkar. Abdomende 2 segmentin bir tek tergitle örtülmesi sonucu olarak her segmentten ikişer çift ekstremite çıkar gibi görülür. Bacakları genel olarak zayıf yapıdadır ve yanlarında büyük bir çengel ile bir de kıl gibi ince çengel bulunur. Sinir sistemleri büyük bir beyin ganglionu ile homonom metamerli karın ganglionları zincirinden ibarettir. Gözleri birçok ocel gözün biraraya 78 gelmesinden meydana gelmiş kümecik halindedir. Antenlerin üzerinde koku almaya yarayan çıkıntılar vardır. Sindirim sistemi çok basit olan bu grubun son barsağın başlangıcında bulunan malpiki boruları ekskrasyon (boşaltım) organı görevi yapar. Dolaşım sistemi iyi gelişmiştir. Solunum püskül trakelerle olur. Ayrı eşeylidirler. Fam. Julidae Vücut çok segmentlidir. Julus   terestris 30-70 segmentli geceleri faaldir. Dokununca helezon gibi kıvrılır. Class. Chilopoda (Çıyanlar) Vücut uzun dorso ventral basıktır. boyları 3 mm. ile 260 mm. arasında değişir. Baş gövdeden bariz olarak ayrıdır. Genital açıklık vücudun sonundadır. Başta basit yapıda çok sayıda segmentten ibaret l çift uzun kıl gibi anten, l çift mandibula ve 2 çift maxilla vardır. Gövde kısmında herbir segmentten l çift ekstremite çıkar. Birinci segmente ait ekstremite çifti şekil değiştirmiş olup bunun kaide kısmında yer alan zehir bezi kanalı sivrilmiş olan uç kısımdan dışarıya açılır. Sinir sistemi başta bulunan bir serebral ganglion ile ventralde homonom karın ganglion zincirinden ibarettir. Ayrıca böceklerdeki gibi bir visceral sinir sistemi de vardır. Sindirim sistemi basit; son barsağa ektodermik 2 malpiki borusu açılır. Ağıza 2 tükrük bezi açılır. Geceleyin faaldirler. Solunum boru trakelerle yapılır (böceklerdeki gibi). Diğer arthropodları avlayarak geçinirler. Ayrı eşeylidirler. Fam. Scolopendridae Gövde 25-27 segmentli, Bacaklar uzun olduğundan Áok hýzlý hareket ederler. Scolopendra   morsitans (çıyan) Ülkemizde tespit edilmiştir. Gündüzleri taşlar altına saklanır. S. cingulata 5-9 mm boyundadır. S.gigantea - 26 cm. Hindistan’da bulunur, zehiri insanı öldürür. Fam. Lithobiidae Vücut Scolopendridae’ye göre daha kısa ve segment sayısı az. Bacakları ise daha uzundur. Cins Lithobius- Ormanlarda bulunur. Fam. Scutigeridae Vücut kısa antenler kıl gibi ince. Bacaklar uzun ve vücudun arkasına doğru uzunlukları artar. 79 Scutigera   coleopterata Boy 16-24 mm. evlerde bulunur. Gece çıkar ve çok hızlı hareket eder. Phylum: MOLLUSCA (Yumuşakçalar) Bu phylum arthropod’lardan sonra en kalabalık grubu teşkil eder. Aşağı yukarı bugün 90.000 kadar yaşayan, 35.000 kadarda fosil türü Phylum üyelerinde vücut bilateral simetrili olup, baş, ayak ve iç organlar torbası olmak üzere üç bölge ayırt edilir. Ergin vücut yapısı diğer omurgasızlardan çok farklılık gösterir. Fakat ilkel mollusklarda görülen veliger larva tipi annelidlerin trochophor larvasına çok benzer. Bu mollusk ve annelidlerin ortak bir atadan geldiklerini düşündürmektedir. Ancak molluska, kendine özgü (amphineuralar dışında) segmentsiz bir vücut yapısı geliştirirken annelidler segmentli bir vücuda Başta ağız açıklığı cerebral ganglion ve göz bulunur. Karın bölgesinde geniş ve yassı kas dokusundan yapılmış bir ayak, ayağın üzerinde iç organlar kütlesi, bu kütleyi örten iki katlı bir deri olan manto ve mantonun üst yüzeyinde Ca2C03’ten oluşan kalkerli, sert bir kabuk yer almıştır, manto ile vücut boşluğu arasındaki kısım manto boşluğudur. Kabuk mantodaki salgı bezlerinin salgısıdır. Arthropodların dış örtülerine benzer olarak bu kabukta barınmayı sağlar, fakat hayvanın hareketini güçleştirir. Sindirim sistemi ağız, yutak, yemek borusu, mide, barsak ve anüsten meydana gelen tek bir tüpten ibarettir. Bu kısım bazen kıvrılmış olabilir. Yutak bir kas grubu yardımı ile hareket eden, tipik törpü şeklinde dili andıran bir yapıya (radula) sahiptir. Mollusklarda sadece bivalvlerde radula bulunmaz. Bunlar deniz suyunu süzerek besinlerini sağlayan hayvanlardır. Mollusklar da hem gerçek bir coelom, hem de dolaşım sistemi görülür. Coelom boşluğu, kalp, gonad ve boşaltım organı ile temas halindedir. 