Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 99 kayıt bulundu.
Flores'in Küçük İnsanları

Flores'in Küçük İnsanları

Flores Adası’nın ismini hiç duydunuz mu? İlk bakışta Endonezya’da şirin bir tatil yeri gibi görünen bu ada aslında tarih öncesi çağlarda barındırdığı, küçük insanları yani “Homo Floresiensisleri” sebebiyle arkeoloji ve antropoloji dünyasında önemli bir yere sahip. Homo Floresiensis'lere ev sahipliği apan Flores Adası Kayıp medeniyetler üzerinde araştırma yaptığınızda karşılaşacağınız muhtemel isimlerden biri; Flores Adası. Burada yüzyıllar önce yaşadığı tespit edilen, fiziksel özellikleri açısından “küçük” olarak tabir edebileceğimiz Homo Floresiensisler ve onların bu alanda nasıl yaşam sürdükleri konusu oldukça ilgi çekici. Antrolopoloji ve arkeoloji alanları için ilk medeniyetler, ilk insanlar, kullandıkları aletler..vs. hakkında bilgi sahibi olmak oldukça önemlidir. Bulunan kalıntılar insanlık tarihine ışık tutar. Mısır, Mezopotamya uygarlıklarını çoğumuz biliriz, bu alanlar hala gözde alanlardır. Fakat dünyanın bilinmeyen noktalarında kazara keşifler yapmak ve aslında oldukça şaşırtıcı sonuçlara ulaşmak da mümkün. Bu durum Flores Adası için de geçerli bir durum. Flores Adası’ndaki insanlık tarihi için önemli bir adım sayılan keşif; New England Armidale Üni­versitesi’nden Michael Morwood, Endonezya Arkeoloji Mer­kezinden R. P. Soejono ve ekibi tarafından gerçekleştirilmiştir. Ekip 2003 yılında “Liang Bua” adı verilen bir mağarada kazı çalışması yaparken 800 bin yıl öncesine ait olduğu belirtilen taş aletler ve sonrasında “Homo Floresiensis” olarak adlandırılacak olan insan kalıntılarına ulaşmışlardır. Bu önemli bir buluştur çünkü bulunan insan kalıntıları normal olarak tabir edebileceğimiz fiziksel özelliklerden oldukça küçük niteliklere sahiptir. Şöyle ki; radyometrik tespitlere göre bulunan insan kalıntılarının yaklaşık 1 metre boyunda, 25 kilo ağırlığında bir kadına ait olduğu tespit edilmiştir. Kafatasının oldukça küçük olması ilgi çeken diğer bir husustur. Kalıntıların en eskisinin 94.000 yıl en yenisinin ise 12.000 yıllık olduğu belirlenmiştir. Tüm bu bilgiler 2004 yılında Nature isimli dergide büyük bir heyecanla paylaşılmış ve yeni bir türün ortaya çıktığı belirtilmiştir. Bu durum da insanın evrimi üzerine yeni tartışmaları gündeme getirmiştir. Bu tartışmaları ve öne sürülen savları kısaca ele alacağız fakat öncesinde homo florensis’in insanın evrimi tablosunda aldığı konumdan kısaca bahsetmenin faydalı olacağı inancındayız. Homo Floresiensis’in aile içindeki yeri Soldan sağa: Homo Floresiensis, Lucy (Australopithecus Afarensis), Homo Erectus ve Homo Sapiens. Flores Adası’nda bulunan insan buluntularının yeni bir tür olduğu savı bir dönemin ses getiren konusu olmuştur. “Homo Floresiensis” olarak adlandırılan bu yeni türün Avrupalı Neandertalların doğu ayağını temsil eden; “Homo Erectus” ve modern insan olarak tabir edilen “Homo Sapiens”den önce yaşadığı “Australopithecus Afarensis” ile yakın özelliklere sahip olduğu savunulmuştur. Homo Floresiensis’in küçük ama oldukça zeki bir tür olduğunu savunan araştırmacılar bu savlarını onların kullandıkları karışık yapıda taş aletler ile güçlendirmeye çalışmışlardır. Homo Floresiensis’in beyin büyüklüğünün Homo Saphiens’in sahip olduğu beyin büyüklüğünün 1/3’ü olmasına rağmen zeki oldukları düşünülmektedir. Bu küçük insanların yaşadıkları çağın tehlikelerine karşı kendilerini korudukları, kullandıkları aletlere bakıldığında avcılıkla ilgilendikleri belirlenmiştir, bunların tümüne bakıldığında yüksek bir zekâyı temsil ettikleri savı güçlenmektedir. Homo Floresiensis’e yazın ve sinema tarihinde önemli yere sahip, J. R. R. Tolkien’in Yüzüklerin Efendisi isimli eserinden esinlenerek “Hobbit” adı da verilmiştir. Dünya çapında bilinen önemli eserlerden biri olan bu eserde önemli karakterlerden birini temsil eden hobbitler, küçük cüsseleri ve zekâlarıyla dikkat çekmektedir. Gerçekte de hobbitlerin var olabileceğinin savunulması heyecan uyandırmıştır. Homo Floresiensis’e dair tartışmalar Flores Adası’nda bulunan kalıntıların daha önce keşfedilmeyen yeni bir tür mü yoksa Homo Saphiens’in farklılık geçirmiş bir türü mü olduğu sorusu keşiften günümüze kadar devam eden bir tartışmaya neden olmuştur. Yazılan bilimsel makalelerde yıllara bağlı olarak gözlemlenen farklı yorumlar ilgi çekicidir. Keşfin yapıldığı 2003 yılında kesin bir şekilde dile getirilen yeni tür bulunduğuna dair sav, yapılan araştırmalar sonucu eski etkisini yitirmiştir. 1 metre boyunda, 25 kilo ağırlığında bir kadına ait olduğu tespit edilen kafatasının oldukça küçük olması dikkat çekicidir. Bulunan kalıntıların sadece dokuz tane olması, bu alanda kapsamlı bir fikir yürütmeyi engelleyici bir unsur olarak karşımıza çıkmaktadır. İlk bulunan kadın iskeletinin Homo Saphiens’in uzak bir türünü temsil ettiği, LB1 adı verilen iskeletteki anormallik nedeninin “Mikrosefali” isimli bir hastalık olduğu savı güçlenmeye başlamıştır. Mikrosefali; beyinde ortaya çıkan küçük bir urun sebep olduğu bir rahatsızlıktır ve zihinsel engele yol açmaktadır. Bu kuramı destekleyen anatomist Maciej Henneberg mikrosefalik kafatasıyla LB1 arasında muhtemel benzerlikleri vurgulamıştır. Ama az sayıda bulunan iskeletlerden yola çıkarak bir medeniyetin tamamında mikrosefali rahatsızlığının var olduğunu söylemek mümkün değildir. 2005 yılında Homo Floresiensis için en kapsamlı araştırma yapılmıştır. Florida Eyalet Üniversite­si’nden Dr. Dean Falk’un liderliğini yaptığı uluslar ara­sı bir uzman grubu LB1 kafatasının üç boyutlu bir maketini yapıp, bunu şempanze, modern insan(modern cüce), mirosefalik bir beyin ve Homo Eractus ile karşılaştırmıştır. Bu incelemeye göre LB1; modern cüce beyninden ve mikrosefalik beyinden daha farklı bir özellik taşımakta ve yeni bir türü temsil etmektedir. Bu araştırmanın doğruluğu halen tartışılan bir konudur. Kimi bilim adamlarına göre bu çalışmada mikrosefalik beyin örneği kullanılmamıştır. 2010 yılında gelindiğinde ise; bu türün Homo Saphiens’in bir türü olduğu, “Kretenizm” adı verilen hastalığın ve yaşanılan ortamın da getirisi olarak küçük bir yapıya sahip olduğu savı ortaya çıkar. Günümüzde o bölgede yaşayan halkın da minyon bir tipe sahip olması bu savı güçlendiren bir unsur olmaktadır. Bu sav belki doğru olabilir çünkü antopolojik çalışmalara göre yaşam alanının sahip olduğu coğrafi koşullar canlılarda fizyolojik farklılıklara neden olabilmektedir. Kazılarda Homo Floresiensis ile birlikte ortaya çıkan balık, kurbağa, yılan, kaplumbağa, dev sıçan, kuş, yarasa ve Stegodon (soyu tükenmiş bir tür cüce fil), Komodo ejderi ve dev kertenkele gibi diğer iri hayvanlara ait iskeletler Flores Adası’nın doğal ortamını gözler önüne sermiştir. Homo Floresiensis bu doğal ortamda varlığını devam ettirmeye çalışmıştır. Fiziksel yapının da zaman içersinde Flores’in kaynakları doğrultusunda şekillendiği inancı dikkat çekicidir. Aynı bölgede özellikle Stegodon(cüce fil)’in görülmesi bu inancı güçlendirmektedir. Homo Floresiensis’in yok oluşu Homo Floresiensis’in nasıl yok olduğu sorusunun cevabını aradığımızda kesin bir bilgiye ulaşmamız mümkün değil fakat bu konudaki en baskın görüş; Flores Adası’nda gerçekleşmiş olan bir volkanik patlama sonucu Homo Floresiensis’in yok olmasıdır. Bu görüşün kesin bir veriyi sunması imkânsızdır çünkü böyle bir doğal felaketten kurtulanların olup olmadığı ve başka bir yerde yaşamlarını devam ettirip ettirmediklerine dair bir iz yoktur. Homo Floresiensis keşfin yapıldığı 2003 yılından günümüze yaklaşık 9 yıldır tartışılan bir konu olma özelliğine sahiptir. Paleoantropologlar, anotomi uzmanları gibi farklı branşlardan bilim adamlarının ilgisini çeken bu konu her geçen sene farklı savları ortaya çıkarmaktadır. Bu konudaki son görüş; yeni bir tür olmadığı yönündedir. Fakat ilerleyen senelerde bu konuda belki de bulanacak başka veriler ışında çok farklı savlar ortaya çıkacaktır. İnsanın evrim süreci her daim merak uyandıran bir konu olduğundan bu açıdan dikkat çekici olan Homo Floresiensis’in yeni bir tür olup olmadığı sorunsalının daha pek çok yıllar tartışılması muhtemeldir. Kaynakça: Pennsylvannia State University Press Release, “No Hobbits in this Shire: Researchers say skeletal remains are pygmy ancestors”, 23 Ağustos 2006. http://insanveevren.wordpress.com/2012/04/15/tarih-oncesi-flores-adalilar-bilmecesi/ http://www.kesfetmekicinbak.com/ http://en.wikipedia.org/wiki/Homo_floresiensis http://www.sciencedaily.com/releases/2010/09/100928025514.htm http://www.sciencedaily.com/releases/2008/12/081217124418.htm Yazar hakkında: Sinem Doğan Açık Bilim Haziran 2012 http://www.acikbilim.com/2012/06/dosyalar/floresin-kucuk-insanlari.html

http://www.biyologlar.com/floresin-kucuk-insanlari

Sonuçta o kadar da farklı değiliz; İnsanlardaki hücreler ve sağlam mikroplar ortak bir atayı paylaşıyor

Sonuçta o kadar da farklı değiliz; İnsanlardaki hücreler ve sağlam mikroplar ortak bir atayı paylaşıyor

Bir araştırma ekibi, arkeal ve ökaryotik hücrelerin genetik materyalini nasıl paketlediğini ve depoladıklarını gösteren çarpıcı paralellikler buldu. Credit: Santangelo and Luger Labs

http://www.biyologlar.com/sonucta-o-kadar-da-farkli-degiliz-insanlardaki-hucreler-ve-saglam-mikroplar-ortak-bir-atayi-paylasiyor

NEMRUT DAĞI MİLLİ PARKI

NEMRUT DAĞI MİLLİ PARKI

İli : ADIYAMAN Adı : NEMRUT DAĞI MİLLİ PARKI Kuruluşu : 1988 Alanı : 13.850 ha. Konumu : Adıyaman ili, Kahta ilçesindedir. Ulaşım : Adıyaman-Kahta karayolu ile ulaşım sağlanmakta olup, Milli Park alanı Kahta’ya 9 km, Adıyaman’a 43 km uzaklıktadır. Kaynak Değerleri :           Milli parkın ana kaynak değerini, Nemrut Dağı’ndaki kültürel ve arkeolojik kalıntılar oluşturmaktadır.           Antiochos Tümülüs’ü ve dev heykelleri, Eskikale (Arsameia), Yenikale, Karakuş Tepe ve Cendere Köprüsü milli park içerisinde kalan kültürel değerlerdir. Eski çağlarda “Kommagene” olarak anılan bu bölgede, 1.Mithradates tarafından bağımsız bir krallık kurulmuş, krallık onun oğlu 1.Antiochos’un (M.Ö. 62-32) egemen olduğu yıllarda önem kazanmıştır. M.S. 72 yılında da Roma’ya karşı yapılan ve kaybedilen savaş ile krallığın bağımsızlığı sona ermiştir.           Nemrut Dağı doruğundaki kalıntılar yerleşme yeri olmayıp Antiochos’un tümülüsü ve kutsal alanlardır. Tümülüs, deniz seviyesinden 2150m. yüksekliğinde, Fırat Nehri geçitlerine ve ovalarına hakim tepe üzerinde bulunmaktadır. Kralın kemiklerinin ya da küllerinin anakayaya oyulmuş odaya konulduğu ve 50m. yüksekliğinde ve 150m. çapındaki tümülüs ile örtüldüğü düşünülmektedir. Girişi kuzeyden olup, doğuda ve batıda dini törenlerin yapıldığı teras şeklindeki avlular yer almaktadır.Her iki terasta da aslan ve kartal heykelleri arasında, yüksekliği 7 m’ye ulaşan oturur vaziyette dev heykeller sıralanır. Bunlar yazıtları ve kabartmaları olan ortostadla (dik olarak konulan büyük taş blokları) çevrilmiştir.           Eski Kahta köyü yakınında Kommagene’nin başşehri Arsameia yer alır. Burada, Mithradates’in kutsal alanı bulunmaktadır.           Yine eski Kahta yakınında Kocahisar köyü civarında sarp kayalar üzerine kurulmuş Yenikale yer alır. Kale, ortaçağ etkileri taşırsa da daha geç devre aittir. İçinde su depoları, hamam, cami ve Kahta Çayı’na inen gizli su yolu bulunmaktadır.           Kahta Çayı’nın bir kolu olan Çendere Çayı’nın daraldığı yerde iki ana kaya üzerinde tek kemerli olarak yapılan Cendere Köprüsü yer almaktadır. Köprü sütunları üzerindeki kitabeye göre Kommagene şehirleri tarafından Roma İmparatoru Septimus Severius (M.S.193-211) ile karısı ve oğulları onuruna yaptırılmıştır.           Arsameia’nın 10 km güneybatısında, 21 m yüksekliğinde krallık kadınlarının gömüldüğü Karakuş Tepe Tümülüsü bulunmaktadır.           Orman formasyonu içerisinde meşe türleri ve ağaçcıklar bulunur. Yaban hayatı bakımından ayı, kurt, çakal, tilki, porsuk türlerine rastlanır.  Görünecek Yerler : Nemrut Dağı ve Kommagene Kralı Antiochos’un tümülüsü ile kutsal alanlar, dev heykeller, Eski Kale (Arsameia), Yeni Kale, Karakuş Tepe ve Cendere Köprüsü ziyaretçilerce görülmesi gerekli yerlerdir. Mevcut Hizmetler : Nemrut Dağı Milli Parkı’nda kırgazinosu mevcut olup, günübirlik ziyaretçilere hizmet vermektedir. Konaklama Karadut ve Kahta’da pansiyonlardan sağlanabilmektedir. http://www.milliparklar.gov.tr

http://www.biyologlar.com/nemrut-dagi-milli-parki

Çevre Kanunu (Bölüm-1)

ÇEVRE KANUNU (1) (2) Kanun Numarası : 2872 Kabul Tarihi : 9/8/1983 Yayımlandığı R.Gazete : Tarih : 11/8/1983 Sayı : 18132 Yayımlandığı Düstur Tertip : 5 Cilt : 22 Sayfa : 499 BİRİNCİ BÖLÜM Amaç, Tanımlar ve İlkeler Amaç: Madde 1 – (Değişik: 26/4/2006 – 5491/1 md.) Bu Kanunun amacı, bütün canlıların ortak varlığı olan çevrenin, sürdürülebilir çevre ve sürdürülebilir kalkınma ilkeleri doğrultusunda korunmasını sağlamaktır. Tanımlar: Madde 2 – (Değişik: 26/4/2006 – 5491/2 md.) Bu Kanunda geçen terimlerden; Çevre: Canlıların yaşamları boyunca ilişkilerini sürdürdükleri ve karşılıklı olarak etkileşim içinde bulundukları biyolojik, fiziksel, sosyal, ekonomik ve kültürel ortamı, Çevre korunması: Çevresel değerlerin ve ekolojik dengenin tahribini, bozulmasını ve yok olmasını önlemeye, mevcut bozulmaları gidermeye, çevreyi iyileştirmeye ve geliştirmeye, çevre kirliliğini önlemeye yönelik çalışmaların bütününü, Çevre kirliliği: Çevrede meydana gelen ve canlıların sağlığını, çevresel değerleri ve ekolojik dengeyi bozabilecek her türlü olumsuz etkiyi, Sürdürülebilir çevre: Gelecek kuşakların ihtiyaç duyacağı kaynakların varlığını ve kalitesini tehlikeye atmadan, hem bugünün hem de gelecek kuşakların çevresini oluşturan tüm çevresel değerlerin her alanda (sosyal, ekonomik, fizikî vb.) ıslahı, korunması ve geliştirilmesi sürecini, Sürdürülebilir kalkınma: Bugünkü ve gelecek kuşakların, sağlıklı bir çevrede yaşamasını güvence altına alan çevresel, ekonomik ve sosyal hedefler arasında denge kurulması esasına dayalı kalkınma ve gelişmeyi, Alıcı ortam: Hava, su, toprak ortamları ile bu ortamlarla ilişkili ekosistemleri, Doğal varlık: Bütün bitki, hayvan, mikroorganizmalar ile bunların yaşama ortamlarını, Doğal kaynak: Hava, su, toprak ve doğada bulunan cansız varlıkları, (1)19/10/1989 tarih ve 383 sayılı KHK'nin 25 inci maddesi; bu Kanun ile Çevre Müsteşarlığına verilen yetkilerin, Özel Çevre Koruma Kurumu Başkanlığına geçeceğini hüküm altına almıştır. (2)9/8/1991 tarih ve 443 sayılı KHK'nin geçici 1 inci maddesi ile çeşitli mevzuatta geçen "Çevre Müsteşarlığı" ve "Çevreden Sorumlu Devlet Bakanlığı" ibareleri "Çevre Bakanlığı", "Çevreden Sorumlu Devlet Bakanı" ve "Çevre Müsteşarı" ibareleri "Çevre Bakanı" olarak değiştirilmiştir. Kirleten: Faaliyetleri sırasında veya sonrasında doğrudan veya dolaylı olarak çevre kirliliğine, ekolojik dengenin ve çevrenin bozulmasına neden olan gerçek ve tüzel kişileri, Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, Atıksu: Evsel, endüstriyel, tarımsal ve diğer kullanımlar sonucunda kirlenmiş veya özellikleri kısmen veya tamamen değişmiş suları, Atıksu altyapı tesisleri: Evsel ve/veya endüstriyel atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve alıcı ortama verilmesinin sağlandığı sistem ve tesislerin tamamını, Arıtma tesisi: Her türlü faaliyet sonucu oluşan katı, sıvı ve gaz halindeki atıkların yönetmeliklerde belirlenen standartları sağlayacak şekilde arıtıldığı tesisleri, Ekolojik denge: İnsan ve diğer canlıların varlık ve gelişmelerini doğal yapılarına uygun bir şekilde sürdürebilmeleri için gerekli olan şartların bütününü, Sulak alan: Doğal veya yapay, devamlı veya geçici, suları durgun veya akıntılı, tatlı, acı veya tuzlu, denizlerin gelgit hareketlerinin çekilme devresinde altı metreyi geçmeyen derinlikleri kapsayan, başta su kuşları olmak üzere canlıların yaşama ortamı olarak önem taşıyan bütün sular, bataklık, sazlık ve turbiyeler ile bu alanların kıyı kenar çizgisinden itibaren kara tarafına doğru ekolojik açıdan sulak alan kalan yerleri, Biyolojik çeşitlilik: Ekosistemlerin, türlerin, genlerin ve bunlar arasındaki ilişkilerin tamamını, Atık: Herhangi bir faaliyet sonucunda oluşan, çevreye atılan veya bırakılan her türlü maddeyi, Katı atık: Üreticisi tarafından atılmak istenen ve toplumun huzuru ile özellikle çevrenin korunması bakımından, düzenli bir şekilde bertaraf edilmesi gereken katı atık maddeleri, Evsel katı atık: Tehlikeli ve zararlı atık kapsamına girmeyen konut, sanayi, işyeri, piknik alanları gibi yerlerden gelen katı atıkları, Tehlikeli atık: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan atıklar ve bu atıklarla kirlenmiş maddeleri, Tehlikeli kimyasallar: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan her türlü kimyasal madde ve ürünleri, Kirli balast: Duran veya seyir halindeki tankerden, gemiden veya diğer deniz araçlarından su üzerine bırakıldığında; su üstünde veya bitişik sahil hattında petrol, petrol türevi veya yağ izlerinin görülmesine neden olan veya su üstünde ya da su altında renk değişikliği oluşturan veya askıda katı madde/emülsiyon halinde maddelerin birikmesine yol açan balast suyunu, Çevresel etki değerlendirmesi: Gerçekleştirilmesi plânlanan projelerin çevreye olabilecek olumlu ve olumsuz etkilerinin belirlenmesinde, olumsuz yöndeki etkilerin önlenmesi ya da çevreye zarar vermeyecek ölçüde en aza indirilmesi için alınacak önlemlerin, seçilen yer ile teknoloji alternatiflerinin belirlenerek değerlendirilmesinde ve projelerin uygulanmasının izlenmesi ve kontrolünde sürdürülecek çalışmaları, Proje tanıtım dosyası: Gerçekleşmesi plânlanan projenin yerini, özelliklerini, olası olumsuz etkilerini ve öngörülen önlemleri içeren, projeyi genel boyutları ile tanıtan bilgi ve belgeleri içeren dosyayı, Stratejik çevresel değerlendirme: Onaya tâbi plân ya da programın onayından önce plânlama veya programlama sürecinin başlangıcından itibaren, çevresel değerlerin plân ve programa entegre edilmesini sağlamak, plân ya da programın olası çevresel etkilerini en aza indirmek ve karar vericilere yardımcı olmak üzere katılımcı bir yaklaşımla sürdürülen ve yazılı bir raporu da içeren çevresel değerlendirme çalışmalarını, Çevre yönetimi: İdarî, teknik, hukukî, politik, ekonomik, sosyal ve kültürel araçları kullanarak doğal ve yapay çevre unsurlarının sürdürülebilir kullanımını ve gelişmesini sağlamak üzere yerel, bölgesel, ulusal ve küresel düzeyde belirlenen politika ve stratejilerin uygulanmasını, Çevre yönetim birimi/Çevre görevlisi: Bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemeler uyarınca denetime tâbi tesislerin faaliyetlerinin mevzuata uygunluğunu, alınan tedbirlerin etkili olarak uygulanıp uygulanmadığını değerlendiren, tesis içi yıllık denetim programları düzenleyen birim ya da görevliyi, Çevre gönüllüsü: Bakanlıkça, uygun niteliklere sahip kişiler arasından seçilen ve bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemelere aykırı faaliyetleri Bakanlığa iletmekle görevli ve yetkili kişiyi, Hassas alan: Ötrofikasyon riski yüksek olan ve Bakanlıkça belirlenecek kıyı ve iç su alanlarını, Çevreye ilişkin bilgi: Su, hava, toprak, bitki ve hayvan varlığı ile bunları olumsuz olarak etkileyen veya etkileme ihtimali bulunan faaliyetler ve alınan idarî ve teknik önlemlere ilişkin olarak mevcut bulunan her türlü yazılı, sözlü veya görüntülü bilgi veya veriyi, İş termin plânı: Atıksu ve evsel nitelikli katı atık kaynaklarının yönetmelikte belirtilen alıcı ortam deşarj standartlarını sağlamak için yapmaları gereken atıksu arıtma tesisi ve/veya kanalizasyon gibi altyapı tesisleri ile katı atık bertaraf tesislerinin gerçekleştirilmesi sürecinde yer alan yer seçimi, proje, ihale, inşaat, işletmeye alma gibi işlerin zamanlamasını gösteren plânı, Risk değerlendirmesi: Belirli kimyasal madde ya da maddelerin potansiyel tehlikelerinin belirlenmesi ve sonuçlarının hesaplanması yönünde kullanılan yöntemler bütününü, İyonlaştırıcı olmayan radyasyon: İyonlaşmaya neden olmayan elektromanyetik dalgaları, Elektromanyetik alan: Elektrik ve manyetik alan bileşenleri olan dalgaların oluşturduğu alanı, Koku: İnsanda koku alma duygusunu harekete geçiren ve kokunun algılanmasına neden olan uçucu maddelerin yarattığı etkiyi, Hava kalitesi: İnsan ve çevresi üzerine etki eden hava kirliliğinin göstergesi olan, çevre havasında mevcut hava kirleticilerin artan miktarıyla azalan kalitelerini, Bakanlık: Çevre ve Orman Bakanlığını, ifade eder. İlkeler: Madde 3 –(Değişik: 26/4/2006 – 5491/3 md.) Çevrenin korunmasına, iyileştirilmesine ve kirliliğinin önlenmesine ilişkin genel ilkeler şunlardır: a) Başta idare, meslek odaları, birlikler ve sivil toplum kuruluşları olmak üzere herkes, çevrenin korunması ve kirliliğin önlenmesi ile görevli olup bu konuda alınacak tedbirlere ve belirlenen esaslara uymakla yükümlüdürler. b) Çevrenin korunması, çevrenin bozulmasının önlenmesi ve kirliliğin giderilmesi alanlarındaki her türlü faaliyette; Bakanlık ve yerel yönetimler, gerekli hallerde meslek odaları, birlikler ve sivil toplum kuruluşları ile işbirliği yaparlar. c) Arazi ve kaynak kullanım kararlarını veren ve proje değerlendirmesi yapan yetkili kuruluşlar, karar alma süreçlerinde sürdürülebilir kalkınma ilkesini gözetirler. d) Yapılacak ekonomik faaliyetlerin faydası ile doğal kaynaklar üzerindeki etkisi sürdürülebilir kalkınma ilkesi çerçevesinde uzun dönemli olarak değerlendirilir. e) Çevre politikalarının oluşmasında katılım hakkı esastır. Bakanlık ve yerel yönetimler; meslek odaları, birlikler, sivil toplum kuruluşları ve vatandaşların çevre hakkını kullanacakları katılım ortamını yaratmakla yükümlüdür. f) Her türlü faaliyet sırasında doğal kaynakların ve enerjinin verimli bir şekilde kullanılması amacıyla atık oluşumunu kaynağında azaltan ve atıkların geri kazanılmasını sağlayan çevre ile uyumlu teknolojilerin kullanılması esastır. g) Kirlenme ve bozulmanın önlenmesi, sınırlandırılması, giderilmesi ve çevrenin iyileştirilmesi için yapılan harcamalar kirleten veya bozulmaya neden olan tarafından karşılanır. Kirletenin kirlenmeyi veya bozulmayı durdurmak, gidermek veya azaltmak için gerekli önlemleri almaması veya bu önlemlerin yetkili makamlarca doğrudan alınması nedeniyle kamu kurum ve kuruluşlarınca yapılan gerekli harcamalar 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre kirletenden tahsil edilir. h) Çevrenin korunması, çevre kirliliğinin önlenmesi ve giderilmesi için uyulması zorunlu standartlar ile vergi, harç, katılma payı, yenilenebilir enerji kaynaklarının ve temiz teknolojilerin teşviki, emisyon ücreti ve kirletme bedeli alınması, karbon ticareti gibi piyasaya dayalı mekanizmalar ile ekonomik araçlar ve teşvikler kullanılır. ı) Bölgesel ve küresel çevre sorunlarının çözümüne yönelik olarak taraf olduğumuz uluslararası anlaşmalar sonucu ortaya çıkan ulusal hak ve yükümlülüklerin yerine getirilmesi için gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. Gerçek ve tüzel kişiler, bu düzenlemeler sonucu ortaya çıkabilecek maliyetleri karşılamakla yükümlüdür. j) Çevrenin korunması, çevre kirliliğinin önlenmesi ve çevre sorunlarının çözümüne yönelik gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. 2690 sayılı Türkiye Atom Enerjisi Kurumu Kanunu kapsamındaki konular Türkiye Atom Enerjisi Kurumu tarafından yürütülür. İKİNCİ BÖLÜM Yüksek Çevre Kurulu ve Görevleri(1) Yüksek Çevre Kurulu(1) Madde 4 – (Mülga: 9/8/1991 - KHK - 443/43 md.; Yeniden düzenleme: 26/4/2006 – 5491/4 md.) Başbakanın başkanlığında, Başbakanın bulunmadığı zamanlarda Çevre ve Orman Bakanının başkanlığında, Başbakanın belirleyeceği sayıda bakan ile Bakanlık Müsteşarından oluşan Yüksek Çevre Kurulu kurulmuştur. Diğer bakanlar gündeme göre Kurul toplantılarına başkan tarafından çağrılabilir. Kurul yılda en az bir defa toplanır. Kurulun sekretarya hizmetleri Bakanlıkça yürütülür. Kurulun çalışmaları ile ilgili konularda ön hazırlık ve değerlendirme yapmak üzere, Bakanlık Müsteşarının başkanlığında ilgili bakanlık müsteşarları, diğer kurum ve kuruluşların en üst düzey yetkili amirlerinin katılımı ile toplantılar düzenlenir. Bu toplantılara gündeme göre ilgili kamu kurumu niteliğindeki kuruluşların birlik temsilcileri, meslek kuruluşları, sivil toplum kuruluşları, yerel yönetim temsilcileri, üniversite temsilcileri ve bilimsel kuruluşların temsilcileri davet edilir. Kurulun çalışma usûl ve esasları ile diğer hususlar yönetmelikle belirlenir. Yüksek Çevre Kurulunun görevleri(1) Madde 5 – (Mülga: 13/3/1990 - KHK - 409/12 md.; Yeniden düzenleme: 26/4/2006 – 5491/5 md.) Yüksek Çevre Kurulunun görevleri şunlardır: a) Etkin bir çevre yönetiminin sağlanması için hedef, politika ve strateji belirlemek. b) Sürdürülebilir kalkınma ilkesi çerçevesinde ekonomik kararlara çevre boyutunun dahil edilmesine imkân veren hukukî ve idarî tedbirleri belirlemek. c) Birden fazla bakanlık ve kuruluşu ilgilendiren çevre konularına ilişkin uyuşmazlıklarda nihai kararı vermek. Madde 6 – 7 – (Mülga: 8/6/1984 - KHK 222/30 md.) ÜÇÜNCÜ BÖLÜM Çevre Korunmasına İlişkin Önlemler ve Yasaklar Kirletme yasağı: Madde 8 – Her türlü atık ve artığı, çevreye zarar verecek şekilde, ilgili yönetmeliklerde belirlenen standartlara ve yöntemlere aykırı olarak doğrudan ve dolaylı biçimde alıcı ortama vermek, depolamak, taşımak, uzaklaştırmak ve benzeri faaliyetlerde bulunmak yasaktır. Kirlenme ihtimalinin bulunduğu durumlarda ilgililer kirlenmeyi önlemekle; kirlenmenin meydana geldiği hallerde kirleten, kirlenmeyi durdurmak, kirlenmenin etkilerini gidermek veya azaltmak için gerekli tedbirleri almakla yükümlüdürler. ______________________________ (1) 26/4/2006 tarihli ve 5491 sayılı Kanunun 4 üncü maddesiyle ikinci bölüm başlığı “Merkezi ve Mahalli İdari Bölümleri ve Görevleri”, 4 üncü madde başlığı “Merkez Çevre Kurulu” iken metne işlendiği şekilde değiştirilmiştir. Çevrenin korunması(1) Madde 9 – (Değişik: 26/4/2006 – 5491/6 md.) Çevrenin korunması amacıyla; a) Doğal çevreyi oluşturan biyolojik çeşitlilik ile bu çeşitliliği barındıran ekosistemin korunması esastır. Biyolojik çeşitliliği koruma ve kullanım esasları, yerel yönetimlerin, üniversitelerin, sivil toplum kuruluşlarının ve ilgili diğer kuruluşların görüşleri alınarak belirlenir. b) Ülke fizikî mekânında, sürdürülebilir kalkınma ilkesi doğrultusunda, koruma-kullanma dengesi gözetilerek kentsel ve kırsal nüfusun barınma, çalışma, dinlenme, ulaşım gibi ihtiyaçların karşılanması sonucu oluşabilecek çevre kirliliğini önlemek amacıyla nazım ve uygulama imar plânlarına esas teşkil etmek üzere bölge ve havza bazında 1/50.000-1/100.000 ölçekli çevre düzeni plânları Bakanlıkça yapılır, yaptırılır ve onaylanır. Bölge ve havza bazında çevre düzeni plânlarının yapılmasına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. c) Ulusal mevzuat ve taraf olduğumuz uluslararası sözleşmeler ile koruma altına alınarak koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan hassas alanların her tür ölçekteki plânlarda gösterilmesi zorunludur. Koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan alanlar, plân kararı dışında kullanılamaz. d) Ülke ve dünya ölçeğinde ekolojik önemi olan, çevre kirlenmeleri ve bozulmalarına duyarlı toprak ve su alanlarını, biyolojik çeşitliliğin, doğal kaynakların ve bunlarla ilgili kültürel kaynakların gelecek kuşaklara ulaşmasını emniyet altına almak üzere gerekli düzenlemelerin yapılabilmesi amacıyla, Özel Çevre Koruma Bölgesi olarak tespit ve ilan etmeye, bu alanlarda uygulanacak koruma ve kullanma esasları ile plân ve projelerin hangi bakanlıkça hazırlanıp yürütüleceğini belirlemeye Bakanlar Kurulu yetkilidir. Bu bölgelere ilişkin plân ve projelerde; 3/5/1985 tarihli ve 3194 sayılı İmar Kanununun 9 uncu maddesi, 4/4/1990 tarihli ve 3621 sayılı Kıyı Kanununun plân onama yetkisini düzenleyen hükümleri, 21/7/1983 tarihli ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun 8 inci maddesinin tabiat varlıkları, doğal sit alanları ve bunların korunma alanlarının tespit ve tescili dışında kalan yetkileri düzenleyen hükümleri ile aynı Kanunun 17 nci maddesinin (a) bendi hükümleri uygulanmaz. e) Sulak alanların doğal yapılarının ve ekolojik dengelerinin korunması esastır. Sulak alanların doldurulması ve kurutulması yolu ile arazi kazanılamaz. Bu hükme aykırı olarak arazi kazanılması halinde söz konusu alan faaliyet sahibince eski haline getirilir. Sulak alanların korunması ve yönetimine ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. f) Biyolojik çeşitliliğin sürdürülebilirliliğinin sağlanması bakımından nesli tehdit veya tehlike altında olanlar ile nadir bitki ve hayvan türlerinin korunması esas olup, mevzuata aykırı biçimde ticarete konu edilmeleri yasaktır. g) Doğal kaynakların ve varlıkların korunması, kirliliğinin ve tahribatının önlenmesi ve kalitesinin iyileştirilmesi için gerekli idarî, hukukî ve teknik esaslar Bakanlık tarafından belirlenir. h) Ülkenin deniz, yeraltı ve yerüstü su kaynaklarının ve su ürünleri istihsal alanlarının korunarak kullanılmasının sağlanması ve kirlenmeye karşı korunması esastır. Atıksu yönetimi ile ilgili politikaların oluşturulması ve koordinasyonunun sağlanması Bakanlığın sorumluluğundadır. Su ürünleri istihsal alanları ile ilgili alıcı ortam standartları Tarım ve Köyişleri Bakanlığınca belirlenir. Denizlerde yapılacak balık çiftlikleri, hassas alan niteliğindeki kapalı koy ve körfezler ile doğal ve arkeolojik sit alanlarında kurulamaz. Alıcı su ortamlarına atıksu deşarjlarına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. ı) Çevrenin korunması ve kamuoyunda çevre bilincinin geliştirilmesi amacıyla, okul öncesi eğitimden başlanarak Millî Eğitim Bakanlığına bağlı örgün eğitim kurumlarının öğretim programlarında çevre ile ilgili konulara yer verilmesi esastır. –––––––––––––––––––– (1) Bu madde başlığı “Çevre Korunması” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 6 ncı maddesiyle metne işlendiği şekilde değiştirilmiştir. Yaygın eğitime yönelik olarak, radyo ve televizyon programlarında da çevrenin önemine ve çevre bilincinin geliştirilmesine yönelik programlara yer verilmesi esastır. Türkiye Radyo - Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20’sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu, görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. j) Çevre ile ilgili olarak toplanan her türlü kaynak ve gelir, tahsisi mahiyette olup, öncelikle çevrenin korunması, geliştirilmesi, ıslahı ve kirliliğin önlenmesi için kullanılır. Çevresel etki değerlendirilmesi: Madde 10 – (Değişik: 26/4/2006 – 5491/7 md.) Gerçekleştirmeyi plânladıkları faaliyetleri sonucu çevre sorunlarına yol açabilecek kurum, kuruluş ve işletmeler, Çevresel Etki Değerlendirmesi Raporu veya proje tanıtım dosyası hazırlamakla yükümlüdürler. Çevresel Etki Değerlendirmesi Olumlu Kararı veya Çevresel Etki Değerlendirmesi Gerekli Değildir Kararı alınmadıkça bu projelerle ilgili onay, izin, teşvik, yapı ve kullanım ruhsatı verilemez; proje için yatırıma başlanamaz ve ihale edilemez. Petrol, jeotermal kaynaklar ve maden arama faaliyetleri, Çevresel Etki Değerlendirmesi kapsamı dışındadır. Çevresel Etki Değerlendirmesine tâbi projeler ve Stratejik Çevresel Değerlendirmeye tâbi plân ve programlar ve konuya ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. İzin alma, arıtma ve bertaraf etme yükümlülüğü (1) Madde 11 – (Değişik: 26/4/2006 – 5491/8 md.) Üretim, tüketim ve hizmet faaliyetleri sonucunda oluşan atıklarını alıcı ortamlara doğrudan veya dolaylı vermeleri uygun görülmeyen tesis ve işletmeler ile yerleşim birimleri atıklarını yönetmeliklerde belirlenen standart ve yöntemlere uygun olarak arıtmak ve bertaraf etmekle veya ettirmekle ve öngörülen izinleri almakla yükümlüdürler. Birinci fıkrada belirtilen yükümlülüğü bulunan tesis ve işletmeler ile yerleşim birimlerine; 1) İnşaat ruhsatı aşamasında bu yükümlülüğünü yerine getireceğini gösterir proje ve belgeleri ilgili kuruma sunmadıkça inşaat ruhsatı verilmez. 2) İnşaatı bitmiş olanlardan, bu yükümlülüğü yerine getirmeyenlere işletme ruhsatı ve/veya yapı kullanma ruhsatı verilmez. 3) İnşaat ruhsatına, yapı kullanma veya işletme ruhsatını haiz olmakla birlikte arıtma ve bertaraf yükümlülüklerini yerine getirmemeleri halinde, verilmiş yapı kullanma izni veya işletme izni iptal edilir. Faaliyetlerinde değişiklik yapmayı ve/veya tesislerini büyütmeyi plânlayan gerçek ve tüzel kişiler yönetmelikle belirlenen usûl ve esaslar çerçevesinde atıklarını arıtma veya bertaraf etme yükümlülüğünü yerine getirmek zorundadırlar. Atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve arıtılmış atıksuların bertarafının sağlandığı atıksu altyapı sistemlerinin kurulması, bakımı, onarımı, ıslahı ve işletilmesinden; büyükşehirlerde 20/11/1981 tarihli ve 2560 sayılı İstanbul Su ve Kanalizasyon İdaresi Genel Müdürlüğü Kuruluş ve Görevleri Hakkında Kanunla belirlenen kuruluşlar, belediye ve mücavir alan sınırları içinde belediyeler, bunların dışında iskâna konu her türlü kullanım alanında valiliğin denetiminde bu alanları kullananlar sorumludur. Serbest ve/veya endüstri bölgelerinde bölge müdürlükleri, kültür ve turizm koruma ve gelişme bölgelerinde, turizm merkezlerinde Kültür ve Turizm Bakanlığı veya yetkili kıldığı birimler, organize sanayi bölgelerinde organize sanayi bölgesi yönetimi, küçük sanayi sitelerinde kooperatif başkanlıkları, mevcut yerleşim alanlarından kopuk olarak münferit yapılmış tatil köyü, tatil sitesi, turizm tesis alanları vb. kullanım alanlarında ise site yönetimleri veya tesis işletmecileri atıksu altyapı sistemlerinin kurulması, bakımı, onarımı ve işletilmesinden sorumludurlar. ––––––––––––––––––––– (1) Bu madde başlığı "İşletme izni ve haber verme yükümlülüğü:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 8 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. Atıksu altyapı sistemlerini kullanan ve/veya kullanacaklar, bağlantı sistemlerinin olup olmadığına bakılmaksızın, arıtma sistemlerinden sorumlu yönetimlerin yapacağı her türlü yatırım, işletme, bakım, onarım, ıslah ve temizleme harcamalarının tamamına kirlilik yükü ve atıksu miktarı oranında katılmak zorundadırlar. Bu hizmetlerden yararlananlardan, belediye meclisince ve bu maddede sorumluluk verilen diğer idarelerce belirlenecek tarifeye göre atıksu toplama, arıtma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, atıksu ile ilgili hizmetler dışında kullanılamaz. Atıksu toplama havzasının birden fazla belediye veya kurumun yetki sahasında olması halinde; atıksu arıtma tesisini işleten kurum, atıksu ile ilgili yatırım ve harcama giderlerini kirletenlerden kirlilik yükü ve atıksu miktarı nispetinde tahsil eder. Atık üreticileri uygun metot ve teknolojiler ile atıklarını en az düzeye düşürecek tedbirleri almak zorundadırlar. Atıkların üretiminin ve zararlarının önlenmesi veya azaltılması ile atıkların geri kazanılması ve geri kazanılabilen atıkların kaynağında ayrı toplanması esastır. Atık yönetim plânlarının hazırlanmasına ilişkin esaslar, Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Geri kazanım imkânı olmayan atıklar, yönetmeliklerle belirlenen uygun yöntemlerle bertaraf edilir. Büyükşehir belediyeleri ve belediyeler evsel katı atık bertaraf tesislerini kurmak, kurdurmak, işletmek veya işlettirmekle yükümlüdürler. Bu hizmetten yararlanan ve/veya yararlanacaklar, sorumlu yönetimlerin yapacağı yatırım, işletme, bakım, onarım ve ıslah harcamalarına katılmakla yükümlüdür. Bu hizmetten yararlananlardan, belediye meclisince belirlenecek tarifeye göre katı atık toplama, taşıma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, katı atıkla ilgili hizmetler dışında kullanılamaz. Üretici, ithalatçı ve piyasaya sürenlerin sorumluluğu kapsamında yükümlülük getirilen üreticiler, ithalatçılar ve piyasaya sürenler, ürünlerinin faydalı kullanım ömrü sonucunda oluşan atıklarının toplanması, taşınması, geri kazanımı, geri dönüşümü ve bertaraf edilmelerine dair yükümlülüklerinin yerine getirilmesi ve bunlara yönelik gerekli harcamalarının karşılanması, eğitim faaliyetlerinin gerçekleştirilmesi amacıyla Bakanlığın koordinasyonunda bir araya gelerek tüzel kişiliği haiz birlikler oluştururlar. Bu kapsamda yükümlülük getirilen kurum ve kuruluşların sorumluluklarının bu birliklere devrine ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Tehlikeli atık üreticileri, yönetmelikle belirlenecek esaslara göre atıklarını bertaraf etmek veya ettirmekle yükümlüdürler. Atık geri kazanım, geri dönüşüm ve bertaraf tesislerini kurmak ve işletmek isteyen gerçek ve/veya tüzel kişiler, yönetmelikle belirlenen esaslar doğrultusunda, ürün standardı, ürünlerinin satışa uygunluğu ve piyasadaki denetimi ile ilgili izni, ilgili kurumlardan almak kaydı ile Bakanlıktan lisans almakla yükümlüdür. Evsel atıklar hariç olmak üzere, atık taşıma ve/veya toplama işlerini yapan kurum veya kuruluşlar Bakanlıktan lisans almak zorundadır. Evsel atıkların taşıma ve toplama işlerini yapan kurum ve kuruluşlar Bakanlıkça kayıt altına alınır. Atıksu arıtımı, atık bertarafı ve atık geri kazanım tesisleri yapmak amacıyla belediyelerin hizmet birlikleri kurmaları halinde, bu hizmet birliklerine araştırma, etüt ve proje konularında Bakanlıkça teknik ve malî yardım yapılır. Tesis yapım projeleri ise bu Kanunun 18 inci maddesi çerçevesinde kredi veya yardım ile desteklenebilir. Kredi borcunun geri ödenmemesi durumunda 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre takip yapılır ve öncelikle 2380 sayılı Belediyelere ve İl Özel İdarelerine Genel Bütçe Vergi Gelirlerinden Pay Verilmesi Hakkında Kanunun ek 4 üncü maddesi hükümleri çerçevesinde ilgili belediyelerin İller Bankasındaki paylarından tahsil olunur. Arıtma ve bertaraf etme yükümlülüğüne tâbi tesis ve işletmeler ile yerleşim birimleri, bu yükümlülüğe istinaden kurulması zorunlu olan arıtma ve bertaraf sistemleri, atıksu arıtma ve ön arıtma sistemleri ile atıksu altyapı sistemlerinin kurulması, onarımı, ıslahı, işletilmesi ve harcamalara katkı paylarının belirlenmesi ile ilgili usûl ve esaslar Bakanlıkça yönetmeliklerle düzenlenir. Bu konuda diğer kanunlarla verilen yetkiler saklıdır. Bu Kanunun uygulanmasını sağlamak üzere alınması gereken izinler ve bu izinlerin tâbi olacağı usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Faaliyetleri nedeniyle çevreye olumsuz etkileri olabilecek kurum, kuruluş ve işletmeler tarafından, faaliyetlerine ilişkin olası bir kaza durumunda, kazanın çevreye olumsuz etkilerini kontrol altına almak ve azaltmak üzere uygulanacak acil durum plânları hazırlanması zorunludur. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Bu plânlar dikkate alınarak Bakanlığın koordinasyonunda ilgili kurum ve kuruluşlarca yerel, bölgesel ve ulusal acil durum plânları hazırlanır. Liman, tersane, gemi bakım-onarım, gemi söküm, marina gibi kıyı tesisleri; kendi tesislerinde ve gemi ve diğer deniz araçlarında oluşan petrollü, yağlı katı atıklar ve sintine, kirli balast, slaç, slop gibi sıvı atıklar ile evsel atıksu ve katı atıkların alınması, depolanması, taşınması ve bertarafı ile ilgili işlemleri ve tesisleri yapmak veya yaptırmakla yükümlüdürler. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Denetim, bilgi verme ve bildirim yükümlülüğü(1) Madde 12 – (Değişik: 26/4/2006 – 5491/9 md.) Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki, Bakanlıkça; il özel idarelerine, çevre denetim birimlerini kuran belediye başkanlıklarına, Denizcilik Müsteşarlığına, Sahil Güvenlik Komutanlığına, 13/10/1983 tarihli ve 2918 sayılı Karayolları Trafik Kanununa göre belirlenen denetleme görevlilerine veya Bakanlıkça uygun görülen diğer kurum ve kuruluşlara devredilir. Denetimler, Bakanlığın belirlediği denetim usûl ve esasları çerçevesinde yapılır. Askerî işyerleri, askerî bölgeler ve tatbikatların bu Kanun çerçevesindeki denetimi ve neticelerine ait işlemler; Genelkurmay Başkanlığı, Millî Savunma Bakanlığı, İçişleri Bakanlığı ve Bakanlık tarafından müştereken hazırlanacak yönetmeliğe göre yürütülür. İlgililer, Bakanlığın veya denetimle yetkili diğer mercilerin isteyecekleri bilgi ve belgeleri vermek, yetkililerin yaptıracakları analiz ve ölçümlerin giderlerini karşılamak, denetim esnasında her türlü kolaylığı göstermek zorundadırlar. İlgililer, çevre kirliliğine neden olabilecek faaliyetleri ile ilgili olarak, kullandıkları hammadde, yakıt, çıkardıkları ürün ve atıklar ile üretim şemalarını, acil durum plânlarını, izleme sistemleri ve kirlilik raporları ile diğer bilgi ve belgeleri talep edilmesi halinde Bakanlığa veya yetkili denetim birimine vermek zorundadırlar. Denetim, bilgi verme ve bildirim yükümlülüğüne ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Tehlikeli kimyasallar ve atıklar(2) Madde 13 – (Değişik: 26/4/2006 – 5491/10 md.) Tehlikeli kimyasalların belirlenmesi, üretimi, ithalatı, atık konumuna gelinceye kadar geçen süreçte kullanım alanları ve miktarları, etiketlenmesi, ambalajlanması, sınıflandırılması, depolanması, risk değerlendirilmesi, taşınması ile ihracatına ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yönetmelik hükümlerine aykırı olarak piyasaya sürüldüğü tespit edilen tehlikeli kimyasallar ile bu kimyasalları içeren eşya, bunları satış ve kullanım amacıyla piyasaya süren kurum, kuruluş ve işletmelere toplattırılır ve imha ettirilir. Nakil ve imha için gereken masraflar ilgililerince karşılanır. Bu yükümlülüğün yerine getirilmemesi halinde bu masraflar, ilgili kurum, kuruluş ve işletmelerden 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Başbakanlık Dış Ticaret Müsteşarlığı bazı yakıtların, maddelerin, atıkların, tehlikeli kimyasallar ile bu kimyasalları içeren eşyaların ithalini, Bakanlığın görüşünü alarak yasaklayabilir veya kontrole tâbi tutabilir. Tehlikeli atıkların ithalatı yasaktır. Tehlikeli atıkların tanımı ile tehlikeli atıkların oluşum aşamasından itibaren toplanması, ayrılması, geçici ve ara depolanması, geri kazanılması, yeniden kullanılması, taşınması, bertarafı, bertaraf sonrası kontrolü, ihracatı, transit geçişi, ambalajlanması, etiketlenmesi, denetimi ve atık yönetim plânlarının hazırlanması ile ilgili usûl ve esaslar Bakanlıkça yayımlanacak yönetmelikle belirlenir. Tehlikeli kimyasalların üretimi, satışı, depolanması, kullanılması ve taşınması faaliyetleri ile tehlikeli atıkların toplanması, taşınması, geçici ve ara depolanması, geri kazanımı, yeniden kullanılması ve bertarafı faaliyetlerinde bulunanlar, bu Kanun ile getirilen yükümlülükler açısından müteselsilen sorumludurlar. Sorumlular bu Kanunda belirtilen meslekî faaliyetleri nedeniyle oluşacak bir kaza dolayısıyla üçüncü şahıslara verebilecekleri zararlara karşı tehlikeli kimyasal ve tehlikeli atık malî sorumluluk sigortası yaptırmak zorunda olup, faaliyetlerine başlamadan önce Bakanlıktan gerekli izni alırlar. Sigorta yaptırma zorunluluğuna uymayan kurum, kuruluş ve işletmelere bu faaliyetler için izin verilmez. –––––––––––––––––––– (1) Bu madde başlığı "Denetim" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 9 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. (2) Bu madde başlığı”Zararlı kimyasal maddeler:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 10 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. Bu maddede öngörülen zorunlu malî sorumluluk sigortası, malî yeterliliklerine göre, Hazine Müsteşarlığınca belirlenen sigorta şirketleri tarafından ya da bağlı olduğu Bakanın onayı ile Hazine Müsteşarlığınca çıkarılacak bir yönetmelikle oluşturulacak bir havuz tarafından temin edilir. Havuzun yönetim ve işleyişi ile ilgili usûl ve esaslar da aynı yönetmelikle belirlenir. Havuz, sigorta ve/veya reasürans havuzu şeklinde oluşturulur. Kamu adına havuzda belirli bir payın korunmasına karar verilmesi hususunda Hazine Müsteşarlığının bağlı bulunduğu Bakan yetkilidir. Havuzun başlangıç giderleri için geri ödenmek üzere Hazine Müsteşarlığı bütçesinden avans kullandırılabilir. Havuzun yükümlülükleri; prim gelirleri ve bunların getirileri, piyasalardan sağlayacağı reasürans ve benzeri korumalar ve ödeme gücüyle sınırlıdır. Bakanlık, Hazine Müsteşarlığının uygun görüşünü almak kaydıyla, tehlikeli kimyasallar ve tehlikeli atıklarla ilgili faaliyetlerde bulunanların malî sorumluluk sigortası yaptırma zorunluluğunu, bu sigortaya ilişkin genel şartlar ile tarife ve talimatların yürürlüğe girmesinden itibaren en çok bir yıl ertelemeye yetkilidir. Her bir sorumlu tarafından yaptırılacak malî sorumluluk sigortasına ilişkin sigorta genel şartları Hazine Müsteşarlığınca onaylanır. Malî sorumluluk sigortası tarife ve talimatları Hazine Müsteşarlığının bağlı olduğu Bakan tarafından tespit edilir. Hazine Müsteşarlığının bağlı olduğu Bakan tarifeyi serbest bırakmaya yetkilidir. Gürültü: Madde 14 – (Değişik: 26/4/2006 – 5491/11 md.) Kişilerin huzur ve sükununu, beden ve ruh sağlığını bozacak şekilde ilgili yönetmeliklerle belirlenen standartlar üzerinde gürültü ve titreşim oluşturulması yasaktır. Ulaşım araçları, şantiye, fabrika, atölye, işyeri, eğlence yeri, hizmet binaları ve konutlardan kaynaklanan gürültü ve titreşimin yönetmeliklerle belirlenen standartlara indirilmesi için faaliyet sahipleri tarafından gerekli tedbirler alınır. Faaliyetlerin durdurulması: Madde 15 – (Değişik: 26/4/2006 – 5491/12 md.) Bu Kanun ve bu Kanun uyarınca yayımlanan yönetmeliklere aykırı davrananlara söz konusu aykırı faaliyeti düzeltmek üzere Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından bir defaya mahsus olmak üzere esasları yönetmelikle belirlenen ve bir yılı aşmamak üzere süre verilebilir. Faaliyet; süre verilmemesi halinde derhal, süre verilmesi durumunda, bu süre sonunda aykırılık düzeltilmez ise Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından kısmen veya tamamen, süreli veya süresiz olarak durdurulur. Çevre ve insan sağlığı yönünden tehlike yaratan faaliyetler süre verilmeksizin durdurulur. Çevresel Etki Değerlendirmesi incelemesi yapılmaksızın başlanan faaliyetler Bakanlıkça, proje tanıtım dosyası hazırlanmaksızın başlanan faaliyetler ise mahallin en büyük mülkî amiri tarafından süre verilmeksizin durdurulur. Süre verilmesi ve faaliyetin durdurulması, bu Kanunda öngörülen cezaların uygulanmasına engel teşkil etmez. Tehlikeli hallerde faaliyetin durdurulması: Madde 16 – (Mülga: 26/4/2006 – 5491/24 md.) DÖRDÜNCÜ BÖLÜM (1) Çevre Kirliliğini Önleme Fonu Fonun kurulması ve fondan yararlanma: Madde 17 – (Mülga: 21/2/2001 - 4629/6 md.) Çevre katkı payı alınması, diğer gelirler ve bütçe ödenekleri(2) Madde 18 – (Mülga: 21/2/2001 - 4629/6 md.; Yeniden düzenleme: 26/4/2006-5491/13 md.) Çevre kirliliğinin önlenmesi, çevrenin iyileştirilmesi ve çevre ile ilgili yatırımların desteklenmesi amacıyla; a) İthaline izin verilen kontrole tâbi yakıt ve atıkların CIF bedelinin yüzde biri ile hurdaların CIF bedelinin binde beşi oranında alınacak miktar, b) Büyükşehir belediyeleri su ve kanalizasyon idarelerince tahsil edilen su ve kullanılmış suları uzaklaştırma bedelinin yüzde biri, çevre katkı payı olarak tahsil edilir. Tahsil edilen bu tutarlar, ilgililerce en geç ertesi ayın onbeşine kadar ilgili mal saymanlıkları hesaplarına aktarılır ve bütçeye gelir kaydedilir. Ayrıca, yurt içi ve yurt dışından temin edilecek her türlü hibe, yardım ve bağışlar ile kredi anapara geri dönüşleri ve kredi faizleri de tahsil edilerek, Çevre ve Orman Bakanlığı Merkez Saymanlık Müdürlüğü hesabına yatırılır ve bütçeye gelir kaydedilir. Bu maddede sayılan gelirlerin tahsilatında 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümleri uygulanır. Bakanlar Kurulu (a) ve (b) bentlerinde yer alan oranları ayrı ayrı veya topluca sıfıra kadar indirmeye veya kanunî oranına kadar yükseltmeye yetkilidir. Atıksu arıtımı, atık bertarafı ve katı atık geri kazanım tesislerinin gözetim, fizibilite, etüt, proje ve inşaat işlerinin kredi veya yardım suretiyle desteklenmesi ile çevre düzeni plânlarının yapımı, hava, su ve toprak kalitesinin ölçüm ve izleme ağının oluşturulması, gürültünün önlenmesi ile ilgili etüt ve projelerin desteklenmesi, acil müdahale plânlarının hazırlanması, Çevresel Etki Değerlendirmesi faaliyetleri, havza koruma plânı çalışmaları, biyolojik çeşitliliğin korunması, çölleşme ve iklim değişikliği ile mücadele çalışmaları, stratejik çevresel değerlendirme, nesli tehlikede olan bitki ve hayvan türleri ile yaşama ortamlarının korunması, uluslararası sözleşmelerden kaynaklanan yükümlülüklerin karşılanması, çevre eğitimi ve yayını ile ilgili faaliyetler ve ihtisas komisyonları için yapılan harcamalar ile çevre kirliliğinin giderilmesi çalışmaları için Bakanlık bütçesine, yılı bütçe gelirleri içerisinde tahmin edilen yukarıdaki gelirler karşılığı ödenek öngörülür. Yukarıda sayılan gelirlerin tahsili ve bütçede öngörülen ödeneklerin kullanımı ile ilgili usûl ve esaslar, Maliye Bakanlığının uygun görüşü üzerine Bakanlıkça çıkarılacak yönetmelikle belirlenir. Fonun kullanılması: Madde 19 – (Mülga: 21/2/2001 - 4629/6 md.) –––––––––––––––––––– (1)“Dördüncü Bölüm” başlığı 21/2/2001 tarih ve 4629 sayılı Kanunun 6 ncı maddesiyle yürürlükten kaldırılmıştır. (2) Bu madde başlığı "Fonun gelirleri" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 13 üncü maddesiyle metne işlendiği şekilde değiştirilmiştir.

http://www.biyologlar.com/cevre-kanunu-bolum-1

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

LİKENLERİN ZARARLI ETKİLERİ

Epifitik ototroflar olarak likenler ağaçlar üzerinde zararlı etkiler meydana getirebilirler. Rizinleri geniş biçimde kabuk, korteks, iç kabuk ve kambiyum tabakasına kadar girebilir. Liken hifleri lentiselleri tıkayabilir, kabuk tabakalarını yatay olarak yarabilir ve kabuktaki gaz değişimini artırarak dolaylı yoldan kabuk hücrelerinin kalınlaşmasına ve suya daha geçirgen olmasına neden olabilirler. Yoğun biçimde likenlerle kaplanan küçük ağaç ve çalıların büyümesi bariz biçimde durur ve zarar görmeye daha eğilimli olur. Avrupa ve K. Amerika’da meyve ağaçlarında büyüyen likenleri fungusitler ile ortadan kaldırmak yaygın bir uygulamadır. Likenlerle kaplanmayan ağaçların daha dayanıklı ve daha dirençli olduklarına inanılır. Likenler zararlı böceklere sığınacak yer sağlarlar. Arkeolojik harabelerde likenlerin büyümesi kayaları ve heykelleri saklamada problemler yaratmaktadır. Tarihi eserlerin likenler ile kaplanması bu eserlerin daha hızlı çürümesine sebep olur. Bu gibi eserlerin üzerinde gelişen likenleri çeşitli fungisitler ile ortadan kaldırmak müzeciler tarafından sıklıkla uygulanır.

http://www.biyologlar.com/likenlerin-zararli-etkileri

OLİMPOS - BEYDAĞLARI SAHİL MİLLİ PARKI

OLİMPOS - BEYDAĞLARI SAHİL MİLLİ PARKI

İli : ANTALYA Adı : OLİMPOS - BEYDAĞLARI SAHİL MİLLİ PARKI Kuruluşu : 1972 Alanı : 34.425 ha. Konumu : Akdeniz Bölgesi’nde, Antalya ili sınırları içerisinde yer almaktadır. Ulaşım : Antalya-Kemer-Kumluca devlet karayolu ile ulaşılır. Kaynak Değerleri :           Batı Toroslar’ın genç dağlar kuşağını içine alan yörenin jeolojik yapısı, genellikle kalker ve serpantin kayaçlarından meydana gelir. Akdeniz Bölgesi’nin bütün ekolojik şartlarına sahip sahada, bitki örtüsü deniz kıyısında fıstık çamları ile başlar. Yükseldikçe kızılçam, karaçam ve 1000 m’nin üstünde sedir ağaçları görülür. Park sınırları içinde bine yakın bitki türü ve bunların içinde de 21 endemik türün bulunuşu, milli parkın tür yönünden çeşitliliğini göstermektedir. Alanda ayı, dağkeçisi, yaban domuzu, tilki, çakal, kurt, sansar ile çeşitli kuş ve balık türleri yaban hayatının bireyleridir.           Antik çağlarda Likya olarak bilinen bölgenin doğusunda yer alan milli park, tarih öncesi dönemlerden itibaren iskan bölgesi olmuştur. Sahilin kuzeyindeki Beldibi Mağarası’ndaki buluntular bunu ispatlamaktadır. Milli parkın en önemli yerleşim yerleri; M.Ö. VII. yüzyılda Rodos Kolonisi olarak kurulan Phaselis (Tekirova) ve Olympos şehirleridir. Ayrıca Kemer yakınlarında Idyros, Adrasan Limanı ve Gagai diğer tarihi yerleşimlerdir.           Olympos’un birkaç kilometre batısındaki dağlık arazide kalker ve serpantin formasyonları kontağındaki çatlaklardan çıkan ve “Likya’ nın sönmeyen ateşi” diye adlandırılan doğalgaz, yüzyıllardır yanmakta ve Bellerophentes mitosuna Chimaira (Yanar Taş) adıyla geçerek yöreye mitolojik değer kazandırmaktadır.           Akdeniz Bölgesi iklim şartlarına sahip alanda yılın 7-8 ayında her türlü deniz sporları, piknik, kamp, yürüyüş yapılabilir ve arkeolojik alanlar gezilebilir. Mevcut Hizmetler : Milli parktan; her türlü deniz sporları, piknik, çadırlı kamp, yürüyüş, arkeolojik alanlar gezilerek yararlanılabilir. Kındılçeşme günübirlik kamp alanı ile Büyükçaltıcak , Küçükçaltıcak, Topçam günübirlik alanlarından faydalanılabilir. Konaklama : Milli park içinde otel, motel ve kamp alanları vardır. Milli parkta, yaban keçisi(capra aegagrus), şah kartal (aquila heliaca), vaşak (felis lynx),kurt gibi sayıları her geçen gün azalan önemli türler barınmakta ve üremektedirler. Türkiye’de bulunan 456 kuş türünün 72 adedi milli parkta görülmektedir. 0-2365 m yükselti farklılığı ve değişik bakı özelliği ile zengin biyolojik çeşitliliğe sahip milli parkta, akdeniz iklim tipinin bitki topluluklarını sergileyen orman ve maki örtüsü içerisinde sakız ağacı(pistasia terebinthus), yabani zeytin(olea oleaster), sandal(arbutus andrache), keçiboynuzu(ceretonia ciliqua), defne(laurus nobilis), tespih(styrax officinalis) vb 865 bitki türü tespit edilmiş olup , 25 adedi bölge endemiği olup sadece bu bölgede yetişmektedir. bunların toplam tür sayısına oranı (%3’tür). 154 (%18) adedi türkiye endemiği olarak tanımlanmıştır. Parkın denize bakan kısımlarında kızılçam ve maki formasyonundan oluşan bir kombinasyon aniden yükselen dağlarla birlikte vahşi bir görüntü sağlamaktadır.  http://www.milliparklar.gov.tr VİDEO GALERİ   http://www.milliparklar.gov.tr FOTO GALERİ

http://www.biyologlar.com/olimpos-beydaglari-sahil-milli-parki

“Dinlerin evrimi” mi “Evrimin dini” mi?

