Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 1195 kayıt bulundu.

Davranış Biyolojisi Nedir

1)Yurt seçimi (Teritoryum Tesisi) Bireyler beraberliklerini sürdürüp belirli bir kuluçka alanının emniyetini sağlayabilmek için bir alana, gereksinim duyarlar. Bu alan yurt ve teritoryumdur. Kurulacak yurt alanının, çıkacak yavrulara besinin kolayca sağlanabileceği uygun bir arazi parçası olması gerekir. Yurt alanlarının sınırları, bireylerin (genellikle erkeklerin) şubat sonundan mayıs ayına kadar yoğun olarak sürdürdükleri yurt belirleme ötüşü ile saptanır. Bu ötüşlerin diğer bir amacı da yurdun kurulduğunu seçilecek eşe duyurmak ve rakip erkek bireylere gözdağı vermektir. Gözdağına rağmen kurulacak yurda bir saldırı olursa, erkekler arasında şiddetli kavgalar olur. Bu tür davranışlar aynı tür içinde (interspesifik) olduğu gibi farklı türler arasında (intraspesifik) olabilir. Yapılan kavgalar genellikle tarafların karşılıklı olarak birbirlerine, keskin ve kesik kesik bağırmaları ile başlar. Kavga esnasında bireyler kafalarını birbirlerine uzatarak kısık sesler çıkarırlar. Boyun ve kuyruk tüyleri dikleşir ve kanatları yanlara hafifçe açılır. 2)Yuva Sunumu Yuva sunumu erkek bireylerce yapılır. Erkekler şubat sonundan itibaren, dişilere sunacakları yuvalara girip çıkar ve ot parçası, tavuk ve güvercin tüyleri gibi materyaller getirirler. Erkeğin işgal ettiği yuvayı dişi kabullenirse yuva ikisi tarafından müştereken yapılır. Dişinin ilgisini çekip yuvayı ona beğendirmek için erkek bireyler yuvalara, her seferinde içeride daha az kalmak üzere girip çıkar. Bu arada erkek yuva sandığı üzerinde veya yuva deliğinden dışarıyı gözleyerek sağa-sola bakar. Yuvadan çıktıktan sonra yuvaya en yakın dala tüner, bazen yuvanın üstüne konar ve tekrar içeri gibi yapıp yuva giriş deliğini vücudu ile kapatır, hemen sonra geri çıkar. Dişi yuvaya yakın bir yere gelince, erkeğin daldan dala yer değiştirip çok sık öttüğü ve dişinin ilgisini çekmek istediği izlenir. Daha çok yuvanın üstünde yapılan bu hareketler: kendi ekseni etrafında dönme; kafayı sağa-sola oynatma, ileriye uzatma; kanatları yana açma ve kanat tüylerini titretme; kuyruk tüylerini yukarı kaldırma; bazen de bir kanadı aşağı itip telekleri yere sürme şeklidir. Yuva sunma ilgi çekme hareketlerine, dişi birey kayıtsız kalır ve sunulan yuvayı kabul ettiği anlamı taşıyan erkeğin faal olduğu yuvaya girme uçuşu yapmazsa, erkeğin ötüşünü daha canlı ve keskin olarak bir başka yuva veya dal üzerinde, fakat dişiyi gözden kaçırmayacak şekilde sürdürdüğü görülür. Dişi bu sırada sunulan yuvalardan birine yönelme uçuşu yapar. Yapılan ilk uçuş genellikle yuva deliğine yakın dallar üzerine olur. Burada kısık kısık ses çıkarıp kafasını sağa sola ve öne uzatarak, etrafını izler. Bazen yuva deliğine girmeye çalışır, ve hemen geri döner. Bu arada erkek yuva deliğinden içeri girerek dişiye kur hareketleri ve ötüşleri yapar. Dişi bu davranışlara karşılık vererek yuva deliğine konup onu izler ve içeriye kısa bir süre için de olsa girer çıkar. Dişinin yuvaya sıklıkla girip çıkması ve yuvada daha uzun süre kalması onun yuvayı kabul ettiğini gösterir. Yuvaya giriş çıkışların sıklaşması ve erkeğe daha yakın bir yere konma girişimleri ile birlikte, erkeğin çiftleşme öncesi yaptığı kur hareketleri görülür. 3)Çiftleşme Çiftleşmeden önce dişi ve özellikle erkeğin sürekli aktif oldukları ve dallar üzerinde oynaştıkları gözlenir. Bu kur hareketleri eşlerin uyarılması için yeterlidir. Çiftleşmede erkeğin dişinin üstüne çıktığı ve omuz kemeri yada ensesini gagası ile kavradığı görülür. Çiftleşme süresi genellikle 3-6 saniye arasında değişir. Erkek dişinin üzerinden inince kanatlarından birini yere doğru uzatarak tekrar çiftleşme teşebbüsünde bulunur. Mart-Kasım ortasına kadar olan dönemde çiftleşme faaliyetleri iklim koşullarına ve özellikle sıcaklığa bağlıdır. Dişi 4-5 yumurta bırakır. Kuluçka süresi 10-11 gün sürer. Yavrular 15-19 günde yuvadan uçar. Kuluçka başarısı % 90’dır. 4)Besin Arama Hareketleri Besinlerini genellikle toprağın üstünde ve ağacın yapraklı kısımlarında ararlar. Topraktaki yemi açığa çıkarmak için, toprağı tırnakları ile eşelerler. Topraktaki kurumuş yaprak ve otları yana atarlar. Ağaçtaki gizli zengin besinlere ulaşınca, dalın üstünde kanatlarıyla pırpır yaparak bunlara yakalar. Uçabilen böcekleri de çok yakından takip ederler. Besin olarak; kelebek tırtılı, böcek larvaları, böcekler ve sinekler hayvansal besinlerini oluşturur; buğday, arpa, mısır, tohumları taze ot yaprakları bitkisel besinlerini oluşturur. Beslenme grup halinde gerçekleşir. Bu sırada gruptan birkaç birey tehlikelere karşı gözcülük yapar. 5)Rahatlama (konfor) Hareketleri Serçeler güneş banyosu yaparken, vücut tüylerini kabartıp,kanatlarını hafifçe yere doğru açar, güneş ışınlarının vücudun bütün bölgelerine girmesi için kendi ekseni etrafında dönerler. Bunlarda sıklıkla gözlenen davranışlardan biri de kum ve su banyosundaki hareketlerdir. Bunun için, özellikle vücutlarının üst kısımlarındaki tüyleri gevşeterek, hızlı bir şekilde sağa-sola sıçrarlar. Su içine girince, su içer, kum banyosunda daima kumları gagalar ve içinde yiyebileceği besinler varsa onları yer. Tepinme hareketleri: Suda ve özellikle kumda tepinme hareketlerine rastlanır. Sudan veya kumdan çıkınca, kanadın biri sabit şekilde durur, diğeri omuzdan aşağıya inerek şiddetli bir şekilde silkelenir. Daha sonra diğer kanadı ile aynı hareketleri yapar. Yakında bulunan bir ağaca veya dal üzerine konarak tüylerini gagaları ile düzeltirler. Bazen ayak parmaklarıyla başın üst kısmını düzeltirler. Gagayı da bir dala sürterek temizlerler. 6)Ötüşler Yuva Çevresindeki Ötüşler: Kur yaparken ve rakiplerini korkutmak için aralıksız ve yüksek bir sesle öterler. Bu tür ötüşler sırasında tüylerini kabartırlar. Yalvarış Ötüşleri: Biraz gelişmiş civcivler ve uçma durumuna gelmiş yavrular kısık bir sesle ve çok sesli olarak öterler. Uçma durumuna gelmiş yavruların yer arama ötüşleri, tek düze yüksek sesledir. Ana-Babaları bu ötüşlere bir şeyler anlatır gibi yumuşak ve sessizce karşılık verir. Diyalog Kurma Ötüşleri: Yalnız kalan birey, grubu bulabilmek için kısa ve keskin bir şekilde öter. Tehlikeye Karşı Alarm Ötüşleri: Kuralsız olarak yüksek sesle ve uzatarak öterler. Yavrular tehlike altında ise tehdit unsuruna 1 metre kadar yaklaşacak şekilde alçak uçuşlar yaparlar. KAYNAKLAR 1) ERDOĞAN, Ali, Ankara/Beytepe Serçe Populasyonları ile İlgili Biyolojik Çalışmalar 19-27 (1982)

http://www.biyologlar.com/davranis-biyolojisi-nedir

Mantarlar ( Fungi)

Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır.

http://www.biyologlar.com/mantarlar-fungi

Biyolojik Silahlar ve Biyosensörler

Bakterilerin bir kısmı görünmeyen dostlarımızdır; bazıları sindirim sistemimize yardım ederken, bazıları vücudumuzdaki zehirleri yok ederler. Kimi bakteriler ise bizleri hasta eder. Vücudumuzun içinde veya dışında yaşayan bu ilginç mahlukçuklar hayatımızın ayrılmaz parçalarıdır her hâlükârda. Ancak bir de ‘katil’ bakteriler var ki, zalim insanların ellerine geçtiklerinde biyolojik silah olarak kullanılabilirler. Biyolojik silahlar; insanları, hayvanları veya tarımsal ürünleri öldürücü veya ağır derecede hasta edici olan mikroorganizmalar ile, bunlardan üretilen zehirli maddelerdir. Hatta sadece hastalık ve ölüme yol açan mikropların kendileri değil; bunların taşıyıcıları da meselâ böcekler bu sınıfa dahildir. Biyolojik silahlar kitle imha silahları içindeki en problemli ve tehlikeli silahlardır. Nükleer veya kimyasal silahlardan çok daha fazla insanı hedef alırlar. Diğer silahlara göre maliyetlerinin düşük olması, rutin güvenlik sistemleriyle tesbit edilemiyor olmaları gibi değişik nedenlerle insanlık için ciddi tehdit unsurudurlar. Kimyasal silahların aksine hemen tesir etmezler. Yaklaşık 24-48 saatlik bir kerahet devresinden sonra tesirleri ciddi olarak görünür ve o zamana kadar da eğer mikrop kullanıldı ise çoğalarak etrafa yayılmaya devam ederler. Biyolojik silahlar kimyasal olanlara göre çok daha fazla öldürücüdür. Meselâ 10 gr. şarbon sporu, 1 ton sinir gazı Sarin’in öldürebileceği kadar insan öldürebilir. Biyolojik silah tehlikesine karşı yapılması gerekenler ise şöyle özetlenebilir: • Biyosensörler ile tehlikenin tesbiti ve tanımlanması. • Mikrobiyal zehirlere karşı antidotların hazırlanması. • Antibiyotik ve aşı geliştirilmesi. Bakteriler, virüsler ve toksinler biyolojik silah olarak kullanılabilirler ve hepsinin birbirinden farklı özellikleri vardır. Son yıllarda biyoteknolojik metodların hızla ilerlemesi bu bilgi ve teknolojilerin kötü amaçlara âlet edilme tehlikesini de beraberinde getirdi. Genetik mühendisliği çalışmalarındaki ilerlemeye paralel olarak biyolojik silahların etkisini artırıcı ve tesbit edilmelerini zorlaştırıcı gelişmeler ise, bu silahlara karşı yapılan savunmayı daha da güçleştirecektir. Genetik olarak dizayn edilmiş organizmalar, biyo-silah üretiminde kullanılabilir durumdalar ne yazık ki. Örneğin: • Mikroskobik toksin veya biyoregülator fabrikasına dönüştürülmüş mikroorganizmalar, • Antibiyotik, aşı gibi rutin kullanılan ilaçlara bağışıklık kazandırılmış organizmalar. • İmmunolojik profilleri değiştirilerek bilinen tesbit metodları ile tesbit edilemeyen organizmalar. • Antikor bazlı sensör sistemlerinin tesbitinden kaçabilecek organizmalar. Bilimi kötü ve vahşi amaçlarına alet etmeye çalışanlar biyolojik silahların etkisini artırıp tesbitini zorlaştırmaya çalışırken, bizlere de, biyolojik silahların zararlı tesirlerini gidermeye çalışmak ve onların üretiminde kullanılan maddelerin tesbitini kolaylaştıracak metodları bulmak düşüyor. Biyolojik silahlara karşı erken tesbit, uyarı ve tedavi metodlarının geliştirilmesi insanlık için bir zorunluluk haline gelmiş bulunuyor. Tehlikeli biyolojik maddelerin varlığının tesbitinde en önemli unsur biyosensörlerdir. Biyosensörler (biyo-alıcılar, biyolojik dedektörler) biyolojik materyallerin alıcılar ile tesbit edilip ölçülebilir sinyallere dönüştürüldüğü aletlerdir. Alıcılar tarafından tesbit edilen tanımanın sinyale dönüştürülmesinde kullanılan metodlara göre, bu biyosensörleri kabaca (1) optik sensörler ve (2) elektrokimyasal sensörler olarak iki gruba ayırabiliriz. Şu anda ticarî olarak piyasada olan kimyasal ve biyolojik analiz âletleri gözden geçirildiğinde, kimyasal dedektörlerin biyolojik olanlardan daha fazla gelişmiş oldukları görülecektir. Kimyasal dedektörler neredeyse saniyeler ve dakikalar içinde kimyasal maddeler hakkında bilgi verirlerken, biyolojik dedektörler için bu süre genellikle daha uzundur; çünkü daha kompleks ve yavaş çalışan mekanizmaları vardır. Problemlerden biri de, büyük ve ağır olmalarıdır. Bu sorunların çözülmesi gerekmektedir; çünkü artık, kimyasal silahların tesbitinde olduğu gibi, biyo-silahların tesbiti için de küçük boyuttaki robotlar ya da uçaklar kullanılmak istenmektedir. Son yıllarda optik sensörler biraz daha geliştirildi ve biyokimyacılar için çok önemli araçlar haline geldi. Sensörlerde kullanılan biyolojik materyalleri tanıma elementlerini genel olarak şöyle sıralayabiliriz: enzimler, mikroorganizmalar, bitkisel ve hayvansal dokular, antikorlar, reseptörler, nükleik asitler. Tesbit edilmesi gereken materyale ilgisi olan, bağlanabilecek olan alıcı element (veya elementler) biyosensör yüzeyine kimyasal metodlar ile sabitlenir, yani immobilize edilir. Daha sonra ortam içerisinde istenen molekül veya mikroorganizma olan çözelti ilave edildiğinde, alıcı ile bu biyolojik materyal birbirlerine bağlanırlar. Bu bağlanma ise kullanılan sensör cinsine göre elektrik veya optik metodlarla sinyale dönüştürülerek algılanır. Eğer ortamda istenen biyokimyasal yok ise, sinyal gönderilmez. Biyosensörlerin çalışma mekanizması biyolojik elementler arasındaki ilgiye dayanır. Meselâ, hücre içindeki pek çok hayatî faaliyette yer alan proteinler arasında anahtar-kilit ilişkisine benzer ilişkiler vardır. Hücre içindeki faaliyetler hep birbirine bağlanan veya bağlanamayan proteinlerin oluşturdukları biyokimyasal sinyaller ile devam eder. Meselâ, protein ailesinin üyelerinden olan antikorların vazifesi organizmaya giren yabancı molekülleri tesbit edip bunlara bağlanmaktır. Antikorlar vücudun savunma sisteminin en önemli elemanlarıdırlar. Aslında her birimiz mükemmel biyosensörler sahibi olarak yaratılmışız. Meselâ beş duyumuz—görme, işitme, dokunma, koklama, ve tat almamız—yine alıcılar tarafından hissedilen verilerin kimyasal ve elektriksel sinyallere dönüştürülüp, beynin değerlendirilmesine sunulmasıdır. Modern teknoloji biyosensörler ile bir ya da birkaç molekülü tanımaya, algılamaya çalışırken, sizlerin şu anda bir yandan gözleriniz dergiye bakıp her an sinyalleri beyne gönderiyor; diğer yandan kulağınız radyodan gelen hafif müziğin sinyallerini göndermekle meşgul; derginin sayfalarını hisseden parmaklarınız sinirlere uyarılar veriyorlar; burnunuz bardaktaki meyve çayını koklamak ve yine uyarıları beyne göndermekle meşgul; öteki yanda antikorlarınız yabancı madde avında ve buldukları anda gereken bilgileri beyne gönderip savunma mekanizmasını harekete geçirmeye çalışıyorlar. Ama bütün bunlar olurken siz “Ayy, şimdi benim beynim bu verilerin hangisini anlamaya yetişsin?” diye sızlanmak yerine, yazıda okuduklarınızı düşünmekle meşgulsünüz. Biyosensör çalışmalarında yaşanan zorluklar ve eksiklikler bize küçücük hücrelerden büyük organizmalara kadar canlıların muhteşem biyosensörler olarak yaratıldıklarını ve insanoğlunun teknoloji adına yaptığı herşeyin bu muhteşem mekanizmaları taklide çalışmaktan başka birşey olmadığını gösteriyor. Sadece biyo-silahların tesbitinde değil, aynı zamanda biyolojik mekanizmaların, proteinler arası ilişkilerin anlaşılmasında ve insan genom projesinin devamı olan proteomik çalışmalarında da biyosensörlerin büyük önemi vardır. İnsan genom projesi ve patojenik bakteri ve mikroorganizmaların genetik kodlarının ilaç geliştirme çabalari için belirlenmesi, bazı kötü niyetli insanların ilaç yerine zehir yapmasına da yardım etmektedir. Almanya, Fransa, Japonya, İngiltere, ABD, Rusya ve Irak’ın bu silahları üretmek için çalışma yaptıkları söylenmektedir. Birinci ve İkinci Dünya Savaşlarında biyo-silahlar kullanılmıştır. Hatta çok daha önceleri 1763’te İngilizler Kızılderililere çiçek hastalarının kullandıkları battaniyeleri vermiş ve bu hastalığa karşı bağışıklığı olmayan yerlilerin hasta olup ölmelerine sebep olmuşlardır. Görünen o ki, yıkma, yok etme ve zarar verme açısından insana kimse yetişemiyor. Eğer insan olma erdemleri ve Allah korkusu yok ise, insanoğlu en vahşi silahları bile kullanmaktan, insanları yok etmekten geri kalmayan, esfel-i sâfilîne lâyık varlıklara dönüşüyor. Bu tür insanların neden olabileceği biyolojik savaş/terör tehlikesine karşı uyanık olunması ve gereken erken uyarı, tesbit ve savunma sistemlerinin geliştirilmesine ülkemizde de çalışılması gerekmektedir.

http://www.biyologlar.com/biyolojik-silahlar-ve-biyosensorler

ARILAR YOK OLMASIN

TEMA Vakfı'nın ''Türkiye Arıcılığındaki Tehlikeler'' raporunda, arılarda 'yanlış arıcılık uygulamaları' ve iklim koşulları nedeniyle yüzde son iki kışta 50 azalma olduğu belirtildi. Raporda, Türkiye'deki 4,5 milyon bal arısı kolonisinin, koloni başına 17 kilogram bal verdiği ve yılda 50-60 bin ton bal üretildiği kaydedildi. Türkiye'deki 20 koloniden sadece bir tanesinin ana arısının değiştirilebildiği belirtilen raporda, şu görüşlere yer verildi: ''Bu ana arıların da damızlık vasıfları ve kaliteleri kontrol edilemedi. Türkiye'de bal kalitesi denetimi yok denecek kadar yetersiz ve göstermelik. Ticari früktozlu ve sakarozlu ballar yaygın olarak pazarlanıyor. Yanlış arıcılık uygulamaları ve olumsuz iklim koşulları nedeniyle son iki kışta yüzde 50'yi geçen koloni kayıpları oldu, bal üretimi düştü. İhracat durdu, ithalat başladı.'' ''BİR DAMLA BAL İÇİN 120 BİN ÇİÇEĞE ZİYARET'' Raporda, bal arılarının nektar ve polen toplamak için çiçekleri ziyaret etmesinin, onların döllenmesini ve ürünün oluşmasını da sağladığı belirtilerek, arıların bir damla bal üretimi için yaklaşık 120 bin çiçeği ziyaret ettikleri kaydedildi. Bitkilerin gelişmesinde, tarımsal ürünlerin oluşmasında ve hayvancılığın ana girdisi yem bitkilerinin veriminde, arıların, su ve gübre kadar önemli olduğu ifade edilen raporda, ''Özellikle zararlı böcek mücadelesi yapılan tarım alanlarında diğer dölleyici böceklerin ölmesi nedeniyle döllenmede mutlaka bal arısına ihtiyaç duyulduğu'' vurgulandı. Raporda, Türkiye'nin bir kıta gibi yedi ayrı iklim özelliği gösterdiği, 12 bin bitkisinin büyük bölümünün nektarlı ve polenli olduğu hatırlatılarak, bozuk mera ve orman alanlarının rehabilite edilmesine paralel olarak ballı bitkilerin miktar ve çeşit olarak daha da artacağı vurgulandı. ''AMERİKAN YAVRU ÇÜRÜKLÜĞÜ'' Türkiye'de eğitim, damızlık, arı sağlığı ve bal kalitesinin kontrolü gibi önemli sorunlar bulunduğu ve arıcılığın usta çırak ilişkisiyle öğrenildiği ifade edilen raporda, modern arıcılık tekniklerinin hala üretici tabanına benimsetilemediği savunuldu. Her yıl Türkiye'de damızlık değeri yüksek en az 2,2 milyon ana arı kullanılması gerektiği ve TÜBİTAK'ın yürüttüğü bir araştırma sonucunda Bitlis'te yüzde 42, Diyarbakır'da yüzde 49, Hatay'da yüzde 52 oranında ''Amerikan yavru çürüklüğü'' tespit edildiği bildirilen raporda, şu görüşlere yer verildi: ''Avrupa Birliği mevzuatına göre, 'Amerikan Yavru Çürüklüğü' görülen kolonilerin yakılması gerekir. AB'ye uyum kuralları gereği Bakanlar Kurulu 'Bu mevzuata uyacağım' diye imza atmıştır, ancak Türkiye'de böyle bir uygulama başlatılamamıştır. Üretimde neredeyse sağlıklı koloni yokken Tarım Bakanlığı'nda arı hastalıklarını teşhis edip doğru tedaviyi önerecek teçhizli ve yetkili bir arı hastalıkları laboratuvarı bulunmamaktadır. Yaygın olan hastalıklara karşın ülke genelinde uyulması gereken tedbirlerle ilgili bir politika da geliştirilememiştir. Üreticiler yoğun arı hastalıkları ile bulaşık kolonileri tedavi etmek amacı ile pek çok kimyasallar kullanmaktadırlar.'' ''PETEKLER, PETROL ÜRÜNÜ NAFTALİN VE PARAFİNDEN'' Türkiye'de naftalin kalıntısız ve parafin katkısız temel petek bulunmadığı bildirilen raporda, bu peteklerin balla birlikte tüketildiği iddia edildi. Naftalin ve parafinin petrol ürünü ve kanserojen olduğu, petekli bal tüketim alışkanlığına sahip tüketicilere temel petekler olmadan petekli balları nasıl yiyeceklerinin anlatılması gerektiği vurgulandı. Üreticilerin ise son yıllarda sakarozun yerine daha ucuz olduğu için glikoza ve früktoza yöneldikleri belirtilen raporda, şunlara yer verildi: ''Bu sahtecilik daha da yaygınlaşmış, hiç arı görmemiş ticari şekerler doğrudan bal diye satılır olmuştur. Ticari glikoz ve früktozun piyasa değeri 1 YTL civarındadır. Bu sanayi ürünleri doğrudan veya doğal balla karıştırılarak en az 7-8 YTL ye bal diye satılmaktadır. Bu durum şekersiz bal üreten ve pazarlayanların aleyhine haksız bir rekabet yaratmaktadır. Nitekim binlerce doğal bal üreticisi balını maliyetinin altında satmak mecburiyetinde kaldıkları için üretimden vazgeçmişler ve arıcılığı bırakmışlardır. Diğer taraftan bal diye ticari früktoza kilogram başına en az 7-8 YTL ödeyen tüketici kandırılmaktadır.'' ARI ÖLÜMLERİ YÜZDE 50-60'LARA ULAŞTI Türkiye'de son iki yıldır kitlesel arı ölümleri görüldüğü, ilk olarak 2007'de Hatay'da 32 bin koloninin öldüğü anımsatılan raporda, Adıyaman, Ardahan ve Ankara'da yüzde 50- 60'lara varan arı ölümlerinin gerçekleştiği bildirildi. Son yıllarda ülke genelinde yaşanan kuraklığın arıcılığı olumsuz etkilediği, 2006 ilkbaharında yaşanan soğukların arı florasını dondurduğu ve kolonilerin de sonbaharda genç nesil yetiştiremedikleri aktarılan raporda, damızlık arıların geniş ölçekli kullanılmaması, kullanılanların vasıfsız olmaları, arı hastalıklarının yaygınlığı ve arıların ''Genetiği Değiştirilmiş Organizma'' (GDO) içeren früktozla beslenmeleri gibi nedenlerden hassaslaşan ve zayıflayan kolonilerinin yaşanan olumsuz iklim koşullarının da tetiklemesi ile öldükleri kaydedildi. Raporda, şöyle denildi: ''Yıllık bal üretimi 60-65 bin tonken, arı ölümlerine paralel olarak iklimsel nedenlerle flora yetersizliği de etkili olmuş, 2007 üretim sezonunda bal üretimi yarı yarıya azalmıştır. Tarım ve Köyişleri Bakanlığı 8 bin ton bal ithaline izin vermiş, arı ve bal cenneti Türkiye, bal ithal eden ülke konumuna düşmüştür. Arılara pancar şekeri yedirilerek üretilen balların bir laboratuvar analiz yöntemi henüz Türkiye'de bilinmemektedir. Pancar şekeri ile bal üretimi Türkiye'de olduğu gibi başka ülkelerde de yaygındır. İthal ballar vitrinlerdedir. Nasıl üretildikleri bilinmeyen ancak dünya piyasasında yaklaşık 2 dolar olan bu balları tüketicimiz en az 10 dolara yemeye devam etmektedir.'' TEMA Vakfı'nın hazırladığı raporun tümüne şu linkten ulaşabilirsiniz.. www.tema.org.tr/TurkiyeAriciligindakiTehlikeler.pdf

http://www.biyologlar.com/arilar-yok-olmasin

BİTKİSEL DOKULAR

I ) BİTKİSEL DOKULAR: A-) BÖLÜNÜR DOKU= Hücreleri küçük, çekirdekleri büyük, sitoplazmaları fazla, kofulları küçük ve az sayıda, hücre arası boşluk yok, hücre çeperleri ince, devamlı bölünebilen hücrelerdir, metabolizmaları hızlıdır. 1- Birincil Bölünür Doku (Primer Meristerm): Bitkinin kök ve gövde ucunda bulunur. Boyuna uzamayı sağlar. Kökte kaliptra, gövdede genç yapraklar tarafından korunur. Bölünür doku geliştikçe dermatojenden epidermis, periblemden korteks, pleromdan merkezi silindir oluşturur. 2-İkincil Bölünür Doku(Seconder Meristerm): Bölünmez dokuların tekrar mitoz bölünme yeteneği kazanmasıyla oluşur, böylece kambiyum ve mantar kambiyumu (fellogen) oluşur. Kambiyum kök ve gövdede bulunur. Ilıman bölgelerdeki çok yıllık iki çenekli bitkilerde, ilkbaharda büyük hücreler, sonbaharda küçük hücreler oluşur. Bölünür mantar doku, bitkide mantarlaşma oluşturarak bitkinin dış etkenlerden korunmasını sağlar. B-) BÖLÜNMEZ DOKU=Hücreleri büyük, sitoplazması az, kofullar büyük, çekirdekleri küçük,hücre arası boşluk var, çeperleri kalındır. 1- Temel Doku(parankima doku): Kök ve gövdenin korteksinde, yaprağın mezofil tabakasında bulunur. Çekirdekleri büyük, ince çeperli, bol sitoplazmalı, kofulları küçük, canlı hücrelerdir. a- Özümleme Parankiması: Yaprakların mezofil ve genç gövdede bulunur. Bol kloroplast taşır. Bu doku fotosentez yapımında görevlidir. Mezofil tabakası palizat ve sünger parankiması olarak 2ye ayrılır. Palizat hücreleri silindirik,epidermisin altında sık ve düzenli olarak dizilmiştir. Sünger hücreleri düzensiz dizilmiş ve aralarında boşluklar vardır. b- İletim Parankiması: fotosentez yapan dokularla iletim demetleri arasında bulunur. Bu iki doku arasında su ve besin taşınmasını sağlar. Kloroplastı yoktur. c- Depo Parankiması: kök, gövde, meyve ve tohum gibi organlarda bulunur. Su ve besin depolar. d- Havalandırma Parankiması: Su ve bataklık bitkilerinde bulunur. Kök ve gövdedeki parankima hücreleri arasında boşluklar oluşturur. Böylece hava depolanmasını sağlayarak gaz alışverişi kolaylaşır. 2- Koruyucu Doku: Bitkide kök, gövde, yaprak ve meyvelerin üzerini örter. Tek ya da çok sıralı hücrelerden oluşur. Hücreleri kalın çeperli ve klorofilsizdir. Kara bitkilerinde su kaybını önlemede önemli görev yapar. İçte bulunan dokuları dış etkenlere karşı korur. a-Epidermis: Kök, genç dal ve yapraklarının üzerini örten canlı dokudur. Tek sıra hücrelerden oluşur. Bu hücreler çok büyük kofullu,az sitoplazmalıdır. Güneş ışığının yaprağın altına iletilmesini sağlar. Bazı epidermis hücreleri, dışa doğru uzayarak tüyleri oluşturur. Tek hücreli olanlara basit, çok hücreli olanlara bileşik tüy denir. Tüyler kökten emme, sarmaşıkta tutma, ısırgan otunda savunma, nanede salgılama gibi görevler yapar. Bazı epidermis hücrelerinin dışı kalınlaşarak kutikula adı verilen koruyucu bir tabaka oluşturur. Kutikula bitkinin su kaybını azaltır. Bazı bitkilerde kutikulanın üzeri mumsu maddelerden oluşmuş tabakayla örtülerek su kaybını en aza indirir. Bu tabakaya kutin tabakası denir. Yaprak ve genç gövdedeki bazı epidermis hücreleri farklılaşarak stoma veya gözenek adı verilen fotosentez yapabilen hücrelere dönüşür. Stoma, su kaybını ve gaz alışverişini sağlar. Stomalar kara bitkilerinde yaprağın alt epidermisinde, su bitkilerinde üst epidermiste bulunur. b-Mantar Doku: Çok yıllık bitkilerin kök ve gövdelerinin üstünde bulunur. Epidermisin parçalanmasıyla oluşur. Mantar dokunun hücreleri ölüdür. Hücrelerin içi su geçirmeyecek şekilde hava ile doludur. Mantar dokuda gaz alış verişini sağlayan yapı, kavuçuklardır. Kavuçuklar, gövde yüzeyinde ince yarıklar veya yuvarlak kabartılar halinde bulunur. Yaprak sapı ile gövde arasında oluştuğunda su ve besinin yağrağa geçişine engel olur. buda yaprak dökümüne neden olur. 3- Destek Doku: Bitkilere şekil ve destek veren dokulara denir. Hücrelerde selüloz çeper desteklik görevi yapar Otsu bitkilerde ayrıca turgor basıncıda desteklik görevi görür. Çok yıllık odunsu bitkilerde iletim demetleri de desteklik işine yardımcı olur. a-Pek Doku(kollenkima): Gövde yaprak ve yaprak sapında görülür. Canlı hücrelerden oluşur. Kalınlaşma hücre çeperinin köşelerinde ise köşe kollenkiması, her tarafında olursa levha kollenkiması adını alır. Örn; begonya köşe, mürver ağacı levha kol. görülür. b-Sert Doku(sklerankima): sitoplazma ve çekirdekleri kaybolmuş, tüm çeperleri kalınlaşmış ve ölmüştür. Örn; keten, kenevir, sarımsak gibi bitkilerde mekik şeklinde lifli sert doku hücreleri vardır. Ayva ve armutta çekirdeğe yakın taş hücrelerinden oluşan sert doku bulunur. Fındık ve ceviz kabuğunda, mum çiçeğinde taş hücreleri bulunur. 4- İletim doku: İletim dokuda su ve organik madde taşınır. a-Odun Boruları: hücreler arasındaki çeperler erimiştir. Ölü hücrelerden oluşur. Odun borularının görevi su ve suda erimiş tuzları taşımaktır. Kökteki emici tüylerle topraktan alınan su, bitkinin diğer organlarına taşınır. Taşıma aşağıdan yukarı tek yönlüdür ve soymuk borularına göre hızlıdır. Odun borularında iletimi sağlayan güçler; kılcallık, kök basıncı, terlemedir. b-Soymuk Boruları: tek sıra halinde üst üste dizilmiş canlı hücrelerden oluşur. Hücreler arasındaki çeper tamamen erimiştir. Bu yüzden kalburlu borular adınıda alır. Soymuk borularının yanında arkadaş hücreleride bulunur. Bu borularda besin taşınır. Soymuk borularında madde iletimi çift yönlüdür. İletim yavaş gerçekleşir. 5- Salgı Doku: Hücreleri canlı, bol sitoplazmalı, büyük çekirdekli ve küçük kofulludur. Çeperleri incedir. Tek tek yada gruplar halinde diğer dokular arasına dağılmıştır. a-Hücre İçi Salgılar: Salgılar hücre içinde birikir. Zamanla stop. kaybederek içi salgıyla dolu olarak kalırlar. b-hücre dışı salgılar: salgı hücrede oluşur. Daha sonra hücre dışına atılır. c-Salgı Boruları: Birkaç salgı hücresi uzayarak salgı borusu haline gelir. Salgı bor. içinde süte benzer bir salgı bulunur. Çiçekteki bal özü adı verilen salgılar tozlaşmayı sağlar. Reçine ve tanen gibi maddeler salgılar. Bitkiyi çürümeye ve mikroorganizmalara karşı korur. Böcekçil bitkilerdeki salgılar sindirimi salgılar. Isırgan otundaki yakıcı salgılar, korumayı sağlar.