80 Dolaşım sistemleri açıktır. Ancak Cephalopoda sınıfının bütün üyelerinde kapalı dolaşım sistemi görülür. Çok gelişmiş olan kalp bir karıncık ve 2 kulakçıktan oluşmuştur. Kalp bazılarında bir bazılarında ise iki atriumlu olabilir. Kalp, omurgalı hayvanlarda olduğu gibi pericard ile çevrilmiştir. Kulakçıklar kanı toplardamarlardan alır, karıncığa pompalar. Kuvvetli kaslı karıncık atar damarlarla vücuda sevk eder. Boşaltım organı Annelidlerde olduğu gibi, bir çift olan ve kirpikli huni ile başlayan hakiki nefridiumdur. Kirpikli huninin bir ucu perikardial boşluğa, diğer ucu da manto boşluğuna açılır. Bu durumda perikard boşluğu coeloma karşılıktır. Cephalopodada nefridiumlar böbrek keselerini oluşturmuşlardır. Nefridiumlar boşaltım maddelerini manto boşluğu vasıtasıyla dışarı atarlar. Manto boşluğundaki solungaca ktenidium denir. Solunum genellikle solungaçlarla, ilkel formlarda hava teması ile gerçekleşir, ara formlarda akciğer gelişimi görülür. Sinir sistemi belirli sayıda çift ganglionlardan meydana gelmiştir. Tipik olarak üç çift ganglion bulunur: l- Serebral ganglionlar (beyin ganglionu), 2- Pedal ganglionlar (ayak gangalionu), 3 Vücudun arkasındaki Visceral ganglionlar (iç organlar torbası ganglionu). Birçok molluskda ayrıca bir çift 4. Pallial ganglion (manto ganglionu) bulunur. Bu ganglionlar sinir şeritleri vasıtası ile birbirine bağlıdır. Bütün yumuşakçalarda deri altında bu ganglionların oluşturduğu sinir ağı bulunur. Sinir ağına özellikle ayakta, mantoda ve cephalopodların tentaküllerinde rastlanır. l- Class Amphineura - Chiton ve bunların arkabaları ile temsil (tümü fosil) edilen bu grupta vücut elips şeklinde olup küçük ve kabuklu hayvanlardır. Chiton: Classa örnek teşkil eden bu hayvanın konveks olan dorsal yüzeyinde kiremit sırası gibi birbiri üzerine binmiş 8 adet Ca2C03 plakası bulunur. Bu plakalar yalnız yanlarından mantoya bağlı, manto ile ayak arasında pallial boşluk bulunur. Molluskların ekonomik önemi olan başlıca sınıfları şunlardır: l- Lamellibranchiata (Peleciopoda), 2- Gastropoda, 3- Cephalopoda (Cephalopodlar). 81 Class I- Lamellibranchiata (Bivalvia) (Midyeler) Balta ayaklılar Suda yaşarlar. Bilateral simetrilidirler. Kabuk ve manto sağ ve sol olmak üzere ikiye ayrılmış ve bu iki parça yer yer birleştiğinden 2-3 aralık kalmıştır. Bu aralıklar kullanılmış suyu dışarı atmaya ve solunum suyunu almaya yararlar ve bazen manto kenarları buradan sifon biçiminde dışarı çıkan birer yapı oluşturmuştur. Bu yapı suyun giriş çıkışını düzenler. Kabuk karın tarafından açılır. Dorsalden elastiki bir ligamentle bağlıdır, baş tamamen kaybolmuştur. Göz çoğunda yoktur. Ayak bazı türlerde körelmiş olabilir, varsa kuvvetli kaslardan yapılmış olup distal kısmı hayvanın ön ucundan dışarı çıkar ve hareketi sağlar. Ligamentin iki yanında her bir kabuk birer umbo içerir, bunun altında kabuk kenarına paralel büyüme çizgileri yer almıştır. Kalp hayvanın sırtında pericardium (coelom boşluğu) içindedir. 2 atriyum 1 ventriculus, yani 2 kulakçık, 1 karıncık içerir. Ventriculustan aorta çıkar ve aorta arterlere, daha küçük arterlere ve onlar da daha küçük kılcaldamarlara ayrılır. Arterler manto, sindirim sistemi ve ayak gibi organlara gider. Ayrıca venalar (toplar damarlar) da gelişmiştir, (böbrek venaları gibi). Kan, venalardan kulakçıklara oradan pompalanarak, karıncığa oradan da aort’lara (ön ve arka) oradan da vücuda dağılır. Kan sıvısı hemoglobin ve hemosiyanin içerir. Boşaltım organı nefridiumlardır. Yüksek formlarda böbrek oluşumu görülür. Ön uçta ağız bulunur. Midenin altında ayağın üst tarafında karaciğer yer almış olup salgısını mideye gönderir. Barsak çok kıvrım yapar ve yukarı dönerek perikardial boşluktan (coelom boşluğu) bazen karıncıktan geçer. Bazı türlerde manto kenarında dokunma ve ışığa duyarlı benekler vardır. Ayakta pedal ganglionun yanında statocyst denen denge organı vardır. İçindeki kum granülleri hayvanın hareketi doğrultusunda yer değiştirir. Sinir uçları uyarılarak mesajlar beyine gider. Kabuk parçaları sırt tarafta elastiki bir şerit (ligament) vasıtasıyla birbirine bağlanmıştır. Çoğunda ligamente ilave olarak kabuk parçalarının ön kenarlarında dişler bulunur. Bu dişler karşı parçada kendilerine karşılık gelen çukurluklara girerek bir çeşit menteşe oluştururlar. Dişlerin yapısı ve büyüklüğü eşit (homodont) 82 veya değişik (heterodont) olabilir. Her kabukta birbirinden diğerine uzanan ve kabukların kapanmasını sağlayan anterior ve posterior adduktor kasları vardır. Ayrıca anterior ve posterior retraktor kasları ile bir de sadece anteriorda yer alan protraktor kas bulunur. Bunlar ayağın hareketini kontrol ederler. Midye kabuğunun en içteki kalsiyum karbonattan yapılmış sedef tabakası, epitel hücreleri tarafından ince tabakalar halinde salgılanır. Eğer kabukla manto epiteli arasına bir madde girerse epitel hücre, yabancı madde etrafında merkezileşen Ca2CO3 tabakaları salgılamak üzere uyarılır. İnci bu yolla oluşur. Deniz ve acı su midyelerinde embriyonal