Sık sık duyarsınız bu iki kelimeyi “Dinlerin Evrimi.” Öyle ki pekçok kaynakta neredeyse bilimsel bir gerçeklik gibi sunulur. Nedir bu “dinlerin evrimi” meselesi? 19.yüzyılıın sonundan itibaren darwinizm, büyük bir hızla kabul gördü ve biyolojiden başlayıp ekonomi, psikoloji, sosyoloji, antropoloji ve tarih gibi hemen her alanı yaygın bir biçimde etkiledi. Bu, “din” olgusuna da “dinlerin evrimi” olarak yansıdı. Böylelikle de insanlığın son derece kısa bir zamanını kapsayan yazılı tarihine ve eldeki kısıtlı arkeolojik bulgulara dayanarak, evrim fikrinin a priori kabul görüldüğü hakim materyalist bakışla “dinlerin evrimi” düşüncesi ortaya çıkmış oldu. Bu düşünceye göre insanlığın ilk dönemlerinde hiçbir dini inanç yoktu. İlk dinler ise ölülere tapınmayla başlamıştı. Bu konuda farklı görüşler de vardı, bunlardan bazılarına göre dinin kaynağı animizme (doğaya canlılık atfetme, onda ruh olduğuna inanma), bazılarına göre ise totemizme (sembol olarak seçilen bir insan, grup ya da eşyaya tapma) dayanıyordu. Bu evrim tarihi içinde de insanlık, inanç sistemleri olarak sırayla animizm, manizm, politeizm (çok tanrıcılık) aşamalarını geçmiş son olarak da monoteizme (tek tanrıcılık) demir atmıştı. Bu temelle ilişkili olarak, pozitivizmin fikir babası A. Comte’de insanlığın inanç tarihini kategorize ederken mitolojik çağ ve metafizik çağ olarak sınıflandırma yapmış, son aşama olarakta pozitivizmi öngörerek dinlerin bu yeni dönemde ortadan kalkacağını iddia etmişti. (Zaman, Comte’nin yanıldığını açıkça gösterdi, ama bu başka bir konu.) Dinlerin evrimi düşüncesini desteklemek için kullanılan bulgularla, biyolojik evrim için gösterilen bulguların kullanım mantığı arasında büyük bir benzerlik görüyoruz. Nasıl ki biyolojik evrimde canlıların yapıtaşlarındaki benzerlikler homoloji ve anoloji gibi kavramlarla “common descent”e (ortak ata) kanıt olarak gösteriliyorsa, dinlerin evrimi düşüncesinde de aradaki benzelikler evrimlerine kanıt olarak gösteriliyor. Özetle, tek tanrılı dinlerle önceki inanışların gerek bazı ritüelleri, gerek tarihsel hikayeleri, gerekse metafizik öğeleri arasındaki benzerliklerden hareketle, zaman içinde birbirlerinden evrimleştikleri öne sürülüyor. Peki bu sonuca varılmasını sağlayan nedir? Yani bu ortak noktalar birbirlerinden evrimleşmeye mi kanıttır yoksa İlahi mesajın sürekliliğine ve zamanla bozuldukça tekrarlandığına mı? Yoksa bu ortak noktalar her iki görüş için de bakılan yere göre değişen kanıt sunabilir mi? Tarih öncesi çağlara dair elimizde çok az bulgu olduğu gerçeğini de dikkate alarak şu söylenebilir; bu benzerlikler her iki düşünceyi de desteklemek için kullanılabilir. Elbetteki a priori kabullerle başlanarak. Hangi görüşü daha kuvvetli desteklediğini görmek için ise yetersiz de olsa elimizdeki bulgulara bakmalıyız. Dinlerin evrimi düşüncesi, “bilimsellik” bağlamında düşünürsek önkabullerden ve arkeolojik kanıtların bu önkabule uygun bir biçimde yorumlanmasından başka bir şey ifade etmiyor. Bu önkabul materyalizm elbette. Bu materyalist önkabulün olmadığı bir bakışla incelendiğinde ise yaklaşık bir yüzyıldır ele geçirilen antropolojik ve arkeolojik bulgular, tarih boyunca toplumlarda önce tek Tanrı inancının var olduğunu, ancak bunun zamanla bozulduğunu gösteriyor. Bazı dinler tarihi yorumcularına göre başlangıçta herşeyi yoktan var eden, herşeyi gören ve bilen, tüm alemlerin sahibi olan tek Yaratıcı’ya inanan toplumlar, zamanla Yaratıcı’nın sıfatlarını ayrı ayrı ilahlar olarak düşünme yanılgısına düşüyor ve birden fazla ilaha tapınmaya başlıyorlar. Birkaç alıntı ile eldeki bulguların ne ifade ettiğine bakalım. Stephen H. Langdon, The Scotsman adlı dergide şunları yazmış: Tüm deliller, kesinlikle başlangıçta bir “tek Tanrı” inancının bulunduğunu gösteriyor. Semitik kökenli halkların arkeolojik ve edebi kalıntıları da en eski zamanlarda bile bir “tek Tanrı” inancının var olduğunu gösteriyor. Yahudi dininin ve diğer Semitik kökenli dinlerin, totemistik, putlara dayanan bir kökeni olduğu teorisinin tamamen geçersiz olduğu bugün anlaşılmış durumda. Axel W. Persson da “Tarih Öncesi Yunan” isimli eserinde şöyle demiş: (1) İlk baştan beri var olan tek Tanrı inancı, daha sonra Yunan dinsel mitlerinde gördüğümüz sayısız önemli önemsiz tanrısal kişiliklere dönüşmüştür. Benim görüşüme göre bu birçok ilahın varlığı, tek ve bir olan bir Tanrı’yı tanımlayan değişik isimlerin zamanla değişik yorumlanmasına bağlıdır. Antropolog Sir Flinders Petrie de bu konuda şöyle diyor:(2) Eğer ruhlara tapmak tek bir İlah’a tapmaya uzanan bir evrim sürecinin ilk basamağı olsaydı, bu durumda çok tanrılılığın gittikçe tek tanrılılığa evrimleşmesinin kanıtlarını görmemiz gerekirdi… Bunun tam aksine tek görebildiğimiz, tek Tanrı inancının her zaman ilk basamak olduğudur…[….] Çok tanrı inancını ilk oluşumuna kadar izleyebildiğimiz her yerde, bunun tek Tanrı inancının bir çeşitlemesi olduğunu görüyoruz Alıntılar çoğaltılabilir. Yani bakışa göre değişir diyorum ama darwinist önkabulden sıyrılıp nesnel bir bakış yaptığımızda da “İlahi mesajın sürekliliği ve zamanla bozuldukça tekrarlandığı” yaklaşımının daha makul olduğu ve delillerle de desteklendiği görülüyor. Hele ki çıkışından 300 yıl sonra tanınamayacak hale getirilen Hristiyanlık örneği de elimizde iken bu bozulmanın mümkün olduğunu ve çeşitli öğretilerdeki sembolizmanın ifade ettiği anlamların benzerliği sebebiyle tek ilahi köken yaklaşımının çok daha makul olduğunu düşünüyorum. Tüm kadim medeniyetlerin ve toplulukların dini öğretilerinde ilahi bir öz vardır. Büyük İslam düşünürü Seyyid Hüseyin Nasr bunu “gelenek” olarak tanımlar. Bu, bizim bildiğimiz anlamda gelenek-görenek tanımlamasına giren adet, alışkanlık, düşünce ya da motiflrin kuşaktan kuşağa aktarımı değildir. Nasr bu “gelenek” ile, Vahy-i İlahi ile inen, kaynaklarında İlahi olanın özel bir tezahürü ile özdeşleşen ilkeler dizisini ve bu ilkelerin farklı zaman birimlerinde ve farklı koşullarda belli bir insan topluluğuna indirilmesini ve uygulanmasını kasteder. (3) Hulasa edersek; bu İlahi mesaj farklı zamanlarda farklı toplumlara farklı form ve sembolizma ile indirilmiş olabilir. Bir Hindunun dini ritueli, bir Brahmanın ahlakî yaklaşımı bu mesajın o toplum için sembolize edilmiş bir tezahürü olabilir. Bu konuda S.Hüseyin Nasr ve ünlü metafizikçi düşünürlerden Frithjof Schuon, Rene Guenon, A.K. Coomaraswamy gibi isimlerin eserlerine bakılabilir. Bu eserlerde İlahi mesajın insanlığın başlangıcından bu yana iletildiği zamana ve muhatap topluma göre nasıl bir sembolizmayı kullandığına, farklı farklı formlara büründüğüne ilişkin kıyaslamalara ve mesajın tekliğine ilişkin çok detaylı bilgiler var. (4) Bu yaklaşım her ne kadar bulgularla desteklense de nihayetinde a priori kabule dayanır; ve adı üstünde bu bir inançtır. Müslümanlar ya da diğer inanç sahipleri bunun bir “inanç” olduğunu kabul ederler. Bu teolojik olarak da kendi inanç sistemleri içinde tutarlı bir bakıştır. Fakat yukarıda da bahsettiğim nedenlerle dinlerin evrimi gibi bir düşünce de inançtır. Eldeki bulgular her ne kadar çoğunlukla aksini gösterse de, yine de bu düşünce lehine yorumlanabilir. Fakat bu yorum da -tıpkı İlahi köken yaklaşımında da olduğu gibi- önkabule dayanır, mevcut bilimsellik kriterlerine göre de bilimsel bir bakış değildir. O halde “dinlerin evrimi” gibi bir yaklaşımı, bilimsel gerçeklik gibi sunmaya çabalayan bazı materyalistlerin daha dikkatli konuşması gerekiyor. Notlar: (1) Tarihi Yalan:Kabataş Devri. Alıntı: Axel Persson, The Religion of Greece in Prehistoric Times, University of California Press (2) Age. Alıntı: Sir Flinders Petrie, The Religion of Ancient Egypt, Constable, London (3) İslam and The Plinght of Modern Man. S. Huseyn Nasr. (4) Bununla ilişkili bir yazım için bakınız: Kaynak: www.derindusunce.org

http://www.biyologlar.com/dinlerin-evrimi-mi-evrimin-dini-mi

Bio-Der Kanun Taslağı

KANUN TEKLİFİ TASLAĞI 657 SAYILI DEVLET MEMURLARI KANUNUNDA BİYOLOGLARIN SAĞLIK HİZMETLERİ SINIFINDAN TEKNİK HİZMETLER SINIFINA GEÇİRİLMESİ YÖNÜNDE DEĞİŞİKLİK YAPILMASINA İLİŞKİN KANUN TASARISI Madde 1. 14.07.1995 Tarih ve 657 sayılı Devlet Memurları Kanunun 36. Maddesi aşağıdaki şekilde değiştirilmiştir. II. TEKNİK HİZMETLER SINIFI Bu kanunun kapsamına giren kurumlarda meslekleriyle ilgili görevleri fiilen ifa eden ve meri hükümlere göre yüksek mühendis, mühendis, yüksek mimar, mimar sıfatını almış olanlar ile bunlardan öğretmenlik hizmetinde çalışanlar, Erkek Teknik Yüksek Öğretmen Okulu, Erkek Teknik Öğretmen Okulu ve Devlet Tatbiki Güzel Sanatlar Yüksek Okulu mezunları, İstanbul Devlet Güzel Sanatlar Akademisi ile uygulamalı Endüstri Sanatları Yüksek Okulu mezunları, Teknik Eğitim Fakültesi (Yüksek Teknik Öğretmen Okulu ve Güzel Sanatlar Fakültesi, İstanbul Devlet Tatbiki Güzel Sanatlar Yüksek Okulu), jeolog, jeofizikçi, hidrojeolog, hidrolog, jeomorfolog, kimyager, fizikçi, matematikçi, istatikçi, yöneylemci (hareket araştırmacısı), matematiksel iktisatçı (Ekonometrici), Erkek Teknik Öğretmen Okulu mezunları, fen memurları, teknikerler ve yüksek teknikerler, tütün ve müskirat eksperleri, Tarım Alet ve Makineleri Uzmanlık Yüksek Okulu mezunları ile benzeri fen bilimleri ve teknik bilimler lisansiyerleri, Mimarlık ve Mühendislik Fakültesi veya Bölümlerinden mezun olan şehir plancısı, yüksek şehir plancısı, yüksek bölge plancısı. Gazi Üniversitesi Mesleki Eğitim Fakültesi Teknoloji Bölömü İş ve Teknik Anabilim Dalı mezunları, Ankara Üniversitesi Ziraat Fakültesi Ev Ekonomisi Yüksek Okulu mezunları, üniversitelerin Arkeoloji ve Sanat Tarihi Bölümlerinin Prehistorya, Protohistorya ve Ön Aysa Arkeolojisi, Klasik Arkeoloji Anabilim Dallarından mezun olanlar üniversitelerin Fen, Fen-Edebiyat ve Mühendislik Fakültelerinden mezun BİYOLOGLAR (Biyolog, Biyoteknolog, Botanikçi, Ekolog, Entomolog, Genetikçi, Hidrobiyolog, Limnolog, Deniz Biyoloğu, Moleküler Biyolog, Mikrobiyolog, Ornitolog, Zoolog, Yaban Hayatı Biyoloğu) ibaresi eklenmiştir. Madde 2: III. SAĞLIK HİZMETLERİ VE YARDIMCI SAĞLIK HİZMETLERİ SINIFI Sağlık hizmetlerinde (Hayvan sağlığı dahil) mesleki eğitim görerek yetişmiş olan tabip, diş tabibi, eczacı, veteriner hekim gibi memurlar ile bu hizmet sahasında çalışan yüksek öğrenim görmüş fizikoterapist, tıp teknoloğu, sağlık memuru, sosyal hizmetler mütehassısı, psikolog, diyetçi, sağlık mühendisi, sağlık fizikçisi, sağlık idarecisi ile ebe ve hemşire, hemşire yardımcısı, (Fizik tedavi, laboratuvar, eczacı, diş anestezi, röntgen teknisyenleri ve yardımcıları, çevre sağlığı ve toplum sağlığı teknisyeni dahil) sağlık savaş memuru, hayvan sağlık memuru ve benzeri sağlık personelini kapsar. Biyolog ibaresi çıkarılmıştır. Madde 3: Bu kanun yayımı tarihinde yürürlüğe girer.Madde 4: Bu kanun hükümlerini Bakanlar Kurulu Yürütür. GEREKÇE: Bilindiği üzere sağlık hizmetleri sınıfında yer alan Biyologlar Sağlık Kurumlarının yanı sıra Çevre ve Orman Bakanlığı, Tarım ve Köy İşleri Bakanlığı, Bayındırlık Bakanlığı, Enerji ve Tabii Kaynaklar Bakanlığı, Adalet Bakanlığı, İçişleri Bakanlığı, Kültür ve Turizm Bakanlığı, Çalışma ve Sosyal Güvenlik Bakanlığı, Maliye Bakanlığı, Ulaştırma Bakanlığı, Başbakanlık ve Başbakanlığa bağlı kamu, kurum ve kuruluşlarda ve Denizcilik Müsteşarlığı’nda v.b kurum/kuruluşlarda aşağıdaki görevleri yapmaktadır. Biyologların Çalışma Alanları; 1. Sağlık hizmetleri veren kurum ve kuruluşlarda her türlü tıbbi analizlerin yapılmasında, tıbbi araştırma ve destek ünitelerinde, 2. Çevre koruma, kontrol ve ekolojik planlama ile ilgili alanlarda, 3. Biyoteknolojik çalışma yapan kurum ve kuruluşlarda her türlü araştırma-geliştirme ve üretim faaliyetinde, 4. Hidrobiyoloji ve su ürünleri ile ilgili araştırma ve üretim faaliyetlerinde, 5. Milli Parklar, Doğa Koruma, Yaban Hayatı Koruma ve Özel Cevre Koruma alanlarında biyoçeşitlilik (fauna ve flora), ekoloji, doğa yönetimi ve yaban hayatı uzmanı olarak, 6. Biyoloji eğitim-öğretim faaliyetleri ve Biyoloji Programlarının geliştirilmesinde, 7. ÇED (Çevresel Etki Değerlendirmesi) Raporlarının hazırlanmasında, 8. Tarım ve Ormancılık alanlarında araştırma ve geliştirme faaliyetlerinde, 9. Gıda Kontrol Laboratuvarlarında, 10. Arıtma tesislerinde, 11. Biyolojik Ürünlerle ilgili standartların belirlenmesinde, 12. Kriminoloji Laboratuvarları ve Adli Tıp ile ilgili alanlarda, 13. Gümrük Biyologu olarak, 14. Biyomedikal çalışma alanlarında, 15. İlaç ve hammaddelerinin, kozmetik ürünlerinin üretimi, kalite kontrolünde, araştırma ve geliştirme çalışmalarında, 16. Pest ve vektör canlıların kontrolüne yönelik faaliyetlerde, yerleşkelerdeki haşere mücadelesinin planlanması ve yürütülmesinde, 17. Nükleer tesisler ve radyasyon kullanılan isletmelerde, 18. Hayvanat bahçelerinde, yaban hayvanı rehabilitasyon ve barındırma tesislerinde ve petshop işletmelerinde, 19. Arberatumlar, Botanik Bahçeleri, yabani bitki türlerinin depolandığı ve işlendiği merkezlerde GEREKÇEYE ESAS YÖNETMELİKLER VE BU YÖNETMELİKLERDE BİYOLOGLARIN YETKİ TANIMLARI GIDA ve GIDA İLE TEMAS EDEN MADDE ve MALZEMELERİ ÜRETEN İŞ YERLERİNİN ÇALIŞMA İZNİ ve GIDA SİCİLİ ve ÜRETİM İZNİ İŞLEMLERİ İLE SORUMLU YÖNETİCİ İSTİHDAMI HAKKINDA YÖNETMELİK, Yetki Kanunu:5179, Yayımlandığı R.Gazete: 27.08.2004-25566 EK: 7/A (www.kkgm.gov.tr/yonetmelik/sorumlu_yonetici.html) Gıda İsletmelerinde Üretimin Niteliğine Göre Sorumlu Yönetici Olarak İstihdam Edilecek Meslek Mensupları; 5- Meyve/Sebze Ambalajlayan İş Yerleri (taze/kurutulmuş): Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Kimya Mühendisi, Kimyager, Biyolog. 7- Unlu Mamüller (simit-yufka-kadayıf-galeta...vb.), Ekmek ve Ekmek Çeşitleri, Pastacılık Ürünleri, Un, Bulgur ve Makarna Üreten İş Yerleri ile Hububat ve Bakliyat İsleyen İş Yerleri: Ziraat Mühendisi (tüm bolümler), Gıda Mühendisi, Kimya Mühendisi, Kimyager, Biyolog.13- Baharat ve Kuru Yemiş İşleyen İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Kimya Mühendisi, Kimyager, Biyolog. 17- Maya, Fermente ve Salamura Ürünleri Üreten İş Yerleri (sirke-yaprak-turşu, zeytin vb.): Ziraat Mühendisi (Gıda+Sut+Bahçe Bitkileri), Gıda Mühendisi, Biyolog.19- Su Ürünleri İşleyen İş Yerleri: Su Ürünleri Mühendisi, Ziraat Mühendisi (Gıda +Su Ürünleri+Zootekni), Gıda Mühendisi, Veteriner Hekim, Biyolog. 20- Yumurta Ambalajlayan İş Yerleri: Ziraat Mühendisi (tüm bolümler), Gıda Mühendisi, Veteriner Hekim, Biyolog, Kimya Mühendisi, Kimyager. 21- Soğuk Hava Depoları, Sade Buz Üreten İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Veteriner Hekim, Kimya Mühendisi, Kimyager, Biyolog. 23- Sadece Gıda Maddelerini Ambalajlayan İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Biyolog, Kimya Mühendisi, Kimyager. HALK SAĞLIĞI ALANINDA HAŞERELERE KARŞI İLAÇLAMA USUL VE ESASLARI HAKKINDA YÖNETMELİK, RESMİ GAZETE:27 OCAK 2005, SAYI:25709, (www.saglik.gov.tr/) Mesul müdür Madde 8- İşyeri faaliyette olduğu sürelerde bir mesul müdür bulunması zorunludur. Mesul müdür sadece bir işyerinde mesul müdürlük görevini üstlenebilir. Mesul müdürlük için Hekim, Veteriner Hekim, Eczacı, Tıbbi Teknolog, Ziraat Mühendisi, Biyolog ünvanına sahip veya entomoloji, toksikoloji alanında yüksek lisans, çevre sağlığı ve toplum sağlığı bölümü en az önlisans diplomasına sahip olunması zorunludur. Bu diplomaya sahip kişiler Bakanlık tarafından belirlenecek eğitim programına katılarak sertifika almak zorundadırlar. Mesul müdür, idari işlerden bizzat, diğer işlemlerden ise ekip sorumluları ile birlikte sorumludur. Mesul müdürün idari işlerinden, işleyişten ve sunulan hizmetin gerektirdiği alt yapı olanaklarının sağlanmasından işyeri sahipleri de bizzat sorumludurlar. ÇEVRESEL ETKİ DEĞERLENDİRME (ÇED) RAPORU HAZIRLAMADA VE ÇED BÜROSU AÇMAK İÇİN GEREKLİ YETERLİLİK ŞARTLARI HAKKINDAKİ YÖNETMELİK (www.cevreorman.gov.tr/yasa/t/25383.doc) Yeterlik Belgesi Başvurularında Aranacak Koşullar Madde 5 — Yeterlik belgesi almak isteyen kurum ve kuruluşların aşağıdaki koşulları sağlamaları zorunludur: a) Kamu veya özel sektörde mesleği ile ilgili olarak en az iki yıl çalışmış bir çevre mühendisini sürekli olarak istihdam etmeleri, b) Mühendislik ve Mimarlık Fakülteleri, Fen-Edebiyat Fakültelerinin Fizik, Kimya, Biyoloji Bölümleri ile Jeoloji, Hidrojeoloji, Zooloji, Arkeoloji, Veteriner Hekim, Kamu Yönetimi, İşletme, Ekonomi, Maliye, İktisat, Sosyoloji Bölümleri Lisans Mezunlarından farklı meslek grubundan kamu veya özel sektörde mesleği ile ilgili olarak en az iki yıl çalışmış iki personeli sürekli olarak istihdam etmeleri, c) (a) ve (b) bentlerinde belirtilen meslek dallarından; raporu hazırlayacak kurum/kuruluşların Raporunun hazırlanması, incelenmesi veya denetiminde en az üç yıl çalışmış bir personeli rapor koordinatörü olarak ÇED sürecinde görevlendirmeleri, Bu yönetmeliklerden de anlaşılacağı gibi biyologların sağlık sektörü dışında çevrenin korunmasına yönelik her türlü çalışmada Çevre mühendisleri, İnşaat mühendisleri, Şehir plancıları, Mimarlar, Jeoloji mühendisleri, Kimya mühendisleri, Kimyagerler, Ziraat mühendisleri, Gıda mühendisleri ve benzeri meslek grupları ile birlikte teknik hizmet vermektedirler. Yukarıda saydığımız meslek gruplarıyla aynı koşullarda aynı işleri (Ekolojik planlama, Ekosistem yönetimi, CED raporu hazırlama, Haşere mücadelesi, ve Biyoçeşitliliğin saptanması gibi birçok alanda arazi ve laboratuar çalışmalarına fiilen katılmaktadırlar) yapmaktadırlar. Zira Yönetmeliklerle Belirlenen Yetkilerden ve Biyologların çalışma alanlarından da anlaşılacağı üzere aynı ortamlarda aynı yetkileri paylaşan ve aynı işleri yapan mühendis, yüksek mimar, mimar, jeolog, hidrojeolog, hidrolog, jeofizikçi, fizikçi, kimyager, matematikçi, istatistikçi, yöneylemci (Hareket araştırmacısı), matematiksel iktisatçı, ekonomici ve benzeri ile teknik öğretmen okullarından mezun olup da, öğretmenlik mesleği dışında teknik hizmetlerde çalışanlar, Mimarlık ve Mühendislik Fakültesi veya Bölümlerinden mezun şehir plancısı, yüksek şehir plancısı, v.b meslek grupları, Biyologlar dışındaki meslek gruplarının Teknik Hizmetler Sınıfında, Biyologların ise (Teknik Hizmet Üretmesine rağmen) Sağlık Hizmetleri Sınıfında olması anlaşılır değildir. Çevre koruma, kontrol ve ekolojik planlama ile ilgili arazi şartlarında; biyoteknolojik çalışma yapan kurum ve kuruluşlarda her türlü araştırma-geliştirme ve üretim faaliyetinde, Hidrobiyoloji ve Su ürünleri ile ilgili araştırma ve üretim faaliyetlerinde, Milli Parklar, Doğa Koruma, Yaban Hayatı Koruma ve Özel Cevre Koruma alanlarında biyoçesitlilik (fauna ve flora), ekoloji, doğa yönetimi ve yaban hayatı uzmanı olarak, Biyoloji eğitim-öğretim faaliyetleri ve Biyoloji programlarının geliştirilmesinde, ÇED (Çevresel Etki Değerlendirmesi) raporlarının hazırlanmasında, Tarım ve Ormancılık alanlarında araştırma ve geliştirme faaliyetleri, arıtma tesislerinde çalışan Biyologların sağlık sektörü dışında birçok sektörde de yer aldıkları açıkça görülmektedir. Ayrıca Biyologlar üniversitelerin Fen, Fen-Edebiyat ve Mühendislik Fakültelerinin Biyoloji Bölümlerinden mezun olup, Fizik, Kimya, Matematik, Biyoloji ağırlıklı dersler almışlardır, Kimyager, Fizik, Matematikçi, İstatistikçi gibi birçok meslek grubuyla aynı Fakültelerden ve 4 yıllık bir eğitimle mezun olmuşlardır. EŞİT İŞE EŞİT ÜCRET POLİTİKASI VE BİYOLOGLARIN MAĞDURİYETİ Sağlık Bakanlığı dışında diğer bakanlıklar ve kamu kurum kuruluşlarında çalışan Biyologlar döner sermaye almamakta, arazi koşullarında çalışmalarına rağmen arazi tazminatından faydalanamamaktır. Bilindiği gibi 21.03.2006 tarih ve 5473 sayılı Resmi Gazetede yayımlanan “Değişik Adlar Altında İlave Ödemesi Bulunmayan Memurlara ve Sözleşmeli Personele Ek Ödeme yapılması İle Bazı Kanun ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile kimi kamu personelinin almakta olduğu aylık ücretlere değişik adlar altında iyileştirmeler yapılmış ancak burada BİYOLOGLAR yer almamış ve mağdur edilmiştir. Bakanlar Kurulu’nun 2006/10344 sayılı söz konusu Kararı, Anayasa’ya ve hukuka açıkça aykırıdır. Aynı süreçte “Biyologlar” tarafından Bakanlar Kurulu’nun 2006/10344 sayılı kararına itirazlarda bulunulmuş, Devlet Personel Başkanlığı, Maliye Bakanlığı ve ilgili kurumlara bildirilmiş gelen cevabi yazı da “Eşit işe eşit ücret” politikası kapsamında söz konusu kanuna atıfta bulunularak yapılacak düzenleme kapsamında denge tazminatı ile durumun düzeltileceği belirtilmesine rağmen yeni düzenleme ile aradaki ücret dengesizliği daha da artmış ve “Eşit ise eşit ücret” politikasına uygun olmayan şekilde meslek grubumuz mağdur edilmiştir. SONUÇ OLARAK; Çevre ve Orman Bakanlığında, Tarım ve Köy işleri Bakanlığında, Kültür ve Turizm Bakanlığı, Denizcilik Müsteşarlığı, DSİ v.b kurumlarda görev yapan tüm Biyologlar teknik uzman olarak çalışmakta olmasına rağmen EN DÜŞÜK DEVLET MEMURU MAAŞINA YAKIN MAAŞ ALMAKTA OLUP, BU DURUM “Eşit işe eşit ücret” politikası İLE BAĞDAŞMAMAKTA VE BİYOLOGLAR MAĞDUR EDİLMEKTEDİRLER. Yeni düzenlemeden önce, Çevre ve Orman Bakanlığında çalışan Biyologlar, Mühendis, Veteriner Hekim, Şehir plancısı, Mimar, Jeolog, Kimyager v.b. meslek gruplarından 300,00-350,00 TL az maaş alırlarken yeni düzenleme ile (Denge Tazminatı) birlikte aynı ortamda, benzer işleri yapan hatta aynı Fakülteden mezun ve aldıkları derslerin neredeyse üçte biri ortak olan Kimyagerlerden 500,00-700,00 TL daha az ücret alır hale gelmişlerdir. Sonuçta 1250,00 ila 1400,00 TL arasında maaş almakta olan biyologlar EN DÜŞÜK DEVLET MEMURU MAAŞINA YAKIN MAAŞ ALMAKTADIRLAR. Bu nedenle Biyologların Teknik Hizmet üretmesi nedeniyle TEKNİK HİZMETLER SINIFINA DAHİL EDİLMESİ HUSUSUNDA GEREKLİ YASAL DEĞİŞİKLİKLERİN YAPILMASINI, TÜM HAKLARIMIZ SAKLI KALMAK ÜZERE ARZ VE TALEP EDERİZ. TÜRKİYE BİYOLOGLAR DERNEĞİ

http://www.biyologlar.com/bio-der-kanun-taslagi

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Hayır, bu bir fotoğraf hilesi değil. Bu gördüğünüz kedicik, aslında bir Kimer olmayan, ama bu yazıyı yazmak için bana esin kaynağı olan Venüs. (Kaynak: Facebook) Eğer benim gibi bir kedisever iseniz, son birkaç haftadır internette dolanan çok tuhaf bir kedi resmini görmüş olabilirsiniz. Ben, resmi ilk gördüğümde, bunun kesinlikle fotoğraf hilesi olduğunu düşünmüştüm. Ancak biraz araştırınca öğrendim ki, artık kendi facebook sayfası olan Venüs isimli bu kedi bir fotoşop hilesi değil, capcanlı bir kedi. İnanmıyorsanız kendi Youtube sayfasındaki videosunu görebilirsiniz. Venüs, bir internet fenomeni olduktan sonra yayınlanan pek çok blogda kendisinden ‘kimer‘ olarak bahsediliyor. Kimer, bu yazımızda bahsedeceğımız bir tür genetik fenomen aslında.  Venüs’ün  bir kimer olup olmadığını söylemek ise çok zor. Zira bir canlıya kimer tanısı koymak için oldukça detaylı genetik analizler yapmak gerekiyor. Kedilerdeki kürk renklerini belirleyen farklı mekanizmalar var. Venüs’ün desenlerinin çok daha sık görülen bu mekanizmalardan birine bağlı ortaya çıkmış olma olasığı, bir kimer olma ihtimalinden çok daha yüksek. Bu ihtimallerden yazımızın sonunda bahsedeceğiz, ama gelin önce bu genetik duruma ismini veren Kimera’dan bahsedelim. Homeros’tan Yanartaş’a Florence Arkeoloji Müzesi, 5. yy’dan bir Kimera keykeli. ( Kaynak: Britannica Ansiklopedisi) Kimera, mitolojide antik çağda bugünkü Güney Anadolu bölgesinde yaşamış olan Likya uygarlığına ait mitolojik bir figür. Ozan Homeros’un yazdıklarına göre,  bu yaratığın gövdesi pekçok hayvanın birleşmesinden oluşmuştu: başı bir aslana, arka ayakları bir keçiye, kuyruğu ise bir sürüngene aitti.  Ağzından bir ejder gibi alevler çıkaran bu canavarı,  epik kahraman Bellerophon üzerine bindiği kanaltı atı Pegasus yardımıyla öldürmüş.   Antalya’nın Çıralı beldesindeki sönmeyen volkanik  alevler, adlarını bu canavarın ağzından çıkan  alevlerden alıyor. Bu bölgeye Yanartaş ya da Kimera adı veriliyor. Biden fazla canlının kaynaşmasından oluşmuş bu ilginç mitolojik canlı, çok nadir görülen ve oldukça şaşırtıcı olan bir genetik duruma isim babalığı yapmış durumda: Kimerizm. Kimerizm 1998 yılında, 31 yaşındaki bir anne adayı ve 41 yaşındaki bir baba adayı, tüp bebek sahibi olmak için doktora başvururlar. Tüp bebek girişimi sırasında, annenin rahmine döllenmiş üç embriyo yerleştirilmesine rağmen, çoğu tüp bebekte denemesinde olduğu gibi embriyolardan sadece bir tanesi gelişimini tamamlar ve çift, gebelik süresinin sonunda, normal doğum ile 3.46 gramlık sağlıklı bir erkek bebek sahibi olur. Yeni doğan bebeğin, sağ testisi normal olup, sol testis torbasının içi boştur. Bu bebeklerde çok sık rastlanan bir durum olduğu için bir süre, sol testisin de yerine inmesi için beklenir. Bebek 15 aylıkken, bu durumun ameliyatla düzeltilmesine karar verilir. Ameliyat sırasında, bebeğin sol kasığnda bir fıtık olduğu ve fıtık içinde bozunmuş testis benzeri bir yapının olduğu fark edilir ve bu dokular ameliyat sırasında alınır. Daha sonra yapılan patolojik incelemede, bu dokuların aslında körelmiş bir rahim ve yumurtalık kanallarına ait dokular olduğu saptanır. İleri tetkiklerde, bebeğin kanındaki akyuvar hücrelerinde iki dizi hücre olduğu tespit edilir: kadınlara özgü 46, XX ile erkeklere özgü 46, XY. CSI dizisinin 4. sezon, 23. bölümünde, dedektiflerimiz bir tecavüz zanlısını dizinin başında kan ve sperm genetik analizi birbirini tutmadığı için salıverirler. Bir kimer olan suçluyu, kolundaki Kimera dövmesi ele verir. Gene aynı yıllarda, 26 yaşındayken çocuklarına bakamadığı gerekçesiyle devlet yardımına başvuran Lydia Fairchild, bu yardımı alması için çocukların biyolojik annesi olduğunu ispat edecek olan zorunlu olan genetik testleri yaptırır. Test sonuçlarını almak için başvurduğunda, Sosyal Yardım dairesi’ndeki görevliler onu bir odaya alırlar ve “Sen kimsin?”, ” Bu çocuklar kimin çocukları, onları nereden buldun?”, ” Bu çocukların gerçek annesi kim?” sorularıyla başlayan, uzun ve yıpratıcı bir süreçten geçer. Çocukların tamamının kendi çocuğu olduğunu iddia etmesine rağmen, ifadesine inanılmaz ve hakkında devleti dolandırmaya çalışmaktan işlem yapılmaya başlanır. Tekrarlanan testler aynı sonuçları vermektedir, bu testlere göre çocuklarının DNA’sı ile kendi DNA’sı uymamaktadır. Bu konuya anlam veremeyen ve çocuklarının hastanede başka bebeklerle karışmış olmasından şüphelenmeye başlayan Lydia, bu sırada dördüncü çocuğuna hamiledir. Avukatından, doğum sırasında şahitlik etmesini ve doğar doğmaz bebeğe tetkik yapılmasını ister. Bebek anne rahminden çıkar çıkmaz kan örnekleri alınır. Sonuç gene aynıdır, yapılan DNA testine göre Lydia çocuklarının genetik annesi değildir. Bu sırada, bir başka şehirde, Karen Keegan isimli bir hasta, son dönem böbrek yetmezliğinden muzdariptir ve böbrek nakli için sıra beklemektedir. Karen’in üç oğlu da, annelerine böbreklerini bağışlamak için gönüllü olurlar. Yapılan doku uygunluk tetkiklerinin sonucu tuhaftır. Testlere göre, Karen’in oğullarından sadece biri kendisine aittir. Diğer iki oğlunun genetik yapısı tamamen farklıdır. Bu tuhaf durumu çözmek isteyen doktorlar seferber olurlar, Karen’in hemen her dokusundan örnekler alınır, ama sonuç aynıdır. Daha sonra Karen, birkaç yıl önce ameliyatla çıkarılmış olan tiroid bezinin de test edilmesini ister. Yapılan incelemelerde, Karen’in iki oğlunun genetik yapısının kendisiyle olmasa bile, birkaç yıl önce aldırdığı tiroid  beziyle aynı olduğu saptanır. Bu birbirinden ilginç vakaların ortak özelliği, her birinin Tetragametik Kimerizm adı verilen nadir bir genetik fenomen olmaları. Tetragametik kimerizm, iki farklı yumurta hücresinin, iki farklı sperm tarafından döllenmesini takiben, oluşan blastosit evresindeki ikiz embryoların birbirileri ile kaynaşması sonucunda ortaya çıkan ilginç bir fenomen. Embriyo büyüdükçe, farklı embriyolardan gelen hücre grupları farklı organların oluşumunda yer almaya başlarlar. Bir kimerin karaciğerinin bir hücre grubundan, böbreğinin de diğer embroya ait hücre grubundan köken almış olması mümkündür. Bu durumda bu iki organın genetik yapıları birbirinden farklı olacaktır. Blaschko Çizgileri Çoğu kimer, bu örnekler kadar çarpıcı deneyimler yaşamaz. Eğer birbiriyle kaynaşan iki embriyonun cinsiyeti ve fiziksel özellikleri kodlayan genleri aynıysa, tetragametik bir kimer, hayat boyu bu özelliğinin farkına varmayabilir. Bazı kimselerde,  iki gözün renginin birbirinden farklı olması gibi küçük belirtiler olabilir. Nadir olarak buradaki örneklerdeki, farklı organların farklı genetik yapıya sahip olması gibi  kimerizm vakaları da olabilir. Çoğu kimerin cildinde, ancak UV ışık altında görülen Blaschko çizgileri mevcuttur. Bu çizgiler, iki ayrı ten rengi tonu kodlayan farklı  embriyo hücrelerinin rahim içindeki gelişimleri boyunca yaşadıkları hücre göçü nedeniyle ciltte farklı iki tonun girdap benzeri desenler oluşturmasından kaynaklanır. Blaschko çizgilerini çıplak gözle görmek zordur, genelde UV ışık altında belirgindirler. Kimerizm, ilginç bir konu olması nedeniyle popüler kültürde de sıklıkla yer buluyor. CSI dizisinin 4. sezoununun 23. bölümünde, kahramanlarımız bir tecavüz zanlısının peşindedirler. Zanlıdan alınan kan örnekleri, suç mahalindeki sperm örnekleri ile karşılaştırılır. Sonuç negatiftir, iki örneğin genetik yapısı farklıdır. Zanlı salıverilmesine rağmen, tüm şüpheler genetik tanı ile aklanan bu kişiyi göstermektedir. Kahramanlarımız, zanlının kolundaki mitolojik canavar Kimera dövmesini fark edince, bu dövmeden yola çıkarak olayı çözerler. Zanlının bu defa kan hücreleri değil, başka hücrelerinden örnekler alınır, sonuç sperm analiziyle uyumludur. Adalet bir kez daha yerini bulur. Stephen King’in aynı isimli romanında uyarlanan The Dark Half ( Hayatı Emen Karanlık) isimli film, kimer bir yazarın başından geçenleri anlatıyor. Bir başka kimera öyküsü ise ünlü korku yazarı Stephen King’den. Türkçeye Hayatı Emen karanlık diye çevrilen The Dark Half romanı ve aynı isimli filmde, bir yazarın beyninde ve bedenine yaşayan ikiz kardeşinin öyküsü anlatılmaktadır. Thad isimli kahramınımız, zaman zaman bilincini kaybetmekte, bu zamanlarda, masasının üzerinde Stark isimli gizemli birinden kendisine hitaben yazılmış notlar bulmaktadır. Kitabın ilerleyen bölümlerinde Stark’ın, anne karnındayken Thad ile bütünleşen kötücül ikizi olduğu anlaşılır. X Kromozom İnaktivasyonu Gelelim, yazımızın başında bahsettiğimiz, İnternet’te milyonlarca hayranı olan Venüs’e. Her ne kadar Venüs, internette “Kimer Kedi” olarak ünlü olmuş olsa da, gerçekte kimer olma ihtimali oldukça düşük. Kimerizm, çok nadir görülen bir durum. Oysa kedilerdeki bu tip renk örgülerine neden olan ve oldukça sık görülen bir başka nedeni var: X  Kromozom  İnaktivasyonu. Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Amnion sıvısından toplanan dişi hücrelerinin hücre çekirdekleri. Okla gösterilen leke, hücre çekirdeği içinde inaktif halde paketlenmiş Barr cismi. (Kaynak:  Journal of Cell Biology, Vol 135, 1427-1440. PMID:8978813)Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Genden fakir Y kromozomunun aksine, X kromozomunda her iki cinsiyetin de hücre gelişmesinde anahtar rol üstlenen binden fazla gen mevcuttur. Ancak iki set X kromozomu hücre fonksiyonları için  gerekli değildir. Bu nedenle, dişilerde X kromozomlarından biri inaktif hale getirilir ve paketli bir halde hücre çekirdeğinin bir köşesinde durur.  Bu paketlenmiş X kromozomuna Barr Cismi adı verilir. Keselilerde genelde babadan gelen X kromozomu inaktif hale getirilirken, memelilerde anne ve babadan gelen X kromozomları hücreden hücreye değişiklik gösterecek şekilde rastgele inaktive olurlar. Kediler de memeli hayvanlardır, bu nedenle aynı insanlardaki gibi dişi kedilerde de, hücreler içindeki X kromozomlarından biri rastgele inaktif hale gelir ve Barr cismi oluşturur. Kedilerde, tüy rengini belirleyen genlerden bir tanesi X kromozmunda yer alır. Bu genin iki varyasyonu vardır. Bir tanesi (XB), kedi tüylerinin sarı olmasını sağlarken, diğeri (Xb) siyah tüyleri kodlar. Sarı tüyleri kodlayan gen, siyah tüy genine göre daha baskındır. Normalde, bu durumda, ebeveynlerinden farklı genleri alan kedilerin (genotip XBXb) tüylerinin sarı olması beklenir. Ancak,  bu şekilde heterozigot genlere sahip olan dişi kediler (XBXb), gövdelerinin farklı yerlerinde hücrelerdeki X kromozomlarından birinin rastgele inaktif olması nedeniyle sarı ve siyah lekeli olarak doğarlar. Lekeleri yama şeklinde dağınık olan bu tip kedilere tortoiseshell kediler denir. Bu renk bir kedi gördüğünüzde, o kedinin çok yüksek ihtimalle dişi olduğunu söyleyebilirsiniz. Tortoiseshell kedilerin kürklerindeki renk örgülerinin nasıl oluştuğunu bu şemada görebilirsiniz. En üst satırda, kedilerin olası genetik kombinasyonu mevcut. Dişi kedilerde ( XX), hangi kromozomun Barr Cismi halinde geldiği, kedinin kürk renginin belirlenmesinde temel rolü oynuyor. Barr cismi halinde inaktif hale gelen kromozom, resimde U şeklinde gösterilmiş. ( Kaynak: Miami Univeersitesi Biyoloji Bölümü) Peki erkek tortoiseshell kediler yok mu?  Çok nadir olsa da var. Ancak bu desene sahip kedilerinin hepsinde genetik bir problem olduğunu, çoğunun XXY gibi bir kromozom anomalisine sahip olduklarını gönül rahatlığı ile söyleyebiliriz. (Bu tip erkek kediler, genetik problemleri nedeniyle genelde kısır oluyorlar.) Elbette, çok daha nadir olabilecek bir başka ihtimal daha var: o da bu erkek kedilerin kimer olması. Venüs kadar artistik olmasa da, bir başka dişi tortoiseshell kedi. Venüs’ e baktığımızda,  yüzündeki desen her ne kadar çok ilginç de olsa, dişi bir kedi olduğu için bu desenin büyük ihtimalle yukarıda X inaktivasyonu nedeniyle oluştuğunu söylemek daha olası bir iddia olacaktır. İnternette kısa bir araştırma yaparsanız, Venüs kadar artistik olmayan pekçok yamalı yüzlü tortoiseshell kedi bulmak olası. Kimer olsun veya olmasın, gene de çok şirinler ama değil mi?   Kaynaklar: Chimera. Theoi Greek Myhtology. A True Hermaphrodite Chimera Resulting from Embryo Amalgamation after in Vitro Fertilization. Strain L., Dean J., Hamilton M., Bonthron D.  New England Journal of Medicine. 1998. 166-169. Which half is Mommy?: Tetragametic Chimerism and Trans-Subjectivity . UC Davis, Project Muse. The Stranger Within. Kate Werk. New Scientists, vol 180, issue 2421 The Tech Museum: Chimeras, Mosaicism and other fun stuff. Silence of the Fathers. Early X İnactivation. Cheng M., Disteche C. Bioessays. 2004.  26:821-824 The Genetics of Calico Cats. University of Miami, Biology Department. Yazar hakkında: Işıl Arıcan http://www.acikbilim.com/2012/09/dosyalar/kimerler-kediler-tuhafliklar.html

http://www.biyologlar.com/kimerler-kediler-ve-diger-genetik-tuhafliklar

Jacques-Yves Cousteau - Kaptan Cousteau Kimdir

Jacques-Yves Cousteau - Kaptan Cousteau Kimdir

Çocukluğundan beri denize ilgi duyan Jacques-Yves, denizaltının eşsiz güzelliklerinin farkına, 26 yaşında genç bir deniz subayı iken varır. İlgisi giderek büyür ve ölünceye dek süren bir sevdaya dönüşür. Jacques-Yves, dünyanın bütün denizlerini dolaşır. Kimsenin dillerini bilmediği binlerce dost edinir ve bize de bu "Su Gezegeni" ni başkalarıyla paylaşıyor olduğumuzu anımsatır. Onların efendisi değil, dostu olmamızı ister. Bunun için de sonuna kadar çaba gösterir. Subay ve Dalgıç Jacques-Yves Cousteau, 11 Haziran 1910'da Bordeaux yakınlarında, zengin bir pazar şehri olan St. Andre-de-Cubzac'de doğar. 4 yaşında yüzmeyi öğrenir. Çocukluğunda suya olduğu kadar, makinalara da ilgisi vardır. Daha 11 yaşındayken bir model vinç ve 13 yaşındayken de pille çalışan bir araba yapar. Babası Amerikalı bir milyonerin yanında çalışmaktadır. Ailesini iki yıllığına Amerika'ya götürür. Ağabeyi Pierre ile Manhattan sokaklarında oyun oynayan Jacques-Yves, nefesini tutarak dalmayı da Velmont'da, göl kıyısındaki bir yaz kampında öğrenir. Fransa'ya döndüklerinde, biriktirmiş olduğu parayla küçük bir film kamerası alır. İlk filmini 13 yaşında çeker. Ancak filmi çekmeden önce kamerayı söker ve parçalarına ayırır. Nasıl çalıştığını anlamaya çalışır. Tekrar toplar. Evde, arkadaşlarıyla filmler çeken Jacques-Yves, hem yönetmen hem kameraman hem de yapımcıdır. Mekanik aletlere büyük bir merakı olmasının yanında okula karşı ilgisizdir. Sorunlu bir öğrencidir. Sonunda ailesi onu, Alsace'da, katı kuralları olan yatılı bir okula gönderir. Bu yeni çevrede Cousteau, çok başarılı olur. Yatılı okuldan sonra 1930'da, Brest'teki deniz akademisine girer. Eğitim için düzenlenen dünya turuna katılırken, yanına kamerasını da alır. Egzotik yerlere ait yüzlerce makara film çeker. Bir keresinde de Güney Denizi'nde midye ararken garip bir gözlük kullanan inci avcılarını görüntüler. Fransa'ya döndüğünde, genç bir deniz subayı için zamanın en heyecan verici kurslarından birine katılır ve Fransız Donanması Havacılık Okulu'nda uçmayı öğrenir. Ancak pilotluk sınavına girmeden birkaç hafta önce babasının spor arabasıyla, sisli dağ yollarında giderken kaza yapar. Hastane yatağında gözlerini açtığında, iki kolu da kırıktır. Böylelikle pilotluk kariyeri daha başlamadan biter. Aslında bu kaza, Cousteau'nun hayatını kurtarmıştır. Havacılık Okulu'ndaki tüm arkadaşları yakında çıkacak olan 2. Dünya Savaşı'nda ölecektir. 1933'de Fransız Donanması'nın bir topçu subayıdır ve 1935'e kadar Primauguet Kruvazörü'nde görevli olarak, Uzak Doğu'da bulunur. Döndüğünde, Toulon'daki deniz üssünde topçuluk eğitmenliği yapar. Bu arada, arkadaşı Philippe Taillez'in önerisi üzerine, kollarını güçlendirmek için düzenli olarak hergün Akdeniz'de yüzmeye başlar. İki arkadaş, sonra aralarına katılan Friedric Dumas ile birlikte, yüzücü gözlükleriyle dalış denemeleri yaparlar. Cousteau, 1936 yılında gözlükleri takarak yaptığı ilk denemesinde denizaltındaki manzaradan çok etkilenir. Aynı yıl, öğrenci olan Simone Melchoir ile tanışır ve ertesi yıl evlenirler. Cousteau ve iki arkadaşı, daha derine dalma ve daha uzun süreler su altında kalma konusunda kararlıdırlar. Kendi yaptıkları şnorkelleri, vücudu kaplayan, yalıtılmış dalış giysileri ve en son buluşlardan biri olan (içinde sıkıştırılmış hava bulunan) tüplerle yaptıkları taşınabilir soluma cihazlarıyla, kendi dalış takımlarını oluştururlar. Deneme dalışlarını kaydetmek için Cousteau, kamerası için su geçirmez bir kılıf geliştirir. 2. Dünya Savaşı'nın başlaması, hatta Almanların çok kısa bir sürede Fransa'yı işgal etmeleri bile, bu sualtı araştırmalarını durduramaz. Savaşta, direniş hareketine katılır ve İtalyan işgal kuvvetleri arasında casusluk yapar. Hizmetlerinden dolayı savaştan sonra, Legion d'Honneur nişanıyla onurlandırılır. Bu sırada dalgıçları, rahatça yüzebilen balıkadamlar haline dönüştürme çabaları sürer. Mevcut dalış elbiseleri çok ağır ve pahalı olmalarının yanısıra dalgıcın hareketlerini de oldukça kısıtlamaktadır. İlk scuba araştırmaları sonucunda Paris'te mühendis Emile Gagnan ile tanışır. Gagnan, savaş döneminde, arabalarda benzin yerine gaz kullanılmasını sağlayan bir araç geliştirmiştir. Cousteau ile birlikte, denizaltının basınçlı ortamında, dalgıçtan gelen talep üzerine, tüpteki sıkıştırılmış havayı otomatik olarak ayarlanan bir regülatör yaparlar. Aqua-lung (aqua:su, lung:ciğer) adıyla patent alırlar. Bu aygıt, ilerde daha çok "scuba" (Self-Contained Underwater Breathing Apparatus- su altında kendi kendine soluma aygıtı) olarak tanınacaktır. Haziran 1943'te, Fransız Rivyerası'nda Cousteau, 23 kg'lık aygıtı dener. İki hava tankı, hortum, regülatör, ağızlık ve gözlükten oluşan ilk scuba ile 18 m derinliğe dalar. Her türlü manevrayı dener. Hareketlerini rahatlıkla yapar. Tüpteki havanın gelişi de hiçbir şekilde engellenmemektedir. Takibeden birkaç ay içinde Cousteau, Tailliez ve Dumas, birçoğu filme kaydedilmiş 500'den fazla dalış yaparlar. Ekim ayında Dumas, 65 m derinliğe dalarak rekor kırar. En derin dalışlarını bile kısa tutarak "vurgun yememeye" çalışırlar. Çünkü derinde uzun süre basınç altında kalınca, solunan havadaki azot, dalgıcın kanında erir. Eğer dalgıç su yüzeyine doğru hızla çıkarsa, kandaki azot tekrar, kabarcıklar şeklinde gaz hale döner. Bu kabarcıklar, damarları tıkayıp kalbi durdurabilir. Scuba dalgıçları, bir yandan vurgunlardan kaçınmayı öğrenirken bir yandan da Cousteau'nun "derinlik sarhoşluğu", doktorların ise "nitrojen narkozu" diye adlandırdığı yeni ve ilginç bir duygu ile tanışırlar. 30 m'nin altındaki derinliklerde, beyin dokularındaki soğurulmuş azot, bir takım anormal davranışları uyarmaya başlar. Bu davranışlar, bazı dalgıçlarda panik şeklinde ortaya çıkarken, bazılarında da sarhoşluğun verdiği güven ve mutluluktan dolayı, sırtındaki tüpü çıkarıp geçen bir balığa vermek şeklinde olabilir. Cousteau ve arkadaşları, yavaş yavaş, güvenli dalmanın yöntemlerini geliştirirler. Savaş sonunda eşi Simone da çok iyi bir dalgıç olmuştur. Hatta Cousteau, 1938 ve 1940'da doğan oğulları Jean-Michel ve Philippe için bile küçük scubalar yapar. İlk ticari scuba takımı ise 1946'da piyasaya sürülür. Fransız Donanması'ndaki görevini sürdüren Cousteau, 1948'de kaptan olur. Üstlerini, bir sualtı araştırma ekibi kurmaya ikna eder. Bu ekibin görevi, sualtı dalış tekniklerini ve sualtı fotoğrafçılığını geliştirmektir. Ekip, savaştan sonra, Fransız Limanlarındaki Alman mayınlarını temizlemekte gösterdiği büyük başarının yanında, Tunus Kıyılarında 2000 yıllık bir Roma batığını da ortaya çıkartır. Bu çalışmaların, sualtı arkeolojisine de önemli katkıları olacağı anlaşılır. İki yıl sonra Fransız Okyanus Kurumu Başkanlığı'na getirilen kaptan Cousteau, Akdeniz'deki dalışlarına devam ederken bir yandan da diğer denizlere dalmayı ve okyanuslar hakkında bilgi toplamayı düşlemektedir. Calypso Kısa bir süre sonra Amerikan yapımı eski bir mayın tarama gemisi olan Calypso'yu görür. 600 HP dizel motorlarıyla saatte 23 km hız yapabilen, 8 yaşındaki Calypso, eski görünüşüne rağmen sağlam bir gemidir. 1950'de, ilerdeki araştırmaları için onu satın alır. Bir yıl kadar süren dönüştürme çalışmaları sonunda Calypso, okyanus araştırmaları için hazır hale getirilir. Cousteau, yolculuklar için gereken parayı sağlamak, aynı zamanda kamuoyunda sualtı araştırmalarına olan ilgiyi arttırmak amacıyla, birçok film yapar ve kitaplar yazar. 1953'te yayınlanan Sessiz Dünya (The Silent World) adlı ilk kitabında, scubanın ortaya çıkış sürecini ve gelecek için vaadettiklerini ayrıntılı olarak anlatır. Bu kitabı, 22 dilde 5 milyondan fazla satılır. 1955 yılının Mart ayında Calypso, Marsilya Limanı'ndan ayrılarak, Kızıl Deniz ve Hint Okyanusu'nun mercan resiflerine doğru ilk seferine çıkar. Bu yolculukta çektiği filmleri kullanarak, Sessiz Dünya'yı belgesel haline getirir. Filmin yapımında, 24 yaşındaki ünlü yönetmen Louis Malle, Cousteau'ya yardımcı olur. Film, 1956 yılında, belgesel film dalında Oscar ve Altın Palmiye Ödüllerini alır. Projelerini gerçekleştirebilmek amacıyla Kaptan Cousteau, emekli olarak donanmadan ayrılır. 1957'de Monaco Okyanus Müzesi'nin yöneticisi olur ve 1988'de ayrılana kadar, 31 yıl bu görevde kalır. Toulon'da, Denizaltı Araştırma Grubu'nu kurar. Sualtında çok daha uzun süreler kalabilmek için yeni araştırma çalışmalarına başlar. 1959'da mühendis Jean Mollard ile "Dalan Daire" yi (UFO'lardan esinlenerek bu adı verir) tasarlar. İki kişi alabilen bu aygıt, küre şeklindedir ve yüksek manevra kabiliyetinin yanısıra, 350 m derinliğe dalış yapabilmektedir. Cousteau, 1962'de, Marsilya'da "Conshelf 1"adlı bir deney yapar. Bu, insanların sualtında yaşamalarına yönelik bir deneydir. Benzer bir deney, 1963'te "Conshelf 2" adıyla Kızıldeniz'de gerçekleştirilir. Cousteau'nun "okyanot" adını verdiği 5 adamı, 10 m derindeki "Denizyıldızı Evi" adlı kapalı bir ortamda bir ay yaşar. Proje masraflarının büyük kısmını, Fransız Petrol Sanayii karşılasa da geri kalan kısmını karşılamak için Cousteau, deneyi belgesel filme dönüştüreceğine dair bir anlaşma imzalar. Kameralar, okyanotların her anını görüntüler. Sonunda 93 dakikalık film; "Güneşsiz Dünya" (World Without Sun) ortaya çıkar. Cousteau bu film ile ikinci Oscar'ını alır. Conshelf 3, 1965'te Nice yakınlarında gerçekleştirilir. Cousteau'nun 24 yaşındaki oğlu Philippe'in de aralarında bulunduğu 6 okyanot, 100 m derinlikte üç hafta kalır. Deney esnasında çekilen filmlerden, Orson Welles'in seslendirdiği bir TV filmi yapılır. Filmin gördüğü büyük ilgi üzerine, her yıl 4 saatlik TV programı hazırlamak için ABC televizyon kanalıyla anlaşma imzalanır. "Cousteau'nun Denizaltı Dünyası" adlı TV dizisi böyle doğar. Sonra anlaşma 9 yıllığına uzatılır. Bu sürenin sonunda Ted Turner'in CNN'i ile anlaşılır. Cousteau, yaptığı TV filmleri ve dizileri için 10 Emmy Ödülü almıştır. Altın Balık (The Golden Fish) adlı bir filmi de, kısa film dalında Oscar alır. Calypso'nun, yıllar boyunca Alaska'dan Afrika'ya, Afrika'dan Antarktika'ya yaptığı gezilerle, milyonlarca TV izleyicisi köpekbalıklarının, balinaların, penguenlerin, dev ahtapotların, katil balinaların, deniz kaplumbağalarının ve yunusların yaşantılarını öğrenir. Karadan kilometrelerce uzakta, insanların okyanusları nasıl kirlettiğini görür. Cousteau, tek başına ya da değişik yazarlarla birlikte yazdığı 50'nin üzerinde kitap ve çektiği 70'in üzerinde TV filmi ile okyanus yaşamının ve dünyanın yaşamsal dengelerinin korunması düşüncesini milyonlarca kişiye anlatır. Kirlenmenin, aşırı avlanmanın ve sahil kentlerinin düzensiz ve aşırı gelişmesinin, engin okyanuslardaki yaşam için bir tehlike olduğunu vurgular. Cousteau'nun okyanuslardaki yaşamın korunmasına ilişkin düşüncelerinin, zaman içinde bir evrim geçirdiği görülür. 1960'larda denizleri, kullanılabilecek bir kaynak olarak görürken, 1970'lerde, 20 yıl içinde okyanuslardaki yaşamın %40'ının yokolduğunu söyleyerek, okyanusların ölmek üzere olduğunu vurgular. 1974'te ise okyanuslardaki yaşamı korumak için Cousteau Topluluğu'nu kurar. Bugün topluluğun, dünya çapında 300 000 üyesi bulunmaktadır. Çevreci hareketin diğer liderlerinden farklıdır Cousteau. Kirlenme sorunlarına verilen teknolojik yanıtlara açıktır. Hayvanlara gösterilen ilginin, insanlara gösterilen ilginin önüne geçmesini de kabul etmez. Ancak, aşırı nüfus artışını da "esas kirlenme" olarak görür. 1977 yılında, Sir Peter Scott ile Birleşmiş Milletler (BM) tarafından verilen Uluslararası Çevre Ödülü'nü paylaşır. Halefi olarak gördüğü küçük oğlu Philippe'in 1979'da bir deniz kazasında ölmesi, Cousteau'yu sarsar. Bir süre sonra da topluluğun yönetimi ve politikaları üzerine anlaşamadığı, oğlu Jean-Michelle ile arası açılır. 1985'te Amerika Başkanı, kendisine Özgürlük Madalyası verir. 1989'da ulusal kültüre yaşam boyu katkılarından dolayı Academie Française Üyesi seçilir. Amerikan Bilimler Akademisi'nin de birkaç yabancı üyesinden biridir. 1990'da yüzlerce araştırmada kendisine eşlik eden 53 yıllık eşi Simone'u yitirir. 1992'de Jean-Michelle, kurucularından olduğu Cousteau Topluluğu'ndan istifa ederek kendi araştırma kuruluşunu kurar. Üç yıl sonra Cousteau, Cousteau adının kullanım hakkı üzerine oğluna dava açar. 1993'te, BM Kalıcı Gelişme İçin Yüksek Düzey Danışma Kurulu'na seçilir ve Dünya Bankası'na çevresel gelişme konusunda danışman olarak hizmet eder. Aynı yıl Fransa Cumhurbaşkanı, Cousteau'yu yeni kurulan "Gelecek Kuşakların Hakları Divanı" na sekreter olarak atar. Ancak Cousteau, Fransa'nın, Pasifik'te nükleer denemelere yeniden başlaması üzerine 1995'te bu görevinden istifa eder. Ocak 1996'da Singapur Limanı'nda demirlemiş olan Calypso'ya, manevra yapan bir mavna çarpar ve efsanevi Calypso, kısa sürede sulara gömülür. Milyonlarca kişiyi deniz altının büyüleyici güzellikleriyle tanıştıran ve çevreci hareketin kurucularından olan Kaptan Jacques-Yves Cousteau, Calypso 2'nin denize indirilişini göremeden, 25 Haziran 1997'de aramızdan ayrılır.