http://www.biyologlar.com/bitkisel-dokular-1

BİYOLOJİK TÜR KAVRAMININ UYGULANMASINDAKİ GÜÇLÜKLER

Biyolojik tür kavramının doğal taksonlara uygulanmasında bazı zorlukların ortaya çıkması gerçegi bu kavramın geçersiz olduğu anlamına gelmez. Bu durum Simpson (1961: 150) ve Mayr (1963: 21-22) tarafından gösterilmiştir. Genel olarak kabul edilen pek çok kavram belli durumlar veya spesifik örneklere uygulandığında benzer zorluklara sebep olmuşlardır. Örneğin bir ağaç kavramı yayılan juniperler, cüce söğütler, dev kaktüsler ve strangler fig’lerin mevcudiyetiyle geçersiz kılınmamıştır. Bir kavram ve onun özel bir duruma uygulanması arasında net bir ayrım yapılmalıdır. Biyolojik tür kavramının uygulanmasındaki daha ciddi problemler yetersiz bilgi, tek ebeveynli üreme ve evrimsel olarak orta durumluluk durumlarından kaynaklanmaktadır. Yetersiz Bilgi Bireysel varyasyonlar bütün çeşitleriyle belli bir morfotipin ayrı bir tür mü ya da değişken bir populasyon içinde sadece bir fenon mu olduğu hakkında şüphelere yol açar. Eşeysel dimorfizm, yaş farklılıkları, polimorfizm ve diğer varyasyon tipleri bir tabiat tarihi çalışması veya populasyon analizleri sırasında bireysel varyasyonlar olarak ortaya konulabilir. Normal olarak korunmuş örneklerle çalışan neontologlar da fenonları (morfotipler) tür olarak vermek zorunda olan paleontologların karşılaştığı aynı problemle karşılaşır. Tek Ebeveynli Üreme Pek çok organizmadaki üreme sistemleri, yeni bir bireyin oluşturulması sürecinde ebeveyn bireyler arasında genetik materyalin zorunlu bir rekombinasyonu prensibine dayanır. Kendini dölleyen hermafroditlik ve diger automixis, partenogenez, gynogenesis ve vejetatif üreme (bölünmüş parçaların gelişimi) tipleri tek ebeveynli üremenin bazı tipleridir. Bu durum aşağı omurgasızlarda nadir değildir, Partenogenez hatta böcekler arasında ve aşağı omurgalılardan sürüngenlere kadar bile vardır. Evrimsel biyolojide belirlendiği gibi, bir populasyon kendi içinde üreyen bir gruptur. Bu tanımlamaya göre eşeysiz bir biyolojik populasyon aksine bir durumdur. Buna rağmen populasyon kelimesi içinde eşeysiz olmanın aksine olmadığı bir kombinasyonu da kapsayan diğer kullanımlara da sahiptir. Kendi içinde üreme hayvanlarda conspesific’liğin en son testi olduğu ve bu kriter sadece eşeyli üreyen populasyonlarda geçerli olduğu için tek ebeveynli üreyen organizma taksonlarında kategorik sıranın belirlenmesi zordur. Taksonomist klonlar, saf hatlar, biotipler ve böyle organizmaların bu şekilde devam eden zincir veya stoklarını nasıl değerlendirecektir ? Bu şekildeki tek ebeveynli soylar zaman zaman agamospecies, binomlar veya paraspecies olarak tanımlanmaktadır. Hangi tanımlama seçilirse seçilsin bu şekildeki mevcudiyetlerin biyolojik türlerin bölümleri olmadığı hatta oldukça farklı olduğu bilinmelidir. Ghiselin (1987) tür teriminin eşeysiz klon gruplarına uygulanmasının uygunluğunu oldukça güzel bir şekilde sorgulamıştır. Özellikle afidler, gal waspları (Cynipidae), Daphnia (Crustacea), rotiferler, digenetik trematodlar gibi bazı hayvan gruplarında eşeyli ve partenogenetik jenerasyonlar arasında düzenli bir dölamaşı görülebilir. Bu gibi durumlarda jenerasyonlardan hiç birisi ayrı bir biyolojik tür statüsü kazanmaz, nomenklatürel tanımda olduğu gibi geçici klonlara bu statü verilmez. Ancak özellikle afidlerde partenogenetik jenerasyonlar bazen tekrar eşeyselliğe dönmekte başarısız olmakta ve partenogenez sürekli hale gelmektedir. Bu jenerasyonlar eşeysel ırklardan konak bitki tercihleri veya renk genleri bakımından farklı hale geldiklerinde bu partenogenetik taksonların farklı türler olarak isimlendirilebileceği önerisinin ciddi biçimde gözden geçirilmesi gerekmektedir. Sürekli olarak tek ebeveynli üreyen hatlar durumunda morfolojik farklılığın derecesi temelinde bunlara tür statüsünün verilmesi geleneklere uygundur. Tek ebeveynli üreyen organizma çeşitleri arasında genellikle iyi belirlenmiş morfolojik kesintiler vardır. Bu kesintiler açık bir şekilde eşeysiz klonlarda görülen çeşitli mutanlar arasında doğal seleksiyonla üretilmiştir. Bu şekildeki kesintilerin mevcudiyeti ve morfolojik farklılıkların miktarının tek ebeveynli üreyen tipler arasında tür sınırlarını çizmek için kullanılması geleneklere uygundur. Eşeysel organizmalarda tür tanımlanması sadece analojiye değil ayrıca diğer benzer gruplardan bir kesintiyle ayrılan her morfolojik grubun kendine ait bir ekolojik nişi işgal etmesine dayanır; yani her grup kendi evrimsel rolünü oynar. Bdelloid rotiferler gibi hepsi zorunlu olarak partenogenezle üreyen gruplarda tanımlanmış biyolojik türler için belli bir biyolojik anlamın delilleri vardır. Tamamen partenogenetik üreyen ve muhtemelen dallanıp ayrılmış olan biparental türlerin bilinmediği, ve içinde iyi biyolojik türler kadar farklı olan bir grup olan örnekler bilinmektedir. Nomenklatürel tanımlama böyle durumlarda maruz görülmüştür. Çeşitli crustaceanlarda (ör. Artemia salina L.) olduğu gibi bir “tür” içinde üreme izolasyonuna sahip çesitli kromozomal tipler bulunduğunda bunları nomenkletürel olarak tanımlamak uygun olabilir. Bunlar geleneksel olarak ırklar olarak tanımlanmasına rağmen üreme bakımından izole olmuş kromozomal populasyonları (mikro) species olarak tanımlamak daha mantıklıdır. Erkek eşeyin bulunmadığı veya fonksiyonsuz olduğu yaklaşık 1000 hayvan türü bilinmektedir. Bu şekildeki komple-dişi türler partenogenezin bu tipi için olan kullanılan özel bir terim olan thelytoky ile ürerler. Mayotik mekanizmalara dayanarak bu gibi türlerde homozigotluk veya heterozigutluğa doğru bir eğilim vardır. Homozigotluk üreten tip nadirdir, ancak birkaç böcek grubuyla sınırlıdır ve zaman zaman normal olarak iki eşeyli üreyen sibling türler bu thelytokous türlerle yan yana bulunmaktadır. Heterozigotluk oluşturan pek çok thelytoky durumunun, türler arası bir hibrit olarak ortaya çıkan bir bireyde partenogenez (thelytoky) için oluşan bir değişiklikten kaynaklandığı ani türleşmenin bir ürünü olarak görülmektedir. Bu kategorideki mevcut türler nispeten yakın zamandaki türleşme olaylarının sonucu olarak görülmektedir, bu kısa zaman taksonomik zorluklar oluşturmak için yeterli bireysel varyasyonları biriktirmek için yeterli zaman sağlayamamıştır. Belirtilen bu durum güney ABD ve Meksika’da bulunan hep-dişi bir kertenkele cinsi olan Cnemidophorus için de geçerlidir. Salamander ve balıklardaki bilinen thelytoky durumları çekirgelerde görülen bir durumda olduğu gibi hibridizasyonun bir sonucudur. Bazı özel durumlarda (ör. Rana esculenta, Poeciliopsis) mayoz boyunca erkek kromozomları yoktur ve ebeveyn türlerden (gynogenesis, veya pseudogamy) birinin erkek tarafından döllenmesi ile gelişen zigotun genotipine erkeklerin katkı sağlamamasına rağmen yumurtanın gelişimini uyarmak için gerekmektedir. Hayvanların iki uzak türü arasındaki hibridizasyon açık şekilde her zaman total sterilite veya eşeysel üremenin bozulmasıyla sonuçlanır. Sikluslu partenogenetik gruplarda bazı türlerde eşeyli üreme sürekli olarak yok olabilir. Bunun konak türdeki bir anahtar ile düzenlendiği durumlarda (bazı afidlerde oldugu gibi) tür statüsü hakkında bazı şüpheler oluşur. Hermafroditler çoğu zaman eşeyli ürer, yani yumurtanın döllenmesi farklı bir bireyin spermatozoası ile yapılır. Ancak bazı türler tamamen kendi kendini döller (automixis). Bu durum Foltz et al. (1982)’ın bazı salyangoz türlerinde buldugu gibi homozigotluğu artırır. Evrimsel Orta Durumluluk Populasyonlar arasındaki üreme ayrılığı olarak belirtildiği gibi tür ancak lokal bir faunanın boyutsuz durumunda komple klasik ayrılıkta mevcuttur. Uzay (enlem ve boylam) ve zaman boyutunda uzanan tür taksonlarından bahsedildiğinde, safha yeni başlayan bir türleşme için oluşturulur. Populasyonlar ayrı türler haline gelme aşamasındaki bu durumlarda bulunabilir. Bu durumdaki populasyonlar ayrı bir türün bazı özelliklerini kazanmış, bazılarını da kazanamamıştır. Ayrılma aşamasının hangi safhasında ayrılan populasyonlar bir tür olarak adlandırılır? Morfolojik ayrılığın kazanılması üreme izolasyonunun kazanılmasıyla yakından ilişkili değilse bir karar vermek özellikle zordur. Bir taksonomistin karsılaştığı ve evrimsel olarak orta durumlu olmaktan kaynaklanan çesitli zorluklar aşagıdaki gibi özetlenebilir. 1- Üreme izolasyonun eşdeger morfolojik değişim olmadan kazanılması: Morfolojik farklılığı olmayan (veya çok az olan), ancak üreme bakımından izole olmuş türler sibling türler olarak adlandırılır. 2- Üreme izolasyonu olmaksızın güçlü morfolojik farklılıkların kazanılması: Bazı hayvan ve bitki cinsleri temas kurdukları bölgelerde tesadüfi olarak kendi arasında üreyen ancak morfolojik olarak oldukça farklı populasyonlara sahiptir. Böyle durumlarda morfolojik olarak farklı her populasyonun tipolojik bir çözüm olarak ayrı türler olarak tanımlanması açıkça uygun değildir. Bunun tersi olarak iki türü arasındaki üreme izolasyonun ara sıra bozulduğu cinsler vardır. Böyle türleri conspesific olarak değerlendirmek zıt ekstremlere götürebilir. Morfolojik farklılık ve üreme izolasyonun aynı zamana rastlamadığı durumlarda genelleştirilmiş bir çözüm yoktur. Burada bir uzmana tek öneri türler biyolojik olarak anlamlı doğal mevcudiyetler oluşturduğu bir durumda türleri sınırlandırmasıdır. 3- İzolasyon mekanizmalarının ara sıra bozulması (hibridizasyon): İyi türler arasında bile üreme izolasyonu ara sıra bozulabilir. Bu durum çoğunlukla sadece steril veya düşük yaşama şansına sahip tesadüfi hibritlerin üretilmesine yol açar ve taksonomik bir probleme yol açmaz. Daha nadir olarak izolasyonun tamamen lokal bir bozulması söz konusudur ve bu durum geniş ölçüde hibrit swarmların ve az çok tamamıyla introgression üretilmesiyle sonuçlanır. Hibrit bireyler, hibrit yapıları keşfedilmeden önce bazen tür olarak tanımlanırlar. Bu isimler, hibrit durumları belirlenince geçerliliklerini yitirir. Sadece populasyonlar taksonlar olarak tanınır ve hibritler populasyon degildir. Bütün populasyonların bir hibridizasyonun sonucunda oluştuğu durumlar taksonomik olarak oldukça zordur. Orijinleri hibridizasyona dayanan çeşitli doğal populasyon tipleri bilinmektedir. a- Hibrit swarmlar: Belli türlerde pek çok simpatrik alanda devam ettirilen üreme izolasyonu lokal olarak bozulabilir, bu durum lokalize olmuş hibrit swarmların üretilmesiyle sonuçlanır. Böyle durumlarda ebeveyn türlerin tür statülerinin korunması önerilir. Meksika’da yasayan Pipilo erythrophthalmus ve P. occi türleri bu duruma örnek olarak verilebilir. Üreme izolasyonunun bu şekilde lokal bir bozulmasından kaynaklanan hibrit populasyonlara her hangi bir taksonomik tanımlama verilmemiştir. Sadece olabilecek bir istisnada üreme izolasyonu öyle bütün bir şekilde kırılabilir ki iki ebeveyn tür tek bir tür halinde birleşebilir. Taksonomik literatür bu durumu yorumlayan çok sayıda durum içerir, ancak bu durumu eksiksiz bir şekilde ortaya koyan tek bir analiz yoktur. b- Hibridizasyonla olusturulan partenogenetik türler: A ebeveyn türünden 1 kromozom takımı ve B ebeveyn tününden 1 kromozom takımına sahip bir bireyin üretilmesiyle sonuçlanan hibridizasyon, kromozom setinin allotetraploidi şeklinde tam olarak ikiye katlanmasına yol açar. Bitkilerde böyle bireyler derhal kendi kendini dölleyen hatta çapraz dölleme yapan allotetraploid bir tür oluşturur. Hayvanlarda çapraz döllenmenin olması neredeyse tamamen zorunludur, yeni bir allotetraploid ancak partenogeneze yol açarak kendini devam ettirebilir (thelytoky). Bu şekildeki hibrit türler genellikle morfolojik olarak iyi bir şekilde karakterize edilirler ve bunların orijin tarzı keşfedildikten sonra bile genellikle geçerli türler olarak tanımlanırlar. Daha kompleks durumlar kısmi partenogenezde ortaya çıkar; oligoketler, planarialar, buğday bitleri, güveler (Solenobia), diğer böcekler, bitler ve kabuklularda görüldüğü gibi bazen triploidi veya daha yüksek poliploidi ile kombine olur. Burada tek bir “türde” iki eşeyli diploidler, thelytokous diploidler ve thelytokous poliploid “ırklar” bulunabilir. Bu ırkların morfolojik olarak ayrılamamakla birlikte üreme bakımından izole olmuşlardır. Bu thelytokous ırklardan çoğu hibridizasyonun ürünüymüş gibi görünmezler. 4- Semispecies ve allospecies: Coğrafik izolatlar zaman zaman tür ve alttür arasındaki bir ara statüdedir. Bazı kriterler tabanında bunlar tür olarak değerlendirilebilir; diğer kriterler temelinde ise değerlendirilemez. Taksonomist tarafından bu şekildeki şüpheli populasyonların yakın olarak ilişkili oldukları türün alttürü olarak değerlendirilmesi genellikle daha uygundur. Diger bazı durumlarda böyle izolatlar açıkça tür seviyesine ulaşır ancak bir üsttürün üyeleri olarak kalırlar. Böyle populasyonlar allospecies olarak dizayn edilebilir. Dairesel çakışmalar ve sınır boyu çakışması durumları evrimsel olarak orta durumluluğun diğer örnekleridir. Sonuçlanan taksonların sıralanması metoduna, evrimsel olarak orta durumluluğun derecesi ve uygunluğu temelinde durumdan duruma karar verilmelidir. Tür ve alttür arasındaki taksonlar genellikle semispecies olarak nitelenir.

http://www.biyologlar.com/biyolojik-tur-kavraminin-uygulanmasindaki-guclukler

TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI

BİYOLOG MESLEĞİ, GÖREV ALANLARI, BİYOLOGLARIN YETKİ VE SORUMLULUKLARI İLE BİYOLOG ODALARI VE TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI Genel Gerekçe Türkiye Cumhuriyeti Anayasası'nın 135 inci maddesinin verdiği hak ve teşvikten yola çıkarak, Biyologların görev alanları, yetki ve sorumlulukları ile Türkiye Biyolog Odaları ve Biyologlar Birliği kanunlarının teklif edilmesi kararlaştırılmıştır. 1933 Üniversite reformu ile ilk defa İstanbul Üniversitesinde nebatat ve hayvanat kürsüsü olarak öğretime başlayan Biyoloji bölümleri ilk mezunlarını 1937de vermiştir. 68 yıldır kadrosu olan ama yetki ve sorumluluğu belli olmayan Biyologların yetki ve sorumluluklarının belirlenmesi için bu kanun tasarısı hazırlanmıştır. Biyoloji biliminin eğitimini alarak Biyolog unvanını kullanmaya hak kazanmış kişilerin; tüm bilimsel, hukuki ve çalışma alanlarındaki görev ve sorumluluklarını belirlemek, mesleki özlük haklarını korumak ve mesleki faaliyetlerini kolaylaştırmak, bu kanun teklifinin temel gerekçesini oluşturmaktadır. Biyoloji, canlı sistemlerin bilimidir. Biyologlar ise; canlılarla ilgili araştırma, (deney, gözlem, koleksiyon, istatistik, koruma, kontrol, inceleme, test, tanı ve değerlendirme) yapar. Canlıların gelişimi, evrimi, kalıtımı, fizyolojisi, ekolojisi, korunması, tanı ve sınıflandırılması, davranışlarını ve özelliklere etki eden faktörlerin neden ve sonuç ilişkilerini araştırır, tanımlar. Aynı zamanda Biyolog, Biyoloji yada Biyolojinin özelleşmiş alt dallarında laboratuar ve arazi çalışmaları yapar. Bu çalışmalarla ilgili yetki ve sorumlulukları taşır. Çalışmalarını yaparken çeşitli biyolojik, matematiksel, fiziksel ve kimyasal yöntemlerle, uygun araç ve gereçlerden yararlanır. Çalışma sonuçları çevre, sağlık, üretim, eğitim, teknoloji ve ekonomi gibi yaşamsal alanlarda uygulanır. Ülkemiz iklim koşulları, coğrafi konumu ve jeomorfolojik yapısı nedeniyle çok zengin ve kendisine özgü bir Biyolojik çeşitliliğe sahiptir. Avrupa'nın sahip olduğu tür sayısına yakın bir flora (bitkiler) ve fauna (hayvanlar) zenginliğine sahip ülkemizin bu biyolojik zenginliğinin korunması konularında dünya ülkeleri arasında hak ettiği yeri alması Biyologların bu tür çalışmalara etkin bir biçimde katılmasıyla mümkün olacaktır. Ülkemiz Biyolojik zenginliklerinin belirlenmesi, korunması Türkiye Büyük Millet Meclisi tarafından değerlendirilmiş 1996 yılında 96/8857 karar sayısı ile Milletlerarası Biyolojik Çeşitlilik sözleşmesi kabul edilerek Biyolojik çeşitlilik daha da önem kazanmıştır Biyolojik zenginliklerle, kalkınma arasında sıkı bir ilişki mevcuttur. Zira tüm ekonomik faaliyetler temelde doğal kaynaklara dayanmaktadır. Bu da biyolojik sistemlerin etkin bir biçimde araştırılması ve anlaşılmasına bağlıdır. Canlı doğal kaynaklarımızı akılcı bir biçimde değerlendirerek kendilerini yenileme, kapasitelerini yitirmeden gelecek kuşaklara aktarabilmek için Biyologlara ihtiyaç vardır ve her zaman olacaktır. Biyologlar,çevre, eğitim, tarım,orman,tıp, sağlık ve ekonomi gibi hayati konularda ülkemizde önemli sorumluluklar yüklenerek hizmet vermektedirler. Bu yüzyılın Biyoloji çağı olacağı göz önüne alınarak Biyologların görev, yetki ve sorumlulukları ile Biyolog Odaları ve Türkiye Biyologlar Birliği Kanun tasarısı hazırlanmıştır. Ulusal Programda Biyologların yeri; Ülkemizin hazırladığı AB'ye uyum için ulusal programda kısa ve orta vadede yer alan beşeri tıbbi ürünler ve gıdaların piyasa kontrolü başlığı altında yer alan uyum yasalarının hazırlanmasında ve uygulanmasında biyologların rolü kaçınılmaz olacaktır. Bilindiği gibi 560 sayılı KHK r0; Gıdaların Üretimi Tüketimi ve Denetlenmesine Dair Yönetmelikr1; te ülke mevzuatında yer almayan hususlarda Uluslar arası mevzuata uyumlu işlem yapılacağı belirtilmektedir. Bu mevzuatın içeriğini bilen ve yorumunu yapabilecek kabiliyetteki biyologların varlığı ülkemiz için bir avantajdır. AB için hazırlanan Ulusal Programda Beşeri Tıbbı Ürünler başlığı içerisinde yer alan biyolojik ürünlerin İyi Üretim Uygulamaları (GMP) na göre üretilmesi, etkili ve güvenli sunumu için yasal olarak görev ve sorumluluklarının belirlenmesi zorunlu olan biyologlarının katkısı büyük olacaktır. Ayrıca tıbbi cihazlar konusunda AB ülkelerinde eğitim almasını önerdiğimiz teknik personel içerisinde mesleki yatkınlıklarından dolayı biyologların olması ülkemiz lehine bir durum olacaktır. Ulusal Programda bitkisel ürünler başlığı altında; transgenik bitkilere ilişkin düzenlemelerde, arıcılığın geliştirilmesi maksadıyla flora çeşitleri, flora mevsimi ve kapasitelerinin haritalandırılması ve de arıcılık Araştırma Enstitülerinin tüm ülkeye etkin bir şekilde hizmet vermesinin sağlanacağı ifade edilmektedir. Genetik, entomoloji, bitki anatomisi,patolojisi ve fizyolojisi konularında yeterli eğitim almış biyologların bu gelişmelere sağlayacağı katkı yadsınamaz düzeyde olacaktır. Aynı zamanda yerli hayvan gen kaynaklarının korunacağı ve bu maksatla Hayvan Gen Bankasının kurulacağı ifade edilmektedir. Tüm dünyada olduğu gibi ülkemizde de bitki ve hayvan gen bankalarının kurulması biyologların işbirliği ile sağlanacaktır. Ormancılık alanında;yaklaşık yarısı verimli durumda olan 20,7 milyon hektarlık ormanlık alanın 1,8'i biyolojik çeşitlilik olmak üzere yüzde 17,5'i korunan alanlar Olarak değerlendirilmektedir. Ormanların ekosistem yaklaşım dahilinde, devamlılık, çok amaçlı yararlanma, biyolojik çeşitlilik ile su ve yaban hayatının korunması doğrultusunda; eko turizm, verimlilik, kirlenme, yangın-böcek-heyelan-kar-çığ-sel-don ve kuraklık gerçekleri ile ergonomik faktörler dikkate alınarak işletilmesi, korunması ve geliştirilmesi için biyologların görev ve sorumluluklarına ihtiyaç duyulacağı açık bir gerçektir. Ayrıca korunan alanlar ve nesli tehlikede olan yaban hayatı ile bitki türleri dikkate alınarak yeniden incelenmelidir. Yeşil ve yaşanabilir bir çevre yaratma konusunda gerekli toplumsal iradenin oluşturulması amacına katkı sağlayacak olan Biyolog Odaları ve Biyologlar Birliğine ait yasa Tasarısının desteklenmesi AB uyum sürecinde olan ülkemiz için bir avantaj olacaktır. AB ülkelerinin üçüncü ülkelerle olan ticaretlerinde Bitki Sağlığı Sertifikası geçerlidir. Üye uygulaması mevcut değildir. Bu uygulamanın yürürlüğe konabilmesi için bitki anatomisi,fizyolojisi, morfolojisi,taksonomi ve sistematiği konusunda birikimi ve terminoloji yatkınlığı olan ülkemiz biyologlarının değerlendirilmesi esas olmalıdır. AB ülkeleri ile Ortak Balıkçılık Politikasının Belirlenmesinde; etkin bir koruma ve kontrol sisteminin oluşturulması ile denizlerdeki ve iç sulardaki doğal ortamın korunması, kontrolü, ve geliştirilmesini sağlamak, kaynakların rasyonel kullanımı ile ilgili tedbirleri almak gerekecektir. Yetiştiricilikle; yapılan üretimin çevre, turizm, ulaştırma ve diğer ilgili sektörlerle etkileşimi dikkate alarak geliştirmeye ve yaygınlaştırmaya önem vermek gerekecektir. Ayrıca gerekli altyapı tamamlandıktan sonra açık deniz balıkçılığına geçmek gerekecektir. Ülke sularının ekolojik ve limnolojik özellikleri belirlenecek, ortama en uygun ve ekonomik değeri yüksek türlerin yetiştirilmesi için balıklandırma faaliyetlerine geçilerek teknik ve hijyenik şartların sağlanması gerekecektir. Yetiştiricilikten elde edilecek deniz ürünlerinin yaklaşık yüzde 80r17;inin AB ülkelerine ihraç edileceği planlanırken, bu çalışmalar içerisinde aktif olarak yer alan biyologlarla ilgili Oda ve Birlik yasasının kabul edilmesi ülkemiz biyologlarının bu çalışmalara arzu edilen katkıyı sağlayacağı anlamını taşır. Ülkemizin farklı ekolojik karakterdeki ekosistem mozaiği, binlerce hayvan ve bitki türü ile bunların ırk ve populasyonlarının barınmasına imkan sağlamıştır. Ülkemizde üç bine yakın endemik olmak üzere dokuz binin üzerinde bitki türü tespit edilmiştir. Hayvan türlerinin ise seksen bin olduğu tahmin edilmektedir. Ülkemiz aynı zamanda yeryüzünün en önemli gen merkezlerindendir. Biyolog Odaları ve Türkiye Biyologlar Birliğinin hazırlayacağı ve hazırlanacak olan koruma projelerine katılması ve giderek karar süreçlerinde etkili olması; Türkiye'nin AB' ye uyum sürecinde, uluslar arası ilişkilerin güçlenmesinde Doğa Koruma konusunda avantajlı duruma gelmesine katkı sağlayacaktır. Ulusal Politikamızın belirlenmesinde; yukarıda sözü edilen tüm konu ve kavramlara sahip çıkabilecek, onları zenginleştirecek, takipçisi olabilecek nitelikteki insan gücü olan biyologlara ve onların meslek birliği olan Biyolog Odaları ve Türkiye Biyologlar Birliğir17;ne şiddetle ihtiyaç duyulacağı göz önüne alınmalıdır. Uluslar arası sözleşmeler ve Biyologlar; Dünyada, biyolojik çeşitlilikle ilgili uluslararası sözleşmelerde fauna ve flora ile birlikte doğal kaynakların yönetimi ve yok edilişinin durdurulması çalışmalarında daha çok biyologlar sorumluluk almaktadır. Avrupa'nın Yaban Hayatı ve Yaşama Ortamlarını Koruma Sözleşmesi olarak bilinen Bern Sözleşmesi ile ilgili olarak fauna ve floranın korunarak gelecek nesillere aktarılması konularında; CITES Sözleşmesi olarak bilinen "nesli tehlikede olan yabani hayvan ve bitki türlerinin uluslararası ticaretine ilişkin sözleşme" gereği yabani türler ya da onların derileri ve trofelerinin ihracatı, transit ve ithalatı ile ilgili konularda; Sulak Alanlar Sözleşmesi olarak ifade edilen Ramsar Sözleşmesi ile sulak alan ekosistemlerindeki bitki ve hayvan toplulukları ve su kuşlarının biyolojisi, ekolojisi ve yayılışı konularında; Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesinde biyolojik çeşitliliğin korunmasında, biyolojik kaynaklardan özellikle genetik çeşitlilikten sağlanan faydanın eşit ve adil paylaşımı konularında biyologlar görev almak zorundadır. Birleşmiş Milletlerin kuraklık ve çölleşmeye maruz ülkeler kapsamına aldığı Türkiye'de de çölleşme ile mücadelede asıl görev alması gereken biyologlardır. Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesine ek Cartagena Biyogüvenlik Protokolü ile biyolojik çeşitlilik, transgenik canlılar, gen transferi ile ilgili konularda ve bu kapsamda taraf olacağımız diğer sözleşmelerin kapsamında olan alanlarda biyologların doğrudan görev, sorumluluk ve yetki almaları ulusal çıkarlar açısından çok önemlidir. Biyologların Şikayet ve İstekleri Türkiye'de biyologların çalışma yerlerinde konumları ile ilgili karşılaştıkları güçlükler son yıllarda aşılmaz hale gelmiştir. Bugün bu sorunlar biyologlarla ilgili gündemin ana konusunu teşkil etmektedir. Biyologların çalıştıkları sahalarda görev, sorumluluk ve yetkileri ile ilgili bir mevzuat yoktur. Ülkemizin doğal kaynaklarının korunmasında, temel tıpla ilgili uygulamalarda, ormancılık ve tarımla ilgili konularda doğrudan görev almaları gerekirken bu görevlerdeki biyologlara, araştırma, koordinasyon, inceleme, planlama, proje ve analiz aşamalarında bilfiil sorumluluk aldıkları halde yetki verilmemektedir. olarak çalışmaktadırlar. Avrupa birliğine tam üyelik aşamasında olan Türkiye'de bu yanlış uygulamalar Avrupa Birliği normlarına ve meslek standartlarına uymamaktadır. Bu nedenlerle demokratik bir ülke olan Türkiye'de biyologların hak ettikleri görev, sorumluluk ve yetkilerin tam olarak belirlenmesi ve bir mevzuat kapsamında görevlendirilmeleri bir zorunluluk haline gelmiştir. Düzenleyen karakecili Düzenleme Tarihi: 19/05/2008 Mehmet İPEK Eskişehir Osmangazi Üniversitesi Gokhan #2 Mesaj Tarihi 18/02/2008 Yönetici Mesaj Sayısı: 211 Katılım Tarihi: 07.02.08 Yasal girişimler 1991 yıllarda çok yoğunlaşmış. İlk yasa tasarısı çok yoğun tartışmalar sonucunda hazırlanmış kitap haline getirilmiş ve TBMM´ne Tınaz Titiz 'in bakanlığı döneminde verilmiştir. Meclis'de yoğun muhalefetle karşılaşılmış Tıp ve Ziraatçıların karşı çıkması ve meclisin tatile girmesi nedeniyle görüşülememiştir. Burada en önemli sorun odalaşmak isteyen meslektaşlarımızın etkin destek vermemeleridir. Bu 2007 yılına kadar böyle devam etti. Oda yasası 1995-1996 yıllarında yeniden güncellenerek TBMM için çalışmalara başlandı. Bu dönemde yasa, komisyonlarda görüşülmeye başlanmış Hükümet adına görüş otuşturmak üzere Sağlık Bakanlığı görevlendirilmiştir. Sağlık Bakanlığında yapılan toplantıya o dönemdeki yönetim ile birlikte Biyologlar Derneği danışmanı olarak üniversiteden hocalarımızda katılmıştır. Sağlık Bakanlığı, Meslek Yasası´nın çıkmasını ancak odalaşmanın karşısında olduğu konusunda bir görüş benimseyerek komisyona göndermiş ve yasanın çıkmasını engellemiştir. 2000 yılında 3. kez güncelenen yasa Osman Durmuş kanalıyla meclise gönderilmiş ama çıkarılamamıştır. 2005 yılında 4. güncellenen yasa tasarısı Kanunlar kararlar dairesine oradan da Salih Kapusuz'a verilmiş. Ne kadar haklı olursanız olun talep edenlerin hem örgütlülükleri hem de güç dengeleri üzerindeki etkinlikleri yasaların çıkması üzerinde çok etkilidir. Kanun yapma yetkisi siyasetin elindedir. Siyasetin zayıf noktası ise oy ve oy potansiyelidir. Eğer güç olamazsak hiç bir hak kazanamayız. Bunun için birlik olmalıyız ve dernek çatısı altında birleşmeliyiz. Şu anda resmi olarak kurulmuş iki dernek bulunmakta. En azından bunlardan her hangi birine üye olmalıyız ki sayı gücümüz olsun. Aksi taktirde değil meslek odası, ekmek yiyeceğimiz iş sahası bile bulamayız. Düzenleyen Gokhan Düzenleme Tarihi: 18/02/2008 BİYOLOGLAR BİRLİĞİ DERNEĞİ Genel Sekreter Gökhan KAVUNCUOĞLU Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/turkiye-biyologlar-birligi-kanun-tasarisi

Balık Örneklerinin Toplanması ve Tespiti

Fauna tespitiyle ilgili olan sistematik çalışmalarda doğadan balık örneklerinin toplanması çok özen gösterilmesi gereken önemli konulardan biridir. Balıklar, toplanacak tür ve alttürlere bağlı olarak, çok çeşitli alet ve yöntemlerle yakalanabilirler. Bu yüzden örnek toplayacak kişinin herşeyden önce amacına uygun olan alet ve yöntemi saptaması gerekmektedir. Aksi takdirde arazide yapılacak uğraşıların büyük bir kısmı sonuca ulaşmaktan uzak kalacak, dolayısıyla boş yere zaman ve iş gücü sarfedilmiş olacaktır. Balık örneklerinin yakalanmasında kullanılabilecek çok çeşitli yöntemler olmakla beraber, bunların avlama etkinlikleri av ortamındaki çeşitli koşulların durumuna da bağlı kalmaktadır. Bu yüzden, bir taraftan yakalanacak örneklerin çeşitli özellikleri (küçük veya büyük boylu oluşu, bentik veya pelâjik yaşam sürdürmesi, gececi veya gündüzcü karakterde olması v.b.) göz önüne alınırken, bir taraftanda uygulanacak alet ve yöntemin avlama yapılacak ortamın koşullarına uygun olmasına dikkat etmek gerekmektedir. Örneğin, zemini taşlık, kayalık olan veya çeşitli bitki kökleri bulunan bir su ortamında balık örnekleri yakalamak için ığrıp denilen ağların kullanılması son derece külfetli ve hatalı bir iştir. Zira böyle bir ortamda çekilecek ığrıp, birtaraftan da sürekli şekilde zemindeki engellere takılarak yırtılabilecek, diğer taraftan zemini düzenli şekilde tarayamayacağı için örnek yakalama olasılığı çok düşük olacaktır.Genel olarak balık örneklerinin yakalanmasında kepçe, ığrıp, fanyalı ağ, kör ağ veya galsama ağı, serpme, pinter, olta, elektrik şoku v.b. gibi av aletleri ile çeşitli tipteki dalyan ve tuzaklardan yararlanılmaktadır. Bu alet ve tuzakların dışında etkinlikleri çok fazla olmasına rağmen, doğadaki dengeyi çabuk bozması nedeniyle yasaların izin vermediği bazı yöntemlerde vardır. Örneğin, Sığır kuyruğu, sütleğen v.b. gibi zehirli otlar; Enderin gibi ziraat ilâçları; dinamit, tahrip kalıbı ve sönmemiş kireç gibi patlayıcı maddeler kanunlann yasakladığı başlıca av yöntemleridir.Burada, sadece yasal olan av alet ve yöntemlerinden kısaca söz edilmesi yararlı olacaktır.Örneklerin tespitiÇeşitli av araç ve yöntemleri kullanılarak ortamlarından yakalanan balık örneklerine, araştırmanın amacına uygun şekilde işlem yapılır. Eğer yakalanan örnekler ergin hale gelmiş büyük boylu bireylerden oluşuyorsa, bunların tür ve alttürlerini arazide saptama olanağı vardır, dolayısıyla tanıma amacıyla laboratuvara götürülmeleri gerekmez. Yakalamadan hemen sonra türlerin saptanabildiği bazı durumlarda da örnekler henüz canlılıklarını yitirmeden tekrar suya bırakılabilirler. Arazide tanınmaları güç olan örneklerin daha ayrıntılı incelemeler için laboratuvara götürülmeleri zorunludur. Kendi ortamlarından canlı olarak yakalanan örneklerden ilerideki araştırmalar için yararlanılmak isteniyorsa bunların herşeyden önce dikkatlice öldürülmeleri gerekir. Genellikle balık örneklerinin öldürülmesi, su dışında bırakılarak boğulmalarının sağlanması şeklinde yapılırsa da, canlı örneklerin su dışında uzun süre kalmaları sonucunda, balıkların vücutlarında ölümden dolayı bir sertleşme oluştuğundan böyle örneklere bilahare şekil vermek güç olmaktadır. Bu nedenle özellikle müze materyali olarak kullanılacak örneklerin, bu yöntemle öldürülmeleri pek yararlı olmamaktadır. Balıkların zedelenmeden ve düzgün bir şekilde kalmalarının sağlanmasında kullanılan yöntemlerden en iyisi, sıvı bir uyuşturucu kullanılmasıdır. Bu iş içinde en uygun anestezik (MS222) olarak bilinen Fenoxiethanol'dür. Canlı olarak yakalanan balıklar bu maddenin 0.001 lik solüsyonunda bırakılarak çok kısa zamanda ve hiçbir zarara uğramadan bayıltılırlar. Bu şekilde bayıltılan örnekler istenilen şekil verildikten sonra ya çok düşük temparatür derecelerinde aniden dondurulur veya uygun fiksatifler içine alınarak uzun süre muhafaza edilirler.Dondurma yöntemiyle tespit edilen örnekler , orijinal renk ve şekillerini daha iyi korumaktadırlar. Bunun için en iyi yöntem, örnekleri gerekli bilgileri taşıyan etiketleriyle birlikte naylon torbalar içersine düzgün bir şekilde ve yüzgeçlerine zarar vermeyecek titizlikte yerleştirip aniden dondurmaktır. Ancak incelenecekleri zaman donmuş materyal çözülür ve üzerlerinde gerekli tetkikler yapılır. Fakat dondurulmuş örnekler, uzun zaman muhafaza edilemezler. Bu açıdan dondurma, özellikle zaman zaman eritilerek incelenmeleri gereken örneklerin saklanmasında geçerli bir yöntem değildir. Bu nedenle bilimsel araştırmalar için (bilhassa faunistik çalışmalarda) örnekleri çok uzun zaman bozulmadan koruyabilen çeşitli fiksatiflerden yararlanılmaktadır. Bunlar içersinde en iyisi % 4 lük formalin solüsyonudur. Bu solüsyonla örnekleri tespit etmek için herbir balık sığ bir kapta (özellikle mumlu küvette) yan yatırılmalı ve mümkün olduğunca düzgün bir şekil verilmelidir. Yüzgeçlerin açık kalmasını sağlamak için de çok ince böcek iğneleri yardımıyla herbir yüzgeç gergin hale getirilmelidir. Sonra, bu örneklerin üzerini örtecek şekilde % 4 lük formalin solüsyonu ilâve edilir ve bu şekilde birkaç gün bırakılarak sertleşmeleri; dolayısıyla belli şekil kazanmaları sağlanmış olur. Şayet örnekler 30 cm. den daha büyük boylu ise, bunların karın kısımlarından jiletle küçük bir yarık açılır veyahut da anal açıklıklarından bir enjektör yardımıyla % 40 lik formol enjekte edilerek iç organlarının tespiti yapılır ve kokuşması önlenir. Mumlu küvetlerde tutularak belli şekil kazandırılmış olan örnekler devamlı muhafaza için başaşaği olarak kavanozlara yerleştirilir ve kuyruk kısımlarını örtecek şekilde fiksatif doldurulur. Balık örneklerinin devamlı muhafazasında genellikle % 4 lük formalin kullanılırsa da bazen % 70 lik Etil alkol veya % l lik Propilen Fenoxatol çözeltisi de kullanılabilir. Bu prezervatiflerin bulunmadığı hallerde genellikle kolay temin edilen ve daha ucuz olan bazı maddelerden de yararlanmak mümkündür. Bunların başhcalan % 70 lik tuvalet ispirtosu, % 50lik NaCl çözeltisi ve % 100 lük (saf olarak) sirkeden ibarettir. Örnekleri taşıyan herbir kavanozun içinde kurşunkalem veya erimez mürekkeple yazılmış bir etiket bulunmalıdır. Bu etikete ilgili türün adı, toplandığı yer, tarih ve toplayanın adı yazılmaktadır.Özellikle % 70 lik Etil alkol ile yapılan muhafazalarda alkolün uçucu olması nedeniyle zamanla kavanozlarda bir eksilme meydana gelmekte, bu durum örneklerin açıkta kalan kısımlarının, özellikle kuyruk yüzgeçlerinin kurumasına ve bozulmasına neden olmaktadır. Bu türlü eksilmelerin önlenmesinde kavanozların kapaklarına ince bir tabaka halinde vazelin sürülmesi çok iyi sonuçlar vermektedir. Diğer taraftan % 4 îük formalin solusyonundaki çok uzun süreli muhafazalarda, formalinin asidik özelliği nedeniyle örnekler esmerleşmekte ve üzerlerindeki leke ve benekler belirsiz hale gelmektedir. Bu durumu önlemek için de % 4 lük formalin solüsyonunun her 4 litresine bir çorba kaşığı kadar Boraks ilâve edilmesi yararlı olmaktadır. Bu sayede formalinin asidik özelliği bir dereceye kadar giderilmiş olur.Yumurta veya larvalar ya %4 lük formol ya da % 70 lik alkol içeren küçük tüplerde saklanabilir. Her tüp içine gerekli bilgileri taşıyan etiketler konulmalıdır (tür adı, lokalite, tarih, örneklerin taze rengi, habitat, toplayanın adı v.b.). Yumurtaların toplanmasında (özellikle yumurtalarınn kümeli olduğu hallerde) mümkün olduğu kadar bol sayıda örnek almalıdır. Zira, yumurtaların substratuma tutturuluş şekilleri, tanımlamada önem taşıyabilir. Bazen balık türleri, sadece pullarından teşhis edilebilirler. Diğer taraftan, vücudun yanlarından alınmış birkaç sağlam pul yardımıyla hayvanın yaşı ve geçmişine ait bazı bilgiler edinme olanağı da vardır, örneklerden pullar alındığında küçük bir zarf içine konup yassı hale getirilmeli ve sonra kurumaya bırakılmalıdır. Bu şekilde pullar uzun süre saklanabilirler. Zarfın üzerinde tür adı, lokalite, tarih, toplayanın adı, numunenin boyu, ağırlığı ve cinsiyeti yazılmalıdır. Tür tanımı amacıyla alınan pullar temizlenmeli, kuru olarak veya gliserin jeli içinde lam üzerinde preparat haline getirilmelidir.Diğer omurgalılarda olduğu gibi, balıkların tanınmasında da bazı kemikler (örneğin, Cyprinid'lerin farinks ve Salmonid'lerin Vomer kemikleri) çok yararlı olabilmektedir. Bazı türlerin yaş ve büyümelerine ilişkin bilgilerin elde edilmesinde belli bazı kemiklerin büyük önemi vardır; Percidae ve Esocidae üyelerinin operküler kemikleri gibi. Bütün böyle kemiklerin incelenme ve bunu izleyerek saklanmaları için hazırlanmaları oldukça basittir. Bunun için daima taze ya da dondurulmuş materyal kullanılmalıdır. Zira önceden tespit olmuş materyal bu amaca uygun değildir. Gerekli kemikler ilgili balıktan üzerlerindeki diğer dokularla beraber kesilerek çıkarılırlar. Sonra herbir kemik birkaç dakika çok sıcak suya atılır ve nihayet yumuşak dokuları temizlemek için küçük ve sert bir fırça ile dikkatlice fırçalanır. Kemik tamamen temizleninceye kadar buna devam edilir. Sonra temiz bir kağıt üzerine konarak ılık bir ortamda yavaş yavaş kurumaya bırakılır. Kemiğin çıkarıldığı balığa ait gerekli bilgiler (tür adı, lokalitesi, tarih, toplayanın adı, boy ağırlık ve seks durumu) etiketine yazılır.Toplanan örneklerin tayini yapılırken bazı kuşku uyandıran durumlar varsa o türe ait biraz daha fazla örnek, yukarıda açıklandığı şekilde öldürülüp muhafazaya alınarak incelenmek üzere, toplanmasıyla ilgili tüm verilerle birlikte o konuda otorite sayılan bir ihtiyoloğa gönderilmelidir. Genellikle örneklerin taze olarak posta ile gönderilmesi iyi sonuç vermez, çünkü fikse edilmemiş örneklerin oldukça süratli bozulmaları söz konusudur. Tespit edilmiş örnekleri göndermeden önce örneklerden tespit solüsyonu iyice süzülmeli ve aynı solüsyon ile ıslatılmış nemli tülbent bezine sarılan bu örnekler sonra da bir naylon torba içine yerleştirilmelidir. Bu paketçik, içinde ambalaj materyali bulunan sert bir kutu içine konup, tümü tek bir paket yapılarak gönderildiğinde, örnekler mükemmel bir şekilde alıcısına ulaşmış olurlar.