gelişmeden sonra serbest yüzen silli veliger larvası vardır ki annelitlerin trochophora larvasına benzer. Burdan dibe inerek ergin midyeye erginleşir. Döllenme suda olur. Tatlısu midyelerinde ise parazit yaşayan glochidium larvası vardır. I. ORDO Protobranchiata Midyelerin en ilkel grubudur. Arka yan tarafta çift sıralı tarak şeklinde iki solungaca sahiptirler. Her ktenidium ayakla manto arasında uzanan yatay bir eksen ve iki sıra flamentten oluşur. İlkel midye flamentleri kısa ve yassı üçgenler şeklinde diğerleri iplik şeklindeki flamentler kıvrılarak serbest ucu uzayıp dış taraftan yukarı uzayarak U şeklini alır. Cins Nucula (Fındık midyesi)- Midyelerin en küçüğüdür. 4 mm. Kabuk yuvarlak ve üçgen şeklindedir. Avrupa denizlerinde yaşar. Cins Arca Kabuk parçalarının yüzeyi ışın şeklinde kaburgalı Arca noae (Nuhun gemisi midyesi) - 8-10 cm. Taxodont menteşeli (eşit yapılı birçok küçük diş). II. ORDO - Heterodonta Midyelerin çoğu bu ordodandır. Heteredont menteşeli ve [solungaçları çift yaprak şeklinde olup solungaç flamentleri enine köprülerle birbirine bağlıdır (kabuk çevresi eşit olmayan az sayıda dişi içermektedir). ] Adduktor kaslar (kapama) eşit büyüklükte ve iki tane. Fam. Unionidae - Nehir ve göl midyeleri kabuk parçaları uzunca ve eşittir. Dış yüzey esmer yeşil renkte iç yüzey sedeflidir (Menteşe az dişli veya dişsiz olur). 83 Cins - Unio - Kabuk kalın ön kısmı kısa arka kısmı çok uzundur. Margaritana margatirifera (Nehir inci midyesi) -Dağlardaki derelerde bulunur. 10 cm. İncisi makbul değil. Cins - Anodonta (Göl midyesi) Kabuklar çok ince ve geniş olup tipik tatlısu midyesidir, Menteşe dişsiz. Tüm dünyada yaygındır. Fam. Cardiidae Cins - Cardium (kalp midyesi)- Kabuk kalp şeklinde üzerinde ışınsal olarak sıralanmış çizgiler var. Bunlara kaburga denir (4-5 cm. kabuk dişli). Fam. Tridognidae Tridagna gigans (dev midye)- Boy 2 m. Ağırlık 250 kg. 10 kg. kadar da eti vardır, yenir. Hint okyanusunda yaşar. Kabukları çamaşır teknesi olarak kullanılır. III ORDO - Anisomyaria - Adduktorlar ya farklı büyüklükte veya bir tanesi hiç bulunmaz genellikle menteşede diş yoktur. Solunum solungaçları yaprak şeklindedir. Ekonomik önemi olan midyeler, denizlerde bulunurlar ve çoğunlukla sifonlarını su içine uzatarak kum ve çamura gömülü yaşarlar. Fam. Aviculidae - Kabuk parçaları eşit değildir, menteşe kenarları dişsiz veya zayıf dişli olup kanat biçiminde uzantılardan oluşmuştur. Cins Avicula (Kuş midyesi) Sol kabuk parçası sağdan daha kubbeli boyu 8 cm. dir. Meleagrina margaritifera (İnci midyesi) - Uzunluk 15-30 cm. şark incisi denilen kıymetli incileri meydana getirir ve kabuklarından da sedef elde edilir. Hint Okyanusunda yaşar. Fam. Ostreidae - Kabuk parçaları eşit değildir. Menteşe zayıf ve dişsiz olur. Daha büyük ve kubbeli olan sol kabuk parçası yere yapışır. Sağ parça bir kapak gibi onu örter. Ostrea edulis (İstiridye) - Kabuk büyüklüğü 8-l0 cm. kadardır. Kayalık yerlerde bulunur. Salgı ile kendilerini kayalara veya kabuklara yapıştırır. Fam. Mytilidae Kabuk parçaları eşit, menteşe yok. Ligament iç tarafta yer alır. 84 Cins- Mytilus (Deniz midyesi yenen) - Kabuk parçaları eşit, uzun arka tarafı yuvarlak üçgen şeklinde hemen bütün denizlerde bulunur. Menteşe yok. Ayakları küçülmüş olup salgısı ile kenetlenmiş sert zemine tespit Class : 2 - Gastropoda : Salyangozlar Karada yaşayan tek Mollusca sınıfıdır. Tatlısu ve denizlerde de bulunur. Tek bir dorsal kabuk var (İnsan besini) . Veliger larvasında ağız önde anüs arkadadır. İç organlar torbası embriyolojik gelişme esnasında 180 derecelik (torsiyon olayı) bir dönme yapar. Vücudun her iki tarafının eşit büyümemesinden dolayı bir tarafın, genellikle de sol tarafın daha fazla büyümesi ile torsiyon ortaya çıkar. Bu nedenle önce arkada bulunan kalp ve anüs ağzın üzerinde yer alır ve solungaçlar da ön tarafa gelmiş olur. Soldaki organlar gelişemez kaybolur. Sağdakiler sola geçer. Torsiyondan sonra vücut büyük ölçüde asimetrik bir yapı kazanır. Kabuk, torsiyon olayından bağımsız olarak bir düzlemde rulo gibi kıvrılır. Opisthobranciata.da ve diğer bazı gruplarda olduğu gibi torsiyona ilave olarak detorsiyon yani geri torsiyon görülür. Bu olayda vücut yine simetrisiz kalır; fakat önceden öne gelmiş organlar yana kayar. Torsiyon olayında, manto boşluğu öne kaydığından, tehlike anında hayvanın başını saklayabileceği bir odacık şekillenmiş olur ve hayvan bu odacığın ağzını gerektiğinde ayağı ile kapatarak korunur. Ayrıca buharlaşma ile su yitirilmesini önler. Detorsiyon ile, manto