http://www.biyologlar.com/jacques-yves-cousteau-kaptan-cousteau-kimdir

Biyologların Yönetmeliklerle Belirlenmiş Yetkileri

****ÇEVRE DENETİMİ YÖNETMELİĞİ, Resmi gazete 21 Kasım 2008, sayı: 27061 BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar ...Çevre Yönetim Birimi ve Çevre Görevlisinin Nitelikleri ve Görevleri Tesis veya faaliyetlerde, tesis veya faaliyetlerin çevre yönetim birimlerinde veya yetkilendirilmiş çevre danışmanlık firmalarında çalışacak çevre görevlisinde aranacak nitelikler MADDE 8 – (1) Tesis veya faaliyetlerde, tesis veya faaliyetlerin çevre yönetim birimlerinde veya yetkilendirilmiş çevre danışmanlık firmalarında çalışacak çevre görevlisinin en az dört yıllık yükseköğretim kurumlarının mühendislik, fizik, kimya veya BİYOLOJİ bölümlerinden mezun olması zorunludur. ***** GIDA ve GIDA İLE TEMAS EDEN MADDE ve MALZEMELERİ ÜRETEN İŞ YERLERİNİN ÇALIŞMA İZNİ ve GIDA SİCİLİ ve ÜRETİM İZNİ İŞLEMLERİ İLE SORUMLU YÖNETİCİ İSTİHDAMI HAKKINDA YÖNETMELİKYazdır, Yetki Kanunu:5179, Yayımlandığı R.Gazete: 27.08.2004-25566 EK: 7/A (www.kkgm.gov.tr/yonetmelik/sorumlu_yonetici.html) Gıda İşletmelerinde Üretimin Niteliğine Göre Sorumlu Yönetici Olarak İstihdam Edilecek Meslek Mensupları; 5- Meyve/Sebze Ambalâjlayan İş Yerleri (taze/kurutulmuş): Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Kimya Mühendisi, Kimyager, Biyolog. 7- Unlu Mamuller (simit-yufka-kadayıf-galeta...vb.), Ekmek ve Ekmek Çeşitleri, Pastacılık Ürünleri, Un, Bulgur ve Makarna Üreten İş Yerleri ile Hububat ve Bakliyat İşleyen İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Kimya Mühendisi, Kimyager, Biyolog. 13- Baharat ve Kuru Yemiş İşleyen İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Kimya Mühendisi, Kimyager, Biyolog. 17- Maya, Fermente ve Salamura Ürünleri Üreten İş Yerleri (sirke-yaprak-turşu, zeytin vb.): Ziraat Mühendisi (Gıda+Süt+Bahçe Bitkileri), Gıda Mühendisi, Biyolog. 19- Su Ürünleri İşleyen İş Yerleri: Su Ürünleri Mühendisi, Ziraat Mühendisi (Gıda +Su Ürünleri+Zootekni), Gıda Mühendisi, Veteriner Hekim, Biyolog. 20- Yumurta Ambalâjlayan İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Veteriner Hekim, Biyolog, Kimya Mühendisi, Kimyager. 21- Soğuk Hava Depoları, Sade Buz Üreten İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Veteriner Hekim, Kimya Mühendisi, Kimyager, Biyolog. 23- Sadece Gıda Maddelerini Ambalâjlayan İş Yerleri: Ziraat Mühendisi (tüm bölümler), Gıda Mühendisi, Biyolog, Kimya Mühendisi, Kimyager. ****Halk Sağlığı Alanında Haşerelere Karşı İlaçlama Usul ve Esasları Hakkında Yönetmelik, Resmi gazete:27 Ocak 2005, Sayı: 25709, (www.saglik.gov.tr/) Mesûl müdür Madde 8- İşyeri faaliyette olduğu sürelerde bir mesûl müdür bulunması zorunludur. Mesûl müdür sadece bir işyerinde mesûl müdürlük görevini üstlenebilir. Mesûl müdürlük için Hekim, Veteriner Hekim, Eczacı, Tıbbi Teknolog, Ziraat Mühendisi, Biyolog unvanına sahip veya entomoloji, toksikoloji alanında yüksek lisans, çevre sağlığı ve toplum sağlığı bölümü en az önlisans diplomasına sahip olunması zorunludur. Bu diplomaya sahip kişiler Bakanlık tarafından belirlenecek eğitim programına katılarak sertifika almak zorundadırlar. Mesûl müdür, idari işlerden bizzat, diğer işlemlerden ise ekip sorumluları ile birlikte sorumludur. Mesûl müdürün idari işlerinden, işleyişten ve sunulan hizmetin gerektirdiği alt yapı olanaklarının sağlanmasından işyeri sahipleri de bizzat sorumludurlar. ****Çevresel Etki Değerlendirme (ÇED) raporu hazırlamada ve ÇED bürosu açmak için gerekli yeterlilik şartları aşağıdaki web adresinden öğrenilebilir, (www.cevreorman.gov.tr/yasa/t/25383.doc) Yeterlik Belgesi Başvurularında Aranacak Koşullar Madde 5 — Yeterlik belgesi almak isteyen kurum ve kuruluşların aşağıdaki koşulları sağlamaları zorunludur: a) Kamu veya özel sektörde mesleği ile ilgili olarak en az iki yıl çalışmış bir çevre mühendisini sürekli olarak istihdam etmeleri, b) Mühendislik ve mimarlık fakülteleri, fen-edebiyat fakültelerinin fizik, kimya, biyoloji bölümleri ile jeoloji, hidrojeoloji, zooloji, arkeoloji, veteriner hekim, kamu yönetimi, işletme, ekonomi, maliye, iktisat, sosyoloji bölümleri lisans mezunlarından farklı meslek grubundan kamu veya özel sektörde mesleği ile ilgili olarak en az iki yıl çalışmış iki personeli sürekli olarak istihdam etmeleri, c) (a) ve (b) bentlerinde belirtilen meslek dallarından; Raporu hazırlayacak kurum/kuruluşların Raporunun hazırlanması, incelenmesi veya denetiminde en az üç yıl çalışmış bir personeli rapor koordinatörü olarak ÇED sürecinde görevlendirmeleri,

http://www.biyologlar.com/biyologlarin-yonetmeliklerle-belirlenmis-yetkileri

MİLLİ PARKLAR YÖNETMELİĞİ

Tarım Orman ve Köyişleri Bakanlığından: R.G. Tarihi: 12/12/1986 R.G. Sayısı: 19309 BİRİNCİ BÖLÜM : Amaç, Kapsam ve Tanımlar Amaç Madde 1 - Bu Yönetmeliğin amacı, 2873 sayılı Milli Parklar Kanunu ile 6831 sayılı Orman Kanununun 25 inci maddesinin uygulanmasını düzenlemektir. Kapsam Madde 2 - Bu Yönetmelik, 2873 sayılı Milli Parklar Kanununun 22 nci maddesi ile 2896 sayılı Kanunla 6831 sayılı Orman Kanununa eklenen EK 5 inci maddesine göre hazırlanmış olup; Milli Parkların, Tabiat Parklarının, Tabiat Anıtlarının, Tabiatı Koruma Sahalarının ve Orman İçi Dinlenme Yerlerinin ayrılması, planlanması, geliştirilmesi, korunması, yönetilmesi ve tanıtılmasına ilişkin iş ve işlemleri kapsar. Kısaltmalar Madde 3 - Bu Yönetmelikte yer alan; a) Kanun: 2873 sayılı Milli Parklar Kanununu, b) Bakanlık: Tarım Orman ve Köyişleri Bakanlığını, c) Genel Müdürlük: Orman Genel Müdürlüğünü, d) Daire Başkanlığı: Milli Parklar Dairesi Başkanlığını, e) Müdürlük: Milli Parklar Müdürlüğünü, f) Fon: Milli Parklar Fonu'nu, ifade eder. Tanımlar Madde 4 - Bu Yönetmelikte yer alan; a) Milli Parklar, Tabiat Parkı, Tabiat Anıtı ve Tabiatı Koruma Alanı; Kanunun 2 nci maddesinde tarif edilen tabiat parçalarını, b) Ekosistem; belli bir yaşama muhiti içindeki canlı organizmalar ile cansız çevrenin meydana getirdiği karakteristik bir ekolojik sistemi, c) Tabii Kaynak; biyolojik tabii değerler; flora, fauna, habitatlar, ekosistemler, tabiat tarihinin ve tabii mirasın müstesna özellikleri ve bunlara dair ilmi değerler ile fiziki tabii değerler; coğrafi konum, jeolojik ve jeomorfolojik teşekküller, hidrolojik ve limnolojik özellikler, klimatik özellikler ve bunlara dair ilmi değerleri, d) Estetik Kaynak; insanın psikolojik yapısına ve bedii zevklerine hitap eden üstün, bakir ve tabii manzara özelliklerini, e) Kültürel Kaynak; tarihi, arkeolojik, mitolojik, antropolojik, etnografik, sosyolojik olayları belgeleyen ve bu olayların izlerini taşıyan sitler ve yöreler ile tarihteki büyük olayların ve kişilerin izlerini ve hatıralarını taşıyan, mimarlık ve güzel sanatların örneklerini bünyesinde toplayan yerler objeler ve kültürel mirasın olağanüstü örnekleri ve bunlarla ilgili ilmi değerleri, f) Teknik İzahname; bu yönetmeliğin uygulanmasına açıklık getiren, Yönetmelikte yer almayan hususları ihtiva eden Bakanlık emrini, g) Rekreasyonel Kaynak; tabii ve kültürel çevrenin, özellikle açık hava rekreasyonu yönünden potansiyeli, taşıma kapasitesi ve hitap ettiği demografik çevreyi, h) Rekreasyon; insanın eğlenme, dinlenme, kendini yenileme fonksiyonunu, ı) Orman İçi Dinlenme Yeri (Orman Mesire Yeri); rekreasyonel ve estetik kaynak değerlerine sahip ormanlık alanı, ifade eder. İKİNCİ BÖLÜM : Temel İlkeler ve Kriterler Temel İlkeler Madde 5 - Bu yönetmeliğin uygulandığı yerlerde; A) Genel olarak; 1 - Kanunun 14 üncü maddesi ile yasaklanan faaliyetler yapılamaz. 2 - Kaynak değerleri ile koruma ve kullanma esaslarının belirlenmesinde, ilmi ve teknik araştırmalara en geniş ölçüde yer verilir. 3 - Kaynakların tabii karakterinin mutlak korunması ve devamlılığı sağlanır. 4 - Tabii kaynakların işletilmesi yasaktır. 5 - Tabii denge ve manzara bütünlüğünü bozacak ve tabii çevrenin bakir karakteri ile bağdaşmayacak hiçbir faaliyete izin verilmez. 6 - Bu yerler sadece koruma, yönetim, araştırma, ziyaretçi, tanıtım tesis ve hizmetleri ile donatılır; bu tesisler ile kaynak amenajmanı ve restorasyon esasları planlarında belirtilir. 7 - Kullanma ve yararlanma şartları ve seviyesi idarece belirlenir ve taşıma kapasitesinin dışına çıkılmaz. 8 - Tabii ve kültürel kaynaklara, kaynak değerini bozmayacak, ancak tamamlayıcı ve restorasyon amaçlı müdahalelerde bulunulabilir. 9 - Tabiatı mutlak koruma zonlarında, tabii kaynaklar insan etkisi olmaksızın tabii haline bırakılır. 10 - Devlet mülkiyeti ve yönetimi ile kaynak, manzara, mülkiyet ve yönetim bütünlüğü esastır. Ancak milli parklarda devlet mülkiyeti aranmayabilir. 11 - Kamulaştırma ve Tahsisler Kanunun 5 inci ve 6 ncı maddelerine göre yapılır. 12 - Planların gerektirdiği her türlü yapı, tesis, hizmet ve faaliyetlerin yapılması, yönetilmesi ve işletilmesi Kanunun 12 nci maddesine göre düzenlenir.   B) Özel hallerde; 1 - Düzenli tarım ve mevcut iskan alanları ile bunları çevreleyen kırsal manzara dokusu, kültürel ve tabii kaynakların korunması ve değerlendirilmesinde tezat teşkil etmemesi halinde bu arazi kullanımlarının devamlılıklarını temin etmek üzere planlarında gerekli hükümler getirilir ve bu hükümlere göre özel mülkiyet tasarruflarına izin verilebilir. 2 - Milli parklar ve tabiat parklarında gerçek ve tüzel kişiler lehine verilecek izinlere dair esaslar, bu Yönetmeliğin 22 inci maddesinde belirtilmiştir. 3 - Üretim, otlatma ve avlanma faaliyetlerine ve kaynakların korunması geliştirilmesi ve devamlılığını sağlayacak teknik faaliyetlere, Kanunun 13 üncü maddesinde belirtilen esaslar dahilinde ve mutlak koruma zonları dışında izin verilebilir. 4 - Kamu yararı açısından vazgeçilmez ve kesin bir mecburiyet doğması halinde, planda yer almayan herhangi bir yatırım projesinin uygulanmasına, projenin çevreye yapacağı tesir etüd edilerek, çevre ve kaynak koruma politikalarıyla kabul edilemez bir tezat teşkil etmeyeceğinin tespit edilmesi halinde, planda gerekli değişiklikler yapıldıktan sonra Bakanlıkça izin verilebilir. Milli Park ve Tabiat Parkı Kriterleri Madde 6 - A) Milli Park olarak ayrılacak yerlerde; 1 - Tabii ve kültürel kaynak değeri ile rekreasyonel potansiyeli, milli ve milletlerarası seviyede özellik ve önem taşımalıdır. 2 - Kaynak değerleri, gelecek nesillerin miras olarak devralacakları ve sahip olmaktan gurur duyacakları seviyede önemli olmalıdır. 3 - Kaynak değerleri tahrip olmamış veya teknik ve idari müdahalelerle ıslah edilebilir durumda olmalıdır. 4 - Saha büyüklüğü, kaynak değerleri kesafeti yönünden, özel haller ve adalar dışında, en az 1000 hektar olmalı ve bu alan bütünüyle koruma ağırlıklı zonlardan meydana gelmelidir. İdari ve turistik amaçlı geliştirme alanları bu asgari saha büyüklüğünün dışındadır. B) Tabiat parkı olarak ayrılacak yerlerde; 1 - Milli veya bölge seviyesinde üstün tabii fizyocoğrafik yapıya, bitki örtüsü ve yaban hayatı özelliklerine ve manzara güzellikleri ile rekreasyon potansiyeline sahip olmalıdır. 2 - Kaynak ve manzara bütünlüğünü sağlayacak yeterli büyüklükte olmalıdır. 3 - Bilhassa açık hava rekreasyonu yönünden farklı ve zengin bir potansiyele sahip olmalıdır. 4 - Mahalli örf ve adetlerin, geleneksel arazi kullanma düzeninin ve kültürel manzaraların ilgi çeken örneklerini de ihtiva edebilmelidir. 5 - Devletin mülkiyetinde olmalıdır. Tabiat Anıtı ve Tabiatı Koruma Alanı Kriterleri Madde 7 - A) Tabiat anıtı olarak ayrılacak yerler ve tabii objeler; 1 - Tabiat ve tabiat olaylarının meydana getirdiği tek veya nadir olmaları sebebiyle ilmi ve estetik yönden milli öneme sahip, bir veya bir kaç jeolojik ve jeomorfolojik formasyon ve bitki türleri gibi müstesna değerleri barındırmalıdır. 2 - Özellikle insan faaliyetlerinden çok az zarar görmüş veya hiç zarar görmemiş olmalıdır. 3 - Saha büyüklüğü milli parkları küçük, fakat koruma yönünden bütünlüğü sağlayacak yeterlikte olmalıdır. 4 - Devletin mülkiyetinde olmalıdır. B) Tabiatı koruma alanı olarak ayrılacak yerler; 1 - Milli veya milletlerarası seviyede tipik, emsalsiz, nadir, tehlikeye maruz veya kaybolmaya yüz tutmuş ekosistemler, türler ve tabii olayların meydana getirdiği veya gizlediği tabii ve geleneksel arazi kullanım şekillerine ait örnekleri barındırmalıdır. 2 - Genellikle hassas ekosistemlere, habitatlara veya hayat şekillerine, biyolojik veya jeolojik önemli çeşitliliklere, zengin genetik kaynaklara sahip olmalıdır. 3 - Bu özellikleri ve farklılıkları; bilim, eğitim, araştırma kurumları veya ilgili kuruluşlar tarafından tesbit edilmiş olmalıdır. 4 - Saha büyüklüğü, korunması gerekli değerlerin hayatlarını uzun süreli olarak devam ettirmelerine yeterli olmalıdır. 5 - Devletin mülkiyetinde olmalıdır. Orman İçi Dinlenme Yeri Kriterleri Madde 8 - Orman içi dinlenme yeri olarak ayrılacak yerler; a) Mahalli seviyede açıkhava rekreasyonu yönünden değişik ve zengin özelliklere sahip olmalıdır. b) Alt yapı imkanlarına sahip olmalıdır. c) Kaynak bütünlüğünü sağlayacak büyüklükte olmalıdır. d) Orman rejimine tabi olmalıdır. ÜÇÜNCÜ BÖLÜM : Tayin, Tesbit ve Planlama Tayin ve Tesbit Madde 9 - Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları Kanunun 3 üncü maddesinde açıklanan esaslara göre tayin ve tesbit edilen yer ve yörelere dair uygulama statüleri ve sınırları mahallen duyurulur. Orman İçi Dinlenme Yeri Kriterlerine sahip olduğu tesbit edilen sahalar; 2896 sayılı Kanunla değişik 6831 sayılı Orman Kanununun 25 inci maddesi hükümlerine göre, Genel Müdürlüğün onayı ile orman içi dinlenme yeri olarak belirlenir. Planlama Esasları Madde 10 - Bu yönetmeliğin uygulanacağı yerlerin; etüd, envanter ve araştırması ile Milli Park Planlaması ve kaynak amenajmanı planlarıyla ilgili usul ve esaslar teknik izahnamede açıklanır. Uzun Devreli Gelişme Planları Madde 11 - Milli Park uzun devreli gelişme planları, ilgili Bakanlıkların olumlu görüşleri ve gerektiğinde fiili katkılarıyla hazırlanır. Bakanlıkça onaylanarak yürürlüğe konur. İmar Uygulama Planları Madde 12 - Milli Park uzun devreli gelişme planı uyarınca iskan ve yapılaşmaya konu olan yerler için, mahalli gelişme planı karakterindeki, imar mevzuatına uygun imar uygulama planları, milli park uzun devreli gelişme planı hüküm ve kararlarına uygun olarak, hazırlanır veya hazırlattırılır, Bayındırlık ve İskan Bakanlığının onayı ile yürürlüğe girer. Tabiat Parkı, Tabiat Anıtı, Tabiatı Koruma Alanı ve Orman İçi Dinlenme Yeri Planları Madde 13 - Tabiat parkı, tabiat anıtı ve tabiatı koruma alanı olarak tesbit edilmiş yerler için hazırlanacak planlar; milli park planlama usul ve teknikleriyle, uygulanan statünün amaçları, kriterleri, genel politika ve ilkeler ile uyumlu olarak ve planlanan sahanın kaynak değerleri ve özellikleri gözönünde bulundurularak, Kültür ve Turizm Bakanlığının görüşü alınarak hazırlanır ve Bakanlıkça onaylanarak yürürlüğe konur. Orman içi dinlenme yeri planları, orman içi dinlenme yeri kriterleri ile sahanın rekreasyonel ve estetik değerlerinin yıpratılmadan kullanılması, statü uygulamasının o yer için amaçları gözönünde bulundurularak Dairesince hazırlanır ve Genel Müdürlükçe onaylanarak yürürlüğe konur. Uygulama Projeleri Madde 14 - Uzun devreli gelişme planı, mahalli gelişme planı ve yatırım projeleri uyarınca Dairesince hazırlanan veya hazırlattırılan uygulama projeleri, Genel Müdürlükçe onaylanarak yürürlüğe konur. Kültür Varlıklarının Korunması ve Turizm Yatırımlarına Dair Plan Kararları Madde 15 - Bu yönetmelik uygulamasına konu olan yerlerde; a) Kültür varlıklarının korunması, tahkimi, restorasyonu ve değerlendirilmesine dair plan kararları, 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümlerine göre ve Kültür ve Turizm Bakanlığı ile işbirliği içinde tesbit edilir. b) Turizm bölge, alan ve merkezlerinde, turizm yatırımlarına dair plan kararları Bakanlığın görüşü alınarak sonuçlandırılır. DÖRDÜNCÜ BÖLÜM : Kuruluş ve Yönetim Kuruluş Madde 16 - Bu Yönetmelik kapsamına giren hizmetlerin taşradaki uygulaması bölge müdürlüklerince yürütülür. Koruma Madde 17 - Bu Yönetmeliğin uygulandığı yerlerde; a) Sınırlar uygun fiziki elemanlarla veya yeşil çitlerle yer yer belirlenir. Bunun dışında kalan sınırlar uygun aralıklı ve kolay görülebilir işaret ve levhalarla belirtilir. b) Koruma amacı ile yol, patika, haberleşme ağı; telsiz ve telefon gözetleme kule ve kulübeleri geliştirilir; deniz-hava ulaşım ve kontrol imkanları, ekipman ve araçlarıyla donatılır. c) Yangınlar, özellikle orman yangınlarıyla mücadele yönünden bu Yönetmeliğin 10 uncu maddesinde açıklanan esaslar dahilinde her türlü tedbir alınır. Mücadelede su ve çevreye zararlı olmayan kimyevi madde kullanımına yer verilir. Yangınların tesbit ve söndürülmesine ilişkin her türlü müdahale kalifiye ekiplerce sağlanır. Geniş uygulama alanları için özel yangınla mücadele projeleri hazırlanır ve uygulanır. d) Planlar uyarınca gerçekleştirilecek her türlü tesisin, idarenin koyacağı esaslar dahilinde, çevre sorunu yaratmayacak şekilde, atık su arıtma sistemiyle donatılması ve tesisle birlikte bitirilmesi, tesisi yapan kuruluş veya şahıslarca sağlanır. Yapım sırasında meydana gelen moloz döküntüleri yatırımcı tarafından kaldırılır ve kullanım alanının tabii peyzaja uygun çevre tanzimi idarenin belirleyeceği esaslara göre yapılır. İdarece gerçekleştirilecek müşterek alt yapı tesislerine, kamu ve özel tesis sahiplerinin, belirlenecek katılım payları ile iştiraki temin edilir. e) Çevreyi ve ziyaretçileri rahatsız edecek seviyede gürültülü faaliyetlerde bulunulamaz, yüksek sesle müzik yayını yapılamaz. f) Yapı ve tesislerde çevre ve hava kirliliği yaratan yakıt kullanılamaz, kullanılması gerektiğinde idarenin koyacağı kirlenmeye karşı tedbirlerin alınması zorunludur. g) Ziyaretçiler, idarece konan esaslar dahilinde bu yerlerden yararlanabilirler. h) Yasaklanan fiillere, arazi kullanma şekillerine ve plan dışı yapılaşmaya fırsat verilmez. Aksi hareket edenler hakkında kanuni işlem yapılır. ı) Genel peyzajda göze çarpan bozulmaları gidermek üzere, yörenin tabii arazi yapısı, tabii bitki örtüsü ve tabii peyzaj özellikleri dikkate alınmak ve o yörenin tabii türleri kullanılmak suretiyle ağaçlandırma, peyzaj restorasyonu ve tesislerin yakın çevre peyzaj düzenlemeleri yapılır. Koruma Görevlileri Madde 18 - Bu Yönetmeliğin uygulandığı yerler ve yörelerde; Yönetmelikte belirtilen her türlü koruma hizmetleri ve yasaklara karşı işlenen suçların takibi 6831 sayılı Orman Kanununun 5 inci fasıl dördüncü bölümünde yer alan suçların takibi ile ilgili hükümlere, 2872 sayılı Çevre, 1380 sayılı Su Ürünleri ve 3167 sayılı Kara Avcılığı Kanunları hükümlerine, genel hükümlere ve Muhafaza Memurları Görev ve Çalışma Yönetmeliğine uygun olarak orman muhafaza memurlarınca sağlanır. Mülkiyet ve Kamulaştırma Madde 19 - Milli park, tabiat parkı, tabiat anıtı, tabiatı koruma alanlarının devlet mülkiyetinde ve Genel Müdürlüğün intifa ve denetiminde olması esastır. Ancak Milli parklarda devlet mülkiyeti aranmayabilir. Bunu sağlamak üzere gerekli kamulaştırma işlemleri, Kanunun 5 inci maddesi hükmüne göre yapılır. Kamulaştırma bedelleri Fon'dan karşılanır. Taşınmazların tahsisi ise Kanunun 6 ncı maddesi hükümlerine göre yapılır. Tesis ve Düzenleme Madde 20 - Kanun kapsamına giren yerlerde planların gerektirdiği her türlü yapı, tesis, hizmet ve faaliyetlerin yapılması, yönetilmesi ve işletilmesi Kanunun 12 nci maddesine göre düzenlenir. Bu hizmetler içinde yer alan, lokanta, kafeterya, büfe, kır gazinosu ve benzeri tesisler idarece fon kapsamında işletilebileceği gibi, mevsimlik olarak işletmeciye de verilebilir. Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları yatırımları için gerekli ödenekler, fon yönetmeliği esasları dahilinde kullanılır. Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları içindeki mevcut yerleşim merkezlerinde ikamet edenler dışında bu yerlere gelen ziyaretçiler; giriş kontrol merkezlerinde veya sahalar içindeki idare ve ziyaretçi merkezlerinde, Bakanlıkça tesbit edilecek ücreti öderler. Bu ücretler fon'da toplanır. Kamu Kurum ve Kuruluşlarına Verilecek İzinler Madde 21 - Milli park ve tabiat parklarında, planlarına uygun olması şartıyla kamu kurum ve kuruluşları tarafından yapılacak her türlü plan, proje ve yatırımlara Bakanlıkça izin verilebilir ve uygulamalar Kanun ve Yönetmelik hükümlerine göre denetlenir. Ancak bu yerlerdeki tarihi ve arkeolojik sahalarda kazı, restorasyon ve ilmi araştırmalar, Bakanlığın bilgisi içinde olmak şartıyla, Kültür ve Turizm Bakanlığının iznine tabidir. Gerçek ve Tüzel Kişilere Verilecek İzinler Madde 22 - Milli Park ve tabiat parklarında, kamu yararı olmak şartıyla, o yer planlarının hükümleri dahilinde turistik amaçlı bina ve tesisler yapmak üzere gerçek ve özel hukuk tüzel kişileri lehine, Maliye ve Gümrük Bakanlığının görüşü alınarak ve Bakanlık tarafından öngörülen şartlar yerine getirilmek kaydıyla izin verilebilir. Müteşebbis, o yere ait mevcut planlarındaki şartlarla, Bakanlığın belirleyeceği esaslar dahilinde projelerini hazırlar ve turizm mevzuatına uygun olarak Kültür ve Turizm Bakanlığından belge almak sureti ile Bakanlıktan intifa hakkı tesisi talebinde bulunur. Turizm belgesi ve ekli projeleri ile keşif özetlerini Bakanlığa getiren müteşebbis adına, Maliye ve Gümrük Bakanlığının görüşü alınarak, Bakanlıkça usulüne ve proje ekonomisi ile amortisman müddetine uygun olarak kırkdokuz yılı geçmemek kaydıyla intifa hakkı tesis edilir. İntifa hakkı tesis edildiğinin Bakanlıkça müteşebbise tebliğini takip eden bir ay içinde Bakanlıkça verilen örneğe uygun noter tasdikli taahhüt senedi Bakanlığa verilir. Takiben, tahsis edilen yer, Bakanlıkça müteşebbise mahallen düzenlenen bir tutanakla teslim edilir. Müteşebbis, Bakanlığa taahhüt ettiği şartlara kesinlikle uymak zorundadır. İntifa hakkı süresinin uzatılması ve devri Kanunun 8 inci ve 9 uncu maddeleri hükümlerine göre yapılır. İzin Verilmeyecek Yerler ve Haller Madde 23 - a) Milli Park ve tabiat parklarında gelişme planları kesinleşmeden Kanun ve Yönetmelikte sözü edilen izinler verilemez. b) Tabiat anıtları ve tabiatı koruma alanlarında; 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümleri saklı kalmak kaydıyla izin verilmez veya intifa hakkı tesis edilemez. c) Bu yönetmelik kapsamına giren yerlerde, Maden ve Petrol Kanunları gereğince araştırma, işletme ruhsatnamesi ve imtiyazı 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümleri saklı kalmak kaydıyla, Bakanlar Kurulu Kararıyla verilir. Araştırma, işletme faaliyetlerinde bu yerlerin korunması amacıyla riayet edilecek hususlar Bakanlıkça belirlenir. Bu yönetmelikte yer alan izin işleriyle ilgili hususlar dışında 6831 sayılı Orman Kanununun ilgili hükümleri ve buna bağlı mevzuata göre hareket edilir. BEŞİNCİ BÖLÜM : Suçların Takibi ve Cezalar Suçların Takibi Madde 24 - Kanunda belirlenen yasaklar ve bu Yönetmelikteki açıklamalar ile 6831 sayılı Orman, 3167 sayılı Kara Avcılığı, 1380 sayılı Su Ürünleri, 6785 ve 1605 sayılı İmar, 2872 sayılı Çevre, 2634 sayılı Turizmi Teşvik ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanunu gibi Kanunlar ile bu Kanunların ek ve değişiklikleri ve bunlara dayalı mevzuatın getirdiği yasaklara uyulmaması ve suç sayılan fiillerin işlenmesi Kanun ve bu yönetmelik hükümlerinin uygulandığı yerlerde görevli orman muhafaza memurları tarafından bu memurların görevlerine ilişkin mevzuat çerçevesinde önlenir veya suç işlenmesi halinde gerekli kanuni işlem yapılır. Cezalar Madde 25 - 6831 sayılı Orman Kanunu, 3167 sayılı Kara Avcılığı Kanunu ve 1380 sayılı Su Ürünleri Kanunu ile bu kanunların ek ve değişikliklerinde yasaklanan fiillerin, Kanunun uygulandığı yerlerde işlenmesi halinde Kanunun 20 ve 21 inci maddeleri uygulanır. ALTINCI BÖLÜM : Son Hükümler Yürürlükten Kaldırma Madde 26 - 08/02/1973 gün ve 6304-586/9 Sayılı Milli Parkların Ayrılma, Planlama Uygulama ve Yönetimine Ait Yönetmelik yürürlükten kaldırılmıştır. Geçici Maddeler Geçici Madde 1 - Kanunun yürürlüğe girmesinden önce 6831 sayılı Orman Kanununun ilgili maddelerine göre Milli Park olarak ayrılan yerler ile Devlet Orman İşletmesi ve Döner Sermayesi Yönetmeliğinin ilgili hükümleri uyarınca orman içi dinlenme yeri (mesire yeri) olarak ayrılan yerler, Kanun ve bu Yönetmelik hükümlerine uygun olarak yeniden tasnif ve değerlendirmeye tabi tutulur. Milli Park kriterlerine haiz olan yerlerde; tamamı veya belirli bir kısmı evvelce Bakanlar Kurulu Kararı ile orman rejimine alınıp milli park olarak ayrılmış olanlarında; Kanun ve bu Yönetmelik hükümleri başkaca bir işleme gerek kalmaksızın uygulanır, diğerlerinin Milli Park olarak kabul edilmesi için Bakanlar Kurulu Kararı istihsal edilir. Tabiat parkı, tabiat anıtı ve tabiatı koruma alanı kriterlerine haiz yerlerde ise Kanun ve bu Yönetmelik hükümlerinin uygulanmasına belirleme işlemi ile birlikte başlanır. Geçici Madde 2 - Kanun ve bu Yönetmelik kapsamına giren yerlerde evvelce verilmiş kullanma izni, irtifak ve intifa hakları; geçerlilik süresi bitimine kadar başka bir işleme gerek kalmaksızın sahibi tarafından kullanılır. Yürürlük Madde 27 - Bu yönetmelik Resmi Gazetede yayımı tarihinden yürürlüğe girer. Yürütme Madde 28 - Bu yönetmelik hükümlerini Tarım Orman ve Köyişleri Bakanlığı yürütür.

http://www.biyologlar.com/milli-parklar-yonetmeligi

Fosil Yaşlarının Hesaplanması

Arkeolojide kullanılan tarihlendirme yöntemlerini radyoaktif olan ve radyoaktif olmayan diye kabaca iki bölüme ayırmak mümkündür. Radyoaktif olan yöntemler yine kendi içinde iki ayrı bölümde incelenir. Bunlardan birincisi radyoaktif maddelerin miktarının zamanla azalmasına dayanan, Karbon-14 ve Potasyum/Argon gibi yöntemlerdir. İkincisi ise, radyoaktiviteden dolayı çıkan enerjinin madde içinde biriktirilmesi olayına dayanır ki elektron spin rezonans bu tür tarihlendirme yöntemlerine bir örnektir. Uzun zamandır yaş tayininde kullanılagelen bu gruptaki termolüminesans (TL) yöntemiyle aynı prensibi paylaşmasına karşın ESR yönteminin TL yöntemine göre bazı üstünlükleri vardır. Bunlar şöyle sıralanabilir: 1. Ölçüm sırasında ESR merkezleri bozulmadığı için ölçü istenilen sayıda aynı örnekle tekrarlanabilir. 2. ESR yüzeysel olaylara karşı daha az duyarlı olduğu için kullanılan maddenin taneciklerinin belirli bir büyüklükte olma şartı yoktur. 3. Örnek hazırlama ve oda sıcaklığında ölçü alma işlemleri çok daha kolaydır. 4. Tekstil vs gibi organik maddelerin incelenmesinde de bu yöntem başarı ile kullanılmaktadır. ESR Yöntemi : Radyoaktif elementler kararsız olup parçalanarak kimyasal olarak farklı özellikte elementlere dönüşürler. Bu oluşum sırasında farklı adlarda (alfa, beta, gama) enerji taşıyan parçacık veya ışınım salarlar. Böyle radyoaktif elementler birçok kayaç ve minarellerin kristal yapısında eser miktarda bulunur ve saldıkları enerji taşıyan parçacıklar yapıdaki elektronları bağlı bulundukları yerlerden koparırlar. Normalde elektronlar bağlı oldukları çekirdek etrafında dolanırken kendi eksenleri etrafında da dönerler (spin hareketi) ve zıt yönde spio hareketi yapan elektron çiftleri şeklinde bulunurlar. Bunlardan birinin yerinden koparılması halinde geride tek elektron kalır. Buna çiftleşmemiş elektron da diyebiliriz. Böyle bir elektronun spin hareketi bu elektrona manyetik bir özellik kazandırır ve bu elektron bir mıknatıscık olarak düşünülebilir. Bu özelliğe sahip maddelere paramanyetik maddeler denir. Bir manyetik alana konmadığı takdirde madde içindeki bu mıknatıscıklar gelişi güzel yönlerde dağılmışlardır ve hepsi aynı enerjiye sahiptirler. Madde manyetik alana konduğunda bu mıknatıscıklar ya manyetik alan yönünde ya da buna zıt yönde yönlenirler. Manyetik alan H ise, H M kadar artacak, H nın aynı yönündenın zıt yönünde yönlenenlerin enerjileri elektronunH) azalacaktır. Burada yönlenenlerin enerjileri ise aynı miktar ( : Bohr magneton ve g: = : spin kuvantum sayısı, manyetik momenti olup elektronun çekirdek etrafında dolanmasının ve spin hareketinin mıknatıs özelliğine katkı derecesini gösteren faktör. Böylece elektronlar manyetik alanla aynı yönde yönlenenler veya zıt yönde yönlenenler olarak iki gruba ayrılırlar. H kadar enerji farkıİki grubun enerjileri farklı değerdedir ve aralarında g vardır. Enerjisi bu enerji farkına eşit olan bir elektromanyetik dalga maddeye gönderilirse düşük enerjiye sahip olan elektronlar bu enerjiyi alıp yüksek enerjili elektron grubuna dönüşürler. Diğer bir deyişle, H manyetik alanı yönünde yönlenmiş elektron mıknatısları elektromanyetik enerjiyi alınca H manyetik alanının zıt yönünde yönlenirler. TERMOLÜMİNESANS YÖNTEMİ İLE ARKEOLOJİK YAŞ TAYİNİ Keramik, pişmiş tuğla, yanmış çakmaktaşı ve obsidyen, volkanik, kül, meteor, curuf, sarkıt ve dikit gibi kalsit oluşumları ve benzeri inorganik obje ve malzemelerin içerisinde şifreli saat gibi çalışan fiziksel mekanizmalar vardır. Bu şifreli saat bir arkeolojik zaman-ölçer aygıtı gibi çalışır; hem sıfırlama özelliği vardır hem de otomatiktir. Temel problem, saatin şifresini çözerek gerçek zamanı, yani arkeolojik yaşı bulmaktır. Saati inceleyip şifresini çözen fiziksel yöntemlerden biri de termolüminesans (TL) yöntemidir. Burada amacımız TL yöntemini ve bu yöntemin arkeolojideki uygulamalarını kısaca anlatmak; bir başka deyişle saatin çalışma prensiplerini ve şifresinin çözüm tekniğini genel çizgileriyle sunmaktır. Yalnız yöntemi anlatmaya başlamadan önce TL olayının ne olduğunu, böyle bir amaç için nasıl kullanılabildiğini kısaca görelim. Termolüminesans : Bazı maddeler ısıtıldıkları zaman ışıma yaparlar. Bu fiziksel olaya ısıtma ile ışıma anlamına gelen termolüminesans (TL) denir. Hemen belirtelim ki, TL olayı başka bir olayın sonucunda oluşmaktadır. Maddelerin içlerinde ve çevrelerinde eser miktarda uranyum (U) toryum (Th) ve potasyum (K) gibi )) ve beta (radyoaktif elementler vardır. Bunlardan çıkan radyasyonlar [alfa ( ) ışınları] maddenin atomları ile etkileşerekparçacıkları ile gama ( enerjilerini yitirirler. Bu enerjinin bir kıssmı madde içinde birikir ve maddenin 300 0C – 500 0C ye kadar ısıtılma durumunda ışık olarak çıkar. Çıkan ışık miktarı maddenin biriktirdiği radyasyon enerjisi miktarına bağlıdır. Ne kadar çok enerji birikirse o kadar çok ışık çıkar. Hiç enerji birikmemiş ise, veya biriken enerji herhangi bir nedenle, örneğin ısınma ile, boşalmış ise, doğal olarak hiç ışık görünmeyecek yani hiç TL olmayacaktır. Demek oluyor ki TL, maddenin etkileştiği toplam radyasyon miktarı (dozu) sonucunda biriken enerjinin ve bu enerjinin birikmesi için geçen sürenin dolaylı bir ölçüsüdür. Yöntemin temel problemi de bu sürenin bulunmasıdır. Maddede enerji birikimi şu şekilde olmaktadır: maddenin atomları ile etkileşen radyasyonlar atomları bağlı elektronların bazılarını koparır ve enerji kazandırırlar. Bu elektronların bir kısmı kazandığı enerjiyi anında geri vererek eski yerlerine veya benzer yerlere geri dönerler. Bir kısmı ise maddenin kristal yapısınd çeşitli nedenlerle oluşan ve tuzak denilen yerlere bağlanırlar ve böylece eski yerlerine dönen elektronların tersine radyasyondan aldıkları enerjiyi geri vermeyip bu tuzaklarda biriktirmiş olurlar. Biriken enerjinin saklanabilme süresi, yani elektronların tuzaklarda kalma süreleri çevre şartlarına ve tuzak özelliklerine bağlıdır. Birkaç dakikadan bir milyon yıla kadar elektronları tutabilen tuzaklar vardır. Doğal olarak bizi ilgilendiren uzun ömürlü tuzaklardır. Çünkü, ancak bu tuzaklar baştan itibaren yakaladıkları tüm elektronları korurlar ve böylece radyasyonla sağlanan enerji tam olarak birikmiş olur. İleriki satırlarda da belirttiğimiz gibi, bu tarihleme için sağlanması gereken koşullardan biridir Karbon 14 izotopu ile nasıl yaş tayini yapılır? Onbinlerce yıl önce yaşamış olan canlıların kalıntıları bulunduğunda, hangi yıllarda yaşamış olduğu karbon-14 yöntemi ile saptanır. Bütün yaşayan organizmaların yapılarında karbon bulunmasından dolayı böyle bir yöntem geliştirilmiştir. Çekirdekte meydana gelen radyoaktif bozunma oranı sabittir. Onbinlerce yıl öncesine ait karbon içeren maddeler de C-14 ün yarılanma süresinden hareket edilerek bulunur. C-14 ün yarı ömrü 5730 yıldır. C-14 kozmik ışımalar bombardımanı sonucunda oluşur. Kozmik ışınlar uzaydan gelen radyasyonlardır ve alfa parçacıkları, protonlar ve daha ağır iyonlar içerir. Bu radyasyonlar atmosferin üst tabakasında çarpışarak nötronlar gibi değişik parçacıklar oluşturur. Nötron ile nitrojen-14 çekirdeğinin çarpışması ile karbon-14 çekirdeği meydana gelir. Karbon dioksit ve karbon-14 alt atmosferde karışır. Canlı organizmalarda atmosferdeki O2 yi kullandıkları için yapılarında C-12’nin yanı sıra belirli oranlarda C-14 ihtiva ederler. Ancak bu canlı organizmalar öldükleri andan itibaren yapılarındaki C-14 ile atmosferdeki C-12 arasında var olan denge bozulur. C-14 radyoaktif bozunmaya uğrar ve C-14 ün C-12 ye olan oranı giderek düşmeye başlar. Bu yol ile karbon izotopları arasındaki bu oransal değişim, bir çeşit saat görevi görür. Buradan hareketle canlıların ne zaman öldükleri bilgisini elde edebiliriz. Bugün yaşayan bir organizmadaki C-14'ün C-12'ye oranı 1/1012 dir. Eğer son 50.000 yıl içerisinde karbon izotoplarının oranının değişmediğini varsayarsak, herhangi bir ölü organizmanın, fosillerin vb. yaş tayinini yapmak mümkün. Bunun için C-14'ün radyoaktif bozunması sonucu oluşan beta ışımalarını ölçmek yeterli. C-14 → N-14 + eֿ Örneğin, volkanik patlamalar sonucu yanmış bir ağaç fosilinin yaşını tespit edelim. Bu fosilde 1 gram karbonda 1 dakikada 7,0 C-14 bozunması olduğu bilinsin. Günümüzde yaşayan bir organizmanda 1 gram karbonda 1 dakikadaki C-14 bozunması 15,3 tür. C-14 ün yarı ömrünün (t1/2) 5730 yıl olduğunu biliyoruz. t zaman sonra bir örnekteki çekirdek miktarını k = 0,693 / t1/2 olarak düşüneceğiz. Log Nt/N0=-kt/2,303=-0,693t/2.303 t1/2 <=> t=(2,303 t1/2 /0,693)xlog N0/Nt N0/Nt oranını bulmak için atmosferdeki C-14 ve C-12 oranının sabit kaldığını varsaymak gerekir. Aslında bu varsayım tam olarak doğru değildir. Bilim adamları, binlerce yıl önce doğada (atmosferdeki CO2 nin içerisinde) bulunan C-14 miktarının şimdikinden daha fazla olduğunu düşünüyor. Son yüzyılda yapılan atmosferik nükleer testler ve fosillerin yakıt olarak kullanılması da bu görüşü kuvvetlendiriyor. N0/Nt = 15,3 / 7,0 = 2,2 ve t1/2 = 5730 yıl olduğuna göre, fosilin yaşı yaklaşık olarak: t = (2,303 t1/2 / 0,693) x log N0/Nt = (2,303 x 5730 / 0,693) x log2,2 = 6500 yıl olarak bulunur. KAYNAK: maydalin.com  

http://www.biyologlar.com/fosil-yaslarinin-hesaplanmasi

HONAZ DAĞI MİLLİ PARKI

HONAZ DAĞI MİLLİ PARKI

İli : DENİZLİ Adı : HONAZ DAĞI MİLLİ PARKI Kuruluşu : 1995 Alanı : 9.616 ha. Konumu : Denizli ili, Honaz ilçesi sınırları içerisinde yer almaktadır. Ulaşım : Afyon-Denizli ve Afyon-İzmir devlet karayolu ile ulaşılmaktadır. Kaynak Değerleri :           Milli parkın ana kaynak değerlerini, Ege Bölgesi’nin en yüksek dağı olan (2528 m) Honaz Dağı bünyesindeki kaynaklar oluşturmaktadır.           Ege Bölgesi’nde Pleistosen döneminde Periglasiyal ortam şartlarının hüküm sürdüğü az sayıdaki yerlerden birisi de Honaz Dağı’dır. Dağ üzerinde birçok Periglasiyal koşulları karakterize eden jeomorfolojik şekil bulunmaktadır. Ana şekil grubu olarak ise; yöre horst biçiminde uzanmaktadır. Düşey yönleri tektonik ve faylanmalar sonucu Honaz Dağı oldukça dik bir görünüm kazanmıştır. Yörenin genel litolojik yapısı gnays ve mikaşistlerden meydana gelir. Ayrıca yer yer kristalize kireçtaşlarına da rastlanılmaktadır.           Yoğun bitki örtüsüne sahip Honaz Dağı üzerinde alt floraya ait endemik türler bulunmaktadır. Alpin floraya ait türler ise dağın üst zonlarında yer almaktadır. Orman formasyonu içerisinde kızılçam (Pinus brutia), karaçam (Pinus nigra) ve ardıç hakim türlerdir.           Yaban hayatı açısından da zenginlik içeren sahada özellikle dağ keçisi yoğun olarak bulunmaktadır. Ayrıca yaban domuzu, tavşan, tilki, porsuk, sansar vb. türler de görülmektedir.         Honaz Dağı, gerek topoğrafik özellikleri ve uygun eğim koşulları, gerekse kar yağışının yeterli düzeyde olması nedeniyle ülkemizin kayak potansiyeli yüksek alanlarından birisidir.           Yöre; arkeolojik kaynak değerleri açısından da zenginliğe sahiptir. Özellikle Colossea antik kentinde birçok kaya mezarı bulunmaktadır. Sahada yapılacak arkeolojik araştırmalarla bu zenginliğin daha da artacağı beklenmektedir.  Görünecek Yerler : Honaz Dağı, bitki zenginliği ve peyzaj güzelliklerini ziyaretçileri ile paylaşır. Colossea antik kent sahası da arkeolojik zenginliğini ziyaretçilere sunmaktadır. Mevcut Hizmetler : Honaz ilçesi yakınlarında İzmir yolundaki Cankurtaran günübirlik kullanım alanı ziyaretçilere hizmet vermektedir. Konaklama : Honaz ile Denizli konaklama için uygun yerleşimlerdir. FLORA Milli Park civarında 964 bitki türü saptanmış olup bunların 122 adedi Türkiye için endemiktir. Endemiklerden ikisi, Mercan Köşk ve Çan Çiçeği, hem Honaz Dağı hem de Babadağı’nda bulunmaktadır. Dünya’da sadece Honaz Dağı’nda yetişen üç adet bitki türü, Ballıbaba, Sığırkuyruğu ve Safran tespit edilmiştir. Milli Park sınırları içinde en yaygın ağaç türü Karaçam ve Kızılçam koru ormanı olarak dağılmakta yer yer Meşe ve yüksek yerlerde Ardıç ağacına rastlanmaktadır. FAUNA Yaban Hayatı açısından zengin olan Milli Parkta özellikle dağ keçisi yoğun olarak bulunmaktadır. Yaban domuzu, tavşan, tilki, sansar ve porsuk önemli yaban hayatı üyeleridir. Ayrıca Milli Parkta yerel adı Dağ Anası olarak bilinen çok zehirli bir yılan türüne de rastlamak mümkündür. http://www.milliparklar.gov.tr TANITIM VİDEOSU   

http://www.biyologlar.com/honaz-dagi-milli-parki

MARMARİS MİLLİ PARKI

MARMARİS MİLLİ PARKI

İli : MUĞLA Adı : MARMARİS MİLLİ PARKI Kuruluşu : 1996 Alanı : 33.350 ha. Konumu : Milli park alanı Muğla ili, Marmaris ilçesi sınırları içerisinde yer almaktadır. Ulaşım : Milli park Muğla iline 60 km uzaklıkta olup, E550 ve E400 devlet karayolu ile ulaşım sağlanmaktadır. Ayrıca deniz yoluyla ulaşım imkanına da sahiptir. Kaynak Değerleri :           Alanın jeolojik yapısı, peridodit ve kireçtaşları ile alüvyon ve yamaç molozlarından oluşmuştur. Sahanın kuzey-batısında mostra veren Kretase yaşlı mağmatik kayaların (peridodit) okside olması kızıl renkli görünümlere yol açmıştır. Kireçtaşları ise sahanın doğusunda geniş bir alanda mostra verirler. Kireçtaşı mostralarının batı kısmı tabakalı, doğu kısmı ise masif durumdadır.           Milli parkın orman formasyonunu kızılçam (Pinus brutia) oluşturmaktadır. Bununla birlikte endemik bir tür olan sığla ağacı (Liguidambar orientalis) sahanın belirli bölgelerinde yayılım gösterir. Sığla ağaçları derin, nemli ve ağır topraklı taban arazilerde yetişir. Vadi içerisinde ise kızılçam, meşe, çınar ve kızılağaç farklı, karışık ve etkileyici peyzaj değerlerini sunar. Ayrıca pırnal meşesi, kermes meşesi, yabani zeytin, kocayemiş, tesbih, sumak, keçiboynuzu, menengiç, zakkum ve defne gibi ağaçcık formlu Akdeniz bitkileri de milli parkta geniş bir yayılım gösterirler.           Milli park, yaban hayatı bakımından da oldukça zengindir. Özellikle Marmaris-Köyceğiz arasında bulunan ve nesli tükenmekte olan yaban keçilerinin yanı sıra ayı, karakulak, tilki, sincap, gelincik, porsuk, yaban domuzu, tavşan vb. memeli hayvanlara da rastlanılmaktadır.         Milli park sahasında; antik Physkos şehri (Marmaris), Amos (Hisarönü) şehri yer almakta olup, antik çağda bu bölge Karia Bölgesi olarak tanımlanmaktadır. Burada Rhodos kolonisi izleri görülmektedir. Amos’da bir tiyatro, tapınak ve bazı heykel kaidelerine rastlanılmaktadır. Bir Karia kenti olan Amos’un etrafı aynı dönemden kalma bir sur duvarı ile çevrilidir. Physkos (Physeus) antik kentinde ise Hellenistik çağda inşa edilmiş sur duvarları yer alır. Görünecek Yerler : Bakir kıyılar, bitki ve hayvan topluluğu açısından zenginliği ile başta Cennet Adası ve diğer adalar görülmeye değerdir. Arkeolojik Physkos şehri, Amos şehri kalıntıları ve doğal peyzajın en güzel örneklerini ziyaretçilerin görmesi mümkündür. Mevcut Hizmetler : Yöreye gelen ve doğa içerisinde bulunmaktan zevk duyan ziyaretçiler için sahil boylarında günübirlik ve kamp alanları mevcuttur. Marmaris, İçmeler yerleşim alanları tatil bölgesi milli parkın ziyaretçilerine konaklama imkanı sunmaktadır. FLORA Milli Parkta tespit edilen 514 bitki türünden 54’ü endemik, 9’u yöresel endemik, 5’i tehlike altında, 74’ü tehlike sınıfı açısından nadir kategorisindedir. Sığla Ağacı yöresel endemik bir türdür ve Milli Parkta kıyı alanlarında yayılış göstermektedir. Milli Park; hem deniz hem orman alanlarına sahip olduğundan korunması ve yönetilmesi deniz ve karasal biyoçeşitlilik için önemlidir. Milli Parkın doğal değerleri; Kızılçam ormanları, bölgeye özgü Günlük ağacı doğal yayılım alanları, orman dışı vejetasyon alanları (Maki, Frigana, Frigana öncesi otsu bitkiler) ekolojik açıdan önemli doğal değerlerdir. Jeomorfolojik yapıya bağlı olarak gelişen kaya blokları, mağara, dolinler, delta ağzı diğer önemli doğal değerlerdir. Saha yer yer kızılçam ormanı olup kızılçam meşçereleri ile yüksek maki florasından oluşmaktadır. Tür olarak bakıldığında; Ağaç olarak; Kızılçam, Karaçam, Sığla, Dallı Akdeniz Servisi, Ağaççık olarak; Kermes meşesi, Pırnal meşesi, Boz pırnal meşesi, Bodur ardıç, Yabani zeytin, Kocayemiş, Tespih, Defne, Sumak, Keçi boynuzu, Sandal, Menengiç, Çalı ve Otsu olarak; Zakkum, Laden, Adaçayı, Eğrelti, Funda, Geven, Hayıt, Kekik, Rezene vb. tespit edilmiştir. FAUNA Milli Parkta; 213 Böcek türü, 35 Balık türü, 21 Memeli türü, 29 Sürüngen türü, 7 Çift yaşar türü, 112 kuş türü tespit edilmiştir. Yaban keçisi, Yaban domuzu, Tilki, Çakal, Porsuk, Karakulak, Ayı, Fare, Kirpi, Oklu kirpi, Yılan türleri, Kertenkele türleri, Güvercin, Şahin, Atmaca, Kerkenez, Kartal, Ada Doğanı, Kınalı keklik, Karatavuk, Ardıç kuşu, Gümüş martı, Karabaş martı, Ada martısı, Kızılgerdan, Çıvgın, Baştankara, Serçe, Saka, İspinoz, Kara kızılkuyruk vb. olarak tespiti yapılmıştır. http://www.milliparklar.gov.tr TANITIM VİDEOSU   

http://www.biyologlar.com/marmaris-milli-parki

KARATEPE - ASLANTAŞ MİLLİ PARKI

KARATEPE - ASLANTAŞ MİLLİ PARKI

İli : OSMANİYE Adı : KARATEPE - ASLANTAŞ MİLLİ PARKI Kuruluşu : 1958 Alanı : 7715 ha. Konumu : Osmaniye İli, Kadirli İlçesi yakınındadır. Ulaşım : Akdeniz Bölgesi’nde, Osmaniye İlinin Kadirli İlçesine 22 km uzaklıkta ve Ceyhan Irmağının kenarında yer alan Milli Parka Adana- Kadirli ve Adana-Osmaniye karayolu ile ulaşılmaktadır. Kaynak Değerleri :           Anadolu’da Kızılırmak kavisi içerisine MÖ 2000 yıllarında yerleşen Hititler, MÖ 1750’de krallık kurmuşlar ve MÖ 1450’de doğunun en önemli imparatorluklarından biri olmuşlardır. MÖ 1200 yıllarında Deniz kavimleri tarafından yıkılan Hitit İmparatorluğu’nun merkezi Hattuşaş’ı (Boğazköy) terk ederek güneydoğuya çekilmişlerdir.Karatepe MÖ 8 yüzyılda Geç Hitit Çağında, kendisini Adana Ovası hükümdarı olarak tanıtan Asitawata tarafından bir sınır kalesi olarak kurulmuştur.           Kale, Adana’nın 130 km kadar kuzeydoğusunda Flaviopolis olduğu sanılan Kadirli İlçe merkezinin 21 km doğusunda 638 m rakımlı Karatepe’nin kuzeyinde tarihi Pyramus (Ceyhan Irmağı) bugünkü Aslantaş Baraj Gölü’nün güney ovalara dökülmeden önce vardığı son dar boğaza ve kuzeydeki Toroslarla sınırlı olan Andırın Ovası’na hakim bir tepeye kurulmuştur.           Burada anıtsal kale kapılarına, duvar kaplaması niteliğinde olan günün inanç ve yaşayışını sergileyen pek çok heykel ve kabartmadan başka hiyeroglif ve Finike yazı sistemlerinde çift dilli yazıtlar sayesinde önceleri tam anlamıyla çözülememiş olan hiyerogliflerin çözülmesine olanak sağlayan bir anahtar ele geçmiştir.           Hiyeroglif yazı sisteminin çözümlenmesi Anadolu’da M.Ö.2000 yıllarının başlarına kadar yazılı tarihi belgelerin çözülmesine olanak sağlamıştır. Karatepe- Aslantaş’taki eserler mimari bir bütünün parçaları olduğundan, yerlerinden alınıp kapalı bir müzeye taşınmayıp, kendi tarihi ve doğal çevreleri içinde onarılarak açık hava müzesi halinde sergilenmektedir.           Milli parkta; kızılçam, meşe türleri ve maki florasının meydana getirdiği bitki örtüsü, karaca, domuz, çakal, tavşan, tilki, turaç, keklik gibi yaban hayvanları toplulukları ile Ceyhan nehrinde yayın ve sazan balıkları bulunmaktadır.  Görünecek Yerler : Roma ve Bizans döneminde de yerleşim gören alanda özellikle Pınarözü köyü yakınlarında bazilika tipinde bir tapınağın tabanında görülen çok renkli mozaikler üstün sanat değeri ve kültürel peyzaj özelliği taşımaktadır. Nisan ve Kasım ayları arasında parkın arkeolojik ve tabii değerleri ile açık hava müzesi görülebilir. FLORA Karatepe-Aslantaş Milli Parkı florası, Amanos dağları ve Doğu Toroslar ile ilişkili coğrafi konumu nedeniyle bu iki bölgenin mediteran kuşağı ile benzerlik taşımaktadır. 50 -600 m yükseltiler arasında arızalı topoğrafik yapı gösteren alan, alçak mediteran kuşak özellikleri sergilemektedir. Bu kuşakta kserofitik çalı ve orman toplulukları yayılmıştır, dere, ırmak ve göl kenarlarında farklı bir bitki örtüsü oluşmuştur. FAUNA Karatepe-Aslantaş Milli Parkı ve yakın çevresi kuşlar yönünden oldukça zengin bir yapıya sahiptir. Bunun en önemli nedenleri arasında alanda birbirinden farklı yapıda habitat bulunması ve alan içerisinde bir baraj gölünün (Aslantaş baraj gölü) bulunması yanında milli park kapsamında avcılığın yasaklanmış olması ve koruma önlemleri sayılabilir. 52 familyaya ait 185 kuş türünün 120’si Kırmızı Liste içinde görünmektedir. Alanda; 17 memeli hayvan türü, 12 adet sürüngen, 5 adet amfibi, türü görülebilir. Değişik türlere ait, 22 adet balık türü tespit edilmiştir. Alanda, uzun devreli Gelişim Planı çalışmaları sırasında, 9 takıma ait 49 familya ve bu familyalardan bazılarında ise cins ve tür düzeyine kadar teşhisleri yapılmıştır. http://www.milliparklar.gov.tr TANITIM VİDEOSU

http://www.biyologlar.com/karatepe-aslantas-milli-parki

TEK TEK DAĞLARI MİLLİ PARKI

TEK TEK DAĞLARI MİLLİ PARKI

İli : ŞANLIURFA Adı : TEK TEK DAĞLARI MİLLİ PARKI Kuruluşu : 2007 Alanı : 19.335 ha. Konumu : Şanlıurfa ili, merkez ilçesi, Harran ilçesi ve Akçakale ilçesindedir. Ulaşım : Batıdan doğuya doğru Viranşehir ilçesi istikametini takiben güneye inilerek 45 km. mesafe ile ulaşılmaktadır. Kaynak Değerleri :           Mezopotamya’nın en eski yerleşim yerlerinden biri olan Şanlıurfa, akarsulara yakın olması, ticaret yollarının kesiştiği noktada yer almasından ötürü tarihi boyunca stratejik bir öneme sahip olmuştur. Arap tarihçisi Ebul FARAÇ’a göre; Şanlıurfa, Nuh Tufanından sonra yeryüzünde kurulan ilk yedi yerleşimin ilkidir. Merkeze bağlı Örencik Köyü Göbeklitepe’de 2001 yılında gerçekleştirilen kazı çalışmaları sonucu kentin tarihinin M.Ö. 9500’e Çanak Çömleksiz Neolitik döneme kadar uzandığı görülmüştür. Tek Tek dağlarının bulunduğu coğrafyada birçok medeniyet yaşamıştır. Eyyubiler, Memluklar, Türkmen Aşiretleri, Timur Devleti, Akkoyunlular Dulkadirbeyliği, Safeviler ve sonrasında 1516’da Osmanlı sınırları içine katılmıştır. Kentin bilinen en eski ismi Edesadır. Kent köklü bir kültür mirasına sahiptir. Dünyanın, ilk İslam Üniversitesi; Dünya Kültür Mirası’na dahil edilmesi düşünülen Harran, Şanlıurfadadır. Milli Park alanı içerisinde tarihi ve arkeolojik açıdan önemli alanlar bulunmaktadır. Bunlar, Han-el Ba’rur Kervansarayı, Şuayb Şehri Harabeleri ve Soğmatar Harabeleridir. Soğmatarda kökü Harran Sin kültürüne dayanan Sabizm ve Baştanrı Marilaha’nın kültür merkezi olduğu bilinen örende sözde baştanrıya ve mukaddes gezegenlere (Güneş, Ay, Satürn, Jüpiter, Mars, Venüs, Merkür) ibadet edilen ve kurban kesilen açık hava mabedi olup, önemli kalıntıları teşkil etmektedir. Ayrıca, Roma devrine ait çok sayıda kaya mezarları bulunmaktadır. Türkiye bitkilerinin yaklaşık %30-35’nin Güneydoğu Anadolu Bölgesinde yayılış gösterdiği bilinmektedir. Ayrıca, bazı tarım bitkilerinin (buğday, arpa ve baklagil) gen merkezi olarak bilinmektedir. Güneydoğu Anadolu Bölgesinde 304 endemik tür olduğu belirlenmiş olup, bunlardan 58 tanesi Şanlıurfa ili çerçevesinde yetişmektedir. Milli Park alanının büyük bir bölümünde menengiç bitkisi (pictacia terebinthus L.) yayılış göstermektedir. Alan otsu türler açısından zengindir. Yöreye endemik olan Peygamber çiçeğinin (centaurea) 138 yıl sonra ortaya çıkması önem arz etmektedir. Bunun dışında, gelincik (Papaver rhoes), kekik (Tymus sp.), sütleğen (ephorbia sp.), köy göçüren (circium arvense) ve papatya mevcuttur. Kurt, alakarga ekin kargası, kınalı keklik ve nesli tehlikede olan ceylan (gazella dorcas) alanın faunasını oluşturmaktadır. Tek Tek Dağları; flora, fauna zenginliği, kültürel, tarihi ve arkeolojik özellikleri ile ülkemizde ve dünyada hızlı değişimlerin yaşandığı ve her geçen gün doğal niteliğini koruyan alanların azaldığı 21. yüzyılın başlarında milli park statüsüne alınıp, korunarak, sürdürülebilir kullanımının sağlanması, ülkemizin sahip olduğu doğal değerlerin ve zenginliklerin devamlılığı açısından büyük önem arz etmektedir.Görünecek Yerler : Sene mağarası, Şuayb Şehri Harabeleri, Soğmatar Harabeleri, Soğmatar’da kutsal tepeye yönelen tapınaklar. FLORA Menengiç bitkisi (Pictacia terebinthus L.), Peygamber çiçeğinin (centaurea), Gelincik (Papaver rhoes), kekik (Tymus sp.), sütleğen (ephorbia sp.), köy göçüren (circium arvense) ve papatya vb. FAUNA Park sahasında; Ceylan (gazel subgutturosa), Varan Kertenkelesi (Varanus griseues), Vaşak (Lynx lynx) ceylan,vaşak, tavşan, kurt, tilki, varan kertenkelesi, toy,mezgeldek, turna, kınalı kekelik, çilkeklik, şahin, atmaca, kaya güvercini, üveyik, kızkuşu, tepelitoygar, boğmaklı toygar, bağırtlak,karga,ibibik,leylek,sığırcık,serçe vb. faunaya rastlanmaktadır.. http://www.milliparklar.gov.tr

http://www.biyologlar.com/tek-tek-daglari-milli-parki

Bilimin doğuşunu ve fizik kimya biyoloji matematik olarak temel biirmler haline dönüşmesini tarihsel boyutta açıklayınız