http://www.biyologlar.com/balik-orneklerinin-toplanmasi-ve-tespiti-1

Video Kategorileri

BELGESELLER AVES AMPHIBIA INSECTA REPTİL  ARACHNİDA  PALEONTOLOJİ DENİZ CANLILARI         KONGRE VİDEOLARI  VİDEO ANLATIM  MEZUNİYET  

http://www.biyologlar.com/video-kategorileri


Virüslerin Kesifi

Virüs latince zehir anlamına gelir. Virüsler 19. Yüzyılın sonlarına doğru keşfedilmiştir. Robert KOCH, Louis PASTAEUR ve diğer bakteriyologlar , canlılarda görülen birçok hastalıklara bakterilerin sebep olduğunu bulmuşlardır. Fakat bazı hastalıklar onları çok şaşırtıyordu. Çünkü hastalığın meydana geldiği organizmada, bu hastalığa sebep olabilecek bir bakteri bulunamıyordu. Araştırmacıların dikkatini çeken böyle bir hastalığa tütün yaprağında rastlanmıştı. Hasta bitkinin yaprakları , mozayik bir şekilde lekelenip buruştuğu için , bu hastalığa tütün mozaiyik hastalığı adı verilmiştir. Virüsler önceleri bakterilerin salgıladığı bir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak bakterilerin salgıladığıbir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak hastalık yapabileceği gösterildi. Hasta olan tütün bitkisinden çıkarılan özüt, porselen bir filtreden geçirilerek bakteriler tutuldu. Süzülen özüt, sağlıklı tütün bitkisinin yapraklarına sürüldüğünde, bitkinin hastalandığı görüldü. Hollandalı mikrobiyolog M.W. BEIJERINCK hastalığın kısa zamanda bitkinin bütün organlarına yayıldığını tespit etmiştir. Özütte hiç bakteri kalmadığı halde, sağlıklı bitkiyi hastalandıran bu faktöre, BEIJERINCK, “hastalık yapan canlı sıvı” adını vermiştir. 20. yüzyılın başlarında, tütün mozayik virüsünden başka, bitki, insan ve hayvanlarda çeşitli hastalıklar yapan virüsler keşfedilmiştir. Mesela bunlar arasında salatalık, marul ve patateste mozayik hastalığı yapan virüsler sayılabilir. Ayrıca insanlarda sarı humma, çocuk felci, grip, kızamık, kızamıkçık, kabakulak ve suçiçeği gibi hastalıklara sebeb olan virüsler de bilinmektedir. 1930 yılına kadar, virüslerin sebeb olduğu bir çok hastalık tanımlanmasına rağmen, virüslerin yapısı ve özellikleri hakkında fazla bilgi elde edilememiştir. Amerikalı mikrobiyolog Wendell M. STANLEY, 1935 yılında tütün mozayik virüsünü, yaşadığı bitkiden ayırmayı başarmıştır. Bu araştırmacı, saf olarak elde ettiği virüs kitlesini mikroskopta incelediğinde, iğne şeklinde kristaller görmüştür. Daha sonra bu kristallerin nükloproteinler olduğu anlaşılmıştır. Aynı yıllarda STANLEY, izole ettiği tütün mozayik virüsü (TMV) kristallerini elektron mikroskobunda inceleyerek çubuk şeklinde yapılar olduğunu görmüştür. İzole edilmiş tütün mozayik virüsleri cansız gibi görünmesine rağmen, suda biraz bekletilerek tütün yaprağına sürüldüğünde, bitkinin hastalandığı tespit edilmiştir. Bu çalışmalarla, virüslerin ancak canlı hücrelere üreyebildiği anlaşılmıştır. Virüsler, canlı hücrelerde yaşayan mecburi parazitler olup, içinde yaşadığı hücrenin metabolik mekanizmasını kendi hesabına kullanabilen canlılardır. Gerçekten, bir virüs konukçu hücreye girdikten sonra, kendisi için gerekli proteinleri ve nükleik asitleri üretebilmektedir. Yani virüsler, girdiği hücrelerde, metabolizma makinasının direksiyonunu ele geçirmekte ve onu kendi lehine yönlendirebilmektedir. Virüslerin Özelikleri genom: Bir organizmanın sahip olduğu genleri taşıyan DNA’nın tamamıdır. Her organizmanın kendi genomu vardır. Kalıtım maddeleri (genomları) DNA veya RNA olabilir. Sadece proteinkılıf + DNA dan oluşurlar. Bu yapılarından dolayı kopmuş kromatin parçasına benzerler. Hücre organelleri, sitoplazmaları, enerji üretim sistemleri ve metabolizma enzimleri yoktur.Hem canlı hem cansız olarak sayılırlar. Virüslerin canlı sayılmasının nedeni cnalı bir hücre içine girdiğinde DNA eşlemesi yapabilmeleridir. Virüslerin cansız sayılmalarının nedeni hücre dışında cansızların özelliği olan kristal yapıda bulunmalarıdır. Bazı virüslerde virüsün bir hücrenin içine girmesini sağlayan enzimlerde buluna bilir.virüsün üremesi için canlı bir hücreye girmesi şarttır. Virüs girdiği hücrenin ATP’sini ,enzimlerini, nükleotitlerini kısaca herşeyini kendi leyhine kullanan tam bir parazittir. Virüs DNA sının içine girdiği bakteri DNA sından baskın olması ve bu bakteriyi kendi hesabına yönetmesi DNA nın yönetici özelliğine en iyi örnektir.bakteri içine girenvirüse bakteriyofaj denir. Virüs bir hayvan hücresine girdiğinde interferon denilen hormon benzeri bir madde salgılar. Bu madde diğer hücrelere vücutta virüs bulunduğunu haber vererek korumayı sağlar. Virüslerin Büyüklüğü ve Şekli Bütün virüsler o kadar küçüktür ki , bunlar ışık mikroskobunda ayrı parçalar halinde görülemezler. Ancak elektron mikroskobunda belirli şekilde görülmektedir. Büyüklükleri genel olarak 15-450 milimikron arasında değişir. Çocuk felci virüsünün elektron mikroskobuyla alınan fotoğrafı, virüs parçacıklarının pinpon topuna benzer minik yuvarlaklar halinde olduğunu göstermiştir. Virüslerin Yapısı Biyologlar virüslerin canlı tabiatının eşiğinde yani en alt basamağında bulunan varlıklar olarak kabul ederler. Çok küçük çok ilksel organizmalardır. Bu bakımdan virüsler hakkındaki bilgilerimiz henüz çok değildir. Biyologlar çok ince ve dikkatli araştırmaları sonucu virüslerin bir nükleit asit RNA öz maddesi ile bunu saran bir protein kılıftan meydana geldiğini bulmuşlardır. Öz madde virüsün çeşidine göre bir RNA veya DNA olabilir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer, onların içinde çoğalırlar. Bu virüslere Bakteriyofaj (bakteri yiyen virüs) denir. Bakteriyofajlar bakterileri yiyerek yaşarlar. Bakterilerin içinde ürer ve en sonunda içinde yaşadıkları hücreleri yok ederler. İnsan ve hayvanlarda hastalık yapan virüslerin çoğu da, etrafı protein kılıf ile çevrili DNA ipliğinden başka bir şey değildir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer ve onların içinde çoğalırlar. Bu virüslere bakteriyofaj veya kısaca faj (faj virüsleri) denir. Faj bakteri yiyen anlamına gelir. Virüslerin Yaşama Şekilleri Canlı hücrelerden alınan virüsler hücre dışında yaşayamazlar; fakat, yeniden bir hücreye bulaştırılırlarsa hemen çoğalmaya başlarlar. Şu halde, virüsler mecburi parazit olup, ancak canlı hücrelerin içinde yaşayabilirler. Virüsler; çiçekli bitkilerde, böceklerde, bakterilerde, hayvan ve insan hücrelerinde yaşarlar. Bazen çeşitli hastalıklara sebep olurlar. Hattâ bir görüşe göre, bazı kanserlerin bile sebebi virüslerdir. Çiçekli bitkilerden tütün, patates, domates, şeker kamışı ve şeftali gibi faydalı bitkilerin hastalıkları üzerinde yapılan çalışmalarda, 100’den fazla değişik bitki virüsü bulunmuştur. Arı, sinek ve kelebek gibi bazı böcek takımlarının bir çok türlerinde yaşayan virüsler vardır. Bu virüsler, özellikle böcek larvalarında hastalıklara sebep olurlar. Böceklerde hastalık yapan virüsler, zararlı böcveği ortadan kaldırmak için biyolojik mücadelede de kullanılmaktadır. Birçok bakteri ve bazı mantarlarda yaşayan fajlar bulunmuştur. Omurgalılardan sadece balıklarda, kurbağalarda, memelilerde, kuşlarda ve bihassa kümes hayvanlarında yaşayan virüsler tespit edilmiştir. Her virüs çeşidi çoğunlukla vücudun belli bir kısmına girer ve belirli hücreler içinde çoğalabilir. Sarı humma virüsleri karaciğerde;kuduz virüsleri beyinde ve omurilikte; çiçek, kızamık, siğil virüsleri ise deride çoğalır. Virüsler sadece hücre içinde faaliyet gösterdiklerinden hücreye zarar verir ve antibiyotiklerden etkilenmez. Belli bazı virüslerin bulaştığı hücreler, aynı tipten ikinci bir virüs enfeksiyonuna karşı bağışıklık kazanır. Hücre, canlı veya sıcaklıktan öldürülmüş bir virüsle muamele edilince “interferon” denilen bir madde salgılar. İnterferon bazı hastalıklar için hücrelerde bağışıklık meydana getirir. Meselâ kızamık, kabakulak ve kızıl gibi hastalıkları geçirenler, kolay kolay bu hastalığa yeniden yakalanmazlar. Vücudun ve virüslerin bu özelliğine dayanarak bazı virüs hastalıklarına karşı aşılar geliştirilmiştir. Çiçek, sarı humma ve kuduz aşıları belli başlı virütik aşılardır Virüslerin Üremesi Virüsün canlılığını sürdürmek için bulunduğu canlıya konak canlı adı verilir. Virüs konak canlıya girdiğinde konak canlının DNA sı virüsün hesabına çalışmaya başlar. Yani virüs girdiği canlıyı yönetimi altına alır. Artık konak canlı kendi eşlenmesi yerine virüsün yönetici maddesini eşler. Ribozomlarıyla virüsün proteinlerini sentezler. Konak canlıda sayısı hızla artar. Konak canlının hücre zarı parçalanarak virüsler açığa çıkar. Kendilerine yeni konak canlı ararlar. Eğer canlı bir hücre yoksa kristaller meydana getirirler. Devamlı üreyen virüslere Litik Virüs denir.bazı hallerde virüs girdiği konak canlıya zarar vermeden kalabilir. Virüsün yönetici maddesi konak canlının yönetici maddesine yapışırsa konak canlı virüsün yönetimine girmez. Konak canlının yönetici maddesinin bir parçası haline gelebilir. Virüs çoğalamadığı içinde konak canlıya zarar veremeyecektir. Böyle virüslere Lizogenik Virüs denir. Virüsler bitkilerde ve hayvanlarda hastalık meydana getirirler. Ancak bu zarar girdikleri bitki veya hayvan hücresinde yönetimi ele geçirirlerse mümkündür. Virüslerin nükleik asitlerindemutasyonlar meydana gelebilir. Biyolojik açıdan eniyi incelenen virüsler “Bakteriyofaj”lardır. Bunlara bakteri yiyen virüslerde denilebilir. Birde kuyrukları vardır. Kuyruk bakteriye deydiğinde bakterinin o bölgesini eritir. Yönetici molekülü böylece bakteriye geçer. Lizogenik virüsse bakteri kromozomuna yapışır, orada profajı oluşturur.(Girdiği bakterinin kromozomuna yapışarak üremeden kalabilen Lizogenik virüs kromozomuna profaj denir.) Özet Olarak Virüsler 1-Canlı ve cansız arasında geçit oluştururlar. 2-Protein kılıf ve nükleik asitten oluşurlar.(DNA veya RNA) 3-Kristalleşebilirler 4-Kompşex enzim sstemleri yoktur. 5-DNA taşıyanlar bakterileri yiyebilir bunlara bakteriyofaj veya faj denir. 6-Grip, nezle, kızamık, frengi, kabakulak gibi hastalıkları yaparlar. 7-Virüs bir canlı hücrenin (örneğin bakterinin) çeperine yapışır. 8-Virüs DNA’si bakterinin içine enjekte olur. 9-Bakteri DNA’sının eşlenmesi durur. 10-Virüs DNA’sı bakterinin bütün biyokimyasal sistemlerini kullanarak kendini eşlemeye başlar. 11-Bakterinin protein sentezi sistemi virüs için gerekli protein kılıfı v.s. gibi yapıları bakteri malzemesi kullanılarak sentezlenir.bu yolla 100’den fazla virüs oluşur. 14-Bakterinin hücre duvarını delici enzimlerinde sentezlenmesi ve hücre duvarının erimesiyle virüsler dışarı çıkar.

http://www.biyologlar.com/viruslerin-kesifi

ÖRÜMCEĞİN HAYAT HİKAYESİ

Latince örümcek anlamına gelen arakne kelimesinin kökeni, Ovid'in Metamorfozlar adlı eserindeanlattığı mitolojik bir hikayedir. Buna göre, bilgelik tanrıçası Atene, çok güzel örgüler ören köylü kızı Arakne'yi kıskanır; onu bir örgü örme yarışmasına davet eder. Yarışma yapılır. Atene, güzel örgüsünde, olimpiyatlarda intikam tanrıçası Nmesis'in, tanrılara meydan okuyan ölümleri taşımasını tasvir etmiştir. Lakin, Arakne'nin örgüsü daha güzel olmuştur. Arekne örgüsünde ölümlere adaletsiz ve haksız davranışlarda bulunan tanrıları tasvir etmiştir. Yenilgiyi hazmedemeyen Atene, Arekne'nin örgüsünü yırtar ve Arekne'nin başına örgüde kullandığı mekikle vurur. Üzüntüyle oradan kaçan Arekne, bir ağacın dalına kendisini asar. Bunu gören Atene, Arekne'yi bir örümceğe çevirir; böylece tanrılara meydan okuyan Arekna hem cezalandırılmış olur, hem de örgü örmeye devam eder. Bu ilginç hikayeden sonra örümceklerin genel özelliklerini açıklayalım. Örümcekler böcek değildir. İkisinin en önemli farkı, böceklerin altı bacağı varken örümceklerin sekiz bacağı olmasıdır. Ayrıca böceklerin vücudu üç bölütlü, örümceklerinki ise iki bölütlüdür. Son olarak genelde böceklerin binlerce minik gözden oluşan bileşik gözleri vardır, örümceklerin ise genelde tane basit gözü vardır. Örümceklere duyulan aşırı tiksinti ve korkuya araknofobi denir. Aksine çoğu zararsızdır ve birçok zararlı böcekleri avlayarak tabiatı temizleyen bir yaratıktır. Antaktika dışında bütün kıtalarda, çok çeşitli iklim şartlarında ve çöllerde yaşayabilirler. Birçok örümcek türü, özellikle sonbaharın ılık günlerinde, ürettikleri iplikçikleri paraşüt gibi kullanarak, rüzgar yardımıyla kıtalardan çok uzak okyanus adalarına kadar yayılabilirler. 4500 metre yükseklikte bu şekilde uçmakta olan örümcekler görülmüş, en yakın karaya 1500 kilometre uzaklıktaki bir gemide bu tip örümcekler bulunmuştur. Örümcekler farklı kalitede ipekler üreten fabrikalar gibidirler. Karın bölgelerinin alt kısmında meme şeklindeki konik çıkıntılardan salgılanan ipeğimsi maddeyi çok çeşitli amaçlar için kullanırlar. Çoğu örümcekte salgısı ve yapısı farklı en az iki çeşit ipek bezi vardır. Bu bezlerin ürettiği ipliği kimyasal özelliklerine göre farklı işlerde kullanırlar. Her ipliğin esnekliği, dayanıklılığı, kalınlığı ve yapışkanlığı farklı olduğundan, hangi iplik hangi işe daha uygunsa orada kullanılır. Bazı ipleri av yakalamak için tuzak ağları kurmada, bazı ipleri yuvalarının içini döşemede, bazı ipleri de yumurta ve sperm topaklarını korumak için kullanırlar. Milimetrenin binde birinden daha ince olan bu iplik aynı kalınlıktaki çelik telden daha sağlamdır. Bu iplik kendi uzunluğunun dört katı kadar esneyebilir. Ayrıca çokta hafiftir; dünyanın çevresine sarılacak bu ipliğin ağırlığı sadece 320gr'dır. Örümceğin ipliği ve kurduğu yuva kendisi için çok uygundur. Fakat aynı yuva avları için bir tuzaktır. Örümceğin ağı büyüklüğüne göre çok geniş bir sahayı işgal eder ama bu görüntü aldatıcıdır. Asıl yuvası ortada küçük bir yerdir. Gerisi ise avlar için tuzaktır. Örümcek İpliğinin Yapısı Sentetik ve tabii liflerden daha güçlü olan örümcek ipeğinin üretimi, sentetik iplik üreten fabrikalardakine kısmen benziyor. İpek yapımında kullanılan keratin isimli protein; tırnak ve saçlarımızda, kuşların tüylerinde, memelilerin boynuzlarında, yılanların pullarında bulunan çok yaygın bir proteindir. İçinde birçok protein bulunan sıvı ipek maddesi, iplik haline gelmeden önce fışkırtılmak üzere bez kanalında ilerlerken, bu kanalın duvarını teşkil eden hücreler tarafından çok hızlı bir şekilde suyu çekilir; diğer kanaldaki hücrelerde hidrojen atomlarıyla bu suyu aside dönüştürürler. Yoğunlaşmış proteinler asit havuzuna girince, köprülerle birbirine bağlanarak iplik haline dönüşür. Bu sürecin alt birimlerinde, farklı iplik çeşitlerine göre farklı keselerde, farklı yollara sokularak daha değişik iplikler meydana getirilir. Farklı kimyevi maddeler, farklı oranlarda ihtiyaca göre karıştırılarak çok farklı çeşitte ip üretilmesine olanak sağlar. Böylece avlanmada kullanılan iplikler yapışkan, avlanma sonunda avla yuvaya dönerken örümceğin üzerinde yürüdüğü ipler daha sağlam ve esnektir. Ayrıca avın sarıldığı ipler şerit şeklinde ve hareket ettikçe sertleşen özellikte, yumurta keselerini koruyan ipler mikroplara karşı antibiyotikli, asansör olarak kullandığı ipler kaygan, yuvanın ilk kuruluşundaki temel ipler ayrı kalınlıkta, aralarındaki atkılar ise daha incedir. Bütün bu iplikleri örümcek, ayaklarının estetik hareketleriyle yönlendirir ve yerli yerine yapıştırır. Bazı iplikleri örümcek ayağındaki tarakla tarayarak düzeltir. İpliklerin gerilime maruz kaldığında üzerinde çatlaklar oluşmaması için her tarafı sıvı bir malzeme ile kaplanır. Estetik cerrahları bazı örümcek türlerine ait ipliği, hassas tendon ve eklem ameliyatlarında kullanmaya başlamışlardır. Örümcekler ağlarını kurmada iplerini yapıştırdığı noktaları aralarındaki açıları, dengeli ve gerginliğin hesaplarını da yapar. Örümcekler genelde böceklerle beslenirler. Aklımıza gelmeyecek taktiklerle birçok böceği yiyerek, ekolojik dengede önemli görevleri vardır. Böylece böceklerle baş etmemize yardımcı olurlar. Aksi halde böceklerin çokluğu ve mahsüllere verdiği zarar karşısında pes ederdik. Bunun yanında balık, hatta kuş ile beslenen örümcek türleride vardır. Alıntı Yapılarak hazırlanmıştır

http://www.biyologlar.com/orumcegin-hayat-hikayesi

Pedicidae

Limoniidae familyasının bir altfamilyası iken ergin evredeki morfolojik farklılıklardan dolayı familya düzeyine yükseltilmiştir. Bu familya bireyleri Pedicia hariç genellikle orta büyüklükteki sivrisineklerdir. Daha çok sıcak ve nemli yerleri tercih ederler. Erginlerine genellikle dere, göl kenarlarındaki dökülen yaprakların bol bulunduğu yerlerde rastlanmaktadır. Durum her ne kadar böyle olsa da birkaç türe kurak alanlarda, çöllerde, çayırlık alanlarda da rastlanmaktadır. Çoğu türü kuşlar, kurbağaların, balıkların, örümceklerin ve predatör böceklerin besini oluşturmaktadır. Larvalar sucul ve yarı sucul alanlarda bulunurlar. Pupasyon için daha kuru yerlere göç ederler. Az çok ıslak, dere, göl, gölcük, bataklık kenarlarındaki organik toprak veya çürüyen vejetasyonun olduğu yerlerde bulunurlar. Çoğu larva çürüyen bitkilerle beslenmektedir. Bazıları da mantarlarla beslenirken, bir kısmı da predatördür. Erginlerde maksillar palpin son segmenti Pedicia türleri hariç kısadır. Anten normalde 14-16 segmenttir. Rostrum kısa ve nasus mutlaka mevcuttur. Thorax diğer Tipuloidlerde olduğu gibi "V" biçimli mesonotal sutura sahiptir. Kanatlar uzun olup 2 anal damar kanat kenarına kadar uzanır. Sc1 mevcuttur. Bacaklar uzun ve narindir. Bazen 1-2 tibial mahmuza sahipken diğerlerinde mahmuz bulunmaz. Abdomen uzun ve incedir. Erkek terminali karakteristik yapılara sahiptir. 2 çift ganostylus bulunur, bazen bu 1 bazen de 3 çift olabilir. Dişi terminali çeşitli modifikasyonlara sahip olmakla beraber genelde 1 çift valveye sahiptir; cerci de uzamıştır. 6-14 günlük bir yumurta evresine sahiptirler. 4 larval evre ve 5-16 günlük bir pupal evre görülür. Erginlerinin ömrü çok kısadır. Hayat döngüsü, çevresel faktörlere, bilhassa sıcaklık ve neme bağlı olmak üzere 6 haftadan kısa olabildiği gibi 4 yıldan da fazla olabilmektedir. Özellikle uzun hayat döngüleri arktik türlerde görülür. Birçok tür sıcaklık ve yüksekliğe bağlı olarak yılda 1 veya 2 nesil verebilir. Yumurtalar sona doğru daralan uzun mil şeklindedir. Chorion genellikle siyah renktedir. Özellikle küçük türlerde yumurta beyazımsı veya şeffaftır. Larva uzun hemicephalik veya metapneustiktir. Nadiren apneustiktir. Baş kapsülü belirgin olup anterior biçimde kitinleşmiştir. Abdominal segmentler düz ve yumuşaktır. İnce kıllardan oluşan kürek benzeri yapılara sahiptir. Terminal segmentte posterior solunum delikleri bulunur. Genellikle 4 anal loba sahiptir. Pupa uzundur ve obtect tiptedir. Gözler belirgin, mesothorasik çıkıntılar basit yapıda, anten uzun, abdomen köşeli kenarlara sahiptir. Kaynaklar: •Alexander, C. P. & Byers, G. W. 1981. Tipulidae. In: McAlpine, J.F. Peterson, B. V. Shewell, G. E. Teskey, H. J. Vockeroth, J. R. Wood D. M. (eds): Manual of Nearctic Diptera, 1: 153-190 (Agric. Can., Monogr. 27). •Brinkmann, R., 1992, Zur Habitatpräferenz und Phänologie der Limoniidae, Tipulidae und Cylindrotomidae (Diptera) im Bereich eines norddeutschen Tieflandbaches, Faun.-Ökol. Mitt. Suppl., 11 (1991): 1-156. •Dienske, J.W., 1987. An illustrated Key to the Genera and Subgenera of the Western Palaearctic Limoniidae (Insecta: Diptera), including a Description of the External Morphology. Stutg. Beitr. Naturk. (A), no 409: 1-52. •Reusch, 1988. Untersuchungen zur Faunistik, Phänologie und Morphologie der Limoniidae im Niedersächsischen Tiefland (Insecta, Diptera, Nematocera). Thesis, Universty of Hamburg: 154 pp., 77 tables. •Reusch, H., Oosterbroek, P., 1997. Diptera, Limoniidae and Pedicidae, Short-palped Crane Flies, Aquatic insects of North Europe- A Taxonomic Handbook, Nilsson (eds.), 2: 105-132. •Savchenko, E.N., 1989a. Family Tipulidae, pp. 75-118. In. Bei-Bienko, G.A., Keys to the Insects of the European Part of the USSR, 5(1). •Savchenko, Oosterbroek, P. & Stary, 1992. Family Limoniidae, pp. 183-369. In Soos A., Papp L. Oosterbroek P. (eds.): Catalogue of Palaearctic Diptera,1. Akadémiai Kiadó, Budapest.

http://www.biyologlar.com/pedicidae

YUMURTALIK LAGÜNÜ MİLLİ PARKI

YUMURTALIK LAGÜNÜ MİLLİ PARKI

İli : ADANA Adı : YUMURTALIK LAGÜNÜ MİLLİ PARKI Kuruluşu : 06.12.2008 Alanı : 16430 ha. Konumu : Akdeniz bölgesinde, Adana ili, Yumurtalık İlçesi sınırları içerisindedir. Ulaşım : Adana-Karataş-Yumurtalık yolu asfalt yol olup, 70 km.dir. Adana-Ceyhan –Yumurtalık yolu asfalt yol olup, 90 km.dir. Kaynak Değerleri :           Seyhan-Ceyhan deltası göl lagünleri, kıyı kumulları, barındırdığı bitki ve hayvan türleri ile kompleks bir yapı oluşturmaktadır. Ülkemizde halep çamı (Pinus halepensis)’nın nadir bir yayılış alanı olmasının yanında nesli tehlikeye düşmüş su kuşlarının yaşama ortamıdır. Akyatan ve Ağyatan gölleri barındırdığı kuş türleri açısından Türkiye’deki “A sınıfı” niteliğindeki 19 sulak alandan 2’sini oluşturmaktadır. Ayrıca nesli tehlikeye düşmüş 2 tür deniz kaplumbağasının (caretta caretta) ve özellikle chelonia mydas’ın Akdeniz’de varlığını sürdürebilmesi açısından bu alanlar oldukça önemlidir. Saha, Türkiye’nin Akdeniz kıyılarında yer alan 17 deniz kaplumbağası yuvalama alanlarından birisidir. Özellikle Akdenizde yok olma tehlikesi içinde bulunan bir kaplumbağa türü (chelonia mydas) için son sığınma alanlarıdır. Alan Akdeniz fitocoğrafik Bölgesi içinde yer alır. Ülkemizdeki 112 önemli bitki alanından biri olan Ceyhan Deltası önemli bitki alanı içersinde yer almaktadır. Alanın florası ile ilgili çok sayıda araştırma yapılmıştır.2005 yılında yapılan çalışmada 68 familyaya ait 272 takson tespit edilmiştir. Halep çamlığı flora açısından alanın en önemli parçasıdır. Türkiye için nadir bir tür olan Halep çamının burada orman oluşturması yanı sıra, alan için korumada öncelikli 6 tür bulunmaktadır. Alanda bulunan farklı kumul yapıları, farklı bitki örtüsüne sahiptir. Bu nedenle kumul florası çok zengindir.Kumullarda korumada öncelikli 6 bitki türü saptanmıştır. Türkiye’de yaşayan yaklaşık 120 odanata (kızböcekleri) türünden 41’ i alanda bulunmaktadır. Ceyhan Deltası’nda 10 familyaya ait toplam 27 balık türü tespit edilmiştir. 11 familyaya ait 42 sürüngen türü, 4 familyaya ait 6 çift yaşamlı, 12 familyaya ait 35 memeli türü bulunmaktadır. Nil kaplumbağası Ceyhan nehri ağzında çiftleşmekte ve kıyı kumullarında yuvalanarak üremektedir. Alanı önemli kılan unsurların başında kuşlar gelmektedir. Alan kuş göçü yolu üzerinde bulunmaktadır. Alanda toplam 252 kuş türü saptanmıştır.      

http://www.biyologlar.com/yumurtalik-lagunu-milli-parki

Hindistanda 4 Minyatür Form İçeren Yedi Yeni Gece Kurbağası Türü

Hindistanda 4 Minyatür Form İçeren Yedi Yeni Gece Kurbağası Türü

Gizli yaşam alanları ve böcek benzeri ses çıkardığı için bu zamana kadar farkedilmedikleri düşünülen 4 yeni minyatür türün bolluğu bilim adamlarını şaşırttı.

http://www.biyologlar.com/hindistanda-4-minyatur-form-iceren-yedi-yeni-gece-kurbagasi-turu


Likenlerin Özellikleri

Likenlerin Özellikleri

Likenler başlıbaşına birer organizma değildirler. Mantarlar ile alglerin birleşerek morfolojik ve fizyolojik bir bütün halinde meydana getirdikleri simbiyotik birliklerdir (Güner 1986).

http://www.biyologlar.com/likenlerin-ozellikleri

SİSTEMATİĞİN TARİHÇESİ

Bugün yaşayan en geri insan topluluklarında dahi çevrelerindeki canlılara isimler verildiği görülür. Hayvanların ve bitkilerin tanınmasıyla insanların ilk ilgisi tarih öncesi devirlerde başlar. Akdeniz çevresinde bulunan mağaralarda ilkçağ insanlarının çizdiği hayvan ve bitki resimleri bunun en belirgin kanıtıdır. İlk çağlarda insanlar bitkileri yenen, yenmeyen, zehirli, zehirsiz gibi kullandıkları biçime göre sınıflandırmışlardır. Daha sonra bu sınıflandırma dış görünüşlerine göre yapılmış olup bitkiler 1800’lü yıllara kadar otsu, çalımsı, ağaçsı gibi gruplara ayrılmışlardır. Darwin’in evrim teorisini ortaya atışı ile tüm canlı organizmalarda filogenetik (akrabalık ilişkisi) sınıflandırma yapılmaya başlamıştır. Yani Darwin’den sonraki dönemde aşağı yukarı tüm sınıflandırmalar bitkilerin ve hayvanların evrimsel gelişmişliklerine göre yapılmıştır. Yaşayan canlıları gruplar halinde düzenleme konusunda ilk girişimler Mezopotamya uygarlığının bilginleri tarafından yapılmıştır. Bu zamanda Asur uygarlığında yaşayan filozoflar köpek, aslan, çakal gibi canlıları köpekgiller, at, eşek, deve gibi canlıları da atgiller gruplarına sokmuşlardır. Bununla birlikte bazı hatalar da yapılmıştır. Örneğin çekirgeler, kuşların, kaplumbağalar ise balıkların grubuna sokulmuştur. Bitkilerde Son Sınıflandırma Sistemlerini Yapan Bilim Adamları: Bu bilim adamları biyoloji bilimindeki gelişmelerden yararlanmışlardır. Sistematikde kimyasal analiz yöntemleri ile elektron mikroskoplarının (SEM ve TEM) kullanılması ile Biyokimyasal sistematik ve paleobotanik gibi alanlar yeni isimlendirmelerin daha anlamlı yapılmasına yol açmıştır. Son döneme ait bazı Bitki sistematikçileri şunlardır: Robert Thorne, Takhtajan, Arthur Cronquıist ve Rolf Dahlgren gibi. www.sistematiginesaslari.8m.com Hippocrates (M.Ö. 460-377) ve Democritus (M. Ö. 460-370) gibi Yunanlı bilginler hayvanlar üzerinde ilk bilimsel çalışmaları yapmışlardır. Hippocrates hayvan isimlerini saymış, fakat sınıflandırmasıyla ilgili işaretler vermemiştir. Aristo (M.Ö. 384-322) sınıflandırmada ilk rol oynayanlar arasındadır. Yaşamının bir kısmını geçirdiği Midilli Adasında özellikle deniz hayvanlarını inceleyip zoolojik araştırmalar yapmıştır. Sadece kıyaslamalı anatomi değil, embriyoloji, davranış ve ekoloji alanın da incelemeler yapmıştır. Aristo ilk kez hayvanların yaşamlarına, hareketlerine ve vücut yapılarına göre ayrılabileceğini belirtmiş ve hayvanları Ennaima (=Kanlı Hayvanlar) ve Anaima (=Kansız Hayvanlar) olmak üzere başlıca iki gruba ayırmıştır. Bitkilerle ilgili olarak Theophrastos (M.Ö. 372-287) Aristo’nun öğrencisi olup botaniği öncüsü olarak anılır ve 480 bitkinin ayrımını yapmıştır. Plinius (M.Ö. 23-M.S. 79) “Naturalis Historia” (Tabiat Tarihi) eseriyle 1000 kadar faydalı bitkinin kültürü üzerinde bilgi vermiştir. Daha sonra 1500 yıl boyunca kayda değer bir gelişme yaşanmamıştır. 16. Yüzyıla kadar bitkiler tıbbi özellikleri ile ele alınmıştır. 16. yüzyılda Andrea Cesalpino (CAESALPINUS) (1519-1603) “De plantis” (Bitkiler hakkında) adlı eseri ile bitkileri morfolojik esaslar üzerine ilk ayırımını yapan botanikçidir. Daha sonra Kaspar Bauhin (1550-1624) 6000 bitki türünün tasnifini yapmıştır. Bauhin adlandırmada yeni yöntemler kullanan ilk botanikçi olup bugünkü familyalara benzer gruplar oluşturmuş ancak isimleri ve özellikleri belirtmemiştir. Ayrıca bitkilere ikili isimlendirmenin esaslarını ilk ortaya koyan botanikçidir. İngiliz John Ray (1627-1708) bir bitkinin tüm kısımlarının gözönünde tutulmasının gerekliliğini vurgulayan botanikçidir. Bitkilerde varyasyonun iç ve dış nedenlere, bugünkü ifade ile genotipik ve fenotipik nedenlere dayandığını ileri sürmüştür. 1693 yılında “Synopsis Methodica Animalium Quadrupedum Et Serpentini Generis” isimli eserini yayınladı. Böcekler ve kuşlar üzerindeki eseri ise ölümünden sonra yayınlandı. Bu araştırıcı da Aristo kurallarını esas aldı ve sınıflandırmada iç morfoloji de kullandı.Ray’ın 1703’de 2. cildi yayınlanan “Metodus Plantarum” adlı eseri 18000 kadar bitki türünü kapsamaktadır. Fransız Pitton de Tournefort (1656-1708) bitkiler alemini ağaç, ağaçcık ve otlar olarak sınıflandıran ve bitkileri 22 sınıfta toplayan son botanikçi olmuştur. Tournefort’un sistematiğe en büyük katkısı CİNS (genus) kategorisini kurmuş olmasıdır. 698 cinsin isimlendirmesini yapmıştır. Populus, Betula, Fagus, Lathyrus bunlardan birkaçıdır. İsveçli Carl von LINNAEUS (1707-1778) hem botanik hem de zooloji alanına katkıları olmuştur. 1735 yılında sadece 11 sayfadan oluşan SYSTEMA NATURAE isimli meşhur eserini yayınladı. 1737 yılında tüm bitki cinslerini “Genera Plantarum” (Bitki cinsleri), “Species Plantarum” (Bitki türleri) adlı eserinde de 1000 cinse ait yaklaşık 6000 bitki türünün deskripsyonunu işlemiştir. 1753 yılında yayınladığı bu eser ile ikili adlandırma sistemi (Binominal Nomenklatür), yani 2 sözcükten oluşan (Cins adı+epitet adı= TÜR adı) bir sistem geliştirdi. Sistematiğin temelini oluşturan bir çalışma olmuştur. Bu sistem hem hayvan hem de bitki sistematiğinde halen geçerliliğini korumaktadır. Daha sonraları bu araştırıcı doğayı 3 kısımda inceleyerek (hayvan, bitki ve mineral ) hayvan ve bitkileri bir sistem dahilinde göstermiştir. Bu eserde 4 bacaklılar yerine ilk kez Mammalia terimini kullandı. Bu nedenle bugün herkes Linné’yi taksonominin babası olarak tanır. • Linné, canlıları 5 taksonomik kategori içine yerleştirdi. Bunlar: • Sınıf • Takım • Cins • Tür Bu sistemiyle Linné, kendinden sonraki bilginleri öylesine etkilenmiştir ki Systema Naturae isimli kitabın 1758 yılında yayınlanan 10. baskısı Zoologıcal Nomenclature (=Hayvansal isimlendirme)’nin resmi başlangıcı olarak kabul edilmiştir. Böylece canlıların bilimsel isimleri (Latince ve Yunanca) dünyanın her yerinde kullanıla gelmiştir. Bu eserin 10. Baskısında 312 cinse bağlı 4370 hayvan ismi bulunmakta olup, bunlar 6 sınıfa ayrılmıştır: Dört bacaklılar, Kuşlar, Amphibia’lar, Balıklar, Böcekler, Solucanlar. LINNE’ nin öğrencisi olan Fabricius (1745-1808) 1775, 1782 ve 1804 yıllarında yayınladığı “Systema Entomologica” adlı eseriyle bütün böcek faunasını ortaya koymaya çalışmıştır. Bu şekil bir çalışma, bugün bir insanın çalışma gücünün çok üzerindedir ve hatta olanaksızdır. Bu nedenle bu bilginden sonra gelen toksonomistler çalışmalarını tek bir familya veya alt familyaya, hatta bunların da belirli bir coğrafi yayılış alanında bulunan türlerine yöneltmişlerdir. A.L. Jussieu (1748-1836) bitkiler aleminde ilk olarak doğal sınıflandırmayı kullanan kişi olmuştur. A. Pyramus de Candollea (1778-1841) sstematiğin anahatlarını ortaya koyan bir çalışma yapmıştır. 161 familyanın sınırları belirlemiştir. Linne'den sonraki yüzyılda canlıların sınıflandırılması çalışmaları daha da hızlanmıştır. Ancak biyolojik çeşitliliğin fazlalığı karşısında bilim adamları belli gruplar üzerinde ihtisaslaşmaya yönelmek zorunda kalmışlardır. Linnaeus eserlerinde bütün bitki ve hayvanların yanısıra bunlara ait fosilleri dahi tanımlarken,19. yüzyıl araştırıcıları sadece belli canlı grupları üzerinde araştırmalarını sürdürmüşlerdir. A.Braun (1805-1877) Braun sisteminde bitkiler ilkselden gelişmiş formlara doğru kademeli olarak sıralanmıştır. A. Wilhelm Eichler (1839-1930) Braun’un filogenetik sistemini geliştirmiştir. Bitkiler aleminin Cryptogamae ve Panerogamae olarak iki büyük gruba ayırmıştır. Adolf ENGLER (1844-1930) Eichler sistemine dayanarak yeni bir sistem oluşturmuş daha sonra Karl Prantl (1849-1893) ile birlikte 60 botanikçinin yardımı ile 23 ciltte toplanan Engler Sistemini kurulmuştur. Bu sistemde bitkiler alemi organizasyon kademeleri gözönünde tutularak sınıflandırılmış olup filogenilerinden kısmen ayrılmış doğal bir sistemdir. Monokotil bitkiler 1964’de Angiospermlerin sonuna alınmıştır. Bu sistemi birçok bilim adamı ele almış ve geliştirmiştir. R. von Wettstein (1863-1931) 1901 yılında Engler sistemin filogenetik esaslara göre kullanarak bitkiler alemini 9 Filum’a ayırmıştır. Charles E.Bessey (1845-1915), Hans Hallier (1868-1932), John Hutchinson (1884-1972) Angiospermlerin yeni bir dekripsiyonlarını yapmıştır. Dikotil bitkiler otsular ve odunsular olarak iki gruba ayırmıştır.