boşluğu vücudun yan tarafına kaydırılarak sindirim kanalı ile atılan atıkların solunum suyuna karışması engellenmiştir ve detorsiyon, büyük bir olasılıkla bununla ilgili geliştirilmiş bir uyumdur. Kuvvetli kaslardan yapılmış geniş bir ayak (çoğunlukla mukus salan hücrelerle kaplı ve ventral taraftan dışarı açılan bir bez içerir) ile sürünerek ve ayak yüzgeç gibi kullanılarak hareket sağlanır. Karada yaşayan ve karadan tatlısuya geçen Gastropodlarda solungaç küçülmüş, buna karşılık manto boşluğu solunum organı olarak gelişmiştir, ayrıca bazı gruplarda akciğer görür. Mantonun içi kılcal damarı ağ gibi örülmüş hava solunum deliğinden girer ve geri çıkar. Genellikle iç döllenme görülür. Bir kısım gastropodlar hermafrodittirler. 85 Genital delik sağ göz tentakülünün dibine yakın bir yerden dışarı açılır. Bu grupta iyi gelişmiş bir baş bulunur. Başın dorsalinde 1-2 çift tentakül ve 1 çift göz yer alır. Göz, ya tentakül dibindeki kabartının veya geriden çıkan özel tentakülün ucunda olabilir. Ağız içinde bir dili andıran radula, bunun üzerinde birkaç sıra halinde dizilmiş kitin dişler yer alır. Gastropodların ataları muhtemelen bilateral simetriliydiler. Fakat torsiyon sonucu sindirim, kalp, anüs, solungaç, boşaltım, sinir sisteminin bir kısmı bugün kaybolmuştur. Dişlerin uçları arkaya dönüktür. Aşındıkça alttan yenileri çıkar. Hem herbivor, hem karnivor olanları vardır (Dişlerin durumuna göre). Gastropodlarda veliger larva tipi görülür. I ORDO - Prosobranchia - En ilkel gruptur. Solungaçlar öndedir. Başta 1 çift tentakül bulunur ve gözler bunların dibinde yer alır. Genellikle denizde yaşarlar. Torsiyon vardır ve visceral konnektif buna bağlı olarak 8 şeklindedir. Bu sebeple manto ön tarafa gelmiş ve içinde bir ktenidium olup kalbin önünde yer alır. Çoğu denizde bir kısmı da tatlı ve acı sularda yaşarlar. Kabuk büyük ve kalındır. Fam. Patellidae - Cins - Patella (Çanak salyangozu) - Kabuğu çanak şeklindedir, Avrupa denizlerinde yaşar. Fam. Cypraeidae - Kabuk yumurta şeklinde iki taraftan kıvrık. Operkulum Cins - Cypraea (Porselen salyangozu) - Kabuğun üzeri parlak bir tabaka ile kaplıdır. Fam. Muricidae (Dikenli salyangoz) - Kabuk ağzının ön ucu kısa veya uzun olabilen düz bir kanal şeklinde uzamıştır. Tropik denizlerde, yırtıcı salyangozlardır. Cins - Murex -Kabuk üzerinde en az 3 sıra diken veya kabartı bulunur. II ORDO - Opisthobranchia - 86 İç organlarda az veya çok geri torsiyon (detorsiyon) görülür. Solungaçlar arkada yandadır. Başta 2 çift tentakül vardır. Gözler art tentakül dibindedir. Kabuk küçük veya hiç yoktur. Fam. Limacinidae - Cins - Limacina - Denizde yaşar. Balinaların besinini oluşturur. Sürüler halinde dolaşır. III ORDO Pulmonata - Akciğerli anlamına gelir. Kara salyangozlarında tekrar suya dönünce akciğer oluşmuştur. Düzenli aralıklarla hava için yukarı çıkarlar. Başta 1- 2 çift tentakül vardır. Ktenidium bulunmaz manto boşluğu fazla damarlı tavanı ile akciğere dönüşmüştür, manto açıklığı ise solunum deliği görevini görür. Hepsi hermofrodit. Larva evresi görülmez. Yumurta doğrudan doğruya gelişir. Genellikle karada, az bir kısmı suda yaşarlar. I - Sub.Ordo - Basommatophora - Bir çift tentakül bulunur. Gözler bunların dibindedir. Birkaçı denizde, çoğu tatlısuda yaşarlar. Fam. Limneidae - Kabuk ince, ağzı keskin kenarlı, tatlısularda yaşarlar. Cins - Limnaea - Kabuk koni şeklinde tepesi sivri, kabuk ağzı geniş ve oval biçimdedir. II - Sub.Ordo - Stylommatophora - İki çift tentakül bulunur. Gözler arka tentakülün ucunda yer alır. Karada yaşarlar. Fam. Helicidae - Kabuklu salyangozlar. Cins - Helix - Kabuk bütün vücudu içine alacak büyüklükte ve yüksekliği ile genişliği hemen hemen aynıdır. Kışın kabuk ağzı kapatılır. En çok tür içeren cinstir. Helix   pomata - Bağ-bahçe salyangozu, Avrupa kara salyangozu en büyüğüdür. Fam. Limacidae - Bütün türleri çıplaktır. Kabuk küçük plakalar şeklinde içte yer alır. Cins - Limax - Bahçe sümüklüböceği 87 Limax   agrestis - Üreme yeteneği fazla olan bir gruptur. Taze filizleri yiyerek zarar verir. III - Class - Cephalopoda Molluskların en yüksek organizasyonlu grubudur. Genel olarak ağız etrafındaki kollarla 1/2 m. olurlar. 