Ortaçağ sonlarında özellikle İtalya'da, zamanın siyasal istemleri teknolojiye yeni bir önem kazandırdı. Böylece askeri ve sivil mühendislik mesleği doğdu. Leonardo da Vinci bu mühendislerin en ünlüsüydü. Dahi bir ressam olarak insan anatomisini yakından inceledi ve resimlerine gerçeğe çok benzeyen biçimler aktardı. Bir heykelci olarak, zor metal döküm tekniklerini başardı. Sahne yapıtlarının yapımcı ve yönetmeni olarak, özel efektler sağlamak amacıyla karmaşık makineler geliştirdi. Askeri mühendis olarak bir kentin surlarından aşırılan havan topu mermisinin yörüngesini gözleyerek bu yörüngenin Aristoteles'in öne sürdüğü gibi iki doğrudan (eğimli bir çıkış ve ardından düşey düşüş) oluşmadığını belirledi. Leonardo ve arkadaşları doğayı gerçekten bilmek istiyorlardı. Gerçek deneyimin yerini hiçbir kitap tutamazdı ve hiçbir kitap olgular üzerinde egemenlik kuramazdı. Gerçi antik felsefenin nüfuzu kolayca kırılamayacak kadar sağlamdı, ama sağlıklı bir kuşkuculuk da gelişmeye başlamıştı. Eski otoritelerin gördüğü geleneksel kabule inen ilk önemli darbe, 15. yüzyıl sonunda Yenidünya'nın bulunuşu oldu. Büyük astronom ve coğrafyacı Ptolemaios, Avrupa, Afrika ve Asya olarak yalnızca üç kıtanın var olduğunu öne sürmüştü. Aziz Augusti-nus ve Hıristiyan bilginleri de bu görüşü benimsemişlerdi. Yoksa dünyanın öteki tarafındaki insanların baş aşağı yürümeleri gerekirdi. Yenidünya'nın bulunuşu, matematik çalışmalarını da hızlandırdı. Zenginlik ve ün arayışı denizciliğin gerçek bir bilime dönüşmesine yol açtı. Rönesans'ta canlanan düşünsel etkinlikler, antik bilgilerin tümüyle gözden geçirilmesine olanak sağladı. Ortaçağ düşüncesinin temelini oluşturan Aristoteles'in yapıtlarına Platon'un ve Galenos'un yapıtlarının çevirileri ve daha da önemlisi Arkhimedes'in, kuramsal fiziğin geleneksel felsefenin dışında nasıl oluşturulabileceğini gösteren yapıtları eklendi. Rönesans biliminin yönünü belirleyen antik yapıtların başında, Musa'nın çağdaşı olduğu kabul edilen efsanevi rahip, peygamber ve bilge Hermes Trismegistos'a dayandırılan Hermetika gelir. Hermetika yaratılış konusunda insana geleneksel metinlere göre çok daha önemli bir rol veriyordu. Tann insanı kendi suretinde yaratmıştı. Bir yaratıcı olarak ve yaratma sürecinde insan Tann'yı taklit ediyordu. Bunun için de doğanın gizlerini bilmek zorundaydı. Yakma, damıtma ve öbür simya işlemleriyle doğa işkenceden geçirilerek gizleri elde ediliyordu. Başarının ödülü, sıkıntı ve hastalıklardan kurtuluşun yanı sıra sonsuz yaşam ve gençlik olacaktı. Bu düşünce, insanın bilim ve teknoloji aracılığıyla doğaya boyun eğdirebileceği görüşüne yol açtı. Modern bilime temel oluşturan bu görüşün yalnızca Batı'da egemen olduğunu vurgulamak yerinde olur. Doğadan yararlanma konusunda yüzyıllarca geride bulunan Batı'nın Doğu'yu geçmesinde bu yaklaşımın önemli rolü olsa gerektir. Hermetika, aydınlanma ve ışık kaynağı olan Güneş üzerine coşkulu bölümler içerir. Hem Platon'un, hem de Hermetika'mn çevirmeni Floransalı Marsilio Ficino, 15. yüzyılda Güneş üzerine yazdığı incelemede adeta putperestçe hayranlığa varan bir üslup kullanmıştı. 16. yüzyılın başlarında bir Polonyalı öğrenci, İtalya'daki gezisi sırasında bu düşüncelerden etkilendi. Ülkesine döndükten sonra Ptolemaios'un astronomi sistemi üzerinde çalışmaya başladı. Görevli bulunduğu kilisenin yardımıyla, kilisenin gereksinim duyduğu Paskalya ve öteki yortuların tam günlerinin saptanması gibi önemli hesapların yapılmasında kullanılan astronomi gözlem aygıtlarını geliştirmeye koyuldu. Bu genç öğrencinin adı Mikoiaj Kopernik'tir. Fiziğin doğuşu: Yaklaşık yarım milyon yıl önce ilk insanlar, elde yapılmış yalın araçlar kullanıyor ve ateşi biliyorlardı. Bundan 20 000 yıl önce yaşayan Taş devri insanı, mağara duvarlarına resimler yapabiliyor, ok ve yay kullanabiliyordu (günümüzde bile, hâlâ Taş devri teknolojisiyle yaşamını sürdüren topluluklara Taşlanmaktadır). Günümüzden 10 000 yıl önce insanlar, toprağı işlemeye başlamışlardı. Bilimin ilk temel işaretleri ise, bundan 5 000 yıl Önce Babil'de ortaya çıkmaya başladı. Ancak Ortaçağ teknolojisi. Roma teknolojisinden pek farklı değildi; hattâ Romalıların su sistemleri daha iyiydi. Günümüzdeki anlamıyla bilim, XVII. yüzyılda ortaya çıktı. XVIII. ve XIX. yüzyıllarda endüstri devrimi gerçekleştirildi. XX. yüzyılda ise fizik, günlük yaşamda büyük bir yer tutmaya başladı. Günümüzde, bu bilim dalına dayanmayan bir yaşam düşünülemez. Klasik fiziğin temelleri, XVII. yüzyılda, GALİLEİ, KEPLER, BÖYLE, NEWTON, HOOKE, HUYGENS, GUERİCKE, TORRİCELLİ gibi bilginler tarafından atıldı. Günümüzdeki uygarlık düzeyi varlığını, bu temellere borçludur. XVII. yüzyılda, aynı zamanda, felsefe ile fiziğin birbirinden ayrılması da gerçekleşti. XVIII. yüzyıldan önce fiziğe, «doğal felsefe Bilimsel yöntem: Bilimsel yöntem, gerçeğin ortaya çıkarılmasını sağlayan «yanılmaz Neden-sonuç ilişkisi, çağımızda çok açık görünmesine karşılık, her zaman kabul edilmemiştir. Eskiden doğal olayların açıklanması, tanrıya bağlanmaktaydı. Günümüzde fizik, anlayış düzeyimizi biraz daha derine götürmeye ve olayların altında yatan gerçek nedenleri ortaya çıkarmaya çalışmaktadır. Çevrelerindeki olayları kaydeden ilk insanlar İ.Ö. 3000 yıllarında yaşayan Babillilerdi (Mezopotamya). Yazıyı bilen bu insanlar, gökcisimlerinin hareketlerini kataloglara geçirdiler. Aynı dönemde Kuzeybatı Avrupa'da yaşayanlar ise, yazıyı bilmemelerine karşılık, taşları kullanarak, gökcisimlerinin hareketlerini toprak üstünde belirtmeye çalıştılar. Babillilerin ve eski Mısırlıların tuttuğu kayıtlar, Yunanlıların eline geçti. Yunanlılar bunları yeniden düzenleme çabalarına girişti. Mekanik ve statikte bazı ilkol kavramlar (ARKHİMEDES'in banyo deneyi ve kaldıraç yasaları gibi) ortaya kondu. Yunanlıların en büyük katkısı, fiziğin gelişmesinde önemli payı bulunan bazı MATEMATİK ilkelerini bulmalarıdır. İ.S. III. yüzyılda Diophantos bazı fizik temellerini ortaya koymuştur, ama fiziğin bugünkü dayanağını oluşturan cebir daha sonra geliştirilmiştir. Bilimin geliştirilmesi, Yunanlılardan sonra Araplar tarafından yürütüldü. Bazı yeni buluşlar, sözgelimi İbni Heysem'in OPTİK konusuna ve matematik simgelere ilişkin düşünceleri, önceleri İtalya, daha sonra da Kuzey Avrupa'da ortaya çıkan bilimsel anlayışın ilk kıvılcımı oldu. Matematiğin Tarihi Gelişimi Ortaçağ İslâm Dünyası'nda başta aritmetik olmak üzere, matematiğin geometri, cebir ve trigonometri gibi dallarına önemli katkılarda bulunan matematikçiler yetişmiştir. Ancak bu dönemde gerçekleşen gelişmelerden en önemlisi, geleneksel Ebced Rakamları'nın yerine Hintlilerden öğrenilen Hint Rakamları'nın kullanılmaya başlanmasıdır. Konumsal Hint rakamları, 8. yüzyılda İslâm Dünyası'na girmiş ve hesaplama işlemini kolaylaştırdığı için matematik alanında büyük bir atılımın gerçekleştirilmesine neden olmuştur. Daha önce Arap alfabesinin harflerinden oluşan harf rakam sistemi kullanılıyordu ve bu sistemde sayılar, sabit değerler alan harflerle gösteriliyordu. Örneğin için a harfi, 10 için y harfi ve 100 içinse k harfi kullanılıyordu ve dolayısıyla sistem konumsal değildi. Böyle bir rakam sistemi ile işlem yapmak son derece güçtü. Erken tarihlerden itibaren ticaretle uğraşanların ve aritmetikçilerin kullanmaya başladıkları Hint Rakamları'nın üstünlüğü derhal farkedilmiş ve yaygın biçimde kabul görmüştü. Bu rakamlar daha sonra Batı'ya geçerek Roma Rakamları'nın yerini alacaktır. Cebir bilimi İslâm Dünyası matematikçilerinin elinde bağımsız bir disiplin kimliği kazanmış ve özellikle Hârizmî, Ebu Kâmil, Kerecî ve Ömer el-Hayyâm gibi matematikçilerin yazmış oldukları yapıtlar, Batı'yı büyük ölçüde etkilemiştir. İslâm Dünyası'nda büyük ilgi gören ve geliştirilen bilimlerden birisi olan astronomi alanındaki araştırmalara yardımcı olmak üzere trigonometri alanında da seçkin çalışmalar yapılmıştır. Bu konudaki en önemli katkı, açı hesaplarında kirişler yerine sinüs, kosinüs, tanjant ve kotanjant gibi trigonometrik fonksiyonların kullanılmış olmasıdır. Yeniçağ Bu dönem diğer alanlarda olduğu gibi matematik alanında da yeniden bir uyanışın gerçekleştiği ve özellikle trigonometri ve cebir alanlarında önemli çalışmaların yapıldığı bir dönemdir. Trigonometri, Regiomontanus, daha sonra da Rhaeticus ve Bartholomaeus Pitiscus`un çabalarıyla ve cebir ise Scipione del Ferro, Nicola Tartaglia, Geronimo Cardano ve Lodovice Ferrari tarafından yeniden hayata döndürülmüştür. Yapılan çalışmalar sonucunda geliştirilen işlem simgeleri, şu anda bizim kullandıklarımıza benzer denklemlerin ortaya çıkmasına olanak vermiş ve böylelikle, denklem kuramı biçimlenmeye başlamıştır. Rönesans matematiği özellikle Raffaello Bombelli, François Viète ve Simon Stevin ile doruk noktasına ulaşmıştır. 1585 yılında, Stevin, aşağı yukarı Takîyüddîn ile aynı anda ondalık kesirleri kullanmıştır. Bu dönemde çağdaş matematiğin temelleri atılmış ve Pierre de Fermat sayılar kuramını, Pascal olasılık kuramını, Leibniz ve Newton ise diferansiyel ve integral hesabı kurmuşlardır. Yakınçağ Bu dönemde Euler ve Lagrange, integral ve diferansiyel hesabına ilişkin 17. yüzyılda başlayan çalışmaları sürdürmüş ve bu çalışmaların gök mekaniğine uygulanması sonucunda fizik ve astronomi alanlarında büyük bir atılım gerçekleştirilmiştir. Mesela Lagrange, Üç Cisim Problemi'nin ilk özel çözümlerini vermiştir. Bu dönemde matematiğe daha sağlam bir temel oluşturmaya yönelik felsefi ağırlıklı çalışmalar genişleyerek devam etmiştir. Russell, Poincaré, Hilbert ve Brouwer gibi matematikçiler, bu konudaki görüşleriyle katkıda bulunmuşlardır. Russell, matematik ile mantığın özdeş olduğunu kanıtlamaya çalışmıştır. Matematiğin, sayı gibi kavramlarını, toplama ve çıkarma gibi işlemlerini, küme, değilleme, veya, ise gibi mantık terimleriyle ve matematiği ise "p ise q" biçimindeki önermeler kümesiyle tanımlamıştır. Hilbert'e göre ise, matematik soyut nesneleri konu alan simgesel bir sistemdir; mantığa indirgenerek değil, simgesel aksiyomatik bir yapıya dönüştürülerek temellendirilmelidir. Sezgici olan Brouwer de matematiğin temeline, kavramlara somut içerik sağlayan sezgiyi koyar; çünkü matematik bir teori olmaktan çok zihinsel bir faaliyettir. Poincaré'ye göre de matematiğin temelinde sezgi vardır ve matematik kavramlarının tanımlanmaya elverişli olması gerekir. Yine bu dönemin en orijinal matematikçileri olarak Dedekind ve Cantor sayılabilir. Dedekind, erken tarihlerden itibaren irrasyonel sayılarla ilgilenmeye başlamış, rasyonel sayılar alanının sürekli reel sayılar biçimine genişletilebileceğini görmüştür. Cantor ise, bugünkü kümeler kuramının kurucusudur. Kimya'nın Tarihsel Gelişimi Kimya sözcüğünün ( Eski Mısır dilinde "kara" ya da "Kara Ülke" ) sözcüğünden türediği sanılmaktadır Bir başka sav da khemeia (Eski Yunanca khyma: "¤¤¤¤l dökümü) sözcüğünden türediğidir Kimyanın kökenleri felsefe, simya, ¤¤¤¤lürji ve tıp gibi çok çeşitli alanlara dayanır Ama kimya ancak 17 yüzyılda mekanikçi felsefenin kurulmasıyla ayrı bir bilim olarak ortaya çıkmıştır Mezopotamyalılar, Çinliler, Mısırlılar ve Yunanlılar çok eski çağlardan beri bitkilerden boyarmadde elde etmeyi, dokumaları boyamayı, deri sepilemeyi, üzümden şarap, arpadan bira hazırlamayı, sabun üretimini, cam kaplar yapmayı biliyorlardı Eski çağlarda kimya sanatsal bir üretimdi Daha sonra Antik Çağın deneyciliği, Yunan doğa felsefesi, Rönesans simyası, tıp kimyası gelişti 18 yüzyılda kuramsal ve uygulamalı kimya, 19 yüzyılda organoteknik ve fizikokimya, 20 yüzyılda ise radyokimya, biyokimya ve kuvantum kimyası gibi yeni dallar ortaya çıktı Ünlü kimya tarihçisi Hermann Kopp, İS 300- 1600 arasını, soy (asal) olmayan ¤¤¤¤lleri soy ¤¤¤¤llere dönüştürecek filozof taşının ve insan ömrünü sonsuzlaştıracak yaşam iksirinin arandığı simya çağı; 1600- 1700 arasını ilaçların hazırlandığı iyatrokimya (tıp kimyası) çağı; 1700- 1800 arasını, yanma sürecinin araştırıldığı filojiston kimyası çağı; bundan sonraki dönemi ise nicel kimya çağı olarak adlandırmıştır 16- 18 yüzyıllar arasındaki dönem yeniçağ kimyası olarak da tanımlanır Kimyanın kökeninin, yaklaşık olarak Hıristiyanlık çağının başlarında Mısır'ın İskenderiye kentinde biçimlenmeye başladığı kabul edilir Eski Mısır'ın ¤¤¤¤lürji, boya ve cam yapımı gibi üretim zanaatları ile eski Yunan felsefesi İskenderiye'de bir araya gelerek kaynaşmış ve İS 400'lerde uygulamalı kimya bilgisi gelişmeye başlamıştır Justus von Liebig'e göre simyacılar önemli aygıt ve yöntemler bulmuşlar, sülfürik asit, hidroklorik asit, nitrik asit, amonyak, alkaliler, sayısız ¤¤¤¤l bileşikleri, şarap ruhu (alkol), eter, fosfor ve Berlin mavisi gibi çok çeşitli maddeleri kullanmışlardır Hıristiyanlığın ilk yüzyılında Yahudi Maria olarak bilinen bir kadın simyacı çeşitli türde fırınlar, ısıtma ve damıtma düzenekleri geliştirmiş, simyacı Kleopatra ise altın yapımı konusunda bir kitap yazmıştır Maria'nın buluşu olan su banyosu günümüzde de "benmari" adı altında kullanılmaktadır 350- 420 arasında İskenderiye'de yaşayan Zosimos, simya öğretisinin en önemli temsilcisidir ve 28 ciltlik bir simya ansiklopedisi yazmıştır Roma İmparatorluğu ve Bizans İmparatorluğu'nda, daha sonra da İslam ülkelerinde kimya tekniğinde büyük ilerlemeler olmuş ve Aristoteles'in bütün maddelerin sonuçta dört öğeden (toprak, su, hava, ateş) oluştuğu ve bunların birbirine dönüştüğü biçimindeki kuramı İskenderiyeli ve daha sonra da Cabir, İbn Hayyan, Ebubekir el-Razi ve İbn Sina gibi Arap simyacılar tarafından geliştirilmiştir İbn Sina özellikle dönüşümle ilgilenmiş ve el-Fennü'l-Harmis nün Tabiiyat adlı kitabının mineralojiyle ilgili bölümünde mineralleri taşlar, ateşte eriyen maddeler, kükürtler ve tuzlar olarak dört gruba ayırmıştır İbn Sina madde ve biçimin bir birlik olduğunu, doğa olaylarının açıklanmasında doğaüstü ve maddesel olmayan güçlerin etkisinin olmadığını söylemiş, kuramsal düşünceyi ve kavram üretmeyi öne çıkarmıştır Rönesans döneminde geçmiş yılların getirdiği kimya bilgisinin birikimiyle, tıp ve kimyasal üretim alanlarında uygulamalı kimya ortaya çıktı Bu dönemde eczacılıkta inorganik tedavi maddelerinin kimyasal yöntemlerle elde edilmesine "kemiatri" (kimyasal tedavi) adı verildi Kemiatrinin kimya temeline dayalı ilaç üretimi biçimindeki pratik amacının yanı sıra, hastalıklar ve madde alışverişi olaylarının kimyasal yorumu gibi kuramsal bir amacı da vardı Bu kuramsal amaçla ilgili yönelime iyatrokimya denir Günümüzde kemiatrinin karşılığı farmasötik kimya ve kuramsal biyokimyadır İyatrokimyanın öncüsü olan İsviçreli hekim Paracelsus'a ( 1493- 1541) göre tuz, kükürt ve cıva, var olan bütün cisimlerin temel yapıtaşı olan beden, can ve ruhun karşılığıydı Bu üçlü arasında denge bozulduğunda hastalık başlıyordu Paracelsus midenin bir kimya laboratuvan olduğunu, özsuların yoğunlaşmasıyla hastalıkların ortaya çıktığını ve bu durumun ilaçla giderilebileceğini savundu ve farmakolojide kimyasal maddelerden yararlanılması yolunda çaba harcadı Johann Baptist van Helmontx(1580-1644) ve Johann Rudolph Glauber (1604-68), Rönesans kimyasının temsilcileridir Suyun temel element olduğuna inanan van Helmont'un en önemli çalışmaları çeşitli süreçlerle gaz üretimini ilk kez açıkça gerçekleştirmesi ve deneylerinde teraziyi kullanarak kimyasal çalışmalara nicel özellik kazandırmasıdır Glauber'in en büyük başarısı ise, yemeklik tuzu sülfürik asitle parçalayarak tuz asidi (hidroklorik asit) ve sodyum sülfat elde etmesidir Sodyum sülfat dekahidrat günümüzde de onun adıyla Glauber tuzu olarak bilinir Glauber ayrıca ilk kez ¤¤¤¤llerin tuz asidi içinde çözünmesiyle ¤¤¤¤l klorürlerin oluşacağını gösterdi Simya 16 ve 17 yüzyıllarda Avrupa'da derebeyi saraylarında giderek yayıldı ve bu durum, bilimsel kimya gelişene ve elementlerin birbirine dönüştüğü inancının sarsılmaya başlamasına değin sürdü 17 yüzyılda kimyanın sanat ya da bilim olup olmadığı çok tartışıldı Bu yüzyılda, çağdaş anlatımla, uygulamalı ve kuramsal kimya ayırımı vardı Kemiatri, ¤¤¤¤lürji kimyası, madencilik ve demircilik kimyası uygulamalı kimyanın içinde yer alıyordu Kuramsal kimya ise betimlenebilen "tüm doğa bilimleri" anlamına gelen physica'nın içindeydi Yeniçağdaki oluşum deneyimden (experientia) deneye {experimentum) doğru oldu ve deneyin doğa araştırmasındaki bilimsel önemi kabul edildi Kimya zamanla simyadan ayrıldı ve eski çağların gizemli görüşlerinden uygulamalı kimyaya geçildi Eski kimyada madde ve bileşikler yalnızca beklenen son ürün açısından önemliydi Çeşitli reçeteler ise beklenen sonuca götüren bir araçtı Eski düşünce ve bilgilerin doğruluk ya da yanlışlıklarının denetlenmesi ancak kimyasal tepkimelerin gözlenmesi ve tepkime sürecinin incelenmesiyle olanaklıydı Mekanikçi felsefe ile kimyanın etkileşimine en iyi örnek Robert Boyle'un çalışması oldu İngiliz bilim adamı Robert Boyle 1661'de yayımladığı The Sceptical Chymist (Kuşkucu Kimyacı) adlı yapıtıyla Aristotelesçi görüşleri çürüttü Böyle, kimyasal elementleri maddenin parçalanmayan yapıtaşları olarak açıkça tanımladı, ilk kez kimyasal bileşikler ile basit karışımlar arasında ayrım yaptı, kimyasal birleşmelerde özelliklerin tümüyle değiştiğini, basit karışımlarda ise böyle değişimlerin olmadığını söyledi; gazlar üzerinde yürüttüğü deneylerde gazların basıncı ile hacimleri arasındaki bağıntıyı belirleyen yasayı buldu ve ilk kez elementlerin ve bileşiklerin doğru tanımını yaptı Böyle ayrıca havanın yanma olaylarındaki rolünü keşfetti ve havanın tartılabilir bir madde olduğunu söyledi 18 yüzyılda kimyanın temel sorunu yanma olayının (ateş ruhlarının işlevlerinin) açığa kavuşturulması oldu 17 yüzyıl ortalarına doğru maddedeki elementlerden birinin yanmaya neden olduğu ileri sürülmüş ama bu sav, ateşin maddesel bir cisim olamayacağı gerekçesiyle ünlü simyacı van Helmont tarafından reddedilmişti Alman simyacı Johann Joachim Becher (1635-82) bu öneriyi daha sonra 1669'da yeniden gözden geçirdi ve terra pinguis olarak adlandırılan ateş elementinin yanma sırasında kaçıp giden bir nesne olduğunu varsaydı Becher'in öğrencisi ve Berlinli bir hekim olan Georg Ernst Stahl ( 1660- 1734) bu nesneye "flojiston" adını verdi Yanma olayına yanlış da olsa ilk kez bir bilimsel açıklama getiren flojiston kuramına göre yanıcı maddeler, yanıcı olmayan bir kısım ile flojistondan oluşur Buna göre ¤¤¤¤l oksitler birer element, ¤¤¤¤ller ise kil (¤¤¤¤l oksit) ile flojistondan oluşan birer bileşik maddedir ¤¤¤¤l yandığında eksi kütleli "plan flojiston bir ruh gibi ayrılır ve elementin külü (¤¤¤¤l oksit) açığa çıkar Küle yeniden flojiston verildiğinde de yeniden ¤¤¤¤l oluşur Örneğin çinko oksit flojistonca zengin olan kömürle ya da hidrojen gazıyla ısıtıldığında yeniden çinko oluşur ve hafifler Bir yüzyıl boyunca kimyaya egemen olan bu kuram element kavramına uygun olmamakla birlikte kimyanın bilimsel gelişmesinde çok büyük rol oynadı Cavendish, Priestley ve Scheele ise çalışmalarında karbon dioksit, oksijen, klor, ¤¤¤¤n (bataklık gazı) ve hidrojen gazlarını ayrı gazlar olarak tanımladılar Cavendish ayrıca gazları yoğunluklarına göre ayırdı İlk kez suyun bir element olmayıp oksijen ile hidrojenin bir bileşiği olduğunu kanıtladı Bu çalışmaların da yardımıyla flojiston kuramı yıkıldı Aynı zamanda bir fizikçi olan Antoine-Laurent Lavoisier ( 1743-94) kimyanın babası sayılır Lavoisier ¤¤¤¤l oksitlerinin daha önce Priestley ve Scheele'nin keşfettiği oksijen ile ¤¤¤¤llerin yaptığı bileşikler olduğunu kanıtladı, yanma ve oksitlenme olaylarının günümüzde de geçerli olan açıklamasını yaparak kimyada yeni bir çığır açtı Kapalı kaplarda yaptığı deneylerde, kimyasal tepkimeler sırasında kütlenin değişmediğini saptayarak 1787'de kütlenin korunumu yasasını ortaya koydu Kimya'daki devrim yalnızca kavramlarda değil yöntemlerde de gerçekleşti Ağırlıksal yöntemler duyarlı çözümler yapmayı olanaklı kıldı ve kütlenin korunumu yasasıyla nicel kimya dönemi başladı Lavoisier'den sonra 1798'de Alman kimyacı Richter birleşme ağırlıkları yasasını, 1799'da gene Alman kimyacı Proust sabit oranlar yasasını ve 1803'te ingiltere'den John Dalton katlı oranlar yasasını geliştirdi Gay-Lussac da Alexander von Humboldt'un yardımıyla öbür gazlarla tepkimeye giren bir gazın her zaman belirli hacim oranlarıyla birleştiğini buldu İtalyan fizikçi Amedeo Avogadro 1811'de, gaz halindeki pek çok elementin birer atomlu değil, ikişer atomlu oldukları ve aynı koşullar altında bulunan gazların eşit hacimlerinde eşit sayıda molekül bulunacağı varsayımını geliştirdi Avogadro'nun bu varsayımını 50 yıl sonra, 1860'ta Stanislao Cannizzaro yasa düzeyine çıkardı 19 yüzyılın başlarında ingiliz kimyacı Humphry Davy ve öteki bilim adamları, volta pillerinden sağladıkları güçlü elektrik akımlarını bileşiklerin çözümlenmesi ve yeni elementlerin bulunması çalışmalarına uyguladılar Bunun sonucunda kimyasal kuvvetlerin elektriksel olduğu ve örneğin aynı elektrik yüklü iki hidrojen atomunun birbirini iteceği ve Avogadro varsayımına göre birleşerek çok atomlu molekülü oluşturmayacağı ortaya çıktı 1859'da Alman fizikçi Gustav Kirchhoff ve kimyacı Robert Bunsen'in bulduğu tayf çözümleme tekniğinin yardımıyla da o güne değin bilinen elementlerin sayısı 63'ü buldu Elementlerin atom ağırlıkları ile fiziksel ve kimyasal özellikleri arasındaki bağıntıyı bulan Rus kimyacı Dimitriy İvanoviç Mende-leyev 1871'de ilk kez kimyasal elementlerin periyodik yasasını açıkladı Mendeleyev'e göre hidrojenin dışındaki elementler artan atom ağırlıklarına göre bir sırayla düzenlendiğinde, bunlann fiziksel ve kimyasal özellikleri de bu sıraya göre düzgün bir değişim gösteriyordu Ama bu düzgün gidiş kesintilerle birkaç sıra halindeydi ve bu sıralara periyot adı verildi Mendeleyev'in tablosunda atom ağırlığı daha büyük olan bazı elementlerin ön sıralarda yer alması atom ağırlıklarının ölçüt alınamayacağını gösterdi İngiliz fizikçi HG Moseley 1913'te X ışınımı yardımıyla elementlerin atom numaralarını saptadığında bu sıralamada atom numaralarının temel alınması gerçeği ortaya çıktı Bundan sonra Mendeleyev'in tablosundaki boş olan yerler yeni keşfedilen elementlerle dolmaya başladı Wilhelm Röntgen'in 1895'te X ışınımını bulmasından hemen sonra Henri Becquerel 1896'da, uranyumdaki doğal radyoaktifliği keşfetti ve 1900'de fizikçi Max Planck kuvantum kuramını ortaya attı Rutherford 19J9'da havadaki azotu, radyum preparat-lanndan salınan alfa taneciklerinin yardımıyla oksijene ve hidrojene dönüştürerek ilk yapay element dönüşümünü gerçekleştirdi August Kekule'nin 1865'te kurduğu yapı kuramının genişletilmesi sonucunda, bire-şimleme (sentez) ve ayrıştırma yoluyla pek çok yeni madde elde edilebildi Bu kurama göre atomlar değerliklerine karşılık gelecek biçimde bileşikler halinde birleşirler ve her atomun belirli bir değerliği vardır Kekule' nin bu açıklamalarından sonra kimyasal bileşikler yeni bir biçimde değerlendirilmeye başladı Örneğin su (H2O) H-O-H, karbon dioksit (CO2) O-C-O, biçiminde gösterildi Bu gösterimden bireşimleme kimyası çok yararlandı Kekule ayrıca moleküllerin farklı özelliklerinin atomların birbiriyle yaptığı farklı bağlarla belirlendiğini kanıtladı ve kapalı formülü C6Ü6 olan benzenin halka biçiminde birleşmiş bir yapısı olduğunu çözdü Yapı kuramına dayanarak varlığı düşünülen bileşiklerin bireşimsel olarak üretilebilmesine yönelik özel yöntemler geliştirildi; yapısı bilinmeyen doğal ya da yapay bileşiklerin iç yapılarını çözmek amacıyla da tam tersi bir yol izlenerek bunların yapılan sistemli bir biçimde ve aşamalı olarak parçalanarak bulundu Kekule'nin buluşu aromatik karbon kimyasının hızla gelişmesini olanaklı kıldı F Wöhler, siyanür bileşikleriyle çalışırken üreyle formülü aynı olan amonyum siyanatı bireşimledi Biri mineral, öbürü hayvansal kökenli olan her iki ürün de aynı elementlerin aynı sayıdaki atomlarından oluşuyordu Bu buluşla izomerleşme olgusu ortaya çıktı ve inorganik kimya ile organik kimya arasındaki farklılık ortadan kalktı Kimya alanındaki çalışmalar sonraları maddelerin tepkime biçimleri, ısı etkisi, çözeltiler, kristallenme ve elektrolizle ilgili konulara yöneldi ve galvanizleme konularındaki gelişmelerden fiziksel kimya (fizikokimya) doğdu Bu arada M Berthelot termokimyanın temellerini attı Raoult, W Ostwald, van't Hoff, J W Gibbs, Le Chatelier ve S Arrhenius fiziksel kimyanın gelişmesinde önemli rol oynadılar İtalyan bilim adamı Alessandro Volta'nın 1800'de iki ¤¤¤¤l levha arasına nemli bez ya da tuz çözeltisi koyarak elektrik akımı elde etmesi kimyada önemli gelişmelere neden oldu Humphry Davy 1807'de özel olarak geliştirdiği Volta pilini kullanarak erimiş külden elektrik akımı geçirdi ve bu yolla önce potasyum adını verdiği elementi, sonra da sodadan sodyum elementini ayırmayı başardı Bu da elektrokimya dalında önemli adımlar atılmasını olanaklı kıldı Çağdaş bilimin gelişmesiyle Sanayi Devrimi arasında yakın bir ilgi olduğu düşünülmekle birlikte, Sanayi Devrimi'nin anayurdu olan İngiltere'de bile bilimsel buluşların dokuma ve ¤¤¤¤lürji sanayisini doğrudan etkilediğini göstermek zordur, 18 yüzyılda bilim dikkatli bir gözlem ve deneyciliğin sanayide üretimi önemli ölçüde iyileştirebileceğini gösterdi Ama ancak 19 yüzyılın ikinci yansından başlayarak bilim sanayiye önemli katkıda bulunmaya başladı; kimya bilimi anilin boyalar gibi yeni maddelerin üretilmesini olanaklı kıldı ve boyarmadde ile ilaç sanayisi hızla gelişen ilk kimya sanayisi oldu 20 yüzyılda madencilik, ¤¤¤¤lürji, petrol, dokuma, lastik, inşaat, gübre ve gıda maddeleriyle doğrudan ilişkisi olan kimya sanayisi elektrikten sonra bilimin uygulamaya geçirildiği sanayiler arasında ikinci sırayı aldı Yalnızca kimyanın değil, fiziğin de kimya sanayisine girmesiyle laboratuvarda elde edilen sonuçlann doğrudan uygulamaya sokulduğu kimya fabrikaları kurulmaya başladı Bu süreçlerin denetlenmesinde çeşitli aygıtlara gerek duyulduğundan fiziksel kimyacılar ve fizikçiler kimya sanayisinde etkin olmaya başladı ve böylece kimya mühendisliği mesleği doğdu. Biyolojinin Tarihsel Gelişimi Biyoloji bilimi, insanın kendini ve çevresindeki canlıları tanıma merakından doğmuştur İlk insanlar çevrelerinde yaşayan sığır , geyik ve mamut gibi hayvanların resimlerini mağara duvarlarına çizerek bunları incelemeye başlamışlardır. Antik çağdan günümüze kadar biyoloji bilimindeki gelişmeleri, ilgili bilim adamlarıyla aşağıdaki gibi özetleyebiliriz: Thales (Tales) (M.Ö. VII. yy .) İlk biyolojik yorumları yapmıştır. Aristo (M.Ö. 384-322) Canlılar dünyasını inceleyen ve ‘’bilimsel doğa tarihi’nin kurucusu olan ilk bilim adamıdır. Aristo, bir bilim adamında bulunması gereken iki önemli özelliğe, yani iyi gözlem yapabilme ve bunlardan doğru sonuçlar çıkarabilme yeteneğine sahiptir .Çalışmalarını ‘’Hayvanların Tarihi, Hayvan nesli üzerine'’ ve ‘’Hayvan Vücutlarının Kısımları Üzerine'’ adlı kitaplarında toplamıştır. Aristo, canlıların oluşumlarını ‘’kendiliğinden oluş (abiyogenez)'’ hipotezi ile açıklamış, ayrıca ilk sınıflandırmayı da yapmıştır. Galen (M.Ö. 131-201) Canlı organlarını inceleyerek fizyoloji biliminin doğmasını sağlamıştır . Galileo (Galile) 1610 yılında ilk mikroskobu bulduğu samlmaktadır. Mikroskobun keşfi biyolojik çalışmalara büyük ivme kazandırmıştır . Robert Hooke (Rabırt Huk) 1665 yılında mikroskop ile mantar kesitini inceleyerek ilk hücre ( cellula )yi tanımlamıştır. Leeuwenhoek (Lövenhuk) 1675 yılında geliştirdiği mikroskop ile ilk bir hücrelileri (bakterileri) göstermiştir. Carolus Linnaeus (Karl Linne) 1707-1778 yıllarında ilk sınıflandırmayı yapmıştır. Schleiden (Şlayden) 1838′de bitki hücreleri üzerinde çalışmalar yapmıştır. Schwann (Şivan) 1839′da hayvan hücresini bitki hücresiyle karşılaştırdı.Schleiden ve Schwann’ın hücre teorisinin ortaya konulmasında katkıları olmuştur. Charles Darwin (Çarls Darvin) 1859 yılında ‘’Türlerin Kökeni'’ adlı yayınlayarak ‘’doğal seleksiyon’ yoluyla türlerin evrimini ortaya koymuştur. Pasteur (Pastör) (1882-1895) Biyogenez hipotezini kanıtladı. Mikroskobik canlıların fermantasyona (mayalanma) neden olduğunu tespit etti. Aynca kuduz aşısının bulunmasını sağladı . Gregor Mendel (1822-1884): Kilisesinin bahçesinde yetiştirdiği bezelyelerde yaptığı deneyler sonucunda kalıtsal özelliklerin dölden döle geçişi ile ilgili önemli sonuçlar elde etmiştir. Mendel bu çalışmalarıyla genetik bilimin kurucusu olmuştur . Miescher (Mişer) 1868′de nükleik asitleri bulmuştur. Beijrinck (Bayerink) 1899′da tütün yapraklarında görülen tütün mozaik hastalığını incelemiştir. Virüslerin keşfine katkıda bulunmuştur . Wilhelm Röntgen (Vilhem Röntgen) 1895 yılında tıpta kullanılan röntgen ışınlarını bulmuştur . Sutton (Sattın) 1903 yılında kalıtımın kromozom kuramını yani genlerin kromozomlar üzerinde bulunduğunu açıklamıştır . Wilhelm Roux (Vilhem Ru) (1850-1924) Embriyolojinin kurucusu olmuştur. Otto Mayerhof (Otto Mayerhof) 1922′de kastaki enerji dönüşümlerini inceleyerek Nobel tıp ödülünü almıştır. Sir Alexender Fleming (Sör Aleksendır Fleming) 1927′de penisilini bularak bakteriyal enfeksiyonlara karşı etkin mücadeleyi sağlamıştır . E.A.F Ruska 1931 yı1ında elektron mikroskobunu bulmuştur. James Watson (Ceyms Vatsın), Francis Crick (Fransis Krik) 1953 yı1ında DNA molekül modelini ortaya koymuşlardır .İkili sarmal modeli günümüzde de geçerliliğini korumaktadır. Steven Howel (Stivın Havıl) 1986 yı1ında ateş böceklerinin ışık saçmasını sağlayan geni ayırarak tütün bitkisine aktarmış, tütün bitkisinin de ışık saçmasını sağlamıştır. İşte bu olay gen naklinin başlangıcı olmuştur. Wilmut (Vilmut) 1997 yı1ında bir koyundan alınan vücut hücresinin çekirdeğini, başka bir koyuna ait çekirdeği çıkarılan yumurta hücresine aktararak genetik ikiz elde etmiştir . Tüm bu çalışmalar biyolojiyi 21. yüzyılın en önemli bilim dallarından biri yapmıştır Biyoloji ile ilgili bazı bilgilerin tarih öncesinde ortaya çıkmış olduğunu arkeolojik veriler ortaya koymuştur. Cilalı Taş Devri'nde, çeşitli insan toplulukları tarımı ve bitkilerin tıp alanında kullanımını geliştirmişler, sözgelimi eski Mısırlılar, bazı otları ilaç olarak ve ölülerin mumyalanmasında kullanmışlardır. Bununla birlikte bir bilim dalı olarak biyolojinin gelişimi, eski Yunan döneminde ortaya çıkmıştır. Tıbbın kurucusu sayılan Hipokrates, insan biyolojisinin ayrı bir bölüm olarak gelişmesine büyük katkıda bulunmuştur. Biyolojinin temel gereçleri olan gözlem yapma ve problem belirleyerek çözüme ulaştırmayı kurumlaştıran Aristoteles'tir. Aristoteles'in özellikle üremeye ilişkin gözlemleri ve canlıların sınıflandırılması sistemiyle ilgili görüşleri önemlidir. Biyoloji incelemelerinde öncülük daha sonra Roma'ya ve İskenderiye'ye geçmiş, M.Ö. II. yy. ile M.S. II. yy'a kadar incelemeler özelikle tarım ve tıp çevresinde odaklanmıştır. Ortaçağ'da ise, biyoloji incelemesinde islâm bilginleri öne geçmişler ve eski Yunan metinlerinden öğrendikleri bilgileri geliştirerek, özellikle tıp bilimine büyük katkıda bulunmuşlardır. Rönesans'la birlikte Avrupa'da, özellikle de İtalya, Fransa ve İspanya'da biyoloji araştırmaları hızla gelişmiş, XV. ve XVI. yy'larda Leonardo da Vinci ve Micheangelo, güzel sanatlarda kusursuzluğa erişme çabaları içinde, son derece usta birer anatomi bilgini haline gelmişlerdir. Bu arada Andreas Vesalius, öğretim gereci olarak ölülerin kesilip incelenmesinden yararlanma uygulamasını başlatmış, ölüler üstünde kesip biçmelere dayalı ilk anatomi kitabıyla anatomi ve tıp araştırmalarında bir devrim gerçekleştirmiştir. XVII. yy'da William Harvey insanda dolaşım sistemine ilişkin çalışmaları başlatmıştır. XVIII. ve XIX. yüzyıllarda ise biyoloji bilimi önemli bir ilerleme kaydetmiştir.Bu dönemde yapılan çalışmalar aşağıdaki gibi özetlenebilir: Jean-Baptiste Lamarck omurgasız canlıların sınıflandırılmasının detaylı çalışmasına başladı. 1802 Modern anlamda "Biyoloji" terimi, birbirlerinden bağımsız olarak Gottfried Reinhold Treviranus ve Lamarck tarafından kullanıldı. 1817 Pierre-Joseph Pelletier ile Joseph-Bienaime Caventou klorofili elde ettiler. 1828 Friedrich Woehler, organik bir bileşiğin ilk sentezi olan ürenin sentezini gerçekleştirdi. 1838 Matthias Schleiden tüm bitki dokularının hücrelerden oluştuğunu keşfetti. 1839 Theodor Schwann tüm hayvan dokularının hücrelerden oluştuğunu keşfetti. 1856 Louis Pasteur mikroorganizmaların fermentasyonda etkili olduklarını vurguladı. 1869 Friedrich Miescher hücrelerin çekirdeğinde bulunan nükleik asitleri keşfetti. 1902 Walter S. Sutton ve Theodor Boveri mayoz bölünme sırasında kromozomların hareketlerinin Mendel'in kalıtım birimleriyle paralellik gösterdiğini saptayıp, bu birimlerin kromozomlarda bulunduğunu ileri sürdü. 1906 Mikhail Tsvett organik bileşiklerin ayrıştırılması için kromatografi tekniğini keşfetti. 1907 Ivan Pavlov sindirim fizyolojisi ve eğitim psikolojisi bakımından büyük önem taşıyan salya akıtan köpeklerle klasik koşullanma deneyini tamamladı. 1907 Emil Fischer yapay olarak peptid amino asit zincirlerinin sentezini gerçekleştirdi ve bu şekilde proteinlerde bulunan amino asitlerin birbirleriyle amino grubu - asit grubu bağlarla bağlandıklarını gösterdi. 1909 Wilhelm Ludwig Johannsen kalıtsal birimler için ilk kez "gen" terimini kullandı. 1926 James Sumner üreaz enziminin bir protein olduğunu gösterdi. 1929 Phoebus Levene nükleik asitlerdeki deoksiriboz şekerini keşfetti. 1929 Edward Doisy and Adolf Butenandt birbirlerinden bağımsız olarak östrojen hormonunu keşfettiler. 1930 John Northrop pepsin enziminin bir protein olduğunu gösterdi. 1931 Adolf Butenandt androsteronu keşfetti. 1932 Hans Krebs üre siklusunu keşfetti. 1932 Tadeus Reichstein yapay olarak gerçekleştirilen ilk vitamin sentezi olan Vitamin C'nin sentezini başardı. 1935 Wendell Stanley tütün mozaik virüsünü kristalize etti. 1944 Oswald Avery pnömokok bakterilerde DNA'nın genetik şifreyi taşıdığını gösterdi. 1944 Robert Woodward ve William von Eggers Doering kinini sentezlemeyi başardı 1948 Erwin Chargaff DNA'daki guanin birimlerinin sayısının sitozin birimlerine ve adenin birimlerinin sayısının timin birimlerine eşit olduğunu gösterdi. 1951 Robert Woodward kolesterol ve kortizonun sentezini gerçekleştirdi. 1951 Fred Sanger, Hans Tuppy, ve Ted Thompson insulin amino asit diziliminin kromatografik analizini tamamladı. 1953 James Watson ve Francis Crick DNA'nın çift sarmal yapıda olduğunu ortaya koydu. 1953 Max Perutz ve John Kendrew X-ray kırınım çalışmalarıyla hemoglobinin yapısını belirledi. 1955 Severo Ochoa RNA polimeraz enzimlerini keşfetti. 1955 Arthur Kornberg DNA polimeraz enzimlerini keşfetti. 1960 Robert Woodward klorofil sentezini gerçekleştirmeyi başardı. 1967 John Gurden nükleer transplantasyonu kullanarak bir kurbağayı klonlamayı başarıp, bir omurgalı canlıyı klonlayan ilk bilim adamı olarak tarihe geçti. 1970 Hamilton Smith ve Daniel Nathans DNA restriksiyon enzimlerini keşfetti. 1970 Howard Temin ve David Baltimore birbirinden bağımsız olarak revers transkriptaz enzimlerini keşfetti. 1972 Robert Woodward B-12 vitamininin sentezini gerçekleştirdi. 1977 Fred Sanger ve Alan Coulson dideoksinükleotidleri ve jel elektroforezini kullanımını içeren hızlı bir gen dizisi belirleme tekniğini bilimin hizmetine sundu. 1978 Fred Sanger PhiX174 virüsüne ait 5,386 bazlık dizilimi ortaya koydu ki bu tüm genom dizilimi gerçekleştirilen ilk canlıydı. 1983 Kary Mullis polimeraz zincir reaksiyonunu keşfetti. 1984 Alex Jeffreys bir genetik parmak izi metodu geliştirdi. 1985 Harry Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl ve Richard Smalley Karbon-60 Buckminster-fulleren molekülünün olağanüstü stabilitesini keşfettiler ve yapısını açığa çıkardılar. 1985 Wolfgang Kratschmer, Lowell Lamb, Konstantinos Fostiropoulos ve Donald Huffman Buckminster-fulleren'in benzende çözülebilirliğinden dolayı isten ayrılabildiğini keşfettiler. 1990 ve 2000’li yıllarda yapılan biyolojik çalışmaların çoğu genetik kopyalamalar üzerine oldu.Bu durum da XXI.yüzyılın genetik bilimi üzerine kurulacağı işaretlerini veriyor.

http://www.biyologlar.com/bilimin-dogusunu-ve-fizik-kimya-biyoloji-matematik-olarak-temel-biirmler-haline-donusmesini-tarihsel-boyutta-aciklayiniz

EVRİM KURAMI ve TEORİLERİ 2

"Çoğumuz kuantum kuramını ya da Einstein'ın Özel görelilik ve Genel görelilik kuramlarını anlamayız; ama anlamamamız bu kuramlara karşı çıkmamızı gerektirmez!"Einsteincılığın" tersine,Darwincilik konusunda bilgisi olan olmayan ahkam kesiyor. Sanırım Darwinciliğin bir sorunu da, Jacques Monod'nun dediği gibi,herkesin bu kuramı anladığını zannetmesi." Richard Dawkins(Kör Saatçi,s:III) Evrim sözcüğü (temelde) değişikliği ifade eder. Evrim,biyolojik bir gerçektir;en geniş anlamı ile organizmaların zaman süreci içinde değişen ortama gösterdikleri fiziksel tepki olarak da tanımlanabilir." Güven Arsebük (BTD Temmuz 1995, 332.sayı) "Evrim kuramı biyolojinin tek birleştirici kuramıdır. Bugün evrim kuramı olmadan biyolojideki birçok olay birbiri ile ilgisi olmayan,ilginç fakat pek fazla anlam taşımayan bilgiler yığını olacaktır." Aykut Kence (TÜBA Bilimsel Toplantılar Serisi:2) "İnsan denen canlıyı ele aldığımız zaman onun bir Homo erectus(dik yürüyen),bir Homo faber(alet yapan),bir Homo lingua(konuşan/dili olan),bir Homo symbolicus(soyutlayabilen),bir Homo curiosus(araştıran) ve bir Homo sapiens (akıl sahibi) olduğunu görüyoruz. Bunların tümü insana özgü. İlginç olan ve özellikle vurgulanması gereken husus, insan dışında hiç bir primatın bunları,hatta bunlardan birini bile gerçekleştiremediği gerçeğidir... İnsan,bütün bu özelliklere sadece kendisince geliştirilen,yalnızca onda olan bir özellik,yani "kültür" sayesinde ulaşabilmiştir. Kültür nedir? Kültürün çok çeşitli tanımları arasında, tarih öncesi dönem arkeolojisi(prehistorya) uğraşanlarca yaygın olarak benimsenenlerden birine göre "kültür,doğanın tüm oluşturduklarına karşı,insan tarafından meydana getirilen her şeydir." Kültürün kalıtımsal ve/veya içgüdüsel olmadığı,aksine edinsel olduğu ve zaman içinde tek tek her insanın,çevresinde yaşayan diğer bireylerden öğrendiği davranış ve tepki eğilimleri olduğu vurgulanmalıdır. Başka bir deyişle de kültürde devamlılık,kuşaktan kuşağa geçme,kısacası süreklilik esastır." Güven Arsebük, BTD Temmuz 1995, 332.sayı "Bunun da ötesinde,okuyucuyu Darwinci dünya görüşünün yalnızca doğru olduğuna değil,varoluşumuzun gizemini çözebilecek bilinen tek kuram olduğuna inandırmak istiyorum." Richard Dawkins (Kör Saatçi,s:II) Evrim kuramı,19.yy ortasında Darwin'in ortaya koyduğu,ama 20.yy boyunca da gelişip güçlenen bir kuram. Elbette her kuram gibi,evrim kuramı da bir dogmalar yığınından farklıdır, yanlışlanan ve doğrulanan boyutları vardır. Doğanın incelenmesi ve fosil kalıntılar, 65 milyon yıl önce dinazorların varolduğunu apaçık gösteriyor. Bilimin düşmanları yalnız geri ülkelerde değil, gelişmiş ülkelerde de evrim kuramına türlü saldırılar yönelterek bilimsel düşünmeyi zehirlemeye çalışıyorlar. Richard Dawkins şöyle diyor:"Her canlı bedenin ve organın yayılmış olduğu 'tasarımları' yalnız doğal ayıklama pratik olarak açıklayabiliyor. Evrim bilgisi,güncel ilişkilerde tam tamına yararlı olmayabilir. Herhangi bir şekilde yaşayabilir ve Darwin'in adını hiç duymadan ölebilirsiniz. Ama eğer ölmeden önce,yaşamda niçin en önemli yeri tuttuğunuzu anlamak isterseniz o zaman Darwincilik öğrenmeniz gereken konulardan biridir." Bu bölümde evrim kuramını tüm boyutlarıyla ele almaya çalışacağım. Bölümler konunun uzmanlarının imzalarını taşıyacak. Ben,zaman zaman araya girmekle yetineceğim. İnsaoğlunun tarihi ne zaman başladı? İnsan ne zaman insan oldu? Bundan 2 milyon yıl önce "ön insan " denen çeşitli tipte insan ortaya çıkmış. Modern insan tipinin ortaya çıkışı ise İsadan Önce (İ.Ö.) beş yüz bin yıl önce de modern insanın ortaya çıktığını söyleyebiliriz . İnsanın tarihi, homo sapiens denen modern insanın ortaya çıkışıyla başlıyor. Homo sapiens türünün temsilcileriyle bizler arasında 25 bin kuşak var. Mağara duvarlarına resim yapan atalarımızla aramızdaki uzaklık, 2 bin kuşak kadar. Kro-manyon adamı denen atalarımız, ilk olarak Avrupa' da görülmüştür, ama büyük olasılıkla bundan 40 bin yıl önce Doğu' dan gelmiştir. Başlangıçta Avrupa üniversiteleri inanılmaz bir bağnazlıkla ilk yerleşme bölgesinin Avrupa olduğunu varsaydı. Ama Pekin ve Java adamlarının bulunmasıyla birlikte kaynağın Doğu olduğu kabul edildi. Bunlar İ.Ö. 40 bin' den 10 bine dek mağara duvarlarını boyamış, kemikler oymuş; hatta 30 bin yıl kadar önce kireç taşından heykelcikler yapmış. Bunlarda göğüs ve kalça baskınmış. (İnsan Yapısı ve Yaşamı s:21) İnsan, önce ağaçtan indi. Aslında bu, tehlikeli bir adımdı. Çevik hareket eden et yiyiciler ve ot yiyiciler, kim bilir kaç insan adayını canından etti? Ama toprağa inişle birlikte onun yetenekleri ortaya çıkacaktı. El ve kolun kullanışlı olması ve ağaç tepelerinde gelişmiş olan bir çok özellik ona yeni hünerler kazandıracaktı. Alet kullanmaktan alet yapma aşamasına geçmesi, sopa ve taşları şekillendirmesi savunmayı ve avcılığı doğurdu. Peki uygarlık nerede ne zaman ortaya çıktı? Ortadoğu' da: Dünyanın en eski uygarlığı, Dicle ve Fırat ırmaklarının aşağı kıvrımları boyunca Basra Körfezi'ne dek uzanan düz alüvyon ovası üzerinde uzanan Sümer'lerde doğdu. Sümer toprakları, her yıl yenilenen ırmak milinden oluşuyordu. Buradan bol ürün alınabilmesi için yeni tarım teknikleri bulunmalıydı. Ortadoğu'nun ormanlık tepeleri kışın yeterince yağış alıyordu,ama güneyde durumu farklıydı; oralar çok kuraktı. Öyleyse ırmak sularından yararlanmalıydı. Bu da sulama kanalları ile olurdu. Sulama kanallarının açılması, setlerin yapımı ve korunması binlerce kişinin çalışmasını, sıkı bir toplumsal disiplini gerektiriyordu. Halkın çoğunluğunun emeğinin harekete geçirilmesi, seçkin bir yönetici tabakasını gerektirdi. İ.Ö 4 000 yıllarındayız. Dicle-Fırat Vadisi' nin aşağı bölgelerinde ilk yerleşimler oluyor. Sümer yazılı kayıtlarına göre bin yıl içinde Sümer Uygarlığı doğdu. Teknik gelişmeler, başlangıçta son derece hızlıydı. Tunç metalürjisi, çarkta yapılmış çömlek kaplar, tekerlekli araçlar, suda yüzen tekneler, heykeltraşlık, anıtsal yapılar ve belki de hepsinden önemlisi karasaban, hemen hemen aynı anda görülüyor. Yünlülerin dokunup boyanması ve tapınak hizmetlerinin tantanalı yapısı, Sümer Uygarlığının başlarına dayansa gerek. Bunlardan başka, ölçme sanatları, o zamana dek benzeri görülmemiş bir önem ve kesinlik kazandı. Kanalların, bentlerin ve ovada yapay dağlar gibi yükselen anıtsal tapınakların yapılması, kesin ölçmeleri ve dikkatli planlamaları gerektirdi. Tarım yılının düzeni, ekimin dikimin ne zaman yapılacağının bilinmesine bağlı olduğu için, zamanın ölçülmesi çok daha yaşamsal bir önem taşıyordu. Ayın büyümesi ve küçülmesi, zamanın geçişinin en göze çarpan göstergesiydi. Ne var ki ayın döngüleri sonunda güneş yılıyla tam olarak çakışmıyordu; bu nedenle rahipler güvenilir bir takvimin yaratılabilmesinden önce, hem güneşin hem de ayın devinimlerini gözlemleyip, ölçüp ilişkilendirmek zorunda kaldılar. Böyle bir takvimin yürütülmesi, gerçekten, rahiplerin ilk tarımcılara sundukları en önemli hizmet olmuştur. Bir takvimi yürütmek için gereken bilgi ise, rahiplerin toplumda sahip oldukları üstünlüğün önemli bir dayanağını oluşturmuştur. Sıradan çiftçiler, bu kimselerin mevsimlerin gelişini önceden bilebilmelerinin, onların tanrılarla özel ilişkilerinin belirtisi olduğunu ve bu nedenle kendilerine gösterilen itaati hak ettiklerini düşünmüş olabilirler. Sulama işlerinin örgütlendirilmesi, özel önderlikleri bu hareketin doğurduğu tüm teknik ve toplumsal sonuçlarıyla birlikte geniş ölçüde mevsimlerin gelişini önceden görebilme yeteneklerine dayanan rahiplerin yönetimi altında başlamış olmalı. (McNeill, Dünya Tarihi s: 29-30)