http://www.biyologlar.com/sistematigin-tarihcesi

Limoniidae

Yakın akraba olduğu Tipulidae ve Cylindrotomidae türleri gibi uzun bacaklı, ince ve narin yapılı vücutlu türleri içerir Erginleri Tipulidlerde olduğu gibi halk arasında sivrisineklerle karıştırılır, fakat sokucu iğneleri olmadığı için kan emmezler, sadece bitki özsularıyla beslenirler. Eutonia hariç, küçük ve orta büyüklükteki turna sinekleri olarak da bilinmektedir. Limoniidae dünya genelinde tanımlanmış 11.000 türle Diptera'nın en büyük familyaları arasındadır. Palearktik bölgeden ise 4 altfamilya dahil 88 cins ve 98 altcinse ait 1700'ü aşkın tür ve alttürü bilinmektedir. Avrupa'dan ise yaklaşık 650 türü bilinmektedir. Rostrum kısadır (Elephantomyia, Helius ve Geranomyia'da uzamış). Nasus ve ocelli mevcut değildir. Maksillar palplerin son segmentleri çoğunlukla kısa, yaklaşık önde bulunan iki segmentle aynı uzunluktadır. Antenler genellikle 14-16 segmentlidir. Ancak bazen az (Hexatoma), bazen de fazla (Ludicia) olabilir. Antenin kamçı segmentleri çoğunlukla basit yapılı oval, yuvarlağımsı veya silindirik olabilir. Bazen vücudun tamamı kadardır veya daha da uzundur (Hexatoma ve Rhabdomastix). Rhpidia'da pectinat tip anten görülür. Toraksın mesonotal suturlarda 'V' biçimli ve çapraz şekildedir. Kanatlar uzamıştır ve 2 anal damara sahiptir. Bu anal damarlar kanat kenarına kadar ulaşır. Kanat membranı macrotricha ve microtricha olmak üzere iki farklı yapıda kıl taşıyabilir. Sc1 mevcuttur. Sc daima ya C ile kaynaşır ya da Sc ile C'nın her ikisine bağlanır. Kanatlar bazen indirgenmiş (Niphadobata ve Chionea) olabilir. Bacaklar genellikle çok uzun ve narindir. Eklem yerlerinden kolayca kırılabilir özelliktedir. Tibia'lar 1 veya iki apikal mahmuza sahiptir, ya da hiç bulunmayabilir. Abdomen genellikle uzun ve narindir. Erkek terminali (hypopygium, hypopyg) çoğunlukla türlerin ayrımında kullanılabilen çok çeşitli karakteristik yapılara sahiptir. Genellikle gonostylusların iki parçası mevcuttur; iç ve dış gonostylus, ama bazen bir veya üç parça halinde bulunabilir. Dişi terminali (ovipositor) çok çeşitli şekillerde modifiye olmuştur, ama genelde iki parçalı valve'den oluşur. Cercuslar genellikle uzamış ve sivridir. Tipik olarak hayat döngüsü kısa bir yumurta safhası (6-14 gün), 4 larval safha ile kısa bir pupa safhasından (5-12 gün) oluşur. Ergin safha da genellikle kısa sürer. Hayat döngüsü, çevresel faktörlere, bilhassa sıcaklık ve neme bağlı olmak üzere 6 haftadan kısa olabildiği gibi 4 yıldan da fazla olabilmektedir. Özellikle uzun hayat döngüleri arktik türlerde görülür. Birçok tür sıcaklık ve yüksekliğe bağlı olarak yılda 1 veya 2 nesil verebilir. Yumurtalar suya, bataklığa benzer topraklara, bitki orijinli ayrışmış çeşitli organik çökeltilere (çürümüş odunlar, orman altı bölgeleri vb.) rutubetli yosunlara ve Hymenomycetes mantarlarına bırakılır. Uzun silindirik yapılı olan larvaları, hemicephalic ve metapneustic'tir, nadiren apneustic'dir. Baş kapsülü belli, ön tarafta iyi sertleşmiş, ventralde ve bazen dorsalde derince oyulmuştur. Çoğu Hexatominae ve Eriopterinae'de 6 boylamsal çizgiye indirgenmiş düz, sert kısımlar bulunur. Baş kısmının 2/3'si veya daha fazlası prothorasic segmentlerin içine geri çekilebilir özelliktedir. Abdominal segmentler düz veya hassas kıl sıralarıyla çevrelenmiştir. Bu kıllar birkaç sürünücü şerit içinde veya etimsi bir çıkıntının üzerinde bulunur. Terminal segment posterior kıllara sahiptir. Spiracular disk genellikle 5 veya daha az çeşitli uzunluklarda olabilen lob benzeri çıkıntılarla çevrelenmiştir. Genellikle 4 anal lob mevcuttur. Larvalar genellikle yaşamlarının büyük bir kısmını sucul ve yarı sucul çevrelerde geçirirler. Pupasyon için kenarlara ya da daha kuru ortamlara hareket ederler. Genellikle az çok ıslak, organik toprak ve çürümekte olan vejetasyon içinde veya çaylar, göller, bataklıklar boyunca ya da kütük yüzeylerinde bulunurlar. Diğer habitatları ise kuru topraklar (Dicranoptycha ve Cheilotrichia; Dicranomyia ve Limonia'nın bazı türleri), acı sular (Limoniini'nin bazı türleri), ıslak uçurumlar, alglerle desteklenmiş köprü kemerleri (Limonia, Orimarga, Elliptera, Dactylolabis'in bazı türleri), yosunlar veya ciğerotları (çeşitli Limoniinae mensupları), çayların içinde bulunan larvaların yaygın olarak beslendiği çürümüş odun veya kütükler üzerinde (Gnophomyia, Teucholabis, Lipsothrix), çayların kumlu veya küçük çakıllı, humuslu bölgeleri (bazı Eriopterinae), odunsu veya cıvık mantarlardır (Metalimnobia). Bir çok Limnophilinae türü karnivordur. Larvalar çürümekte olan sebzelerle, yosunlarla nadir olarak mantarlarla beslenirler (Limonia ve Ula). Bazıları ise predatördür (Hexatoma). Pupalar obtecta tipte olup uzun yapılıdır. Gözler çıkıntılıdır. Mesothorasic boynuzlar genellikle basittir ve uzun ya da kısa sensillalar içerir. Antenlere ait kınlar uzundur. Tarsal kınlar kenarlarda düzenlenmiş, üst üste binmemiştir. Abdomen paralel kenarlı veya oyuklar hariç az çok pürüzsüzdür. Anal segment genellikle dikenlere sahiptir. Özellikle Hexatominae'de abdominal dikenler ve kenar çıkıntı dikenleri mevcuttur. Limoniidlere ait bir çok tür, nemli ve sıcak ortamlara uyum göstermiştir. Erginler genellikle akarsu, dere kenarlarında bulunan tek yıllık otsu bitkilerin çalılıklarla karıştığı yerler ya da ormanlık alanlarda otsu bitkilerin ve eğreltilerin bol bulunduğu alanlarda, göl ve akarsu kenarındaki alt vejetasyon arasında bulunur. Ancak birkaç tür açık alanlarda, çayırlarda, kuru habitatlarda, hatta çöllerde yaşayabilirler. Bir çok tür bulundukları ortamlarda çok sayıda bireyle temsil edilirler ve özellikle kuşların, memelilerin, balıkların ve omurgasızların, özellikle örümcek ve predatör böceklerin besini durumundadır.

http://www.biyologlar.com/limoniidae

Farklı Çeşitteki Patojenleri Tanıma Rehberi

Farklı Çeşitteki Patojenleri Tanıma Rehberi

Protozoa olan Giardia, giardiyaz adı verilen ishal hastalığına sebep olur. Giardia türleri serbest yaşayan (flamotin aracılığıyla) trofozitler ve yumurta şeklindeki kistler olarak bulunur.

http://www.biyologlar.com/farkli-cesitteki-patojenleri-tanima-rehberi

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

LİKENLERİN EKONOMİK ÖNEMLERİ

Likenler; parfümeri ve tıpta olduğu gibi ticari alanlarda yaygın olarak kullanılsa da önemleri insanlar tarafından büyük ölçüde bilinmemektedir. Geçmiş zamanlarda insanlar tarafından yemek ve boya maddesi olarak kullanılmıştırlar ancak bu kullanımlar günümüzde büyük ölçüde terk edilmiştir. Likenler otçul hayvanlar için besin zincirinde dolaylı yoldan ciddi öneme sahiptir, bunlara böcekleri içeren omurgasız hayvanlarda dahildir. Bununla birlikte likenler hava kirliliğinin önemli biyoindikatörleridirler. Bu çalışmamızda likenlerin ekonomik önemlerinden bahsederek Yerköy ilçesi civarındaki bazı liken türlerinin listesi verilmiştir. Ülkemiz liken florası henüz belirlenememiştir. Bununla birlikte ülkemizde likenler ile ilgili ilk çalışmalara 1800’lü yılların ortalarında yabancılar tarafından başlanmıştır. Bunlar tür listesi şeklindedir (1-5). Son yıllarda ise özellikle ülkemiz araştırmacılarının dikkatini çekmiş ve likenler ile ilgili çalışmalar günümüzde de çoğalarak devam etmektedir (6-15). Oldukça geniş ekonomik öneme sahip olmaları ve hava kirliliğinin belirlenmesinde biyoindikatör olarak kullanılabilmelerinden dolayı ülkemizin liken florasını belirlemek oldukça önemlidir. Arş.Gör. M. Gökhan HALICI & Doç. Dr. Ahmet Aksoy

http://www.biyologlar.com/likenlerin-ekonomik-onemleri

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

Kan Parazitleri

Laboratuvarda kan örnekleri ile çalışırken genel temizlik ve güvenlik kurallarına uyulması gerekir. Böylece çevrenizi, çevrenizdeki diğer kişileri ve kendi sağlığınızı korumuş olursunuz. Koruyucu eldiven ve laboratuvar önlüğü giyiniz.  Eğer ellerinizde yada üzerinizde açık yara veya ezikler varsa mutlaka yara bandı vb. ile kapatın. İğne, lanset gibi maddeleri sadece bir kez kullanın ve kullanılmış malzemeleri uygun çöp kutusuna atın.  Çalışma tamamlandıktan sonra eldivenlerinizi çıkartın ve ellerinizi mutlaka yıkayın. Laboratuvarı temizleyin ve dekontaminasyon işlemlerini uygulayın. Örnek Toplama: Zamanlama: Örnekler uygun ortamlarda ve sağaltım (tedavi) öncesinde toplanmalıdır. Eğer malarya veya babesiadan şüpheleniliyor ise örnekler zaman geçirmeden incelenmelidir. Kanda parazit görülmesi (parazitemi) oranı parazit türüne göre dalgalanma gösterir. Bu nedenle birden fazla froti yapılması (8-12 saat ara ile 2-3 gün) tavsiye edilir. Microflaria enfeksiyonu (türe bağlı olarak) belirgin bir dalgalanma sergiler. Bu yüzden örnekleme zamanı çok önemlidir. Eğer mikroflariadan şüphe ediliyor ise örneklemenin aşağıdaki saatlerde yapılması uygundur. Loa loa–Öğlen (saat 10 ile 14 arası) Brugia or Wuchereria–Akşam saat 8 civarı (20.00) Mansonella–Günün herhangi bir saatinde. Örnek Tipi: Venöz kan örnekleri (venalardan alınan kan), teşhis amaçlı bir çok çalışma için uygundur (flariasis ve trypanosomiasis dahil). Ancak bazı enfeksiyonlarda örneğin malariada kan tüplerindeki antikoagulant (pıhtılaşma önleyici) maddeler parazitin morfolojisine ve boyanma özelliklerine olumsuz etkilerde bulunabilir. Bu problem, frotilerin (yayma) kan alınmasından sonra en kısa sürede yapılması ile bir miktar azaltılabilir. Bu gibi durumlarda kapillar kan örnegi (kulak yada kuyruk ucu, insanda parmak ucu) alınması tavsiye edilir. Kılcal (Capillary) Kan İncelemesi: 1. Temiz bir lam alınır ve bir kenarına hasta adı veya numarası, örnek tarih ve saati kaydedilir. (Kayıt cam kalemi ile yapılmalıdır. Normal permanent kalemler işlemler sırasında silinebilir). 2. Kan alınacak bölge Kulak ucu (kuyruk ucu veya parmak, bebeklerde topuk veya ayak baş parmağı) alkol ile temizlenir ve kuruması beklenir. 3. Kulak ucu çok küçük kesilerek (lancet ile delinerek) kanatılır. İlk damla kan alınır ve yayma yapılır. (Yayma için iki thick blood-kalın yayma- ve iki thin blood-ince yayma- yapılması tavsiye edilir). 4. Uygun boyamalarla boyanan örnekler mikroskopla incelenir (immersiyon). Venöz (Venous) Kan İncelemesi: 1. Kan alınacak tüp ve lam üzerine hasta kaydı yapılır. Lam alkol ile temizlenip kurutulur. 2. Kan alınacak bölge temizlenir, alkol ile silinip kuruması beklenir. 3. Uygun bir venadan kan alınır ve EDTA’lı tüplere konur. Yavaş hareketler ile kan iyice karıştırılır. (Diğer antikoagulanlarda kullanılabilir ancak EDTA tercih edilmektedir). 4. En az iki kalın ve iki ince yayma preperat kan alınmasından sonraki mümkün olan en kısa sürede hazırlanılmalıdır. 5. Uygun boyamalar ile boyanan örnek incelenir. Örneklerin Hazırlanıp İncelenmesi: Yayma Örneklerinin (froti) Hazırlanması: Yukarda da belirtildiği gibi, eğer venöz kan kullanılıyorsa frotiler kan alınmasından sonra en kısa sürede yapılmalıdır. Aksi taktirde antikoagulanların parazit morfolojilerini ve boyanma karakterlerini değiştirebileceği unutulmamalıdır. Kalın Yayma (Thick smears) Hazırlanması: Kalın yayma bir damla kanın mümkün olduğunca homojen olarak yayılması işlemidir. Dehemoglobinize olmuş (parçalanmış) alyuvarları incelemek için hazırlanır. Bu yöntem ile kan elemanları ve varsa parazitler ince yaymaya oranla daha fazla yoğunlaştırılmış olur. Bu yüzden kalın yayma, ince yaymaya oranla daha iyi teşhis imkanı sağlar ancak parazit morfolojileri en iyi olarak görünmezler. Pozitif örneklerde (özellikle malaria) tür tayini yapabilmek için ince yayma yapılması tavsiye edilir. Her hasta için en az iki preperat hazırlanılmalıdır. 1. Önceden temizlenmiş ve üzerine hasta kaydı yapılmış lam alınır. 2. Lam’ım ortasına bir damla kan konulur. 3. Bir başka temiz lam köşesi kullanılarak, dairesel hareketler ile kan yayılır (yaklaşık 1.5 cm çapında). 4. Örneğin istenilen kalınlıkta yayılıp yayaılmamış olduğu, altına konulan bir gazetedeki yazıların kısmen okunaklı olması ile kontrol edilebilir. 5. Preperat düz bir yere konarak kuruması beklenir (toz ve böceklerden uzak tutulmalıdır). Yeteri kadar kurumamış yada çok kalın hazırlanmış örnekler işlemler esnasında lamelden ayrılırlar. Oda ısısında yapılan kurutmalar bir kaç saat sürebilir. Minimum 30 dakikalık kurutma gereklidir bu şekilde hazırlanmış örnekler çok dikkatli olarak işlemlere tabi tutulmalıdır. Kurutma işlemi orta ısılı bir etüv yada kurutma dolaplarında yapılabilir. Aşırı sıcak ortamlar istenmez çünkü bu işlem ısı ile örnek tespiti (fiksasyon) yapılmasına yol açar. İnce Yayma (Thin smears)Hazırlanması: İnce yaymada kan gittikçe incelen bir kan katmanı oluşturur. Son kısmında alyuvarlar tek bir katman oluşturmalıdır yada birbirlerinden uzak konumlarda olmalıdır. Her hasta için en az iki örnek hazırlanılmalıdır. 1. Bir damla kan alınıp, lamın hasta kaydı yapılmış kenarından yaklaşık 1.5 cm uzağına konur. 2. İkinci bir lam kan damlasının önüne yaklaşık 45° açı ile konulur. 3. Lam hafif geri çekilerek damla ile temas ettirilir ve kanın lam temas yüzeyine yayılması beklenir. 4. Üstteki lam hızla ileri doğru itilerek kan olabildiğince ince yayılır. Kanın son kısımlarda çok ince yayılmış olmasına dikkat ediniz. Bu işlem uygun miktarda kan ve iyi bir yayma tekniği ile sağlanır. Aksi taktirde yayma istenilen kalitede olmaz. 5. Preperatın kurumasını sağlayın. 6. Preperatı saf (absolute) metanol içerisinde tespit edin 7. Fix the smears by dipping them in absolute methanol. Microfilariae Teşhisi İçin Örnek Hazırlama: A. Kapillar kan örneği alınır. B. Mikroflarialar perifer kanda yoğun olarak bulunurlar. Bu nedenle venöz kan bu tür incelemelerde tercih edilmezler. C. Mikroflaria kontrolü için venöz kan kullanılması gerekirse bu örnek mutlaka konsantre edilmelidir.Bu amaca yönelik çeşitli yöntemler mevcuttur. 1. Örnek modifiye Knott metadu ile konsantre edilir. 2. Filtrasyon Metodu. Bu yöntemde 5 µm çaplı gözenekleri olan filtreler kullanılır. Fitrede kanın şekilli elemanları ve organizmalar takılıp kalırlar. Filtredeki kan şekilli elemanları uygun maddeler ile parçalanır ve filtre üzerindeki organizmalar geri toplanıp lam üzerine yayılır ve incelenir (Bu amaca yönelik çeşitli teşhis kitleri mevcuttur. Ticari markalar olduğu için isimler ve kullanılan malzemeler burada işlenmemiştir) Kan Örneklerinin Nakli: Kan Yayma Örneklerinin Mikroskobik İncelemeler İçin Taşınması: 1. Üzerleri etiketlenmiş ve kurutulmuş yayma preperatlar (boyanmış yada boyanmamış) uygun lam kutularına yerleştirilir. Bu kutularda lamların birbirine temasını engelleyecek ara bölmeler olmalıdır. 2. Bu lam kutusunu sağlam ve arsında şok emici destekleri olan bir başka kutuya yerleştir. Bu sayede nakil sırasında kırılmalar engellenmiş olur. 3. Örnek ile ilgili bilgiler ve gönderen ile ilgili bilgiler detaylı olarak yazılıp kutuya yerleştirilir. 4. Uygun taşıma yolu ile istenilen yere gönderilir. Tam Kan Örneğinin Nakli: 1. Sızdırmaz steril bir kap (deney tüpü vs) içerisine antikoagulanlı kan konur ve etiketlenir. Bu örnek bir kutuya yerleştirilir ve etrafına, sızdırma durumunda kanın emilmesi için emici maddeler konulur. 2. Bu kutu içerisi şok emiciler ile desteklenmiş ikinci bir kutuya yerleştirilir. Örnek (kimden, ne için ve ne zaman alındığı gibi) ve gönderen ile ilgili detaylı bilgiler yazılıp kutuya yerleştirilir. 3. Hazırlanmış kutu veya kutular en kısa sürede (8-12 saat) ilgili laboratuvara ulaştırılmalıdır. Soğuk sistem taşıma gerekebilir. Bu durum ilgili laboratuvar ile görüşülmelidir. İlaç Testleri veya Moleküler Biyoloji Testleri İçin Örnek Nakli: 1. Yukardaki paketleme işlemleri aynen uygulanır. 2. Paket oda sıcaklığında nakledilir. Antikor veya İlaç Testleri İçin Serum (yada Plazma) Örneği Nakli: 1. Paketleme ve etiketleme işlemleri yukarıdaki örneklerde olduğu gibi yapılır. 2. Ek bilgiler yazılıp kutuya konur. 3. Örnek oda ısısında ancak mümkün olduğunca kısa sürede hedefe ulaşması sağlanır. 4. Not: Parazit izolasyon (ayrımı) ve teşhislerinde süre kritik öneme sahişptir. Antikor kökenli taramalarda süre daha az önemlidir. Boyama: Kan Frotilerinin Boyaması: Hazırlanan ikili örneklerden sadece bir set boyanır. İkinci set yedekte bekletilir. Bu durum eğer boyamalarda bir hata olursa, örnek kaybını engellemiş olur. Ayrıca herhangi bir teşhis olayında daha sonraki incelemeler için kaynak oluşturur. Giemsa Boyama: -Kan parazitlerinin aranmasında ve teşhisinde kullanılır. Basit Giemsa Boyama: 1. Preperat hazırlanıp havada kurutulur. 2. Absolute metanolde bir dakika tespit edilir. 3. Kurutulmuş preperat giemsa ile boyanır (30 dakika-Giemsa boyası 1:20 oranında distile suda sulandırılır). 4. Boyama sonrası preperat distile su ile durulanır (Su akar vaziyette olmalıdır). 5. Preperat kurutulup 100X’lük objektif ile incelenir. Not: Preperatlar saklanmak istenirse üzerlerindeki mineral yağ yıkanmalıdır. Yıkama için Ksilol (XYLOL) kullanılır. Preperat üzerine ksilol dökülüp yağı ertmesi bekletilir ve ksilol akıtılıp (işlem mineral yağ tamamen kaybolana kadar bir kaç kez tekrarlanabilir) kurutulur. Geliştirilmiş Giemsa Boyama: 1.Giemsa boyamada kullanılan solüsyonların hazırlanması. A. Stok Giemsa Buffer (100X, 0.67 M) Na2HPO4 59.24 gr NaH2PO4H2O 36.38 gr Deionized water 1000.00 ml B. Otoklav yada 0.2 µm çapında delikleri olan filtre kullanarak sterlizasyon yapılır. Bu şekilde hazırlanmış stok solüsyon oda ısısında bir yıl kullanılabilir. C. Giemsa Buffer, 0.0067M, pH 7.2 (Stok giemsa buffer 100kat sulandırılır) Stok Giemsa Buffer 10.0 ml Dİstile (yada deiyonize) su 990.0 ml Solüsyon da pH7.2 olmalıdır. Kullanmadan önce kontrol edilip ayarlanır. Oda ısısında bir ay dayanır. D. Triton X-100 (% 5) Deiyonize Su (56°C’ ye kadar ısıtılır) 95.0 ml Triton X- 100 5.0 ml Ilık su içerisine Triton X-100 yavaşça ilave edilirken dairesel hareketler ile karıştırılır. Triton X-10 E. Stok Giemsa Boyası: Giemsa boyası hazır olarak satın alınabilir. Aşağıdaki formül daha iyi sonuç verdiği ileri sürülmektedir. Cam Boncuk (3 mm çapında) 30.0 ml Absolute methanol, (asetonsuz) 270.0 ml Giemsa Boya (saf-toz) 3.0 gr Glycerol (Gliserol) 140.0 ml a.Yukarda sayılan maddeleri temiz kahve renkli bir şişe içerisine yerleştirin. Ağzını sıkıca kapatın. b. Şişeyi bir çalkalayıcıda her gün 30-60 dakika ve en az 14 gün boyunca çalkalayın. c. Şişeyi ağzı kapalı olarak nemden uzak olarak oda ısısında saklayınız. Oda ısısında stok bozulmadan kalır (Stok gimza boyası eskidikçe boyama kalitesi artacaktır). d. Kullanmadan önce çalkalayıp bir numara Whatman filtre kağıdında süzün. Bu solüsyondan çalışmak üzere Giemsa boyası hazırlayın. F. Gimsa Boya Hazırlanması (% 2.5) G. Her boyama için taze olarak hazırlanması tavsiye edilir. Bir günden fazla süre geçmiş Giemsa boyası boyamalarda kullanılmamalıdır. Giemsa buffer 39 ml Stok Giemsa Boyası 1 ml Triton X-100 (%5) 2 damla 2. Boyama: A. Bir şahle (boyama küveti) içerisine yukarda açıklandığı şekilde taze olarak Giemsa boyası hazırlayın B. İkinci bir şahleyi Giemsa buffer ile doldurun ve içerisine her 40 ml için iki damla Triton X-100 ekleyin. C. Preperatı Giemsa (% 2.5) ile 45-60 dakika süresince boyayınız. D. Preperatı çıkartıp Giemsa buffer içerisine batırarak (3-5 kez) durulayın. Kalın yayma preperatlarda dikkatli olunmalıdır. E. Preperatı dik olarak bir yere yerleştirip kurutun. Not:Daha yoğun hazırlanan(% 10) Giemsa boyalar ile daha kısa süre bekletilerek (10 dakika) boyama yapılabilir. Ancak bu durum hem daha fazla madde kullanımını gerektirir. Hem de boyama kalitesi çok iyi olmaya bilir. İyi bir boyama yapılmış olup olmadığını pozitif örnekler kullanarak kontrol edilmesi tavsiye edilir. Boyanmamış Yayma Preperatların Uzun Süreli Saklamalar İçin Hazırlanması: Her hangi bir amaç için yayma preperatlar daha sonra incelemek için saklanabilirler. Bu saklamalar, boyama yapılmış preperatlar için sadece kuru ve temiz bir kutuda ve bir birlerine temas etmeden gerçekleştirilebilir. Anacak bazı durumlarda preperatlar hiç bir işlem yapılmadan daha sonraki uygulamalar için saklanmak istenebilir. Bu preperatlar daha sonra istenilen yöntemle işlenip incelenebilirler. 1. Yayma preperat hazırlanır ve çabucak kuruması ağlanır. 2. Örnek absolute (% 100) methanol içerisinde tespit edilir ve kurutulur. 3. Bir lam kutusuna yerleştirilir ve etiketlenir (örnek ile bilgiler kaydedilir) 4. Kutu derin dondurucularda; -70°C yada daha soğuk bir dolapta istenilen süre kadar depolanır. 5. Kullanılacak olan örnekler dolaptan çıkartılır ve boyama işlemleri öncesinde kısa bir süre kurutulur. Isı farklılığından dolayı oluşan su damlacıkları buharlaştırılıp lam kurutulur. Daha sonra boyama işlemlerine geçilir. Microskobik Muayene Kalın Yayma Preperatların İncelenmesi: Alyuvarlar (eritrosit, red blood cell-RBC) parçalanmış (eritilip yok olmuş) ve varsa paraziter organizmalar daha yoğunlaştırılmış olduğundan kontrol ve teşhis çalışmaları için daha uygundur. Karışık (mix) enfeksiyonların teşhisinde de daha yararlıdır. 1. Bütün preperatı küçük büyütme altında inceleyin (10X yada 20X objektif). Böylece büyük parazitleri (mikroflaria gibi) daha kolay teşhis edilir. 2. Daha sonra, mineral yağ ve büyük büyütme (100X objektif) ile örneği tekrar inceleyin. Bu incelemede de küçük parazitler (theileria, babesia gibi) araması yapılır. Preperatta bol miktarda akyuvar (leukosit. white blood cell-WBC) görülecektir. 3. Eğer herhangi bir paraziter yapı görülür ise, o zaman ince yayma preperat incelenerek, tür tayini yapılır. 4. Eğer hiç parazit göremediniz ise; bu durum gerçekten parazit yokluğundan mı kaynaklanıyor, yoksa inceleme devam ettirilmeli midir sorularına araştırmanın hassasiyetine göre yada klinik tabloya göre karar verilir. Hassas durumlarda preperattan en az 100 (200-300) mikroskop sahası (akyuvarların bol görüldüğü) incelenmelidir ve birden fazla preperat incelemesi yapılmalıdır. İnce Yayma Preperatların İncelenmesi: İnce yayma preperatlar farklı amaçlar için kullanılabilir. 1- Tespit edilmiş olan bir parazitin tür tayini amacı ile kullanılabilir. 2- Kalın yaymaların kuruması beklenirken hızlı bir kontrol için kullanılabilir. 3- Yeterli kalın yayma preperat olmadığında kullanılabilir. İnce yaymalarda; eğer aynı örneğin kalın yayma incelemesi yapılmamış ise önce küçük büyütmeler (10x yada 20x objektifler) ile preperat taranmalıdır. Bu sayede mikroflaria benzeri parazitler aranmış olur. Daha sonra büyük büyütme ile (100x objektif) örnek taranır. Parazitlik Yoğunluğunun Tespiti: Bazı durumlarda parazitlik (parazitemi) yoğunluğunun tespiti klinik açıdan önemli bilgiler sağlayabileceği için gerekli olabilir. Bu durumda yoğunluk tespiti ya alyuvarlara yada akyuvarlara oranlanarak hesaplanmaya çalışılır. Alyuvar(RBC) Sayısına Göre Oranlama: Örnekteki 500 ila 2000 arasında alyuvar sayılır ve incelenir, bunlardan kaçtanesinin parazitli olduğu tespit edilir. Sonuç oranlanarak yüzde (%) cinsinden ifade edilir. Eğer parazitlik oranı yüksek ( > 10%) ise 500 alyuvar (RBC) saymak yeterlidir. Düşük oranlarda (<1%) 2000 yada daha fazla alyuvarı incelemek gereklidir. Parazitlik (parasitemia- %) = (parazitli RBC / toplam RBC) X 100 Akyuvar (WBC) Sayısına Göre Oranlama: Kalın yayma preperatlarında parazitler akyuvarlara oranlanırlar. Akyuvarlar ve parazitler sayılır. Bu sayıma 500 parazit veya 1000 akyuvar sayana kadar devam edilir. Hesaplama eğer kullanılan kan hacmi biliniyorsa bilinen hacim üzerinden hesaplanır. Hacim bilinmiyor ise, bir milimetreküp kanda 8000 akyuvar olduğu ortalamasına göre yapılır. Parazitler/milimetre küp (kan) = (parazitler/ WBC) X WBC sayısı (bir milimetre küp kanda yada < 8,000 akyuvarda> Florasanlı Boyalar ile Boyanmış Kan Parazitlerinin Teşhisi: Kan yayma preperatları, acridine orange ile (Kawamoto tekniği) boyanıp ya floresan mikroskop yada özel fitrelere sahip ışık mikroskoplar altında incelenir. Bu boyamada nükleer DNA yeşile boyanırlarken, stoplazmik RNA kırmızıya boyanır. Böylece parazitleri tanımak kolaylaşır. Bu yöntem özellikler malaria (sıtma) etkenlerinin teşhisinde yaygın olarak kullanılmaktadır. Afrika trypanosoma’sında da kullanılmıştır Quantitative Buffy Coat (QBC®; Becton Dickinson) metodu, Bu yöntemde kan örnekleri direk olarak içerisinde akridine orange ve antikoagulan bulunan, cam boncuklu tüplere alınır. Örnekler hematokrit santrifüjde, santrifüj edilip floresans mikroskopla incelenir. Parazitler (malaria-sıtma) granülosit katmanın altında bulunurlar. Bu yöntem diğer kan parazitleri içinde adapte edilmiştir. Antikor (Antibody)Tespiti: Parazit enfeksiyonları konakçıların dokularında yada konakçı atıklarında (dışkı-idrar gibi) görülerek teşhis edilirler. Ancak bu teşhis yöntemleri, derin dokular içerisine yerleşen bazı hastalıklarda yetersiz kalmaktadır (toxoplasmosis yada toxocariasis). Ayrıca cysticercosis ve echinococcosis gibi hastalıklarda örnek alınması, konakçının hayatını tehlikeye sokacağından tavsiye edilmezler. Bu gibi durumlarda, belirgin bir parazit ile enfekte olmuş konakçıda, antikor testlerinin uygulanması büyük avantaj ve kolaylık sağlar. Antikor testlerinde pozitif olarak teşhis edilen konakçının enfektemi olduğu yoksa daha önce geçirdiği bir hastalığın antikorlarını mı taşıyor olduğu ayırt edilmelidir. Parazit hastalıklarında antikor tespiti hastada belirgin olmayan bir zaman da hastalığın varlığını işaret eder. Ancak hastalığın hangi safhada olduğunu kesin olarak belirlemez. Yani antikor tespit edilen hastada, hastalık başlama, gelişme safhalarında olabileceği gibi geçmiş de olabilir. Hastalık geçirmiş olan canlıda antikor düzeyi yavaşça düşer ancak tedaviden sonra dahi antikor düzeyi altı aydan bir kaç yıla kadar değişen sürelerde belirgin düzeylerde kalabilir. Bu durumda incelenen parazitin antikor yoğunluğunun (titrasyonunun), hastalık süresince ve hastalıktan sonra hangi seviyelerde olduğu bilinmesi yararlı olur. Toxoplasma gondii enfeksiyonlarında, spesifik immunoglobulin M (IgM) ve immunoglobulin A (IgA) tespiti hastalık zamanı hakkında bazı bilgiler verebilir. Ancak diğer hastalıklar için tavsiye edilmemektedir. Eğer dışkı, idrar ve kan örneklerinde şüphelenilen parazit görülmemiş ise veya negatif çıkmış ise, parazite spesifik immunoglobulin G (IgG) antikor testi istenilebilir. Parazite-spesifik IgM, IgA, yada IgE teşhis için uygun değildir. Bu nedenle bu antikorların tespiti istenmemelidir. Parazit spesifik IgG negatifken, pozitif çıkan IgM, IgA, yada IgE düzeyleri yalancı pozitif olarak değerlendirilmelidir. Uygulanan testlerin spesifitesi (özel oluşu) ve sensitivitesi (hassasiyeti) sonuçlar üzerinde çok etkilidir. Parazitler, hayat siklusları içerisinde değişik evreler geçirirler. Bu nedenle antijenler, evrelerden sadece birine spesifik olabileceği gibi genel olarak parazite (tüm evrelerinde) spesifik de olabilir. Bu nedenle kullanılacak antijen ve antikor testleri çok iyi bir incelemenin (kaynak bilgiler ve deneyler) sonunda seçilmiş olmalıdır. Testte kullanılacak olan spesifik antijenin yada antikorun spesifite dereceleri çok iyi bilinmelidir. Yayınlanmış olan kitap yada makalelerde aynı konuyu inceleyenlerin mutlak bir birinin aynı olduğunu düşünmek hatalıdır. Hatta bu tür çalışmalar farklı bölgelerde, farklı solüsyonlar yada farklı araştırmacılarca yapılmış çalışmalar olarak, sonuçları kıyaslama açısından daha önemlidir. Örnek İhtiyaçları: Bütün parazit antikor teşhis testlerinde serum yada plazma kullanılabilir. Toxoascaris veya toxoplasmosis için göz yaşı akıntıları da, serum ile beraber antikor testleri için kullanılabilmektedir. Yine, merkezi sinir sistemi enfeksiyonlarında da (cysticercosis yada toxoplasmosis) serebrospinal (beyin-omurilik) sıvıları, serum eşliğinde incelemeye alınabilir. Bütün örnekler oda ısında nakledilebilirler. Bu incelemeler için akut fazdaki enfeksiyonlardan örnek istenilmez. Geçerli sonuçlar genellikle bir test sonucunda elde edilebilmektedir. Parazit enfeksiyonları hasta üzerinde fark edildikleri dönemde, incelenmeye alınırlar ki bu zaman enfeksiyonun akut safhası genellikle geçmiş olur.