5-10 cm. ve 17 m. olanlar da vardır. Bu durumda ağırlık birkaç tonu bulur. Bilateral simetrilidirler. Vücut baş ve iç organlar kitlesi olmak üzere iki bölgeye ayrılır. Büyük olan baş üzerinde çok iyi gelişmiş bir çift göz bulunur. Gözler ilkel gruplarda merceksiz, gelişmiş olanlarda merceklidir. Ayak bölgesi bu grupta büyük bir kısmı önde ağızın etrafını çeviren kollara dönüşmüş, geri kalan kısmı da manto önünde vücut çeperine yapışan huni şeklini almıştır. Ayrıca bir ayak bölgesi yoktur. Derin deniz formlarında ışık verme kabiliyeti vardır. Ağız başın tepesinde etrafı halka biçiminde bir kıvrımla (dudak) çevrilidir. Ganglionlar yutak etrafında bir ganglionlar kitlesi oluşturmuş, buccal, cerebral, pedal ve visceral ganglionlar gelişmiştir. Boşaltım organı nefridium ve böbrek keseleridir. Manto boşluğu muhtemelen ortadan boğumlanarak önde pericard boşluğu, arkada gonad Coelomunu oluşturmuş, içinde ovaryum ve testisler bulunur. Manto boşluğunda, solungaçlar, böbrek, genital delik ve anüs yer alır. Mürekkep balıklarında kıkırdaktan oluşan bir iç iskelet bulunur. Ayrıca bu grupta mürekkep kesesi vardır. Kese anüsün yanına açılır. Tehlike anında buradan manto boşluğuna siyah bir sıvı salınır, oradan sifonla dışarı püskürtülür ve hayvan kendini düşmana karşı saklar. Mürekkep seyreltilmiş melanin pigmentidir. Bugün yaşayan türlerin çoğunda kabuk kaybolmuş veya körelmiştir. Ayrı eşeylidirler. Döllenme vücut içinde olur. Kapsadıkları solungaç sayısına göre 2 gruba ayrılırlar. Ordo - Tetrabrahchiata - İki çift solungaç bulunur. İki nefridium vardır. Başta zayıf vantuzsuz 38 kol vardır. Bunlar kılıf içine çekilebilir. Çok odacıklı ve Ca2CO3’dan oluşan ve helezon şeklinde kıvrık kabukları vardır. Hayvan büyüdükçe en son meydana gelen en büyük odacığa çekilir. Bugün bu gruptan yalnız bir cins yaşamaktadır. Diğerleri fosil 88 formlardır. Göz merceksizdir. Göz basit bir boşluk olup içi ektodermik retina tabakasıyla kaplıdır ve küçük bir delikle dışa açılır. Fam. Nautilidae Cins- Nautilus - Hint Okyanusu ve Büyük Okyanusta yaşar. Dorsalde manto tarafından salgılanan iyi gelişmiş bir dış kabuk vardır. Ordo - Dibranchiata - Bir çift solungaç bulunur, bir çift nefridium vardır. Ağzın etrafında 8 veya 10 kol bulunur. 1.Sub. Ordo - Decapoda - İkisi ayrı tipte, 10 kol bulunur. Vücut çıplak, kabuk rudimenter (kalıntı) haldedir. On koldan uzun olan iki tanesine tentakül adı verilir. Uç kısımlarında vantuzları bulunur. Vücut uzun ve yanları yüzgeçlidir. Gözler gelişmiş merceklidir. Tehlike anında kullandığı mürekkep kesesi vardır. Fam. Loliginidae - Vücut oldukça uzun ve koni şeklinde, yüzgeçler büyüktür ve vücudun alt ucuna yakındır. Tentaküller geri çekilmez. İç kabuk kitinlidir. Loligo vulgaris - (kalamar) Yenen bir türdür Akdenizde ve Atlas okyanusunda bulunur. 45-60 cm boyundadır. Fam. Sepiidae - Vücut oval şekilli yan yüzgeçler uzun olur. İç kabuk kalkerlidir. Tentaküller geri çekilebilir. Sepia   officinalis - (Mürekkep balığı) Yüzgeçler gövde boyunca devam eder. Vücut uzunluğu 20-30 cm. 2.Sub.Ordo - Octopoda - Ahtopotlar. 8 kolu vardır. Tentaküller bulunmaz. Vantuzları sapsızdır. Vücut kısa ve yuvarlaktır. Fam. Octopodidae - Kollar büyük ve dip kısımda kısa bir zarla birbirine bağlı. Octopus vulgaris - Ahtopot, kolları üzerinde iki sıralı vantuzlar yer alır. PHYLUM : ECHİNODERMATA (Derisi Dikenliler) Larvaları bilateral, erginleri ise radial simetrili olan hayvanlardır. Vücut eksenden geçen düzlemlere göre beş kısma ayrılır. Genelde beş ışınlı veya küre şeklindedir. Gösterdikleri çok değişik karakterler nedeniyle sistematik yerleri oldukça şüphelidir. Vücut örtüsü genelde silli bir 89 epiteldir. Bunun altında mezodermal bağ doku kökenli dermal plakalardan oluşmuş bir kabuk yani iç iskelet bulunur. Bu mezenşim hücrelerden meydana gelen mezodermik deri iskeletinin oluşturduğu kalker cisimcikler ya dağınık ya kaslar ile bağlı ya da kaynaşarak kabuk oluşturur. Bazen yüzeye hareketli ve hareketsiz dikenler çıkar. Bunların modifiye olması ile pediseller oluşur (savunma organıdır, ambulakral ayakları korur) Dorsal yüzeyi büyük ve sabit dikenler ile örtülüdür. İskelet uzun dikenli Ca2CO3 tan oluşmuş eksoiskelet, dermal kalker plakalar endoiskeletten oluşur. Ca2CO3 tan yapılan dermal plakalar kaslarla ve konnektif doku ile bağlıdır ve bu da eksoiskelete hareket ve esneklik kazandırır. Sölom, yani vücut boşluğu üç ayrı boşluk sistemi halindedir. 1- Organların yer aldığı perivisceral sistem: Bu boşluk silli bir epitelle çevrilmiş olup hayvanın içerisinde içi hücreli bir sıvı ile dolu geniş bir alan oluşturur. 2- Perihemal sistem: Ağzın etrafında bir halka kanal ile buradan ayrılan beş radial kanal ve ayrıca uca doğru uzanan bir aksial kanaldan oluşmuştur. (oral halka kanal) Kan damarı sistemi gibi görülen ambulakral kanal sisteminin altında muhtemelen ambulakral ayaklara ve gonatlara besin taşıyan kesin işlevi henüz bilinmeyen, aboral bölgede bir halka kanal gelişmiş olabilir. 