http://www.biyologlar.com/evrim-kurami-ve-teorileri-2

Evrim Kuramı ve Maymun Sorunu

"Evet,insanlar gerçekten de bir evrim geçirdi;ancak yalnızca maymunlardan hatta diğer memeli hayvanlardan türemedi. Bizler, en uzağı ilk bakteriler olan uzun bir atalar soyundan evrildik" Lynn Margulis (Ortak yaşam Gezegeni, Türkçesi:Ela Uluhan,Varlık/Bilim s:10) İnsan kanı ile maymun kanı arasında büyük bir benzerlik vardır. Örneğin 287 aminoasitten oluşan hemoglobin A molekülü insan ve şempanzede tıpatıp aynıdır. Aynı molekül bakımından insan ve goril kanı arasındaki fark ise 287 aminoasitten sadece birindedir. Hemoglobin A molekülü farede 19,koyunda 26,tavukta 45,sazan balığında 95 aminoasit ve insan hemoglobin A molekülünden ayrılmaktadır. Görüldüğü gibi kanın bir öğesi olan hemoglobin A molekülü bakımından insana en yakın canlı olan şempanzede hiç fark yok iken insandan uzaklaştıkça farklılıklar artmaktadır. Daha bir çok protein üzerinde yapılan çalışmalarda aynı yönde sonuçlar elde edilmiştir. Prof.Dr.Aykut Kence (ODTÜ,Fen-Edebiyat Fak) TÜBA Bilimsel Toplantı Serileri 2 Şimdi size bir başka büyük kuramı sunmaya çalışacağım: Evrim Kuramı. Bugün bilime karşı büyük bir düşünsel saldırı var. Şu güzel ülkemiz ve insanlarımız,bilim ve teknolojinin olanaklarından daha tam olarak yararlanamazken bilimin en genel geçer kuramlarını tartışarak zaman öldürmek ne acı. Bilim belki her zaman onu "savunmayı" gerektirdi. Ama gerek 20. yüzyılın büyük savaşları,sosyalist sistemin çatırdayarak çökmesi,teknolojinin yanlış ya da yıkım için kullanılması,gerekse ülkemizdeki,siyasi,ekonomik ve ahlaki bunalım,bilim düşmanlarının saldırılarını kolaylaştırıcı bir zemin hazırlıyor. Bu konuda evrim kuramının da çok iyi anlaşılması ve anlatılması gerekiyor.2000 Mayıs ayında Sabancı Üniversitesi'ne konuk öğretim üyesi olarak gelen Harvard Ünversitesi'nden Andrew Berry, doğal seçimle rastlantı için güzel bir örnek verdi: "Bütün sarışın insanlar cilt kanserinden ölürse burada doğal seçim sürecinin işlediğini söyleyebiliriz;ama tüm sarışınların bir gemiye binip boğulması bir rastlantıdır." Ben iyi bir derleme yaptığıma inanıyorum,ustalara söz vererek bunu da sizinle paylaşmak istiyorum. Ayrıca Erzurumlu İbrahim Hakkı'nın Marifetname adlı eserinden uzun alıntılar veriyorum. Hayvan Deyip Geçmeyelim! Evrim Kuramına itiraz edenlerin en büyük kaygısı, atalarının herhangi bir hayvana bağlanamayacağı noktasındadır. Niye Hayvan? Çünkü, iddiaya göre evrim kuramının en temel noktalarından biri, insanın maymundan türediğidir. Darwin, aslında insanın maymundan geldiğini söylemedi. Darwin, bütün canlıların, birbiriyle akraba olduğunu söyledi. En yakın komşumuz, en yakın yeğenimiz maymunlardır; ama biz, maymunlardan gelmiyoruz; bize söyleyebildikleri kadarıyla maymunlar da bizim atamız olduğunu inkar ediyorlar ve bize bir yakınlık duymuyorlar! Onlar, kendi dünyalarını tercih ediyorlar! Hayvanoğlu Hayvan! Maymun sorununa döneceğim,ama önce genel olarak hayvanlarla ilgili birkaç eğlencelik yazacağım. Belediye otobüsünde mi, yoksa lüks bir baloda mı olmuş bilmiyorum; ama şu olay olmuş: Adamın biri, otobüsteki bir hanımefendinin ya da başka bir adamla dans eden hanımefendinin ayağına basmış... Hanımefendi, önce ses çıkarmamış. Ama adamın paldır küldür, hiç de dans etmeden sallandığını ve yeniden ayağına bastığını gördükten sonra: " Beyefendi, ayağıma basıyorsunuz. Biraz dikkat etsenize!" diye çıkışmış. Bizim maganda yine pek oralı olmamış. Bunun üzerine hanımefendi,sessizce, ama onun duyacağı şekilde "Hayvan!" demiş. Bizimki hayvanlığı da hiç üzerine almamış. Bunun üzerine hanımefendi öfkelenmiş. "Bakınız bey, bakınız! " Hayvan! dediysek, herıld(herhalde’nin kısaltılmışı ve İngilizcesi!) kuş, bülbül, serçe demek istemedik; ayı, öküz, domuz gibi bir şey demek istedik !" demiş. Ama söylentiye göre adam, bu nazik hanımefendiyi yine anlamamış! Bu öykü bana anlatılınca pek sıkılmıştım. Çünkü, pistlerdeki durumum, anlatılan “Anadolu Evladından” hiç de farklı değildi. Kadın, sanki bana konuşuyormuş gibi kıpkırmızı olmuştum. Bunun için , dansetmek mecburiyetinde bırakıldığım zamanlarda(!)pist alanın seyrelmesini dört gözle bekler(!) ve dans ederken de eşime ilk kez sarılıyormuşçasına sarılırım! Böylece hem dans eden çiftlerden, hem de komşuların rahatsız edici konuşmalarından uzak dururum! İnsanlar,genellikle hayvanları bir bütün olarak kendisinden aşağı yaratıklar olarak görür. Bazı insanlar,bazı insanları da aşağı yaratıklar olarak görür de konumuz şimdilik birincisi üzerine. Kızdığımız birine sık sık "hayvan oğlu hayvan " demez miyiz?Bu hayvanlıktan en çok nasibini alan hayvanlar eşek ile öküzdür. Oysa ikisi de insanların öyle çok kahırlarını çeker ki anlatamam. Bir de bunu ayıları ekleyebiliriz. Bu arada savaşçı bir kabile annesi oğlu için "benim kartal pençeli oğlum" der. Kızını pazarlayan(afedersiniz) gösterişçi anne şöyle demez mi: “Ay kardeş, kendi kızım diye söylemiyorum. Görüyorsun işte boy onda bos onda. Ceylan gibi kız. O görgüsüzler, benim ahu (ceylan) gözlü kızımdan daha güzelini nerede bulabilir?” Oğlunu pazarlayan (yine afedersiniz) bir anne ya da babanın “benim oğlum Aslan gibidir” derken, oğlunun Aslandan daha güçsüzlüğünün altını çizmez mi? Şimdi konumuza dönelim. Hayvanlarla bir ilgimiz ve ilişkimiz var mı? Anlattığım gibi var. Kartal var, köpek var, tazı var, kedi var, tavuk var... Şimdi ilginç bir soru: karalara önce bitkiler mi, yoksa hayvanlar mı çıktı? Umarım insanlık onurunuz incinmez, çünkü karalara bizden önce bitkiler çıkmış. Bitki dediysek, güller, sümbüller, kaynana dili değil belki; ama bitki işte... 400 milyon yıl önce karalara ilk olarak "bitkiler " çıktı. 350 milyon yıl önce ilk çift yaşamlı hayvanlar (amfibiler) göründü. 320 milyon yıl önce ilk sürüngenler arşınlamaya başladı karaları. Evrim Kuramının İlk Soruları Bu kuram, her çocuğun, her ergenin, her düşünen insanın yaşamı boyunca zaman zaman kendine sorduğu soruların yanıtını araştırır. Bu sorular ,hepimizin aklını kurcalayan sorulardır: Nereden geldik, nereye doğru gidiyoruz? İnsanoğlunun yaşamında yanıtını bilmek istediği soru böyle özetlenebilir. Ama biz yine de basit sorularla olayı deşmeye çalışalım: Bundan diyelim ki bin yıl, milyon yıl, milyar yıl önce de insan, insan mıydı, tavuk tavuk muydu, kedi kedi miydi? Çam ağacı çam ağacı mıydı?Yani canlılığın tarihinin “filmini” bugünden geriye doğru sarsak neler görebiliriz? Bu film, nereye kadar ve hangi bilgilerle geriye sarılabiliyor? Evrim Kuramı, çok basit olarak “hayvanlar ve bitkiler, bugünlere gelirken değişikliklere uğrayarak mı geldi; yoksa her şey, bir dahi vuruşuyla başladı ve hiç değişmeden sürüp gidiyor mu?” sorularına bilimin verdiği yanıtları kapsıyor. Doğal olarak bilimin verdiği yanıtlar deyince akan sular durmuyor ve bu konuda insan aklının çağdaş düşmanları da boş durmuyor; oldukça inceltilmiş biçimiyle bilime saldırılarını sürdürüyorlar. Bunun yalnız geri kalmış ülkelerde sürdürüldüğünü sanmayınız. En başta ABD olmak üzere,hemen tüm gelişmiş ülkelerde de bilimin düşmanları boş durmuyor. Evrim kuramına karşı yürütülen kampanya, ülkemizde özellikle 20. yy biterken doruk noktasına çıktı. Bunu basit bir inanç kayması olarak görmeyelim. Bu, yalnızca özgür düşünceye değil, başta tıp olmak üzere doğal bilimlere ve daha da geniş anlamıyla bilimsel felsefeye saldırıdır. Evrim kuramına saldıranların ilk ve ilkel saldırılarıyla konuya girmek istiyorum. Bu, maymun sorunudur. Maymun Sorunu: Ünlü Tartışma! İnsanın, “en uyumlunun yaşaması” ilkesiyle, daha ilkel canlılardan evrimleştiği hakkındaki Darwin kuramı, Türlerin Kökeni ’nin yayımlandığı 1859 yılından beri müthiş tepkiler almıştır. Özellikle 1860 Haziran’ında Darwin’i savunan biyolog T.H. Huxley ile Tanrı’yı savunan Oxford başpiskoposu Wilberforce arasında halka açık bir tartışma yapılıyor. Bu tartışmada Piskopos, Darwin’in tezinin çok saçma olduğunu savunuyor ve konuşmasını alaylı bir biçimde Huxley’in büyükanne tarafından mı yoksa büyükbaba tarafından mı maymundan geldiğini sorarak bitiriyordu. Huxley ise evrimin kanıtlarını ustaca ortaya koymuş ve atasının bir maymun olmasının, piskoposunki gibi entellektüel bir fahişe olmasından daha iyi olduğunu söyleyerek bitirmiştir. Bu sırada Lady Brewester baygınlık geçirmiş, dışarı taşınırken hakkın rahmetine kavuşmuştur.”(John Taylor, Kara Delik, e yayınları s: 39) Kaptan Fitzroy’un Kutsal Kitap’la uyumlu düşünceleri yolculuk süresince gittikçe daha da katılaştı. O, anlamaya çalışmamız gereken kimi şeler olduğuna inanıyordu;evrenin ilk kaynağı, bütün bilimsel araştırmaların erişimi dışında bulunması gereken bir giz olarak kalmalıydı. Fakat Darwin çoktandır bunu kabul etmekten çok uzaktı; Kutsal Kitap’a takılıp kalamazdı,onun ötesine geçmek zorundaydı. Uygar insan bütün soruların en can alıcısını-"biz nereden geldik?” sorusunu- sormaya, soruşturmalarını kendisini götürdüğü yere kadar götürmeye devam etmekle yükümlüydü. Bu tartışmaya bir son vermek mümkün olmayacaktı. Tartışma, biri bilimsel ve araştırmalara açık, öteki dinsel ve tutucu, karşıt iki görüşün 25 yıl sonra Oxford’da yapılan o sert toplantıdaki çatışmasının bir ön hazırlığıydı.” Ne var ki bir grup insan, yani Kilise, Darwin’in kuramına şiddetle karşı çıktı. Darwin’in Türlerin Kökeni adlı kitabının yayımlanması(1859) bilim ile din arasında sert bir tartışmaya yol açtı. Darwin’in çekingenliği kendisinin bu tartışmada yer almasını engelledi;ama evrimle ilgili kavgacı savunmalarıyla “Darwin’in Buldoğu” lakabını alan dostu Thomas Huxley’in sözünü sakınmak gibi bir özelliği yoktu. Huxley ile Piskopos Wilberforce arasındaki kavga, Ronald Clark’in Darwin biyografisinde şöyle anlatılır: “Britanya İleri Araştırmalar Kurumu’nun 1860 yazında Oxford’da yaptığı yıllık toplantıda[ Darwin’in kuramı konusundaki] kuşkular boşlukta kaldı. Kurum üyeleri 19. yy bilim tarihinin en parlak sahnelerinden birine tanık olacaklardı. Bu, Oxford Piskoposu Samuel Wilberforce ile Thomas Huxley’in bir tartışma sırasında karşılıklı atışmalarından oluşan bir sahneydi. Çağının öteki kilise adamları gibi Wilberforce da bilimsel bakımdan tam bir karacahildi.(s: 144). Tartışma beklendiği için salon tıka basa doluydu. Wilberforce’un, Huxley’in de daha sonra yazacağı gibi “birinci sınıf bir tartışmacı” olmak gibi bir ünü vardı: “kartlarını uygun oynasaydı evrim kuramını yeterince savunma şansımız pek olmazdı.” Wilberforce, akıcı ve süslü bir konuşmayla, kendisini yenilgiye uğratmak üzere olduğunu belirttiği Huxley’e övgüler düzdü. Ardından ona döndü ve “soyunun büyük annesi mi yoksa büyük babası tarafından mı maymundan geldiğini” öğrenmek istedi. Huxley rakibine döndü ve haykırdı: “Tanrı onu ellerime teslim etti.” “Eğer” dedi [kürsüden], “bana bir büyük baba olarak zavallı bir maymunu mu yoksa doğanın büyük bir yetenek ve güç bahşedip bunlarla donattığı;ama bu yetenekleriyle gücünü yalnızca birtakım eğlenceli sözleri ağırbaşlı bilimsel bir tartışma gibi sunmak amacıyla kullanan bir insanı mı yeğlersin? diye soracak olsalar, hiç duraksamadan tercihimin maymundan yana olduğunu söylerdim.” Huxley bildiği en güçlü darbeyle karşılık vermişti. Bir piskoposu küçük düşürmek,bundan bir ya da birkaç yüzyıl önce pek rastlanır bir şey değildi;hele halkın önünde, kendi piskoposluk bölgesinde küçük düşürmek neredeyse hiç görülmemişti. Dinleyiciler arasında oranın ileri gelenlerinden bir hanım şok geçirip bayıldı Dinleyicilerin çoğu alkışladı. Fakat Robert Fitzroy oturduğu yerden kalktı ve otuz yıl önce Darwin’le gemide yaptığı bir tartışmayı hatırlattı. Kutsal Kitap’ı Huxley’e salladı ve süslü sözlerle bütün doğruların kaynağının bu kitap olduğunu söyledi. Bu öykünün birinci elden bir anlatımı yoktur. Harvardlı biyolog Stephen Jay Gould diyaloğun çoğu bölümünü yaklaşık 20 yıl sonra Huxley’in kendisinin uydurduğu kanısındadır. Fakat bu konuşmalardan kimsenin bir kuşkusu olmadığı yollu bir dip notu da vardır. Huxley Wilberforce’a duyduğu nefreti 1873'e, Piskopos atından düşüp kafasını bir taşa çarparak öldüğü yıla dek sürdü. “Kafası” dedi Huxley bunun öğrenince kıs kıs gülerek “gerçeğe bir kez daha tosladı;ama bu kez sonuç ölümcül oldu." (Adrian Berry, Bilimin Arka Yüzü, TÜBİTAK yay, s: 137-146) Bozkurt Güvenç, olayı değişik sözlerle şöyle anıyor: Huxley soruyu ciddiye alıyor (oysa Darwin aldırmıyor) diyor ki: “Gerçeklere saygısız bir insan soyundan gelmektense, gerçeklere saygılı bir maymun soyundan geldiğimi kabul ederim.” Gazeteciler- o zaman telefon yok- hemen koşuyor, gazete yönetim merkezlerine “ Evrimciler, maymundan geldiklerini kabul ettiler” haberini yetiştiriyorlar. Tabi biz, 120 yıldır değerli dinleyenlerim, gazete haberleriyle Darwin’i ve bilimi yargılıyoruz. Fen fakültelerimizin biyoloji bölümleri dahil. Çünkü kimse, Darwin’in, Türlerin Kökenini, İnsanın Yücelişini okumuyor. Mesele, Darwin konusu, maymun meselesi değil. Dünyayı algılama meselesi. İşte bu konuda, yalnız biz değil, bütün dünyada büyük sorunlar var.” (Prof. Dr. Bozkurt Güvenç,TÜBA, Bilimsel Toplantı Serileri: 2, Bilim ve Eğitim s: 68) Maymun sorunu,maymunları bile rahatsız edecek kalitesizlikle reddediliyor. Neden mi? Size birileri “Efendim size dedenizin dedesi ve onun da dedesi hüdavendigar Murat han hazretlerinden selam ve muhabbetler getirdik. Sizin durumunuzu sorarlar. Sülalem aynı geleneklerle devam etmede midir? Yoksa bazı boylar birliğimizi bozmuş mudur?..” diye soruyor diyelim. Şimdi siz de bu soruyu yanıtlayın. Sanırım şöyle olabilir: “ Benim dedemin dedesinin dedesi Rumeli Beylerbeyi falanca beymiş. Ya da “benim bugünkü durumuma bakmayın. Bendeniz Fatih Sultan Mehmet Han hazretlerinin onüçüncü göbekten torunu olurum” diyebilirsiniz. Ve de torunluğa uygun görev isterim!...” Bu da sizin ne kadar köklü, ne kadar akıllı, ne kadar sabırlı, ne kadar alçakgönüllü(!) olduğunuzu gösterir. İLK İNSANLAR İnsan nasıl insan oldu? “Homo sapiens ’in dil, gelişmiş teknolojik beceriler ve ahlaki yargılara varabilmek gibi özel nitelikleri antropologları uzun zamandır hayranlığa sürüklüyor. Ama yakın zamanlarda antropolojide yaşanan en önemli değişikliklerden biri, bütün bu niteliklere karşın, Afrikalı insansımaymunlarla çok yakın bir bağlantımız olduğunu anlaşılmasıdır. Bu önemli görüş değişikliği nasıl gerçekleşti? Bu bölümde, Charles Darwin’in en eski insan türlerinin özel doğası hakkındaki fikirlerinin antropologları nasıl etkilediğini, yeni araştırmaların Afrikalı insansımaymunlarla evrimsel yakınlığımızı nasıl ortaya çıkardığını ve doğadaki yerimiz hakkında farklı bir bakış açısı geliştirmemizi gerektirdiğini tartışacağım. 1859'da Türlerin Kökeni adlı yapıtında Darwin, evrimin insanlar açısından ne anlama geldiği konusuna girmekten kaçınmıştı. Sonraki baskılara ise çekinceli bir cümle eklendi: “İnsanın kökeni ve tarihi aydınlatılacaktır.” Darwin bu kısa cümleyi, 1871'de yayınlanan İnsanın Türeyişi adlı kitabında ayrıntılandırdı. Hala çok hassas olan bir konuyu ele alarak, antropolojinin kuramsal yapısına iki sütun dikti. Bunlardan ilki, insanların ilk nerede evrildikleriyle (ona zamanında çok az kişi inanmıştı, oysa haklıydı), ikincisi ise, bu evrimin şekli ya da biçimiyle ilgiliydi... Darwin’in evrimimizin şekli hakkındaki görüşleri antropoloji bilimini birkaç yıl öncesine dek etkiledi ve sonra, yanlış olduğu anlaşıldı. Darwin, insanlığın beşiğinin Afrika olduğunu söylüyordu. Bu sonuca basit bir mantıkla varmıştı: Dünyanın her büyük bölgesinde hayatta olan memeliler, aynı bölgede evrilmiş türlerle yakın bağlantı içindedirler. Dolaysıyla, Afrikada bir zamanlar, goril ve şempanzelerle yakından bağlantılı ve günümüzde nesli tükenmiş olan insansımaymunlar yaşamış olabilir: bu iki tür insanın en yakın akrabaları olduğuna göre, ilk atalarımızın Afrika kıtasında yaşamış olma olasılığı, başka bir yerde yaşamış olmaları olasılığından daha yüksektir. Darwin’in bu satırları yazdığı sıralarda hiçbir yerde erken insan fosillerinin bulunmadığını unutmamalıyız; vardığı sonuç tamamen kurama dayandırılmıştı. Darwin’in zamanında bilinen tek insan fosilleri Avrupalı Neandertal insanına aitti ve bunlar, insan gelişiminin görece yeni bir aşamasını temsil ediyorlardı. Afrika'nın Sihiri Antropologlar, Darwin’in yorumundan hiç hoşlanmadılar; bunun en önemli nedenlerinden biri, tropik Afrika’ya sömürgeci gözüyle, küçümseyerek bakılmasıydı: Kara Kıta, Homo sapiens gibi soylu bir yaratığın kökeni için hiç de uygun bir yer olarak görülmüyordu. Yüzyıl başında Avrupa ve Afrika’da yeni insan fosillerinin bulunmasıyla birlikte, Afrika kökenli olma fikrine duyulan küçümseme arttı ve bu tutum onyıllarca sürdü.” Yazar(R.Leakey) 1931'de Camridge’deki hocalarına insanın kökenini Doğu Afrika’da aramayı planladığında kendisine Asya’ya yönelmesi istendi. “Bu olay, bilimcilerin mantık kadar duygularından da etkilenebildiklerini gösteriyor.”(s:16) Darwin’in İnsanın Türeyişi ’nde ulaştığı ikinci önemli sonuç, insanların önemli ayırıcı özelliklerinin-iki ayaklılık, teknoloji ve büyük bir beyin- birbirleriyle uyum içinde gelişmiş olmasıydı: Kollarının ve ellerinin serbest kalması ve ayakları üstünde sağlamca durabilmesi insan için bir avantaj olmuşsa... insanın ataları için daha dik ya da iki ayaklı hale gelmenin daha avantajlı olmaması için bir neden göremiyorum. Eller ve kollar bedenin tüm yükünü taşımak için kullanılıdıkça... ya da ağaçlara tırmanmaya uygun oldukça, silah yapmak ya da taş ve mızrakları hedefe atmak için gerekli şekilde gelişemezdi. Burada Darwin, alışılmadık hareket tarzımızdaki gelişimin, taştan silah yapımıyla doğrudan bağlantılı olduğunu savunmaktadır. Daha da ileri giderek bu evrim değişimlerini, insanlardaki, insansımaymunların hançere benzeyen köpekdişleriyle karşılaştırıldığında son derece küçük olan köpekdişlerinin kökeniyle ilişkilendirmiştir. İnsanın Türeyişi’nde şöyle demekteydi: “İnsanın ataları büyük olasılıkla, büyük köpekdişlerine sahiptiler; ama düşmanları ya da rakipleriyle savaşırken taş, sopa ya da diğer silahları kullanma alışkanlığını geliştirmeleriyle birlikte, çenelerini ve dişlerini daha az kullanmaya başladılar. Bu durumda çene ve dişler küçülecekti.” Silah yapabilen bu iki ayaklı yaratıklar Darwin’e göre, daha çok zeka gerektiren yoğun bir sosyal etkileşim geliştirdiler. Atalarımızın zekalarının gelişmesiyle birlikte, teknolojik ve sosyal gelişmişlik düzeyleri de yükseldi ve bu da, daha gelişmiş bir zeka gerektirdi. Böylece her yeni özellik, diğer özelliklerin gelişmesini sağladı. Bu bağlantılı evrimi hipotezi insanın kökeni konusunda açık seçik bir senaryo sunuyordu ve antropoloji biliminin gelişimine merkez oluşturdu. Bu senaryoya göre ilk insan türü, iki ayaklı bir insansımaymundan öte bir şeydi: Homo sapiens ’te takdir ettiğimiz özelliklerden bazılarına daha o zamandan sahipti. Bu öylesine güçlü ve akla yakın bir imgeydi ki, antropologlar uzun bir süre, bu imgenin etrafında inandırıcı hipotezler dokuyabildiler. Ama senaryo, bilimin ötesine geçti: İnsanların insansımaymunlardan evrimsel farklılaşmaları aniden ve çok eski bir dönemde gerçekleşmişse, bizimle doğanın geri kalan kısmı arasına büyük bir uzaklık girmiş demekti. Homo sapiens’in tamamen farklı bir yaratık olduğuna inananlar için bu bakış açısı son derece rahatlatıcıydı. Bu inanç hem Darwin’in döneminde hem de yüzyılımızda bilim adamları arasında oldukça yaygındı. Söz gelimi, 19.yy İngiliz doğa bilimcisi-ve Darwin’den bağımsız olarak doğal seçim kuramını yaratmış olan- Russel Wallace bu kuramı, insanlığın en çok değer verdiğimiz yönlerine uygulamak istemedi. İnsanları, yalnızca doğal seçimin ürünü olarak görülemeyecek denli akıllı, incelmiş ve gelişmiş buluyordu. İlkel avcı-toplayıcıların biyolojik açıdan bu özelliklere gereksinim duymayacaklarını ve dolaysıyla, doğal seçim sonucu gelişmiş olamayacaklarının düşünüyordu. İnsanların bu denli özel yaratıklar olmalarını doğaüstü bir müdahale sağlamış olmalıydı. Wallace’ın doğal seçim gücüne inanmaması, Darwin’i son derece rahatsız ediyordu. 1930'lar ve 1940'larda Güney Afrika’da gerçekleştirdiği öncü çalışmalarla Afrika’nın insanlığın beşiği olarak kabul edilmesine katkıda bulunan İskoç paleontolog Robert Broom da insanın ayrıcalıklı olduğuna inanıyordu. Homo sapiens ’in evrimin nihai sonucu olduğunu ve doğanın geri kalan kısmının insanın rahat etmesi için şekillendirilmiş olduğunu düşünüyordu. Wallace gibi Broom da türümüzün kökeninde doğaüstü güçler arıyordu. Wallace ve Broom gibi bilimciler, biri entellektüel ve diğeri de duygusal olmak üzere iki çatışan güçle savaşıyorlardı. Homo sapiens’in evrim süreci sayesinde doğadan geliştiği gerçeğini kabul etseler de, insanın tinselliğine ya da aşkın özüne dair inançları, onları evrim konusunda insanın ayrıcalığını kanıtlayan açıklamalar oluşturmaya yönlendiriyordu.(s:18) Darwin’in 1871'deki evrim “paketinde” böyle bir rasyonelleştirme vardı. Darwin doğaüstü müdahale aramıyordu gerçi, ama evrim senaryosu, insanları daha başlangıçtan itibaren insansımaymunlardan ayırıyordu. Darwin’in tezi yaklaşık on yıl öncesine dek(kitabın yazılış tarihi 1996) etkisini sürdürdü ve insanın ne zaman ortaya çıktığı konusunda önemli bir çatışma yaşanmasına neden oldu.Darwin’in bağlantılı evrim hipotezinin çekiciliğini göstermesi nedeniyle, bu çatışmayı kısaca anlatacağım. Çatışma aynı zamanda, hipotezin antropolojik düşünüşteki etkisinin sona ermesine de işaret eder. 1961'de, o dönemde Yale Üniversitesinde olan Elwyn Simons çığır açıcı bir bilimsel bildiri yayınlayarak, bilinen ilk insangil türünün Ramapithecus adı verilen küçük bir insansımaymun benzeri yaratık olduğunu savundu. O dönemde bilinen tek Ramapithecus fosil kalıntıları, Yale’den G. Edward Lewis adlı genç bir araştırmacının 1931'de Hindistan’da bulduğu üst çene parçalarıydı. Simons, yanak dişlerinin (azı dişleri ve küçük azı dişleri), insansımaymunların dişleri gibi sivri değil, düz olmaları açısından insanlardakilere benzediğini görmüştü. Köpek dişleri de insansımaymunlara göre daha kısa ve düzdü. Simons, eksik haldeki üst çenenin yeniden oluşturulması durumunda, şeklinin insanlardakine benzeyeceğini de iddia ediyordu; yani modern insansımaymunlardaki gibi “U” şeklinde değil, arkaya doğru hafifçe genişleyen bir kemer biçiminde. Cambridge Üniversitesi’nden İngiliz antropolog David Pilbeam bu dönemde Yale’de Simons’a katıldı ve birlikte, Ramapithecus çenesinin insansı olduğu iddia edilen anatomik özelliklerini tanımladılar. Ama anatomiden de öteye geçtiler ve yalnızca çene parçalarının güçlülüğüne dayanarak, Ramapithecus’un iki ayağı üstünde dik yürüdüğünü, avcılık yaptığını ve karmaşık bir sosyal ortamda yaşadığını öne sürdüler. Onalrın usavurumları Darwin’inki gibiydi: İnsansı olduğu varsayılan bir tek özelliğin (diş yapısı) varlığı, diğer özelliklerin de varolduğunu gösteriyordu. Sonuçta, ilk insangil türü olduğu varsayılan şey, kültürel bir hayvan- yani kültürsüz bir insanmaymundan çok, modern insanların ilkel bir değişkeni-olarak görülmeye başlandı. İlk Ramapithecus fosillerinin bulunduğu ve ardından, Asya ve Afrika’daki benzer keşiflerin yapılddığı tortular eskiydi. Dolaysıyla Simons ve Pilbeam, ilk insanın en az 15 milyon ve belki de 30 milyon önce ortaya çıktığı sonucuna vardılar ve antropologların büyük çoğunluğu bu görüşü kabul etti. Dahası, kökenin bu kadar eski olduğu inancı insanlarla doğanın geri kalan kısmı arasına büyük bir uzaklık koyarak, pek çok kişiyi rahatlatıyordu. 1960'larda Berkeley’deki California Üniversitesinden iki kimyacı Allan Wilson ve Vincent Sarich, ilk insan türlerinin ne zaman ortaya çıktığı konusunda çok farklı bir sonuca ulaştılar. Fosiller üstünde çalışmak yerine, yaşayan canlılarla Afrikalı insansımaymunlardaki bazı kan proteinlerinin yapısını karışlaştırdılar. Amaçları, insan ve insansımaymun proteinleri arasındaki yapısal fark düzeyini saptamaktı; mutasyon nedeniyle bu fark zaman içinde hesaplanabilir bir hızla artmış olmalıydı. İnsanlar ve insansımaymunrlar ne kadar uzun süre önce iki ayrı tür haline gelmişlerse, biriken mutasyon sayısı da o kadar fazla olacaktı. Wilson ve Sarich mutasyon hızını hesapladılar ve böylece , kan proteini verilerini bir moleküler saat olarak kullanabildiler. Bu saate göre ilk insanlar, yalnızca yaklaşık 5 milyon yıl önce ortaya çıkmış olmalıydılar; bu, egemen antropoloji kuramındaki 15 ile 30 milyon yıllık tahminle çarpıcı oranda çelişen bir bulguydu. Wilson ve Saricn’in verileri ayrıca, insanların şempanzelerin ve gorillerin kan proteinlerinin birbirlerinden aynı derecede farklı olduğunu gösteriyordu. Yani 5 milyon yıl önce gerçekleşen bir evrim olayı ortak bir atanın aynı anda üç ayrı yöne gitmesine neden olmuştu; bu bölünme, modern insanların yanısıra, modern şempanze ve modern gorillerin de gelişmelerini sağlamıştı.(s:20). Bu da çoğu antropolgun inançlarına aykırıydı. Geleneksel düşünceye göre şempanzelerle goriller birbirlerinin en yakın akrabalarıdır ve insanlarla aralarında büyük bir uzaklık vardır. Molekül verileri hakkındaki yorumların geçerli olması durumunda antropologlar, insanlarla insansımaymunlar arasında çoğunun inandığından daha yakın bir biyolojik ilişki olduğunu kabul etmek durumunda kalacaklardı. Çok büyük bir tartışmma doğdu ve antropologlarla biyokimyacılar birbirlerinin mesleki tekniklerini şiddetle eleştirmeye başladılar.Wilson ve Sarich’in vardıkları sonuç, molekül saatlerinin hatalı olduğu ve dolaysıyla, geçmişteki evrim olayları hakkında bir zaman saptamasının güvenilir olmayacağı iddiasıyla eleştiriliyordu. Wilson ve Sarich ise antropologların küçük ve parçalanmış anatomik özelliklere çok fazla önem verdiklerini ve dolaysıyla, geçersiz sonuçlara ulaştıklarını savunuyorlardı. Ben (R.Leakey) o dönemde Wilson ve Sarich’in hatalı olduklarını düşünerek, antropolog topluluğunun yanında yer almıştım. Bu tartışma on yılı aşkın bir süre boyunca devam etti ve bu dönem içinde Wilson’la Sarich ve birbirlerinden bağımsız başka araştırmacılar giderek daha çok sayıda yeni moleküler kanıta ulaştılar. Bu yeni verilerin büyük çoğunluğu, Wilson ve Sarich’in ilk tezlerin destekliyordu. Kanıtlar antropologların fikirlerini değiştirmeye başladı, ama bu yavaş bir değişimdi. Sonunda 1980'lerin başlarında Pilbeam ile ekibinin Pakistan’da ve Londra Doğa Tarihi Müzesinden Peter Andrews ’un Türkiye’de daha eksiksiz durumda Ramapithecus benzeri fosiller bulmaları, sorunun çözüme kavuşmasını sağladı. İlk Ramapithecus fosilleri gerçekten de bazı yönlerden insana benziyorlardı; ama bu tür, insan değildi. Aşırı derecede parçalanmış kanıtları temel alarak bir evrim bağlantısı oluşturma işi çoğu kişinin sandığından çok daha zordur ve dikkatsiz davrananların düşebileceği pek çok tuzak vardır. Simons ve Pilbeam bu tuzaklardan birine düşmüşlerdi: Anatomik benzerlik, mutlaka evrimsel bağlantı olduğu anlamına gelmez.(s:21) Pakistan ve Türkiye’de bulunan daha eksiksiz durumdaki örnekler, insansı olduğu varsayılan özelliklerin yapay olduğunu gösterdi. Ramapithecus’ un çenesi kemerli değil, V şeklindeydi; bu ve diğer özellikler, ilkel bir insansımaymunların türü olduğunu gösteriyordu (modern insansımaymunların çenesiU şeklindedir). Daha sonraki akrabası orangutan gibi, Ramapithecus da ağaçlarda yaşıyordu ve ne iki ayaklı bir insansımaymun ne de ilkel bir avcı-toplayıcıydı. Yeni kanıtlar, Ramapithecus’un insangillerden olduğuna inanan en inatçı antropologları bile yanıldıklarına ve Wilson’la Sarich’in haklı olduklarına ikna etmişti(s:22): İnsan ailesinin kurucu üyesi olan ilk iki ayaklı insansımaymun, sanıldığı kadar eski bir dönemde değil, görece yakın bir zamanda ortaya çıkmıştı. Wilson ve Sarich ilk yayınlarında, 5 milyon yıl öncesini bu olayın tarihi olarak göstermişlerdi; ama günümüzde moleküler kanıtlar, tarihi yaklaşık 7 milyon yıl öncesine atıyor.Ancak insanlarla Afrikalı insansımaymunlar arasında olduğu öne sürülen biyolojik yakınlık fikrinden vazgeçilmedi. Hatta bu ilişki, öne sürüldüğünden de yakın olabilir. Kimi genetikçilerin, molekül verilerinin, insanlarla şempanzeler ve goriller arasında birbirine eşit üç yollu bir ayırma işaret ettiğini düşünmelerine karşın, başka şekilde düşünenler de var. Onlara göre insanlar ve şempanzeler birbirlerinin en yakın akrabalarıdır ve gorillerle aralarındaki evrimsel uzaklık danha fazladır. Ramapithecus olayı antropolojiyi iki şemkilde değiştirmişti. İlk olarak, ortak bir anatomik özellikten ortak bir evrimsel bağlantı çıkarmanın tehlikelerini gösterdi. İkinci olarak, Darwinci “paket”e körü körüne bağlı kalmanın budalalık olduğunu kanıtladı. Simons ve Pilbeam köpek dişinin şeklini temel alarak, Ramapithecus’a eksiksiz bir yaşam tarzı atfetmişlerdi: bir insangil özelliği bulunduğunda, bu türden tüm özelliklerin de bulunduğu varsayılıyordu. Ramapithecus’un insangil statüsünü yitirmesinin sonucunda, antropologlar Darwin paketinden kuşku duymaya başladılar. Bu antropolojik devrimin gelişimini izlemeden önce, ilk insangil türünün nasıl ortaya çıktığını açıkmlamak için çeşitli dönemlerde öne sürülmüş bazı hipotezlere de kısaca göz atmalıyız. Popülerlik kazanan her yeni hipotezin, döneminin sosyal iklimini yansıtması çok ilginç bir nokta. Sözgelimi Darwin, taş silahların geliştirilmesinin, teknoloji, iki ayaklılılık ve beyin boyutunun büyümesini içeren evrim paketinin başlangıcında önemli olduğunu düşünmüştü(s:23) Hipotez hiç kuşkusuz, yaşamın bir savaş olduğuna ve ilerlemenin girişimcilik ve çabayla sağlandığına dair yaygın fikri yansıtıyordu. Victoria çağının bu etosu, bilime işlemiş ve insan evrimi de dahil olmak üzere evrim sürecine bakış açısını belirlemişti. Yüzyılımızın ilk on yıllarında, Edward dönemine özgü iyimserliğin en enerjik günlerinde, bizi biz yapan şeyin beyin ve düşünce olduğu söylendi. Bu yaygın sosyal dünya görüşü antropolojide, insan evrimine başlangıçta iki ayaklılığın değil, beynin büyümesinin ivme kazanrdırdığı fikrinde ifade buldu. 1940'larda dünya, teknolojinin büyüsüne ve gücüne kapıylmışı; dolaysıyla ,”Alet Yapan Adam” hipotezi popülerlik kazandı. Londra Doğa Tarihi Müzesi’nden Kenneth Oakley’in öne sürdüğü bu hipotezde-silah değil- taş alet yapımı ve kullanımının evrimimiz için gerekli dürtüyü sağladığı savunuluyordu. Ve dünyanın İkinci Dünya Savaşının gölgesine girdiği dönemlerde, insanlarla insansımaymunlar arasındaki daha karanlık bir fark vurgulanmaya başlandı: bireyin kendi türüne karşı şiddet uygulaması. İlk kez Avusturalyalı anatomi bilimci Raymond Dart’ın öne sürdüğü “Katil Maymunadam” fikri, belki de savaşta yaşanan korkunç olayları açıklıyor (ya da hatta, mazur gösteriyor) olması nedeniyle, yaygın kabul gördü. 1960'larda antropologlar, insan kökeninin anahtarı olarak avcı-toplayıcı yaşam tarzına yöneldiler. Pek çok araştırma ekibi, özellikle Afrika’da olamak üzere, teknolojik açıdan ilkel modern insan nüfularını inceliyorlardı. Bunların arasından en kayda değerlerden biri (hatalı olarak Bushmen de denen! Kung San halkıydı. Burada doğayla uyum içinde, doğayı karmaşık yöntemlerle kullanan ve doğaya saygı gösteren bir halk imgesi ortaya çıktı. Bu insanlık görüşü dönemin çevreciliğiyle uyum içindeydi; ama antropologlar, karma avvcıllık ve toplayıcılık etkonomisinin karmaşıklığından ve ekonomik güvenliğinden de etkilenmişlerdi. Yine de asıl üstünde durulan avcılıktı. 1966'da Chicago Üniversitesinde, “Avcı Adam” başlıklı önemli bir antropoloji konferansı gerçekleştirildi.(s:24) Toplantıya egemen olan akım oldukça yalındı: İnsanı insan yapan, avcılıktır. Teknolojik açıdan ilkel toplumlarda avcılık genellikle, erkek sorumluluğudur. Dolaysıyla, 1970'lerde kadın sorunu konusundaki bilincin gelişmesiyle birlikte, insanın kökenine dair bu erkek merkezli açıklamanın sorgulanmaya başlanması son derece normaldi. “Toplayıcı Kadın” olarak bilinen alternatif bir hipotezde, tüm primat türlerindeolduğu gibi, toplumun merkezinin dişiyle çocukları arasındaki bağ olduğu savunuluyordu. Karmaşık bir insan toplumunun oluşturulmasını, teknoloji yaratan ve herkes tarafından paylaşılmak üzere (en başta gece) yiyecek toplayan insan dişilerinin insayatifi sağlamıştı. Ya da öyle olduğu savunuluyordu. Bu hipotezler insan evrimini asıl başlatan şey konusunda farklı fikirler getirmekle birlikte, hepsi de Darwin’in değer verilen belli insan özellikleri paketinin daha ilk baştan oluşmuş olduğunu söylüyorlardı: Hala, ilk insangil türünün belli bir düzeyde iki ayaklılık, teknoloji ve büyük beyin özelliklerine sahip olduğu düşünülüyordu. Dolaysıyla insangiller, daha başlangıçtan itibaren kültürel yaratıklardı; bu nedenle de, doğanın geri kalan kısmından farklıydılar. Oysa son yıllarda bunun doğru olmadığını anlamaya başladık. Arkeolojik kalıntılarda, Darwinci hipotezin doğru olmadığını gösteren sağlam kanıtlar görülüyor. Darwin paketi doğru olsaydı, arkeolojik lkalıntılarda ve fosil kalıntılarında iki ayaklılığa, teknolojiye ve büyük beyine dair kanıtları aynı anda görürdük. Ama görmüyoruz. tarihöncesi kalıntılarının tek bir yönü bile, hipotezin yanlış olduğunu göstermeye yetiyor: Taş alet kalıntıları. Çok enders olarak fosilleşen kemiklerin tersine, taş aletlerin yok olması neredeyse olanaksızdır. Dolaysıyla, tarihöncesi kalıntılarının büyük bölümünü taş aletler oluşturur ve en başından itibaren teknolojinin gelişimi bu aletlere dayanılarak yeniden oluşturulur (s:25) Bu tür aletlerin ilk örnekleri-çakıl taşlarından birkaç yonga çıkarılarak yapılan kaba yongalar, kazıma araçları ve baltalar- yaklaşık 2.5 milyon yıl önce ortaya çıkar. Molekül kanıtları doğruysa ve ilk insan türü yaklaşık 7 milyon yıl önce ortaya çıktıysa, atalarımızın iki ayaklı olmalarıyla taş alet yapmaları arasında yaklaşık 5 milyon yıl geçmiş olmalı. İki ayaklı bir insansımaymun yaratan evrim gücü her neyse, alet yapma ve kullanma becerisiyle bağlantılı değildi. Ama pek çok antropolog, 2.5 milyon yıl önce teknolojinin gelişmesinin, beyindeki büyümeyle aynı döneme denk geldiğine inanıyor. Beyindeki büyümeyle teknolojinin, insanın kökeniyle aynı zamanda oluşmadığının anlaşılması, antropologları yaklaşımlarını yeniden düşünmeye zorladı. Sonuçta yeni hipotezler, kültürden çok biyoloji terimleriyle oluşturuldu. Ben bunu, mesleğimizdeki sağlıklı bir gelişme olarak görüyorum; özellikle de fikirlerin, diğer hayvanların ekolojisi ve davranışı hakkında bildiklerimizle karşılaştırılarak sınanmasını sağladığı için. Bu yaklaşımda, Homo sapiens ’in pek çok özel niteliğe sahip olduğunu yadsımamız gerekmiyor. Bu niteliklerin gelişimini, tamamen biyolojik bir bağlamda inceliyoruz. Bu anlayış oluştuktan sonra, antropolgun insanın kökenlerini saptama işi yeniden iki ayaklılığın kökeni üzerinde yoğunlaştı. Evrimsel dönüşüm, bu tek olaydan soyktlandığında bile (ABD’deki) Kent Eyalet Üniversitesi’ nden anatomi bilimci Owen Lovejoy’un da belirttiği gibi, önemsiz değildir: Lovejoy, 1988'de yazdığı popüler bir makalede, “İki ayaklılığa geçiş, evrim biyolojisinde görebileceğiniz en çarpıcı değişimlerden biridir” demişti. “Kemiklerde, kemiklere güç sağlayan kasların düzeninde ve kollarla baca değişimler görülmektedir.” İnsanlarla şempanzelerin leğen kemiklerine bakmak bu gözlemi doğrulamaya yetiyor: Leğen insanlarda kısa ve kutu gibi, şempanzelerdeyse uzundur. Kol ve bacaklarla gövdede de önemli farklılıklar vardır. İki ayaklılığın gelişimi önemli bir biyolojik dönüşüm olmaktan öte, aynı zamanda önemli bir uyarlanma dönüşümüdür. Önsözde de savunduğum gibi, iki ayaklı hareket öylesine önemli bir uyarlanmadır ki, tüm iki ayaklı insansımaymunlara “insan” demekte haklıyız. Bu, ilk iki ayaklı insansımaymun türünün belli bir düzeyde teknolojiye, gelişmiş bir zekaya ya da insanlığın kültürel niteliklerine sahip olduğu anlamına gelmiyor.Bu niteliklere sahip değildi. Ben-kolların günün birinde ellerin kullanılabileceği şekilde serbest kalmasını sağlayan- iki ayaklılık uyarlanmasının son derece önemli bir evrim potansiyeli taşıdığını ve bu nedenle öneminin terminolojimizde yer alması gerektiğini söylüyorum. Bu insanlar bizim gibi değillerdi; ama iki ayaklılık uyarlanması olmasa bizim gibi olamazlardı. Bir Afrikalı insansımaymunda bu yeni hareket şeklinin gelişmesini sağlayan evrim faktörleri nelerdir? İnsanın kökenine dair popüler imgelerde çoğunlukla, ormanı terk edip açık savanlara yönelen insansımaymun benzeri bir yaratık görürüz. Bu, kuşkusuz çarpıcı bir imge olsa da, Harvard ve Yale üniversitelerinden Doğu Afrika’nın pek çok bölgesinde toprak kimyasını inceleyen araştırmacıların da yakın zamanlarda kanıtladıkları gibi, kesinlikle yanlıştır. Büyük göçebe sürülerin dolaştığı Afrika savanları, oldukça gençtir; 3 milyon yıldan daha az bir süre önce, ilk insan türünün ortaya çıkmasından uzun süre sonra gelişmişlerdir. 15 milyon yıl öncesinin Afrikasına bakarsak, batıdan doğuya uzanan ve aralarında çeşitli maymun ve insansımaymun türlerinin de bulunduğu pek çok primata barınaklık eden bir orman örtüsü görürüz. Günümüzün tersine o dönemde insansımaymun türlerinin sayısı, maymun türlerinin sayısından çok daha fazlaydı. Ama sonraki birkaç milyon yıl içinde bölgede ve sakinlerinde çarpıcı değişiklikler yaratacak olan jeolojik güçler gelişmekteydi(s:27). Kıtanın doğu kısmında yerkabuğu, Kızıl Deniz’den günümüzün Etiyopya, Kenya ve Tanzanya’sından Mozambik’e doğru bir hat halinde yarılmaktaydı. Sonuçta Etiyopya ve Kenya’da toprak kabardı ve 3000 metreyi aşkın yükseklikte geniş dağlık alanlar oluştu. Bu büyük kubeler kıtanın topografyasından öte, iklimini de değiştirdi. Eski tekdüze batıdan-doğuya hava akışını bozan kubbeler, doğuda kalan toprakları yağış alanının dışında bırakarak ormanları beslenme kaynaklarından yoksun bıraktılar. Aralıksız ağaç örtüsünün bölünmeye başlamasıyla birlikte orman parçacıklarından, ağaçlık alanlardan ve çalılıklardan oluşan mozaik benzeri bir çevre oluştu. Ama açık otluk alanlar hâlâ enderdi. 12 milyon yıl önce süregiden tektonik güçler çevreyi daha da değiştirdi ve kuzeyden güneye doğru uzanan uzun, dolambaçlı bir vadi oluştu: Büyük Yarık Vadisi. Bu vadinin ortaya çıkışı iki biyolojik etki yaratmıştır: hayvan topluluklarına doğudan batıya uzanan zorlu bir engel yaratmakta ve zengin bir ekolojik koşullar mozayiğinin gelişmesini teşvik etmektedir. Fransız antropolog Yves Coppens, doğu-batı bariyerinin, insanlarla insansımaymunların birbirlerinden ayrı olarak evrilmesinde büyük önem taşıdığına inanıyor. “Aynı atadan gelen (insan) ve (insansımaymun) toplulukları koşulların etkisiyle... ayrıldılar. Bu ortak ataların batıdaki torunları, yaşama uyarlanmalarını nemli, ağaçlık ortamlarda sürdürdüler; bunlar (insansımaymular)dır. Aynı ortak ataların doğudaki torunlarıysa açık bir çevredeki yeni yaşamlarına uyarlanmak için yepyeni bir repertuar yarattılar: Bunlar(insanlar)dır.” Coppens bu senaryoya “Doğu Yakasının Hikayesi” adını veriyor. Vadinin serin, ormanlık platolar içeren çarpıcı dağlık alanları ve sıcak, kurak alanlara 1000 metre irtifadan birden iniveren dik bayırları vardır. Biyologlar bu tür, çok sayıda farklı habitat sunan mozaik çevrelerin evrimsel yeniliği teşvik ettiğini fark ettiler. Bir zamanlar yaygın ve birbirine benzer olan bir (s: 29) türün toplulukları birbirlerinden ayrılabilir ve doğal seçim sürecinin yeni etkilerine maruz kalabilirler. Bu, evrimsel değişim reçetesidir. Böylesine bir değişim kimi zaman, yaşama uygun çevrelerin yok olmasıyla, yok oluşa uzanır.Afrikalı insansımaymunların çoğ u bu kader yaşadı; günümüze yalnızca üç tür kalabildi: goril, bayağı şempanze ve cüce şempanze. Ama çoğu insansımaymun türünün çevre değişiminden olumsuz etkilenmesine karşın, içlerinden biri, hayatta kalmasını ve gelişmesini sağlayacak yeni bir uyarlanma şansını yaşadı. Bu, ilk iki ayaklı insansımaymundu. İki ayaklılık hiç kuşkusuz, değişen koşullarda hayatta kalması için önemli avantajlar sağlamıştı. Antropologların görevi, bu avantajların neler olduğunu bulmaktır. Antropologlar iki ayaklılığın insan evrimindeki önemini genellikle iki şeklide değerlendirirler:Bir düşünce, ön ayakların serbest kalarak taşıma özelliği kazanmasını vurgular; diğer düşünceyse, iki ayaklılığın enerji açısından daha etkin ir hareket şekli olması üzerinde durur ve taşıma yeteneğini yalnızca dik duruşun raslantısal yan ürünlerinden biri olarak görür. Bu iki hipotezden ilkini, Owen Lovejoy öne sürdü ve 1981'de Science ’taki önemli bildiride yayımlanmıştır. Lovejoy’a göre iki ayaklılık etkin olmayan bir hareket şeklidir ve dolaysıyla taşıma amacıyla geliştirilmiş olmalıdır. Taşıma yeteneği iki ayaklı insansımaymunlara, diğer insansımaymunlara göre nasıl bir rekabet avantajı sunmuş olabilir? Evrimsel başarı, sonuçta, hayatta kalacak nesiller üretmeye bağlıdır ve Lovejoy’a göre yanıt, bu yeni yeteneğin erkek insansımaymunlara, dişi için yiyecek toplayarak üreme oranını artırma fırsatını sağlamasıdır. Lovejoy, insansımaymunların yavaş ürediklerini ve dört yılda bir tek yavru yaptıklarını vurgular. İnsan dişileri de daha çok enerjiye-yani daha çok yiyeceğe- ulaşabilmeleri durumunda daha çok nesiller üretebilirler. Erkeğin dişi ve yavruları için yiyecek toplayarak dişiye daha çok enerji sağlaması durumunda dişi, üreme çıktısını artırabilecektir.(s:30) Erkeğin bu eyleminin, bu kez sosyal alanda olmak üzere, bir diğer biyolojik sonucu daha olacaktır. Erkeğin kendi çocuklarını ürettiğine emin olmadıkça dişiyi beslemesinin Darwinci açıdan erkeğe yararlı olmaması nedeniyle Lovejoy, ilk insan türünün tekeşli olduğunu ve üreme başarısını artırıp diğer insansımaymınlara baskın gelme yöntemi olarak çekirdek ailenin ortaya çıktığını öne sürdü. Bu tezini başka biyolojik benzetmelerle destekledi. Sözgelimi, primat türlerinin çoğunda erkekler, mümkün olduğunca çok dişi üzerinde cinsel denetim kazanmak için birbirleriyle rekabet eder. Bu süreç sırasında genellikle birbirleriyle dövüşürler ve silah olarak kullanabilecekleri büyük köpek dişleri vardır. Gibonlar erkek-dişi çiftleri oluşturmak gibi ender rastlanan bir özellik gösterirler ve - her halde birbirleriyle kavga etmeleri için bir neden olmamasından dolayı- erkeklerin köpek dişleri küçüktür. Erken insanlarda köpekdişlerinin küçük olması Lovejoy’a göre, gibonlar gibi erkek-dişi çiftleri oluşturduklarının kanıtı olabilir. Yiyecek sağlama düzenlemesinin sosyal ve ekonomik bağları da beynin büyümesini sağlayacaktır. Lovejoy’un büyük ilgi ve destek gören hipotezi, kültürel değil temel biyolojik konulara hitap etmesi nedeniyle güçlürün. Ama zayıf noktaları da vardır; öncelikle, teknolojik açıdan ilkel halklarda tekeşlilik yaygın bir sosyal düzenleme değildir.(Bu tür toplumların yalnızca yüzde 20'si tekeşlidir). Hipotez bu nedenle, avcı toplayıcıların değil, Batı toplumunun bir özelliğine dayandığı iddiasıyla eleştirilmektedir.belki de bundan daha önemli bir eleşiri ise, bilinen en erken insan türlerinde erkeklerin, dişilerden yaklaşık iki kat büyük olmalarıdır. Beden boyutundaki iki biçimlilik (dimorfizm) olarak bilinen bu büyük farklılık, incelenen tüm primat türlerinde çokkarılılıkla ya da erkeklerin dişilere ulaşmak için aralarında rekabet etmeleriyle çakışır; tekeşil türlerde iki biçimliliğe rastlanmaz. Bence bu gerçek bile, umut verici bir kuramsal yaklaşımı çökertmeye yetmektedir ve köpeksdişlerinin küçük olbsanıa tekeşlilikten (s: 31) başka bir açıklama aranmalıdır. Belki de yiyecekleri çiğneme mekanizması, kesmeden çok öğütme hareketini gerektiriyordu; köpek dişlerinin büyük olması bu hareketi zorlaştıracaktı. Lovejoy’un hipotezi günümüzde, on yıl öncesine göre daha az destek görmektedir. İkinci önemli iki ayaklılık kuramı, kısmen basitliği sayesinde çok daha imna edicidir. Davis, California Üniversitesinden antropolog Peter Rodman ve Henry McHenry’nin öne sürdükleri hipotezde, iki ayaklılığın daha etkin bir hareket şekli sunması nedeniyle, değişen çerre koşullarında daha avantajlı olduğu savunulur. Ormanların küçülmesiyle birlikte ağaçlık habitatlardaki meyve ağaçalrı gibi yiyecek kaynakları, klasik insansımaymunların etkin şekilde yararalanamayacakaları kadara dağınıktır. Bu hipoteze göre, ilk iki ayaklı insansımaymunlar yalnızca hareket şekilleriyle insandırlar.Diyetlerinin değil, yalnızca yiyecek toplama şekillerinin değişmiş olması nedeniyle elleri, çeneleri ve dişleri insansımaymunlardaki gibi kalmıştır. Pek çok biyolog bu düşünceyi başlangıçta olanaksız görmüştür; Harvard Ünivresitesi'nden araştırmacılar yıllar önce, iki ayak üstünde yürümenin dört ayak ütünde yürümekten daha az etkin olacağını göstermişlerdi. (kedisi ya da köpeği olanlar için bu hiç de şaşırtıcı bir durum değil; her iki hayvan da sahiplerini utandıracak derecede daha hızlı koşar.) Ama Harvard araştırmacıları insanlardaki iki ayaklılığın etkinliğini at ve köpeklerdeki dört ayaklılığın etkinliğiyle karşılaştırmışlardı. Rodman ve McHenry, karşılaştırmanın insanlarla şempanzeler arasında yapılması gerektiğini vurguladılar. Bu karşılaştırma yapıldığında, insanlardaki iki ayaklılığın şempanzelerdeki dört ayaklılıktan çok daha etkin olduğu görülüyor. Dolaysıyla, iki ayaklılık yararına bir doğal seçim gücü olarak enerji etkinliği tezinin akla yatkın olduğu sonucuna vardılar. İki ayaklılık evrimin teşvik eden, bir yandan avcıları izlerken bir yandan da yüksek otların üstünden bakabilme ve gündüz saatlerinde yiyecek toplarken serinleyebilmek için daha (s: 32) etkin bir duruşa geçme zorunlulukları gibi başka etkenler de olduğu öne sürüldü. Ben tüm bu düşüncelerin arasında en inandırıcısının, sağlam bir biyolojik temeli olması ve ilk insan türlerinin evrildiği dönemde gelişen ekolojik değişimlere uyması nedeniyle, Rodman ve McHenry’ninki olduğunu düşünüyorum. Bu hipotez doğruysa, ilk insan türünün fosillerini bulduğumuzda, hangi kemikleri bulduğumuza bağlı olarak, bu fosillerin ilk insana ait olduğunu fark edemeyebiliriz. Leğen ya da bacak kemiklerini bulmamız durumunda iki ayaklı hareket şekli görülür ve “insan “ diyebiliriz. Ama kafatasının ve çenenin bazı parçalarını ya da bazı dişleri bulmamız durumunda bunların bir insansımaymuna ait olduğunu düşününebilirz. Bunların iki ayaklı bir insansımaymuna mı, yoksa klasik bir insansımaymunna mı ait olduğunu nasıl anlayacağız? Bu, son derece heyecan verici bir savaşım. İlk insanların davranışlarını gözlemek için 7 milyon yıl öncesinin Afrika’sına gidebilseydik, insanların davranışlarını inceleyen antropologlardan çok, maymun ve insansımaymunların davranışlarını inceleyen primatologlara tanıdık gelecek bir modelle karışlaşırdık. İlk insanlar modern avcı-toplayıcılar gibi göçmen gruplarda aile toplulukları olarak yaşamaktan çok, büyük olasılıkla, savan babunları( habeş maymunları) gibi yaşıyorlardı. Yaklaşık otuz bireyden oluşan gruplar geniş bir arazide koordinasyon içinde yiyecek avına çıkıyor ve geceleri tepeler ya da ağaç kümeleri gibi uygun uyku yerlerine dönüyorlardı. Grubunu büyük bölümünü yetişkin dişilerle çocukları oluşturuyordu ve aralarında yalnızca birkaç yetişkin erkek bulunuyordu. Erkekler sürekli çiftleşme olanakları arıyor ve egemen bireyler daha başarılı oluyordu. Yetişkinliğe erişmemiş ya da düşük seviyelerdeki erkekler, grubun ancak çevresinde er alıyor ve kendi başlarına yiyecek avına çıkıyorlardı. Grubun bireyleri iki ayaklı yürümeleriyle insani bir özellik taşıyor, ama (s: 33) savan primatları gibi davranıyorlardı. Önlerinde, 7 milyon yıl sürecek ve ileride de göreceğimiz gibi son derece karmaşık ve kesin olmayan bir evrim modeli vardı. Çünkü doğal seçim uzun vadeli bir hedefe doğru değil, anlık şartlara göre işler. Homo sapiens sonuçta, ilk insanların torunu olarak ortaya çıktı; ama bunun kaçınılmaz bir gelişme olduğu da söylenemezdi. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim s:15-34 ) Yaşamın Gizi Kökleri 19. yy’a dayanan Evrim Kuramı, gerçekte 20. yy’ın geliştirilen büyük kuramlarından biridir. İnsanın kendi yapısını araştırmaya yönelmesinin bilimsel bir niteliğe bürünmesi oldukça yenidir. Biyoloji, genç bir bilimdir. Biyoloji, özellikle Evrim Kuramı ile genç bir bilimin büyük kuramlar üretebileceğini kanıtladı. Nobel Ödüllü(1965) bilim adamı Jacques Monod Rastlantı ve Zorunluluk adlı eserinde şöyle diyor: “ Biyolojinin bilimler arasındaki yeri, bir bakıma merkezi, bir bakıma da ikincil önemdedir. İkincildir, çünkü canlılar dünyası bilinen evrenin pek önemsiz ve “özel” bir bölümü olduğuna göre, canlıların irdelenmesiyle, canlılar dünyasının dışına da uygulanabilecek genel yasalara varılamaz gibi görünür. Fakat bütün bilimlerin son amacı, eğer benim sandığım gibi, insanla evren arasındaki bağıntıyı aydınlatmaksa, o zaman biyolojiye merkezi bir yer tanımak gerekir; çünkü biyoloji, bütün bilim kolları arasında, henüz “insanın doğası” sorunun metafizik terimler kullanılmadan ortaya konması olanaksızken, çözülmesi gereken sorunların yüreğine en dolaysız yoldan girmeye çalışanıdır. Bu nedenle biyoloji, insan için bilimlerin en anlamlısıdır; felsefe, din, ve politika gibi bütün alanlarda temelden sarsılmış ve açıkça yaralı olan modern düşüncenin biçim kazanmasında, özellikle Evrim Kurramı’nın ortaya çıkışıyla, kuşkusuz bütün öteki bilimleri aşan katkıları olmuştur. Ancak, 19. yy’ın sonlarından bu yana biyolojinin bütününe egemen olmakla birlikte ve fenomeolojik açıdan geçerliliğine ne denli inanılmış olursa olsun, Evrim Kuramı, kalıtımın fiziksel bir kuramı geliştirilmedikçe yine askıda kalıyordu. Bu sonuca ulaşılması ise, klasik genetiğin bütün başarılarına karşın, otuz yıl öncesine dek boş bir kuruntu gibi görünüyordu. Oysa bugün, kalıtım yasası molekül kuramının getirdiği şey budur. Burada “kalıtım yasası kuramı”nı yalnızca kalıtımsal gereçlerle onların taşıdığı bilginin kimyasal yapısına ilişkin kavramlar olarak değil, ayrıca bu bilginin fizyolojik ve morfogenetik anlatımının moleküler düzeneğini de içerecek biçimde, geniş anlamıyla kullanıyorum. Böyle tanımlandığında kalıtım yasası kuramı biyolojinin temel kuralını oluşturur Doğal olarak bu, organizmaların karmaşık yapı ve işlevlerinin bu kuramdan çıkarılabileceği ya da bunların her zaman doğrudan moleküler düzeyde çözümlenebileceği anlamına gelmez.(Kimyanın evrensel temelini kuşkusuz kuantum kuramının oluşturmasına karşın, kimyadaki her şey bu kurama göre ne bilinebilir, ne çözülebilir). Fakat yasanın moleküler kuramı günümüzde (kuşkusuz ileride de) biyoloji alanındaki her şeyi önceden bilip çözemese de daha şimdiden canlı sistemlerin genel bir kuramını oluşturuyor. Moleküler biyolojinin ortaya çıkışından önce, bilimi alanında böyle bir şey yoktu. O zamanlar “yaşam gizi”, ilkesi gereği ulaşılamaz görünürdü. Günümüzde bu giz büyük ölçüde açıklanmıştır. Öyle görünüyor ki bu önemli olay, kuramın genel anlamı ve kapsamı uzmanlar dışında da anlaşılıp değerlendirilebildiği zaman, modern düşüncede ağırlığını büyük ölçüde duyuracaktır. Bu denemin buna yardımcı olacağını umuyorum. Gerçekten ben, modern biyolojinin kavramlarının, kendilerinden çok “biçim”lerini açığa çıkarmaya, düşüncenin başka alanlarıyla mantıksal bağlantılarını göstermeye çalıştım. Günümüzde bir yapıtın adında bilim adamının, “doğal” nitemiyle birlikte de olsa, “felsefe” sözcüğünü kullanması tehlikelidir. O yapıtı, bilim adamlarının güvensizlikle, filozofların ise olsa olsa bir gönül indirmeyle karşılayacakları önceden görülebilir, Tek, fakat haklı olduğuna inandığım bir mazaretim var: Bilim adamlarına düşen ve bugün her zamankinden daha çok kendini duyuran ödev, kendi bilim kollarını çağdaş kültürün bütünü içinde değerlendirmek, onu yalnız teknik bilgilerle değil, aynı zamanda bilimin kazandırdığı, insansal açıdan önemli gördükleri düşüncelerle de zenginleştirmektedir. Yeni bir bakışın (biliminki hep böyledir) arılığı, kimi kez sorunlar üzerine yeni bir ışık serpebilir. Doğal olarak geriye, bilimin esinlediği düşüncelerle, bilimin kendi arasındaki her türlü karışıklıktan kaçınmak kalıyor. ama işte bu nedenle de, bilimin ortaya koyduğu sonuçların tüm anlamını açıklayabilmek için, bunların son sınırına dek götürmek gerekiyor. Zor bir uygulama. Bunu eksiksiz yaptığımı öne sürmüyorum. Önce bu denemenin salt biyolojik bölümünün hiçbir özgün yanı bulunmadığını belirteyim. Modern bilimce saptandığı kabul edilen düşünceleri özetlemekten başka bir şey yapmadım. Örnek seçiminde olduğu gibi, değişik gelişmeleri verilen önemin de kişisel eğilimleri yansıttığı doğrudur. Biyolojinin kimi önemli bölümlerinin burada sözü bile edilmedi. Fakat bu deneme, biyolojinin tümünü açıkladığını kesinlikle savunmuyor. Yalnızca sistemin moleküler kuramının özünü elde etmek yolunda bir girişimdir. Bundan çıkarabildiğim ideolojik genellemelerden sorumlu olduğum açıktır. Fakat bilgi kuramı alanı içinde kaldıkları sürece bu yorumları çağdaş biyolojistlerin büyük bölümünün kabul edeceğini söylerken yanılmış olacağımı sanmıyorum. Ben burada, siyasal değilse bile etik(ahlaksal) düzeyde, gelişmelerin bütün sorumluluğunu yüklendiğimi belirtmeden geçmek istemem; bunlar ne denli tehlikeli olursa olsunlar, ne denli naif ya da benim isteğim dışında, ne denli aşırı görünürse görünsünler bilim adamı alçak gönüllü olmalı, fakat taşıdığı ve savunmak zorunda olduğu düşünceler pahasına değil. Ancak burada da kendimi, yapıtları büyük saygınlık kazanmış kimi çağdaş biyolojistlerle tam bir uyum içinde bulmanın yüreklendirici güvenini duyuyorum....Nisan, 1970"(Kitabın Önsözü’nden) (Jacques Monod, Rastlantı ve Zorunluluk(1970), s:11-13) Evrim Kuramı ve Değişim Evrim Kuramı,canlıların değişimini içerir. Tutucu insanların bu kuramı anlamak istemeyişi ya da reddedişi bu değişimi kabul etmemelerinin bir sonucudur. Evrim kuramına karşı çıkmayı küçümsemeyin. Evrim Kuramına karşı çıkanlar, arkalarında “dine inanan” aydınları ve kitleleri bulur. Değişimi savunmak kadar değişime karşı çıkmak, insan aklının çok önceden bulduğu en tehlikeli silahlardandır. Onu, felsefe temelinde en iyi ve en eski savunan da Platon’dur. Platon, biz erkeklerin kadınlardan nasıl da fersah fesah üstün olduğunun altını pek güzel çiziyor! Bayanların pek sevmeyeceği bir öykü olsa da anlatacağım. Platon’da değişim “kötü”, durağanlık ise “iyi”dir. Karl Popper bunu şöyle belirtir: “Çünkü bütün değişimin çıkış noktası yetkin iyi ise değişiklik ancak yetkin ve iyiden uzaklaşan bir hareket olmak gerekir;bu hareket yetkin olmayana ve kötüye doğru yönelmelidir.” Platon, Kanunlar ’da değişim doktrinini şöyle özetler:" Kötü bir şeyin değişmesi bir yana bırakılırsa, her nasıl olursa olsun değişiklik, bir şeyin uğrayabileceği bütün kötü tehlikelerin en başında gelir,- değişiklik şimdi ister mevsimin ya da rüzgârın olsun, ister beden dişyetinin yahut ruh karakterinin.” Israrını belirtmek için de eklemektedir: “Bu söz her şeye uygundur,tek ayrık, demin söylediğim gibi, kötü bir şeyin değişmesidir.” Kısacası Platon, değişimin kötü ve durulmanın tanrılık olduğunu öğretmiştir... Platon’un Timaios ’taki türlerin kökeni üzerine öyküsü bu genel teoriyle bir uyuşma içindedir. Bu öyküye göre hayvanların en yükseği erkek-insandır,tanrılar tarafından türetilmiştir;öteki türler,bir bozulma ve soysuzlaşma süreciyle ondan -aşağıya- inerler. Önce bazı erkekler-korkak ve rezil olanları-soysuzlaşıp kadın olmuştur. Bilgeliği olmayanlar, adım adım daha aşağı hayvanlara doğru soysuzlaşmıştır. Kuşlar, zararsız deniyor oysa duyumlarına çok güvenen fazla yumşak insanların dönüşümüyle varolmuşlardır; "kara hayvaları,felsefeyle hiç ilgilenmeyen insanlardan gelmiştir”; balıklar, -midye ve sitiridye gibi kabuklu deniz hayvanları da dahil olmak üzere- bütün insanların “en aptal, salak... ve değersiz olanlarından soysuzlaşmayla çıkmıştır” Bu teorinin insan toplumuna ve tarihine de uygulanabeleceği açıktır. (Karl Popper, Açık Toplum Ve Düşmanları s: 49-50) İNSAN NASIL İNSAN OLDU? İnsan nedir? Biz neyiz? Nereden geldik? Sokrates ' e yakıştırılan bir öykü vardır. Sokrates, Atina Agorası' ndaki gönüllü öğrencilerine verdiği ders sırasında "İnsan nedir?" diye sormuş. Onlar da soruyu küçümseyerek " bunu bilmeyecek ne var, iki ayaklı ve tüysüz bir canlıdır" yanıtını vermişler. Ertesi gün Sokrates, elinde tüyleri yolunmuş bir tavukla öğrencilerinin karşısına çıkmış. Tüysüz tavuğu havaya kaldırarak " yani böyle bir şey mi insan dediğiniz?" demiş. Öğrenciler nasıl bir şaşkınlık geçirdi bilmiyoruz; ama insan tanımının öyle basit bir iş olmadığını anlamış olmalılar. İnsan "düşünen varlık", " gülen canlı", "üretim yapan canlı", "alet kullanan canlı" gibi değişik sıfatlarıyla tanımlanmaya çalışılmıştır. Sorunun yanıtı basit değil. Gelin biraz gerilere gidelim. Önce "insan her şeyin ölçüsüdür" diyen eski Yunan filozofunu anımsayalım. Protagoras'ı yani. Onun ne demek istediğini size anlatmaya çalışmıştım. 19. yüzyılın ikinci yarısından itibaren insan konusunda bilimsel düşünceler ortaya konmaya başlandı. İnsanın doğaüstü güçlerce yaratılmadığı ve tüm canlılar gibi evrimsel bir sürecin bugünkü aşaması olduğu düşünülmeye başlandı. Evrim, değişikliği ifade eder. " Evrim, biyolojik bir gerçektir; en geniş anlamı ile organizmaların zaman süreci içinde değişen ortama gösterdikleri fiziksel tepki olarak da tanımlanabilir... "Her canlı bir canlıdan gelir " gerçeği, evrimin temel özelliklerinden biridir." Bununla birlikte konuyla ilgili saptırmalar da başladı." Bu saptırmaların en ünlüsü de insanın maymundan türemiş olduğu, başka bir deyişle bu iki canlı türü arasında bir ata- torun ilişkisi bulunduğu, yani maymunların insanın atası olduğu saptırmasıdır. C. Darwin' in Türlerin Kökeni adlı yapıtının doğurduğu yankılara karşı, özellikle o dönem Anglo- Sakson Kilisesi' nce başlatılan, geliştirilen, desteklenen ve savunulan bu saptırma, üzülerek belirtmek gerekir ki bugün bile kamuoyunda evrensel anlamda belirli bir ağırlığa sahiptir. Olaya bilimsel bir yaklaşımla ve tarafsız olarak bakıldığı zaman, kuşkusuz, insan ile yakın soydaşları olan primatlar arasında bir evrimsel ilişki olduğu görülür. Zaten, evrim bakımından eskiye gidildikçe tüm canlıların oluşumları itibariyle ortak evrim ağacının farklı dalları oldukları ve bu nedenle de tüm canlılar arasında (uzak veya yakın) bir ilişki bulunduğu da bilinmektedir. Ancak bu ilişki, "maymun ile insan arasında bir ata-torun ilişkisi vardı ve insanlar da zaman içinde maymunlardan türemiştir" anlamına tabii ki gelmez. Maymun ve insan türlerinin birlikte oluşturdukları zoolojik takım olan primatlar arasında evrimsel bir ilişi olması demek, bu iki farklı türün ortak bir kökten türemiş olmaları ve / fakat zamanla bunların her ikisinin de değişerek bugünkü hallerini almış olması demektir. Başka bir deyişle, bu iki canlı türünden her biri kendi yönünde evrimleşmiş, zaman içinde insan daha "insanlaşmış" ve buna karşılık maymun daha da "maymunlaşmıştır". Gelecekte, evrim sürecinin bir gereği olarak aynı olayın devam edeceği, insan ile maymun arasında var olan makasın daha da açılacağı kuşkusuz. " Sahi, insanla maymun arasında ne gibi farklar vardır? İnsanı insan yapan nedir? " Yüzyılımızın başlarında insanın çevresine uyum yeteneği, daha sonraları düşünce, İkinci Dünya Savaşı' nı izleyen dönemde araç-gereç yapımı, 1960' lı yıllarda ilkönce lisan ve hemen sonra da avcılık insanı " insan " yapan "insansı" özellikler olarak görülüyordu. Bugün ise durum hayli farklı." "İnsan denen canlıyı ele aldığımız zaman onun bir Homo erectüs (dik yürüyen), bir Homo faber (alet yapan), bir Homo lingua (konuşan/ dili olan), bir Homo symbolicus (soyutlayabilen), bir Homo curiosus (araştıran) ve bir Homo sapiens (akıl sahibi, zeki) olduğunu görüyoruz. Bunların tümü insana özgü. İlginç olan ve özellikle vurgulanması gereken husus, insan dışı

http://www.biyologlar.com/evrim-kurami-ve-maymun-sorunu

Fosil Nedir ve Nasıl Oluşur?

Fosil Nedir ve Nasıl Oluşur?

Günümüzde yapılan bilimsel araştırmalar, oldukça çeşitli alanlarda yapılmaktadır. Yapılan bu araştırmaların bir kısmı ise, dünyanın oldukça eski dönemlerinde yaşamını sürdürmüş fakat günümüze kadar gelemeyerek nesli tükenmiş olan canlılar üzerinedir.

http://www.biyologlar.com/fosil-nedir-ve-nasil-olusur

Doğa Tarihi Çalışmaları Kronolojisi

MÖ 2500-600: Babiller matematik çalışmalarına başlamışlardı. Bir çemberi 360 dereceye bölmüşler, 60 dakika ve 60 saniyeyi belirlemişlerdir. Tarımsal faaliyetlerini düzenlemek için sel baskınlarını hesaplamaya yönelik bir takvim oluşturmuş ve bir yılı 4.5 dakikalık yanılma payı  ile  hesaplamışlardı.  MÖ  2000  e  gelindiğinde  arkeolojik  kayıtlardan  ele  geçen papirüslerde Mısırlıların tedavi yöntemleri geliştirdiklerini görüyoruz. Nil’in hareketlerine göre seneyi dörder aylık üç mevsime ayırmışlardı ve bir yılı 365 gün olarak belirlemişlerdi.     MÖ  6.  Yüzyıl: MÖ  570’li  yıllarda  Yunan  filozof  Xenophanes  dağlarda  bulduğu  deniz kabuklarından ilham alarak ilk jeolojik teoriyi oluşturdu. Dünyanın ardışık tufanlar yaşadığı fikrini ortaya attı. İnsanların yaratıldıkları formda kaldıklarını ve hiç değişmedikleri fikrini savunan  dine  eleştiri  getirdi.  530’lı  yıllarda  ise  başka  bir  Yunan  filozof  ve  astronom Anaximander evrim fikrini ortaya attı. Canlıların ilk önce balçıktan oluştuklarını ve insanların diğer  türlerde  evrimleştiğini  dile  getirdi.  Aynı  dönemde  Yunan  matematikçi  ve  filozof Pythagoras ise dünyanın yuvarlak olduğunu savundu.  MÖ 5. Yüzyıl: Bu yüzyıl tarihin babası olarak adlandırılan Heredot’un yaşadığı yüzyıldır (484-425). Historia adlı eserinde genel olarak tarihi konulara yer verse de coğrafya ve sosyolojik bilgiler de içerir. Heredot insan çeşitliliğinin çevresel şartlardan kaynaklandığını savunuyordu; ona göre bu çeşitlilik çevreye yapılan uyuma göre belirleniyordu. Deneysel araştırmalar da yaptı.  Mısır  ve İran’dan  topladığı  kafataslarına  taş  ile  vurarak  dayanaklıklarını  ölçtü  ve Mısırlıların  daha  kalın  kafatasına  sahip  olduğu  sonucuna  vardı  ve  İranlıların  kafalarını korumak için bu yüzden başlık taktıklarını ve mısırlıların takmadıklarını açıkladı. Tıp tarihini en  önemli  kişilerinden  Yunanlı  bilgin  Hipokrat  da  bu  dönemde  yaşamıştır  (460-377). Çalışmaları Corpus Hippocraticum adlı eserinde toplanmıştır. Hipokrat vücudu bir organizma olarak görmüş ve vücudun anlaşılmasının ancak çevre ve davranışlar ile ilişkisinin anlaşılması ile mümkün olabileceğini iddia etmiştir. MÖ 4. Yüzyıl: Yunan bilgin Aristo bu dönemde yaşamış ve felsefi konuların yanında zooloji ve anatomi  üzerine  de  çalışmalar  yapmıştır  (384-322). Historia   Animalium adlı  yapıtında insanlar,  maymunlar ve kuyruksuz büyük maymunlar arasındaki benzerlikleri tanımlamış ve aralarında  önemli  bir  bağ  olduğunu  söylemiştir.  Aristo  da  insan  çeşitliliğinin  çevresel nedenlerden kaynaklandığını savunmaktadır. MÖ 314 yılında Yunan filozof ve botanikçi Theophrastus yazdığı iki botanik kitabı ile –Historia  plantarum ve Plantarum  causae-450 bitkiyi kaydetti. Bu daha sonraki botanik kitaplarına temel olmuştur. Botaniğin kurucusu olarak anılan Theophrastus ayrıca bilinen ilk jeoloji kitabının da yazarıdır.MÖ 3. Yüzyıl:MÖ 240’lı yıllarda Yunan coğrafyacı ve matematikçi Eratosthenes dünyanın çevresinin 46.000 km olduğunu hesapladı. Ayrıca eylem ve boylamları gösteren ilk dünya haritasını da üretti. MÖ  1.  Yüzyıl: MÖ  20’li yıllarda  Yunan  coğrafyacı  Strabo  var  olan  tüm  coğrafi   bilgiyi Geographicaadını verdiği 17 ciltlik eserinde topladı.MS 2. Yüzyıl: Bu dönemin bilginlerinden Mısır-Yunanlı bilgin Ptolemy organik dünya ile inorganik dünyanın yaradılışta oluşturulduğunu ve yaradılıştan beri herhangi yeni bir türün olmadığını savunmuştur.  MS  11.  Yüzyıl: 1086  yılında  bir  Çin  kitabında  erozyon,  yerkabuğunun  yükselmesi  ve sedimantasyon gibi jeoloji kavramları açıklandı. Bu yüzyılın sonlarına doğru (yaklaşık 1190 yılında) Avrupa’da manyetik pusula kullanılmaya başlandı. MS 15.Yüzyıl: Bu yüzyıl ünlü İtalyan bilgin Leonardo da Vinci’nin yaşadığı yüzyıl olarak bilim tarihinde  önemli  bir  yer  yutar  (1452-1519).  Fizik,  biyoloji,  jeoloji,  anatomi,  mimarlık, mühendislik, resim, heykel, müzik, botanik ve matematik gibi alanlarda çok önemli çalışmalar yaparak gerçek anlamda bir bilgin olma sıfatına layık olmuştur. Ölü canlılar üzerinde yaptığı çalışmalar ile 750 den fazla anatomi çizimi yaparak anatomi anlamında çok faydalı bilgileri ortaya çıkarmıştır, ayrıca kan ve damarlar üzerine yaptığı çalışmalar kan dolaşımı sisteminin anlaşılması  için  zemin hazırlamıştır.  Yaptığı  birçok  mekanik  çizimin  yanında  (helikopter, paraşüt, matbaa, İstanbul’a boğaz köprüsü gibi), fosiller üzerine yaptığı çalışmalar ile de doğa bilimlerin büyük katkılar sağlamıştır.   MS 16. Yüzyıl: 1517 yılında İtalyan bilim insanı Girolamo Fracastoro fosilleri organik kalıntılar olarak açıkladı. 1543 yılında modern astronominin kurucusu olarak anılan Polonyalı Nicolaus Copernicus güneşin merkezde olduğu gezegen hareket sistemini De  revolutionibusorbium coelestium(Göksel Kürelerin Devinimleri Üzerine) adlı eserin açıkladı ki bu bilim dünyasında bir  devrim  oldu. Heliosentrik  (güneş  merkezli)  bir  sistem  olduğunu  ve  gezegenlerin mükemmel birer dairesel yörüngelerde hareket ettiklerini savundu. Kitabı 1616 yılında kilise tarafından yasaklansa da 1835 yılında yasaklar listesinden çıkarıldı. Aynı yıl (1543) bilim dünyasında başka bir önemli gelişme daha yaşandı. Modern anatominin kurucusu olarak bilinen Hollanda’lı anatomist Andreas Vesalius insan anatomisi üzerinde yaptığı çalışmalarını De humani corporis fabrica libri septem (insan vücudu yapısı üzerine yedi kitap) adlı eserinde topladı. Kitabı birçok insanı kesip inceleyerek yaptığı çalışmalara dayanmakta olup, daha önceki bir çok çalışmayı da çürütmüştür. 1544 yılında Alman teolog Sebastian Münster ilk dünya coğrafyası dergisini bastı. Alman mineralog Georgius Agricola 1546 yılında yazdığı eseri  olan De natura fossilium’de (Fosillerin doğası üzerine) ‘fosil’ terimini yer altından kazılarak çıkarılmış her şey olarak tanımladı. 1570 yılında ilk geniş kapsamlı dünya haritası Hollandalı coğrafyacı Abraham Ortelius tarafından basıldı. Bu yüzyılın sonlarında yine doğa tarihinin önemli bilginlerinden İtalyan Galileo Galilei (Galileo olarak bilinir) önemli keşifler yapmıştır. Aristoteles’in hareket teorilerini çürütüp, Copernicus’un güneş merkezli evren teorisini desteklemiştir. MS 17. Yüzyıl: 1608 yılında Hollanda’da optikçi Hans Lippershey ilk teleskopu icat etti ki bu gökbilim açısından dönüm noktalarından biri oldu. Bundan hemen bir yıl sonra Galileo teleskop yardımı birçok gezegene ait tanımlamalar yaptı. Aynı yıl Lippershey yine optik ile uğraşan Zacharias Jansen ile beraber mikroskobu icat ettiler. Mikroskop da teleskop gibi bilim tarihinde dönüm noktası olan icatlardan biri oldu. 1643 yılında İtalyan fizikçi Evangelista Torricelli  hava  basıncını  ölçemeye  yarana  barometreyi  icat  etti.  1654 yılında  İrlandalı başpiskopos James Ussher Annlium  pars  postierior adlı eserinde, yaptığı hesaplamalara dayanarak dünyanın milattan önce 23 Ekim 4004 tarihinde yaratıldığını öne sürmüştür.  17. Yüzyılın ikinci yarısında İngiliz fizikçi Sir Isac Newton’un önemli buluşlarına sahne oldu. 1665 yılında evrenselyerçekimi fikrini ortaya attı.  1668 yılında da aynalı teleskopu icat etti. 1687 yılında  3  ciltlik  büyük  eseri  olan Philosophiae  naturalis  principia  mathematica’yı (Doğa felsefesinin  matematiksel  ilkeleri) bastı ki bu eser şimdiye kadar yazılmış en büyük bilim kitaplarından biridir. Bu yüzyılın en öneli bilim adamlarından birisi de Danimarkalı anatomist ve jeolog Nicolaus Steno’dur. İnsan ve hayvanların beyinlerini incelemiş ve beyin epifizlerinin benzer olduğunu göstererek bunların insanlara özgü olduğunu söyleyen Descartes’in tezlerini çürütmüştür. Anatomi çalışmaları olsa da asıl ününü jeoloji çalışmaları ile kazanmış ve jeolojinin babası unvanını almıştır. Üst üste yerleşmiş olan tabakalardan aşağıda olanın daha önce oluşmuş olduğunu belirleyerek jeoloji ve paleontoloji bilimine çok büyük katkı sağlamıştır.  Bu ilkeyi ve keşfettiği diğer ilkeleri 1669 yılında yayınladığı De  Solido  Intra  Solidum  Naturaliter  Contento Dissertationis Prodromus adlı eserinde açıklamıştır.  MS 18. Yüzyıl: 1714 yılında Alman fizikçi Daniel Gabriel Fahrenheit termometreyi icat etti. 1735 yılı biyoloji anlamında çok önemli bir yıldı. İsveçli botanikçi Carl Linnaeus yayınladığı eseri Systema naturaeile biyoloji dünyasında çok önemli bir yer aldı. Linnaeus canlıların cins ve tür isimleri ile sınıflandırılmasını öngören çalışması ile taksonominin temellerini attı. 1743 yılında İngiliz doğa bilimci Christopher Packe ilk jeoloji haritalarından birini çizdi.  18. Yüzyılın ikinci  yarısında  biyolojik  bilimler  anlamında  Fransız  doğa  bilimci  Georges-Louis  Leclerc, Comte de Buffon önemli çalışmalar yaptı. 1749-1804 (öldükten sonra da çalışmaları basıldı) yılları arasında 44 serilik Historie  naturelle adlı eseri yayınlandı. Hayvanların aynı olmadığını ve çeşitlilik gösterdiğini savunan Buffon benzer türlerin ortak atadan geldiğini de savunarak daha sonra gelişecek evrim teorilerine de katkı yapmıştır. Büyük ölçekte bir evrimi inkâr etse de  canlılar  arasında  çevre  şartlarına  göre  değişimler  olduğunu  savunmuştur.  Ayrıca çalışmaları Lamarck ve Cuvier gibi önemli bilim insanlarına esin kaynağı olmuştur. 1775 yılında On  the  Natural  Variety  of  Mankind adlı eserinde Alman anatomist ve antropolog Johann  Friedrich  Blumenbach insanları kafatasları üzerinde yaptığı çalışmalara göre beyaz, siyah, sarı, kırmızı ve kahverengi ırk olmak üzere 5 ırka ayırmıştır. Köken olarak beyaz ırkın kafatasının  oluştuğunu  ve  diğer  ırkların  çevreye  uyum  sonucu  bundan  farklılaştıklarını savunmuştur. Ayrıca morfolojinin çevreye uyum sonucu değişebileceğini ancak türleşmenin özel bir oluşum süreci ile meydana geldiğini savunmuştur. Yine aynı dönemde yaşamış olan Amerikalı teolog  Samuel  Stanhope  Smith  ise Essay  on  the  Causes  of  Variety  of  Complexion and Figure in the Human Species adlı eserinde insan çeşitliliğinden bahsetmiştir (1810). Ona göre insanoğlu ırksal kademelere ayrılamaz ve tekdir. Farklılıkları sadece çevresel etkiler belirler. Deri renginin de iklimden etkilendiğini savunmuştur. 1779  yılında İsviçreli jeolog Horace Bénédict de Saussure ‘jeoloji’ terimini kullanmıştır. Yüzyılın sonunda 1799 yılında Alman doğa bilimci Alexander von Humboldt Jura dönemini tanımlamış ve yine aynı yıl İngiliz jeolog  William  Smith  kayaç  tabakalarının  içerdiğifosilleri  ile  tanımlanabileceğini  ortaya atmıştır.   MS 19. Yüzyıl: Evrim çalışmaları anlamında altın bir yüzyıldır. Fransız doğa bilimci Jean-Baptiste Lamarck daha sonra teorisi çürütülse de evrim teorilerinin başlaması açısından çok önemli bir bilim adamı olarak bilinir. 1809 yılında yayınladığı eseri Philosophie zoologique ou exposition des considerations relatives a l’histoire naturelle des animaux’de (Zoolojik felsefe: hayvanların doğal tarihlerininin yorumlanması) canlıların çevresel şartlar gereği özellikler kazandığı ve kazanılmış bu yeni özellikleri sonraki nesillere aktardığını savunmuştur. Yine bu dönemde  yaşamış olan  Georges  Cuvier  yaptığı  çalışmalar  ile  karşılaştırmalı  anatomi  ve omurgalı  paleontolojisinin  öncüsü  konumundadır.  Evrim  fikrine  karşı  çıkan  Cuvier’in görüşüne göre dünya belirli zamanlarda büyük tufanlar geçirmiş ve bu tufanlar ile canlılar yok olup ardından yeni canlılar ortaya çıkmıştır (katastrofizm). Bu dönemde yaşayan İngiliz nüfus bilimci Thomas Malthus da doğa bilimcisi olmamasına rağmen evrim teorisine önemli katkılar sağlamıştır. 1729 ile 1826 yılları arasında 6 baskı olarak yayınlanan eseri An  Essay  on  the Principle   of   Population‘da;  nüfusların  besin  kaynakları  aşacak  şekilde  büyüdüğünü,  bu büyüme sonucu toplumlarda besin kaynağı için çekişme olacağı ve bu çekişmeye herkesin ayak uyduramayacağını ve dolayısıyla sadece bazı canlıların hayatta kalacağını savunmuştur. Bu eseri Wallace ve Darwin tarafından okunarak doğal seçilim fikrine ilham kaynağı olmuştur.   Darwin’le berabermodern evrim teorisinin öncülerinden birisi de Galli doğa bilimci Alfred Russel Wallace’dir. Doğal seçilim fikrini Darwin’den bağımsız olarak bulan Wallace Darwin’e 1858 yılında yazdığı mektupla fikirlerini belirtmiş ve bu mektup Darwin’in kitabını yazmasını hızlandırmıştır. Darwin gibi çıktığı yaptığı bir yolculuk sonrası fikirleri gelişmiştir (Malay takımadaları, Güneydoğu Asya). 1871 yılında yayınladığı eseri Contributions to the Theory of Natural  Selection (Doğal seçilim teorisine katkılar) kendi fikirlerini açıklayarak Darwin’in teorisine destek olmuştur. 1815 yılında William Smith fosillere dayalı kayaç sınıflandırması ile ilgili kitabını yayınladı (Strata  Identified  by  Organized  Fossils). 1822 yılında Kretase dönemi Omalius d’Halloy tarafından tanımlandı. Aynı yıl Mary Mantell bir iguanadona ait olan ilk dinozor fosilini buldu. 1830 yılında İskoç jeolog Charles Lyell dünyanın yüzeyinin geçmişte geçirdiği fiziksel, kimyasal ve biyolojik süreçlerin aynılarının bugün de geçirdiğini öne sürdüğü üniformitarizm’ teorisini ortaya attı. 1830-1833 yıllarında yayınladığı 3 ciltlik eseri Principles of  Geology modern jeolojinin gelişmesinde çok önemli bir yer tutmuştur. Bu kitabın Charles Darwin’i de etkilediği düşünüldüğünde sadece jeoloji değil aynı zamanda biyoloji  bilimi üzerinde de ne kadar etkili olduğu ortaya çıkar. Ayrıca Lyell Pliyosen, Miyosen ve Eosen dönemlerini de tanımlamıştır. Arka arkaya gelen bir süreçte; 1834 yılında da Friedrich August von Alberti Trias dönemi, 1835 yılında Roderick Murchison Silüryen dönemi ve Adam Sedgwick Kambriyen dönemi, 1839 yılında Adam Sedgwick ve Roderick Murchison Devoniyen dönemi, 1841 yılında ise yine Roderick Murchison Permiyen dönemi tanımladı. 1840 yılında İsviçreli zoolog ve jeolog Louis Agassiz  buz  devirleri  teorisini ortaya attı. Alp’lerde yaptığı çalışmalar sonucu buzulların hareket ettiğini gösterdi ve önceki dönemlerde dünyanın buz çağı yaşadığını iddia etti. Bu yüzyılında özellikle evrim ve paleoantropoloji anlamında çok önemli keşifler yapıldı. 1856 yılındaAlmanya’nın  Neander  vadisinde,  daha  sonra Homo   neanderthalensis olarak sınıflandırılacak, Neandertal fosilleri bulundu. 1858 yılında Amerikalı jeolog Antonio Snider-Pellegrini kıta kayması teorisini ortaya attı. 1869 yılında İsviçreli fizikçi Friedrich Miescher yaptığı deneyler sonucu saf DNA elde etti ve bu genetik çalışmalar anlamında bir dönüm noktası oldu. Bu dönem genetik bilimi için başka bir anlam daha ifade eder. 1822-1884 yılları arasında yaşamın olan Avusturyalı botanikçi Gregor Mendel bezelyelerüzerinde yaptığı çalışmalar ile bir türün özelliklerinin kalıtım yoluyla sonraki kuşaklara aktarıldığını bularak genetik biliminin temellerini atmıştır.Mendel’in kalıtım yasaları 20. yüzyılın başlarına kadar pek  kabul  görmese  de  bu  tarihlerde  yapılan  deneyler  ile  ispatlanarak  genetiğin  temel ilklerinden biri halini almıştır.Yüzyılın sonlarına doğru İsveçli kimyager Svante Arrhenius küresel ısınma kavramını dile getirdi. Özel Bölüm ‘Charles Darwin ve Evrim Teorisi’: Bu yüzyılın bilim tarihi açısından şüphesiz en önemli olaylarından biri, hatta en önemlisi, Charles Darwin’in geliştirdiği evrim teorisidir. Biyolojinin temellerinin atıldığı bu önemli olay için ayrı bir yer açmakta fayda var. 1809 -1882 yılları arasında yaşayan İngiliz doğa bilimci Darwin yaptığı işle ironik olarak teoloji eğitimi almak üzere Edinburgh’a gönderilse de içindeki doğa bilimi tutkusu onu orada 3 seneden fazla tutamadı. HMS Beagle adlı askeri araştırma gemisi ile 1831 de başlayan ve 5 yıl süren gezisi daha sonra biyolojinin en önemli konularından biri olacak evrim teorisinin kurulmasını sağladı. Lamarck’ın teorisi gibi bazı değişim teorileri olsa da o zamana kadar genel görüş canlıların olduğu şekilde yaratıldıkları idi. Darwin Galapagos adalarında yaptığı incelemelerde farklı ortamlarda birbirlerine benzer ancak farklı hayvanlar olduğunu tespit etti. Buradan yola çıkarak canlıların zaman içerisinde değişen çevre şartlarına uyum sağlamak için değişim geçirdiklerini, değişimi daha iyi geçiren ve uyum sağlayan canlıların hayatta kalırken güçsüz canlıların ise yok olduğunu öne sürerek doğal seçilim tezini ortaya attı. Geziden döndükten sonra kitap çalışmalarına başlayan  Darwin 1858 yılında Wallace’den aldığı  mektupta  fikirlerinin  aynı  olduğunu  görüp  çalışmalarının  hızlandırdı. 1859  yılında biyoloji ve doğa bilimleri tarihinin belki de en önemli kitabı olan ‘On the Origin of Species by Means  of  Natural  Selection,  or  the  Preservation  of  Favoured Races in the Struggle for Life’ı’(Doğal Seçilim Yoluyla Türlerin Kökeni ya da Hayat Kavgasında Avantajlı Irkların Korunumu Üzerine) yayınladı.Burada değinilmesi gereken nokta, Darwin’in bu teoriyi ve çalışmayı hazırlarken  birçok  farklı  disiplindenbilim  insanının  çalışmalarını  okuması  ve  onlardan esinlenmesidir (Lyell ve Malthaus gibi). Ayrıca Darwin’in hiçbir genetik bilgisi olmadan ve kalıtım yasasını bilmeden bu teoriyi geliştirmesi de zekâsının göstergesidir. Genel evrim kuramının yanında Darwin insan evrimi üzerine de çalışmış ve bu konuda 1871 yılında The Descent  of  Man,  and  Selection  in  Relation  to  Sex (İnsanın türeyişi ve seksüel seçme) adlı eserini  yayınlamıştır.  Darwin  bu  kitabında  değindiği  seksüel  seçme  doğal  seleksiyon kavramının temellerinden biri lup; karşı cins tarafında tercih edilmek için daha iyi özelliklere sahip olmayı ifade eder. Daha büyük vücut yapısı, daha kuvvetli olma, daha becerili olma, daha zeki olma gibi özellikle bunların arasında sayılabilir. Bu kitapların yanında, jeoloji, zooloji ve botanik üzerine birçok eseri de vardır.   MS 20. Yüzyıl: 1927 yılında Belçikalı astronom Georges Lemaitre evrenin yaklaşık 13,7 milyar yıl önce aşırı yoğun ve sıcak bir noktadan meydana geldiğini savunan‘Big Bang’ teorisini ortaya attı(Big Bang ismi sonradan verildi).1947 yılında Amerikalı kimyager Willard F. Libby karbon tarihleme metodunu bulmuştur ki bu tarih öncesi bilimler için çok önemli bir dönüm noktasıdır. 1953 yılında genetik çalışmalar için başka bir dönüm noktası oldu ve Amerikalı James Watson ve İngiliz Francis Crick DNA’nın çift sarmallı yapısını çözdüler. 1968 yılında bazı kayalar üzerinde 3 milyar yıl öncesine giden canlı kalıntıları bulundu. 1984 yılında Russ Higuchi  150  yıl önce  ölmüş bir  hayvandan DNA örneği  almayı başarmış  ve  antik DNA çalışmalarının başlamasını sağlamıştır. İlk çalışmayı Higuchi’nin yapmasına rağmen antik DNA’nın çalışmalarının lideri konumunda İsveçli bilim insanı Svante Pääbo bulunur. 1985 yılında bir insan mumyasından DNA çıkarmayı başararak bu çalışmaların öncüsü olmuştur.  1988 yılında İsrailli ve Fransız bilim insanları tarafından bulunan fosiller, Homo sapiens’in önceki düşünülenin neredeyse iki katı bir zaman dilimi olan 90.000 yıllık bir süreç öncesinde yaşadıklarının ortaya koydu. 1987 yılında Amerikalı bilim adamları Rebecca Cann, Mark Stoneking ve Alan Wilson yaşan insanlar üzerinde yaptıkları DNA çalışmaları ile mitokondriyalDNA’larının kökeninin yaklaşık 200 bin yıl öncesi muhtemelen Afrika’da yaşayan bir kadına gittiğini tespit ettiler (bu yüzden mitokondriyal  Havva  olarak  da  adlandırılır).  Afrika’dan  çıkış  kuramını  desteklemesi  ve modern insanın kökeni hakkında bilgi vermesi açısından çok önemli bir gelişmedir.  1991 yılında Amerikalı jeologlar dünyaya 65 milyon önce bir göktaşı çarptığını onayladılar. 1994 yılında Etiyopya’da Amerikalı paleoantropolog Tim White liderliğindeki ekip 4,4 milyon yıllık hominid kalıntıları buldular (Ardipihtecus ramidus). Bu buluntu iki ayak üzerinde dik yürüme yetisinin  bilinenden  daha  eski  bir  zamanda  başladığını  göstermiş  olmakla  beraber,  bu hominidlerin ormanlık bir alanda yaşamış olmaları iki ayak üzerinde dik yürüme yetisini ortaya çıkaran mekanizmalar ile ilgili teorilerin tekrar gözden geçirilmesini sağladı. 1995 yılında İspanya’da bulunan taş aletler Homo cinsinin 1 milyon yıldan daha önce Avrupa’da yaşadıklarının gösterdi.  MS 21. Yüzyıl: 2002 yılında Güney Afrika’da Blombos mağarasında bulunan ve 70.000 yıl öncesine tarihlenen iki adet boyalı süs eşyası insanın soyut düşünme yeteneğinin sanılandandaha önce başladığını ortaya koymuştur. 2000 yılında Kenya’da (Orrorin tugenensis) bulunan ve 6 Milyon yıl ile tarihlendirilen hominid ile 2002 yılında Çad’da bulunan 7 milyon yıllık hominid kalıntıları(Sahelantropus tchadensis) 21. Yüzyılın başında paleoantropoloji bilgilerini geliştirmiş ve en eski hominid kalıntıları konumuna geçmişlerdir. 2006 yılında Svante Pääbo liderliğinde  başlayan  Neandertal  genom  projesi  2010  yılında  sonuçlarını  açıklamış  ve Neandertaller  ile  modern  insan  arasında  gen  alışverişiolduğu  açıklanıp,  Afrika  dışında yaşayan  insanların  belli  oranlarda Neandertal geni  taşıdıkları ortaya koyulmuştur.  2008 yılında Sibirya’da Altay dağlarında yer alan Denisova mağarasında yaklaşık 40 bin yıllık bir parmak kemiği bulundu. Bu kemik üzerinde yapılan DNA çalışmaları bu kemiğin ne modern insana ne de Neandertallere ait olduğunu ortaya koydu. Özel Bölüm ‘Leakey Ailesi’: İnsan evrimi çalışmalarında en önemli malzemeler olan fosillerin bulunması konusunda Leakey ailesinin yeri çok önemlidir ve bu yüzden ayrı bir başlıkta  değinmekte fayda var. Ailenin ilk nesil paleoantropologları Mary ve Louis Leakey’dir. Louis Leakey Kenya’da görevli bir İngiliz misyonerin oğlu olarak dünyaya geldikten sonra Cambridge’de antropoloji okudu. 1926-1935 yılları arasında doğa Afrika’da bir dizi arkeolojik ve paleoantropolojik çalışma gerçekleştirdi. 1960 yılında Olduvai Gorge’da Homo  habilis olarak sınıflandırılan, erken hominidlere göre daha büyük beyne sahip olan ve alet yapabilen bir hominid keşfetti. Louis Leakey’in buluntuları insanlığın kökeninin Afrika olduğunu ve bu kökenin  sanılandan  çok  daha  eskiye  gittiğini  gösterdi.  1936  yılında  yine  bir  İngiliz paleoantropolog  olan  Mary  Leakey  ile  evlendi.  Mary  Leakey  Londra’da  eğitimini tamamladıktan sonra 1935 de Tanzanya’ya gelerek 1 yıl sonra evleneceği Louis Leakey’in kazısına katıldı. O da Louis Leakey gibi hayatının çok büyük bir kısmını doğa Afrika’da fosil arayarak geçirdi. 1959 yılında Australopithecus boisei cinsine ait 1.75 milyon yaşında hominid fosillerini keşfetti. 1976 yılında çalışmalarını Tanzanya’nın başka bir bölgesi olan Laetoli’ye kaydırdı ve 1978 yılında o zamana kadar insan atalarına ait bulununmuş en eski izleri keşfetti. Bunlar 3.75 milyon yıl ile tarihlendirilen 2 farklı hominidin volkanın küller üzerinde bıraktığı ayak izleriydi. Eski olmasının yanında iki ayak üzerinde dik yürüme ile ilgili de önemli bilgiler vermesi açısından bu buluş çok önemlidir. Leakey ailesinde üçüncü nesli Mary ve Louis Leakey’lerin oğlu Richard Leakey ve eşi Meave Leakey temsil eder. 1944 doğumlu Richard Leakey Omo, Koobi Fora ve Batı Turkana’da çalışmalar yaptı. 1967 yılında Omo’da yaptığı çalışmalar esnasında şimdiye kadar bulunmuş en eski Homo  sapiens fosillerinden  biri  olan Omo kafatasını ve bazı vücut kemiklerini keşfetti. Yaklaşık 160.000 yaşında olan bu kafatası Homo  sapeins’inen  eski  örneklerinden  biri  olup  modern  insanın  ortaya  çıkışının  tarihi açısından çok önemli bir fosildir. Daha sonra Koobi Fora’da çalışmalara başlayan Richard Leakey 1969 yılında kaba yapılı Australopithecus olarak bilinen Paranthropus boisei‘ye ait bir kafatası buldu. 1.7 milyon yıl ile tarihlendirilen bu kafatası ile beraber taş alet olduğu düşünülen buluntular da ele geçmesi bu türün taş alet yapan veya kullanan ilk hominid olabileceğiniakla getirdi. Yine Koobi Fora’da yapılan kazılarda; 1972 yılında Homo rudolfensis sınıflandırılan 1.8 milyon yıllık; 1975 yılında Homo  erectus olarak sınıflandırılan 1.75 milyon yıllık ve 1976 yılında yine Homo  erectus olarak sınıflandırılan 1.6 milyon yıllık kafatasları bulmuştur.   Hazırlayan: Ahmet İhsan Aytek Kaynaklar: Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/