http://www.biyologlar.com/kan-parazitleri

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

Sibernetik Organizmalaştırdığımız Böcekler

Diğer bir adıyla sayborg böcekler, yani Robocop gibi böcekler. Vücutlarına eklenen teknolojik araçlarla normalinden daha gelişmiş yeteneklere sahip olan canlıların prototiplerini oluşturmak için kullanılan böcekleri inceleyeceğiz. Sibernetik organizma (cybernetic organism), kısaltılıp dilimize girmiş haliyle sayborg (cyborg) hem biyolojik hem de yapay (elektronik, mekanik veya robotik) parçalardan oluşmuş canlılara deniyor [1]. Sayborgların insan olması gibi bir anlayış hakim olmasına karşın, bu tarz bir kısıtlama kesinlikle yok. Mikro-organizmalar bile bu tanımlamaya dahildir. Zaten sibernetik organizma adının çağrıştırdığı gibi herhangi bir organizmaya uygulanabilir; yeter ki bu teknolojik ve yapay öğeler, bahsi geçen organizmanın değiştirilmemiş haline kıyasla daha yüksek seviyelerde özelliklere sahip olmasını sağlasın. Diğer taraftan bir elektromekanik sisteme veya bir robota eklenecek olan canlı organlar veya dokular da robotun sayborga dönmesine sebep olacaktır. Popüler kültürden örnekler vermek gerekirse, organik ve sentetik parçalardan oluşturulan Robocop, Star Trek’teki Borg Queen (Şekil 1) veya Battlestar Galactica’daki insan saylonlar (cylon) ve Terminatör’ler en akılda kalan sibernetik organizmalardır. Yeri gelmişken sıkça karıştırılan iki terim olan sayborg ve androidin ayrımını da yapalım. Android insan dış görünümünü andıran robotlara verilen isim. Farkettiğiniz üzere bir android aynı zamanda bir sayborg olabilir de (yukarıdaki örnekler), olmayabilir de (örn: ASIMO, bkz. Tekinsiz Vadi).Sayborgların sadece bilim kurgu öğeleri olduğunu zannetmeyin, bu paragrafın sonunda neredeyse hepimizin birer sayborg olduğuna ikna edeceğim belki de sizleri. Öncelikle tanımı gereği gündelik hayatlarımızda kullandığımız bazı elektronik fiziksel eklentiler, bizleri birer sayborga dönüştürüyor. Kalp pilleri, kohlear ve retinal implantlar, insülin pompaları bazı organlarımızın yerini alarak değiştirilmiş vücut organlarımız haline geliyor. Bu sebeple bir başka yazımızda işlediğimiz beyin-makine arayüzleri olarak kullanılan protez kollar ve bacaklar da bizleri birer sayborga dönüştürüyor. Hatta bazı filozoflar ve teorisyenler işi daha da ileri götürerek, kontak lensler ve işitme cihazlarını bile eksik olan biyolojik yetilerimizi güçlendirmeye yaradıkları için sibernetik güçlendirmeler olarak görüyor, ancak ben bu fikire kesinlikle katılmıyorum. Çünkü bu şekilde insanların kullandığı bütün aletleri listeye eklemek mümkün.Sayborg böcekler Şekil 2: Sayborg böceğin üstten ve yandan görünümleri Berkeley bilim insanları 2009 yılında bir böceğin uçma yetilerini kontrol edebildiklerini iddia ettiler (Şekil 2). Bir beyin-makine arayüzü olan ve sinirsel uyarım yapan bir implant sayesinde böceğin uçuşunu başlatıp, yönetip, durdurabildiklerini de aşağıdaki video aracıyla kanıtladılar. Hatta bazalar kasları uyararak böceği istedikleri yöne doğru döndürebildiler. Ama esas işin enteresan kısmı böceğin sadece gerektiği zaman istenilen yöne gitmesine izin veren implantın gömülme detayları (Şekil 2). Eğer böcek istenilen yöne doğru uçuyorsa, yönelim sinyali kesiliyor ve böcek kendini tekrar stabilize edip yoluna koyulmaya devam ediyor, ancak bu sefer bilim adamlarının istediği yöne doğru uçuyor. Aslında bir nevi kontrol edilebilir zombiye dönüşmüş durumda, çünkü bu mekanizma sadece böcek istenilen hareketleri yapmadığında devreye giriyor. Kalkış ve inişlerde böcek kendi karar verip hareketleri otonom olarak yönlendiriyor, çünkü bu tarz bir karmaşık bir bilgiyi böceğe gönderip böcek dinamiğini kontrol etmek oldukça meşakkatli bir iş.DARPA sibernetik böceklere yönelik her türlü araştırmayı destekliyor [2]. Gaz sensörleri, mikrofonlar ve video kameralarla donatmayı planladıkları böceklere utanmasalar bir de minik roketler takacaklarını söyleyecekler (tabii henüz onu söyleyemiyorlar.)         Bu projedeki esas zorluk henüz koza evresinde olan canlıların Mikro ElektroMekanik Sistem (MEMS) devrelerini içerilerine alarak büyümelerini sağlamak ve elektronik-biyonik hibrit böcekler üretmek. Böylece güve (Şekil 3) veya böcek büyüdüğü zaman içlerindeki elektronik devrelere kontrol komutları gönderilebilecek [3].             Şekil 4: Böceği koza evresindeyken beynine yerleştirilen bir implantla kontrol etmek mümkün. i) Koza evresi, ii) Erişkin evresi, Kaynak: Boyce Thompson EnstitüsüAynı takım bundan önce de aşağıda videosunu seyredebileceğiniz sayborg güvelerle çalışmıştı. Gaz sensörleri, düşük çözünürlüklü kameralar ve mikrofonları da kapsayan silikon zihin arayüzleri hayvanların koza evresindeyken beyinlerine yerleştirilebiliyor (Şekil 4). Bu şekilde güve büyüdüğünde arama-kurtarma ve gözetleme görevlerinde kullanılabiliyor. Bir işitme cihazı piliyle beslenen bu elektromekanik düzeneğe sahip güvelerle çalışmanın bir dezavantajı mevcut, o da güvelerin kısa ömürleri. Ayrıca farkettiğiniz üzere USB girişi bulunan bu güveler yukarıdaki böcekler gibi serbest değiller.     Enerji ihtiyacı nasıl karşılanıyor?Şekil 5: Bir bozuk para büyüklüğündeki böceğe takılmış yaylar sayesinde enerji üretmek mümkünSayborg böcekler uzunca bir zamandır kullanılıyor olsalar da, minicik cüsseleri onları tam olarak istenilen birer insansız hava taşıtına çevirmiyor. Bu böcekler (örn. gergedan böceği) genellikle sadece kendi ağırlığının %30’unu taşıyabiliyorlar ki bu da 2.5 grama tekabül eder. Böcekler kendi hayatta kalma enerjilerini kendileri üretiyor olsalar da, eğer bu böceğe kamera veya başka yükler takmak isterseniz, dışarıdan enerji üretmeniz gerekiyor. Eğer sabit bir pil eklerseniz de zaten pilden geriye yer kalmayacağı için yeni sensörler eklemek de imkansız hale geliyor. Az güç harcayan bir alıcı-verici kullandığınızı düşünseniz bile düzenli veri işleme ve aktarımı için yaklaşık 1 ile 100 miliwatt arası enerji gerektiriyor.Bu noktada bilim insanlarının uyguladığı iki adet yöntem var. Birincisi böceğin kendi kaynaklarından enerji elde etmek. Michigan ve Western Michigan Üniversitesi bilim insanları piezoelektrik maddeden yaptıkları bir enerji jeneratörünü, böceğin kanat çırpmasından elektriğe dönüştürecek bir sistem geliştirdiler (Şekil 5). Her kanada takılacak her bir yaydan, 100 mikrowatt (μW) enerji üretilebiliyor ki, böceği yönetmek için kullanılan ortalama 80μW’tan bile daha fazla [4]. Bu tarz bir enerji kaynağında karşılarına çıkabilecek tek sorun böceğin kendi enerjisini toplamak için bir meyve arası vermesi.İkincisi enerji sağlama yöntemi ise nükleer pil kullanmak. Cornell Üniversitesi araştırmacıları 12 yıllık yarı ömre sahip, radyoaktif nikel-63 (Ni-63) izotopu kullanarak enerji sağlanan bir mikro elektromekanik sistem (MEMS) radyo frekans alıcı-vericisi kullandılar. Bu sayede onlarca yıl kendi enerjisini kendi sağlayan bir böcek yaratmış oldular ( her ne kadar böceğin ömrü bu kadar olmasa da). Bu düzenek 10 mikrosaniyede bir, 5 miliwattlık ve 100 Megaherzlik radyo frekansı yayınlayabiliyor. Tabii ki gene Amerikan Savunma Bakanlığı İleri Araştırma Projeleri Ajansı (DARPA) sponsorluğunda yapılan bu projede kontrol devreli güveler ve böcekler kullanılmış.Peki radyoaktif enerji veri transferini sağlayacak enerjiye nasıl dönüştürülüyor? İzotoptan çıkan elektronlar, silikon ve piezoelektrik bir manivela (40 mikrometre kalınlığında ve 4-8 milimetre uzunluğunda) üzerinde negatif yük birikimine sebep oluyorlar [5]. Bu manivela görece daha pozitif olan Ni-63 tabakaya doğru yaklaşmaya ve bükülmeye başlıyor. Tam değeceği sırada, bu negatif yük, tabakaya zıplama yapıyor ve yükünden kurtulan manivela tekrar başlangıç pozisyonuna geri dönüyor. İşte hareket enerjisi de tam bu geri dönme hareketi sırasında elde ediliyor. Bu döngü, izotop tüm enerjisi tükenene kadar devam ediyor, yani yaklaşık 100 yıl kadar.Her bir zıplama hareketi yaklaşık 3 dakika alıyor. Bu da her 3 dakikada bir elektrik üretildiği ve veri transferi yapılabileceği anlamına geliyor. Eğer daha farklı zaman aralıkları hedefleniyorsa, biriken elektron sayısına göre ayarlanmış bir MEMS sistemine ihtiyaç var, ve bu rahatlıkla mümkün. Tüm bu düzeneğin büyüklüğü 1 santimetrekare alan kaplıyor.En önemli çekince, bu radyoaktif kaynaktan aynı zamanda beta yayılımı yapılıp yapılmadığı ve hayvanın ve üzerindeki mekanizmanın zarar görüp görmediği. Bilim adamları sadece 21 nanometre penetrasyon yapan bu nükleer kaynağın zararsız olduğu iddiasında.Sayborg Sinekler:Şekil 6: A) Yuların ucundaki sinek, B) Yuların bağlı olduğu düzeneğin etrafı LED ekranlarla çevrili, C) Sineğin kanat çırpışlarıyla hareket eden robot, D) Kamera düzeneğiETH Zürih Üniversitesi Robotik ve Akıllı Sistemler departmanında çalışan bilim insanları 2010 yılında meyve sinekleri üzerinde yaptıkları araştırmalar sonunda, odada bulunan engellerin etrafından uçurabildikleri bir sayborg sinek yaratmayı başardılar. Bunun için yarattıkları deney koşulları çok sıradışı (Şekil 6).Aldıkları bir sineği sabit bir yulara bağlayarak (Şekil 7), çevresine 360 derecelik bir LED ekran yerleştirilmek suretiyle farklı görüntülere maruz bıraktılar [6]. Bu görüntüler sineği sağ veya sol kanatlarını hızlı veya yavaş şekilde çırpmak için tahrik eden görüntülerdi. Yani sineğe bir nevi sanal gerçeklik yaşatıyorlardı. Bu esnada aynı ortamda bulunan bir kamera sistemi de sineğin kanat çırpma hareketlerini bir robotu kontrol etmek için gerekli komutlara çeviriyordu. Bilim insanları amaçlarının sineklerdeki temel uçuş kontrol mekanizmalarını anlayıp, daha iyi canlı-taklitçi robotlar yapmak olduğunu söylüyorlar.Şekil 7: Meyve sineğinin uçmaya çalışsa bile yerinden kıpırdayamayacak şekilde sabit kaldığı düzenekKamera düzeneği kanat çırpış frekansı, pozisyonu, fazı ve genliğini algılabilecek kalitede seçilmiş. Bu bilgiler bir algoritma sayesinde robotun hareketlerine çevrilmiş ve hareket eden robotun üzerinde bulunan kamera ve yakın mesafe sensörleri sayesinde ise tekrar sineğin çevresinde gördüğü LED ekrandaki hareket görüntülerine çevrilmiş. Benzer düzenekleri popüler sinemadaki Matrix ve özellikle de Avatar filmlerinden hatırlarsınız. Böylece sinek kendisi hareket ettiği için ve çevresi de hareket ettiği simülasyonunu gerçekleştirdiği için, gerçek dünyada ilerlediği izlenimine kapılıyor.Sonsözİstekleri dışında uçmak zorunda bırakılan, bir düzeneğe bağlanan veya radyoaktiviteye maruz kalan bu hayvancağızların, hem zihinsel olarak hem de fiziksel olarak birer zombiye döndükleri aşikar. Acaba bu tarz sorunları hedef alan ve bilimsel araştırma kisvesi altında da olsa hayvanlara eziyeti suç sayan bir sayborg etiğinin bilime sunulma vakti gelmedi mi [7]?Kaynaklar:[1] http://en.wikipedia.org/wiki/Cyborg[2] http://www.darpa.mil/MTO/Programs/himems/index.html[3] http://www.technologyreview.com/computing/22039/[4] http://spectrum.ieee.org/automaton/robotics/military-robots/micro-energy-harvesters-will-make-cyborg-insects-unstoppable[5] http://spectrum.ieee.org/semiconductors/devices/nuclearpowered-transponder-for-cyborg-insect[6] http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/cyborg-fly-pilots-robot-through-obstacle-course[7] Kevin Warwick, Cyborg morals, cyborg values, cyborg ethics, Ethics and Information Technology, Volume 5, Number 3, 131-137, DOI: 10.1023/B:ETIN.0000006870.65865.cf Yazar : Gökhan İnce http://www.acikbilim.com/2012/06/dosyalar/sibernetik-organizmalastirdigimiz-bocekler.html Açık Bilim Haziran 2012

http://www.biyologlar.com/sibernetik-organizmalastirdigimiz-bocekler

<b class=red>Böcek</b> Koleksiyonu - Insect Collection

Böcek Koleksiyonu - Insect Collection

  Exhibit 3: The flight of insects: specimen collection with ten orders of Insecta "The flight of birds has always arisen the curiosity of researchers. For the physiologist, this type of locomotion is one of the most interesting phenomena, but also one of the most mysterious that Nature presents for studying; for the mechanic, the explanation of aerial locomotion is one of the most beautiful problems that one could investigate. But the subject presents special difficulties. The movements of flight are, in general too fast and complicated for the eye to perceive. In addition, the laws of air resistance were hardly known until know, and it was otherwise impossible to understand how birds’ wings find a means of support in the air. " Etienne-Jules Marey Le Vols des Oiseaux (1890) Translated by Anna Lindemann

http://www.biyologlar.com/bocek-koleksiyonu-insect-collection

Orta beyin - Mesencephalon Nedir

Orta beyin - Mesencephalon Nedir

Orta beyin ya da mesencephalon (Grekçe: mesos - orta, enkephalos - beyin), merkezi sinir sisteminin; görme, işitme, motor kontrol, uyku/uyanma, uyarılma (tetiklik) ve sıcaklık regülasyonu ile ilgili bir parçasıdır.

http://www.biyologlar.com/orta-beyin-mesencephalon-nedir

Canlılarda davranış

Tek hücreli canlılarda davranışlar Bir uyartıya karşı canlının yer değiştirmesine taksi denir. Amip fazla ışıktan kaçar → Negatif foto taksi Amip besinli ortamda besine yönelir → Pozitif kemo taksi NOT: Bu olaylar sinir sistemiyle gerçekleşir. Bitkilerde davranışlar Uyartıya karşı pozitif veya negatif yönelmeye tropizma denir. Yönelmeyi oksin hormonu sağlar. Oksin hormonu arttıkça hücre bölünmesi artar. Az ışıklı yerlerde oksin hormonu daha fazla salgılanır. Uzun süreli tepkilerdir. Fotozma: Işığa yönelim. Geozma: Yerçekimine yönelim. Hidrozma: Suya yönelim Kemozma: Kimyasal maddelere yönelim Trava: Köklerin, yaralanan bölgenin tersine yönelmesi Haptotma: Sarmaşık gibi bitkilerin tutunma kökleriyle başka bir yapıya tutunmasını sağlar. NOT: Etkiye karşı verilen yönsüz tepkiye nasti denir. Turgor basıncıyla oluşur. Kısa sürede verilen tepkilerdir. Fotoni: Aslanağzı bitkisinin ışıkta açılması, karanlıkta kapanması Termoi: Lalenin yaprakları 5-10 °C’ta kapalı, 10-15 °C’ta açıktır Sismoi: küstümotu bitkisinin dokunulduğunda yapraklarını kapatması Hayvanlarda davranışlar Kalıtsal (doğal) davranışlar: Doğuştan gelen davranışlardır. Örn: İnsanın doğumundan hemen sonra akciğerlerinin çalışması. Kazların V şeklinde uçması. İpek böceği tırtılının kozasını ergin olunca yapması. Refleks ve İçgüdüsel Davranışlar: Canlılarda etkiye karşı oluşan ani ve değişmez tepkilere refleks denir. Sinir sistemi olan tüm canlılarda refleksler oluşur. Örn: Parmağına iğne batan birinin elini çekmesi, emme refleksi, araba kullanma NOT: Uyarıya karşı verilen kalıtsal, karmaşık davranışlar içgüdüsel davranışlardır. Örnek: Kuşların yuva yapması, kuşların göç etmesi. Kazanılmış Davranışlar: Deneyim sonucu değişen davranışlardır. Örn: Kargaların bostan korkuluğundan kaçması Fizyolojik ve davranışsal tepkilerin 24 saatlik zaman aralıklarında tekrarlanmasına günlük döngü denir. Günlük döngünün çok düzenli olması vücut içinde bir biyolojik saatle kontrol edildiğini gösterir.Bununla birlikte biyolojik saat günlük döngüye göre biraz hızlı ya da yavaş çalışır. biyolojik saat, gün ışığı gibi dış(çevresel) bir uyarı tarafından sürekli ayarlanmış olmalıdır. Örneğin bir böceğin biyolojik saatinin 25 saatte bir tamamlandığını kabul edelim. Böceğin biyolojik saatinin normal gece-gündüz döngüsüyle aynı fazda kalması için hergün bir saatlik ayarlama yapılabilir. Fakat böcek uzunca bir süre ışıkta tutulursa, biyolojik saatin günlük ayarlaması yapılamayacaktır. Böylece böceğin biyolojik saati gerçek gece-gündüz döngüsüyle aynı fazda olmaktan gittikçe çıkacaktır. Eğer böcek gün ışığında sürekli 10 gün tutulursa 10. günde biyolojik saatin günlük normal döngüden 10 saat farklılaşmış olduğu görülecektir. Sosyal davranışlar Canlılar; üreme, beslenme, barınma, korunma gibi sebeplerden dolayı sosyal davranışlar sergilerler. Örn: Arıların Dansı, böceklerin feromon salgılaması Topluluk halinde yaşan canlılarda grup davranışları vardır ve bu sosyal bir davranıştır. Bu davranış grup içinde dayanışmayı arttırır ve türün evrim sürecinde baki kalmasında avantajlar sağlar. İşbirliği, yarışma, oyun, savunma, iletişim meydana getirir ve bir hiyerarşi oluşturur. Otorite seviyelerine göre bireylerin organizasyonuna sosyal hiyerarşi denir. Hiyerarşi bir ast-üst ilişkisi getirdiği gibi belirli bir özdenetim de sağlar.

http://www.biyologlar.com/canlilarda-davranis

Paleozoyik

(1. Zaman) 545 milyon önce başlamış, 250 milyon yıl önce sona ermiştir. Yaklaşık olarak 295 milyon sürmüştür. Paleozoyik’in ilk döneminde (kambriyen) hayvanlar aleminde hızlı bir evrimleşme ve dolayısıyla çeşitlenme olmuştur. Çoğu kitapta bu çeşitlenme “kambriyen patlaması” olarak ifade edilmektedir. Kambriyen patlamasına (hayvanların çeşitlenmesi) neden olan faktörler çeşitli olabilir. Bunların başında ekolojik faktörler gelir. İkincisi jeolojik faktörler gösterilmektedir. Son yıllarda bir diğer faktör olarak genetik etkenler gösterilmektedir. Genetik faktör olarak Hox genlerinin hayvanlarda evrimleşmesiyle önemli bir etkide bulunduğu sanılmaktadır. Bilinen hayvan şubelerinin bir çoğunun paleozoyikte ortaya çıkmış ve çeşitlenmiştir. Tüm tartışmalara karşın "Kambriyen Patlaması" olarak adlandırılan ve bu süreçte, sadece 25 milyon yıl içinde bugün bilinen hayvan şubelerinin neredeyse hemen hepsi ortaya çıkmış ve hızla evrimleşmişlerdir. Paleozoyik’in ikinci dönemimde (ordovisiyen) ilk omurgalılar (balıklar) oluşmuş, dönemim sonuna doğru bitkiler ve böcekler kara yaşamına geçmişlerdir. Paleozoyik’in devoniyen dönemimde çift yaşamlılar (amphbia) oluşmasıyla omurgalılarda karasal yaşama uyum sağladı. Devoniyen’de balıkların çeşitliliğinden dolayı bu döneme “Balık Çağı” adı da verilmektedir. Kömür devri olarak da bilinen karbonifer döneminde yeryüzünün çoğu kısmında bataklık ormanları şeklinde dev boyutlu bitkiler bulunuyordu. Dünya kömür rezervlerinin büyük bir bölümü bu devire ait olduğundan, devire "karbon içeren" anlamında Karbonifer adı verilmiştir. Karbonifer tüm dünya karalarının ekvatoral düzlemde bir araya toplanmaya başladığı ve büyük bir bölümünün günümüz Amazon ormanlarına benzetilebilecek yağmur ve bataklık ormanlarıyla kaplı olduğu bir devirdi. Dev boyutlu bitki örtüsünün yanı sıra, dev boyutlu böcekler, kırkayaklar ve akrepler ve çeşitli iki yaşamlılar bu devrin önemli canlılarıydı. Yine bu dönemde paleoziyik başında tek olan dünya karaları (Rodinia) parçalanmış ve tekrar birleşmek üzere yeni bir dünya kıtasını (Pangea) oluşturmaya başlamıştır. Karbonifer'in sonuna doğru iklim kuraklaşmaya başladı. Kuraklaşan iklimle birlikte bitkilerin ve ormanların yapısı da değişti ve yeni ortamda sürüngenler kendilerini yavaş yavaş göstermeye başladı. Paleozoyik’in son döneminde (permiyen) pangea tamamen oluştu. Bataklık ormanlarının yok oldu. Sürüngenler yaygınlaşmaya başladı ve dönemim sonunda hayvanlar dünyasında büyük bir yokoluş olmuştur (İlk Kitlesel Biyolojik Yokoluş). Hayvan türlerinin % 90 kadar yol olduğu varsayılmaktadır. İLK KİTLESEL BİYOLOJİK YOKOLUŞ 1. zaman (Paleozoyik) yaklaşık 295 milyon yıl sürdü. Zamanın sonuna kadar omurgalı sınıflardan balıklar, çift yaşamlılar (kurbağalar) ve sürüngenler hızla evrimleşti. zaman sırasındaki en önemli olay canlıların sulardan karalara çıkması ve buralarda kendilerine yeni yaşam alanları bulmasıydı. Bu olay bitkiler - balıklar - çift yaşamlılar - sürüngenler arasındaki evrimsel ilişkilerle gerçekleşti. 1. zaman sonundaki ani iklimsel değişiklikler biyolojik toplu bir yok oluşa neden olmuştur. Tüm türlerin % 90 - 95'i oradan kalktı. Böylece bir çok tür 2. zamana geçemedi.

http://www.biyologlar.com/paleozoyik

Virüslerin Yaşama Şekilleri

Canlı hücrelerden alınan virüsler hücre dışında yaşayamazlar; fakat, yeniden bir hücreye bulaştırılırlarsa hemen çoğalmaya başlarlar. Şu halde, virüsler mecburi parazit olup, ancak canlı hücrelerin içinde yaşayabilirler. Virüsler; çiçekli bitkilerde, böceklerde, bakterilerde, hayvan ve insan hücrelerinde yaşarlar. Bazen çeşitli hastalıklara sebep olurlar. Hattâ bir görüşe göre, bazı kanserlerin bile sebebi virüslerdir. Çiçekli bitkilerden tütün, patates, domates, şeker kamışı ve şeftali gibi faydalı bitkilerin hastalıkları üzerinde yapılan çalışmalarda, 100’den fazla değişik bitki virüsü bulunmuştur. Arı, sinek ve kelebek gibi bazı böcek takımlarının bir çok türlerinde yaşayan virüsler vardır. Bu virüsler, özellikle böcek larvalarında hastalıklara sebep olurlar. Böceklerde hastalık yapan virüsler, zararlı böcveği ortadan kaldırmak için biyolojik mücadelede de kullanılmaktadır. Birçok bakteri ve bazı mantarlarda yaşayan fajlar bulunmuştur. Omurgalılardan sadece balıklarda, kurbağalarda, memelilerde, kuşlarda ve bihassa kümes hayvanlarında yaşayan virüsler tespit edilmiştir. Her virüs çeşidi çoğunlukla vücudun belli bir kısmına girer ve belirli hücreler içinde çoğalabilir. Sarı humma virüsleri karaciğerde;kuduz virüsleri beyinde ve omurilikte; çiçek, kızamık, siğil virüsleri ise deride çoğalır. Virüsler sadece hücre içinde faaliyet gösterdiklerinden hücreye zarar verir ve antibiyotiklerden etkilenmez. Belli bazı virüslerin bulaştığı hücreler, aynı tipten ikinci bir virüs enfeksiyonuna karşı bağışıklık kazanır. Hücre, canlı veya sıcaklıktan öldürülmüş bir virüsle muamele edilince “interferon” denilen bir madde salgılar. İnterferon bazı hastalıklar için hücrelerde bağışıklık meydana getirir. Meselâ kızamık, kabakulak ve kızıl gibi hastalıkları geçirenler, kolay kolay bu hastalığa yeniden yakalanmazlar. Vücudun ve virüslerin bu özelliğine dayanarak bazı virüs hastalıklarına karşı aşılar geliştirilmiştir. Çiçek, sarı humma ve kuduz aşıları belli başlı virütik aşılardır.

http://www.biyologlar.com/viruslerin-yasama-sekilleri

Bitkilerde Virüs hastalıkları Tanımı ve Mücadelesi

Bitkilerde Virüs hastalıkları Tanımı ve Mücadelesi

Virüs, kelime olarak “Zehir” anlamına gelmektedir. 17. ve 18. yüzyılda yanlış olarak, sebebi bilinmeyen bütün hastalıklar için kullanılmıştır.

http://www.biyologlar.com/bitkilerde-virus-hastaliklari-tanimi-ve-mucadelesi

Hayatın Kuşları Çalınıyor

Hayatın Kuşları Çalınıyor

Bulunmuş olduğu coğrafik konum, uygun iklim koşulları nedeniyle yüzlerce kuş türüne ev sahipliği yapan Hatay’ın kuşları tehdit altında. Hatay’da yoğun bir şekilde bulunan Saka (Carduelis carduelis)  kuşu doğadan yakalanıp satılıyor. Arap uyruklu bazı kimseler yerelden tanıdıkları vasıtasıyla özellikle Kırıkhan ve cevresinde yoğun bir şekilde  saka kuşlarını  yakalanarak satıldıkları yönünde ciddi duyumlar almaktayız. Ayrıca bir çok tür yırtıcı kuş, özellikle atmaca ve doğan türleri, Ortadoğu ülkelerine satılmak için kaçak olarak yakalanıyorlar. Oysa bu bir suç.Bu duruma tanık olan her vatandaşımızın bağlı bulundukları bölgenin kolluk güçlerine ve milli park yetkililerine ihbarda bulunmaları gerekmektedir. Kuşların birçok ekolojik ve ekonomik hizmetleri var. Böcek yiyen kuşlar birçok tarım zararlısını kontrol altında tutar ve bu kuşların elma, kayısı, erik, pamuk gibi önemli bitki ve ağaçlara  dadanan böcekleri yiyerek bu yönde ekonomik fayda sağladıkları bilimsel olarak yapılan çalışmalarda ıspatlanmıştır.Bunun yanında, sivrisinek gibi insan sağlığı için risk taşıyan birçok böceği de yerler. Türkiye'de sivrisinek ve kum sineklerinden gecen sıtma ve sark çıbanı vakaları geçmiş yıllarda sıkca görülmekteydi.Bunun yanında sürekli katledilen birçok yırtıcı kuş, sıçan ve diğer kemirgenleri yiyerek çiftçimize ve diğer insanlara büyük hizmetler sağlamaktadırlar. Halkımızın bu konuda duyarlı olmasını ve kolluk kuvvetlerine yardım etmesini bekliyoruz. Abdullah ÖĞÜNÇ Türkiye Tabiatını Koruma Derneği Hatay Şubesi Yönetim Kurulu Başkanı Ttkd.hatay@hotmail.com Abdullah.ogunc@dogadernegi.org 0533 369 7721 http://www.ttkder.org.tr