3-Ambulakral kanal sistemi: Aboral kısımda yeralır . Ağız ventralde yani oral tarafta; anüs ise dorsalde yani aboral tarafta olup arada sindirim borusu yer alır. Baş ve beyin yoktur. Hareket, su basıncına dayanan su-damarı (Ambulakral damar sistemi) sistemi ile yapılır. Ambulakral kanal sistemi ağız etrafında bir halka kanal ve bundan ayrılan beş radial kanal ile bu kanallardan çıkan küçük lateral kanallardan oluşur; lateral kanallar tüp biçimli deri uzantısı olan ambulakral ayakların içine açılır. Burada genellikle kontraktil bir ampul bulunur. Ambulakral kanal sistemi, halka kanaldan ayrılan medrapor kanalı (taş kanal) ile dışarıya bağlanır. Sistemin görevi hareket ve yer değiştirmeyi sağlamaktır. Ampul içindeki su, kontraksiyon ile ayağa itilir, ayak uzar ve yapıştığı 90 yerden çözülür; ayak çeperinin kontraksiyonu ile de su ampule geri döner. İçte basınç oluşur ayak ucundaki vantuz yere yapışır; vücut o yöne çekilir. Solunum dışa doğru deri çıkıntılarından oluşan çok sayıda dermal solungaçlar ve ambulakral ayaklar ile sağlanır. Dış ortamdaki su ve iç ortamdaki sölom sıvısı arasındaki gaz alışverişi bu dermal solungaçlar, ambulakral ayaklar ve vücut içine doğru yönelmiş deri çöküntüleri ile gerçekleşir. Gerçek bir dolaşım sistemi yoktur. Ağız çevresinde halka biçimli bir kanal ve ayrılan radyer kollar (Asterias). Kan, renksiz lenf yapısındadır ve amobosit hücreler içerir. Sillerin hareketi sölom sıvısının hareketini sağlar. Duygu organları iyi gelişmemiştir ancak deri epiteli hassastır. Ayrı eşeylidirler. Genital stolon ve gonatlar genital sistemi oluşturur. Sperm kesesi ve yardımcı bezler yoktur. Gonatlar, örneğin deniz yıldızında, kolların her iki tarafında birer tane, yani beş çift salkımdan oluşur. Eşey hücreleri aboral kutuptan kol bazaline yakın bir yerden küçük kanallar ile dışarı atılır. Döllenme suda olur. Zigot bipinnaria denen bilateral larva safhasını verir. Silli epitel ile örtülü bu larva Mollusk ve Annelidlerdeki trochophoraya ve de ilkel konlat larvasına benzer. Sinir sistemi ağız üzerindeki bir sinir halkası ve beş radial koldan ibarettir. Beyin yoktur. Epitel doku altındaki sinir hücresi ve liflerden oluşan ağlar halindedir. Sölom hücresi ile göçmen hücreler boşaltımı yapar. I- Class: Asteroidea (Deniz yıldızları) Genellikle 5 kolludurlar; daha fazla kollu da (40 kola kadar) olabilirler. Tüp ayaklar kolların altında bir oluk içinde bulunur. İstiridye ve deniz tarağının en büyük düşmanıdır. Büyük regenereasyon kabiliyeti vardır. Fam. Astropectinidae Astropecten auranticus 5 halkalı Fam. Asterinidae Cins. Asterina spp. Kolların kısalığı yüzünden vücut 5 köşeli görülür. Fam. Asteridae Kollar uzun sayıları 5-12 olur. 91 Cins. Asterias Deniz yıldızı II.Class: Echinoidea (Deniz kestaneleri) Bu sınıfta kol yoktur. Kabuk üzerinde bulunan pedisel ayaklar bütün vücutta dikenler arasındadır. Þekilleri basık yarım küreyi andırır. İskeletine testa adı verilir. Sindirim kanalının ön kısmında Aristo feneri denilen kalkerli dişli bir yapı bulunur. 1. Ordo: Regularia - Vücut az çok küre şeklindedir. Fam. Echinidae Cins. Echinus 2. Ordo: Clypeasteroidae - Disk şeklindedirler. Kabuk çok basık olur. Ağız düz veya konkav olan oval kısımda, anüs ayrı tarafta kenara yakın Fam. Clypeastridae Cins. Clypeaster 3: Ordo: Spatongoidae - Kalp şeklindedirler ve ağız tam ortada yer almaz. Anüs iki yüzeyin sınırında veya sınıra yakın yerde bulunur. Fam. Spatangidae Cins. Spatangus III: Class: Ophiuroidea (Yılan yıldızları) Yılana benzer kollar bulunur, bu hayvanlar kollarını yılan gibi oynatarak hareket ederler. İnce uzun gevrek yapılı bu kollar vücuttan belirli bir şekilde ayırtedilir. Harekette tüp ayaklar kullanılmaz. Tehlikede kollarının birisini bırakıp kaçarlar. Fam. Ophiolepididae Cins: Ophiura (Yılan yıldızı) IV: Class: Holothurioidea (Deniz hıyarları) 92 Bu sınıf diğer sınıflardan dikensiz uzun ve kaslı bir vücut yapısıyla ayrılırlar. Vücudun ön ucunda ağzın etrafında geri çekilebilen tentaküller bulunur. İskelet vücut içine gömülüdür. Küçük kalker plakalar halindedir. Fam. Cucumariidae V. Class: Crinoidea (Deniz zambakları) Genel olarak sesil olarak yaşayan çiçek, bitki benzeri hayvanlardır. Merkezi olarak yerleşmiş ve yukarı dönük bir ağız ve küçük vücudun üzerinde kollar yer alır. Aksi tarafta bulunan sap, kök benzeri bir yapı ile vücudu tespit eder. Kollar üzerinde tüy benzeri telekler bulunur. Fam. Pentacrinidae- Kollar halinde çok dallıdır.