http://www.biyologlar.com/doga-tarihi-calismalari-kronolojisi

Müze Kavramı ve Etimolojisi

Müze genel olarak; halkı eğlendirmek ve bilgilendirmek üzere birçok malzemeyi elde eden, koruyan ve sergileyen kâr amacı gütmeyen kuruluşlardır. Uluslararası Müzeler Konseyi(Icom) 2007 de Viyana’da yaptığı konferansında müzeyi; halkı eğlendirmek ve eğitmek için insanlığın ve çevresinin somut ve soyut mirasını bulan, koruyan, araştıran, nakleden ve sergileyen toplum hizmetinde olan ve gelişmesine katkı sağlayan, kâr amacı gütmeyen kalıcı kurumlar olarak tanımlamıştır.İçerik olarak sanat, tarih, kültür ve doğa tarihi gibi ana maddelerden oluşmakla beraber birçok farklı sergiye sahip müzeler de bulunur.Genel  olarak;  sanat,  arkeoloji  ve  tarih, etnografya,  tabiat  tarihi,  bilim ve teknoloji, bölge ve özel amaçlı müzeler olmak üzere gruplara ayrılır.En yaygın müzeler koleksiyonlara dayalı genel anlamda bilinen müzelerdir. Buradaki  koleksiyon  terimi;  bir  kişi  veya  kurum  tarafından  toplanan,  sınıflandırılan  ve sergilenmeye  hazır  hale  getirilen  tüm  somut  nesneleri  kapsar.  Bunlarda  koleksiyonları saklamak, gerekirse işlemden geçirmek ve sergilemek üzere bölümler bulunur. İngiltere’deki ‘British Museum’ , Fransa’daki le Musee du Louvre’ veya Türkiye’deki Anadolu Medeniyetleri Müzesi  bu  müze  tipinin  başlıca  örneklerindendir.  İkinci  tip  müzeler  ise  tarihi  yerlerin korunmaya alınması ile oluşturulan müzelerdir. Bu tip müzelere genelde bir dönemi veya bir insanı temsil ederler. Dolayısıyla bu tip müzelerin barındırdığı koleksiyonlar belli bir  zaman dilimi ile sınırlı olup çok büyük çeşitlilik göstermez. Diğer bir müze tipi ise yaşayan tarih müzeleridir. Bu müzelerde sabit olarak gösterilen koleksiyonlar yerine interaktif bir şekilde müze çalışanları halkı belli konularda eğitir. Ayrıca yerel halkın yeteneklerini sergilemeleri de bu müzelerin uygulamalarındandır. Bunların dışında özellikle internetin yaygınlaşması ile beraber  sanal  müzeler  de  kurulmaya  başlandı.  Bunlar  genelde  büyük  müzeleri koleksiyonlarının internet üzerinden insanlara sundukları sanal ortamlardır.Müze kelime anlamını Yunanca ‘mouseion’kelimesinden alır(Muses’in oturma yeri).  Bu kelime Muses olarak tanınan Zeus’un kızlarına adanmış bir tapınağın ismidir.Daha sonra 15. yüzyıldaFloransa’da Lorenzo de’ Medici’nin koleksi yonlarını tanımlamakta kullanılan müze terimi,  genel  olarak  bir  binayı  değil  soyut  bir  anlayışı  tasvir  etmekteydi.17.  yüzyıla gelindiğinde müze terimi Avrupa’da garip şeylerden oluşan koleksiyonları tanımlamakta kullanıldı. Kopenhag’da bulunan Ole Warm’ın koleksiyonu buna bir örnektir (Musei Wormiani Historia).19. yüzyıl itibariyle müze terimi kültürel materyallerin sergilendiği, halka açık yerler olarak tanımlanmaya başladı ve içeriklerinin gelişip değişmesiyle daha geniş bir kapsam altına alındı. Hazırlayan: Ahmet İhsan Aytek

http://www.biyologlar.com/muze-kavrami-ve-etimolojisi

Türkiye’de Müzeciliğin Tarihçesi

Türkiye’de müzecilik Sultan Abdülmecid zamanında başlamıştır. Yalova’da yaptığı gezide gördüğü tarihi yazıt taşlarının görüp bunların İstanbul’a gönderilmesini istemiştir. Bu taşlar ve bazı silahlar Aya İrini Kilisesinde koruma altına alınmıştır. Müzeciliğin  ilk  izi  bu  olsa  da burası  halka  açık  değildi. Daha  sonra  sadrazam  Ali  Paşa döneminde  tam  anlamı  ile  müze haline  getirilip  1881  yılına  kadar  yabancı  yöneticiler tarafından yönetilmiştir. 1881 yılında Paris’te de eğitim görmüş olan Osman Hamdi Beyin göreve gelmesi ile Türk müzeciliği yeni bir döneme girmiştir. Yaşadığı dönemde müzecilik adına  çok  önemli  işler  yapan  Osman Hamdi   Bey şimdiki  İstanbul  Arkeoloji  müzesinin binasının da yapımını sağlamış olup arkeolojik eserlerin korunması adına çok önemli işler yapmıştır. Cumhuriyet  yıllarının  başlaması  ile  beraber  müzecilik  faaliyetleri  de  artmış; Topkapı  Sarayı  ve  Ayasofya  Camii  müze  haline  getirilmiş  ve bizzat Atatürk’ün  emri  ile Ankara’da Etnografya müzesi kurulmuştur. 60 yıllardan sonra Türkiye’de müzecilik önemli bir ivme  kazanmıştır  ve  hali  hazırda  bulunan  birçok  müze  bu  yıllar  itibariyle  açılmaya başlanmıştır.Türkiye’de  doğa  tarihi  müzeciliğinin  tarihçesine  baktığımızda ilk  çalışmaların  Osmanlı zamanında yapıldığını görüyoruz.İlk doğa tarihi müzesi 1839 yılında Mekteb-i Tıbbıye-i Şahane (İstanbul İmparatorluk Tıp Okulu)içinde kurulmuş olup, burada yabancı ülkelerden getirilmiş botanik ve zoolojik örnekler ile mineraller sergilenmiştir. Ancak bu tam anlamı ile bir doğa tarihi müzesi değildi. Müzenin bu hali alması 1870 yılında miralay Dr. Abdullah Bey tarafından  sağlanmıştır.  Viyana’dan  getirdiği  örnekler  ve  kitaplar  ile  müzenin  içeriğinin büyümesini sağlamıştır. 1871 yılında yapılan sayımda müzede; 44 tane doldurulmuş memeli, 32  tane  doldurulmuş  kuş,  500  tane  henüz  doldurulmamış  hayvan  postları,  54  tane doldurulmuş veya alkol içinde saklanan balık, 38 tane sürüngen, 1600 tane yumuşakça, 93 tane polipli, 1 tane örümcek, 5 tane bağırsak solucanı, 276 tane fosil, 500 tane maden ve kaya, 66 tane tahtadan kristal şekilleri ve 8 tane fizyolojik model tespit edilmiştir. Yine  Abdullah  Bey’in  çabaları  ile  müzeye  Avrupa’dan  mikroskop  gibi  bilimsel  gereçler, kitaplar ve bazı kuş koleksiyonları bağışlanmıştır. Ayrıca 1870 yılında Bursa yöresinde yapılan araştırmalar sonucunda kaya, bitki ve böcek örnekleri toplanıp müzeye getirtilmiştir. Hazırlayan: Ahmet İhsan Aytek

http://www.biyologlar.com/turkiyede-muzeciligin-tarihcesi

Uluslararası Müzeler Konseyi(Icom)

Konsey1946 yılında Paris’te farklı müzelerden uzmanlar tarafından kuruldu ve başkanlığa Chauncey  Hamlin  getirildi.  Hemen  ertesi  yıl  ise  Meksika’da  ilk  genel  kurullarının gerçekleştirdiler. 1965 yılına kadar geçen süreçte büyümeye başlayan konsey bu süreçte yedi konferans gerçekleştirdi. Bu konferanslarında ele alınan üç temel madde; müzelerin eğitici rolleri, sergiler ve kültürel maddelerin uluslararası dolaşımı ile bu maddelerinkorunmasıydı. Konsey70li yıllarında sonlarında gelişmekte olan ülkelerde de faaliyet göstermeye başladı. 1977 yılında Asya, Afrika ve Latin Amerika ülkelerinde müzeciliğin gelişmesine yardım etme ve müze uzmanları yetiştirme kararı alındı. Bu yıldan 1986 yılına kadar geçen süreçte konsey 2  temel  madde üzerinde yoğunlaştı. Bunlar; müzelerin toplumların gelişmesine olan katkıları politikasının sonuca varması ve müzecilik için mesleki ahlak kurallarının belirlenmesiydi. 90 lı yılların sonunda  kültürel  maddeleri  yasadışı  yollardan  ele  geçirilmesi  ve  kaçırılmasına  karşı çalışmalar başlatıldı. Konseyinmerkezi Paris’te olup 14 farklı ülkeden toplam 16 komite üyesinden oluşan bir heyet tarafından yönetilmektedir. Her sene genel kurul yapılırken, üç senede bir de müze uzmanlarının katılımı ile büyük bir konferans düzenlenir.Konsey birçok farklı disiplinde uzmanın bir arada çalıştığı 31 uluslararası komite ile çalışmalar yapar.Bu komiteler  ile  birlikte konseyin amacı; soyut  ve somut kültürel varlıkları korumak, müzecilik standartlarını  belirlemek,  bilimsel  bilgiyi  yaymak, kültürel  maddelerin  kaçakçılığı  ile savaşmak, diğer  birlikler  ile  işbirliği  yapmak  ve konsey üyeleri  için  geliştirici  tavsiyeler hazırlamaktır.  Ayrıca birliğe bağlı 117 ulusal komite de kendi bölgeleri ile ilgili çalışmalar yürütürler.Bu komiteler ayrıca birliğin strateji planlarını da hazırlarlar. Örneğin birliğin 2011 -2013 yılları için hazırladığı plana göre birliğin hedefleri; konsey üyeleri için üyelik değerini ve şeffaflığını arttırmak, kültürel miras ve müze uzmanlıkları geliştirmek, kültürel miras alanında birliğin  liderliğini  güçlendirmek ve  bu  stratejik  planın  hayata  geçirilmesini  sağlayacak kaynakları bulmak ve yönetmek olarak belirlenmiştir.Konsey1986 yılında müzecilik mesleği için ahlak kuralları belirlemiş ve 2004 bunlar günün şartlarına göre gözden geçirilerek düzenlenmiştir.Bu kurallar üye müzelerin uygulaması gereken minimum standartları belirlemiştir. Bunlar:1.Müzeler insanlığın kültürel ve doğal mirasını korur, yorumlarve tanıtımını yapar2.Müzeler koleksiyonları toplumun yararı ve gelişmesi için muhafaza ederler3.Müzeler birincil kanıtları bilgi elde etmek ve bilgiyi arttırmak için korur4.Müzeler doğal ve kültürel mirasın değerlendirilmesi, anlaşılması ve yönetilmesini sağlayacak imkânlar sağlarlar5.Müzeler kaynaklarından diğer kamu hizmetlerin yararlanmasıiçin imkânlar sağlarlar6.Müzeler koleksiyonlarının kökeni olan ve hizmet ettikleri toplumlar ile yakın bir işbirliği içinde olurlar7.Müzeler yasal çerçeve içinde çalışırlar8.Müzeler profesyonelce yönetilirlerBirliğin üye sayısı yaklaşık 30.000 olup birliğe üye müze sayısı 20.000 civarındadır. İngilizce, İspanyolca ve Fransızca birliğin resmi dilleri olarak kabul edilmiştir.Ayrıca 18 Mayıs her sene müzeler günü olarak kutlanmaktadır.Türkiye’de bu konseye üye olarak bir ulusal komite oluşturmuştur. Bu komitenin yönetmeliği ‘Milletler  arası  Müzeler  Konseyi  (ICOM)  Türkiye  Milli  Komitesi  Yönetmeliği’  olarak hazırlanmış ve Milli Eğitim Bakanlığı’nın 26.10.1970 tarih ve 7349 sayılı yazısı uyarınca 16.11.1970 yılında bakanlar kurulu tarafından onaylanarak yürürlüğe girmiştir. Burada önce çıkan maddelere baktığımızda; 4. madde müzeyi ‘Kültür eserlerini koruyan ve bu eserleri etüd, eğitim ve bedii zevki yükseltme amacıyla toplu halde teşhir eden kamu yararına çalışan, sanata, ilme, sağlığa, teknolojiye, ait koleksiyonları bulunan müesseselere müze adı verilir’ şeklinde  tanımlamıştır.  5.  madde  müzenin  kapsamını;  ‘Daimi  teşhir  bölümü  bulunan kütüp haneler ve arşiv merkezleri resmi şekilde halkın ziyaretine açık bulunan tarihi anıtlar tarihi anıtlara ait binaların kısım ve müştemilatı, tarihi, arkeolojik tabii önemi haiz mevkiler ve parklar, nebabat ve hayvanat bahçeleri, akvaryumlar ve benzeri teşekküller bu tarife girer’ şeklide açıklamıştır. 6. maddede amaçlar; (1) Türkiye müzelerini ve müzecilik mesleğini milletlerarası seviyeye yükseltmek ve temsil etmek,(2) Müzeleri ve müzecilik mesleğini korumak ve geliştirmek ve (3) Toplum hizmetine, bilgilerin yayılmasına ve milletlerarası karşılıklı  münasebetlerin  gelişmesine faydalı  olmak ‘ şeklinde belirtilmiştir. 6.  maddede belirtilen amaçların gerçekleştirilmesi için izlenecek yol ise 7. maddede; ’(1) ICOM Türkiye Milli Komitesi, Milletlerarası Müzeler Konseyi (ICOM) ve bu konseye bağlı Milli Komiteler ve ihtisas teşekkülleri ile temas ve münasebetler kurar, imkânlarına göre onlarla işbirliği yapar, (2) Türkiye’deki her çeşit müze faaliyetlerini dışarıdaki milli komitelere aksettirir ve çeşitli müze mensuplarının yabancı ülkelerdeki müzelerde yetişmeleri için imkanlar arar.  ICOM  ve ona  bağlı  milli  komiteler  arasında  mesleki  eleman  ve  teknik  malzeme  bakımlarından ihtiyaçlara uygun gelişmeyi sağlamak üzere karşılıklı tedbirler alınır. Bu alanda girişilecek her türlü işbirliği hususundaki teşebbüslerin gerçekleşmesine çalışır ve (3) Müze ve müzecilikle ilgili yayınlar yapar’ şeklinde kararlaştırılmıştır.   Hazırlayan: Ahmet İhsan Aytek   Kaynaklar:   Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/  

http://www.biyologlar.com/uluslararasi-muzeler-konseyiicom

Kültür ve Tabiat Varlıklarını Koruma Kanunu

Kanun 21.03.1983 tarihinde kabul edilmiş olup 2863 kanun numarası ile 23.03.1983 tarihinde resmi gazetede yayınlanarak yürürlüğe girmiştir. Kanunun amacı; ‘korunması gerekli taşınır ve  taşınmaz  kültür  ve tabiat  varlıkları  ile  ilgili  tanımları  belirlemek, yapılacak  işlem  ve faaliyetleri düzenlemek, bu konuda gerekli ilke ve uygulama kararlarını alacak teşkilatın kuruluş ve görevlerini tespit etmek’ olarak belirlenmiştir. Kanunun kapması ise; ‘korunması gerekli taşınır ve taşınmaz kültür ve tabiat varlıkları ile ilgili hususları ve bunlarla ilgili gerçek ve tüzelkişilerin görev ve sorumlulukları’ olarak belirlenmiştir. Her ne kadar doğa tarihi müzeciliği kapsamında olmasa da ikinci bölümde yer alan ‘Korunması Gerekli Taşınmaz Kültür ve Tabiat varlıkları’ kapmasına; tarihi mağaralar, kaya sığınakları; özellik gösteren ağaç ve ağaç toplulukları ile benzerleri de girer (Madde 6).Genel olarak doğa tarihi müzeciliği anlamında baktığımızda kanunun üçüncü bölümü olan ‘Korunması Gerekli Taşınır Kültür ve Tabiat Varlıkları’ doğa tarihi müzelerinin koleksiyonlarını içeren kalıntıları ilgilendirir. Bu madde uyarınca korunması gerekli taşınır kültür ve tabiat varlıkları; ‘jeolojik, tarih öncesi ve tarihi devirlere ait, jeoloji, antropoloji, prehistorya, arkeoloji ve sanat tarihi açılarından belge değeri taşıyan ve ait oldukları dönemin sosyal, kültürel, teknik ve ilmi özellikleri ile seviyesini yansıtan her türlü kültür ve tabiat varlıkları’ olarak belirlenmiştir (Madde 23 a fıkrası). Doğal varlıklar olarak olaya baktığımızda ise kanunun koruduğu tabiat varlıkları; ‘her çeşit hayvan ve bitki fosilleri, insan iskeletleri, çakmak taşları, volkan camları, kemik veya madeni her türlü aletler’ olarak karşımıza çıkar. Bu tabiat varlıkların hepsi 24. madde ile gözetim altına alınmıştır. Sözü geçen madde: ‘Devlet malı niteliğini taşıyan korunması gerekli taşınır kültür ve tabiat varlıklarının  Devlet  elinde  ve  müzelerde  bulundurulması  ve  bunların  korunup değerlendirilmeleri  Devlete  aittir.  Bu  gibi  varlıklardan  gerçek  ve  tüzelkişilerin  ellerinde bulunanlar, değeri ödenerek Bakanlık tarafından satın alınabilir.’ Burada bahsedilen tabiat varlıklarının  müzelere  alınması  ise  25.  madde  ile  belirlenmiştir.  Sözü  geçen  madde: ‘Dördüncü maddeye göre Kültür ve Turizm Bakanlığına bildirilen taşınır kültür ve tabiat varlıkları ile 23 üncü maddede belirlenen korunması gerekli taşınır kültür ve tabiat varlıkları, Kültür ve Turizm Bakanlığı tarafından bilimsel esaslara göre tasnif ve tescile tabi tutulurlar. Bunlardan Devlet müzelerinde bulunması gerekli görülenler, usulüne uygun olarak müzelere alınırlar.’ 26. madde müze kurma ve geliştirme görevini Kültür ve Turizm Bakanlığına verir. Aynı şekilde bu tür müzelerin kurulması için izin verme yetkisi de 26. madde ile Kültür ve Turizm Bakanlığına verilmiştir. Sözü geçen madde: ‘Bu Kanunun kapsamına giren kültür ve tabiat  varlıklarına  ait  müzelerin  kurulması,  geliştirilmesi  Kültür  ve  Turizm  Bakanlığının görevlerindendir. Bakanlıklar, kamu kurum ve kuruluşları, gerçek ve tüzelkişilerle vakıflar, Kültür ve Turizm Bakanlığından izin almak şartıyla, kendi hizmet konularının veya amaçlarının gerçekleştirilmesi için her çeşit kültür varlığından oluşan koleksiyonlar meydana getirebilir ve müzeler kurabilirler. Ancak, gerçek ve tüzelkişilerle vakıflar tarafından kurulacak müzelerin faaliyet konuları ve alanları, yapılacak başvuruda beyan olunan istekleri değerlendirerek, Kültür  ve Turizm  Bakanlığınca  verilecek  izin  belgesinde  belirlenir’.  Kültür  ve  tabiat varlıklarının yurtdışına çıkarılması ve bilimsel veya eğitsel amaçlarla kopyalarının çıkarılması ile ilgili şartlar da 32 ve 34. maddeler ile belirlenmiştir. Yurtdışına çıkarılma yasağı ve gerek olduğunu izin verilmesi ile ilgili yasa olan 32. madde; ‘Yurt içinde korunması gerekli taşınır kültür ve tabiat varlıkları yurt dışına çıkarılamaz. Ancak, milli çıkarlarımız dikkate alınarak, bunların  her  türlü  hasar,  zarar,  tehdit  veya  tecavüz  ihtimaline  karşı,  gideceği  ülke makamlarından  teminat  almak  ve  sigortalanmak  şartı  ile  yurt  dışında  geçici  olarak sergilendikten  sonra  geri  getirilmelerine;  Kültür  ve  Turizm  Bakanlığınca  teşkil  edilecek yükseköğretim kurumlarının Arkeoloji ve Sanat Tarihi bilim dallarının başkanlarından oluşan bilim kurulunun kararı ve Kültür ve Turizm Bakanlığının teklifi üzerine Bakanlar Kurulunca karar verilir’ şeklinde belirlenmiştir. 34. madde ise kopya çıkarılması şartlarını açıklar: ‘Kültür ve Turizm Bakanlığına bağlı ören yerleri ve müzelerdeki taşınır ve taşınmaz kültür varlıklarının öğretim,  eğitim,  bilimsel  araştırma  ve  tanıtma  amacı ile  fotoğraflarının  ve  filmlerinin çekilmesi, mulaj ve kopyalarının çıkartılması Kültür ve Turizm Bakanlığının iznine bağlıdır.’Bilindiği üzere doğa tarihi müzelerinde sergilenen malzemelerin büyük birçoğu kazılardan çıkan fosillerden oluşur. Bu konuda 41. madde; ‘Kazılarda meydana çıkan bütün taşınır kültür ve tabiat varlıkları, kazı yapan heyet ve kurumlar tarafından her yıl yapılan kazı sonunda Kültür ve Turizm Bakanlığının göstereceği Devlet müzesine nakil olunur. Kazı ve sondaj araştırmalarında elde edilen insan ve hayvan iskeletleri ile bütün fosiller, Kültür ve Turizm Bakanlığınca uygun görüldüğü takdirde, tabiat tarihi müzeleri ile üniversitelere veya ilgili diğer  Türk  bilim  kurumlarına  verilebilir’  şeklinde  düzenlenmiştir.  Bu  kanunda  belirtilen maddeler dışında, Kültür Varlıkları ve Müzeler Genel Müdürlüğü İle İlgili Mevzuatı altında bir ‘Müzecilik  Kılavuzu’  hazırlanmış  ve  bakanlık  makamının  onayı  ile  21.03.2001  tarihinde yürürlüğe girmiştir. Bu kılavuzun amacı; ‘1050 sayılı Muhasebe-i Umumiye Kanunu, 832 sayılı Sayıştay Kanunu ve 3386  sayılı  kanun  ile  değişik  2863  sayılı  Kültür  ve  Tabiat  Varlıklarını  Koruma  Kanunu kapsamına giren korunması gerekli taşınır kültür ve tabiat varlıklarının, envanteri ve ayniyat işlemlerinin müzelerce nasıl yapılacağına ilişkin  esas  ve  usulleri  tespit  etmek,  uygulamada birliği oluşturmak müzelerde ve ören yerlerinde bulunan taşınır ve taşınmaz kültür ve tabiat varlıklarının her türlü tehlikeye karşı korunması ve bunun için tüm olanakların kullanarak gerekli önlemlerin alınmasını sağlamak’ olarak saptanmıştır.Bu  kılavuzda  kültür  ve  tabiat  varlıklarının  müzeye  girişi  ‘araştırma,  sondaj  ve  kazılarda bulunarak müzeye nakli, satın alma bağış, zoralım ve devir yolu ile olur’ olarak belirlenmiştir. Ayrıca  yine  bu  kılavuzda;  müzeye  giren  varlıkların  envantere  nasıl  alınacağı,  depo tanzimlerinin  nasıl  yapılacağı,  kaybolan,  çalınan  ve  yapılan  sayım  sonrası bulunamayan varlıklarla  ilgili  yapılacak  işlemleri,  müzeler  arası  devirde  yapılacakları  ve  müzenin güvenliğinin sağlanması ile ilgili şartlar belirtilmiştir.   Hazırlayan: Ahmet İhsan Aytek   Kaynaklar:   Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/  

http://www.biyologlar.com/kultur-ve-tabiat-varliklarini-koruma-kanunu

Bu Canlılar Hala Yaşıyormu

Bilim dünyasındaki gelişmelerler birlikte, dünyada çok eski dönemlerdeki hayatlara ilişkin de değişik ve önemli ipuçları el ediliyor. Ancak bazen öyle bulgularla karşılaşılıyor ki, insanın "gerçekten dünyada yaşadı mı?" diye sorgulamasına yol açıyor. İşte herkesi düşündüren bulgular Chupacabra Birçok insan, resimde görünen hayvan kafasının ‘chupacabra' isimli bir hayvana ait olduğuna inanıyor. Pek mümkün görünmeyen Meksikalı canavarın tarifleri çok çeşitli olmakla beraber, sonrasındaki araştırmalar aslında bunun efsanevi kan emici bir asalak değil de sadece yaşlı bir çakal olduğunu ortaya koyuyor. Tazmanya kaplanı Bilim adamları, Tazmanya kaplanının 1936 yılında neslinin tükendiğini belirtmiş olsa da bazı hayvan bilimcilerine göre Tazmanya kaplanları halen varlıklarını sürdürüyor. Tazmanya kaplanını gösteren bu fotoğraf, Sidney'deki Avustralya Müzesi'nde sergilenmektedir. Neslinin tükendiği duyurulduktan sonra, Tazmanya kaplanı Victoria'da altmış kez ve Warrandyte State Park'ında ise yirmi kez görüldüğü iddaa ediliyor. Loch Ness canavarı 1934'te İskoçya'da çekilen bu fotoğrafta hayal gibi görülen gölgeli şeyin Loch Ness Canavarına ait olduğu söyleniyor. Canavarın ilk görüntülenmesi bir önceki yılda olmuş ve bu görüntüler dünya çapında büyük ilgi görmüştür. Dev yılan Fotoğrafta gördüğünüz 15 metre uzunluğundaki dev piton yılanı, Endonezya'daki eğlence parkında görüntülenmiştir. 15 metre uzunluğunda ve 447 kilo ağırlığındaki dev yılan, 2002 yılında Sumatra Adası'nda yakalanmıştır, ve şu ana kadar yakalanan en büyük yılan olduğu varsayılmaktadır. Waheela Kurda benzeyen ve etobur bir hayvan olan Waheela'nın, Kanada'nın kuzeyindeki soğuk vahşi doğada yaşadığına inanlıyor. Resimde ise dünyanın herhangi bir yerinde karşılacabileceğiniz normal vahşi kurtlardan birini görebilirsiniz. Buz adam Buz adamın maymunla insan arasındaki eksik halka olduğuna inanılıyor. Resimde 5300 yıllık olduğu sanılan mumyalanmış buzadamın kalıntılarını görebilirsiniz. 1990'lı yıllarda İtalya'nın Alp dağlarında bulunan tuhaf yaratık, İtalya'nın Bolzano kentindeki Arkeoloji Müzesi'nde saklanıyor. Ormanda bulunan Koca-ayak Fotoğrafta görmüş olduğunuz yaratık bir maymun mu, bir koca-ayak mı yoksa kostüm giymiş bir insan mı? Bu ve buna benzer fotoğraflar, canavar severler arasında bitmek bilmeyen tartışmalara yol açmaktadır Kuzey Amerika maymunu Birçok kişi canavar ya da keşfedilmemiş türde hayvanlar gördüğünü iddaa ediyor. Fotoğrafta, bilinmeyen hayvanlar websitesi üyesi tarafından yapılan Kuzey Amerika maymununun eskizini görebilirsiniz. Mothman Mothman; parlak gözlü, kanatlı ve insan boyutlarında olan bir yaratık. İlk olarak 1966 yılında görülen ‘mothman', daha sonra ise filmlere konu olmuştur. Resimde, Amerika'da ana yolda bulunan büyük ‘mothman' heykelciğini görebilirsiniz. Kent sakinleri, ilginç yaratığın efsanesini benimseyerek şehrin turizm potansiyelini yükseltmek istemişlerdir DenizkızıDenzikızı, nesli tükenmiş olan ya da evvelce var olduğu sanılan kuşkulu bir hayvan türü. Uzun zamandan beri, gerçekten var olduğuna inanılıyor. 1785 yılında The Times, betimlemesi ile birlikte bir denizkızı görüntüsünü raporladı Chimaera Chimaera; Yunan mitolojisinin aslan başlı, keçi vucütlu ve yılan kuyruklu efsanevi ateş püskürten canavarı. Fotoğrafta, her ne kadar korkunç gözükmese de, kuzey kutupta bulunan Chimaera'yı görebilirsiniz. Koca-ayak Koca-ayak Asya'da görülen büyük maymunlardan olduğu söyleniliyor. Yıllar boyunca birçok görüntüsü kaydedilmiştir. Fotoğrafta ise, İdaho'nun Milli Tarih Müzesi'nde sergilenen birçok ayak izi kalıntısını görebilirsiniz.

http://www.biyologlar.com/bu-canlilar-hala-yasiyormu

Müzelerde Eğitim

Müzelerde Eğitim

Genel anlamda müzelerde eğitimi bilimsel eğitim ve toplumsal eğitim iki başlık altında incelemek gerekse de toplumsal anlamda sağlanan eğitim daha ön plana çıkar.

http://www.biyologlar.com/muzelerde-egitim

Boltzmann ve Zaman

İşaret edilmesi gereken temel sorun şudur: Zaman fiziksel evrenin nesnel bir özelliği midir, yoksa tümüyle öznel bir şey, aklın bir yanılsaması veya gerçek hiçbir ilişkisinin olmadığı şeyleri tanımlamanın uygun bir biçiminden mi ibarettir? Bu sonuncu tutum, hepsi de öznel idealizm felsefesiyle yakından ilişkili bir dizi farklı düşünce ekolü tarafından şu ya da bu ölçüde savunula gelmiştir. Gördüğümüz gibi Mach bu öznelciliği bilime sokmuştu. Bu yaklaşım termodinamik biliminin öncüsü olan Ludwig Boltzmann tarafından 19. yüzyılın sonlarına doğru kesin bir biçimde yanıtlanmıştı. Ernst Mach’ın etkisi altındaki Einstein, en azından daha yolun başındayken, henüz bu yaklaşımın son derece zararlı sonuçlarını kavramadan önce, zamanı gözlemciye bağlı olan öznel bir şey olarak ele almıştı. 1905’te, özel görelilik teorisi hakkındaki makalesi, her farklı gözlemciye ilişkin “yerel zaman” kavramını ileri sürmüştü. Buradaki zaman kavramı klasik fizikten aktarılan bir düşünceyi barındırır; zamanın tersinir olduğu düşüncesini. Bu gerçekten de tamamen sıradışı ve tüm deneyimimize meydan okuyan bir kavramdır. Film yapımcıları sıklıkla, kamerayı tersine çalıştırarak elde ettikleri kamera hilelerine başvururlar; süt, bardaktan gerisin geriye şişeye akar, otobüs ve arabalar geri giderler, civcivler kabuklarına geri dönerler vesaire. Tüm bunlara verdiğimiz tepki gülmektir, zaten bu hilelerin amacı da budur. Güleriz, çünkü görmekte olduğumuz şeylerin yalnızca imkânsız olduğunu değil, saçma olduğunu da biliriz. Gördüğümüz süreçlerin tersine çevrilemeyeceğini biliriz. Boltzmann bunu kavramıştı; onun meşhur zaman oku teorisinin esasında tersinmez zaman kavramı yatar. Termodinamik yasaları bilimde büyük bir atılımı temsil ediyordu, ancak hayli tartışmaya yol açtılar. Bu yasalar, 19. yüzyılın sonlarında mevcut fizik yasalarıyla uzlaştırılamıyordu. İkinci yasa, mekanik ya da kuantum mekanik yasalarından türetilememekte ve aslında eski fizik biliminin teorileriyle kesin bir kopuşu ifade etmektedir. Entropinin* geçmiş değil gelecek yönünde arttığını söyler. Entropi, zaman içerisinde tersinmez olan bir durum değişikliğini belirtir. Dağılma yönünde bir eğilim fikri, fiziğin esas görevinin doğanın karmaşıklığını basit hareket yasalarına indirgemek olduğu şeklindeki yaygın kabul gören düşünceyle çatışmıştı. Genellikle, şeylerin daha büyük bir düzensizliğe ve zamanın akışıyla birlikte bozunmaya eğilimli olması olarak anlaşılan entropi düşüncesi, insanların her daim inandıkları şeyleri bütünüyle doğrulamaktadır: Zaman nesnel olarak vardır ve tek yönlü bir süreçtir. Termodinamiğinin iki yasası, tüm tersinmez süreçlerde gözlenen ve entropi olarak bilinen olgunun varlığını gerektirir. Bu kavramın tanımı, elde edilebilir enerji diye bilinen bir başka özelliğe dayandırılır. Yalıtılmış bir sistemin entropisi sabit kalır ya da artar, ancak azalamaz. Bunun sonuçlarından biri, “devir daim makinesinin” imkânsızlığıdır. Einstein, tersinmez zaman düşüncesini, fizikte yeri olmayan bir yanılsama olarak değerlendirmişti. Max Planck’ın sözleriyle, termodinamiğin ikinci yasası, doğada, tüm doğal süreçlerde her zaman aynı şekilde değişen bir niceliğin varolduğu düşüncesini dile getirir. Bu gözlemciye bağlı değildir, tersine nesnel bir süreçtir. Fakat Planck’ın görüşü küçük bir azınlık tarafından benimseniyordu. Bilimcilerin büyük çoğunluğu, tıpkı Einstein gibi, zamana öznel etkenler atfettiler. Einstein’ın bu sorundaki tutumu, onun nesnel süreçleri varolmayan bir “gözlemci”ye bağlı kılan bakış açısının temel zaafını sergiler. Bu hiç şüphesiz onun tüm bakış açısındaki en zayıf unsurdu ve tam da bu nedenle, onun takipçilerinin çabalarıyla en fazla popülarite kazanmış kısımdır. Einstein’ın ardından gelenler, bizzat Einstein’ın, yaşamının sonlarına doğru bu konudaki düşüncelerini değiştirmiş olduğu gerçeğinin farkında değillermiş gibi görünüyorlar. Fizik ve matematikte zaman ifadesi tersinirdir. “Zamanda tersinir bir değişmez”, aynı fizik yasalarının her iki durumda da eş derecede uygulanabildiğini anlatır. İkinci olay ilk olaydan ayırt edilemez ve zamanın akışı temel etkileşimlerde herhangi bir tercihli yöne sahip değildir. Meselâ, iki bilardo topunu çarpışmasını gösteren bir film, olayın gerçek zaman sıralanışı hakkında herhangi bir fikir vermeksizin ileri de geri de oynatılabilir. Aynı şey, atomaltı düzeydeki etkileşimler için de doğru olarak kabul edilmişti, fakat 1964’te zayıf nükleer etkileşimlerde bunun tersini kanıtlayan deliller bulundu. Uzun bir süre boyunca doğanın temel yasalarının “elektriksel yük açısından simetrik” olduğuna inanılmıştı. Meselâ, bir anti-proton ve bir pozitron, bir proton ve elektronla aynı şekilde davranır. Bugün deneyler göstermektedir ki, doğanın yasaları ancak üç temel şey –Yük, Parite ve Zaman– birleşmişse simetriktir. Bu “YPZ aynası” olarak bilinir. Dinamikte, verili bir yörüngenin yönü önemsizdi. Örneğin, zemin üzerinde sıçrayan bir top başlangıçtaki konumuna geri dönerdi. Böylece her sistem, eğer içerdiği tüm noktalar tersine çevrilirse, “zamanda geri gidebilir”. Önceden geçtiği tüm durumların basitçe izi sürülebilirdi. Klasik dinamikte, zaman (t ® –t) ya da hız (v ® –v) tersinmesi gibi değişimler matematiksel olarak eşdeğerdirler. Bu tip hesaplar herhangi bir etkileşimin söz konusu olmadığı basit kapalı sistemlerde gayet güzel işler. Ne var ki gerçekte her sistem birçok etkileşime tabidir. Fizikteki en önemli sorunlardan biri “üç cisim” sorunudur, örneğin ayın hareketi hem dünya hem de güneşin etkisi altındadır. Klasik dinamikte, bir sistem, bir kez verilmiş olan ve başlangıç noktası asla unutulmayan bir yörüngeye göre değişir. Başlangıç koşulları yörüngeyi her an için belirler. Klasik fiziğin yörüngeleri basit ve deterministiktir. Ancak hiç de bu denli kolay bir şekilde açıklanamayan yörüngeler de vardır; örneğin, sonsuz küçük bir uyarımın bile onu döndürmeye ya da salınım yaptırmaya yeterli olduğu bir sarkaç. Boltzmann’ın çalışmasının önemi, şeylerin fiziğinden ziyade süreçlerin fiziğiyle ilgilenmiş olmasındaydı. Elde ettiği en büyük başarı, atomların özelliklerinin (kütle, yük, yapı) nasıl olup da maddenin görünür özelliklerini (viskozite, ısıl iletkenlik, difüzyon, vb.) belirlediğini göstermekti. Düşünceleri tüm yaşamı boyunca çirkin saldırılara maruz kaldı, fakat 1900’den çok kısa bir süre önce gerçekleşen atom fiziğinin keşifleriyle ve bir sıvı içerisinde asılı kalan mikroskobik parçacıkların rasgele hareketlerinin (“Brown hareketi”) ancak Boltzmann tarafından geliştirilen istatistiksel mekanik aracılığıyla açıklanabileceğinin anlaşılmasıyla birlikte onun görüşleri de kanıtlanmış oldu. Çan biçimli Gauss eğrisi, bir gazdaki moleküllerin rasgele hareketini betimler. Artan sıcaklık, moleküllerin ortalama hızında ve hareketleriyle bağlantılı olan enerjilerinde bir artışa yol açar. Clausius ve Maxwell bu soruna tekil moleküllerin yörüngeleri açısından yaklaşırken, Boltzmann moleküller topluluğunu ele aldı. Onun kinetik denklemleri gazlar fiziğinde önemli bir rol oynar. Süreçlerin fiziğinde büyük bir ilerlemeydi bu. Bilim çevreleri tarafından bir deli olarak değerlendirilen Boltzmann büyük bir öncü idi. Doğanın nesnel bir özelliği olarak zamanın tersinmez tabiatını tespit etmeye girişmekten vazgeçmeye zorlanan Boltzmann, sonunda 1906’da intihara sürüklendi. Klasik mekanik teorisinde bir film üzerinde önceden tanımlanmış olayları oynatmak kesinlikle mümkünken, pratikte bu mümkün değildir. Meselâ, dinamik teorisinde, sürtünme ve çarpışma gibi şeylerin olmadığı ideal bir dünyamız vardır. Bu ideal dünyada, verili bir hareketin içerdiği tüm değişmezler başlangıçta sabitlenmiştir. Hiçbir şey onun gidişatını değiştiremez. Bu araçlarla, tümüyle statik bir evren görüşüne ulaşırız, burada her şey pürüzsüz, lineer denklemlere indirgenmiştir. Görelilik teorisinin mümkün kıldığı devrimci ilerlemelere rağmen Einstein, yüreğinde, statik, uyumlu bir evren düşüncesine bağlı kalmıştı, tıpkı Newton gibi. Newton mekaniğinin ve hatta kuantum mekaniğinin hareket denklemleri kendi içlerinde bir tersinmezlik taşımazlar. Bir filmi ileri ya da geri oynatmak mümkündür. Ancak doğada bu genel olarak geçerli değildir. Termodinamiğin ikinci yasası, düzensizliğe dönük tersinmez bir eğilimi öngörür. Rasgeleliğin zamanla sürekli arttığını ifade eder. Son zamanlara kadar, doğanın temel yasalarının zamanda simetrik oldukları düşünülmekteydi. Oysa zaman asimetriktir ve yalnızca tek yönde ilerler, geçmişten geleceğe. Geçmişten gelen fosilleri, ayak izlerini, fotoğrafları ya da ses kayıtlarını görebiliriz, fakat gelecekten gelenleri asla. Yumurtaları bir omlet yapmak için karıştırmak ya da bir fincan kahvenin içine şeker ya da süt koymak çok kolaydır, ama bu süreçleri tersine çevirmek hiç de kolay değildir. Banyodaki su kendi ısısını çevredeki havaya transfer eder, ama tersi gerçekleşmez. Termodinamiğin ikinci yasası “zamanın oku”dur. Öznelciler, kimyasal afinite, ısı iletimi, viskozite vb. gibi tersinmez süreçlerin “gözlemci”ye bağlı olduğu itirazını yükseltmişlerdi. Gerçekte, bunlar doğada olup biten nesnel süreçlerdir ve yaşam ve ölümle tanışık olan herkes için apaçıktırlar. Bir sarkaç (en azından ideal bir durumda) başlangıçtaki konumuna geri salınabilir. Ancak herkes bilir ki, bir bireyin yaşamı ancak tek bir yönde ilerler, beşikten mezara. Bu tersinmez bir süreçtir. Kaos teorisinin önde gelen teorisyenlerinden biri olan Ilya Prigogine, zaman sorununa büyük bir dikkat sarf etmişti. Brüksel’de bir öğrenci olarak fizik çalışmaya başladığı ilk dönemlerde Prigogine, “özellikle de ilk eğitiminin esasen tarih ve arkeoloji üzerinde yoğunlaşmasından ötürü, bilimin zaman hakkında söylediği çok az şey olması karşısında hayrete kapıldığını” hatırlatır. Klasik mekanik (dinamik) ile termodinamik arasındaki ihtilâfa ilişkin olarak Prigogine ve Stengers şunları yazarlar: Belli bir dereceye kadar, bu ihtilâfla diyalektik materyalizmi ortaya çıkartan ihtilâf arasında bir benzerlik vardır. ... “Tarihsel” olarak adlandırılabilecek –yani gelişme ve değişme yeteneğine sahip– bir doğa ... tanımlamıştık. Materyalizmin ayrılmaz bir parçası olarak doğanın bir tarihi olduğu düşüncesi, Marx tarafından ve ayrıntılarıyla da Engels tarafından ileri sürülmüştü. Fizikteki çağdaş gelişmeler, tersinmezlik tarafından oynanan yapıcı rolün keşfi, böylece, uzun zaman önce materyalistler tarafından sorulan bir soruyu doğa bilimleri çerçevesi içinde de ortaya koydu. Onlara göre, doğayı kavramak, onu, insanı ve insan toplumlarını üretme yeteneğinde olan bir şey olarak kavramak anlamına geliyordu. Üstelik Engels Doğanın Diyalektiği’ni yazdığı sıralarda, fiziksel bilimler, mekanik dünya anlayışını reddetmiş ve doğanın tarihsel gelişimi düşüncesine yaklaşmış gibi görünüyordu. Engels üç temel keşiften bahseder: Enerji ve onun nitel dönüşümlerine hükmeden yasalar, yaşamın temel taşı olarak hücre ve Darwin’in türlerin evrimini keşfi. Bu büyük keşiflerin ışığında Engels, mekanik dünya görüşünün ölmüş olduğu sonucuna çıkmıştı. Yazarlar zamanın öznel yorumlanışına karşı şu sonuca varıyorlar: “Zaman tek bir yönde akar, geçmişten geleceğe. Zamanla oynayamayız, geçmişe geri gidemeyiz.”

http://www.biyologlar.com/boltzmann-ve-zaman

Türkiye'de Ulusal ve Milli Parklar

Ülke halkının yararlanması için kurulmuş, doğal güzelliği, bilimsel önemi ya da tarihsel ve arkeolojik değeri olan alanlardır. Ulusal parklarda doğaya ve yabanıl yaşama zarar vermemek için tarım, ticaret ya da sanayi işletmeleri ve yerleşim yerleri kurulması yasaklanmış, ziyaretçilerin hareketlerine bazı kısıtlamalar getirilmiştir. Bazı parklar, örneğin İngiltere'de bulunanlar, köprü, ev, duvar gibi yapılan da içine alır. Bu parklarda o bölgede yaşayan halkın toprağı geleneksel yöntemlerle işlemesine denetimli olarak izin verilir. Aynca Peru'da olduğu gibi yerli halkın dış etkenlerden zarar görmesini önlemek amacıyla oluşturulmuş parklar da vardır. Ulusal parkların alanlan genellikle çok geniştir. Kanada'da, Alberta eyaletinde bulunan Wood Buffalo Ulusal Parkı 45.480 km2'lik alanıyla bunlann en büyüğüdür. Olağanüstü güzellikte bir dinlence bölgesi olan bu park aynı zamanda buffalo olarak da bilinen Amerikan bizonlarının barındığı bir doğal koruma alanıdır. 19. yüzyılın sonlannda soyları tükenmek üzere olan bu hayvanlar sonradan koruma altına alınmıştır. Doğayı ve yabanıl yaşamı koruma düşüncesi ortaçağdan beri vardır {bak. Doğayi Koruma). O dönemde yalnızca soylulann avlanması için aynlan topraklar, en azından yılın belirli aylannda av yasağı uygulandığı için geyik, ceylan gibi av hayvanlarının yanı sıra küçük hayvanların da rahatça üreyip çoğalmasına uygundu. Günümüzde doğal kaynaklan ve yeryüzündeki tüm canlıların yaşamını tehdit eden çevre kirliliği sorunu Sanayi Devrimi'yle birlikte başladı. Doğal koruma alanı oluşturma çabalan 16. yüzyıla kadar uzanır. Bununla birlikte, 1872'de ABD'de kurulan Yellowstone Ulusal Parkı hem doğayı ve yabanıl yaşamı korumak, hem de insanlar için doğayla iç içe yaşayabilecekleri bir ortam oluşturmak açısından gerçek anlamda ilk ulusal parktır. Bu park doğal güzelliklerinin yanı sıra ılıcaları, gayzerleri ve yabanıl yaşamının zenginliğiyle de ünlüdür {bak. Gayzer). Başlangıçta insanlar için gezinti ve eğlence ortamı oluşturmak amacıyla kurulan parklar sonradan çevre kirliliğinin canlıların yaşamını tehdit edici boyutlara ulaşması üzerine, doğayı ve yabanıl yaşamı korumanın gerekli ve önemli yollarından biri olarak görülmeye başladı. Doğayı ve yabanıl yaşamı korumak için parkların gerekli olduğu düşüncesi 1916'da ABD Ulusal Parklar Dairesi'nin kurulmasıyla güçlendi ve yaygınlaştı. Bugün ABD'de 48 ulusal park bulunmaktadır. Doğal oluşumlar sonucu ilginç görünümler kazanan yüzey şekilleri de ulusal anıt olarak koruma altına alınmıştır. ABD'nin Wyoming eyaletindeki Şeytan Kulesi UlusalAnıtı eski bir yanardağ kalıntısıdır. ABD'de koruma altına alınmış tarihsel bölgeler de vardır. Örneğin Güney Carolina'daki, Amerikan İç Savaşı'mn patlak verdiği Sumter Kale-si'de koruma altındaki tarihsel yerlerden biridir. ABD'deki tarihsel alanlar, anıtlar, göl kıyılan, deniz kıyıları ve doğal koruma alanlarının yaklaşık 310.800 km2'lik bölümü ABD Ulusal Parklar Dairesi'nin denetimi altındadır. Bugün birçok ülkede ulusal parklar ve koruma alanları bulunmaktadır. Örneğin Avustralya'da sayılan 2.000'i geçen ulusal parklar, yabanıl hayvanları koruma alanları, devlet parklan ve tarihsel alanlar ülkenin yüzde 3,7'sini kaplar. Avustralya'da çok sayıda deniz ve ada parkları da vardır. Örneğin Queensland'deki Hinchinbrook Ulusal Parkı, Büyük Set Resifleri'nin bir bölümünü de içine alır. Avustralya Yerlileri'nin kutsal saydığı kızıl Ayers Kayalan Avustralya'nın merkezindeki Uluru Ulusal Parkı'ndadır. Ayers Kayalan dünya üzerindeki en büyük tek parçalı kaya oluşumlarından biridir. Üzerinde Yerliler'ce yapılmış resimler vardır. Yeni Zelanda'da ilk ulusal park 1887'de kurulmuştur. Ülkede bugün 10 park bulunmaktadır. Bunlann en büyüğü olan Güney Adası'ndaki Fiordland Ulusal Parkı'nın olağanüstü güzellikteki kıyılannda ve vadilerinde Yeni Zelanda'ya özgü takahe, kivi ve uçmayan bir papağan türü olan kakapo gibi ender rastlanan kuş türleri yaşamaktadır. Çekoslovakya, Almanya, Polonya ve İsveç, Avrupa'da ulusal parklann öncülüğünü yapan ülkeler arasındadır. Sovyetler'de çok geniş doğal koruma alanları vardır. Ender rastlanan Avrupa bizonunun banndığı Bialowieza Ulusal Parkı, Polonya'daki bir ulusal parkla sınır oluşturur. İngiltere'de bugün 13.600 km2'lik bir alanı kaplayan 10 ulusal park bulunmaktadır. Sanayi artıklanyla oluşan çevre kirlenmesi Avrupa'daki parklar için büyük bir tehlike oluşturmaktadır. Örneğin Çekoslovakya'daki Krkonose Ulusal Parkı'mn ormanları sanayi işletmelerinin bacalarından çıkan zehirli gazların yol açtığı asit yağmurundan önemli ölçüde zarar görmektedir {bak. ASİT YAĞMURU). Ulusal parklar turistlerin ilgisini çeken yerlerdir. Turizmden sağlanan gelirler özellikle Afrika, Asya ve Güney Amerika'daki gelişmekte olan birçok ülke için önemli bir gelir kaynağıdır. Afrika'da yüzlerce çeşit hayvanın koruma altına alındığı büyüleyici güzellikte birçok park vardır. Bu parkların en çok tanınanı Güney Afrika'da 1898'de oyun alanı olarak açılan Kruger Ulusal Parkı'dır. Zaire' de de 1929'da Belçikalıların kurduğu çok sayıda park vardır. Doğu Afrika'daki parklar doğal güzellikleri ve barındırdıktan yabanıl hayvan ve bitki çeşidi açısından dünyanın en ünlü parkları arasındadır. Tanzanya'daki Se- rengeti Ulusal Parkı ince boynuzlu bir ceylan türü olan gazellerin, zebra ve bir antilop türü olan gnu sürülerinin göç yollan üzerindedir. Afrika'daki parkların sayısında son 20 yılda büyük artış görülmüştür. Ne var ki, bu parkların kurulması birtakım sorunları da beraberinde getirmiştir. Nüfusun yoğun olduğu bölgelerde toprağı tarım alanı olarak kullanmak isteyen çevreler parkların kurulmasına ya da genişletilmesine karşı çıkmaktadır. Ulusal parklara ilişkin bir başka sorun da binlerce kilometre karelik bir alanda kurulmuş büyük parklardaki denetim güçlüğüdür. Yasaklayıcı ve kısıtlayıcı yasalara karşın fildişi, gergedan boynuzu ve et elde etmek için hayvanları çekinmeden vuran kaçak avcılann sayısı artmakta, bu da soyu tükenmekte olan yabanıl hayvanlar için büyük bir tehlike oluşturmaktadır. Asya'da da birçok ulusal park vardır. Ama Japonya gibi kalabalık olan ülkelerde parklar, doğal koruma alanları olmaktan çok, insanlara dinlenme ve eğlenme alanı sağlamak amacıyla kurulmuştur. Hindistan'ın kuzeyindeki Corbett Ulusal Parkı'nda kaplanlar, Çin'deki Hsifan koruma alanında ender rastlanan ve soyu tükenmekte olan dev pandalar koruma altına alınmıştır. Güney Amerika'daki başlıca ulusal parklar ve koruma alanları Arjantin, Brezilya ve Paraguay sınırları arasında yer alan İguaçu Ulusal Parkı ile Arjantin'de soluk kesici güzellikteki dağ zincirleriyle ünlü Nahuel Huapi Gölü Ulusal Parkı'dır. Türkiye'de Ulusal Parklar Doğal ve tarihsel değerler açısından zengin olan Türkiye'de 21 ulusal park vardır. Toplam yüzölçümü 2.662 km2 olan ulusal parkların kapladığı alan Lüksemburg'un yüzölçü-münden daha fazladır. Bunlardan en büyüğü 42.000 hektarlık alan kaplayan Munzur Vadisi Milli Parkı, en küçüğü ise yüzölçümü yalnızca 64 hektar olan Kuş Cenneti Milli Parkı'dır. Yozgat Çamlığı, Soğuksu, Kuş Cenneti, Ye-digöller ve İlgaz Dağı ulusal parkları doğal bitki örtüsü ve yabanıl hayvanların korunması; Gelibolu Yarımadası, Başkomutan ve Göreme ulusal parkları tarihsel ve arkeolojik değerlerin korunup değerlendirilmesi; Kara-tepe-Aslantaş, Güllük Dağı (Termessos), Olimpos-Beydağları ve Köprülü Kanyon ulusal parkları hem doğal, hem de tarihsel değerlerin koruma altında tutulması amacıyla kurulmuştur. Bu özelliklerinin yanı sıra bazı ulusal parklar da eşsiz jeolojik yapılarıyla büyük ilgi çeker. Bunlardan başhcaları Göreme Tarihi Milli Parkı'ndaki peribacaları ile Köprülü Kanyon Milli Parkı'nda Köprü Suyu' nun açtığı kanyon biçimli vadi ve yer yer 100 metreyi aşan, duvar gibi dik yamaçlardır. Uludağ gibi çok turist gelen ulusal parklarda konaklama tesisleri, Göreme gibi kültürel değerleri zengin ulusal parklarda da açık hava müzesi olarak düzenlenmiş alanlar vardır. Ülkemizde yer alan en ilginç ulusal parklardan biri Kuş Cenneti Milli Parkı'dır. Bu ulusal parkın isim babası, yıllarca Türkiye'de öğretim üyeliği yapmış olan Curt Koswig'tir. 1938 ilkbaharında bir gün karısıyla birlikte Manyas Gölü'ne balık avlamak için gelen Kossvvig, gölün kuzeydoğu köşesinde yoğun olarak kuş topluluklarının yaşadığını saptadı. Yöreyi tüm dünyaya tanıtmaya çalışan değerli bilim adamı, Manyas Gölü'nün bu kesimine "Kuş Cenneti" adını verdi. Bu nedenle bazı kaynaklarda Manyas Gölü'nün adı Kuş Gölü olarak da geçer. Ama eski kaynaklar doğal yaşam açısından eşsiz zenginlikleri olan bu kesimin Roma döneminde "cennet" anlamına gelen paradiso adıyla anıldığını yazar. Bu kesimde son derece canlı bir yabanıl yaşam oluşmasının başlıca nedeni, sığ bir göl olan Manyas'ın sularında değişik mevsimlerde görülen alçalma ve yükselmedir. Yazın ve sonbaharda suların çekilmesi göl kıyısındaki ağaç köklerinin hava almasına olanak vererek yaşamın sürekliliğini sağlar. Suların çekilmesiyle ortaya çıkan alanda üreyen küçük canlılar hem kuşlara yem olur, hem de suların yükselmesinden sonra balıklara besin sağlar. Bu dönemde gübreleriyle ağaçların güçlenmesini de sağlayan kuşlar, ilkbaharda sular yükselince dallarda yaptıkları yuvalarında kuluçkaya yatar. Sulann yükselmesi karadan gelebilecek yırtıcı hayvanlara engel oluşturduğundan, kuluçka dönemi güvenlik içinde geçer. Kuşlar yumurtadan çıkan yavrularını beslerken balıklar da yumurtalannı Kuş Cenneti kıyısına bırakır. Manyas Gölü'nü besleyen Sığırcı Deresi çevresinde yer alan ulusal parka her yıl 2-3 milyon kuşun geldiği saptanmıştır. Yapılan gözlemler sonucunda, göçmen ve sürekli yaşayan olmak üzere, ulusal parkta saptanan kuş türü sayısı 239'dur. Türkiye'deki öteki ulusal parkların tersine, kuşların ürkebileceği düşünülerek burada piknik yapılmasına izin verilmez. Büyük bir kuş gözetleme kulesi bulunan Kuş Cenneti Milli Parkı'nda kuş çeşitlerinin tanıtımı amacıyla düzenlenmiş bir de sergi vardır. Ulusal park yılın her mevsiminde çok sayıda turistin yanı sıra kuş incelemesi yapan birçok araştırmacı tarafından da ziyaret edilir. Balıkesir iline bağlı Bandırma ilçesinin sınırlan içinde yer alan Kuş Cenneti Milli Parkı son yıllarda çok ciddi tehlikelerle karşı karşıyadır. Tarlalarda kullanılan zehirli tarım ilaçlarının yağmur sularıyla göle ulaşması ve çevredeki sanayi kuruluşlarından çıkan 'zehirli atıkların boşaltıldığı akarsuların göle dökülmesi önemli ölçüde kirlenmeye neden olmaktadır. Bunlara ek olarak, tarlaların sulanması amacıyla su çekilmesi Kuş Cenneti'ndeki doğal yaşamın sürekliliği açısından yaşamsal önemi olan sulardaki mevsimlik düzey değişikliğinin bozulmasına yol açmaktadır. Tüm bunlar, sularında sazan, tatlı su kefali, turna ve yayın ile kerevit yaşayan bu eşsiz doğa parçasının özelliklerini yitirme tehlikesini yaratmaktadır. Ulusal parkların yanı sıra doğa parkı, doğa anıtı ve doğal koruma alanlarının seçilip belirlenmesi, korunması, geliştirilmesi ve yönetilmesi gibi görevler 1983'te çıkarılan Milli Parklar Kanunu'yla Tarım Orman ve Köyişle-ri Bakanlığı'na verilmiştir. 1985'te yapılan başka bir yasal düzenleme uyarınca bu görevler Orman Genel Müdürlüğü'ne bağlı Milli Parklar Dairesi Başkanlığı tarafından yürütülür. Doğa parkı bulunmayan Türkiye'de, soyu tükenme tehlikesiyle karşı karşıya olan ve ender olarak topluluk oluşturan bazı ekosistemlerin korunması amacıyla kurulmuş olan 18 ayrı doğal koruma alanı vardır. Av hayvanlarının yaşadığı yörelerdeki yabanıl yaşamın korunup geliştirilmesi için ayırt edilmiş av koruma ve üretme alanlarının sayısı 83, av üretme istasyonlarının sayısı ise 27'dir. Doğal ve tarihsel zenginlikleriyle önem taşıyan alanların korunmasını sağlamanın yanı sıra insanların bu alanlardan yararlanması yönünde çalışmalar da yürütülmektedir. Bu amaçla kurulmuş olan birçok orman içi dinlenme yeri vardır. Bir bölümü ulusal parklar içinde kurulan orman içi dinlenme yerlerinin sayısı 1987'de 338'e ulaşmıştı. Dinlenme ve eğlenme olanaklarıyla donatılan bu alanlardan bazılarında bungalovlar, piknik ve kamp yerleri ile kır gazinoları gibi tesisler vardır. Orman içi dinlenme yerlerinden bir bölümünde denize girme ve oltayla balık avlama olanakları sağlanmıştır. Kaynak:1 Cilt 18

http://www.biyologlar.com/turkiyede-ulusal-ve-milli-parklar

Enfeksiyon hastalıklarının ilk kez tanınması, etkenlerinin bulunuşu ve/veya üretilmesi konularında tarihsel sıralamalara örnekler veriniz.