http://www.biyologlar.com/hayatin-kuslari-caliniyor

Kan Parazitleri

Laboratuvarda kan örnekleri ile çalışırken genel temizlik ve güvenlik kurallarına uyulması gerekir. Böylece çevrenizi, çevrenizdeki diğer kişileri ve kendi sağlığınızı korumuş olursunuz.  Koruyucu eldiven ve laboratuvar önlüğü giyiniz.  Eğer ellerinizde yada üzerinizde açık yara veya ezikler varsa mutlaka yara bandı vb. ile kapatın.  İğne, lanset gibi maddeleri sadece bir kez kullanın ve kullanılmış malzemeleri uygun çöp kutusuna atın.  Çalışma tamamlandıktan sonra eldivenlerinizi çıkartın ve ellerinizi mutlaka yıkayın.  Laboratuvarı temizleyin ve dekontaminasyon işlemlerini uygulayın. Örnek Toplama: Zamanlama: Örnekler uygun ortamlarda ve sağaltım (tedavi) öncesinde toplanmalıdır. Eğer malarya veya babesiadan şüpheleniliyor ise örnekler zaman geçirmeden incelenmelidir. Kanda parazit görülmesi (parazitemi) oranı parazit türüne göre dalgalanma gösterir. Bu nedenle birden fazla froti yapılması (8-12 saat ara ile 2-3 gün) tavsiye edilir. Microflaria enfeksiyonu (türe bağlı olarak) belirgin bir dalgalanma sergiler. Bu yüzden örnekleme zamanı çok önemlidir. Eğer mikroflariadan şüphe ediliyor ise örneklemenin aşağıdaki saatlerde yapılması uygundur. Loa loa–Öğlen (saat 10 ile 14 arası) Brugia or Wuchereria–Akşam saat 8 civarı (20.00) Mansonella–Günün herhangi bir saatinde. Örnek Tipi: Venöz kan örnekleri (venalardan alınan kan), teşhis amaçlı bir çok çalışma için uygundur (flariasis ve trypanosomiasis dahil). Ancak bazı enfeksiyonlarda örneğin malariada kan tüplerindeki antikoagulant (pıhtılaşma önleyici) maddeler parazitin morfolojisine ve boyanma özelliklerine olumsuz etkilerde bulunabilir. Bu problem, frotilerin (yayma) kan alınmasından sonra en kısa sürede yapılması ile bir miktar azaltılabilir. Bu gibi durumlarda kapillar kan örnegi (kulak yada kuyruk ucu, insanda parmak ucu) alınması tavsiye edilir. Kılcal (Capillary) Kan İncelemesi: 1. Temiz bir lam alınır ve bir kenarına hasta adı veya numarası, örnek tarih ve saati kaydedilir. (Kayıt cam kalemi ile yapılmalıdır. Normal permanent kalemler işlemler sırasında silinebilir). 2. Kan alınacak bölge Kulak ucu (kuyruk ucu veya parmak, bebeklerde topuk veya ayak baş parmağı) alkol ile temizlenir ve kuruması beklenir. 3. Kulak ucu çok küçük kesilerek (lancet ile delinerek) kanatılır. İlk damla kan alınır ve yayma yapılır. (Yayma için iki thick blood-kalın yayma- ve iki thin blood-ince yayma- yapılması tavsiye edilir). 4. Uygun boyamalarla boyanan örnekler mikroskopla incelenir (immersiyon). Venöz (Venous) Kan İncelemesi: 1. Kan alınacak tüp ve lam üzerine hasta kaydı yapılır. Lam alkol ile temizlenip kurutulur. 2. Kan alınacak bölge temizlenir, alkol ile silinip kuruması beklenir. 3. Uygun bir venadan kan alınır ve EDTA’lı tüplere konur. Yavaş hareketler ile kan iyice karıştırılır. (Diğer antikoagulanlarda kullanılabilir ancak EDTA tercih edilmektedir). 4. En az iki kalın ve iki ince yayma preperat kan alınmasından sonraki mümkün olan en kısa sürede hazırlanılmalıdır. 5. Uygun boyamalar ile boyanan örnek incelenir. Örneklerin Hazırlanıp İncelenmesi: Yayma Örneklerinin (froti) Hazırlanması: Yukarda da belirtildiği gibi, eğer venöz kan kullanılıyorsa frotiler kan alınmasından sonra en kısa sürede yapılmalıdır. Aksi taktirde antikoagulanların parazit morfolojilerini ve boyanma karakterlerini değiştirebileceği unutulmamalıdır. Kalın Yayma (Thick smears) Hazırlanması: Kalın yayma bir damla kanın mümkün olduğunca homojen olarak yayılması işlemidir. Dehemoglobinize olmuş (parçalanmış) alyuvarları incelemek için hazırlanır. Bu yöntem ile kan elemanları ve varsa parazitler ince yaymaya oranla daha fazla yoğunlaştırılmış olur. Bu yüzden kalın yayma, ince yaymaya oranla daha iyi teşhis imkanı sağlar ancak parazit morfolojileri en iyi olarak görünmezler. Pozitif örneklerde (özellikle malaria) tür tayini yapabilmek için ince yayma yapılması tavsiye edilir. Her hasta için en az iki preperat hazırlanılmalıdır. 1. Önceden temizlenmiş ve üzerine hasta kaydı yapılmış lam alınır. 2. Lam’ım ortasına bir damla kan konulur. 3. Bir başka temiz lam köşesi kullanılarak, dairesel hareketler ile kan yayılır (yaklaşık 1.5 cm çapında). 4. Örneğin istenilen kalınlıkta yayılıp yayaılmamış olduğu, altına konulan bir gazetedeki yazıların kısmen okunaklı olması ile kontrol edilebilir. 5. Preperat düz bir yere konarak kuruması beklenir (toz ve böceklerden uzak tutulmalıdır). Yeteri kadar kurumamış yada çok kalın hazırlanmış örnekler işlemler esnasında lamelden ayrılırlar. Oda ısısında yapılan kurutmalar bir kaç saat sürebilir. Minimum 30 dakikalık kurutma gereklidir bu şekilde hazırlanmış örnekler çok dikkatli olarak işlemlere tabi tutulmalıdır. Kurutma işlemi orta ısılı bir etüv yada kurutma dolaplarında yapılabilir. Aşırı sıcak ortamlar istenmez çünkü bu işlem ısı ile örnek tespiti (fiksasyon) yapılmasına yol açar. İnce Yayma (Thin smears)Hazırlanması: İnce yaymada kan gittikçe incelen bir kan katmanı oluşturur. Son kısmında alyuvarlar tek bir katman oluşturmalıdır yada birbirlerinden uzak konumlarda olmalıdır. Her hasta için en az iki örnek hazırlanılmalıdır. 1. Bir damla kan alınıp, lamın hasta kaydı yapılmış kenarından yaklaşık 1.5 cm uzağına konur. 2. İkinci bir lam kan damlasının önüne yaklaşık 45° açı ile konulur. 3. Lam hafif geri çekilerek damla ile temas ettirilir ve kanın lam temas yüzeyine yayılması beklenir. 4. Üstteki lam hızla ileri doğru itilerek kan olabildiğince ince yayılır. Kanın son kısımlarda çok ince yayılmış olmasına dikkat ediniz. Bu işlem uygun miktarda kan ve iyi bir yayma tekniği ile sağlanır. Aksi taktirde yayma istenilen kalitede olmaz. 5. Preperatın kurumasını sağlayın. 6. Preperatı saf (absolute) metanol içerisinde tespit edin 7. Fix the smears by dipping them in absolute methanol. Microfilariae Teşhisi İçin Örnek Hazırlama: A. Kapillar kan örneği alınır. B. Mikroflarialar perifer kanda yoğun olarak bulunurlar. Bu nedenle venöz kan bu tür incelemelerde tercih edilmezler. C. Mikroflaria kontrolü için venöz kan kullanılması gerekirse bu örnek mutlaka konsantre edilmelidir. Bu amaca yönelik çeşitli yöntemler mevcuttur. 1. Örnek modifiye Knott metadu ile konsantre edilir. 2. Filtrasyon Metodu. Bu yöntemde 5 µm çaplı gözenekleri olan filtreler kullanılır. Fitrede kanın şekilli elemanları ve organizmalar takılıp kalırlar. Filtredeki kan şekilli elemanları uygun maddeler ile parçalanır ve filtre üzerindeki organizmalar geri toplanıp lam üzerine yayılır ve incelenir (Bu amaca yönelik çeşitli teşhis kitleri mevcuttur. Ticari markalar olduğu için isimler ve kullanılan malzemeler burada işlenmemiştir) Kan Örneklerinin Nakli: Kan Yayma Örneklerinin Mikroskobik İncelemeler İçin Taşınması: 1. Üzerleri etiketlenmiş ve kurutulmuş yayma preperatlar (boyanmış yada boyanmamış) uygun lam kutularına yerleştirilir. Bu kutularda lamların birbirine temasını engelleyecek ara bölmeler olmalıdır. 2. Bu lam kutusunu sağlam ve arsında şok emici destekleri olan bir başka kutuya yerleştir. Bu sayede nakil sırasında kırılmalar engellenmiş olur. 3. Örnek ile ilgili bilgiler ve gönderen ile ilgili bilgiler detaylı olarak yazılıp kutuya yerleştirilir. 4. Uygun taşıma yolu ile istenilen yere gönderilir. Tam Kan Örneğinin Nakli: 1. Sızdırmaz steril bir kap (deney tüpü vs) içerisine antikoagulanlı kan konur ve etiketlenir. Bu örnek bir kutuya yerleştirilir ve etrafına, sızdırma durumunda kanın emilmesi için emici maddeler konulur. 2. Bu kutu içerisi şok emiciler ile desteklenmiş ikinci bir kutuya yerleştirilir. Örnek (kimden, ne için ve ne zaman alındığı gibi) ve gönderen ile ilgili detaylı bilgiler yazılıp kutuya yerleştirilir. 3. Hazırlanmış kutu veya kutular en kısa sürede (8-12 saat) ilgili laboratuvara ulaştırılmalıdır. Soğuk sistem taşıma gerekebilir. Bu durum ilgili laboratuvar ile görüşülmelidir. İlaç Testleri veya Moleküler Biyoloji Testleri İçin Örnek Nakli: 1. Yukardaki paketleme işlemleri aynen uygulanır. 2. Paket oda sıcaklığında nakledilir. Antikor veya İlaç Testleri İçin Serum (yada Plazma) Örneği Nakli: 1. Paketleme ve etiketleme işlemleri yukarıdaki örneklerde olduğu gibi yapılır. 2. Ek bilgiler yazılıp kutuya konur. 3. Örnek oda ısısında ancak mümkün olduğunca kısa sürede hedefe ulaşması sağlanır. 4. Not: Parazit izolasyon (ayrımı) ve teşhislerinde süre kritik öneme sahişptir. Antikor kökenli taramalarda süre daha az önemlidir. Boyama: Kan Frotilerinin Boyaması: Hazırlanan ikili örneklerden sadece bir set boyanır. İkinci set yedekte bekletilir. Bu durum eğer boyamalarda bir hata olursa, örnek kaybını engellemiş olur. Ayrıca herhangi bir teşhis olayında daha sonraki incelemeler için kaynak oluşturur. Giemsa Boyama: -Kan parazitlerinin aranmasında ve teşhisinde kullanılır. Basit Giemsa Boyama: 1. Preperat hazırlanıp havada kurutulur. 2. Absolute metanolde bir dakika tespit edilir. 3. Kurutulmuş preperat giemsa ile boyanır (30 dakika-Giemsa boyası 1:20 oranında distile suda sulandırılır). 4. Boyama sonrası preperat distile su ile durulanır (Su akar vaziyette olmalıdır). 5. Preperat kurutulup 100X’lük objektif ile incelenir. Not: Preperatlar saklanmak istenirse üzerlerindeki mineral yağ yıkanmalıdır. Yıkama için Ksilol (XYLOL) kullanılır. Preperat üzerine ksilol dökülüp yağı ertmesi bekletilir ve ksilol akıtılıp (işlem mineral yağ tamamen kaybolana kadar bir kaç kez tekrarlanabilir) kurutulur. Geliştirilmiş Giemsa Boyama: 1.Giemsa boyamada kullanılan solüsyonların hazırlanması. A. Stok Giemsa Buffer (100X, 0.67 M) Na2HPO4 59.24 gr NaH2PO4H2O 36.38 gr Deionized water 1000.00 ml B. Otoklav yada 0.2 µm çapında delikleri olan filtre kullanarak sterlizasyon yapılır. Bu şekilde hazırlanmış stok solüsyon oda ısısında bir yıl kullanılabilir. C. Giemsa Buffer, 0.0067M, pH 7.2 (Stok giemsa buffer 100kat sulandırılır) Stok Giemsa Buffer 10.0 ml Dİstile (yada deiyonize) su 990.0 ml Solüsyon da pH7.2 olmalıdır. Kullanmadan önce kontrol edilip ayarlanır. Oda ısısında bir ay dayanır. D. Triton X-100 (% 5) Deiyonize Su (56°C’ ye kadar ısıtılır) 95.0 ml Triton X- 100 5.0 ml Ilık su içerisine Triton X-100 yavaşça ilave edilirken dairesel hareketler ile karıştırılır. Triton X-10 E. Stok Giemsa Boyası: Giemsa boyası hazır olarak satın alınabilir. Aşağıdaki formül daha iyi sonuç verdiği ileri sürülmektedir. Cam Boncuk (3 mm çapında) 30.0 ml Absolute methanol, (asetonsuz) 270.0 ml Giemsa Boya (saf-toz) 3.0 gr Glycerol (Gliserol) 140.0 ml a. Yukarda sayılan maddeleri temiz kahve renkli bir şişe içerisine yerleştirin. Ağzını sıkıca kapatın. b. Şişeyi bir çalkalayıcıda her gün 30-60 dakika ve en az 14 gün boyunca çalkalayın. c. Şişeyi ağzı kapalı olarak nemden uzak olarak oda ısısında saklayınız. Oda ısısında stok bozulmadan kalır (Stok gimza boyası eskidikçe boyama kalitesi artacaktır). d. Kullanmadan önce çalkalayıp bir numara Whatman filtre kağıdında süzün. Bu solüsyondan çalışmak üzere Giemsa boyası hazırlayın. F. Gimsa Boya Hazırlanması (% 2.5) G. Her boyama için taze olarak hazırlanması tavsiye edilir. Bir günden fazla süre geçmiş Giemsa boyası boyamalarda kullanılmamalıdır. Giemsa buffer 39 ml Stok Giemsa Boyası 1 ml Triton X-100 (%5) 2 damla 2. Boyama: A. Bir şahle (boyama küveti) içerisine yukarda açıklandığı şekilde taze olarak Giemsa boyası hazırlayın B. İkinci bir şahleyi Giemsa buffer ile doldurun ve içerisine her 40 ml için iki damla Triton X-100 ekleyin. C. Preperatı Giemsa (% 2.5) ile 45-60 dakika süresince boyayınız. D. Preperatı çıkartıp Giemsa buffer içerisine batırarak (3-5 kez) durulayın. Kalın yayma preperatlarda dikkatli olunmalıdır. E. Preperatı dik olarak bir yere yerleştirip kurutun. Notaha yoğun hazırlanan (% 10) Giemsa boyalar ile daha kısa süre bekletilerek (10 dakika) boyama yapılabilir. Ancak bu durum hem daha fazla madde kullanımını gerektirir. Hem de boyama kalitesi çok iyi olmaya bilir. İyi bir boyama yapılmış olup olmadığını pozitif örnekler kullanarak kontrol edilmesi tavsiye edilir. Boyanmamış Yayma Preperatların Uzun Süreli Saklamalar İçin Hazırlanması: Her hangi bir amaç için yayma preperatlar daha sonra incelemek için saklanabilirler. Bu saklamalar, boyama yapılmış preperatlar için sadece kuru ve temiz bir kutuda ve bir birlerine temas etmeden gerçekleştirilebilir. Anacak bazı durumlarda preperatlar hiç bir işlem yapılmadan daha sonraki uygulamalar için saklanmak istenebilir. Bu preperatlar daha sonra istenilen yöntemle işlenip incelenebilirler. 1. Yayma preperat hazırlanır ve çabucak kuruması ağlanır. 2. Örnek absolute (% 100) methanol içerisinde tespit edilir ve kurutulur. 3. Bir lam kutusuna yerleştirilir ve etiketlenir (örnek ile bilgiler kaydedilir) 4. Kutu derin dondurucularda; -70°C yada daha soğuk bir dolapta istenilen süre kadar depolanır. 5. Kullanılacak olan örnekler dolaptan çıkartılır ve boyama işlemleri öncesinde kısa bir süre kurutulur. Isı farklılığından dolayı oluşan su damlacıkları buharlaştırılıp lam kurutulur.Daha sonra boyama işlemlerine geçilir. Microskobik Muayene Kalın Yayma Preperatların İncelenmesi: Alyuvarlar (eritrosit, red blood cell-RBC) parçalanmış (eritilip yok olmuş) ve varsa paraziter organizmalar daha yoğunlaştırılmış olduğundan kontrol ve teşhis çalışmaları için daha uygundur. Karışık (mix) enfeksiyonların teşhisinde de daha yararlıdır. 1. Bütün preperatı küçük büyütme altında inceleyin (10X yada 20X objektif). Böylece büyük parazitleri (mikroflaria gibi) daha kolay teşhis edilir. 2. Daha sonra, mineral yağ ve büyük büyütme (100X objektif) ile örneği tekrar inceleyin. Bu incelemede de küçük parazitler (theileria, babesia gibi) araması yapılır. Preperatta bol miktarda akyuvar (leukosit. white blood cell-WBC) görülecektir. 3. Eğer herhangi bir paraziter yapı görülür ise, o zaman ince yayma preperat incelenerek, tür tayini yapılır. 4. Eğer hiç parazit göremediniz ise; bu durum gerçekten parazit yokluğundan mı kaynaklanıyor, yoksa inceleme devam ettirilmeli midir sorularına araştırmanın hassasiyetine göre yada klinik tabloya göre karar verilir. Hassas durumlarda preperattan en az 100 (200-300) mikroskop sahası (akyuvarların bol görüldüğü) incelenmelidir ve birden fazla preperat incelemesi yapılmalıdır. İnce Yayma Preperatların İncelenmesi: İnce yayma preperatlar farklı amaçlar için kullanılabilir. 1- Tespit edilmiş olan bir parazitin tür tayini amacı ile kullanılabilir. 2- Kalın yaymaların kuruması beklenirken hızlı bir kontrol için kullanılabilir. 3- Yeterli kalın yayma preperat olmadığında kullanılabilir. İnce yaymalarda; eğer aynı örneğin kalın yayma incelemesi yapılmamış ise önce küçük büyütmeler (10x yada 20x objektifler) ile preperat taranmalıdır. Bu sayede mikroflaria benzeri parazitler aranmış olur. Daha sonra büyük büyütme ile (100x objektif) örnek taranır. Parazitlik Yoğunluğunun Tespiti: Bazı durumlarda parazitlik (parazitemi) yoğunluğunun tespiti klinik açıdan önemli bilgiler sağlayabileceği için gerekli olabilir. Bu durumda yoğunluk tespiti ya alyuvarlara yada akyuvarlara oranlanarak hesaplanmaya çalışılır. Alyuvar(RBC) Sayısına Göre Oranlama: Örnekteki 500 ila 2000 arasında alyuvar sayılır ve incelenir, bunlardan kaçtanesinin parazitli olduğu tespit edilir. Sonuç oranlanarak yüzde (%) cinsinden ifade edilir. Eğer parazitlik oranı yüksek ( > 10%) ise 500 alyuvar (RBC) saymak yeterlidir. Düşük oranlarda (<1%) 2000 yada daha fazla alyuvarı incelemek gereklidir. Parazitlik (parasitemia- %) = (parazitli RBC / toplam RBC) X 100 Akyuvar (WBC) Sayısına Göre Oranlama: Kalın yayma preperatlarında parazitler akyuvarlara oranlanırlar. Akyuvarlar ve parazitler sayılır. Bu sayıma 500 parazit veya 1000 akyuvar sayana kadar devam edilir. Hesaplama eğer kullanılan kan hacmi biliniyorsa bilinen hacim üzerinden hesaplanır. Hacim bilinmiyor ise, bir milimetreküp kanda 8000 akyuvar olduğu ortalamasına göre yapılır. Parazitler/milimetre küp (kan) = (parazitler/ WBC) X WBC sayısı (bir milimetre küp kanda yada < 8,000 akyuvarda> Florasanlı Boyalar ile Boyanmış Kan Parazitlerinin Teşhisi: Kan yayma preperatları, acridine orange ile (Kawamoto tekniği) boyanıp ya floresan mikroskop yada özel fitrelere sahip ışık mikroskoplar altında incelenir. Bu boyamada nükleer DNA yeşile boyanırlarken, stoplazmik RNA kırmızıya boyanır. Böylece parazitleri tanımak kolaylaşır. Bu yöntem özellikler malaria (sıtma) etkenlerinin teşhisinde yaygın olarak kullanılmaktadır. Afrika trypanosoma’sında da kullanılmıştır Quantitative Buffy Coat (QBC®; Becton Dickinson) metodu, Bu yöntemde kan örnekleri direk olarak içerisinde akridine orange ve antikoagulan bulunan, cam boncuklu tüplere alınır. Örnekler hematokrit santrifüjde, santrifüj edilip floresans mikroskopla incelenir. Parazitler (malaria-sıtma) granülosit katmanın altında bulunurlar. Bu yöntem diğer kan parazitleri içinde adapte edilmiştir. Antikor (Antibody)Tespiti: Parazit enfeksiyonları konakçıların dokularında yada konakçı atıklarında (dışkı-idrar gibi) görülerek teşhis edilirler. Ancak bu teşhis yöntemleri, derin dokular içerisine yerleşen bazı hastalıklarda yetersiz kalmaktadır (toxoplasmosis yada toxocariasis). Ayrıca cysticercosis ve echinococcosis gibi hastalıklarda örnek alınması, konakçının hayatını tehlikeye sokacağından tavsiye edilmezler. Bu gibi durumlarda, belirgin bir parazit ile enfekte olmuş konakçıda, antikor testlerinin uygulanması büyük avantaj ve kolaylık sağlar. Antikor testlerinde pozitif olarak teşhis edilen konakçının enfektemi olduğu yoksa daha önce geçirdiği bir hastalığın antikorlarını mı taşıyor olduğu ayırt edilmelidir. Parazit hastalıklarında antikor tespiti hastada belirgin olmayan bir zaman da hastalığın varlığını işaret eder. Ancak hastalığın hangi safhada olduğunu kesin olarak belirlemez. Yani antikor tespit edilen hastada, hastalık başlama, gelişme safhalarında olabileceği gibi geçmiş de olabilir. Hastalık geçirmiş olan canlıda antikor düzeyi yavaşça düşer ancak tedaviden sonra dahi antikor düzeyi altı aydan bir kaç yıla kadar değişen sürelerde belirgin düzeylerde kalabilir. Bu durumda incelenen parazitin antikor yoğunluğunun (titrasyonunun), hastalık süresince ve hastalıktan sonra hangi seviyelerde olduğu bilinmesi yararlı olur. Toxoplasma gondii enfeksiyonlarında, spesifik immunoglobulin M (IgM) ve immunoglobulin A (IgA) tespiti hastalık zamanı hakkında bazı bilgiler verebilir. Ancak diğer hastalıklar için tavsiye edilmemektedir. Eğer dışkı, idrar ve kan örneklerinde şüphelenilen parazit görülmemiş ise veya negatif çıkmış ise, parazite spesifik immunoglobulin G (IgG) antikor testi istenilebilir. Parazite-spesifik IgM, IgA, yada IgE teşhis için uygun değildir. Bu nedenle bu antikorların tespiti istenmemelidir. Parazit spesifik IgG negatifken, pozitif çıkan IgM, IgA, yada IgE düzeyleri yalancı pozitif olarak değerlendirilmelidir. Uygulanan testlerin spesifitesi (özel oluşu) ve sensitivitesi (hassasiyeti) sonuçlar üzerinde çok etkilidir. Parazitler, hayat siklusları içerisinde değişik evreler geçirirler. Bu nedenle antijenler, evrelerden sadece birine spesifik olabileceği gibi genel olarak parazite (tüm evrelerinde) spesifik de olabilir. Bu nedenle kullanılacak antijen ve antikor testleri çok iyi bir incelemenin (kaynak bilgiler ve deneyler) sonunda seçilmiş olmalıdır. Testte kullanılacak olan spesifik antijenin yada antikorun spesifite dereceleri çok iyi bilinmelidir. Yayınlanmış olan kitap yada makalelerde aynı konuyu inceleyenlerin mutlak bir birinin aynı olduğunu düşünmek hatalıdır. Hatta bu tür çalışmalar farklı bölgelerde, farklı solüsyonlar yada farklı araştırmacılarca yapılmış çalışmalar olarak, sonuçları kıyaslama açısından daha önemlidir. Örnek İhtiyaçları: Bütün parazit antikor teşhis testlerinde serum yada plazma kullanılabilir. Toxoascaris veya toxoplasmosis için göz yaşı akıntıları da, serum ile beraber antikor testleri için kullanılabilmektedir. Yine, merkezi sinir sistemi enfeksiyonlarında da (cysticercosis yada toxoplasmosis) serebrospinal (beyin-omurilik) sıvıları, serum eşliğinde incelemeye alınabilir. Bütün örnekler oda ısında nakledilebilirler. Bu incelemeler için akut fazdaki enfeksiyonlardan örnek istenilmez. Geçerli sonuçlar genellikle bir test sonucunda elde edilebilmektedir. Parazit enfeksiyonları hasta üzerinde fark edildikleri dönemde, incelenmeye alınırlar ki bu zaman enfeksiyonun akut safhası genellikle geçmiş olur.

http://www.biyologlar.com/kan-parazitleri-1

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

Herbaryum Yapiminda Bazi Önemli Kurallar

Dogayi korumak iyi bir koleksiyoncu için en basta gelen yasa olmalidir. Korunulan bitkilere ait tam bilgiye sahip olmak, yasalara karsi kasitli olmayan durumlar karsisinda koleksiyoncuyu korur. Bitkiler özenle toplanmalidir. Toplama esnasinda bitkinin korunmasi zorunludur. Çignenen bitkiler ve hos görünmeyecek sekilde açilan çukurlar koleksiyoncular için iyi bir izlenim vermez. Buna ilaveten bitkinin diger gelisme devreleri, tohumlan ve meyveleri de toplanmalidir. Materyalin toplanmasinda zamana .ihtiyaç duyulur. Hiç bir zaman bir seferde çok bitki toplamaya çalisilmamalidir. Bitkileri toplayip preslemeden önce renk ve formunun uygunluguna bakmak gerekir. Bir defalik presleme ile is birakilmamali, bitkinin rutubeti sürekli alinmalidir. Aksi halde bitki kurumadan çürür ve çogu zaman da kararir. Preslemeden çikan bitki çok çabuk kirilabilir. Bu nedenle bitkiler kartonlarin arasina konularak saklanir. Toplanan materyal böceklerle bulasiksa, öncelikle temizlenmeli daha sonra preslenmelidir. Kuru bitkiler kolay yanabilir olduklarindan, sigara içilmemeli ve atesten sakinarak çalisilmalidir. Not almada 7 x 10 cm boyutlarinda sert ve suya dayanikli kagitlar ve kursun kalem gereklidir. Böylece isim, bulundugu yer, tarih ve gerekiyorsa örnek numarasi yazilir. Mümkünse bitkinin bulundugu yerin bir kaç bölümünü alabilen bir fotograf makinesi ile büyük bitkilerin fotografi çekilebilir. Büyük sapli ve etli bitkileri birkaç parçaya ayirmak için bir ameliyat biçagina (bisturiye) ihtiyaç duyulur. Araziye giderken bitki tohumlarinin toplanmasi amaciyla mutlaka mektup zarfi veya kesekagidi da götürülmelidir. Toplama esnasinda bitkinin adi yazilir, materyal bir evrak çantasina veya prese konur. Evrak çantasinda kaygan kagitli bölümlere yerlestirilen bitkiler, hafif bir baski altinda tutulmus olur. Kesin olarak preslemeden önce laboratuarda düzenleme yapilabilir. Böylece daha yakin bir inceleme yapilmis olur. Rüzgarli havalarda presleme isini laboratuarda yapmak daha uygun olur. Toplanan materyal plastik torbalara da yerlestirile bilinir (Ismi ve bulundugu yeri belirten bir kagit bantla üzerine yapistirilir). Torbalar çantanin içine ayri ayri konur. Yerlestirme esnasinda bitkilerin birbirine baski yapmamasina dikkat edilmelidir. Materyalin nakliyesi söz konusu ise nemli bir gazete kagidina sarilabilir. Çiçekler materyalin üzerinde bulunmalidir. Plastik torba ve nakil kaplari mümkün Oldugunca günesli ortamdan uzak tutulmalidir. Zira, günes isinlari bitki materyalinin rengini bozabilir. Eger bitkiler nemli olarak prese alinirsa bu iyi sonuç vermez. Bu nedenle laboratuarda kisa süre bekletilmelidir. Daha sonra hemen prese alinmali veya teshis çalismalarina baslanmalidir. Binoküler ile küçük çiçeklerin parçalanarak incelenmesi mümkündür. Kesit almada ve meyve çekirdeklerini kesmek için bisturiye göre jilet kullanimi daha uygun olmaktadir (Stehli und Brünner, 1981). Örneklerde teshis karakterlerinin bulunmasi gerekir. Tatminkar bir materyal, genç çiçek ve genç meyvelere sahip olan normal bir habitusta, fakat genis bir populasyondan alinan örneklerdir. Bu özellikler, turu n tam hayat dönemlerini ve degisen özelliklerini verirler. Otsu bitkilerde kök, gövde, taban, gövde yapraklari, çiçek ve meyvenin örnekte bulunmasi teshis için sarttir. Odunsu bitkilerde ise yaprak, çiçek ve meyve bulunan bir dal yeterli olabilir. Soganli ve rizomlu bitkilerde, örnegin; Crocus sp. (Çigdem)'de toprakalti kisminin da alinmasi gerekir. Bitki toplayicisi hangi grup bitkilerin toprak alti kisimlarinin teshis için gerekli olacagini, hangilerinin gerekli olmayacagini bilmelidir. Otsu bitkilerin kök sistemlerinin yeterli miktarda toplanmasi bir bitkinin genel karakterini çizmeye yarar. Bitkilerin solmasini geciktirmek için bitkileri islatmak yerine örnek toplama kabinin alt kismina nemli bir kagit koymak yararlidir. Baska bir yol da; kök kisimlarindaki topraklari temizlenen ve her istasyondan toplanan örnekler büyük birer naylon torbaya konarak içine suya batirilmis sünger atilir ve torbanin agzi sikica baglanir.Böylece pres yapilincaya kadar bitkilerin solmamasi saglanmis olur. Naylon torbalarin içine örneklerin yazildigi etiket de konur. Örnegin Ankara, Beynam ormani, Step, Kuzeye bakan % 30 egimli, taslik yamaç, 1200 m, tarih: 11.4.1990, toplayan: Uzm. Metin KURÇMAN gibi. Bitkilerin araziden toplanmasi sirasinda ayni türe ait birden fazla bitki örnegi alinmalidir. Örneklerden biri herbaryum materyali olarak prese alinirken, digeri adlandirmada kullanilir (Yildirim ve Ercis, 1990).

http://www.biyologlar.com/herbaryum-yapiminda-bazi-onemli-kurallar

EKOLOJİ VE BESİN ZİNCİRİ

EKOLOJİ VE BESİN ZİNCİRİ

Canlıların birbirleri ile ve çevreleri ile etkileşimini inceleyen bilim dalıdır. Ekolojiyi anlamak için madde ve canlı organizasyonunun bilinmesi gerekir. Madde organizasyonu: Atom – Molekül – Organel – Sitoplazma – Hücreler – Dokular – Organlar - Sistemler –Organizmalar - Populasyonlar – Komüniteler – Ekosistemler – Biyosfer- Dünya – Gezegenler – Solar sistemler – Galaksiler – Evren şeklindedir. Ekoloji ile ilgili önemli terimler: Biyosfer:Canlı yaşamına uygun ,okyanus derinlikleri ile atmosferin 10 000 m. yüksekliğine kadar olan tabakasıdır. Ekosistem:Komünitelerle cansız (Abiyotik) çevre koşullarının karşılıklı etkileşimleri. Biyotop:Canlıların yaşamlarını sürdürmek için uygun çevresel koşullara sahip coğrafi bölgedir. Komünite:Belirli yaşam alanına uyumlu populasyonlar topluluğudur. Populasyon:Belirli coğrafi sınırlar içinde yaşayan aynı türe ait bireyler topluluğudur. Habitat:Bir canlı türünün rahatça beslendiği,barındığı,ürediği yaşam alanına denir. Niş:Yaşam alanında kalıtsal özellikleri ile ilgili gerçekleştirdiği yaşamının devamına yönelik faaliyetlerin tümüdür Flora:Belirli bir bölgeye adapte olmuş ,o bölgede yaşamını sürdüren bitki topluluğudur. Fauna:Belirli bir bölgeye adapte olmuş ve o bölgede yaşamını sürdüren hayvan topluluğudur. Canlılar bulundukları yaşam ortamında canlı ve cansız faktörlerle etkileşim halindedirler. Canlıyı etkileyen: Biyotik faktörler: 1) Üreticiler 2) Tüketici 3)Ayrıştırıcılar Abiyotik faktörler: İkiye ayrılır. 1) İklimsel faktörler : a) Işık b) Isı c) Su 2) Toprak faktörler : a)Toprak yapısı b)Mineral ve tuzlar c)Toprak ph’ sı BİYOTİK FAKTÖRLER Üreticiler: Fotosentez ve kemosentez mekanizmaları ile inorganik maddelerden organik madde sentezleyebilen ototrof bakteriler,mavi yeşil algler,kloroplast taşıyan protistalar ve bitkilerdir. Enerji ve maddenin canlıların kullanabileceği hale dönüşümünü sağlayan canlılardır. Tüketiciler: İhtiyacı olan besinleri diğer canlılardan hazır olarak alan hayvanlar ,protistalar,parazit bitki ve mantarlar,hetotrof bakterilerdir. Tüketiciler üç grupta incelenir: 1- Bitkilerle beslenen: (1.Tükticiler) 2- Hayvanlarla beslenen(2.Tüketici) 3- Yırtıcılar: (3.Tüketiciler) Ayrıştırıcılar: Bitki,hayvan ölüsü ve artıklarını besin olarak kullanan saprofit bakteri ve mantarlardır. ABİYOTİK FAKTÖRLER 1-İklim faktörleri:Canlılar yaşamlarını sürdürürken güneş ışını,ısı,basınç,nem,hava hareketleri gibi iklim faktörlerden etkilenirler. A) Işık: a) Işığın kalitesi,şiddeti,süresi önemlidir b) Canlıların temel enerji kaynağıdır c) Fotosentez için gereklidir d) Bitkide çimlenme,büyüme,yönelme. klorofil sentezi için gereklidir e) Işık bitkilerin yaşam alanını belirler f) Hayvanlarda üreme,göç,pigmentasyon,bazı vitaminlerin sentezi ,sucul hayvanlarda solunum üzerine etkilidir b) Isı: Canlılarda yaşamsal olaylar belirli ısıda gerçekleşir. Yüksek ve düşük ısıda yaşamsal olaylar azalır hatta durur. Bitkilerde : a) Çimlenme b) Köklerle su alınımı c) Fotosentez Hayvanlarda : a) Üreme b) Gelişmenin devamı c) Değişken ısılı hayvanlarda (Omurgasızlar,Balıklar , Kurbağalar , Sürüngenler ) metabolizmanın devamı C) Su: a) Organik maddelerin sentezlenmesi b) Maddelerin çözülmesi ,emilmesi,taşınması c) Biyokimyasal olayların gerçekleşmesi d) Fazla ısının uzaklaştırılması e) Boşaltım maddelerinin dışa atılması f) Bitkilerde çimlenmenin gerçekleşmesi ,hayvanlarda embriyonun gelişmesi g) Bazı canlılar için yaşam ve hareket alanıdır Canlılar yaşadıkları ortam ve suya duydukları ihtiyaç farklıdır. Özel adaptasyonları ile en iyi uyumu yapmışlardır. Hayvanlarda: 1) Deride su kayıbını önleyen plaka,tüy ,kitin dış iskelet gibi yapıların oluşması. 2) Solunum yüzeyinin vücud içine alınması 3) Boşaltımla su kayıbını önleyen mekanizmaların gelişimi 4) Yaşam alanı olarak suya yakın çevrelerin seçilmesi Bitkilerde: 1) Su kayıbının sağlandığı stomaların;a)Açılıp kapanmasının kontrol edilebilmesi (Terlemenin fazla olduğu zamanlar ve suyun az olduğu zamanlar stomalar kapanır) 2) Köklerin suya yönelimi vardır 3) Kurak ortam bitkilerinde gövde ve yapraklar su kayıbını önleyecek değişikliklere sahiptir. Canlıların ihtiyacı olan suyu şu şekillerde karşılarlar: 1) Suyun doğrudan alınması.( Sindirim sistemi, kökler) 2) Deri ile su almak (Kurbağalar,Bazı omurgasızlar) 3) Besinlerin yapısındaki sudan karşılamak 4) Metabolik su kullanmak EKOLOJİK PİRAMİTLER Ekolojik piramitler ekosistemlerdeki komüniteyi oluşturan birey sayısı (Biyokütle) veya enerji dikkate alınıp hazırlanı Biyokütleye ve enerjiye dayanan piramitler · Piramidin tabanını üreticiler oluşturur · Tepe basamağı yırtıcılar oluşturur · 2. ve 3. basamağı tüketiciler oluşturur tüketiciler= a- Birincil tüketiciler (Herbivorlar) b- İkincil tüketiciler (Karnivorlar) c- Üçüncül tüketiciler (Karnivorlar) · Taban üreticilerden oluşur · Biyokütle tepeye doğru gittikçe her basamakta 10 kat azalır · Enerji tepeye doğru her basamakta 10 kat azalarak aktarılır · Biyolojik birikim (Kimyasal zehirler,radyoaktivite vb.) tepeye doğru gittikçe artar CANLILARDA BESLENME ŞEKİLLERİ A)Ototroflar: İhtiyacı olan organik besinleri kendileri sentezleyebilen canlılardır. Besin sentezlerken kullandıkları enerjinin şekline göre iki tip ototrof canlı vardır: a) Fotoototroflar: Klorofilleri sayesinde ışık enerjisi kullanarak organik besin sentezleyenler. Klorofilli bakteriler,Mavi-yeşil algler, Kloroplast taşıyan protistalar ve bitkiler bu gruptan canlılardır. b) Kemoototroflar: Kuvvetli oksidasyon enzimleri sayesinde oksitledikleri inorganik maddelerden (H,Fe,NH3,nitrit vb.) elde ettikleri kimyasal enerjiyi kullanan bakteriler bu gruptur. Hetotroflar: İhtiyacı olan organik besinleri diğer canlıların vücudundan karşılarlar. Besinlerini almaları bakımından üç gruba ayrılırlar. a) Holojoik beslenme: · Besinlerini katı parçalar halinde alırlar · Sindirim sistemleri ve enzimleri gelişkindir · Hareket sistemleri gelişkindir · Gelişkin duyulara sahiptirler Holojoik canlılar kullandıkları besinin özelliklerine göre sindirim sistemleri ve beslenme davranışlara sahiptir. 1) Herbivorlar: Bitkisel besinlerle beslenenler · Öğütücü dişler gelişkindir · Sindirim kanalları gelişkindir · Mide gelişkin ve bölmelidir · Bitkisel besinlerin besleyici değeri az olduğundan fazla besin alırlar · Beslenmeleri uzun sürer · Bitkisel besinlerden yararlanma azdır · Bazı gruplar sindirim sistemlerinde selüloz sindiren enzimlere sahip bakteri vb. canlılara simbiyoz yaşarlar. 2) Karnivorlar: Hayvansal besinlerle beslenenler · Parçalayıcı(Köpek) dişler gelişkindir · Sindirim kanalı kısadır · Hareket ve duyu sistemleri gelişkindir · Etin besleyici değeri fazla olduğundan beslenmeleri kısa sürer · Uzun süre aç kalabilirler 3) Omnivorlar:Hem hayvansal hemde bitkisel besinlerle beslenebilenler · Sindirim Özellikleri ile karnivorlara benzerler · Selüloz hariç diğer bitkisel besinlerden faydalanacak enzimlere sahiptirler · Tohum,meyve ve hücre öz suları bitkisel besinlerini oluşturur b) Saprofit beslenme · Sindirim sistemleri yoktur · Sindirim enzimleri vardır · Hücre dışı sindirim vardır · Ölü bitki ve hayvan artıkları üzerinden beslenir · Doğada madde döngüsü için önemli canlılardır · Bazı bakteriler ve mantarlar bu gruptandır · Üzerinde yaşadıkları canlıya zarar verirler c) Parazit beslenme Hayvansal parazitler endo ve ekto olmak üzere ikiye ayrılır -Ekto parazitler: · Sindirim sistemleri ve enzimleri vardır . · Hareket sistemleri ve duyuları gelişmiştir · Konakçının vücudu üzerinden besinlerini karşılarlar -Endo parazitler: · Sindirim sistemleri yoktur · Sindirim enzimleri yoktur · Üreme sistemleri hariç diğer sistemleri körelmiştir Parazit canlıların konağa olan bağımlılığı bakımından ikiye ayrılırlar: 1) Yarı parazitlik: Belirli besinler için konağa bağlanan canlılar Örnek:Ökseotu Fotosentez yapmalarına karşı su ve mineralleri başka bitkilerin iletim demetlerinden emeçleri ile alırlar 2) Tam parazitlik: Bütün besinlerini konakçıdan alan parazitlerdir Bu parazitlerde üreme hariç diğer sistemler körelmiştir Bazı özel parazitlik durumları: -Parazit-patojen:Konukçu canlıda hastalık ve ölümlere neden olurlar -Obligat parazitler:Yaşamsal evrelerinin çoğunu konukçu vücudunda geçirirler. Bazı yaşamsal olayları ancak konukçu vücudunda gerçekleştirebilir. C) Hem ototrof hem hetotrof beslenme: Bazı ototrof canlılar fotosentezle besinlerini üretebilirler ancak ihtiyaç duyduklarında diğer canlılarıda besin olarak kullanabilirler. Örnekler: a)Protistalarda EUGLENA · Tek hücreli · Hücre ağızlarından aldıkları besinlerle hetotrof beslenirle · İhtiyaç duyduklarında kloroplastları ile fotosentez yaparak ototrof beslenirler · Göz lekeleri bulunur · Hücre içi sindirim görülür Örnek: b)Bitkilerden Dionea,Drosera,Nephentes gibi insektivorlar · Kloroplastları vardır ve fotosentez yaparlar · Azotça fakir sulak topraklarda yaşarlar · Yaprakları metamorfozla böcek kapanı haline gelmiştir · Azot ihtiyaçlarını yaprakları ile yakaladıkları böcekleri, yapraklarında sindirerek sağlarlar · Hücre dışı sindirim görülür CANLILAR ARASINDAKİ BESLENME BAĞINTILARI Bazı canlı türleri yaşamsal olaylarını devam ettire bilmek için diğer canlılarla beraber yaşamak zorundadırlar. Canlılar beslenme, üreme,barınma,hareket,korunma gibi yaşamsal olaylarda başka canlılara ihtiyaç duyarlar. Bu ilişki yarar zarar ilişkisine göre üç şekilde gerçekleşir. 1) Kommensalizm: Birlikte yaşayan türlerden biri birliktelikten yarar sağlarken diğer tür yarar veya zarar görmez. 2) Mutualizm: Birlikte yaşayan iki ayrı türde birliktelikten yarar sağlarlar. 3) Parazitizm: Birlikte yaşayan iki ayrı tür bireylerinden biri bu durumdan faydalanırken diğeri bundan zarar görür. BESİN ZİNCİRİ VE BESİN PİRAMİTLERİ Besin zincirleri Doğada canlılar başka bir canlıyı besin olarak kullanırken kendileride başka canlıların besini olurlar. Canlıların birbirlerini tüketmelerine göre sıralanmaları ile oluşan zincire besin zinciri denir. Zincirin her halkası ayrı bir tür tarafından oluşturulur. Ancak hiçbir zaman doğada tek sıralı zincire rastlanmaz. Bir canlı besin olarak birden fazla türü besin olarak kullanırken kendiside birden çok türün besini olur. Bu durum zincirlerin birbirine karışıp beslenme ağları oluşturmasına neden olur. · Besin zincirleri ile canlılar arasında organik madde ve enerji akışı gerçekleşir. · Zincir ne kadar kısa ise madde ve enerji o kadar ekonomik kullanılır. · İlk halkada ototroflar bulunur · Son halkada 3.tüketiciler (Yırtıcılar) bulunur · Zincirdeki canlılar fonksiyonlarına göre üç tiptir 1) Üreticiler 2) Tüketiciler: a) Birincil tüketiciler (Herbivorlar) b) İkincil tüketiciler (Karnivorlar) c) Üçüncül tüketiciler (Karnivorlar) 3) Ayrıştırıcılar · Ayrıştırıcılar zincire her halkadan katılabilir · Her halkada önceki halkadan alınan organik madde ve enerjinin %90 ‘ı canlının yaşamsal olaylarında tüketilirken , canlı vücudunda saklı tutulan % 10 ‘u besini olduğu sonraki halkaya geçer. Bu duruma % 10 yasası denir. YAŞAM BİRLİKLERİ (KOMÜNİTELER) Sınırları belli bir coğrafi ortamda yaşayan tüm populasyonların oluşturduğu birliktir. Biyosferde iki tip yaşam birliği vardır. A-Kara yaşam birliği (Orman, Çayır, Step, Tundra, Çöl, Mağara. vb.) B-Su yaşam birlikleri (Deniz, Göl, Akarsu, Havuz, Bataklık, Pınar, vb.) Yaşama birliklerinin özellikleri: · Baskın türler vardır:Komünitede gerek sayısal gerekse yaşamsal aktiviteleri bakımından en çok rastlanan türdür. · Her yaşam birliği belirli iklimsel koşullara sahip ortamlara uyumlu türlerden oluşur: Ormanlarda topraktan ağacın tepesine kadar farklı şartlara sahip microklima katmanları ve bu katmanlarda şartlara uyumlu bitki ve hayvan türleri bulunur. · Yaşam birliklerinin sınırları vardır. Ancak bazı yaşam birlikleri içiçe olabilir. · Yaşam birliklerinde canlıların sayıları ile vücud büyüklükleri ters orantılıdır. · Yaşam birliğinin baskın türü biyotik ve abiyotik nedenlerle zamanla ortadan kalkabilir ve yerini başka bir tür alabilir .Bu olaya süksesyon denir. POPULASYONLAR Sınırlandırılmış coğrafik bölgede yaşayan aynı tür bireylerin oluşturduğu topluluktur.Populasyoınlar biyolojik birimdir. Populasyonlarda bir birey doğar, büyür ve ölür ancak populasyonlar varlığını sürdürür. Populasyonların incelenmesinin sağladığı faydalar şunlardır. · Canlı ile çevresi arasındaki ilişkileri anlamak · Doğadaki madde ve enerji akışını tanımak ,önemini kavramak · Yaşanabilir doğayı öğrenmek ,tanımak ve korumanın önemini kavramak · Canlıların genetik yapı ve evrimini öğrenmek POPULASYONLARIN ÖZELLİKLERİ 1) Populasyon büyüme şekilleri: Populasyona doğum ve içe göçle birey katılarak büyür. Ölüm ve dışa göçle bireyler azalarak küçülür. Eğer populasyonun bulunduğu alanda çevresel koşullar değişmeden kalıyorsa populasyonlarda birey sayısı dengeye ulaşır. Populasyonların gelişme,gerileme ve dengesi şu formülle hesaplanır. P=Populasyon büyüklüğündeki değişme A=Doğum + İçe göç (Birey sayısı artışı) B=Ölüm + Dışa göç (Birey sayısı azalması) KAYNAK: belgeci.com