http://www.biyologlar.com/omurgasiz-hayvanlar-sistematigi

Deniz Canlıları ve Dokosahekzanoik asit (DHA) ve Eikosapentanoik asit (EPA)

• Denizde yaşayan türlerin çoğu doymamış yağ asitlerini sentezleme yeteneğine sahip değildir. • Bazı deniz canlıları aldıkları besinlerle Dokosahekzanoik asit (DHA) ve Eikosapentanoik asit (EPA) ihtiyacının tamamını karşılamayabilirler. • Bu yağ asitlerinin larvaların diyetlerinde bulunması sonucunda hayatta kalma ve büyümelerinde genellikle artış görülmektedir. • 1989 yılında yapılan bir çalışmada, 10 mikroalg türünün yağ asidi kompozisyonu incelenmiştir. • Bu çalışma sonunda mikroalglerin yağ asitleri kompozisyonlarının kültür şartları ile değiştiği ve kültürdeki maksimum büyümenin alglerdeki DHA (22:6n-3) konsantrasyonunun yüksek olması durumunda gözlendiği not edilmiştir • Deniz balığı larvalarının büyümesi ve hayatta kalması için diyetlerde en önemli faktör n-3 serisi doymamış yağ asitleridir. • Bu yağ asitleri arasında EPA (20:5n-3) ve DHA (22:6n-3) yer almaktadır. • Günümüzde birçok deniz balığı kuluçkahanesi esansiyel yağ asitlerince zengin besin zincirini sağlamak amacıyla canlı alg üretim ünitesi kurmaktadır. • Bu ünitelerde kalifiye elemana ve yüksek insan gücüne ihtiyaç duyulmaktadır. • Genellikle alg üretimi kuluçkalıklarda ihtiyaç duyulan miktarı karşılayamamaktadır. • Bu problem dondurulmuş ve konsantre edilmiş yüksek kalitedeki mikroalglerin ticari üretimi ile aşılmıştır. • Yamasaki ve diğ. (1989) dondurulmuş haldeki algler üzerine çalışmalar yapmışlardır. • Dondurma işleminin alg hücrelerinin bütünlüğünü etkilediğini ve bazı türlere ait kültürlerin daha kaliteli olduğunu ileri sürmüşlerdir. • Mikroalg Nannachloropsis’in uzun süre dayanıklı olduğu ve kimyasal kompozisyonunun değişmediğini bildirmişlerdir. • Mikroalglerin yapısında bulunan yağ asitleri, kültür koşullarına ve kültürün yaşına bağlı olarak değişiklik gösterir. • Mikroalg türleri arasında da yağ asitleri miktarları değişim göstermektedir. • Isochrysis galbana EPA ve DHA açısından oldukça zengindir. • Taze, dondurulmuş ya da konsantre formdaki mikroalglerin balıkların beslenmesinde eksik olan esansiyel besin maddelerini tamamladıkları, hayatta kalma ve büyümeyi destekledikleri anlaşılmaktadır. YAĞ ASİTLERİNİN DENİZ BALIĞI LARVALARININ BESLENMESİNDEKİ ÖNEMİ • Yağ asitleri doymuş ve doymamış yağ asitleri olarak ikiye ayrılmaktadır. • Doymuş yağ asitlerinin karbon zincirindeki bütün karbon atomları tek bağ ile bağlıdır. • Zincirin diğer kısımları hidrojen atomları ile bağlıdır. • Doymamış yağ asitlerinde ise bir yada birden çok çift bağ içerirler. • Çift bağlar erime noktasını düşürücü etkiye sahiptir. • Bu özelliklerinde dolayı doymamış yağ asitleri sıvı halde bulunmaktadır. • Balıklar yağ asitlerini temel enerji kaynağı olarak kullanırlar. • Balık yumurtasının içerdiği yağ miktarı ve kompozisyonu türler arasında değişiklik gösterir. • Larvanın enerji ihtiyacı ise fizyolojik olaylara göre değişiklik gösterir. • Larva beslenmesinde ilk yemin besin değerinin ve yağ içeriğinin larvanın besin kesesindekine benzer olmasına dikkat edilmelidir. Esansiyel yağ asitlerinin doğru oranlarda ayarlanmaması deniz balığı larva yetiştiriciliğindeki temel sorunu oluşturmaktadır. • Diyetlerin içerdiği yüksek EPA miktarı pigmentasyonu etkilemektedir. • Bununla birlikte EPA’nın yüksek miktarı DHA ile kıyaslandığında hücre zarı fosfolipidlerin DHA/EPA oranını etkiler. • Reitan ve diğ. (1994), kalkan balığında DHA/EPA oranlarının sağlanması için mikroalg Isochyrsis galbana ve Tetraselmis sp.’yi kullanmışlardır. • Bu sonucun mikroalglerin DHA ve EPA oranlarını uygun oranda içerdiklerinden dolayı olduğu bildirilmiştir. • Bununla birlikte Reitan ve diğ. (1993) yaptıkları araştırmalarda yetiştiriciliği yapılan kalkan ve dil balıklarındaki pigmentasyon bozukluklarının diyetlerdeki DHA (22:6n-3) yetersizliğinden kaynaklandığını göstermişlerdir. • Dokosahekzanoik asit (DHA)’ nın retina ve beyin dokularının gelişmesindeki rolünü ringa balıklarında yapmış oldukları çalışmalarda tanımlamışlardır. • Balıklarda DHA yüksek oranda görme ve sinir dokularındaki hücre zarlarında bulunmaktadır. • DHA’nın eksik olması durumunda düşük ışık yoğunluğunda ringa yavrularının yem yakalama ve avlanmalarının olumsuz yönde etkilendiği bildirilmiştir. • Balıkların hayatta kalma, normal gelişim ve büyümesinin tüm safhalarında özellikle yeterli ve orantılı olarak