İlk Çaglarda Ilk insanlar, hayatin baslangici, doga, dogal olaylar (yagmur, kar, dolu, simsek, yildirim, gök gürültüsü, zelzele, su taskinlari, vs.), ay, dünya, yildizlar, günes, bulasici hastaliklar ve ölüm gibi kavramlar üzerinde fazlaca durmuslar, içinde bulundugu veya yakin iliskide olduklari toplumlarin törelerine göre bazi izahlar ve yorumlar yapmislar ve bunlara inanmislardir. Çözümleyemedikleri konularda, bunlari, insan veya doga üstü kuvvetlere, ilâhlara, cinlere ve seytanlara veya mucizelere baglamislardir. Hastaliklar ve ölümlerin, tanrilar veya insan üstü güçler tarafindan, yeryüzündeki kötü kisilere ceza olarak gönderildigine inanmislar ve bu inançlarini da yüzyillar boyu devam ettirmislerdir. Kötülüklerden ve kötü ruhlardan kurtulmak için, bu insan üstü kuvvetlere tapilmasi, adak verilmesi korku ve saygi duyulmasi ve dua edilmesi, o devirlere ait dinsel kisiler tarafindan siki bir sekilde ögütlenirdi.Bu amaçlari gerçeklestirmek için, özel yerler, tapinaklar yapildigi gibi, tanrilarin gazabindan korunmak için de çesitli hayvanlarin yani sira bazen insanlar da kurban edilirdi. Yapilan arkeolojik kazilarda, kaya tabakalari arasinda bakteri fosillerine benzeyen olusumlara rastlandigi ve bunlarin milyonlarca yil öncesine ait oldugu bildirilmistir. Hatta, kömür tabakalari içinde bakteri fosillerinin bulundugu Renault tarafindan da iddia edilmistir. Permian tabakalarinda rastlanilan dinozorlarin hastalikli kemiklerinin bakteriler tarafindan meydana getirilmis olacagina kuvvetle bakilmaktadir. Dinozorlardan ayri olarak, magara ayilari ve diger hayvanlarin fosillerindeki kemik bozukluklari ve eosen devrine ait üç tirnakli atlarda tesadüf edilen dis çürüklerinin de mikrobial orijinli olabilecekleri ileri sürülmüstür. Milattan Önce 8000-7000 yillari arasinda Mezopotamya bölgesinde yasayan insanlarin hastaliklar, ölümler ve bunlarin nedenleri hakkindaki bilgi ve görüsleri yok denecek kadar azdi. Bunlarin, insan üstü kuvvetler tarafindan olusturulduklarina inaniyorlar, bunlardan korkuyorlar ve bu duygularini da saygi ve tapinma tarzinda gösteriyorlardi. Zamanla, halk, bazi bitki ve hayvanlarin zehirleyici nitelikte olduklarini ve bir kisim bitkilerin de bazi hastaliklara iyi geldigini ögrenmis ve böylece, yenecek veya yenmeyecek, bitki ve meyveleri belirlemisler ve hastaliklarin sagaltiminda kullanilacak olanlari da saptamislardir. Ilkel yasantinin hüküm sürdügü bu dönemde hayata, dogaya ve dogal olaylara insan üstü kuvvetlerin hakim olduguna inanilirdi. Eski Misirlilar döneminde (MÖ. 3400-2450), yagmur sularini toplamak ve lagim sularini akitmak için kanallar, arklar ve borular yapilmistir. Eski krallik devresinde baslayan bu tür çalismalara yeni kralliklar döneminde de (MÖ. 1580-1200) devam edildigine rastlanilmaktadir. Bu tarihlerde bazi saglik kurallarinin konuldugu ve bunlara titizlikle uyuldugu papirüslerden anlasilmaktadir. En eski papirüs olan Kuhn papirüs 'ünde (MÖ. 1900) köpeklerdeki paraziter hastaliklardan ve muhtemelen, sigirlardaki sigir vebasindan bahsedilmektedir. Bunlarin sagaltimi için hayvanlarin kendi hallerine birakilmasi ve tütsü edilmeleri önerilmektedir. Smith papirüs 'ünde (MÖ.1700) yaralarin sagaltiminda taze etin, ve hemorajilerde koterizasyonun kullanilabilecegine dair bilgiler bulunmaktadir. Bu papirus, o devirlere ait bazi önemli tibbi bilgiler de vermektedir. Ebers papirüs 'ünde (MÖ. 1550), hastaliklarin esas nedenlerinin seytanlar oldugu ve hastaliklarin ancak sihir ve dualarla giderilebilecegi belirtilmektedir. Bazi hastaliklarin tedavisinde sinek ve timsah pisliklerinin ve farelerin yararli olacagina da inaniliyordu. Hayat solugunun da sag kulaktan çiktigi zannediliyordu. Heredot 'un eserlerinde, Misirlilarin tuzu antiseptik olarak kullandiklari belirtilmektedir. Elliot Smith tarafindan bulunan ve MÖ. 1000 yilina ait oldugu sanilan mumyalarda spinal tüberkulozise rastlandigi açiklanmistir. Eski Yunanlilar dönemi MÖ. 3400 yillarina kadar uzanmaktadir. Ancak, bu periyoda ait bilgiler pek yeterli degildir. MÖ. 1850-1400 yillarinda bazi saglik kurallarinin konuldugu, ventilasyona dikkat edildigi, ark ve kanallarin açildigi, mabetlerin ve yerlesim yerlerinin kaynak su ve agaçlik yerlerde kurulmasina özen gösterildigi anlasilmaktadir. Tababet ve tedavinin kurucusu veya babasi sayilan Hipokrat (Hippocrates, MÖ. 460-377), halk sagligi ve hastaliklari konusunda 7 cilt kitap yazmis ve bunlarda sitma, lekeli humma, çiçek, veba, sara ve akciger veremine ait bilgilere yer vermistir. Tip alanina deneysel yöntem, gözlem ve arastirma prensiplerini getirmis olan Hipokrat, hastaliklari vücüdun vital sivilarindaki bozukluklara baglamis ve hastaliklari akut, kronik, epidemik ve endemik olarak siniflandirmistir. Ayrica, yaralarin sagaltiminda kaynatilmis su ile irrigasyonu, operatörlerinin ellerini ve tirnaklarini temizlemelerini, yaralarin etrafina bazi ilaçlarin sürülmesi gerektigini de vurgulamistir. Bilgin, hastaliklarin topraktan çikan fena hava ile su, yildiz, rüzgarlarin yönü ve mevsimlerin etkisiyle olustuguna da inanmistir (miasmatik teori). Hipokrat, ayni zamanda, 4 element (ates, hava, su, toprak), 4 kalite (sicak, soguk, nem, kuru) ve vücudun 4 sivisi (kan, mukus, sari safra, siyah safra) üzerinde de bilgiler vermis, bunlari ve birbirleri ile olan iliskilerini açiklayan görüsler getirmistir. Senenin çesitli mevsimlerinde isinin ve nemin degismesinin hastaliklarin çikisinda önemli rol oynadigini da savunmustur. Aristo (Aristoteles, MÖ. 384-322), veba, lepra, verem, trahom ve uyuz hastaliklari ve bunlarin bulasma tarzlari hakkinda bazi açiklayici bilgiler vermistir. Ayrica, temasla bulasmaya da dikkati çekmis ve vebali hastalarin soluk havasinin bulasici oldugunu da belirtmistir. Empedokles (Empedocles, MÖ. 450-?), Sicilya'da batakliklarin kurutulmasinin malaryayi kontrol altina alacagina deginmis ve malarya ile batakliklar arasinda bir iliskinin varligini gözlemistir. Aristofan (Aristophanes, MÖ. 422-385) malarya ve bulasmasi hakkinda bilgiler vermistir. Zamanla, miasmatik görüs ve düsünüs, yerini vücuttaki dogal delikler (porlar) teorisine birakmistir. Bunun taraftarlari arasinda, Eskülap (Esclepiades, MÖ. 124), Temison (Themison, MÖ. 143-23) ve Tesalus, (Thesallus, MS. 60) gibi düsünürler bulunmaktadir. Bu bilginler arasinda da bazi farkli görüslerin olmasina karsin, genelde birlestikleri ortak nokta, vücudun dogal delikleri arasindaki uyumun degismesinin hastalik ve ölümlerin nedeni olacagidir. Galen (Gallenos, MS. 120-200), hastaliklarin nedenleri hakkinda daha ziyade, miasmatik görüse katilmis ve desteklemistir. Bilgin, Hipokrat 'in 4 sivi teorisini kabul etmekte, sivilarin azalmasi veya artmasini hastaliklarin nedeni olarak göstermekteydi. Galen, gözlemlerine göre, sahislari 4 gruba (kanli, flegmatik, safrali ve melankolik) ayirmistir. Galen, ayni zamanda, kan almanin bazi hastaliklarin sagaltimi için yararli olacagini da düsünmüstür. Anadolu'da büyük bir imparatorluk kuran Hititler (Etiler, MÖ. 2000) hastaliklarin ilahi kuvvetler tarafindan olusturulduguna inanirlardi. Romalilar döneminde, su ve lagim kanallarinin yapildigi, temiz gida ve içme suyuna önem verildigi anlasilmaktadir. Eski Ibraniler (MÖ. 1500), Babilliler’in hastaliklarin nedenleri ve ölümler hakkindaki görüslerini, genellikle, benimsemislerdi. Bu dönemde, hastaliklardan korunmak için bazi kurallarin konuldugu ve adli tibba ait de bazi esaslarin saptandigi açiklanmaktadir. Ancak, Ibraniler arasinda, hastaliklarin günahkâr insanlara, ilâhi kuvvetler tarafindan gönderildigi görüsü yaygindi. Liviticus 'un kitabinda, dogumdan sonra kadinlarin çok iyi temizlenmeleri gerektigine, menstrasyon hijyenine, bulasici hastaliklardan korunmaya, temiz olmayan esyalara dokunmamaya, izolasyon ve dezenfeksiyonun bazi hastaliklarin (veba, uyuz, antraks, sara, trahom, verem, frengi) kontrolünde gerekli olduguna dair bazi açiklamalar bulunmaktadir. Bu dönemde, difteri, lepra, gonore ve diare bilinmekteydi. Musa peygamber (MÖ. 1300), zamaninda bazi saglik kurallari konulmussa da, bunlara sonradan uyulmamistir. Bu dönemde, özellikle, gida hijyenine önem verilmis, domuz eti, ölmüs hayvanin eti, deniz kabuklu hayvanlarin eti, kan ve yagin yenmemesi ögütlenmistir. Hindular (MÖ. 1500) döneminde, Sanskrit'ler de, hastaliklarin nedenleri olarak seytanlar, cinler ve büyücüler gösterilmektedir. Büyük kral Asoka (MÖ. 269-232) zamaninda hayvan hastanelerinin kuruldugu ve tarihi yazilarda tedavi ile iliskili bazi bilgilerin bulundugu açiklanmistir. Hindistan ve Seylan'da MS. 368'de, hastanelerin kuruldugu belirtilmektedir. Sustrata (MS. 500) dogal ve doga üstü olarak 120 hastalik bildirilmistir. Bu dönemde, malaryanin sinekler tarafindan bulastirildigi bilinmekte ve farelerin de vebadan öldüklerinde evlerin terk edilmesi geregine dikkat çekilmektedir. Sustrata, bunlarin yanisira, çocuk bakim ve hijyenine ait bilgiler de vermektedir. Sacteya adli sanskritte de insanlari çiçege karsi asilamada kullanilan yöntemler bildirilmektedir. Eski Çin Medeniyeti (MÖ. 3000-2000) döneminde yazilan "Materia Medika" adli kitapta kan dolasimina ait bilgiler verilmekte, dolasimin kanin kontrolünde yapildigi, kanin sürekli ve günde bir defa dolastigi bildirilmektedir. Ayrica, kitapta, akupunktur ve nabiz hakkinda da bazi bilgilere yer verilmistir. Bu dönemde, Çin'de frengi, gonore ve çiçek hastaliklari bilinmekte ve bunlara karsi bazi önlemlerin de alinmakta oldugu belirtilmektedir. Milattan Sonra 2. asirda hashasin agri kesici olarak kullanildigi da zannedilmektedir. Wong Too (MS. 752), insan ve hayvanlarda rastlanilan hastaliklar ve bunlarin sagaltim yöntemlerini "Dis Alemlerin Sirlari" adli eserinde 40 bölümlük bir yazida toplamistir. Konfüçyüs (MÖ. 571-479) döneminde kuduzun tanindigi ve bazi önlemlerin alindigi bilinmektedir. Eski Çin döneminde, hastaliklarin nedeni olarak, erkek ve olumsuz unsur olan Yang ile disi ve olumlu öge olan Yu 'nun arasindaki düzenin bozulmasina baglanmaktadir. Milattan önceki dönemlere ait olan Eski Japonya'da, hastaliklarin ilahi kuvvetler tarafindan insanlara ve hayvanlara gönderildigine inanilir ve bazi saglik kurallarina da dikkat edilirdi. Eski Iran'da, hastaliklarin nedenleri ilahi ve büyüsel kuvvetlere baglanmaktadir.Zerdüst dinini temsil eden Avesta adli kitapta hastaliklara, hekimlere ve saglik kurallarina ait bölümler bulunmaktadir. Iyilik tanrisi olan Ahura Mazda ve karanliklarin ruhu (seytan) Ahirman kabul edilir ve bunlara saygi gösterilir ve dualar edilirdi. Babil döneminde (MÖ. 768-626), saglik kurallarina dikkat edildigi, hastaliklari önlemek ve sagaltmak için bazi ilaçlarin kullanildigi, bu konulara deginen 800'den fazla tabletten anlasilmaktadir. Hastalari tedavide, ayin ve dualar edilir ve büyüler kullanilirdi. Zincir vurmak ve kamçilamak da dahil olmak üzere, insanlarin içindeki seytan ve kötü ruhlari çikarmak ve atmak için 50'ye yakin çare belirtilmekteydi. Hastalanan sahislarin cinlere ve seytanlara yakalanmasi tarzinda düsünülürdü. Bu dönemde, lepranin bilindigi, bulasici oldugu ve hasta kisilerin ayrilmasi gerektigine de inanilirdi. Milattan önceki Türklerde, insan ve hayvanlardaki hastaliklara ve jeolojik ve meteorolojik olaylar ile fena ruhlarin (Erklik) yol açtigina inanilirdi. Iyi ruhlar ise insan ve hayvanlari korurlardi. Ülgen en büyük tanriyi, Erklik de kötülükleri temsil ederdi. Samanlar, kötü ruhlarin yaptiklari fenaliklari ve hastaliklari önlerlerdi. Ruhlara inanma temeli üzerine kurulan Samanizm'de samanlar (ruhlarla iliski kurabilen dinsel kisiler), hastalari iyi etmek için çesitli dualar okur, danslar yapar ve esyalari atesten geçirirlerdi. Müslümanlik döneminde, insan ve hayvan hastaliklari hakkinda bir çok yazilar yazilmis ve gözlemler yapilmistir. Ilk hastanenin Sam'da MS. 707'de kurulmus oldugu açiklanmistir. Bagdat'da yasamis olan Ebubekir Mehmet bin Zekeria El Razi (MS. 854-925), yazdigi "Tip Ansiklopedisi'nde" çiçek ile kizamik hastaliklarini tanimlamis ve bulasici hastaliklarin fermentasyona benzedigini bildirmistir. Buharali Ibni Sina (Avicenna, MS. 980-1038), bulasici hastaliklarin gözle görülmeyen kurtçuklardan ileri geldigini ve korunmak için temizligin önemli oldugunu vurgulamistir. Ayrica, yazdigi kitaplarda, bazi hastaliklari da (plörizi, verem, deri ve zührevi hastaliklar) tanimlamis ve korunmak için de bazi ilaç adlarini vermistir. Abu Marvan Ibn Zuhr (MS. 1094-1162), tip konusunda 6 cilt kitap yazmis ve birçok hastaliklari da (mediastinal tümor, perikarditis, tüberkulozis, uyuz, vs.) tarif etmistir. Ak Semsettin (MS. 1453), kitabinda malaryanin ayni bir bitki tohumu gibi, görülmeyen bir etkeni oldugunu ve vücuda girdikten sonra üredigini açiklamistir. 02. Orta Çagda Orta Çag döneminde de Hipokrat ve Galen'in görüsleri kabul görmüs ve fazlaca taraftar toplamistir. Roger ve Roland (11. ve 12.asirlar arasinda) Salorno'da kurulan ilk bagimsiz medikal okulda çalismislar, kanseri tanimlamislar, paraziter hastaliklarda civali bilesikleri kullanmislar ve irinin yaranin içinde meydana geldigini bildirmislerdir. Orta Çag döneminde, veba, lepra, erisipel, kolera, terleme hastaligi (muhtemelen influenza) ve frengi gibi hastaliklar oldukça fazla yaygindi. Milyondan fazla insanin bu hastaliklardan öldügü açiklanmistir. Venetian Hükümeti, infekte gemileri limanlara sokmamak için bazi karantina önlemleri almis ve bir halk sagligi örgütü kurmustur (1348). Boccacio (1313-1375), yazdigi Dekameron (decameron) adli eserinde, öldürücü ve yaygin olan vebanin bulasmasi hakkinda ayrintili bilgiler vermistir. Bu dönemde, sirke antiseptik olarak tavsiye ediliyordu. 03. Rönesans Döneminde Rönesans Döneminde (1453-1600), bilimde ve özellikle tip alaninda yeni gelismeler meydana gelmistir. Hastaliklarin nedenleri olarak gösterilen ilahi ve insanüstü kuvvetlere inanisa ve miasmatik görüslere karsi çikilmaya baslandi. Deneylere, gözlemlere ve bu tarzdaki arastirmalara önem verildi. Paracelcus (1493-1541), hastaliklari 5 esas nedene (kozmik, gidalardaki zehirler, ay ve yildizlar tarafindan kontrol edilen dogal olaylar, ruh ve seytanlar, ilahi nedenler) baglamistir. Çiçek, tifo, kizamik gibi hastaliklar 1493-1553 yillari arasinda oldukça yaygin ve öldürücü seyretmekteydi. Fracastorius (1478-1553), yayimlandigi kitabinda (1546), bulasici hastaliklarin jermler (Seminaria morbi) tarafindan saglamlara nakledildigi, bulasmada direkt temas, hastalarin esyasi ve havanin önemli oldugu üzerinde durmustur. Böylece, ilk defa jerm teorisi ortaya atilmis ve bulasmada da canli varliklarin (Contagium vivum) rol alabilecegi düsünülmüstür. Fracastorius, ayrica, veba, frengi, tifo ve hayvanlardaki sap hastaligi üzerinde de bazi çalismalar yapmistir. Bir sahisdan digerine geçen hastaliklarin, o sahisda da ayni veya benzer hastalik tablosu olusturdugu, Fracastorius'un gözlemleri arasinda yer almaktadir. Von Plenciz (1762), Fracastorius'un görüslerini benimseyerek, hastaliklarin gözle görülemeyen küçük canlilar araciligi ile bulasabilecegini ileri sürmüstür. 04. Mikroskobun Gelistirilmesi Mikroskoplarin temelini olusturan ilk basit büyütecin Roger Bacon (1214-1294) tarafindan yapildigi ve bazi objelerin incelendigi bilinmektedir. Hollandali bir gözlükçü olan Zacharias Janssen 1590 yilinda, iki mercekten olusan basit bir büyüteç yaparak, bazi objeleri 50x ve 100x büyütebilmistir. Cornelius Drebbel ve Hans'in da, 1590-1610 yillari arasinda benzer tarzda bazi büyütme aletleri gelistirdikleri açiklanmistir. Galileo Galilei (1564-1642), 1610 yilinda, Italya'da, bir tüp içine yerlestirdigi bir seri mercekle, daha fazla büyütme gücü elde etmistir. Kepler, 1611'de, iki mercekten olusan bir büyütme aleti gelistirmistir. Petrus Borellus (1620-1689), yaptigi büyüteçle uzaklari daha iyi görebildigini açiklamistir. Robert Hooke (1635-1703) ve Nehemiah Grew gelistirdikleri büyütme aletleri ile (200x) bazi objeleri ve bitkileri incelediklerini açiklamislardir. Hooke, 1665'de, yayimladigi Micrographia adli eserinde yüksek organizmalarin ve flamentöz mantarlarin mikroskobik görünümlerini çizmis ve bunlar hakkinda bilgiler vermistir. Athanasius Kircher (1602-1680), 32 defa büyütebilen aleti yardimi ile vebali hastalarin kaninda bazi kurtçuklari gördügünü iddia etmistir. Histolojinin kurucusu olarak taninan Italyan bilgin Marcello Malpighi (1628-1694), basit bir mikroskop yardimi ile akciger dokusunu incelemistir. Jan Swanmmerdan 1658'de, alyuvarlari mikroskopla incelemistir. Pierre Borrel (1620-1671), bakterileri görebildigini iddia etmistir. Hollandali bir tüccar ve amatör bir mercek yapimcisi olan Antony van Leeuwenhoek (1632-1723), 200 defadan fazla büyütebilen ve iki metal arasina yerlestirilmis bikonveks mercekten olusan büyütme aleti ile yaptigi çesitli incelemelerde mikroskobik canlilar dünyasini bulmayi basarmistir. Bu nedenle kendisine mikrobiyolojinin kurucusu gözü ile bakilmistir. Yaptigi arastirmalar arasinda, kanal ve ark sularinda protozoa, bir gece bekletilmis yagmur sularinda bakteri, dis kiri, biber dekoksiyonu, mantar,yaprak, salamander kuyruk kan dolasimi, seminal sivi, idrar, gaita, vs., materyaller, esas konusunu olusturmustur. Ilk bakterileri 1676 yilinda görerek, sekil ve hareketlerini izlemis ve sekillerini çizerek bu konuda hazirladigi 200'den fazla mektubunu Londra'daki "Phylosophical Transaction of the Royal Society" ye göndermis ve Ingilizce olarak yayimlanmasi saglanmistir. Bu mektuplarinda, özellikle, dis kiri ve biber infusyonundan yaptigi muayenelerde milyonlarca küçük canliya (hayvanciklara, animaculate) rastladigini da belirtmistir. Arastirici, ayni zamanda, bakterileri yüksek isida tuttugunda veya sirke ile muamele ettiginde öldüklerini de belirtmistir. Huygens, 1684'de, iki mercekli oküleri gelistirmistir. Chester Moor Hall ve John Dalland, 1773'de, birbirlerinden bagimsiz olarak, dispersiyonu düzelten mercekler gelistirdiklerini açiklamislardir. J.N. Lieberkühn, 1739'da, A. van Leeuwenhoek'in mikroskobunu daha da gelistirmistir. Chevalier, 1824'de, mikroskopta birçok mercekleri bir araya getirerek basarili olarak kullanmistir. J.J. Lister, 1830'da, modern mikroskobun prensiplerini koymustur. Ernest Abbe (1840-1905), 1870'de, akromatik objektif ve kondansatörü yapmis ve kullanmistir. A. Abbe ve Carl Zeiss (1816-1866), apokromatik mercek sistemini bulmuslardir. Andrew Ross (1798-1853), 1843'de binoküler mikroskobu yapmistir. J.J. Woodvard, 1883-1884'de, mikroskop yardimi ile fotograf çekmeyi, Heimstadt, Carl Reichert (1851-1922) ve Lehmenn, ilk olarak fluoresans mikroskobu yapmayi basarmislardir. Louis de Broglie elektron mikroskobun esasini bulmustur. Max Knoll ve Ernst Ruska ilk elektron mikroskubu yapmislardir (1933). 05. Spontan Generasyon Teorisi (Abiyogenezis) Uzun yillar, canlilarin kendiliginden meydana geldikleri görüsü, oldukça fazla bir taraftar bulmustu. Bunlara göre, canlilar, çamurdan, dekompoze organik materyallerden, sicak sulardan ve benzer karakterleri gösteren durumlardan orijin almaktadir. Van Helmont (1477-1544), farelerin meydana gelebilmesi için, toprak içeren bir tülbent içine bugday ve biraz da peynir konulduktan sonra ahir veya benzer bir yerde hiç dokunulmadan uygun bir süre bekletilmesinin yeterli olacagini iddia etmistir. Ayrica, havada kalmis etlerde kurtçuklarin olusmasi da bu görüs için destek kabul ediliyordu. Francesco Redi (1626-1697), canlilarin bir önceki canlidan gelmekte oldugu görüsünü savunan ve bunu deneysel olarak gösteren ilk bilim adamidir. F. Redi, iki kavanoz içine et ve balik koyduktan sonra birinin agzini sikica baglamis ve digerini açik birakmistir. Deneme sonunda, agzi kapali olan kavanozdaki et ve balikta kurtçuklarin bulunmadigini, buna karsilik açik olanda ise kurtçuklarin varligini göstermistir. Tülbent üzerinde sinek kurtlarinin bulunmasina ragmen içinde olmamasi, kurtçuklarin sinekler tarafindan meydana getirildigi görüsünü de dogrulamistir. Arastirici, ayrica, kurtçuklardan sineklerin meydana gelisini de izlemistir. Böylece, etin belli bir süre içinde kurtçuklara dönüsü veya etin kurtçuk meydan getirmesi görüsü (spontan generasyon) gölgelenmis ve reddedilmistir. Biyolog, sair ve lisanci F. Redi, 105 parazitin tanimini yapmistir. Bu görüsleri nedeniyle kilisenin zulmüne ugramis, odun yiginlari üzerine konulmus ve kanaatini degistirmedigi için de yakilmistir. Louis Joblot (1647-1723), samani iyice kaynattiktan sonra ikiye ayirarak kavanozlara koymus, bunlardan birinin agzini iyice kapatmis digerini ise açik birakmistir. Açik olan kavanozda birkaç gün sonra mikroorganizmalarin üredigini buna karsilik, kapali olanda ise böyle bir seyin olusmadigini gözlemistir. Böylece, L. Joblot, bir kere ve iyice kaynatilarak her türlü canlidan arindirilmis bir ortamda, yeniden bir canlinin olusamadigi ve canlilarin kendiliginden meydana gelemeyecegini ispatlamistir. Bu da, F. Redi gibi, dekompoze hayvan ve bitki materyallerininin kendiliginden bir canli olusturma yetenegine sahip olamayacagi görüsünü benimseyerek, abiyogenezis teorisinin olanaksiz oldugunu kanitlamistir. John Needham (1713-1781), yaptigi denemede, isitilmis ve agzi kapatilmis et suyu içeren bir kavanozda bir süre sonra canlilarin üredigini gözlemis ve benzer durumu isitilmamis ve agzi kapali olan kavanozda da saptamistir. Bu arastirmasina göre, J. Needham, spontan generasyon görüsüne katilmis ve desteklemistir. Buna göre, isitilarak tahrip edilen mikroorganizmalar sonradan yeniden hayatiyet kazanarak kendiliginden olusmuslardir. Hayvansal dokularin "vejetatif veya vital kuvvetleri" olduklarina ve cansiz materyalleri canli hale getirebilecegine de inanmistir. Bu görüs, bir natüralist olan Buffon tarafindan da dogrulanarak kabul görmüstür. Lazzaro Spallanzani (1729-1799), yaptigi bir seri deneme sonunda, J. Needham'in çalismalarini ve görüsünü reddetmis ve isitmanin yeterli derece ve sürede yapilmadigini ileri sürmüstür. L. Spallanzani, isitmanin yeterli derece ve sürede yapildiktan ve agizlarinin, mantar yerine, atesle ve hava girmeyecek derecede kapatilmasi halinde herhangi bir animakulatin meydana gelmeyecegini açiklamistir. Needham, bu görüse karsi olarak, uzun süre kaynatmanin organik maddelerdeki "vejetatif veya vital kuvvetleri" yok edecegini ve spontan jenerasyon için gerekli olan güçleri ortadan kaldiracagini belirtmistir. Buna karsi, Spallanzani verdigi yanitta, ayni süre kaynatilmis et suyu veya saman enfusyonunun agzi açik birakilirsa belli bir süre sonra içinde tekrar animakulatlarin meydana gelecegini belirtmistir. Lavoisier, 1775 yilinda yaptigi denemelerde havada oksijenin varligini saptamis ve bunun yasam için gerekli oldugunu vurgulayarak, spontan jenerasyon teorisinin dogrulugunu iddia etmistir. Arastirici, kaynatmakla siselerin içindeki oksijenin disari çiktigini buna bagli olarak da et suyu veya saman infusyonunda canlilarin olusmadigini da savunmustur. Schulze ve Schwann, Lavoisier'in oksijeni bulmasindan yaklasik 61 yil sonra, yaptiklari bir seri çalismada, eger hava sülfürik asit veya potasyum hidroksit solüsyonundan (Schulze, 1836) veya çok sicak bir cam tüpten (Schwann, 1837) geçirildikten sonra et suyuna veya saman infusyonuna gelirse herhangi bir mikroorganizmanin üremedigini gözlemlemislerdir. Ancak, bu denemeye karsi çikanlar, havanin bu tarz isleme tabi tutulmasinin havadaki hayat jermlerinin asitten veya sicak cam tüpten geçerken tahrip olacaklarini ve böylece abiyogenezis'in olusamayacagini savunmuslardir. Schwann, ayrica oksijenin yalniz olarak, ortamda mikroorganizmalarin olusmalarina veya üremelerine yeterli olamayacagini da açiklamistir. Schröder ve von Dush, 1854 ile 1861 yillari arasinda, Schulze ve Schwann'in arastirmalarina bazi yenilikler ilave etmislerdir. Söyle ki, bunlar havayi asit veya isitilmis tüpten geçirmek yerine, pamuktan geçirerek et suyu veya saman infusyonuna vermisler. Deneme sonunda, ortamda herhangi bir animakulata rastlamadiklarini açiklamislardir. Bu deneme ile , hem pamugun mikroplari tutabilecegini ve hem de asit veya sicak havanin animakulat olusmasina zararli bir etkisi olmadigini da göstermislerdir. Ancak, bazilari, havadaki tozlarda bulunan bazi canlilarin, havanin asit veya alkaliden veya pamuktan geçirilisi sirasinda tutulacagini iddia etmislerdir. Sonralari, pamukta da mikroorganizmalarin bulunabilecegi ortaya konulmustur. John Tyndall (1820-1893), ön tarafinda cam bulunan agaçtan bir kültür kutusu hazirlamis ve iki yan tarafina camdan küçük pencereler yerlestirmis ve tozlari tutmasi için de , kutunun iç yüzü gliserinle sivamistir. Yandaki küçük camdan gönderilen isik (isinlari) yardimi ile kutunun içinde tozlarin bulunmadigi saptanmis ve optikal olarak temiz bulunmustur. Sonra kutu içindeki tüplere pipetle steril besiyerleri konmus ve tüpler alttan isitilarak steril hale getirilmistir. Tüpler içindeki besiyerleri oda sicaklik derecesine kadar ilitildiktan sonra besiyerlerinin steril olarak kaldiklarini gözlemlemistir. Bu denemenin sonucuna göre, toz içermeyen havanin mikropsuz olacagi görüsüne varilmistir. Tyndall, yaptigi bir seri çalismada, mikroorganizmalarin iki formunun olabilecegine dikkati çekmistir. Termolabil (vejetatif formlar) ve termostabil (sporlu mikroorganizmalar). Fraksiyone sterilizasyonla sivilarin mikroorganizmalardan arindirilmasinin mümkün olabilecegini de saptayarak kendi adi ile anilan Tindalizasyon (Tyndallization, fraksiyone sterilizasyon) yöntemini bulmustur. 06. Hastaliklarda Jerm Teorisi Mikroorganizmalarin bulunmasindan sonra, spontan jenerasyon (abiyogenezis) teorisi, yavas yavas yerini, bir canlinin diger canlidan türeyebilecegi (biyogenezis) görüsüne birakmistir. Viyanali bir doktor olan Marcus Antonius von Plenciz, 1792'de, "Hastaliklarda Jerm Teorisi" adi altinda yayimladigi bir eserinde konu üzerinde görüslerini açiklamis ve her hastaligin kendine özgü görülmeyen bir nedeni olduguna dikkati çekmistir. Louis Pasteur (1822-1895), kuduz, tavuk kolerasi ve antraks hastaliklari üzerinde bazi arastirmalar (korunma ve asilama) yapmis ve ayrica sarap ve biranin maya hücreleri tarafindan fermente edildigini de (fermentasyon) saptamistir. Bunlarin yani sira, optimal kosullarin disinda üretilmeye çalisilan mikroorganizmalalar da bazi degismelerin meydana gelebilecegini, özellikle, virülensde olusan varyasyonlarin, asilama ile koruyucu etki göstereceklerini saptamistir. Pasteur, 1879-1880 yillari arasinda, hayvanlardaki antraks hastaligina karsi hazirladigi iki attenüe susla (Pasteur-1 ve -2) bagisiklik elde etmis ve koyunlari bu hastaliktan korumustur. Bu çalismalarin yani sira, 1885'de, kendi yöntemi ile virüs fiksli tavsan omuriligini bir desikatöre uygun bir süre (8-14 gün) koyarak kurutmus ve böylece hazirladigi asi ile korunmanin mümkün olabilecegini ortaya koymustur. Bu konu üzerinde de Paris'te bir konferans vermistir. Fermentasyon üzerindeki çalismalari sonunda da, Pasteur asagidaki esaslari ortaya koymustur: 1) Bira veya sarapta meydana gelen her degisme, bunlari fermente eden veya bozan mikroorganizmalar tarafindan ileri gelmektedir. 2) Fermente eden etkenler, hava, kullanilan alet ve maddelerden gelmektedirler. 3) Bira veya sarap herhangi bir mikroorganizma içermezse, hiç bir degisiklige ugramaz. Pasteur, yaptigi çalismalarin sonucuna göre, kendi adi ile anilan pastörizasyonun esasini da kurmustur. Bir Ingiliz cerrahi olan Joseph Lister (1827-1912), Pasteur 'ün prensiplerini cerrahiye uygulamistir. Operasyonlarda dezenfektan bir maddeye (asit fenik) batirilmis sargilar kullanarak infeksiyonun önüne geçmistir. Böylece, Lister cerrahide, antiseptiklerin önemini ve antisepsinin yerini ortaya koymustur (1852). Schoenlein, 1839'da, deri hastaliklarindan olan favus ve pamukçuk'un mantarlardan ileri geldigini saptamistir. Edwin Klebs (1834-1913), Löffler ile birlikte difteri hastaliginin etkenini izole etmeyi basarmislardir. Bilim adami, bunun yanisira, travmatik infeksiyonlar, malarya ve kursun yaralari üzerinde de bazi faydali çalismalar yapmistir. Hayvanlarda da, deneysel olarak, ilk tüberkulozis lezyonlarini olusturmayi basarmistir. Karl Joseph Eberth (1835-1926), insanlarda tehlikeli bir hastalik olan tifonun etkenini (Eberthella typhosa) bulmustur. Robert Koch (1843-1910), mikroorganizmalari saf üretebilmek için kati besiyerlerini gelistirmis ve karisik kültürlerden saf kültürler elde etmeyi basarmistir. Böylece, bakteriyolojiye yeni teknikler getirmistir. Koch, ayni zamanda, hastaliklar üzerinde de bazi kriterler ortaya koymustur. Bunlar da "Koch postulatlari" olarak bilinmektedir. 1) Hastaliklar spesifik etkenler tarafindan olusturulurlar, 2) Etkenler izole edilmeli ve saf kültürler halinde üretilmelidir, 3) Duyarli saglam deneme hayvanlarina verildiklerinde hastalik olusturabilmeli ve 4) Tekrar saf kültürler halinde üretilebilmelidirler. Bu 4 görüs uzun yillar geçerliligini korumustur. Koch, mikroorganizmalari anilin boyalari ile boyama yöntemlerini de gelistirmis ve bakteriyoloji alaninda uygulanabilir hale getirmistir. Antraks hastaliginin bulasma tarzini ve etkeninin sporlu oldugunu da saptayan Koch, 1882'de, tuberkulozis'in etkenini de izole edebilmis ve sonralari, tuberkulozlu hastalarin teshisinde çok yararlar saglayan bir biyolojik madde olan "Tüberkülin"i de hazirlamistir. Otto Obermeier (1843-1873), 1873' de, Borrelia recurrentis 'i bulmustur. Karl Weigert (1845-1904) bakterileri boyamada anilin boyalarini kullanmistir. B. Bang (1848-1932), sigirlarda yavru atimlarina yol açan hastaligin etkenini (Brucella abortus) bulmustur. Agostino Bassi, 1835' de, ipek böcegi hastaligini açiklamis ve bunun kontak ve gida ile bulastigini göstermistir. George Gaffky (1850-1918), tifonun etkenini (E. typhosa) saf kültürler halinde üretmis ve tifonun etiyolojisini açiklamistir. John Snow, 1839'da, epidemik koleranin sulardan bulastigina dikkati çekmistir. William Welch (1850-1939), 1892'de, gazli kangrenin etkenini (C. welchii) ve Hansen'de 1874'de, lepra hastaliginin etkenini (Hansen basili, M. johnei) tanimlamislardir. Nicolaier, 1885'de, topraktan tetanoz mikrobunu izole etmis ve hastaligi hayvanlarda deneysel olarak meydana getirmistir K. Shige, 1898'de, dizanteri basilini bulmus M.leprae'nin de kültürü üzerinde çalismalar yapmistir. Friedrich Löffler (1852-1915), Koch ile birlikte difteri basilini üretmeye çalismislar ve 1884'de saf kültürler halinde üretebilmislerdir. W. Löffler, 1882'de, domuz erisipel etkenini bulmustur. David Bruce (1855-1931), malta hummasinin, nagana hastaliginin ve uyku hastaliginin etkenlerini bulmus ve uyku hastaliginin çeçe sinegi ile bulastigini da ortaya koymustur. Ronald Ross (1857-1923), 1896'da, Plasmodium malaria 'nin yasam tarzini saptamis ve bunu aydinlatmistir. Theobald Smith (1859-1934), Texas sigir hummasinin kene ile nakledildigini saptamistir. Albert Neisser (1885-1916), insanlarda gonore'nin etkeni olan gonokok'lari bulmustur. Hideye Noguchi (1878-1928), kültür teknikleri ve hayvan zehirleri üzerinde çalismalar yapmistir. Treponema pallidum 'u da saf kültürler halinde üretmistir. 07. Virolojinin Tarihçesi Bakteriler üzerinde yapilan çalismalardan sonra, nedenleri saptanamayan bir çok hastaliklar konusunda da yogun arastirmalar yapilmaya baslanmistir. Bakterileri geçirmeyen filtrelerin bulunmasi, bu yöndeki incelemeleri daha kolay hale getirmistir. Pasteur, Berkefeld ve Chamberland kendi adlari ile taninan ve bakterileri tutan filtreleri yapmayi basarmislardir. Iwanowski, 1892'de, ilk defa tütün mozaik virusunu bulmustur. Yine ayni yillarda, Löffler ve Frosch, sigirlarda önemli hastaliklara yol açan sap virusunun filtreleri geçtigini saptamislardir. Nicolle ve Adil Bey, 1899'da, sigir Vebasi virusunun filtreleri geçebildigini açiklamislardir. Tword, 1915'de, Ingiltere'de ve d'Herelle, 1917'de, Fransa'da bakteriyofajlari bulmuslar ve bunlarin süzgeçleri geçtiklerini göstermislerdir. W. Reed ve ark.1901'de, insanlarda sari humma (Yellow fever) hastaligi etkeninin filtreleri geçtiklerini kanitlamislardir. 08. Immunolojinin Tarihçesi Insan ve hayvanlari hastaliklardan koruma çalismalari çok öncelere kadar uzanmaktadir. Bu yöndeki ilk adimi, bir Ingiliz olan, Edward Jenner (1749-1823) atmistir. Bagisikligin kurucusu olarak tanilan arastirici, sigir çiçegi alan bir sahsin, insan çiçegine karsi bagisik olacagini ve hastalanmayacagini göstermis ve asilama ile immunitenin elde edilebilecegi görüsünü yerlestirmistir. Pasteur de ayni tarzda, hazirladigi birçok asilarla (tavuk kolerasi, koyun antraksi ve kuduza karsi yaptigi asilar) ve bunlarla elde ettigi bagisiklik o devir için çok önemli buluslar arasindadir. Emil Roux ve Alexander Yersen, 1888'de, difteri toksinini bulduktan sonra, Emil Von Behring de difteriye karsi antitoksin elde etmeyi basarmistir. August Von Wassermann (1886-1925), frenginin teshisinde Bordet Gengou, fenomenini uygulamis ve kendi adi ile bilinen Wassermann reaksiyonunu ortaya koymustur. Nuttal, 1888'de, hayvanlarin kaninda B. anthracis için bakterisidal etkiye sahip maddelerin bulundugunu saptamistir. Paul Ehrlich (1854-1916) ve Bordet bagisikligin humoral ve Elie Metschnikoff (1845-1916) da hücresel (fagositoz) yönlerini açiklamis ve bunlarin önemi üzerinde durmuslardir. Jules Bordet (1871-1962) ve Gengou ile birlikte komplement fikzasyon reaksiyonunu bildirmislerdir. Albert Calmette (1868-1933) ve Guerin ile birlikte BCG 'yi hazirlamislardir. H. Durham ve Max Gruber, 1896'da, mikroorganizmalarin spesifik antiserumlar tarafindan aglutine olduklarini göstermislerdir. 09. Mikolojinin Tarihçesi Mantarlarin varliginin taninmasi çok eski zamanlara (Devonian ve Prekambium) kadar uzanmaktadir.Bitkiler üzerinde mantarlarin üredigini ve bazi zararlara neden olduguna ait ilk bilgileri Vedas (MÖ. 1200) vermektedir. Romalilar zamaninda, depolarda saklanan danelerde ve tahillarda mantarlarin üredigini Pliny (MS. 23-79) bildirmektedir. Yine bu dönemlerde, mantarlara ait bazi resimlerin çizildigi, Pompei'deki kazilardan anlasilmaktadir. Loncier, çavdar mahmuzunu (Claviceps purpurae mantarinin sklerotiumu) taniyan ve bunun morfolojik özellikleri hakkinda bilgi veren kisi olarak taninmaktadir (1582). Clusius (1526-1609), mantarlar üzerinde arastirmalar yapmis ve elde ettigi bilgileri 28 sayfalik bir monograf içinde yayimlamistir. Gaspard Bauhin (1560-1624), mantar üzerinde arastirmalar yapmis ve hazirladigi "Pinax Theatri Botanici" adli eserinde 100 kadar mantarin özelliklerini bildirmistir (1623). Marcello Malpighi (1628-1694), Rhizopus, Mucor, Penicillium ve Botrytis gibi bazi mantarlar üzerinde arastirmalar yapmis ve bunlara iliskin özlü bilgiler vermistir (1679). Van Sterbeeck (1630-1693), yenilebilen mantarlarla zehirli olanlar arasinda ayrimlari belirtmeye çalismis ve bu konudaki görüslerini yayimlamistir. Hooke (1635-1703), mantarlar üzerinde birçok arastirmalar yapmis ve bunlari "Micrographia" adli yapitinda resimleyerek Royal Society 'ye sunmustur. Arastirici, özellikle, iki mantar üzerinde (Phragmidium ve Mucor) incelemeler yapmis, bunlarin bitki olduklarina ve bitkilerden orijin aldiklarina inanmistir (1667). Tournefort (1656-1708), çesitli mantarlar ve likenler üzerinde incelemeler yaparak bunlari, morfolojik ve diger karakterlerine dayanarak, 6 gruba (1-Fungus, 2-Boletus, 3-Agaricus, 4-Lycoperdon, 5-Coralloides, 6-Tubira) ayirmis ve "Element de Botanique" adli eserinde yayimlamistir (1694). Sebastian Vaillant (1669-1750), mantarlar üzerinde ayrintili çalismalar yapmis, bazilarini alfabetik olarak klasifiye etmis, önemli gördüklerinin de resimlerini çizmis ve "Botanicon Parisiense" adli kitabinda açiklamistir (1727). Antonio Micheli (1679-1737), mantarlar üzerinde yaptigi inceleme ve arastirmalari grup isimlerinden yararlanarak siniflandirmis (Clavaria, Clathrus, Geaster, Lycoperdon, Phallus, Tuber gibi) ve bunlari "Nova Genera Plantarum" adli eserde yayimlamistir (1729). Arastiricinin, çizdigi resimler ve verdigi bilgilere dayanarak spesifik identifikasyon yapilabilir. Bu eserin çok degerli oldugu ve mantarlarin ayrimlarinda bazi önemli anahtarlari açikladigi bildirilmektedir. Kendisinin yaptigi özel klasifikasyonda bazi büyük mantarlara özel yer vermis ve bunlari Fungi lamellati (Agaricaceae), Fungi porosi (Polyporaceae) ve Fungi romosi (Clavariaceae) diye 3 gruba ayirmistir. Botrys ve Rhizopus gibi bazi mantarlari da saf kültürler halinde üretmistir. Carl Von Linne (Linneaus, 1707-1778), bir botanikçi olan bu arastirici, kendi yaptigi klasifikasyon içinde mantarlari "Species Plantarum" adli yapitinda "Cyrptogamia Fungi" sinifinda toplamis ve Agaricus, Boletus, gibi bazi generik isimler de kullanmistir. (l753). Gleditsch (l7l4-l786), mantarlarin sporlari ve sporulasyon özellikleri üzerinde arastirma ve incelemeler yapmis ve bu karakterlerine göre mantarlari 2 ana bölüme ayirmistir. Builliard, Discomycetes, Pyrenomycetes, Mucorales ve Mycetozoa 'lar üzerinde arastirmalar yapmis ve bulgularini "Champignon de France" de yayimlamistir (l79l). Hendrik Persoon (l76l-l836), mantarlara iliskin incelemelerini, taksonomik bir yapit olan "Synopsis Methodica Fungorum" da toplamistir (l80l). Ayrica kendisinin 3 volum halinde olan, l822 ve l828 yillarinda yayimlanan "Mycologia Europaea" adli çalismalari da vardir. Arastirici, mantarlari 2 sinif, 6 ordo ve 71 genusa ayirarak bir klasifikasyon yapmistir. Schweinitz (l780-l834), Kuzey Amerika'da, North Carolina eyaletinde 3000 ve Pennsylvania'da da l200 mantar toplayarak incelemis ve bunlari "Synopsis Fungorum Carolina Superioris ve Synopsis Fungorum in America Boreali Medico Degantium" adli yayinlarda açiklamistir. Elias Fries (1794-1878), bugünkü mantarlar sistematiginin esasini kurmus ve Isveç'de de mantar klasifikasyonu ile bir fonun kurulmasinda önderlik etmis olan arastirici çalismalarini "Systema Mycologicum" adli eserde toplamistir. Josef Cordo (l809-l849)' nun, mantarlar üzerindeki çalismalarini 6 cilt halinde olan "Icones Fungorum Hucusque Cognitorum" adi altinda yayimlanmistir. Anton de Bary (1831-1888), mantarlarin yasam dönemleri üzerinde incelemeler yaparak bir çok kapali noktalari aydinliga kavusturmustur. Mycetozoa 'nin yasam siklusunu dönemini 1859'da açiklamistir. Harton Peck (1833-1917) de 2500 tür mantar üzerinde çalismistir. Andrea Saccardo (1845-1920), mantarlar üzerinde 1880 yilina kadar yapilmis inceleme ve arastirmalari, 25 cilt halinde olan ve ilki 1882'de yayimlanan "Sylloge Fungorum" adli eserde toplamistir. Son cilt, ölümünden sonra 1931'de yayimlanmistir. Bu çalismalarda, 80.000 mantar türü bildirilmistir. Tulasne'nin güzel resimlerle süslenmis olan "Selecta Fungorum Carpologia" adli eseri 1861-1865 yillari arasinda ve 3 cilt halinde basilmistir. Bunlardan sonra bir çok arastirici, mantarlar üzerinde çok degerli çalismalar yapmis ve bunlari siniflandirmaya çalismislardir. Patouillard, Quelet, Cooke (1871-1883), Massee (1892-1895), Bresadola (1927-1932), ayrica, Engler, Prantl, Rabenhorst, Sydows, Oudemans, Seymour, gibi arastiricilar da mantarlar üzerinde inceleme ve çalismalar yapmislardir. Mantarlar, bitkilerde oldugu gibi, insan ve hayvanlarda da çesitli hastaliklara (mycoses) neden olurlar. Mantarlarin bitkilerde hastalik olusturduguna dair birçok yayinlar vardir (Fontana (1767), Prevot (1807), Berkeley (1832), Kühn (1858), de Bary (1866), Hartig (1874), Woronin (1878), Whetzel (1918). Lafar, mayalarin endüstride kullanilmalari hakkinda, "Technische Mykologie (1904)" adli yayinda bilgi vermistir. Baliklarda (sazanlarda) Saprolegnia türü mantarlardan ileri gelen infeksiyonlar hakkindaki bilgilere, 1748 yilinda yayimlanan "Transactions of the Royal Society" adli bilimsel dergide rastlanmaktadir. Richard Owen (1804-1892), Avian Aspergillosis üzerinde çalismalar yapmis ve bulgularini nesretmistir (1832). Agostina Bassi (1773-1856), ipek böceklerindeki mantar hastaliklari üzerinde çalismalar yapmis ve bulgularini bir monografta ayrintili olarak açiklamistir (1837). Berg (1806-1887), insanlardaki Candida albicans infeksiyonlari üzerinde arastirmalar yapmis ve bulgularini yayimlamistir. David Gruby (1810-1898), insanlardaki Dermatophyt infeksiyonlari ile ilgilenmis ve bunlara ait bir rapor düzenlemistir. Sabouraud (1864-1938), medikal mikoloji üzerinde çok degerli çalismalar yapmis ve bu konuda da bir kitap yayimlamistir (1910). Bugün mantarlarin çesitli yönlerini (morfolojik, fizyolojik, biyokimyasal özellikleri ve antijenik yapilari, patojeniteleri epidemiyolojileri ve diger karakterleri) açiklayan çok degerli arastirmalar yapilmakta ve henüz kesinlik kazanmamis veya tam olarak bilinmeyen yönleri aydinlatilmaya çalisilmaktadir. 10. Mikrobiyoloji Alaninda Nobel Ödülü Kazanan Bilim Adamlari 1901 Emil Von Behring Difteri antitoksini ve serumlarla sagaltma yöntemleri 1902 Sir Ronald Ross Malarya üzerinde arastirmalar 1905 Robert Koch Verem etkeninin bulunmasi ve verem üzerinde çalismalar, bakteri kültürleri üzerine arastirmalar 1907 C.L.A Laveran Hastalik yapan protozoonlar 1908 Elie Metschnikoff Bagisikligin hücresel yönü ve fagositoz 1908 Paul Ehrlich Humoral bagisiklik 1913 C.Robert Richet Allerji ve anaflaksi 1919 Jules Bordet Bagisiklik ve komplement fikzasyon reaksiyonu 1928 C.J.H. Nicolle Tifüsun naklinde bitlerin rolü 1930 Karl Landsteiner Insan kan guruplari üzerinde arastirmalar 1939 Gerhard Domagk Prontosilin bulunmasi ve antibakteriyel etkisi 1945 Sir Alexander Fleming, E.Boris Chain, Sir H.Walter Florey Penicilinin bulunmasi ve etkileri 1948 P.Hermann Müller DDT’nin bulunmasi. 1951 Max Theiler Yellow fever asisi üzerinde arastirmalar 1952 S.Abraham Waksman Streptomisinin bulunmasi 1954 J.Franklin Enders, Thomas H.Weller, Frederich C.Robbins Poliomiyelit virusu ve diger viruslarin hücre kültürlerinde üretilmeleri. 1958 Joshua Lederberg, George V.Beadle, Edward L.Tatum Mikrop genetigi 1960 Sir F.M.Burnet Transplante dokularin immunolojik kontrolleri. 1965 Andre Lwoff, Jacques Monod, François Jacob RNA’nin bulunmasi. 1966 Charles Huggins, Peyton Rous Kanser ve kanatli sarkomu üzerinde çalismalar 1967 R.Granit, H.R.Hartlin, G.Wald Fotoreseptörlerin fonksiyonlari. 1968 R.W.Holley, H.Gobind, M.W. Nirenberg protein sentezinde genetik kodlarin çalismasi. 1969 M.Delbrück, A.D.Hershey, E.Luria Bakteriyofajlarin hakkinda yayinlar 1970 J.Axelrod. S.Bernard Katz, Ulf von Euler, Earl W.Sutherland AMP’nin metabolizmadaki önemi 1971 E.Sutherland AMP’nin metabolizmadaki önemi 1972 Porter,R.R, Edelman,G.M Immunoglobulinler üzerinde sütrüktürel çalismalar. 1973 K.Von Frisch, K.Lorenz, N.Timbergen Evolusyon ve analoji üzerinde çalismalar 1974 C.de duve, G.E.Palade Hücre anatomisi,sitokrom ve mitokondrialar hakkinda yayinlar 1975 D.Baltimore, R.Dulbeco, H.M. Temin RNA’ya bagli DNA polimerase üzerinde 1976 Baruch Blumberg Serum hepatiti. 1976 Daniel C.Gajdusek Latent virus hastaliklari 1977 Rosalyn Yellow Radio immunoloji üzerinde çalismalar 1977 Andrew Schally, Roger Guillemin Üç ayri hormon serbest birakma faktörleri üzerinde arastirmalar 1978 N.O.Smith, D.Nathans, W. Arber Restriksiyon enzimlerinin bulunmasi ve bunlarin kullanilmasi 1980 B.Benarerraf, G.Snell, J.Dausset Histokompatibilite antijenlerinin bulunmasi 1980 P. Berg, W.Gilbert rekombinant DNA teknolojisinin gelismesi 1980 F.Sanger DNA sekans analizlerinin yapilmasi. 1982 A.Klug Kristalografik elektron mikroskobun gelismesi, virus yapisinin aydinlatilmasi 1984 C.Milstein, G.J.F.Köhler Monoklonal antikorlarin elde edilmesi. 1984 N.K.Jerne Immunolojide teorik çalismalar 1986 E.Ruska Transmisyon elektron mikroskobunun gelismesi 1987 S.Tonegawa antikor çesitliliginin genetik prensipleri. 1988 J.Deisenhofer, R.Huber, H.Michel Bakteri membranlarnda fotosentetik reaksiyon merkezleri. 1988 G.Elion, G.Hitching Kanser, malarya ve viral infeksiyonlarin tedavisinde kullanilan ilaçlarin gelistirilmesi 1989 J.M.Bishop, N.E.Varmus, S.Altman Onkogenlerin bulunmasi 1989 T.R.Cech Katalitik RNA’larin bulunmasi 1990 J.E.Murray Immunsupresif ajan kullanarak transplantasyon 1992 E.H.Fisher, E.G.Krebs Protein kinasenin bulunmasi 1993 R.J.Robets, P.A.Sharp DNA’nin farkli segmentlerindeki genler 1993 K.B.Mullis PCR’nin bulunmasi 1993 M.Smith Site directed mutagenezis Türkiye 'de Mikrobiyolojinin Kurulmasi Yurdumuzda mikrobiyoloji alanindaki ilk çalismalar asi yapmakla baslamis ve buna da çiçek hastaligi ve asi hazirlama çabalari önderlik etmistir. Bu yöndeki aktiviteler, 1840 yilindan sonra giderek gelismis ve çiçek asisi hazirlanarak basari ile kullanilmistir. Pasteur 'ün, Paris Tip Akademisi'nde, 27 Ekim 1885'de verdigi "Isirildiktan Sonra Kuduzdan Korunma" adli bildiri dünyada büyük yankilar yarattiktan ve ayni teblig 31 Ekim 1885'de Istanbul'da yayimlandiktan sonra, kuduz üzerindeki çalismalari yakindan izlemek amaci ile, Osmanli Hükümeti tarafindan, Tibbiye Mektebi Dahiliye Muallimi Dr. Aleksander Zoeros Pasa baskanliginda, Veteriner Hekim Hüseyin Hüsnü ve Zooloji Muallimi Dr. Hüseyin Remzi Beyler 'den olusan üç kisilik bir heyet, Pasteur 'ün yanina Fransa'ya gönderildi (1886). Bu heyetle birlikte, Padisah Abdulhamid, Pasteur 'e verilmek üzere, bir nisan ve laboratuarina yardim için 1000 altin göndermistir. Paris 'de Pasteur 'ün yaninda 6 ay kalan ve kuduz hastaligi asisinin hazirlanmasi ve kullanilmasi konularindaki tüm bilgileri ögrenen heyet, yurda döndükten sonra da bu hastalik üzerindeki "Daül-kelb Ameliyathanesi"nde asi yapimina baslamistir (1887). Vet. Hekim Hüseyin Hüsnü ile Dr. Hüseyin Remzi Beyler de, Pasteur ve Chamberland'in eserini "Mikrob Emrazi Sariye ve Sarboniyenin Vesaili Sirayeti ve Usulü Telkihiyesi" adi altinda tercüme etmisler ve yayimlamislardir (1887). Ayrica, Dr. Remzi Bey, "Kuduz Illeti ve Tedavisi" adli 19 sayfalik bir brosür nesretmistir (1890). Tip Mekteplerinde 1891'de okutulmaya baslanan bakteriyoloji dersi, Veteriner Mekteplerinde ancak 1893'den sonra ve Dr. Rifat Hüsamettin Bey tarafindan okutulmaya baslanmistir. Istanbul 'da 1893 'de, kolera vakalarinin çikmasi üzerine, önleyici tedbirlerin alinmasi ve hastaligin üzerinde gerekli arastirmalarin yapilmasi için, Fransa'dan Dr. Andre Chantemesse getirildi. Istanbul'da 3 ay kadar kalarak kolera konusunda çok olumlu çalismalar yapan bu kisiye, Rutbei Üla ile nisan verildi. Bu arada, Dr. Chantemesse, ülkemizde bir bakteriyoloji laboratuarinin kurulmasi üzerinde israrla durdu ve böyle bir müessese kuruldugunda bunun idaresi için Dr. Maurice Nicolle'i tavsiye etti. Dr. M. Nicolle, 1893'de, Istanbul'a geldi ve Gülhane'de Tibbiye Mektebi civarindaki bir binada çalismaya basladi. Bu laboratuar, sonradan, Bakteriyolojihane-i Osmani olarak adlandirildi ve Dr. Nicolle buranin müdürlügüne atandi. Çalisma konularinin fazla olmasi nedeniyle, bu bina da sonralari dar gelmege basladi. Bu yüzden, Nisantasi 'ndaki Süleyman Pasa konagina nakledildi. Bu yeni binada, bakteriyoloji üzerinde kurslar düzenleyen Dr. Nicolle, doktor kursiyerlerin yani sira çok takdir ettigi Veteriner Dr. Refik Güran'i da seçerek istirak ettirdi. Dr. Maurice Nicolle (1862-1920), Istanbul'da kaldigi 8 sene içinde, laboratuarlari basari ile yürütmüs, çok kiymetli çalismalarda (sigir vebasi, keçi ciger agrisi, sark çibani, P. aeruginosa'nin pigmenti, sigir babesiozu, pnömokok, vaksin virusu) bulunmus ve ülkemizde mikrobiyolojinin yerlesmesi ve gelismesinde büyük katkilari olmustur. Osmanli Imparatorlugu zamaninda bakteriyoloji ve viroloji çalismalari hem insan hekimligine ait çesitli müesseselerde (Telkihhane-i Sahane, Daülkelb Ameliyathanesi, Bakteriyolojihane-i Sahane, Mekteb-i Tibbiye-i Askeriye ve Mektebi Tibbiye-i Mülkiye ve diger laboratuvarlarda) ve hem de Veteriner Hekimlige ait organizasyonlarla (Bakteriyolojihane-i Baytar'i, Baytar Mektebi Alisi, Askeri ve Sivil Baytar Mektepleri, Pendik Bakteriyoloji hanesi ve diger müesseselerde) yürütülmüstür. Dr. M. Nicolle 'den baska, çalismalari ve buluslari ile adlari dünya literatürlerine geçmis çok degerli meslektaslarimiz bulunmaktadir. Bunlardan kisaca bahsetmek yerinde olur. Ahmet Refik Güran (1870-1963), Dr. M. Nicolle ile birlikte 7 sene gibi uzun bir süre çalismis, mikrobiyoloji alaninda birçok degerli çalismalar yapmis ve yayimlamistir. Bakteriyolojihane-i Osmani'de; sularda bulunan kolibasillerin envari, Vebaibakari hastaligi ve serumu, lökosit sayimi, keçi ciger agrisi hastaligi; Baktriyolojihane-i Baytari'de: Barbon asisi, sarbon asisi, sarbon serumu, tavuk kolerasi asisi, kuru serum, kan alma ve vermeye yarayan alet ve periton kanülü yapan Dr. Refik Güran, ayrica ilk Türk peptonunu da yapmayi basarmistir. Yukarida bildirilen çalismalari yani sira, daha birçok önemli incelemeleri ve ihtira berati almis oldugu buluslari da olan Dr. Refik Güran, yurdumuzda bakteriyolojinin kurulmasinda, gelismesinde, bakteriyoloji laboratuar veya enstitülerinin açilmasinda, bakteriyologlarin yetismesinde çok büyük katkilari olmus bir bilim adamimizdir. Adil Mustafa Sehzadebasi (1871-1904), Dr. R. Güran'in çok yakin çalisma arkadaslarindan biridir. Dr. Nicolle ile birlikte ve özellikle sigir vebasi üzerinde yaptiklari arastirmalarla kendilerini dünya literatürlerine geçirmislerdir. Bu iki bilim adami, ilk defa, sigir vebasi etkeninin filtreleri geçtigi ve süzüntünün hastalik yapici nitelikte oldugunu deneysel olarak ispat etmislerdir (1897). Fransa'da Prof. Nocard'in yaninda da çalisarak difteri serumu hazirlayan Dr. Adil Bey, ayrica, malleus ve piroplasmosis üzerinde de degerli arastirmalar yapmistir. Kendisi, sivil ve askeri okullarda da bakteriyoloji ögretmenliginde bulunmustur. Nikolaki Mavridis (Mavraoglu) (1871-1955), Veteriner mikrobiyoloji alaninda çok degerli çalismalar yapmistir. Özellikle, sigir vebasi, keçi ciger agrisi, malleus, tavuk kolerasi, barbon ve diger hayvan hastaliklari üzerinde kiymetli çalismalari vardir. Mavraoglu, Refik Güran ve Adil Sehzadebasi Bey 'lerin çok yakin çalisma arkadaslaridir. Osman Nuri Eralp (1876-1940), bakteriyoloji ve viroloji üzerinde degerli arastirmalar yapmis bir bilim adamidir. Çalismalarini, özellikle, tüberküloz, tüberkülin, sarbon, sigir vebasi, kolera, gonokok, frengi, sütte yasayan ve sütle bulasan mikroorganizmalar ve diger konular kapsamaktadir. Riza Ismail Sezginer (1884-1963), Baytar Yüksek Mektebinde salgin hastaliklar, bakteriyoloji ve gida kontrolü dersleri vermis, Istanbul mezbahasinin kurulmasinda önemli rol oynamis ve bunun laboratuvar sefi olmus ve ayrica kiymetli çalismalar yapmis olan bir bakteriyologumuzdur. Ahmet Sefik Kolayli (1886-1976), sigir vebasi virusunun insanlarda hastalik olusturmadigini, sigir vebasina tutulan hayvanlarin kesilerek etlerinin askerlere yedirilebilecegini, böyle etleri yiyenlerde hastalik görülmesi halinde kendisinin kursuna dizilmesini isteyen ve bu cesareti gösteren degerli bir bilim adamidir. Çatalca'da bulunan aç ve gidasiz askerlerin bu etleri yemesinden sonra Edirne sehri düsmandan bu askerler sayesinde kurtarilmistir. Sefik Kolayli Bey özellikle, sigir vebasina karsi serum hazirlamis ve böyle müesseselerde bulunmustur. Ayrica, tüberkülin, mallein, tavuk kolerasi ve barbon asilari da hazirlamis, sigir vebasi, antraksin teshisi, çiçek asisi, keçilerin bulasici salgin ciger agrisi üzerinde de çalismistir. Yukarida adlari bildirilen bilim adamlarinin disinda, kendilerini bu ise adamis daha birçok kiymetli bakteriyologlarimiz bulunmaktadir. Bunlar arasinda, Cafer Fahri Dikmen, Josef, Ahmet Hamdi, Ethem Eren, Mustafa Hilmi, Ibrahim Erses ve digerleri sayilabilir. Baslangiçta, hayvan hastaliklarina karsi hazirlanan asi ve serumlar ile insan hastaliklarini ilgilendiren biyolojik maddeler ayni bina içinde yapildigindan, Veterinerler ile Doktorlar birlikte çalismaktaydilar. Sonra is hacminin ve eleman miktarinin artmasi üzerine laboratuarlar birbirlerinden ayrilmak zorunda kalmistir. Bakteriyoloji ve viroloji alaninda, Osmanli Imparatorlugu zamaninda, çalismis, degerli arastirmalar ve yayinlar yapmis birçok doktorlar da bulunmaktadir. Bunlar arasinda, Hüseyin Remzi, Rifat Hüsamettin Pasa, Hasan Zühtü, Kemal Muhtar, Sait Cemal, Aleksandr Zoeros Pasa, Ahmet Sadi, Cemalettin Muhtar, Riza Arif ve digerleri. Bu kisilerin de ayni sekilde, yurdumuzda mikrobiyolojinin gelismesinde ve yerlesmesinde önemli katkilari olmustur. Prof. Dr. Mustafa Arda Kaynak : Temel Mikrobiyoloji

http://www.biyologlar.com/enfeksiyon-hastaliklarinin-ilk-kez-taninmasi-etkenlerinin-bulunusu-veveya-uretilmesi-konularinda-tarihsel-siralamalara-ornekler-veriniz-