http://www.biyologlar.com/ekoloji-ve-besin-zinciri

Sucul Bitkiler

SU BİTKİLERİ Sucul bitkiler karada yaşayanlar ile karşılaştırıldığında çeşitli stolojik, morfolojik ve anatomik farklılıklar göstermektedir.Ayrıca bu bitkilerin üreme şekilleri ve tiplerinin de değiştiği görülmektedir. Çeşitli su bitkileri türleri ile yaşadıkları susul ortam arasında doğrudan ilişki vardır.Örneğin Myriophyllaceae familyası üyeleri suya tamamen gömülmüş halde yaşadıkları halde su mercimekleri (lemna türleri )suyun üzerinde kalırlar.Nilüferler (Nymphea türleri) ise bir yandan rizom gövde ve kökleri ile çamura tutunurlar, geniş yaprakları ise su yüzeyinde yüzer. Su bitkileri yaşadıkları ortama uyabilmek için bazı morfolojik değişiklikler geçirmişlerdir.Kök , gövde veya yapraklar bazen ince lam veya iplik şekline dönüşebilir.Çiçekler ise çok küçük olup yalnızca bir tek üreme organı içeririler.İletim kanalları karadaki çiçekli bitkilere oranla azalmış ve daha az farklılaşma göstermiştir. Eğreltilerde yaprak ve kökler oldukça kısa bir gövdeye bağlanmışlardır.Çiçeklenmezler doğrudan yaprak veya gövde üzerinde gelişen sporlara sahiptirler.Sporlar gelişerek üzerinde mikroskopik üreme organı bulunan çok küçük boylu bitkiyi oluşturur.Döllenme olayından sonra tekrar yeni genç eğreltiler meydana gelir. Çiçekli bitkiler tipik olarak kök , gövde , yaprak ve çiçeklerden meydana gelmişlerdir.Çiçekler bitkinin eşeysel üreme merkezindedir.Erkek üreme organları ( etamin) polenleri oluşturur.Dişi üreme organları ise ovul içeren pistilden oluşmuştur.Bazı bitkiler biseksüel ( dişi ve erkek üreme organı taşıyan) çiçeklere sahiptirler.Bazıları ise yalnızca dişi ve erkek çiçekler taşırlar.Döllenen her ovul; tohumu, pistil ise meyveyi oluşturur.Tohumlar daha sonra yeni genç bitkiyi meydana getirir. Epidermis hücreleri klorofil taşırlar ve karbondioksit asimilasyonunda önemli rol oynar.Buna karşın hava organlarında epidermis hücrelerde klorofil bulunmaz ve bu organlarda stoma adı verilen delikler vardır.Böylece hava sirkilasyonu sağlanır. Su bitkilerinde hava dokuların (aerifer) bulunuşu önemli bir özelliktir.Boşluklu süngerimsi yapıdaki bu dokular şamandıra görevini görürler ve su altı organlarının yüzmesini temin ederler. Su altı organları bazen büyük ölçüde değişime uğrayarak özel şamandıra şeklini alırlar. Örneğin;Yaprak sapları ( petiol) veya nodüller arası kısımları şişkin şekilde olabilir ve köklerin zeminle irtibatı olmayabilir.Bazılarında farklı çeşit bir kaç kök bulunabilir. Yapraklar su içine gömülü, yüzücü veya su üstünde bulunabilirler.Aynı tür 2 veya 3 farklı çeşit yaprak tipini dalları üstünde taşıyabilir.Yaprakları su içinde veya dışında oluşlarına göre şekilleri , yapıları, dokuları farklılaşmalar gösterebilir.Su içindekiler çok ince yapılıdırlar.Dallanma gösterirler veya yassılaşmışlardır.Bazılarının membranları ince veya saydamdır.Yaprakların üst ve alt düzeyleri arasında farklılaşma olmayabilir klorofilli dokular her iki yüzeyde yer alırlar.Havada bulunan yapraklarda alt yüzeydeki epidermada stomalar bulunur.Böylece hava epidermis altındaki klorofilli dokulara ulaşır.Yüzücü yapraklarda ise iki yüzleri arasında farklılaşmalar olabilir.Örneğin;stomalar üst ve alt epidermada bulunan su ile temas etmesi nedeniyle alt yüzeyde havanın doku içine girmesi mümkün olmaz.Genellikle alt yüzeyler kırmızımtrak renktedir.Su bitkilerinde dahi çiçeklenme genellikle havada olur.Çiçekler su dışında açar ve döllenme kara bitkilerinde olduğu gibi gerçekleşir. Polenler rüzgar yoluyla veya böceklerle(Diptera) taşınır.Bazen ise su üstünde kayarak döllenmeyi sağlar.Bazılarında ise su içinde olur.Ancak döllenme çiçek açmadan gerçekleşir.( Kleistogami) SU BİTKİLERİNDE ÜREME Sucul bitkiler çiçeklenme ve döllenme yönünden gerçekten farklılaşmalar göstermişlerdir.Döllenme suda olur ve polenler bu ortamdaki yayılmaya uyum göstermişlerdir.Polen su içinde serbest hale geçer , dişi çiçeğin stigmasını bulana kadar su içinde gezinir. Döllenmeden sonra meyve oluşumu su içinde olur.Çiçekleri havada olan su bitkilerinde dahi genellikle meyve su içinde gelişir.Meyveyi taşıyan dalcıklar eğilerek genç meyveyi su içine yöneltir.Sucul meyveler etlidir, tohumları jelleşme oluşumu ile açılır.Tohumlar su içinde veya üstünde yüzerler. Eşeysel üreme her ne kadar bitkisel türlerin çeşitliliğinde (Diversite ) önemli ise de eşeysiz (Vejetatif) üreme su bitkilerinde önemli rol oynar.Bazı türlerin eşeysiz olarak üremesi ile aşırı çoğalması genellikle insan aktivitesi sonucu ortamda değişmeler olduğunu simgeler. Su bitkilerinde üç çeşit üreme tipine rastlanır.Tomurcuklanma veya çeliklenme (Vegatatif) , eşeysiz (sporla) ve eşeyli üreme.  

http://www.biyologlar.com/sucul-bitkiler

Blephariceridae

En çok farklılaşmış nematocer familyalarından birisidir. Ağ kanatlı sivrisinekler diye de adlandırılır. Narin yapılı, uzun bacaklı, uzun ve çok segmentli antenlidirler. Antenlerinde belirgin kıllanma yoktur. Kanatlarındaki çok sayıda ve ağsı yalancı damarlanma ile kolayca tanınabilirler. Vücut büyüklükleri küçükten orta büyüklüğe kadar değişen ölçülerdedirler. Güçlü arka bacaklar, birleşmemiş gözler, bağımsız M3 damarının oluşu güçlü karakteristik özellikleridir. Bileşik gözler enine bir hat ile bir üst ve alt bölgeye ayrılır. Üst bölge daha büyük ommatidiumlardan, alt bölge ise daha küçük ommatidiumlardan meydana gelir. Erginler genellikle temiz sulara yakın yerlerde ağaç yapraklarının, köprülerin altında dinlenirken bulunurlar. Akarsu seven sineklerdir ve bütün alanlarda kolaylıkla tanınabilir. Erginler kendilerine oldukça benzeyen tipulidlerle karıştırılabilir. Fakat daha güçlü ve kontrollü uçuşlarıyla kolaylıkla ayırt edilebilirler. Erginleri çeşitli beslenme alışkanlıkları gösterir. Birçok türün dişisi iyi gelişmiş ağız parçalarına sahiptirler ve diğer böceklerin, özellikle yumuşak vücutlu sucul böceklerin predatörüdür. Avlarını arka tarsusları ile yakalarlar. İndirgenmiş ağız parçalarına sahip erkeklerin ve mandibulları olmayan dişilerin beslenmeleri bilinmiyor. Bazı türler nektarlarla besleniyor olabilir. Bazı türlerin erginlerinin yaşamları çok kısadır (1-2 hafta). Erkeklerin yaşamları dişilere göre çok daha kısadır. Bazı türlerin erginleri yaprakların altında asılı görülürler. Bazı türlerde kayaların çıkıntılarında ıslak yüzeylerde bulunurlar. İnsanları ve memeli hayvanları sokmaz ve kan emmezler . Ergin hale geldikten çok kısa zaman sonra çiftleşme gerçekleşebilir. Çiftleşmenin hemen ardından küçük salkım halindeki yumurtalar ıslak ya da çıkık kayalara bırakılır. Bazı dişiler su altına doğru sürünürler ve suya batmış haldeki kayalara bırakırlar. Larvalar nehirlerde kayalar üzerinde iyi gelişmiş birer birlik oluştururlar. Şelale ve nehirlerin alt yüzeylerinde akıntının hızlı olduğu, sert zeminlerde yaygın olarak yaşarlar. Akarsularda 4 farklı larval dönemleri vardır ve çok değişik adaptasyonlar gösterirler. Cephalotorax ve 6 adet vakum diski bulunur. Larvalar göz alıcı bir görünüşe sahiptir. Vücutları 6-7 segmentten ibarettir. Segmentler derin girintilerle ayrılmıştır. Her segment orta ventral kısımda çıkıntılar bulundurur. Suctorial diskler gerçek hidrolik çubuklar şeklindedir ve larvaların pürüzsüz yüzeylere tutunmasını sağlar. Örneğin kolayca cama tutunabilirler. Blephariceridae larvaları kazıcıdırlar. İyi gelişmiş ağız parçalarıyla suyun içine batmış kayalarda ince film halindeki alglerle, bakterilerle ve diğer organik materyallerle beslenirler. Diyatomeler onların diyetlerinin ana içeriğidir. Prepupal larvalar nehirlerin veya kayaların belli noktalarında hareketlidirler. Nadiren pupalar organik materyallerde bulunur. Oluşan pupa larval derisini atar, genellikle tamamını atar ve eşzamanlı bir şekilde kendisini 3-4 çift ventrolateral yapışma diski ile kayalara tutturur. Bu işlemin tamamı 5- 10 dk sürer. Pupalar hızlı akan sulara dorsoventralden basıklaşmak ve aerodinamik bir yapı almasıyla iyi bir şekilde adapte olmuşlardır. Bazı kayalar yüzlerce pupa barındırabilir. Pupal yönelme, oksijen alımını artırmak için solunum organları akış yönüne olacak şekildedir. Pupal süreçleri türlere ve su sıcaklığına bağlı olarak değişiklik gösterir. Ama genellikle 2-3 hafta arasındadır. Ergin bireyler olabilmeleri için yüzeylere sıkı tutunmak zorundadırlar. Pupadan ergine hale geçebilmesi için gereken süre 3-5 dk gibi oldukça kısa olabilir. Kanatlar Pupal süreçte tamamen gelişir ve ancak ergin çıkışı sırasında açılır. Ama erginler kanatları suya deymeden uçabilirler. Bazı türler gece ya da seher vakti ya da alacakaranlıkta pupadan çıkarlar. Ama çoğu tür öncelikle gün boyu çıkarlar. Kaynaklar •Courtney, G.W. 2000. A.1. Family Blephariceridae. pp. 7-30 in L. Papp & B. Darvas (editors). Contributions to a Manual of Palaearctic Diptera. Appendix. Science Herald, Budapest. •Hogue, C. L. 1981. Blephariceridae. pages 191-197, in McAlpine, J. F. et al. (eds.): Manual of Nearctic Diptera. Volume 1. Research Branch, Agricultural Canada, Ottawa. Agric. Can. Monogr. 27. •Lindner, E. . 1930. 2. Blephariceridae, pp 1-36. In: Lindner, E. (Ed). Die Fliegen der palaearktischen Region, II/2, E. Schweitzerbart'sche Verlagsbuchhandlung, Stutgart. •Zwick, P., 1992: Family Blephariceridae, pp. 39-54. In Soos A., Papp L. Oosterbroek P. (eds.): Catalogue of Palaearctic Diptera,1. Akadémiai Kiadó, Budapest.

http://www.biyologlar.com/blephariceridae

Herbaryum Yapiminda Bazi Önemli Kurallar

Doğayı korumak iyi bir koleksiyoncu için en basta gelen yasa olmalidir. Korunulan bitkilere ait tam bilgiye sahip olmak, yasalara karsi kasitli olmayan durumlar karsisinda koleksiyoncuyu korur. Bitkiler özenle toplanmalidir. Toplama esnasinda bitkinin korunmasi zorunludur. Çignenen bitkiler ve hos görünmeyecek sekilde açilan çukurlar koleksiyoncular için iyi bir izlenim vermez. Buna ilaveten bitkinin diger gelisme devreleri, tohumlan ve meyveleri de toplanmalidir. Materyalin toplanmasinda zamana .ihtiyaç duyulur. Hiç bir zaman bir seferde çok bitki toplamaya çalisilmamalidir. Bitkileri toplayip preslemeden önce renk ve formunun uygunluguna bakmak gerekir. Bir defalik presleme ile is birakilmamali, bitkinin rutubeti sürekli alinmalidir. Aksi halde bitki kurumadan çürür ve çogu zaman da kararir. Preslemeden çikan bitki çok çabuk kirilabilir. Bu nedenle bitkiler kartonlarin arasina konularak saklanir. Toplanan materyal böceklerle bulasiksa, öncelikle temizlenmeli daha sonra preslenmelidir. Kuru bitkiler kolay yanabilir olduklarindan, sigara içilmemeli ve atesten sakinarak çalisilmalidir. Not almada 7 x 10 cm boyutlarinda sert ve suya dayanikli kagitlar ve kursun kalem gereklidir. Böylece isim, bulundugu yer, tarih ve gerekiyorsa örnek numarasi yazilir. Mümkünse bitkinin bulundugu yerin bir kaç bölümünü alabilen bir fotograf makinesi ile büyük bitkilerin fotografi çekilebilir. Büyük sapli ve etli bitkileri birkaç parçaya ayirmak için bir ameliyat biçagina (bisturiye) ihtiyaç duyulur. Araziye giderken bitki tohumlarinin toplanmasi amaciyla mutlaka mektup zarfi veya kesekagidi da götürülmelidir. Toplama esnasinda bitkinin adi yazilir, materyal bir evrak çantasina veya prese konur. Evrak çantasinda kaygan kagitli bölümlere yerlestirilen bitkiler, hafif bir baski altinda tutulmus olur. Kesin olarak preslemeden önce laboratuarda düzenleme yapilabilir. Böylece daha yakin bir inceleme yapilmis olur. Rüzgarli havalarda presleme isini laboratuarda yapmak daha uygun olur. Toplanan materyal plastik torbalara da yerlestirile bilinir (Ismi ve bulundugu yeri belirten bir kagit bantla üzerine yapistirilir). Torbalar çantanin içine ayri ayri konur. Yerlestirme esnasinda bitkilerin birbirine baski yapmamasina dikkat edilmelidir. Materyalin nakliyesi söz konusu ise nemli bir gazete kagidina sarilabilir. Çiçekler materyalin üzerinde bulunmalidir. Plastik torba ve nakil kaplari mümkün Oldugunca günesli ortamdan uzak tutulmalidir. Zira, günes isinlari bitki materyalinin rengini bozabilir. Eger bitkiler nemli olarak prese alinirsa bu iyi sonuç vermez. Bu nedenle laboratuarda kisa süre bekletilmelidir. Daha sonra hemen prese alinmali veya teshis çalismalarina baslanmalidir. Binoküler ile küçük çiçeklerin parçalanarak incelenmesi mümkündür. Kesit almada ve meyve çekirdeklerini kesmek için bisturiye göre jilet kullanimi daha uygun olmaktadir (Stehli und Brünner, 1981). Örneklerde teshis karakterlerinin bulunmasi gerekir. Tatminkar bir materyal, genç çiçek ve genç meyvelere sahip olan normal bir habitusta, fakat genis bir populasyondan alinan örneklerdir. Bu özellikler, turu n tam hayat dönemlerini ve degisen özelliklerini verirler. Otsu bitkilerde kök, gövde, taban, gövde yapraklari, çiçek ve meyvenin örnekte bulunmasi teshis için sarttir. Odunsu bitkilerde ise yaprak, çiçek ve meyve bulunan bir dal yeterli olabilir. Soganli ve rizomlu bitkilerde, örnegin; Crocus sp. (Çigdem)'de toprakalti kisminin da alinmasi gerekir. Bitki toplayicisi hangi grup bitkilerin toprak alti kisimlarinin teshis için gerekli olacagini, hangilerinin gerekli olmayacagini bilmelidir. Otsu bitkilerin kök sistemlerinin yeterli miktarda toplanmasi bir bitkinin genel karakterini çizmeye yarar. Bitkilerin solmasini geciktirmek için bitkileri islatmak yerine örnek toplama kabinin alt kismina nemli bir kagit koymak yararlidir. Baska bir yol da; kök kisimlarindaki topraklari temizlenen ve her istasyondan toplanan örnekler büyük birer naylon torbaya konarak içine suya batirilmis sünger atilir ve torbanin agzi sikica baglanir.Böylece pres yapilincaya kadar bitkilerin solmamasi saglanmis olur. Naylon torbalarin içine örneklerin yazildigi etiket de konur. Örnegin Ankara, Beynam ormani, Step, Kuzeye bakan % 30 egimli, taslik yamaç, 1200 m, tarih: 11.4.1990, toplayan: Uzm. Metin KURÇMAN gibi. Bitkilerin araziden toplanmasi sirasinda ayni türe ait birden fazla bitki örnegi alinmalidir. Örneklerden biri herbaryum materyali olarak prese alinirken, digeri adlandirmada kullanilir (Yildirim ve Ercis, 1990).      

http://www.biyologlar.com/herbaryum-yapiminda-bazi-onemli-kurallar-1

LİKENLERİN ZARARLI ETKİLERİ

Epifitik ototroflar olarak likenler ağaçlar üzerinde zararlı etkiler meydana getirebilirler. Rizinleri geniş biçimde kabuk, korteks, iç kabuk ve kambiyum tabakasına kadar girebilir. Liken hifleri lentiselleri tıkayabilir, kabuk tabakalarını yatay olarak yarabilir ve kabuktaki gaz değişimini artırarak dolaylı yoldan kabuk hücrelerinin kalınlaşmasına ve suya daha geçirgen olmasına neden olabilirler. Yoğun biçimde likenlerle kaplanan küçük ağaç ve çalıların büyümesi bariz biçimde durur ve zarar görmeye daha eğilimli olur. Avrupa ve K. Amerika’da meyve ağaçlarında büyüyen likenleri fungusitler ile ortadan kaldırmak yaygın bir uygulamadır. Likenlerle kaplanmayan ağaçların daha dayanıklı ve daha dirençli olduklarına inanılır. Likenler zararlı böceklere sığınacak yer sağlarlar. Arkeolojik harabelerde likenlerin büyümesi kayaları ve heykelleri saklamada problemler yaratmaktadır. Tarihi eserlerin likenler ile kaplanması bu eserlerin daha hızlı çürümesine sebep olur. Bu gibi eserlerin üzerinde gelişen likenleri çeşitli fungisitler ile ortadan kaldırmak müzeciler tarafından sıklıkla uygulanır.

http://www.biyologlar.com/likenlerin-zararli-etkileri

Canlı Biliminin Önemli Dalları

Canlıların dünya üzerinde çok çeşitli olması nedeniyle değişik bilim dallan gelişmiştir. Bu bilim dalları şu şekilde sıralanabilir. Botanik: Bitkiler alemini inceleyen bilim demektir. Bitkilerin yapısı, yayılışları ve çeşitlerini inceler. Botaniğin ilgilendiği konu alanına göre alt bilim dalları gelişmiştir. Örneğin; Kriptogamlar: Çiçeksiz Bitkiler, Tohumsuz Bitkiler Fanerogamlar: Tohumlu Bitkiler Gymnospermler: Açık Tohumlu Bitkiler Angiospermler: Kapalı Tohumlu Bitkiler Algoloji: Yosun Bilimi Mikoloji: Mantarları inceleyen bilim vb. gibi. Zooloji: Hayvanlar alemini inceleyen bilim dalıdır. Hayvanların yayı­lışı, yaşam şekli ve yapıiannı inceler. Büyük hayvan gruplarına göre zooloji­nin alt bilim dallan gelişmiştir. Örneğin; İhtiyoloji: Balıkları inceleyen bilim dalı Ornitoloji: Kuşları inceleyen bilim dalı Herpetoloji: Kurbağa ve sürüngenleri inceleyen bilim dalı Antropoloji: İnsan ve ırklarını inceleyen bilim dalı Mikrobiyoloji: Bakteri, virüs ve tek hücreliler gibi mikroorganiz­maların yapılarını, görevlerini, yaşam şekillerini, yarar ve zararları ile sınıflandırılmasını inceleyen bilim dalıdır. Paleontoloji: Dünyanın bu güne kadar jeolojik çağlarda yaşamış tüm canlı fosillerini inceler. Bu bilim dalında canlı objeye göre değişen alt dallan vardır. Örnek olarak; Paleobotanik; bitki fosillerini inceleyen bilim dalıdır. Taksonomi: Canlıların sınıflandırılmasıyla ilgili bilim dalıdır. Canlı­lar benzerlik ve farklılıklarına göre gruplandınlır. Benzer olanlar aynı gruba dahil edilirler. Taksonomi doğadaki canlı çeşitliliğini tanımamızı sağlar. Anotomi: Canlıların organ ve yapılarını, organların birbiriyle olan i-lişkilerini inceleyen bilim dalıdır. Morfoloji: Canlı vücudunun dış yapısını ve görünüşlerini inceler. Sitoloji: Hücre ve organellerin yapı ve işlevini inceler. Hücrenin yapı­sını, enerji üretimi ve tüketimini, protein sentezi ile hücre bölünmesini ince­ler. Histoloji: Dokuların yapı ve işlevlerini inceleyen bilim dalıdır. Canlı dokularının neler olduğunu, canlıda nerelerde bulunduğunu, hangi organların yapısına katıldığı ve ne tür görevleri olduğunu inceler. Fizyoloji: Organizmaların doku, organ ve organ sistemlerinin işlevle­rini ve işleyişlerini inceler. Genetik: Canlıların kalıtsal özelliklerinin dölden döle aktarımını, ge­netik yapılarını inceler. Ayrıca genlerin işlevini ve genlerde oluşan değişik­likleri araştırır. Evrim (Evolüsyon): Günümüz canlılarının oluşumunu inceler. Canlı­ların milyonlarca yılda geçirdikleri değişimi inceleyerek yeni türlerin oluşu­munu açıklar. Canlıların uzun bir gelişimden sonra bugünkü şeklini aldığını gösterir. Biyokimya: Canlıların kimyasal yapısı ile canlı yapısındaki maddeleri ve canlıda meydana gelen biyokimyasal reaksiyonları inceler. Bunun yanı sıra biyoloji ile ilgili olarak Ekoloji, Biyomatematik, Biyocoğrafya, Uzay biyolojisi gibi biyolojiye bağlı bilim dallan vardır. Bu­rada bahsedilenler sadece bu kadar değildir. Biyolojinin bundan başka daha birçok alt bilim dalları da vardır. Ayrıca her bilim dalı kendi içerisinde daha küçük alt bilim dallarına ayrılmaktadır. Örneğin; morfoloji bilim dalı hücre morfolojisi, bitki morfolojisi, böcek morfolojisi ve insan morfolojisi gibi alt ihtisas alanlarına ayrılır.

http://www.biyologlar.com/canli-biliminin-onemli-dallari

Dipteraların Aranması ve Toplanması

Diptera örnekleri, yılın hemen hemen her mevsiminde ve her yerde toplanabilir. Bununla beraber toplama işlemi, doğal alanlarda ve vejetatif büyüme periyotlarında (Mart-Nisan'dan Eylül-Ekim'e kadar) daha verimli olur. Çok çeşitli olan dipter türlerini toplamak için hemen hemen her böcek toplama yönteminden yararlanmak mümkündür. Bitkiler üzerinde bulunan ve uçuşan türler genelde atraplar yardımıyla yakalanır. Ayrıca pek çok dipter türü geceleyin çeşitli ışık tuzakları yardımıyla, ağaç gövdeleri, tarlalar etrafındaki çitler ve duvarlar ile konakların tüy ve kılları arasındaki nispeten küçük türler ise aspiratör yardımıyla kolayca toplanabilir. Tabanidae gibi kan emen türlerin yakalanması için tuzak hayvanları (inek, eşek, at vb) kullanılabilir. Nycteribiidae, Hyppoboscidae ve Streblidae familyalarına ait türler yaşadıkları konağın tüy ve kılları arasından (kuş ve memeliler) aspiratör veya bir pens yardımıyla toplanabilir. Bu konuda en iyi toplama şekilleri ya böceğin hayvanı ısırmasını bekledikten sonra üzerine bir tüp kapatarak toplamak ya da hayvan bu tip yakalama için uygun değilse o zaman hayvana konmadan çok seri bir şekilde atrap kullanarak yakalamaktır. Diptera türlerini yakalamak için ayrıca yem tuzaklarından da faydalanılabilir. Diptera larvaları ise yaşadıkları biotoplardan çeşitli yöntemlerde toplanabilir. Doğada materyal toplanırken, dipterlerin veya sineklerin toplama metodunun göz önünde bulundurulmasını gerektiren bazı özel spesifik özellikleri vardır. Özellikle larva formları (Chironomidae, Cecidomyiidae, Psychodidae, Sciaridae, ve diğer bazıları) anında toplandığı yerde alkol içerisine yerleştirilmeli veya araziden canlı olarak laboratuara getirildiğinde saklanmak üzere hemen koruyucu sıvılar içersine konulmalıdır. 15-20 dakika gibi kısa sürede canlı kalabilen büyük formları (Örneğin Mycetophylidae) şeffaf ve kuru bir saklama kavanozu içerisine konulup laboratuara canlı olarak getirilmeli ve monte edilmek üzere çıkarılması daha avantajlıdır. Diğer böcek sınıflarından farklı olarak büyük dipterler saklama kavanozunda gece boyunca bırakılabilir. Orta büyüklükteki dipterlerin saklama kavanozunda koruma süresi 1-3 saattir. Süre kısa olduğu için materyallerin zarar görmeden monte edilmesi ve bunların iyi bir durumda korunmasını sağlamak amacıyla toplama işlemi uzatılmamalıdır.