yağ asitlerince zengin besin miktarının sağlanması gerekmektedir. • Deniz balığı yetiştiriciliğinde en önemli problem larva safhasında meydana gelen ölümlerdir. • Bunun en önemli nedeni larva yemlerinin besin yönünden yetersiz olmasıdır. n-3 yağ asidi eksikliği sonucunda zayıf gelişme, yem değerlendirmede düşme, kaslardaki su içeriğinde artış, vücut yağ kompozisyonunda değişme ve yoğun ölümler görülmektedir. • Balıklar n-3 serisi yağ asitlerine n-6 serisinden daha çok ihtiyaç duyarlar. • Bunun nedeni balıkların vücut sıcaklıklarının kara canlılarından daha düşük olması ve n-3 serisi yağ asitlerinin erime noktalarının daha düşük olmasından kaynaklanır. • Deniz balığı larvalarının fosfolipidlerindeki DHA/EPA oranının larval gelişmede önemli olduğu belirtilmiştir. • Bu oranın hücre içi ve dışına madde taşınmasını etkilediği bilinmektedir. • Esansiyel yağ asitleri hücre geçirgenliği ve akışkanlığında, yağların taşınmasında, enzim aktivasyonunda düzenleyici rol oynarlar. • Yapılan araştırmalar sonucunda yüksek EPA miktarına karşı DHA miktarının az olması larvalarda ölümlere neden olabilmektedir. • Birçok açıdan bakıldığında DHA deniz balığı larvaları için EPA’dan daha önemlidir

http://www.biyologlar.com/deniz-canlilari-ve-dokosahekzanoik-asit-dha-ve-eikosapentanoik-asit-epa

Balığın Anatomik Yapısı

Balık: Yalnız su içerisinde yaşayan solunum için gerekli oksijeni solungaçları yardımı ile sudan alan yumurtlamayla üreyen derisi çoğunlukla pullarla örtülü genellikle hava kesesi bulunan ve kalpleri iki gözlü omurgalı canlılardır. Balıkların sınıflandırılması: BALIKLAR;PİSCES 1.Üst sınıf:Agnatha (çenesizler) Sınıf: Cephalopidomorphi Altsınıf: Cyclostomata (yuvarlak ağızlılar) 2. Üst sınıf: Gnathostomata (çeneliler) 1.Sınıf: Chondrichthyes (kıkırdaklı balıklar) 1. alt sınıf :Holocephali (tüm başlılar-deniz kedileri) 2.alt sınıf :Elasmobranchii (keski solungaçlılar-Köpek balıkları-Vatozlar) 2.Sınıf : Osteichthyes (Kemikli balıklar) 1.Alt sınıf :crossopterygii (saçak yüzgeçliler) 2.Alt sınıf ipnoi (çift solunumlular-akciğerli balıklar) 3.Alt sınıf :Actinopterygii (diken ve ışın yüzgeçliler) External Anatomy BALIKLARIN DIŞ ANATOMİK YAPILARI 1:Balıklarda gövde şekli: Balıklar gelişme süreçleri içerisinde farklı şekilleri girebildikleri gibi yaşama biçimleirne görede çevreye uyum sağlamışlardır. a- yuvarlak ve torpido gövde şekliorso ventral kesitleri yuvarlak dorsal ve lateral görünümleri ise iğ veya torpidoya benzer.Palamut,orkinos,uskumru b- yanlardan basık gövde şekli: Yanlardan her iki taraftan da az veya çok bastırılmış görünümdedir levrek c- Üstten basık gövde şekli: Dorso ventral olarak basık yani yassı görünümdedir yayın d- Üstten ve alttan kesikli gövde şekli: çütre e- İnce ve uzun gövde şekli: Az ince ve uzun olanlara köpek balıkları normal ince ve uzunlukta oalanlara zargana çok ince ve uzun olanlarda yılan balıkları 2:Yüzgeçler (pinna) A:Tek yüzgeçler (median yüzgeçler) Dengeyi sağlarlar ve manevra yapmada rol oynarlar sayıları birden fazla olamakla birlikte gövdenin iki yanında yer almamaları nedeniyle tek yüzgeçler adını alır 1- sırt yüzgeci (pinna dorsalis): Sırt bölgesinde median çizgi üzerinde yer alır balıklara göre sayıları değişir 2- Anal yüzgeç (pinna analis): Genellikle anüsle kuyruk yüzgeçi arasında yer alır vatoz balıklarında ve deniz iğnelerinde bulunmaz 3- Kuyruk yüzgeci (pinna caudalis): Gövdenin son bölümünde dikey olarak yer alır genellikle bir tanedir yuvarlak kesik uçlu çatal yarım ay çentikli ve sivri olan kuyruk yüzgeci köpek ve mersin balıklarında asimetrik şekilde olabilir 4- Yağ yüzgeci (pinna adiposa):Genellikle alabalıkgillerde bulunur ve çok küçüktür sırt yüzgeci ile kuyruk yüzgeci arasında yer alır 5- Yalancı yüzgeç (pinnule): hem sırt yüzgeci ile kuyruk yüzgeci arasında hemde anal yüzgeçle kuyruk yüzgeci arasında yer alır çok sayıdadır. B:Çift yüzgeçler: Median çizginin her iki yanında bilateral (simetrik) olarak yer alır a-göğüs yüzgeci (pinna pectoralis):Solungaç açıklığının hemen gerisinde yer alır uçan ve kırlangıç balıklarında çok iyi gelişmiştir b-Karın yüzgeçi (pinna ventralis):Gövdenin alt tarafında baş ile anal yüzgeçler arasında yer alır.Karın durumlu (abdominal) göğüs durumlu (thoracal)ve boyun durumlu (jugular) isimlerini alır. Çift yüzgeçlilerin en önemli işlevi su içerisinde yüzeye doğru çıkma dipe doğru inme durma ve dönme gibi manevraların yanı sıra denge sağlamada azda ols