http://www.biyologlar.com/dipteralarin-aranmasi-ve-toplanmasi

Canlılarda Üreme ve Çoğalma

Üreme:Canlıların soylarının devamı için kendilerine benzer yavrular meydana getirmelerine denir.Eşeyli ve eşeysiz olarak iki şekilde olur. Eşeysiz üreme:Eşey hücrelerine gerek olmadan yapılan üreme şeklidir. Yavrular tamamen ana bireye benzerler. Eşeysiz üreme çeşitleri: 1.Bölünme:Monera, protista ve mantarlarda görülür. 2.Tomurcuklanma:Maya hücrelerinde ve bazı protistlerde görülür. 3.Sporlanma:Parazit bir hücreli, mantar ve bazı ilkel bitkilerde görülür. 4.Vejetatif üreme:Ana bitkiden ayrılan kısmın bölünme özelliği kazanmasıyla olur. Çelik, daldırma, aşı gibi çeşitleri vardır. Mitoz bölünme esasına dayanır. Eşeyli üreme:Farklı iki cins gametin birleşmesi ile yeni bir canlının oluşmasıdır. Kalıtsal yönden farklı canlılar oluşur. Zigot:Gametlerin birleşmesi sonucu(döllenme) oluşan yapıdır. Zigottan sonraki bölünmeler mitoz bölünmedir. İzogami:Şekil ve büyüklük bakımından aynı olan gametlerin birleşmesidir. Yeşil su yosunu ve ulotrix'te görülür. Anizogami:Yapı ve büyüklük bakımından farklı olan iki gametin birleşmesidir. Alg ve mantarlarda görülür. Oogami:Büyük ve hareketsiz yumurta hücresi ile küçük ve hareketli sperm hücresinin birleşmesi ile olan üremedir. Memeliler ve gelişmiş bitkilerde görülür. Hermafroditlik:Bir organizmanın hem erkek hem de dişi eşey organlarını barındırmasıdır. Partenogenez: Döllenmiş yumurtanın gelişerek tam teşekküllü bir bireyi oluşturmasıdır. Bu birey cinsiyet olarak erkek olup, vücut hücreleri haploit kromozom sayısına sahiptir. Döllenen yumurtalardan mutlaka dişi bireyler oluşur. Arılar ve bitki bitlerinde görülür. Metagenez:Eşeyli üremenin ardından eşeysiz üremenin gerçekleşmesidir. Sıtma mikrobu, deniz anası, eğrelti ve karayosunlarında görülür. Tohumsuz Bitkilerde Üreme Açık tohumlular:Üremeleri kozalak içinde açıkta bulunan tohumlarla gerçekleşir. Tozlaşma rüzgarla olur. Kapalı tohumlular:Tohum taslakları ovaryum içerisinde saklanır. Üreme yapıları çiçekte bulunur. Çiçekli Bitkilerde Eşeyli Üreme Bir çiçeğin genel yapisı Pistiı: Dişi organ Stamen:Erkek organ 1.Polen oluşumu: Erkek organ başcığındaki polen keseleri içinde 2n kromozomlu polen ana hücrelerinden mayoz ile n kromozomlu 4 tane mikrospor çekirdeği oluşur. Bunların mitoz geçirmesi ile n kromozomlu iki çekirdek taşıyan (generatif ve vejetatif çekirdek) yapı oluşur. Bu yapıya polen(çiçek tozu) denir. Polen çimlenirken vejetatif çekirdekten polen tüpü oluşur. Generatif çekirdekten sperm çekirdekleri oluşur. Her türün poleni kendine özgü bir şekle sahiptir. 2.Yumurta hücresi oluşumu: Dişi organ yumurtalığındaki tohum taslağı içinde 2n kromozomlu tohum taslağının ana hücresi mayoz geçirerek n kromozomlu 4 tana makrospor oluşturur. Makrosporların 3 tanesi erir, kalan 1 tanesinin çekirdeği arka arkaya 3 mitoz geçirerek 8 çekirdekli bir yapı olan EMBRİYO KESESİ ni meydana getirir. Bir kutuptaki 3 çekirdekten ortadaki yumurta çekirdeğigelişerek yumurta çekirdeği halini alır ve döllenmeye hazır durumdadır. Ortadaki 2 çekirdekte endospermi oluşturacak olan polar (kutup) çekirdeklerdir. Diğer çekirdeklerden 3 ü antipot, 2 si sinerjit adını alır ve kaybolur. 3.Tozlaşma:Erkek organların başçığındaki polenlerin su, rüzgar, böcek gibi faktörlerle dişi organın tepeciğine taşınmasıdır. Sperm çekirdeği(n)+Yumurta(n)¾® Zigot(2n)® Embriyo ; &nbs p; Döllenme Sperm çekirdeği(n)+Polar çekirdekler(2n)®Triploit çekirdek(3n)®Endosperm Tohum döllenmeden sonra oluşur. Tohum taslağınınörtüleri kalınlaşarak tohum kabuğunu yaparlar. Tohum embriyo+endosperm+tohum kabuğundan oluşur. Tohum taslağı sayısıkadar tohum oluşur. Dişi orga ve çiçek tablası, besin depolayarak tohumun çevresinde meyvayı oluştururlar. Tohumun yapısında şunlar bulunur: -Embriyo(embriyonik kök=radikula ve embriyonik gövde=plumula)= 2n kromozomlu -Çenek (kotiledon)= 2n kromozomlu -Endosperm (besi doku)= 3n kromozomlu -Kabuk (testa)= 2n kromozomlu ÜREME VE GELİŞME Üreme:Canlıların soylarının devamı için kendilerine benzer yavrular meydana getirmelerine denir.eşeyli ve eşeysiz olarak iki şekilde olur. Eşeysiz üreme:Eşey hücrelerine gerek olmadan yapılan üreme şeklidir. Yavrular tamamen ana bireye benzerler. Eşeysiz üreme çeşitleri: 1.Bölünme:Monera, protista ve mantarlarda görülür. 2.Tomurcuklanma:Maya hücrelerinde ve bazı protistlerde görülür. 3.Sporlanma:Parazit bir hücreli, mantar ve bazı ilkel bitkilerde görülür. 4.Vejetatif üreme:Ana bitkiden ayrılan kısmın bölünme özelliği kazanmasıyla olur. Çelik, daldırma, aşı gibi çeşitleri vardır. Mitoz bölünme esasına dayanır. Eşeyli üreme:Farklı iki cins gametin birleşmesi ile yeni bir canlının oluşmasıdır. Kalıtsal yönden farklı canlılar oluşur. Zigot:Gametlerin birleşmesi sonucu(döllenme) oluşan yapıdır. Zigottan sonraki bölünmeler mitoz bölünmedir. İzogami:Şekil ve büyüklük bakımından aynı olan gametlerin birleşmesidir. Yeşil su yosunu ve ulotrix'te görülür. Anizogami:Yapı ve büyüklük bakımından farklı olan iki gametin birleşmesidir. Alg ve mantarlarda görülür. Oogami:Büyük ve hareketsiz yumurta hücresi ile küçük ve hareketli sperm hücresinin birleşmesi ile olan üremedir. Memeliler ve gelişmiş bitkilerde görülür. Hermafroditlik:Bir organizmanın hem erkek hem de dişi eşey organlarını barındırmasıdır. Partenogenez: Döllenmiş yumurtanın gelişerek tam teşekküllü bir bireyi oluşturmasıdır. Bu birey cinsiyet olarak erkek olup, vücut hücreleri haploit kromozom sayısına sahiptir. Döllenen yumurtalardan mutlaka dişi bireyler oluşur. Arılar ve bitki bitlerinde görülür. Metagenez:Eşeyli üremenin ardından eşeysiz üremenin gerçekleşmesidir. Sıtma mikrobu, deniz anası, eğrelti ve karayosunlarında görülür. Tohumsuz Bitkilerde Üreme Açık tohumlular:Üremeleri kozalak içinde açıkta bulunan tohumlarla gerçekleşir. Tozlaşma rüzgarla olur. Kapalı tohumlular:Tohum taslakları ovaryum içerisinde saklanır. Üreme yapıları çiçekte bulunur. Çiçekli Bitkilerde Eşeyli Üreme Bir çiçeğin genel yapisı Pistiı: Dişi organ Stamen:Erkek organ 1.Polen oluşumu:Erkek organ başcığındaki polen keseleri içinde 2n kromozomlu polen ana hücrelerinden mayoz ile n kromozomlu 4 tane mikrospor çekirdeği oluşur. Bunların mitoz geçirmesi ile n kromozomlu iki çekirdek taşıyan (generatif ve vejetatif çekirdek) yapı oluşur. Bu yapıya polen(çiçek tozu) denir. Polen çimlenirken vejetatif çekirdekten polen tüpü oluşur. Generatif çekirdekten sperm çekirdekleri oluşur. Her türün poleni kendine özgü bir şekle sahiptir. 2.Yumurta hücresi oluşumu: Dişi organ yumurtalığındaki tohum taslağı içinde 2n kromozomlu tohum taslağının ana hücresi mayoz geçirerek n kromozomlu 4 tana makrospor oluşturur. Makrosporların 3 tanesi erir, kalan 1 tanesinin çekirdeği arka arkaya 3 mitoz geçirerek 8 çekirdekli bir yapı olan EMBRİYO KESESİ ni meydana getirir. Bir kutuptaki 3 çekirdekten ortadaki yumurta çekirdeğigelişerek yumurta çekirdeği halini alır ve döllenmeye hazır durumdadır. Ortadaki 2 çekirdekte endospermi oluşturacak olan polar (kutup) çekirdeklerdir. Diğer çekirdeklerden 3 ü antipot, 2 si sinerjit adını alır ve kaybolur. 3.Tozlaşma:Erkek organların başçığındaki polenlerin su, rüzgar, böcek gibi faktörlerle dişi organın tepeciğine taşınmasıdır. Sperm çekirdeği(n)+Yumurta(n)¾®Zigot(2n)® Embriyo Döllenme Sperm çekirdeği(n)+Polar çekirdekler(2n)®Triploit çekirdek(3n)®Endosperm Tohum döllenmeden sonra oluşur. Tohum taslağınınörtüleri kalınlaşarak tohum kabuğunu yaparlar. Tohum embriyo+endosperm+tohum kabuğundan oluşur. Tohum taslağı sayısıkadar tohum oluşur. Dişi orga ve çiçek tablası, besin depolayarak tohumun çevresinde meyvayı oluştururlar. Tohumun yapısında şunlar bulunur: -Embriyo(embriyonik kök=radikula ve embriyonik gövde=plumula)= 2n kromozomlu -Çenek (kotiledon)= 2n kromozomlu -Endosperm (besi doku)= 3n kromozomlu -Kabuk (testa)= 2n kromozomlu Çimlenme:Embriyonun topraktan su alarak ilk kök ve fotosentez yapabilecek ilk yaprakları oluşturmasına kadar geçen büyüme evresidir. Tohumun olgunlaşmasından çimlenmesine kadar geçen süreye UYKU HALİ denir. Uykudaki tohumlar canlıdır fakat metabolizmaları minimum seviyededir. Çimlenme için yeterli H2O,sıcaklık, O2 ve enzimler gereklidir. Bitkilerde Gelişme Çimlenmeden sonra ışık, CO2, H2O ve mineral maddelerin yardımıyla bitkisel dokuların oluşmasıdır. Yüksek yapılı bitkilerde gelişme tohum içinde başlar. Gelişme eşeyli üreyen organizmalarda 3 temel olayla gerçekleşir: 1.Hücre bölünmesi 2.Büyüme 3.Farklılaşma Yüksek yapılı bitkilerin embriyosundaki çenekler, tohum içindeyken endospermden besin depo ederler. Çenekler bitkinin fotosentez yapmaya başlayıncaya kadar ki gelişimi sırasında emriyoyu besler. Kapalı tohumlu bitkilerden tek çenekliler genellikle tek yıllık ve otsu bitkilerdir. Çift çenekliler genellikle iki veya daha çok yıl yaşayan odunsu bitkilerdir. Açık tohumlu bitkiler ise çok çeneklidir. HAYVANLARDA ÜREME Üreme sistemi+boşaltım sistemi ürogenital sistem adını alır. Erkekegamete sperm(n)i dişi gamete yumurta(n) adı verilir. Hayvanlarda üç şekilde üreme-gelişme görülür: 1.Vivipar:İç döllenme ve iç gelişme yapan canlılardır (memeliler) 2.Ovipar:İç döllenme yaparlar fakat gelişme kabuklu yumurta içerisinde olur. (kuşlar, bazı sürüngenler) 3.Ovovivipar:Gelişme ana vücudunda ve yumurta içerisinde olur. Belli bir süre sonra canlı yumurtayı ve ana vücudunu terk eder ve doğuyormuş gibi gözükür. (bazı sürüngenler ve bazı balıklar) İç döllenme:Kara hayvanlarında görülür. Döllenme dişinin vücudu içinde olur. Bu nedenle az sayıdaki üreme hücresi tür sürekliliği için yeterlidir. Bazı canlılar suda yaşamalarına karşın, yavru sayısını koruyabilmek için iç döllenme yapabilirler (köpek balığı, lepistes) Başkalaşım(metamorfoz):Çok yumurta oluşturan bazı canlılarda yumurta içindeki besin maddesi (vitellüs) çok az olduğundan embriyo gelişimini tamamlamadan yumuırta larva halinde çıkar, dışarıda gelişerek ergin birey halini alır. Bu olaya metamorfoz denir. Kurbağalarda görülür. Balık ve kurbağalarda üreme: Dış döllenme görülür, yumurtalarında kabuk oluşmaz. Dişilerde yumurtalıkta oluşan Müller kanalı yardımıyla kloak tan dışarı atılır. Erkeklerde ise testislerde oluşan spermler Wolf kanalı yardımı ile kloaktan dışarı atılır. Wolf kanalı,hem spermleri hem de boşaltım maddelerini taşır. Sürüngen ve kuşlarda üreme:İç döllenme dış gelişme görülür. Embriyo gelişimini yumurta içinde tamamlar. Bazı yılan türlerinde faklılık görülebilir. Erkeklerde wolf kanalı yalnız spermleri taşır. Boşaltım maddeleri ise ayrı bir kanal ile kloak tan dışarı atılır. Sürüngen ve kuş yumurtasındaki embriyonik örtüler: 1.Kabuk:Yumurtayı kuraklığa, bakterilere karşı korur.O2 ve CO2 alışverişini sağlar. 2Koryon:Embriyoyu korur ve gaz alışverişine imkan sağlar. 3.Amniyon kesesi:Embriyoyu basınca ve sıcaklık değişimlerine karşı korur. İçindeki sıvı hareket serbestliği sağlar. 4.Allantoyis:Embriyonun artık maddelerni toplar, memelilerde körelmiştir. 5.Vitellüs kesesi:Embriyonun besin maddesinin bulunduğu kesedir. Memelilerde yoktur. Memelilerde üreme:İç döllenme, iç gelişme gözlenir. Gagalı ve keseli memeliler de yavru gelişimini ana vücudu içinde gerçekleştirir, besini yumurtadan alır. Plasentalı memelilerde, emriyo dişinin uterusu(döl yatağı) içinde gelişir. Vitellüs yeterli olmadığından beslenme, plasenta adı verilen özel bir yapı aracılığı ile anne kanından karşılanır. Plasenta:Koryon uzantıları ile, uzantıların uterusa değdiği bölge plasentayı oluşturur. Plasenta, embriyoya besin ve O2 sağlar, CO2 ve diğer artık maddelerin anne kanına geçmesine yardımcı olur. Amniyon zarının kenarlarının birleşmesi ile oluşan GÖBEK BAĞI embriyo ile plasenta arasında bağlantıyı oluşturur. İçinde kan damarları bulunur. İNSANDA ÜREME SİSTEMİ Erkek üreme sistemi: Testisler ince kıvrımlı SEMİNİFER tüpçüklerinden oluşurlar. Oluşan spermler buradan epididimis'e oradan da vasdeferns (sperm kanalı) a açılır. Vasdeferens de üretra(idrar kanalı) ile birleşip dışarı açılır. Spermatogenez testislerdeki seminifer tüpçüklerinde gerçekleşir. Spermlerin üretradan atılması seminal sıvı ile sağlanır. Bu sırada idrar yolu kasılıp tıkanmıştır. Seminal sıvı prostat-cowper bezi ve seminal keseciklerin salgılarından oluşur. Hormon kontrolü hipofiz bezinden salgılanan FSH ve LH hormonlarında yapılır. FSH spermatogenezi LH ise testislerden testesteron hormonu salgılanmasını kontrol eder. Testesteron hormonu ise sperm olgunlaşmasını, ses kalınlığını ve kıllanmayı sağlar. Dişi üreme sistemi. Yumurtalıklar (ovaryum), yumurta kanalı (fallopi tüpü) ve bajinaadı verilen kısımlarından oluşur. Vajinanın döl yatağına olan açıklığına servix denir. Döllenme fallopi tüpünde olur. Döllenmiş yumurta ilk mitoz bölünmeleri fallopi tüpünde geçirir. Ovaryum ve uterusta meydana gelen değişiklikler düzenli devreler halinde tekrarlanır. Bu üreme devre MENSTRUASYON PERYODU denir. 4 aşamada incelenir: 1.Folikül evresi:Hipofizden salgılanan FSH (folikül uyarıcı hormon) etkisi ile ovaryumdaki çok sayıda folikülden biri olgunlaşır. Folikül hücresinden östrojen hormon etkisi ile uterusta mitoz hızlanır, kan ve doku sıvısı artar. Folikül ovaryum yüzeyine kadar gelir bu evre 10-14 gün sürer. 2.Ovulasyon evresi:Hipofizden LH(lüteinleştirici hormon) salgılanması ile folikül yırtılarak içindaki yumurta ovaryumdan atılır. Atılan yumurta fallopi tüpüne geçer. 3.Corpus Luteum evresi:LH etkisi ile yırtılan folikül hücreleri sarı renkli yağ damlacıkları taşıyan lütein hücreleri halini alır. Bu yeni yapıya corpus luteum adı verilir. Lütein hücrelerinden salgılanan progesteron hormonu döllenmiş yumurtanın uterusa tutunmasını sağlar. Bu evre 10-14 gün sürer. Gebelik döneminde corpus luteum bozulmadığı için progesteron salgılanmasıda devam eder. Hipofizden salgılanan LTH (lüteotropik hormon) corpus luteumun östrojen ve progesteron hormonlarının devamını sağladığı gibi süt bezlerinin gelişmesi ve analık içgüdüsünün oluşmasında görevlidir. 4.Menstruasyon evresi: Döllenme yoksa sinirsel uyartılar olmadığından corpus luteum bozulur. Dolayısıyla progesteron seviyesi düşer. Uterus iç çeperi parçalanır. Doku parçaları, döllenmemiş yumurta, bir miktar kanla birlikte vajinadandışarı atılır. Ortalama 3-5 gün sürer. Daha sonra tekrar folikül evresi başlar. Hipofiz bütün üreme sistemini düzenler. Hipofiz hormonlarının salgılanması beynin hipotalamus bölgesinden çıkan RF(releasing faktör) tarafından düzenlenir. Hipofizden salgılanan OKSİTOSİN hormonu doğum sırasında uterus kasılmasını ve daha sonra sütün akmasını sağlar. Geri besleme (feed back):Bezlerin birbirlerini etkileyerek kandaki hormon miktarını düzenlemelerine geri besleme denir. Hayvanlarda Gelişme Gelişme evreleri: 1.Segmentasyon (Bölünme) 2.Gastrulasyon(Hücre hareketi) 3.Nörülasyon(Sinir borusu faklılaşması) 4.Organogenez(Organlaşma) Gelişmenin ilk devrelerinde zigotta görülen hızlı mitoz bölünmelere SEGMENTASYON denir. Blastomer:İlk bölünme ile meydana gelen hücrelerin her birine blastomer adı verilir. Segmentasyonu MORULA, BLASTULA ve GASTRULA olmak üzere üç evre izler. Gastrula evresindeki embriyonik tabakalardan oluşan doku, organ ve sistemler şunlardır: 1.Ektoderm:Sinir sistemi, deri, saç, tırnak. 2.Mezoderm:İskelet-kas sistemi, taşıma, lenf, boşaltım ve üreme sistemi 3.Endoderm:Sindirim sistemi, solunum sistemi. Rejenerasyon:Canlı organizmalarda kesilen veya kopan bir parçanın yeniden yapılmasıdır. Rejenerasyon da hücre bölünmesi ve hücre farklılaşması vardır. Basit yapılı canlılarda rejenerasyon üreme olarak kabul edilir. Doku kültürü (Hücre kültürü):Bir hücrenin içinde çeşitli besin maddeleri bulunan bir kültür ortamında yetiştirilmesi yöntemidir. Embriyonik indüksiyon:Embriyodaki tabakaların birbirini etkileyerek organ ve sistemlerin nasıl oluştuğunun açıklanmasıdır.

http://www.biyologlar.com/canlilarda-ureme-ve-cogalma

İnci balığı (Alburnus alburnus)

İnci balığı (Alburnus alburnus)

İnci balığı (Alburnus alburnus), sazangillere (Cyprinidae) ait bir balık türü. İsmi pullarından yapay inci yapılmasından kaynaklanmaktadır.Kibar bir vücut yapısı ve yukarıya yönelik bir ağzı vardır. Boyları 15–20 cm, çok nadir 25 cm olur. Sırtları yeşilimsi-gri renkli ve yanları gümüş rengi olur. Yüzgeçlerinin rengi sırtından biraz daha koyudur. Planktonlar, kurtlar, böcek larvaları ve su yüzeyindeki sinekleri avlayarak beslenir.Olta balıkçılığında, sudak balığı avı için yem olarak çok uygundur.İnci balıkları büyük sürüler halinde yavaş akan ırmaklarda ve göllerde bulunurlar. Rusya'nın İdil Nehrinden batı Avrupa'ya kadar, ve hatta İrlandada, İskoçyada ve İskandinavya'da yaygınlardır.Nisan-Haziran arası üreyip yapışkan yumurtalarını nehirlerin giriş veya çıkışındaki kıyıların kumluklarına, taşlara ya da su bitkilerine bırakır.Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     Actinopterygii (Işınsal yüzgeçliler)Takım:     Cypriniformes (Sazansılar)Familya:Cyprinidae (Sazangiller)Cins:     AlburnusTür:     A. alburnus

http://www.biyologlar.com/inci-baligi-alburnus-alburnus

ÇEVRE KİRLENMESİ

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)   Asit Yağmurlarının Toprağa Etkisi   Asit Yağmurlarının Sulara Etkisi   Asit Yağmurlarının Yapılara Etkisi   Asit Yağmurlarının Bitkilere Etkisi   Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi   İnsan Sağlığına   Hayvan ve Bitkilere   İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri   Fiziksel İşlevler   Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği   Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler. HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.   İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:   FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.   FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:   Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.   Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.   Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:   Hava taşıt araçlarının meydana getirdiği kirlenme   Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi   Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.   Limanlarda meydana gelen kirlilik.   Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.   Deniz ürünlerini elde etmede uygulanan yöntemler.   Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:   Yerleşim yerlerinden denize dökülen kirlilik.   Çöpler.   Kullanılmış sular, kanalizasyon artık ve suları.   Endüstri kuruluşlarından denize atılan kirlilik.   Tarımdan gelen kirlilik.   Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:   Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.   Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.   Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.   Erozyonun etkileri   Yaşlık ve çoraklığın etkileri   Taşlılık ve kayalığın etkileri   Gübre ve gübrelemenin etkileri   Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

Örümcek Türleri

Örümcek, eklembacaklıların örümceğimsiler (Arachnida) sınıfının örümcekler (Araneida) takımından türlerine verilen genel ad. Hemen hemen dünyanın her tarafında yaşarlar. 63.000 kadar türü vardır. Baş ve göğüs kaynaşmıştır. Karın, göğüse ince bir bel (pedisel) ile bağlanmıştır. Aynı büyüklükte başka bir canlının beli bu kadar ince değildir. İçinden sindirim borusu, kan damarları nefes boruları ve sinir sistemi geçer. Örümceklerin boyları, birkaç cm'den 35 cm'ye kadar değişir. Ağızlarının önünde iki zehir çengeli (keliser) ve iki his ayağı (pedipalp) yer alır. Göğüslerinde ise, gelişmiş dört çift yürüme bacağı vardır. Uçları, tarak gibi dişli iki çengelle sonlanır. Örümcek bunların sayesinde ağ üzerinde rahatça dolaşır. Bir kısmı ileriye, geriye ve yanlara doğru yürüyebilirler. Çoğunun başında 3 veya 4 çift osel (basit) göz bulunur. Gözlerin dizilişi, sınıflandırmada önemli bir özelliktir. Yuvarlak olan karın kısmı yumuşak ve esnek olup, alt kısmında solunum delikleri, ipek bezleri, anüs ve cinsiyet organları yer alır. GENEL ÖZELLİKLER Örümcekler, yırtıcı hayvanlardır. Birbirlerine saldırmaktan çekinmezler. Avları çok çeşitlidir. Çoğu, böceklerle beslendiklerinden faydalı sayılırlar. Bazı tropikal türler amfibyum, sürüngen, küçük kuş ve memeli gibi omurgalıları avlarlar. Örümceklerin hepsi avlarını yakalamak için tuzak ağları kurmaz. Bir kısmı avlarını kovalayarak veya üzerlerine sıçrayarak yakalar. Suda böcek, kurbağa ve balık avlayanlar da vardır. Yakaladığı avını, kıskaçlarına açılan zehir salgısı ile felce uğratır. Sonra ısırarak avının iç organlarına, eritici enzimler ihtiva eden tükrük salgısını akıtır. Kısa bir zaman zarfında, avın iç organları eriyerek sıvı haline gelir. Örümcek, emici midesini bir pompa gibi kullanarak bu sıvıyı emer. Av, kısa bir sürede içi boş kabuğa döner. Örümcek, bu boş kabuğu ya olduğu yere bırakır veya başka bir yere atar. Böcekler, küçük kuşlar bu avlar arasındadırlar. Güney Amerika'da yaşayan, bacakları hariç 10 cm boyunda olan, toprakaltı inlerinde barınan bazı türler, tavşan ve tavukların içini boşaltabilecek güçtedir. Örümceklerin özofagusları (yemek borusu) çok dar olduğundan böyle beslenmek zorundadırlar. Ayrıca, ağız parçaları da bir sineği bile parçalayacak güçte değildir. Zehir çengelleri, avı delmeye ve zehir akıtmaya yarar. Uçtaki iğneli kısımları, bir şırınga gibi birer yan delikle biter. Deliğin böyle enjektörvari oluşu, tıkanma tehlikesini önler. İğne ava girince, zehir bu delikten sızar. Örümcekler, iki keliseri de kullanırlar. Isırdıkları zaman yanyana iki delik olması bu yüzdendir. Keliser, aynı zamanda, delik açma ve küçük cisimleri taşıma işlerine de yarar. Örümceklerin böceklerden ayrılan birçok özelliği vardır. Böceklerin çoğu kanatlı olduğu halde, örümcekler kanatsızdır. Böceklerde 6 bacak olmasına karşılık örümceklerde 8 bacak vardır. Antenleri olmadığından, ağız önündeki pedipalpler bu görevi üstlenirler. Dış görünüşleri bacağa benzediğinden bunlara duyu bacakları da denir. Üzerleri duyu algılayıcı tüylerle kaplı olup, dokunma, tad alma ve çevreyi koklayıp araştırma gibi görevler yaparlar. Üreme dönemlerinde erkeklerde spermaları biriktirip dişiye aktaran bir kopulasyon (çiftleşme) organı olarak da iş görürler. ve her tehlikeye karşı sperleri vardır. Örümceklerde trakealar (solunum boruları), akreplerde olduğu gibi karın altında kitap akciğerleri tipindedir. Kitap yaprakları şeklindeki deri kıvrımlarından dolayı solunum organları bu adı alır. İki veya dört tane kitap akciğerleri vardır. Eğer örümcekte bunlar iki ise, eksikliği ek solunum boruları ile tamamlanır ÖRÜMCEK AĞI NASIL OLUŞUR Örümceklerde, diğer eklembacaklılar gibi açık bir dolaşım sistemi bulunur. Kılcal damarları yoktur. Hemen hemen her yerde rastlanan örümcek ağı, aslında bir sanat şaheseridir. Yapılış maksadı avlanmak olan ağ, bir nevi tuzaktır. Fakat her örümcek türü ağ yapmaz. Ancak bütün örümcekler ağ tellerinden yumurtalarının etrafını saran kozalar yaparlar. Bazıları da ağ bezlerini, yaprakları yapıştırmakta, yuvalarının içini döşemede, açtıkları çukurun çevresini kapatmakta vs. işlerde kullanırlar. Ağ kurmayan bu tür avcı örümcekler de, arkalarında ağdan bir iz bırakarak, rüzgarla sürüklenmekten korunurlar. Erkekler, dişileri bulmakta da bu izlerden faydalanırlar. Karın altlarının arka taraflarında üç çift ağ organları bulunur. Her birinin dışarıya ayrı bir çıkışı vardır. Bezlerden meydana gelen yapışkan ve sıvı iplik maddesi, havayla temas edince sertleşir. Her ağ memeciğinde 100 kadar ince ve küçük kanalcıklar bulunur. Bu ince kanalcıklardan sızan iplikçikler bir araya gelerek büküldükleri zaman tek iplik durumuna gelirler. Esnek ve yapışkandırlar. Bir sinek ne kadar sert çarpsa da kopmazlar. Ağ yapmak isteyen örümcek, ağ organlarını bacaklarının bir kısmı ile bastırarak ağ maddesinin akışını başlatır. Örümcekler, iplik deliklerinden çıkan tellerin hepsini toplayıp bir tek tel halinde kullandıkları gibi bunlardan ayrı ayrı incecik tel de yaparlar. Düşme esnasında bir yere taktığı ağ telini, kendisi yere varıncaya kadar uzatabilir. Genç örümcekler, ağ tellerinin sayesinde uzun mesafelere uçabilirler. Bunun için telin bir ucunu bir yere bağlayarak kendilerini hava akımlarına bırakırlar. Böylece yerlerinden havalanan örümcekler, karada 5 km, denizde ise yüzlerce km uzaklara savrulabilirler. Okyanuslardaki ıssız adalarda yaşayan örümcekler, hep böyle havadan gelmişlerdir. Sonbaharda bol bol rastlanan ağ telleri de uçan genç örümceklerden kalmıştır. Ağ yapacak olan bir örümcek, önce yüksekçe bir yere tırmanarak, ağın ucunu bulunduğu kısma yapıştırarak ipek iplik yardımıyla aşağı süzülür. Gözüne kestirdiği bir dala ulaşarak bağlantı kurar. Sonra o iplik üzerinde gidip gelerek ağı kalınlaştırır. Daha sonra vücudundan çıkmakta olan ipliğin bir ucunu ilk ipliğe tutturarak kendisini boşluğa bırakır. Ağa bağlı halde bir yere varınca, o ucu vardığı yere yapıştırır. Bu yolla birkaç gidiş gelişte ağın kaba iskeleti meydana gelir. Bundan sonra iskeletin merkezi çevresinde dairevi halkalar yaparak ağı tamamlar. Ağ örümü çoğunlukla gece olur. Örülmesi en fazla 60 dakika alır. Ağın ortasında spiral ve yapışkan bir yer vardır. Diğer iplikçikler kurudur. Bir sinek ağa konsa hemen yapışır. Kurtulmak için çırpındıkça daha da yapışır. İkaz iplikçiği ile avın yakalandığını anlayan örümcek gelerek avını zehirler. İkaz iplikçiğinin bir ucu ağa bağlı, diğer ucu ise daima kendisindedir. Ağlar, genellikle yere dik vaziyettedir. Maksat, uçan arı ve sinekleri yakalamaktır. Her örümcek türünün, kendisine has ağ örme stili vardır. Ancak dikkati çeken nokta, ağlarda geometrik inceliklerin her zaman varlığıdır. Ağ örme işi örümceklerin, doğuştan kazandıkları bir sanattır. Küçük bir örümcek, daha önce hiç ağı görmemiş ve örmemiş olmasına rağmen büyüklere benzer ağlar örer. ÖRÜMCEKLER NASIL KORUNUR ? Bazı örümcekler düşmanlarından korunmak için çeşitli hilelere başvururlar. Güneydoğu Asya'da bir örümcek türü yaptığı büyük ve dairevi ağının ortasında durur. Bu duruş örümcek yiyen kuşlar için kolay bir hedef teşkil eder. Örümcek, düşmanlarını yanıltmak için birkaç adet sahte ağ merkezi tesis eder. Yediği avlarının kalıntılarını da ağ merkezlerine takarak manken örümcekler kullanır. Başka bir örümcek çeşidi de diken ve ağaç kabuklarından manken örümcekler yapar. Örümcek ağlarının ipleri ipektir. Bu iplikler, aynı çaptaki çelik telden daha sağlamdır. Örümceğin ipeği, ipekböceğinin ipeğinden daha ince ve daha dayanıklıdır. Üstelik bildiğimiz ipekten daha güzeldir. Ancak yapılan araştırmalar göstermiştir ki, örümcek ipeği tellerinden ince ipek elde etmeye imkân yoktur. Daha doğrusu çok pahalıya mal olmaktadır. Bunun başlıca sebebi, örümcekleri bir arada tutmanın zorluğudur. Zira bir arada bulunan örümcekler birbirini yerler. ÖRÜMCEKLERDE ÜREME Örümcekler ayrı eşeyli canlılardır. Dişileri erkeklerden daha iridir. Bazı türlerde erkekler de ağ yapar. Örümceklerde bir arada yaşamak, toplum ve aile hayatı yoktur dense de bazı türlerin birkaç birey olarak yasadıkları litaratüre geçmiştir. Erkekten daha iri olan dişiler, çiftleşme sonrası diğer örümceği yiyebilirler. Örümceklerde en ilgi çekici hususlardan biri de erkeklerde duyu bacaklarının eşleşme organı vazifesi görmesidir. Erkek önce bir sperma ağı örerek üzerine bir damla spermatozoon sıvısı bırakır. Sonra ters dönerek bu sıvıyı şırıngaya çeker gibi pedipalplerin şişkin kısmına doldurur. Bundan sonra dişiyi aramaya çıkar. Örümceklerin çiftleşmesinde erkek örümcek, daima ölümle karşı karşıyadır. Çiftleşme zamanında erkek örümcekler dişilerin karşısında çeşitli hareketlerle, dişilere açlığını unutturmaya çalışırlar. Sıçramalarla yaptığı bu hareketlere örümceğin sevgi dansı denir. Dişi örümceğe açlığını unutturmak için dans yaparken ondan uzak durmaya da dikkat eder. Zira bir anda yakalanmak tehlikesi vardır. Bazıları, çiftleşme öncesi dişi örümceğe bir böcek ikram ederek açlığını giderir. Bir tehlike kalmadığını anlayınca dişiye yaklaşır. Açlığını hatırlayan dişi, erkeği yemeyi düşündüğü için, erkekler çiftleşmeden sonra hemen kaçarlar.Genelde erkek, dişi aramaktan, sevgi dansından ve çiftleşmekten yorulduğu için dişi için çiftleşme sonrası en yakın protein kaynağı olarak görülür ve birçok örümcek kaçmaya fırsat bulamadan dişi örümceğe yem olur. Fakat her çiftleşmeden sonra dişinin mutlaka erkek örümceği yediği söylenemez. Dişi örümcekler yumurtalarını, ağ ipiyle yaptıkları kokon adı verilen kozalara (torbalara) bırakırlar. Bir kozada bazan yüzlerce yumurta olabilir. Genellikle yazın sonlarında döllenen yumurtalar, ilkbaharda yavru verir. Yaz başlarında döllenen yumurtalardan 20-60 gün içinde yavru çıkar. Örümcek, sonbaharda sarımsı beyaz renkli kokon adı verilen ipek bir koza içine bıraktığı yumurtalarına karşı çok şefkatli olmasına rağmen dişilerin yumurtaları veya yavruları yediği de olur.Bu durum yumurtaların döllenmemiş olduğunu gösterebilir.Yumuşak ve çok küçük olan bu yumurtalarla dolu kozayı bir dala, taş altına duvar yarığına, ağaç kovuğuna veya çalılıklar arasına emin bir yere yapıştırır.Kokon anne örümcek tarafından çevrilerek alttaki yavrularında hava alması sağlanır. İlkbaharda doğan yavrular ana-babalarına benzerler. Doğduktan birkaç gün sonra iyi bir ağ kurup kendi kendilerine beslenirler. Çoğu türlerde, yavrular erişkinliğe erdiği zaman babaları çoktan ölmüş olacaktır. Zira erkek örümcekler erişkinlikten sonra birkaç yıl yaşarlar. SINIFLANDIRMA Trigonotarbida - tükenmiş Amblypygi Araneida - örümcekler Mesothelae Opisthothelae Araneomorphae Mygalomorphae - tarantula ve tarantula benzeri örümcekler Phalangiotarbida - tükenmiş Opiliones - phalangidler, uzun bacaklı örümcekler (6,300 tür) Palpigradi Pseudoscorpionida - yalancıakrepler Ricinulei Schizomida Scorpiones - akrepler (2,000 tür) Solifugae - böğler (900 tür) Haptopoda - tükenmiş Uropygi - (100 tür) Acarina - maytlar ve keneler (30,000 tür) Acariformes Sarcoptiformes Trombidiformes Opilioacariformes Parasitiformes

http://www.biyologlar.com/orumcek-turleri

Toplanan Diptera Örneklerinin Öldürülmesi

Çeşitli yöntemlerle toplanmış olan erginler siyanürlü, etilasetatlı veya kloroformlu öldürme kavanozlarına alınarak öldürülürler. Alkol diptera örneklerini bozduğundan asla alkolde öldürülmezler. Ancak parazit olan Hippoboscidae, Nycteribiidae ve Streblidae türleri morfolojik çalışmalarda avantaj sağlamasından dolayı alkolde öldürülür. Öldürme kavanozlarında terleme ve kavanozun öldürücü etkisini yitirmesi gibi arzu edilmeyen durumlarla karşılaşmamak için bunların güneş ışığına maruz yerlere bırakılmamaları gerekir. Ayrıca, eğer kavanoz içinde nem varsa silinerek kurutulur. Bunun için çok basit bir kaba ihtiyaç vardır. Bu kap geniş ağızlı bir kavanoz olabilir. Kavanozun ağzını sıkı sıkıya kapatabilecek mantar kapağını olması arzu edilir. Mantar, eritilmiş parafin içinde bir süre tutularak etrafı sıvanır. Böylece kabın sızdırması kesin kez önlenir. Kabın içine, yarı hacmini kapayacak şekilde etil asetat veya etil alkol emdirilmiş kağıt (tercihen kurutma kağıdı) katlanıp buruşturularak konur. Bu şekilde hazırlanmış kap kullanıma hazırdır. Etil asetat kolaylıkla kabın boşluğuna yayılarak kap içine alınan böcek örneklerine nüfus eder ve onların ölmesini sağlar. Kavanozun kapağını açıp kapatma sırasında kabın içindeki kimyasal madde konsantrasyonu giderek azalacağından tedrici olarak öldürme özelliği de azalacaktır. Bu nedenle birkaç kullanımdan sonra bu kap aynı şekilde yeniden hazırlanmalı, buruşturulmuş kağıda emdirilen kimyasal madde yenilenmelidir. Bu kaplar kullanıldığında örnekler 12-24 saat süre ile kavanoz içinde tutulmalıdır. Bu süre, öldürülecek örneğin büyüklüğüne ve grubuna bağlı olarak değişir. Geniş ağızlı yaklaşık 0,3 l kapasiteli bir kavanoz alınır. Mum veya parafin ile doyurulmuş bir mantar kapak hazırlanır. Kap içerisine 15-20 mm kalınlığa erişecek kadar testere talaşı hazırlanır. 2-3 mm çapında ve 25-30 mm uzunluğunda bir cam tüp kesilir ve tabana döşenmiş talaş içine kavanozun kenarına, tabana dik duracak şekilde oturtulur. Bir miktar alçı su ile karıştırılır ve tabandaki talaşın üzerine dökülür. Talaşın üzeri bu alçı ile sıvanır ve kurutulur. Alçının nemi ortamdan uzaklaştıktan sonra kavanozun iç kenarındaki cam tüp içine hypodermik enjektör veya damlalıkla etil asetat konur. Cam tüpün ağzı küçük bir mantar tıpa veya kağıtla kapatılarak küçük böceklerin içine girmesi önlenir. Hazırlanan bu öldürme kavanozu birkaç saat süre ile kimyasal maddesi yenilenmeden kullanılabilir. Larva ve pupaları % 80'lik alkol içinde öldürülebilir. Bununla birlikte larvaların iki saat alkol + KAA (2 damla) içinde tutularak veya kaynamakta olan veya 80 C'deki su içine atılarak öldürülmesi iyi sonuçlar vermektedir. Diptera larvaları öldürüldükten sonra alkolde saklanırsa da preparatlarının yapılması daha iyidir. Bunun için larvalar önce potasyum hidroksitte kaynatılır; bir makasla vücutları yaklaşık olarak ortasından yarılır ve sonra kanada balsamıyla lam ve lamel arasına alınır.

http://www.biyologlar.com/toplanan-diptera-orneklerinin-oldurulmesi

Bitkilerde Davranış

Bitkilerde çimlenme,çiçek açma,yaprak dökme,tropizma ve nasti bitkilerde görülen önemli davranışlardır.Uyaran ışık,ısı,su,kimyasallar ve travmalar olabilir.Tepkilerin verilmesinde hormonlar düzenleyicidir. Tepki ise mitoz,turgor değişimi veya asimetrik büyüme ile gerçekleşir. Yapılan çalışmalar bitkilerinde belli bir alanda ürettikleri özel salgılarla birbirlerinin metabolizmalarını kontrol ettikleri görülmüştür.Ayrıca etilenin etkisinde unutmamak gerekir. Bitkilerde nasti ve tropizma kalıtsal davranışlardır. 1-Tropizma(Yönelim):Asimetrik büyümeler sonucu gelişir.Hormonların dağılımında görülen asimetri sonucu, dengesiz turgor ve hücre bölünmeleri ile gerçekleşir.Yavaş gerçekleşen davranıştır. Bu durum bitkinin farklı kısımlarının hormonlara farklı cevap vermesinden kaynaklanır. Tropizmada daha çok uç meristeminden salgılanan oksin hormonu etkilidir. Örneğin uç kısımdaki oksin hormonu ışık varlığına göre farklı dağılım gösterir Bu durum bitkide yönelmeyi gerçekleştirir. Oksinlerin dağılımı karanlıkta ve ışığın tepeden geldiği durumlarda dengelidir. Bu yüzden bitkide her hangi bir yönelme görülmez, ancak eğer ışık bir yönden geliyorsa ışığın geldiği yönde oksin miktarı az, ışığın geldiği tarafın karşısında oksin miktarı fazladır a-Fototropizma (Uyaran: ışık) Gövde pozitif tepki kök ise negatif tepki verir. b-Jeotropizma (Uyaran:Yerçekimi) Gövde negatif kök ise pozitif tepki verir. Bataklık ve sulak ortam bitkilerinin bazı kökleri negatif jeotropizma gösterir. Bu tip kökler havalandırma kökleri olarak adlandırılır ve bataklık toprağında O 2 nin az olmasından dolayı köklerin gaz alış verişinde rol alırlar. c-Hidrotropizma (Uyaran :Su) Kökler pozitif hidrotropizma göstererek suyun fazla olduğu ortamlara doğru yönelirler. d-Kemotropizma (Uyaran:Kimyasallar=asitler,bazlar,gübre) Kökler kimyasallara karşı pozitif (Gübre) veya negatif (Asit) tropizma gösterirler. e-Travmatropizma (Uyaran:Yaralanma) Kökler yaralanmaya neden olan faktörlere karşı negatif tropizma gösterir. f-Haptotropizma (Uyaran:Temas) Sarmaşık ve fasulyenin sülük gövdelerinde değmeye karşı pozitif tropizma gösterir. 2-Nasti(İrkilme):Bazı bitkiler ise uyartıların yönüne bağlı olmaksızın çok hızlı tepki gösterebilirler. Bu tür davranışlarında etken olan faktör turgor olayıdır. Örnek:Küstüm otunun duyarlı yaprak¬ları dokununca hemen kapanır. Örnek: Böcek yiyen bitkilerin çiçeğine böcek konunca çiçeğin yaprakları hemen kapanır. Bu hareketler turgor basıncındaki değişmelerle düzenlenir ve nasti hareketleri adını alır.Uyaranın yönüne bağlı olmaksızın gerçekleşen tepki tarzındaki hareketlerdir.Uyarana göre adlandırılır. a-Fotonasti.......(Uyaran:ışık):Papatya çiçeklerinde b-Termonasti....(Uyaran:Isı):Çiğdemin yaprak hareketlerinde c-Sismonasti....(Uyaran:Sarsıntı,Değme):Küstüm otunda d-Tigmonasti....(Uyaran okunma):Böcek kapan bitkilerde

http://www.biyologlar.com/bitkilerde-davranis

Dipteraların İğnelenmesi ve Etiketlenmesi

Dipterlerin (sineklerin) monte edilmesi, entomolojik orta boy iğnelerle yapılmalıdır. (No: 0.0, 0.1, nadiren 2) Bu takımın birçok üyesi mesonotomun yarısı iğneden zarar görmesin diye mesonotuma batırılan iğne ile orta çizgiden biraz uzağa monte edilir. Uzun, ince bacakları olan grupların üyeleri (Tipulidae, Mycetophilidae) veya özellikle larva formlarının (Chloropidae, Agromyzidae ve diğerlerinin çoğu) tek taraftan (özellikle sağ taraftan) iğnelenmesi, kitinden yapılmış ve akciğer zarının bir tarafının sağlam kalabilmesi için uygundur. Örneklerin küçük iğnelerle monte işleminin, özellikle küçük iğneler ve bu iş için özel olarak hazırlanmış forceplerle yapılması tercih edilir. Böcek monte edilmiş olan iğne 11'e 4mm boyutundaki küçük dikdörtgen Bristol tahtasına yerleştirilir ve sonra normal boylarda olağan entomolojik bir iğneyle sabitleştirilir. (1 numaralı iğne daha iyidir.) Bu şekilde dikdörtgen ve üçgen parçalar hazırlamak için iyi kalitede pastebord kullanılmalıdır. Toplanmış olan her bir numune toplandığı yer, gün, toplayıcının ismi, yaşama koşullarını tam olarak gösteren etiketlerle etiketlenmelidir. Bir keşif gezisi sırasında birçok türdeki böcekler pamuk petler üzerine toplanır ve gezi dönüşünde bu böceklerin iğnelenmesi laboratuarda yapılır. Dipterlerin veya sineklerin pamuk petlerin üzerine toplanması durumuna sadece son çare olarak baş vurulmuştur. Aksi halde bu metot materyalin korunması ve daha sonraki çalışmalarda kullanılması bakımından iyi sonuç verdiği için Dipterlerin her zaman toplandıkları gün monte edilmelidir. Oldukça fazla sayıda çift kanatlı gruplarının tam net olarak teşhisi için genitalia gereklidir. Bu yapılar hayli çeşitlilik gösterir ve onların evrimi diğer organların evriminden daha hızlı gelişir. Bu nedenle varoluşu çok yakın türlerde bile bazen görünüşte ayırt edilmeyen iyi tanımlanmış farklar tanıma prosesini kolaylaştırır.

http://www.biyologlar.com/dipteralarin-ignelenmesi-ve-etiketlenmesi

 
3WTURK CMS v6.03WTURK CMS v6.0