Türkiye’nin Orman Biyolojik Çeşitliliği

Orman ekosistemleri ülke genelinin % 27,2'sini kaplar. Türkiye’de orman habitatlarına ait gerek ekolojik gerekse de floristik kompozisyona dayalı çok sayıda ekosistem mevcuttur ve her ekosistemin işlevi az çok birbirinden farklıdır. Türkiye’nin sahip olduğu bu zengin orman biyolojik çeşitliliği çok sayıda endemik bitki türüne, önemli kuş türlerine ve birçok yaban hayatı türüne habitat sağlamaktadır. Türkiye’nin orman ekosistemleri Avrupa-Sibirya, Akdeniz ve İran-Turan biyocoğrafik bölgelerine göre farklılıklar göstermektedir. Akdeniz biyocoğrafik bölgesi, Akdeniz’e kıyısı olan tüm yöreler ile Trakya’nın batı kısımlarını kaplar ve çok farklı orman ekosistemlerini içerir. Akdeniz ikliminin etkili olduğu bölgelerde orman ekosistemleri toprak-iklim-bitki ilişkilerine bağlı olarak deniz seviyesinden itibaren dağların en yüksek kısımlarına kadar değişik vejetasyon serileri oluştururlar. Her vejetasyon serisinin içerisinde de diğer ekolojik parametrelere bağlı olarak farklı orman ekosistemleri gelişim gösterir. Akdeniz ikliminin görüldüğü Akdeniz ve Ege Bölgesi’nde 0-1000 metreler arasında “Sıcak Akdeniz ve Asıl Akdeniz Vejetasyon Katı” görülür ve bu katlar içerisinde, kserofil maki ekosistemi, Pinus brutia (kızılçam) orman ekosistemi, Pinus halepensis (Halep çamı) orman ekosistemi, Liquidambar orientalis (günlük ağacı) orman ekosistemi, Cupressus sempervirens (servi) orman ekosistemi, Quercus cerris-Q.infectoria-Q.libani-Q.brantii karışık meşe ekosistemi ve Pinus pinea (fıstık çamı) orman ekosistemleri görülür. 1000-2000 metreler arsında da “Üst Akdeniz ve Akdeniz Dağ Vejetasyon Katları” görülür. Bu yükseltiler arasında Pinus nigra (kara çam), Abies cilcica (toros göknarı), Cedrus libani (sedir), Ostrya carpinifolia-Carpinus orientalis (kayacık-gürgen), Quercus petraea- Quercus cerris-Qurcus trojana (karışık meşe) orman ekosistemleri görülür. 2000 metreden sonra ise “Yüksek Dağ Akdeniz Vejetasyon Katı” bulunur. Bu kesimde Juniperus excelsa-Juniperus foetidissima (karışık ardıç) orman ekosistemi ile yastık formunda yarı çalı ve otsu bitkilerden oluşan Akdeniz yüksek dağ stepi ekosistemi yer alır. Ege Bölgesi’nin orman ekosistemi floristik olarak Akdeniz Bölgesi’nin orman ekosisteminden biraz faklıdır. Ege ormanlarında 1000 metreye kadar kestane, meşe, karaçam ve kızılçam ormanları görülürken; 1000 metreden yüksek yerlerde kayın, ıhlamur, fındık ve sarıçam ormanlarına rastlanır. İran-Turan biyocoğrafik bölgesi, biyocoğrafik bölgelerinin en genişidir ve Orta Anadolu’danbaşlayarak Moğolistan’a kadar uzanır. Bölgede karasal iklim ve step bitkileri baskındır. Buradaki orman ekosistemleri kurak bölge orman ekosistemlerini içerir. Belli başlıları; İç Anadolu’da Step Ormanları (Saçlı ve tüylü meşe, Karaçam, Ardıç: 800-1500m) ve Kurak Karaçam, Meşe ve Ardıç Ormanları (Meşeler: <1200m; Karaçam:1000m-1500m; Sarıçam:>1500m); Doğu Anadolu’da Kurak Meşe Ormanlarıdır. Avrupa-Sibirya biyocografik bölgesi Kuzey Anadolu’da boydan boya ve Trakya Bölgesi’nin Karadeniz’e bakan kısımlarında uzanmaktadır. En yağışlı iklim bölgesidir, geniş kısmı ormanlarla kaplıdır. Bu bölgede; Yapraklı-ibreli Ormanlar (Kayın, Kestane, Gürgen; 500-1200m), Nemli-yarınemli İbreli ormanlar (karaçam, sarıçam, ladin, göknar;1000-1500m), Kurak meşe ve çam ormaları (Meşe:<1500m;karaçam:>600m; Kızılçam:400-500m) ile Çalı (maki-yalancı maki) formasyonu (Kızılçam:<500m) orman ekosistemleri göze çarpmaktadır. Trakya ve Batı Karadeniz bölgelerinde taban suyunun yüksek olduğu düz alüvyal alanlarda Fraxinus angustifolius-Qurcus robur –Fagus orientalis longoz karışık orman ekosistemeleri bulunur. Karadeniz Bölgesi’nde ise sahilden itibaren Fagus orientalis (kayın), Alnus glutinosa (kızılağaç), Abies nordmanniana (Karadeniz göknarı), Pinus sylvestris (sarı çam), Picea orientalis (ladin), Carpinus orientalis-Carpinus betulus (karışık gürgen), Castanea sativa (kestane), Rhododendron ponticum-Rhododendron luteum (karışık orman gülü), Rhododendron ungernii-Rhododendron smirnowii (karışık orman gülü), Rhododendron caucasicum (beyaz kumar) ve Betula pendula (huş) orman ekosistemleri bulunur. Türkiye’deki büyük memelilerin çoğu orman ekosisteminde yaşar. Örneğin; ormanlar ayı (Ursus sp.), tilki (Vulpes sp.), kurt (Canis aureus), çakal (Lynx lynx), vaşak (Hyena hyena) gibi etobur memeliler, geyik (Cervus sp. ve Capriolus sp.), çengel boynuzlu dağ keçisi (Rupicapra rupicapra), yaban keçisi (Capra aegaprus aegaprus) ve yaban domuzu (Sus scrofa scrofa), türleri ile, porsuk (Meles meles), sansar (Martes foina), kirpi (Erinaceus sp.), tavşan (Lepus capensis), gelincik (Mustela sp.), sincap (Sciurus sp.) gibi memeliler, yılan, bukalemun (Chameleo chameleon), kertenkele (Lacerta sp.), kaplumbağa (Testudo sp.) türleri gibi sürüngenler ve sülün (Phasianus colchicus), ürkeklik (Tetraogallus caspius), huş tavuğu (Tetrao mlokosiewiczi), ağaçkakan (Dendrocopus sp.), yırtıcı kuşlar (Aquila sp., Accipiter sp., Circus sp., Buteo sp., Pandion sp., Falco sp., Pernis sp.), çeşitli baykuş türleri ile çok sayıda ötücü kuş türüne yaşama ortamı oluşturmaktadır. Bu türlerden çengel boynuzlu dağ keçisi (Rupicapra rupicapra), yaban kedisi (Felis silvestris), esmer akbaba (Aegyphius monachus), şah kartal (Aquila heliaca), büyük orman kartalı (Aquila clanga) ve küçük orman kartalı (Aquila pomarina) gibi türler uluslararası sözleşmelerle koruma altına alınmış orman faunası türlerindendir. Topoğrafik yapısı, iklim ve toprak farklılıkları Türkiye ormanlarını bitki çeşitliliği açısından oldukça zengin kılmıştır. Özellikle relik ve endemik bitkilerin zenginliği Türkiye ormanlarının biyolojik çeşitlilik yönünden önemini daha da artırmaktadır. Bu zenginliğin temel nedenlerinden birisi dördüncü jeolojik zamanda meydana gelen iklim değişiklikleridir. Türkiye’deki bitki türlerinin yaklaşık üçte biri eski jeolojik dönemlerden kalmış olup çoğu endemiktir. Endemik türlerin çoğu Akdeniz (özellikle de Toros, Bolkar ve Nur dağlarında) ile İran-Turan biyocoğrafik bölgelerinde bulunmaktadır. Tarımsal biyolojik çeşitlilik bakımından önemli olan birçok kültür bitkilerinin yabani akrabaları orman ekosistemleri içinde bulunmaktadır. Orman ekosistemlerindeki bu zengin biyolojik çeşitliliği korumak hem sürdürülebilir ormancılık hem de tarım için vazgeçilmeyecek bir unsurdur. Orman Biyolojik Çeşitliliğini Tehdit Eden Faktörler Türkiye’deki orman ekosistemlerinin yarıdan fazlası tahrip edilmiştir. Türkiye orman ekosistemlerindeki biyolojik çeşitliliğin azalmasına yol açan faktörler; ·Ormanların hem ekosistem hem de tür seviyesinde taşıma kapasitesi dikkate alınmadan aşırı kullanılması (avcılık, otlatma, kereste üretimi, ziyaretçi, orman içi yapılaşmalar vb), ·Atmosferik kirlilik ve küresel iklim değişikliğinin etkileri, ·Orman içinde ve yakınında yaşayan nüfusun tarıma ve orman ürünlerine dayalı yaşam şekillerinden kaynaklanan baskılar (hayvancılık, konrolsüz kullanım, tarla açma ve orman yangınları) ve alternatif gelir getirici programların yetersizliği, ·Turizm teşvikleri ile artan yapılaşmalar, yayla turizmi, arkeolojik alanlardaki aşırı ziyaretci sayısı ve taşıma kapasitesi üstündeki diğer turistik etkinlikler, ·Yabancı türler, ·Ormanlık alanların orman rejimi dışına çıkarılması, ·Tarım arazisi elde etmek için ormanların tahribi, ·Orman yangınları, ·Böcek tahribi, ·Bitki-hayvan örneklerinin kontrolsüz toplanmasıdır. Alıntıdır....

http://www.biyologlar.com/turkiyenin-orman-biyolojik-cesitliligi

Mikroskop tipleri, patolojide kullanım alanları

Mikroskop tipleri, patolojide kullanım alanları

Mikroskop (16. yy) Lensler ve büyüteçler, Antik Yunan uygarlığında bile biliniyormuş. Ancak onlar bu lensleri yapmayı değil, sadece ortası kenarlarından daha geniş kristallerin etkilerini biliyormuş.

http://www.biyologlar.com/mikroskop-tipleri-patolojide-kullanim-alanlari

Darwin ve Moleküler Evrim

Doğal seçilim aslında bir genetik kuramı. Çünkü doğal seçilim süreci genetik çeşitliliğin varlığını gerektiriyor. Bu çeşitlilik ortamında, Darwin'in deyimiyle "varolma mücadelesi"nde, avantajlı özelliklere sahip bireyler varlıklarını sürdürebiliyor ve bu özelliklerini bir sonraki kuşağa aktarabiliyorlar. Ancak Darwin, genetik süreçlerin nasıl işlediğini özelliklerin bir kuşaktan diğerine nasıl aktarıldığını- bilmiyordu. Ebeveynler ve yavrular arasındaki genel benzerliğin farkında olsa da, kalıtım sürecinin ayrıntılarını anlamamıştı. Oysa, tam da Danvin'in evrim düşüncesini geliştirmekte olduğu sıralar, Gregor Mendel bu ayrıntıları anlama aşamasındaydı. Darwin, Mendel'in makalesini hiç bir zaman okumadı. Sonuç olarak, o sıralar kalıtımla ilgili geçerli yaklaşım olan "karışımsal kalıtım" düşüncesiyle yetinmek zorunda kaldı. Bu düşünceye göre bir yavru, ebeveynlerinin özelliklerinin bir karışımını taşırdı ve genellikle bir özellik, anne ve babanınkilerin ortalaması gibiydi. Ancak, "Türlerin Kökeni"nin yayımlanmasından sekiz yıl sonra (Mendel'in makalesinden bir yıl sonra), 1867'de, bir mühendis olan Fleeming Jenkin. karışımsal kalıtım ve doğal seçilimin bir birleriyle uyumlu olmadığını gösterdi.Biri kırmızı, diğeri beyaz iki kutu boya olduğunu ve doğal seçilimin "kırmızı" özelliği yeğlediğini düşünün. Karışımsal kalıtım durumunda, kırmızı bir birey ile beyaz bir bireyin çiftleşmesi sonucu oluşacak yavrular her zaman pembe olacaktır. Yalnızca kırmızı ile kırmızının çiftleşmesi durumunda kırmızı bireyler ortaya çıkacak, diğer tüm çiftleşmelerdeyse (ör. beyaz x kırmızı: pembe x kırmızı) kırmızılık azalacaktır. Yeni ve yararlı bir özellik olan kırmızı, büyük bir olasılıkla ender olarak ortaya çıkacak ve hakim durumdaki beyaz form ile çiftleşerek pembe yavrular üretecektir. Diğer bir deyişle, karışımsal kalıtım herşeyin orta noktaya yaklaşmasına yol açacak, renk pembeye yaklaştıkça, bir uç nokta olan kırmızı yok olacaktır. Fleeming'in düşüncesi, haklı olarak bunun doğal seçilimin etkisine ters düşen bir süreç olduğuydu. Darwin, Jenkin'in haklılığını görerek kuramını kurtarmak için bir yol aradı ve "pangenesis" adını verdiği kendi kalıtım kuramını ortaya attı. Bu kuram özünde, Jean-Baptiste de Lamarck adlı Fransız biyologun 19. yüzyılda dile getirdiği ve sonradan "Lamarkizm"le tanımlanacak olan kalıtım sürecine benziyordu. Bu süreç, "edinilmiş özelliklerin kalıtımı"nı içeriyordu. Temelde Lamarck. bir canlının, yaşamı süresince edindiği özellikleri yavrularına geçirebileceğine inanıyordu. Lamarck'ın kendisi tarafından kullanılmamış olmasına karşın, bu konudaki en ünlü örnek zürafanın boynuyla ilgili olanıdır. Lamarkizme göre tek tek her zürafa, en üst dallardaki yapraklara ulaşabilmek için yaşamı boyunca boynunu gerdiği için, yaşlı bir zürafanın boynu gençlerinkine göre biraz daha uzundur. Lamarck, zürafanın boyun uzunluğundaki bu değişimin yavrularını da etkileyeceğini düşünüyordu; böylece sonraki kuşağın zürafaları, yaşamlarına önceki kuşaktan daha uzun boyunlarla başlayacaklardı. Darwin'in pangenesis kuramıysa bu süreç için bir mekanizma öneriyordu: Vücudun değişik parçalarında üretilen "gemül"ler, kana karışarak eşey hücrelerine, yani erkekte sperm, dişideyse yumurta hücrelerine taşınıyordu. Her bir gemül, anatomik bir parça ya da bir organa ait özellikleri belirliyordu. Bu durumda bir zürafanın yaşamı boyunca boynunu germesi, "boyun uzunluğu" gemüllerinin sürekli "daha uzun boyun" sinyalleri göndermesine neden olacaktı. Lamarck ve Darwin yanılmışlardı. Darwin'in kurguladığı sistemin yanlışlığını ortaya çıkaran, kendi kuzeni Francis Galton oldu. Galton birkaç kuşak boyunca tavşanlara, başka renk tavşanlardan kan verdi. Darwin haklı olsaydı, kanın içindeki yabancı renk gemülleri nedeniyle alıcı tavşanların en azından birkaç tane 'yanlış renkte' yavru üretmeleri beklenirdi. Oysa Galton, deneyi birçok kuşak boyunca tekrarlamasına karşın, beklenenden farklı bir renk oranı gözlemlemedi. Jenkin'in eleştirilerini yanıtlayabilmek için son çare olarak pangenesise sarılmış olan Darwin'se. Galton'un ortaya koyduğu delilleri kabul etmek istemedi. Sonunda, Darwin'in öldüğü sıralarda Alman biyolog August Weismann, sperm ve yumurta oluşturan eşey hücrelerinin diğer vücut dokularıyla ilişkisi olmadığını ortaya koydu. Yani. bir zürafanın boynuyla sperm/yumurta üreten hücreleri arasında hiç bir iletişim yoktu. Dolayısıyla Lamarkizm ve pangenesis biyolojik olarak olanaksızdı. Talihsiz Darwin! Mendel'in çalışmaları konusunda bilgisi olsaydı, Jenkin'i yanıtlayabilmek için son derece ayrıntılı, üstelik de bütünüyle yanlış olan pangenesis kuramını ortaya atması gerekmeyecekti. Mendel, bezelye bitkilerini üreterek yaptığı gözlemlerine dayanarak, daha sonra "gen" adı verilecek olan kalıtım etkenlerinin, bireyin deneyimlerinden etkilenmedikleri, aksine, kuşaktan kuşağa bir bütün olarak ve değişmeden aktarıldıkları sonucuna vardı. Ayrıca bazı koşullar altında, bir özellik geçici olarak gizli kalabiliyordu. Kırmızı ve beyaz boya kutularımıza dönecek olursak, ilk çiftleşmenin sonucunda pembe bireyler ortaya çıksa bile. bir sonraki kuşakta, örneğin pembe x pembe çiftleşmesinden kırmızı bireyler elde edilebilirdi. Böylece Mendel'in çalışmaları hem doğal seçilimi Jenkin'in eleştirilerinden kurtarıyor, hem de doğal seçilimin işleyebileceği genetik bir temel sağlıyordu. Doğal seçilimin kritik etkeniyle ilgili olarak (önce karışımsal kalıtım, sonra da pangenesis konusunda) Darwin'in iki kez yanıldığı düşünülürse, bu kuramın varlığını sürdürmesi çok olağandışı bir durum. Üstelik, kuruluşundaki hatalara karşın bu kuramın doğruluğu artık kanıtlanmış bulunuyor. Bu olağandışı sonucun nedeni, Darwin'in öncelikli olarak bir 'deneyci' (empiricist) olmasıydı: Onun için önemli olan. gözlemlerini açıklama çabaları değil, gözlemlerin kendisiydi. Evrim biyologu Ernst Mayr'ın da yazdığı gibi, "Darwin, genetik çeşitliliği bir 'kara kutu' gibi ele aldı. Hem bir doğabilimci, hem de hayvan yetiştiriciliğiyle ilgili literatürü izleyen bir okuyucu olarak. çeşitliliğin her zaman var olduğunu biliyordu ve bu onun için yeterliydi. Ayrıca, doğal seçilimin hammaddesi olan çeşitliliğin her kuşakta yenilendiğinden ve dolayısıyla her zaman varolacağından da emindi. Diğer bir deyişle, doğal seçilim kuramının öncülü olarak doğru bir genetik kurama gereksinimi yoktu." (One Long Argument, s. 82. Harvard Univ. Press. 1991) Öte yandan, son 50 yıl içinde moleküler genetik alanında kaydedilen olağanüstü ilerlemeyi gözönüne alırsak, Darvin'in düşüncelerinin varlığını sürdürebilmiş olması daha da şaşırtıcı. Jim Watson ve Francis Crick, DNA'nın sarmal yapısını. "Türlerin Kökeni"nin yayınlanmasından neredeyse 100 yıl sonra ortaya çıkardılar. O zamandan beri moleküler biyolojide kaydedilen ilerlemeleri Darwin'in öngörmesine olanak yoktu. Yine de onun basit kuramı, biyolojide kendisini izleyen tüm gelişmelere ters düşmeden yaşadı. Hatta yeni bulgular, kuramı zayıflatmak bir yana. destekledi bile. Moleküler genetiğin en son zaferini, insanın (ve birçok başka türün) genomundaki dizilimin eksiksiz olarak belirlendiği çalışmayı ele alın: Kendisi de genom projelerinin başlatanlarından olan Jim Watson, projeden bugüne kadar elde edilen en önemli bulgunun ne olduğu konusunda düşüncesi sorulduğunda, "Genom projesi Darwin'in, kendisinin bile inanmaya cesaret edebileceğinden daha haklı olduğunu gösterdi" yanıtını vermişti. Ayrıca Watson. beklenilenin tersine, genom projesinden çıkarılacak tıbbi sonuçlar yerine evrimsel sonuçlan vurgulamayı yeğledi. Çünkü genom projesi, genetik organizasyonun temel özelliklerinin tüm canlılar tarafından ne ölçüde paylaşıldığını ortaya çıkarmış bulunuyordu. Watson haklı olarak, genom çalışmalarıyla birlikte, canlıların evrimsel bağlantılarıyla ilgili yeni ufukların da açılacağı düşüncesinde. Yakın zamanda "Türlerin Kökeni"ni yeniden yazma ve güncelleştirme işini üstlenmiş olan İngiliz bilimci Steve Jones da, Darwin'in çalışmasının sağlamlığından etkilenenlerden: "Sonuç olarak bu kitap (benim beklemediğim kadar) aslına benzeyen bir yapıt oldu. Darwin'in ¤¤¤i. bir asırlık bilimsel gelişmeyi kolayca kaldırabiliyor." (Almost like a whale, s. XXVII Doubleday 1999) Bunu izleyen bölümlerde, yüzyılı aşkın süre boyunca bilimde gerçekleştirilen bu ilerlemenin daha ilginç ve daha yeni sonuçlarından bir kısmını kısaca gözden geçireceğiz. Tüm bulgular, Darwin'in düşleyebileceğinin çok ötesinde olmalarına karşın, "Türlerin Kökeni"nde çizilen çerçeveye rahatça oturuyorlar. Bu modern çağda Darwin gerçekten de "kendisinin bile inanmaya cesaret edebileceğinden daha doğru".Yaprak yiyebilmek için moleküler düzeyde ne gerekli? Doğal seçilimin gücünü en iyi ortaya koyan süreçlerden biri de "benzeştiren evrim"dir. Bu süreç, akrabalıkları olmayan canlı gruplarının, aynı seçilim baskısı sonucunda benzer özellikler edinmesini içerir. Bu yakınlaşma farklı düzeylerde olabilir: Örneğin kuşların ve yarasaların kanatlan, benzeştiren evrim sonucunda oluşmuştur. Her iki çözüm de. bir uçma organı yaratmak şeklindeki evrimsel sorunu paylaşır. Kuş ve yarasa kanatları temelde bütünüyle farklıdır elbette (örneğin, kuş kanadı kuşun yalnızca ön ayağını, yarasa kanadıysa hem ön hem de arka ayakları içerir). Ayrıca bu iki canlı grubunun, uçma yeteneğini birbirlerinden bağımsız olarak kazandıkları da çok açıktır. Taksonomistlerin yarasayı kuş olarak sınıflandırma tehlikesi yoktur; çünkü bu canlılar ortak olan sorunlarını çok farklı yollarla çözmüşlerdir. Ancak, taksonomistler için büyük sorun yaratan doğal seçilim örnekleri de var. Bazı durumlarda benzeşim süreci o kadar etkili oluyor ki, ortaya çıkan benzerliğe dayanarak hiç bir akrabalığı olmayan canlılar, yanlışlıkla aynı gruba konulabiliyorlar. Örneğin, soyu tükenmiş olan keselikurdun, görünürde kurda çok benzemesi, ilk taksonomik değerlendirmeler sonucunda bu iki canlının yakın evrimsel akrabalar olarak sınıflandırılmasına (diğer bir deyişle benzerliklerinin, kurt-benzeri ortak bir atadan evrimleşmiş olmalarından kaynaklandığı düşüncesine) neden olmuş. Oysa daha ayrıntılı bir incelemede, temelde çok farklı iki ayrı memeli grubuna ait oldukları ortaya çıkıyor: Keselikurt bir keseli, kurtsa bir etenli (plasentalı) memeli. Yani bir kurda benzemesine karşın keselikurt, aslında kanguru gibi keseli hayvanlarla daha yakın akraba. Öyle görünüyor ki, iki ayrı bölgede 'köpek'liği yeğleyen seçilim baskısı, biri keseli, diğeri plasentalı olmak üzere iki farklı hayvan çözümüyle sonuçlanmış. Darwin'in bu örneklerle bir sorunu olmayacağı kesin. Ancak DNA devrimi, seçilim sonucu oluşan benzerlikleri çok daha ayrıntılı incelememize olanak tanıyor. Doğal seçilim ne kadar duyarlı? Benzer seçilim baskıları, farklı gruplar arasında moleküler düzeyde benzeşmeyle sonuçlanabilir mi? Diğer bir deyişle, temel bir işlevi yerine getirmek üzere belli bir proteini kullanan çeşitli canlılar arasında, protein dizilimi açısından benzeştiren evrim gelişmesini bekleyebilir miyiz? DNA dizilimi, yaşamın aktif molekülleri olan proteinleri kodlar. Proteinlerin kendileriyse aminoasit adı verilen yapıtaşlarından oluşurlar. Yani bir genin DNA dizilimi, oluşacak aminoasit zincirini belirler. Dolayısıyla DNA diziliminde oluşan bir mütasyon. üretilen proteinin aminoasit dizilimini de etkiler. Öyleyse, belli bir proteinin belli bir biçimde kullanımının yeğlendiği durumlarda, akrabalığı olmayan canlıların aminoasit diziliminde de benzeştiren evrim görmeyi bekleyebilir miyiz? Doğal proteinlerde 20 farklı aminoasit bulunabiliyor. Proteinin belli bir yerinde bu 20 aminoasitten herhangi biri bulunabileceği için, olası farklı dizilim sayısının çok yüksek olduğunu unutmayın. Örneğin, 200 aminoasit uzunluğundaki bir protein için 20 üzeri 200 farklı aminoasit dizilimi bulunabilir. Doğal seçilim, proteinin işlevini en iyi biçimde yerine getirmesini sağlayan dizilimi yeğler. Ama doğal seçilim ne kadar kesin sonuç verebilir? Belli bir işlev için ortak seçilim baskıları olduğunu varsayarsak, farklı canlı gruplarında bağımsız olarak aynı aminoasit dizilimiyle -bütün olasılıklara karşın yeğlenen dizilimle- sonuçlanabilir mi?Belli koşullar altında, "evet". Bunun en iyi örneğini yaprak-yiyen hayvanlarda görebiliriz. Yaprak yemek, besin elde etmenin zahmetli bir yolu; çünkü bitkilerde hücre duvarının temel maddesi olan selülozun parçalanması, özellikle zor. Ve selülozu parçalayamazsanız yaprak hücrelerinin içine ulaşıp gerekli besinleri alamazsınız. Bu nedenle, "geviş getirenler" olarak bilinen, ineğin yanısıra başka evcil hayvanları da içeren memeli grubu, mikroplardan yararlanır. Bu hayvanların bağırsaklarında, selülozu ustaca parcalayabilen bakteri toplulukları yaşar. Kısacası inekler, selülozu parçalayıp bitki hücrelerini açmak için bakterileri kullanırlar. Ama bakteriler bu hücrelerin içindeki besini kendileri kullandıkları için, ineklerin bu kez de besini bakterilerden ayırmanın bir yolunu bulmaları gerekir. Bunu yapabilmek için inekler ve diğer geviş getirenler, "lizozim" adı verilen ve bakterilerin hücre duvarını parçalayan bir enzim (aktif bir protein) kullanırlar. Sonuç olarak, bir ineğin yediği otlardan besin elde etme süreci son derece dolaylı: Otu yiyor, bakteriler bitkinin selüloz hücre duvarını parçalıyor ve hücrenin içindekileri kullanıyor: bundan sonra ineğin bağırsaklarındaki lizozim, bakterileri parçalıyor ve sonunda besinler ineğe ulaşabiliyor. Evrimsel açıdan lizozim, yeni bir sindirim işlevi için kullanılmış oluyor. Enzimin tipik işleviyse, memeli vücudunu bakteri saldırılarına karşı korumak; hayvan için sorun yaratmalarına fırsat vermeden, bakterilerin lizozimler tarafından parçalanması gerekiyor. Örneğin, gözyaşındaki lizozim bu yolla bakteriyel enfeksiyon riskini azaltıyor. Aslında geviş getirenler yaprak yemekte uzmanlaşmış tek memeli grubu değil. Özellikle Asya'da yayılım gösteren ve langur adı verilen bir grup maymun da bu işi yapabiliyor. Peki ama langurlar selülozu sindirme sorununu nasıl çözüyorlar? Şaşırtıcı bir şekilde (ve geviş getirenlerle hiç de yakın akraba olmadıkları için bağımsız olarak) bu sorun için aynı çözümün evrimleştiğini görüyoruz: Onlar da bağırsaklarında, işlevi selülozu parçalamak olan bir bakteri topluluğu barındırıyorlar. Ve onlar da, bakterilerin bitkilerden aldıkları besini elde etmek için, bakterilerin hücre duvarını parçamada lizozimden yararlanıyorlar. Bu olgunun kendisi, benzeştiren evrimin. diğer bir deyişle bütünüyle ayrı iki hayvan grubunun ortak bir evrimsel sorunda aynı çözüme ulaşmasının, güzel bir örneğini oluşturuyor. Ancak benzeşim bununla da kalmıyor: Langur maymunlarına ve geviş getirenlerden biri olarak ineğe ait lizozimlerin aminoasit dizilimlerini karşılaştırdığımızda, bu kadar uzak akraba olan gruplar için bekleyebileceğimizden çok daha yüksek bir benzerlik buluyoruz. Daha ayrıntılı bir inceleme yaptığımızdaysa, geviş getirenlerdeki belli aminoasit değişimlerinin (olasılıkla lizozimin sindirime ilişkin bu yeni işlevi kazanmasını kolaylaştırmak üzere) langurlarda da gerçekleşmiş olduğunu görüyoruz. Bu son derece olağanüstü bir sonuç. Bu iki yaprak-yiyen grup, yalnızca selüloz sorununu çözmek için kirli işlerini bakterilere yaptırmakla kalmadılar, lizozimi genel bir bakteriyel savunma enzimi olmaktan, sindirim işlevinin temel öğesi olmaya dönüştüren aminoasit değişimleri açısından da benzeştiler. Doğal seçilimin, aminoasit diziliminde evrimle sonuçlanması gerçekten dikkate değer bir olgu. Bizim gibi (ya da inekler ya da langur maymunları gibi) karmaşık hayvanların vücudunda üretilen yaklaşık 100 000 farklı protein var. Ve bu örnekte, bu proteinlerden yalnızca bir tanesinde, lizozimde oluşan küçük farklılaşmalar, doğal seçilimin gücünü yönlendirmek için yeterli olmuş. Yakın geçmişte bu öykünün bir başka yanı daha ortaya çıktı. Geviş getirenler ve langur maymunları gibi yaprak yiyen ve dolayısıyla selüloz sorunuyla karşı karşıya olan bir kuş türü incelendiğinde, yalnızca Amazon havzasında bulunan ve son derece garip görünüşlü olan "hoatzin" adlı bu kuşun da, selüloz sorununu bakterilerin yardımıyla çözdüğü ve bakterileri parçalamak içinse lizozim kullandığı bulundu. Evet, yaprak yiyen iki memeli grubuna ait lizozimin ve hoatzin lizoziminin aminoasit diziliminde de benzeşme oluşmuş. Diğer bir deyişle, moleküler düzeydeki bu benzeştiren evrim örneğinin yalnızca memelileri değil, kuşları da içerdiğini görüyoruz. Yüksek uçuş: Yüksek irtifa için moleküler uyum Bir enzimin değişik formları arasındaki işlevsel farklılıklar konusunda yorumlar yapabilmek için, o enzim ve biyolojik etkinliklerinin aynntılarıyla ilgili bilgilere gereksinmemiz var. Aminoasit diziliminde, dört aminoasidin wxyz şeklindeki dizilimini de içeren bir protein düşünün. Başka bir türde aynı işlevi gören proteinde aminoasit dizilmi wxtz olursa, diğer bir deyişle bu kısa dizide 'y' aminoasidi yerine 't' geçmişse, bu önemli bir farklılık mıdır? Bu soruyu, ancak proteinin yapısı ve işlevi konusunda fazlaca bilgimiz varsa yanıtlayabiliriz. Eğer, örneğin "bu protein f fonksiyonu için kullanılıyor" şeklinde genel bir düşünceden daha ayrıntılı bilgimiz yoksa, y --> t değişiminin önemini anlamamız olanaksız. Oysa çok az sayıda protein konusunda gerekli bilgiye sahibiz ve bunun sonucunda moleküler uyumla ilgili çalışmalar zorunlu olarak sınırlı düzeyde kalıyor. Morfolojik düzeydeki uyumla ilgili çalışmalar içinse durum farklı. Örneğin, elin işlevini tam olarak anlamak ve hayvanlar arasında görülen farklı el tiplerinin uyumsal değerini çıkarsamak çok zor değil. Kırmızı kan hücrelerinde bulunan ve oksijenin taşınmasından sorumlu molekül olan hemoglobin, moleküler uyumun evrimsel incelemesi için bulunmaz bir aday. Hemoglobin, akciğerlerde yoğun olan oksijene bağlanır ve vücudun, örneğin çalışan kaslar gibi, oksijen yoğunluğu az olan bölgelerinde bu oksijeni salar. İnsanlarda rastlanan pek çok hastalıkta hemoglobinle ilgili sorunların varlığı ve oksijen taşınımının hayvan fizyolojisinin temel bir öğesi olması nedeniyle hemoglobin, üzerinde çok iyi çalışılmış bir protein: hatta X-ışını yayılımı yöntemi kullanılarak üç boyutlu yapısı belirlenen ilk proteinlerden biri (Proteinler doğrusal aminoasit zincirlerinden oluşurlar; ancak bunlar proteinin işlevi için gerekli olan karmaşık üc-boyutlu yapıları oluşturacak şekilde kendi üstlerine katlanırlar.). Hemoglobinin evrimsel inceleme açısından iyi bir aday olmasının başka bir nedeni de, oksijen taşınımı açısından çok farklı ortamlarda yaşasalar da. tüm canlıların oksijen taşıma gereksinimi için aynı temel molekülü kullanmaları. Örneğin bazı kuşlar, deniz düzeyiyle karşılaştırıldığında oksijen miktarının çok daha az olduğu yüksek irtifalarda yaşarlar. Oysa yalnızca uçmak bile, çok enerji gerektiren ve oksijene bağımlı bir etkinlik. Dolayısıyla, bu molekülün doğal seçilim sonucunda -oksijen açısından- aşırı ortamlara uyum sağlayıp sağlamadığını belirlemek amacıyla, tipik olarak yükseklerde uçan bir kuşla alçaktan uçan bir kuşun hemoglobinlerini birbirleriyle karşılaştırabiliriz. Kuşların çok yükseklerde uçabildiği, bilinen bir olgu. Şimdiye kadar kaydedilmiş en yüksek kuş uçuşu. Fildişi Kıyısı'nda 11.300 m yükseklikteyken bir jet uçağına çarpan Rüppell akbabasına (Gyps rueppellii) ait. Bu yükseklik. Everest Tepesi'nin yüksekliğinden 2000 m daha fazla. Yükseklik arttıkça oksijen yoğunluğunun daha hızlı azalmasına bağlı olarak yüksekte uçan kuşlar oksijen bakımından, alçakta uçan akrabalarından bütünüyle farklı bir ortamda yaşarlar. Göç ederken Himalayalar gibi yüksek dağ sıralarının üzerinden geçen kuşlar da sıklıkla çok yükseklerde uçarlar. Örneğin yazlarını Tibet, kışlarını da Kuzey Hindistan'da geçiren Hint kazı (Anser indicus), mevsim aralarında Himalayalar'ın üzerinden uçar. Hint kazının ve alçak bölgelerde yaşayan en yakın akrabası olan bozkazın hemoglobinlerine bakıldığında, yalnızca 4 amino asit açısından farklı oldukları, bu farklılıkların, molekülün üç boyutlu yapısı üzerindeki etkisi incelendiğinde de, yalnızca bir tanesinin hemoglobinin oksijen tutma yeteneğini artırdığı görülüyor. Buysa, yükseklerde daha az olan oksijene çok daha kolay bağlanabilmesi için Hint kazının hemoglobininde bulunması gerekli olan özellik. Aynı durum, yükseklerde uçan başka bir kaz türü olan And kazı (Chloepahaga melanoptera) için de geçerli. Hint kazında olduğu gibi And kazında da, hemoglobinin oksijen tutma yeteneğinin artmasından tek bir aminoasit değişimi sorumlu. Her iki sonuç da, bu iki kaza ait hemoglobin proteinlerinin, alçak yerlerde yaşayan bozkaza ait olanlarıyla karşılaştırılması, ardından da oksijen-bağlama yeteneğini etkileyecek aminoasit değişimlerinin kimyasal yapıya ilişkin argümanlarla saptanması yöntemiyle elde edilmişti. Oysa bu, birçok açıdan tartışmalı bir yöntem. Oksijen bağlama yeteneğiyle ilgili yorumlarımızın gerçekten doğru olduğunu nasıl bilebiliriz? Hemoglobinin bu kadar iyi çalışılmış bir protein olması nedeniyle bu soru, gerekli deneylerle en iyi şekilde yanıtlanmış durumda. Ancak bu. ilk bakışta göründüğünden çok daha zor bir işlem: Bir insan hemoglobini alınıyor ve oksijen-bağlama yeteneği ölçülüyor; sonra genetik mühendisliği devreye sokularak uygun konumdaki aminoasitin yerine, Hint kazı için kritik olduğu belirlenen aminoasit yerleştiriliyor. Böylece, yeryüzünde olasılıkla daha önce hiç varolmamış, yeni bir hemoglobin molekülü üretilmiş oluyor. Şimdi, yeni üretilen bu molekülün oksijen bağlama yeteneği ölçülebilir. Bu deney, insan hemoglobini ve hem Hint kazı. hem de And kazının yüksek irtifa aminoasitleri kullanılarak gerçekleştirildi. Her iki durumda da, yeni hibrid hemoglobin molekülünün, normal insan hemoglobinine göre belirgin şekilde yüksek bir oksijen bağlama yeteneğine sahip olduğu görüldü. Kısacası deneysel sonuçlar, yapısal bilgilere dayanılarak yapılan çıkarsamaları doğruladı. Deneyler karmaşık olsa da sonuç basit: Moleküler düzeyde doğal seçilim son derece etkili bir unsur. Moleküller, uygun koşullarda en iyi performansı gösterecek ince bir ayara sahipler. Rüppell akbabasının 11.000 m'de uçabilmesini sağlayan unsur ise, hemoglobin molekülü üzerindeki etkisi aracılığıyla doğal seçilim. Moleküller ve biz: Darwin'in insan evriminde bilmedikleri DNA devrimi sonucunda ortaya çıkan evrimsel bulgular arasında belki de en dikkate değer olanları, kendi türümüzü ve onun tarihini ilgilendiren bulgular. Moleküler genetik tekniklerin gelişmesinden önce, insanın geçmişini araştırmak için kullanabileceğimiz fazla malzeme yoktu. Sümer tabletleriyle başlayan yazılı kayıtlar göreceli olarak çok yeniydi; arkeolojik ve fosil kayıtlarsa hem çok az bilgi sağlıyordu, hem de bölük pörçük oldukları için yorumlayanın yaklaşımlarına bağımlıydılar. DNA dizilimi bunların tümünü değiştirdi: Yeryüzünde bugün varolan genetik çeşitliliğe bakarak geçmişle ilgili çıkarsamalarda bulunabiliyoruz artık. Kullanılan mantıksa basit DNA dizilimi zaman içinde yavaş yavaş değişir: dolayısıyla herhangi iki dizilim -ve ait oldukları insanlar- birbirlerinden ne kadar uzun süre yalıtıldılarsa, o kadar farklı olurlar. Şu anda varolan farklı grupların, örneğin Avustralya yerlileri, Amazon yerlileri, Japonlar, Türkler, Kalahari buşmanlarının DNA dizilimlerini karşılaştırarak, kimlerin birbirlerine daha yakın olduğunu belirleyebiliriz. Bu araştırmalardan elde edilen ilk ve en önemli sonuç, basın dünyasında "mitokondriyel Havva" olarak adlandırıldı. Hücrenin içinde, enerji fabrikası işlevini gören ve mitokondri adı verilen küçük bir yapı var. İşte bu yapının içinde bulunan kısa bir DNA molekülünün dizilimini kullanarak tüm insanlar için bir soy ağacı oluşturursak, iki şey buluyoruz: hepimizin ortak atasının yaklaşık 100 000 yıl önce yaşadığı; ve bu ortak atanın Afrika'da olduğu. Buradan çıkaracağımız sonuçsa, modern insanın 100 000 yıl önce Afrika'da ortaya çıktığı ve oradan dünyaya yayıldığı. Bu sonuç, kayda değer bir bulguydu. Uzun zamandır türümüzün 100 000 yıldan çok daha yaşlı olduğu varsayılıyordu. Gerçekten de evrim standartlarına göre 100 000 yıl göz açıp kapayıncaya kadar geçer: bizim türümüz çok genç bir tür. Bu noktayı açıklığa kavuşturmak için bu süreyi, orangutanlar için geçerli olanla karşılaştırmakta yarar var. Orangutanlar Güneydoğu Asya'daki iki adada, Borneo ve Sumatra'da bulunurlar. Mitokondriyel Havva çalışmasında kullanılan genetik teknikler orangutanlara uygulandığında, ortak bir atayı en son olarak 3,5 milyon yıl önce paylaştıkları ortaya çıktı. Diğer bir deyişle, bu adaların her birinden alınacak birer orangutan, birbirlerinden genetik olarak en farklı durumdaki iki insandan ortalama 35 kat daha farklılar. Ve ne ilginçtir ki. büyük bir olasılıkla siz bu iki orangutanı birbirlerinden ayırdedemezsiniz. 3,5 milyon yıllık bir evrimin bile çok önemli farklılaşmalara yol açması gerekmiyor. Yani. ırkçılar tarafından bu kadar sık dile getirilen yüzeysel farklılıklara karşın, bir tür olarak bizler şaşılacak derecede birörneğiz. En siyah Afrikalıyla en beyaz Avrupalı arasındaki genetik farklılık, uzman olmayan birine aynı gibi görünen iki orangutan arasındaki genetik farklılığın yanında çok önemsiz kalıyor. 30.000 yıllık bir iskeletin DNA'sından elde edilen veriler sayesinde artık biliyoruz ki, yakın geçmişimize ait soy ağacının en eski dalı bütünüyle yok oldu. Neandertaller adı verilen bu insanlar 800.000 yıl kadar önce ortaya çıktılar ve yaklaşık 30.000 yıl önce ortadan kayboldular. Neandertallerin bizler, yani modern insanlar tarafından mı yokedildiği. yoksa karışma sonucunda bizim bugün bir ölçüde Neandertal mi olduğumuz sorusu yakın zamana kadar açıklık kazanmamış olan bir konuydu. Oysa şimdi DNA analizlerine bakarak, Neandertal insanının kaderinin, karışma sonucu yokolmak değil, zor kullanılarak soyunun tükenmesi olduğunu açıkça görebiliyoruz. Neandertal DNA'sı tüm modern insanlarınkinden çok farklı: eğer bizimle üremiş olsalardı, bu farklı dizilimlerin modern insan popülasyonlarında da bulunmasını beklerdik. Bulunmaması, Neandertallerin 30.000 yıl önce yokolduklarını ve DNA'larını da beraberlerinde götürdüklerini gösteriyor. İnsanın tarihiyle ilgili modern yaklaşımlar, yalnızca ırkçılık için biyolojik bir temel olasılığını ortadan kaldırmakla ve Neandertallerin kaderini ortaya çıkarmakla kalmadı. En ilginç sonuçlar çok yakın zamanda bulundu. Bu sonuçlar, cinsiyetler arasındaki farklılıklar, özellikle de göç konusundaki farklılıklarla ilgiliydi. Yeryüzündeki herkes için. incelemekte olduğumuz DNA parçasında dizilimin aynı olduğunu ve bu dizilimde, örneğin Güney Afrika'da bir mütasyon oluştuğunu düşünün. Eğer yoğun bir göç hareketi yaşanıyorsa, bu mütasyon hızla yayılır ve belki birkaç kuşak sonra, örneğin İstanbul'da görülebilir. Ancak eğer göç hareketleri çok azsa insanlar oldukları yerlerde kalıyorlarsa mütasyon Güney Afrika'yla sınırlı kalır ya da çok çok yavaş yayılır. Yani, DNA varyantlarının -mütasyonların- yayılım miktarı, göç hareketinin büyüklüğünü belirlemek için dolaylı bir ölçüt olarak kullanılabilir. İnsanlık tarihini (ve göç hareketlerini) kadınlar ve erkekler için ayrı ayrı incelememiz mümkün. Bazı DNA parçaları kuşaktan kuşağa yalnızca kadınlar arasında aktarıldıkları için dişi tarihinin, başka parçalarsa yalnızca erkekten erkeğe aktarıldıkları için erkek tarihinin "işaretleri" olarak kullanılabiliyorlar. Kadınlara özgü olan ve mitokondride bulunan DNA'dan daha önce söz etmiştik. Yalnızca dişinin üretebildiği döllenmemiş bir insan yumurtası mitokondri (ve dolayısıyla mitokondriyel DNA) içerirken, erkeğin sperm hücresiyle yeni bireye yaptığı katkı mitokondri içermez. Yani mitokondriyel DNA yalnızca kadınlar tarafından aktarılır. Öte yandan, yalnızca erkekler tarafından aktarılan küçük bir insan kromozomu var. Erkekleri erkek yapan, bu "Y" kromozomu olduğu için. tanımı gereği "Y" kromozomunu taşıyan tüm insanlar erkek. Yani "Y" kromozomu erkeklere özgü ve yalnızca erkek soyunda aktarılıyor. İnsan popülasyonları arasındaki mitokondriyel DNA çeşitliliğini yapısal olarak incelediğimiz zaman, mütasyonların çoğunluğunun tüm popülasyonlar arasında büyük ölçüde yayılmış olduğunu görüyoruz. Diğer bir deyişle, yalnızca yerel olarak görülen varyantlara hemen hemen hiç rastlamıyoruz; yani popülasyonlar büyük ölçüde karışıyormuş gibi görünüyor. Ve elbette bu karışma, göç hareketinin sonucu. Oysa "Y" kromozomundaki farklılıklarla ilgili olarak yakınlarda yapılan çalışmalar, bunun tam tersi olan sonuçlar ortaya çıkarıyor. Bu sonuçlar, yayılım miktarının aslında çok düşük olduğunu, ve örneğin Güney Afrika'da ortaya çıkan bir mütasyonun genellikle pek uzağa gitmediğini gösteriyor. Acaba neler oluyor? Tek bir tür için, kendi türümüz için nasıl bu kadar çelişkili iki ayrı sonuç elde edilebilir? Aslında bunun açıklaması basit: Erkekler ve kadınlar farklı hızlarda göç ediyorlar ve bunu beklenmedik bir şekilde yapıyorlar. Çok dolaşan erkekler ve evde duran kadınlarla ilgili tüm önyargılarımıza karşın, aslında kadınlar erkeklerden çok daha fazla yer değiştiriyorlar. Hatta birçok kuşak gözönüne alınarak yapılan hesaplamalarda, kadınların erkeklerden ortalama olarak 8 defa daha fazla göç ettiği ortaya çıkıyor. Bu, sezgilerimize bütünüyle aykırı bir sonuç. Büyük İskender'in dizginsiz dolaşan orduları ya da Cengiz Han'in Orta Asya'da savaşan atlılarıyla ilgili öyküleri dinleyerek büyümüş olsak da. erkekleri hareketli avcılar ve gezginler olarak gören önyargılarımızın bütünüyle yanlış olduğu ortaya çıkıyor. Aslında antropologlar bu olguyu kolayca açıklayabilirler. Tüm toplumlarda antropologların "atakonumu" (patrilocality) adını verdikleri bir uygulama görülür: İki ayrı köyden bir çift evlendikleri zaman, kadın erkeğin köyüne taşınır. A köyünden bir kadının B köyünden bir adamla evlendiğini ve B köyüne taşındığını varsayın. Bir kızları ve bir oğulları oluyor. Kızları C köyünden bir adamla evlenerek C köyüne taşınıyor; oğullan da D köyünden bir kadınla evleniyor ve bu kadın B köyüne geliyor. Böylece erkek soyu B köyünde kalırken dişi soyu iki kuşakta A'dan B'ye, sonra da C'ye taşınmış oluyor. Bu sürecin kuşaklar boyunca sürmesi, dişi göçünün çok yaygın, erkek göcününse sınırlı olmasıyla sonuçlanıyor. Erkekler gerçekten de bazen uzak ülkeleri fethetmek için yola çıksalar da. bunlar insan göçünün bütünü içinde önemsiz kalıyor: insanlığın tarihini şekillendiren, kadınların adım adım köyden köye yaptıktan göçler. Darwin'e dönüş: "Darwin'in bile inanmaya cesaret edebileceğinden daha doğru" Darwin'in zamanından bu yana biyolojide olağanüstü ilerlemeler kaydedildi. Bunların birçoğu evrimle doğrudan ilgili ve Darwin'in kur..... ışık tutuyor. Ama Darwin mezannda rahat yatabilir: Evrimsel değişimin mekanizmasını şimdi artık çok daha iyi anlıyoruz ve bu yeni bulgular karşısında Darwin'in görüşlerinin özü hâlâ sağlamlığını koruyor. Daha önce de gördüğümüz gibi. kalıtım, ve mekanizması olan genetik konusundaki bilgisizliğine karşın kuramının yaşayabilmesi. Darwin'in öncelikle bir deneyci olmasından kaynaklanıyor. Doğadaki çeşitliliğin ve bunun bir kuşaktan diğerine -bir şekilde- aktarıldığının farkında olması onun için yeterliydi. Ayrıntılı bir kalıtım kur..... gereksinimi yoktu. Aynı durum çalışmalarının başka yönleri için de geçerli. Örneğin, "Türlerin Kökeni"ninde, hayvan ve bitkilerin coğrafi dağılımını inceleyen biyocoğrafyaya yalnızca iki bölüm ayırmıştı. Darwin kitabını, kıtaların coğrafi tarihini şekillendiren en önemli gücün levha tektoniği olduğunun bulunmasından çok önce yazmış olmasına karşın, gözlemleri bugün hâlâ güncelliğini ve doğruluğunu koruyor. Levha tektoniği konusundaki bilgisizliği, biyocoğrafyaya yaptığı katkıları engellemedi. Hiç bir zaman bildiğinden ayrılmadı ve bir deneyci olarak kaldı. Farklı anlamları olabilecek veriler konusunda spekülasyon yapmak yerine, çok miktarda veriye sahip olduğu ve basit yorumlarla üzerinde çok şey söyleyebileceği konulara ağırlık verdi. Böylece, biyocoğrafya gibi iddialı konulara sapmak yerine, adaların yanısıra üzerlerinde yaşayan hayvan ve bitkiler konusunda da çok ayrıntılı yazılar yazabildi. Darwin'in bu deneyciliği hepimize örnek olmalı. Bu güzel kuramının olağanüstü verimliliği, deneyciliğin, olgulardan sapmamanın gücünü ustaca ortaya koyuyor.

http://www.biyologlar.com/darwin-ve-molekuler-evrim

2000 Yaşındaki Hurma Tohumu Ağaç Olma Yolunda

İsrail’deki Masada Kalesi’nde bulunan 2000 yaşındaki hurma tohumu başarıyla çimlendirilip, büyütüldü. Lut Gölü yakınlarındaki antik Masada Kalesi’nde yapılan kazılar sırasında bulunan hurma tohumunun çimlenmeyi başaran en yaşlı tohum olduğu belirlendi. İsrailli araştırmacılar, Masada Kalesi’nde 1960’lı yılların başında yapılan arkeolojik kazılar sırasında bulunan,üç hurma tohumu üzerinde iki yıl önce yeniden çalışmaya başlamışlardı.arasında, Masada Kalesi’nin Romalılarca kuşatılıp yıkıldığı tarihten (MS 72) kısa bir süre sonra oluştuğu anlaşılmıştı. Hiç zarar verilmeden çimlenmeye bırakılan son tohumun da aynı yaşlarda olduğu, saksı değişimi sırasında elde edilen tohum kabuklarından belirlendi. Aşağı yukarı 2000 yaşındaki bir tohumu çimlendirip büyütmeyi başaran ekibin lideri Sarah Salon, tohumun bugüne kadar canlı kalabilmesini yıkıntıların bulunduğu Lut Gölü bölgesinin aşırı derecede kurak ve sıcak olmasına bağlıyor. Masada hurması üzerinde yapılan ilk genetik analizler, DNA’sının yarısını Mısır, Fas ve Irak’taki günümüzün üç hurma çeşidiyle paylaştığını ve bugünkü hurmalara göre büyük miktarda genetik çeşitlilik içerdiğini gösteriyor. Geçmişte yok olmuş bir popülasyona ilişkin tek bir bireyin sağlayacağı bilgi sınırlı olduğundan başka hurma tohumlarının da çimlendirilmesi planlanıyor. Masada hurması üzerine sürdürülen araştırmaların tohum bankacılığı, koruma biyolojisi ve çağdaş hurmacılık üzerinde etkileri olacağı düşülüyor. Murat Gülsaçan Ağustos 2008 BiLiM ve TEKNiK Science 13 June 2008 Vol. 320. no. 5882, p. 1464 "Methuselah" Tree Grew From 2,000-Year-Old Seed, June 12, 2008 news.nationalgeographic.com 2.000-year-old seed grows into 'tree of life' for scientists, 13 June 2008 www.independent.co.uk

http://www.biyologlar.com/2000-yasindaki-hurma-tohumu-agac-olma-yolunda

İSTİRİDYE BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Aynur LÖK - Ege Üniversitesi Su Ürünleri Fakültesi, Yetiştiricilik Bölümü Bornova-izmir Mollusca bireylerinin tüketimi insanoğlunun tarihi ile yakından ilgilidir. Bugün arkeolojik verilerden de anlaşılacağı gibi, deniz kıyısında yerleşim alanları oluşturmuş insanların balık avlamadan önce bu sabit canlıları tükettikleri bilinmektedir. Mağaralarda çok miktarda yenmiş midye ve istridye kabukları bulunmuş; ve bunların bir kısmından kolye yapılmışlardır. Doğal ortamlardan toplanarak tüketim ilk günden bu güne kadar gelmektedir. İlk kültür çalışmaları 17. yüzyılda Japonlar tarafından ele alınmıştır. Bambu kamışları dikerek istridyelerin bunların üzerine tutunmasını sağlayarak yetiştirmişlerdir. Yine bambu kamışlarından sal yaparak denizde sadece dikey değil yatay olarak da yetiştiriciliği başlatmışlardır. Bu dönemde yavruların çoğu doğadan toplanmaktadır. İnsan kontrolü altında ilk yavru üretimi 1879 yılında ele alınmıştır. 1920’de ise kültüre alınacak boya kadar yetiştirilmişlerdir. Bugün birçok ülke yarı kontrollü olarak dipte, kazıklarda, halatlarda, rafta ve sallarda yetiştiricilik yaparken, tam kontrollü olarak yumurtadan pazar boyuna kadar istiridye üretimini de başarılı bir şekilde yapmaktadırlar. Istiridye yetiştiriciliğinde söz sahibi olan ülkelerin birkaçını ve yetiştirdikleri türleri sıralayacak olursak şöyledir; Japonya Crassostrea gigas Fransa Ostrea edulis, Crassostrea angulata, C. gigas Amerika Crassostrea virginica Portekiz Crassostrea angulata Filipinler Crassostrea eradelis Avustralya Crassostrea commercialis Ingiltere Ostrea edulis İnsan gıdası olarak yararlanılan kabuklu su canlıları görüldüğü gibi dış ülkelerde önemli bir yer tutmaktadır. Ülkemizde ise kabuklu deniz canlılarının tüketimi sadece deniz kıyısı olan bölgelerde yaygındır. Kıyı harici şehirlerimizde bu kabuklu canlıların pazarlandığını görmek sanırız pek mümkün değildir. Bu kabuklu su canlıları son yıllarda ülkemizde tanınmaya başlanmıştır. Ülkemizde tüketiminin pek fazla olmamasına rağmen dış talebin yüksek olaması nedeni ile bazı ihracatçılar bu canlıları doğadan toplatarak Italya, Ispanya, Yunanistan gibi ülkelere pazarlanmaktadır(Alpbaz, 1993). İstridyenin Sistematikdeki Yeri Phylum: Mollusca Classis: Bivalvia (Lamelibranchiata) Ordo: Filibranchiata Familia: Ostreidae Genus: Ostrea (Linne, 1758) Species : Ostrea edulis (Linne) Ostrea lurida (Carpenter) Ostrea angasi (Sowerby) Ostrea chilensis (Philippi) Genus: Crassostrea (Sacco, 1897) Species: Crassostrea gigas (Thunberg) Crassostrea virginica (Glein) Crassostrea angulata (Lamarck) Crassostrea rhizophorae (Guilding) Crassostrea madrasensis (Preston) Ülkemiz sularını temsil eden tek tür Ostrea edulis’tir. Marmara Denizi, Ege Denizi, Akdeniz ve Karadeniz’in Istanbul Boğazı ile birleştiği noktada görülmektedir. -Genus: Crassostrea (Sacco, 1897) Olgun istiridyelerde kabuklar karınlı ve uzundur. CaCo3’ın depolanması nedeniyle kabuklar yapraksı görünümdedir, ve sol kapağın karınlı alanı içerideki canlının gelişmesine imkan verir. Sağ kapakçık tamamen düzdür. C. gigas’ta süslü yapıda kapak mevcuttur. Ovipardırlar ve büyük üreme kabiliyetine sahiptirler. Intertidal zonda yaşarlar. Tuzluluk değişimlerine dayanıklı olduklarından acı sularda kolonize olabilirler. C. gigas Pasifik Okyanusu kökenlidir. Ayrıca S.S.C.B.’nin Vladivostok Denizi’nde, Sacolin Adası’nda, Japonya’da lokal 2 ırkı vardır. Iwata bölgesinde, Hiroşima’da, Kore’de, Kuzey Amerika’da (Alaska’dan, Kalifornya’ya kadar) yayılım gösterir(Korringa, 1976a). Bazı araştırıcılar C. gigas ve C. angulata’nın aynı tür olduğunu belirtirler. Portekiz türünün C. gigas’tan türediğini, 15-17. yüzyıla kadar ticaret seferleri yapan tahta gemilere yapışarak Avrupa’ya gelip yerleştiklerini söylemektedirler. Bununla birlikte bu iki türün farklı özellikler gösterdiği belirlenmiştir. Bunlar; solunum metabolizması, küçük zerrecikleri tutma özelliği, büyüme kabiliyeti, üreme şekilleri, farklı hastalıklar karşısındaki durum fizyolojik olarak her iki ırkın az da olsa farklılık gösterdiği tespit edilmiştir. -Genus: Ostrea (Linne, 1758) Kabuk oval şekilli olup, belirsiz kanca burunlu (gagalı), yaprak şeklinde, sarımsı kahverengi renge sahiptir. Sol kabuk hafif küp, sağ kabuk yassı görünümdedir. En önemli türü O.edulis olup max. 12cm, genellikle 6-7cm uzunluğunda olurlar. Yetişkin türlerde bireyin şekli yuvarlaktır. Sınırlı bir üreme vardır ve larvipardır. Tuzlu sularda yaşayıp bulanıklılığa karşı toleransı azdır. Doğal ve kültür yatakları daima denizin içerisinde olmalıdır(Infralittoral zon). Bu daha çok Kuzey Avrupa türü olup Norveç’ten Fransa’ya kadar (Ingiltere, Almanya, Hollanda, Irlanda ve diğer ülkeler) uzanır. Daha güneyde Ispanya kıyıları ile Fas’ın güney ucuna kadar yayılmışlardır(Korringa, 1976b). Akdeniz’de Fransa, Italya, Sicilya’dan Karadeniz’e kadar uzanır. Ülkemizde sahil ötesi kumlu, çamurlu veya kayalık bölgelerde yaşarlar. 2-İSTRİDYENİN BİYOLOJİSİ Morfolojik olarak Ostrea edulis dairesel şekilli iki kabuktan meydana gelmiştir.Her iki kabuk dorsal kenarlarından boynuza benzeyen ligamentlerle birbirine bağlanmıştır. Ligamentin esnekliği kabukların açık durmasını sağlar. Bu, hasta yada ölü istridyenin karakteristik bir özelliğidir. Açılmış kabukların canlılığı herbiri ayrı fonksiyona sahip olan iki kısma ayrılmış adductor kası tarafından kontrol edilir. Adduktor kası merkezdedir ve her iki kabuğa sıkıca yapışmış durumdadır. Vücut kısmı addüktör kası ile mafsal arasında uzanır. Kalp, bağırsak, böbrek, mide bu bölümdedir. Gonadlar da buradadır. Üreme zamanında gonadlar tüm yüzeyi kaplayarak krem beyaz görünüm alırlar. Manto, vücut kısmının her iki yanını kaplayan düz bir dokudur ve kabuk kenarı boyunca sabit olarak uzanır. Manto kenarlarında bulunan materyalin ilavesi sonucu kenar kısmında kabuk oldukça gelişmiştir. İstridye kabuklarının %95’den fazlası kalsiyum karbonattır. Manto vücudun iki yanında kabukla vücut arasında bir örtü gibi bağ dokuya asılıdır. Bu nedenle bir ada gibidir. Mantonu uçları üç yaprak şeklindedir. Bunlardan iki sıra kabuk üretiminde görev alırlar, içteki ve en geniş olanı vücut ile kabuk arasında perde görevi yapar. Mantonun öbür ucundaki yapraklar ayrı ayrı veya birlikte hareket ederek suyun manto içine akışını kontrol eder, bu durumda kabuklar yuva gibidir. Manto bölgesine giriş manto uçlarının birleşmesi ile sınırlandırılır. Küçük organizmaların girmesine ve suyun atılmasına olanak verir. İstiridye solungaçları vücudun 2/3’ünü sarar. Belli aralıklar ile birbirine bağlanmış küçük filamentlerden oluşur. Su, manto boşluğundaki su alma bölümünden filamentler üzerinde bulunan kırbaç biçimindeki sayısız sillerin hareketi ile su tüplerine hareket eder. Bunlar sadece suyun hareketini sağlamaz, aynı zamanda istiridyenin besinin oluşturan küçük parçaları da sudan filtre eder. Bu süzülen su, solungaç tüplerine geçer ve oradan su verme bölümüne, en sonunda manto boşluğundan dışarı atılır. Solungaçlar dört adet yarı ay şeklinde tabakalardan ibarettir. Manto uçlarının birleşmesi, manto kısmını manto odası ve solungaçları içeren geniş bir oda küçük bir boşaltım odası olmak üzere ikiye ayırır. Ayrıca bir boşaltım kanalı içerir. Bu manto ile vücudun sağ yanı arasında bulunur ve istiridyelerin özellikle çamurlu ortamda yaşamasına yardımcı olur(Walne, 1974). Solungaçlar basit bir süzgeç mekanizması değildir. Aynı zamanda komplex bir ayırma aygıtı gibi olup, uygun gıdanın yeterli miktarda ayırım ve değerlendirilmesini yapar. Gıdasını teşkil edecekler ağıza, diğerleri atık bölgeye liflerin yardımı ile yollanır. Çok iri olanlar mantonun altına düşürülür (Walne, 1974). Kabuklularda solungaç yapısı birbirlerine benzemesine karşın farklılık filamentlerin bağlantı şeklinde olup, Mytilus edulis’te filamentler arası organik bağlara rastlanmaz. Fakat istiridyelerde bu olay yukarıda görüldüğü gibi bulunmaktadır. Örneğin akivadeslerde bu filament bağlantılarının derecesi istiridyelerde bulunanlardan çok daha yüksektir. İstiridyenin sağ kabuğu düzdür ve larva metamorfoza ulaştığında kendini sol kabuk üzerinde zemine tespit eder. Uygun koşullarda istiridyeler bütün gün boyunca kabuklarını açıp su içerisindeki planktonları ve zerrecikler halindeki organik maddeleri, hatta su içerisindeki mineraller maddeleri bile süzerek gıda olarak kullanırlar(Claus, 1981). Böylece su içerisindeki organik maddeleri ete çeviren canlılar olarak önem kazanırlar. Su akımının esas rolü şüphesiz ki beslenme üzerinedir. Fakat bunun yanında su, sindirim sisteminde ve böbreklerde oluşan atıkları uzaklaştırmaya yarar ve ayrıca canlıya O2 sağlar. İstiridyelerin filtrasyon hızını sıcaklık, suyun debisi ve partikül konsantrasyonu etki eder. 3-İSTİRİDYELERDE ÜREME İstridyeler eşeyli üreme gösterirler. Üreme organları erkek ve dişi gametleri oluşturur. Bunların üreme mevsimi ilkbahar sonu ile sonbahar arasında olup havaların ısınmasıyla başlar, soğumaya başlaması ile sona erer. Her iki seksdeki gonadlar birçok hayvanda bulunan ile karşılaştırıldığında basit yapıdadır. Sindirim sistemi üzerinde yerleşmiş durumdadır. Avrupa istiridyesi, Ostrea edulis, olgun durumda iken gonadlar 2 veya 3mm kalınlığında bir tabaka biçimindedir. Seksler arasındaki farklılık yumurta ve sperm varlığından hariç dış görünüşten belli olamaz. 3.1 İstiridyelerin Gonad Gelişim Safhaları İstiridyelerin gonad safhalarını belirlemek için alınan histolojik örneklerde gonad aşamaları beş grup altında değerlendirilmektedir(Cole 1942; Brausseau, 1995; Garcia-Dominguez ve ark., 1996, Yolkolu, 2000). Bu gruplar: Safha 0 Dinlenme Safha 1 Ilk Gametogenesis Safha 2 Olgunlaşmaya başlama Safha 3 Döl atımına hazır Safha 4 Kısmı olarak döl atımı olarak sınıflandırılır. 3.1.1 Dinlenme safhası Bu safhada olan bireylerde istiridyelerin cinsiyetinin belirlenmesi açısından histolojik olarak herhangi bir ip ucu yoktur. Ortamda cinsiyeti belirleyici olan germ(cinsiyet) hücreleri bulunmamaktadır. 3.1.1.1 Testis Safha 1: Ilk gametogenesis safhasındadır. Bu özellikte olan örneklerde foliküler küçüktür, yuvarlak veya oval şekillidir. Bağ dokusunun kapladığı alan geniştir. Spermatagonialar bir arada ve koyu renklidir. Safha 2:Foliküller oldukça büyümüştür. Bağ dokusunun kapladığı alan iyice azalmıştır. Spermatozoalar merkeze doğru yönelmiştir ve kırmızı şeritler halinde kuyruklar belirgindir. Safha 3: Istiridyelerin döl atımına hazır olduğu safhadır. Foliküller şişip birleşmiş ve çoğunluğu tamamen spermatazoa ile doludur ve kuyrukları kırmızı renktedir ve açıkca belirgindir. Maturasyon ile incelmeye başlamış olan folikül duvarlarının iç kısmına doğru spermatositler ve spermatidler sıralandırılmışlardır. Serbest spermatazoalar follikül lümellerine tamamen yerleşmişlerdir. Çok sayıda hareketli spermatazoa görülmektedir. Bağ dokusu alanı azalmıştır. Safha 4:Foliküller tamamen boşalmış ve dinlenme safhasına geçilmiştir. Bu da ortamda inaktif olan spermatagoniumlardan anlaşılmaktadır. Foliküller arası bağ dokusu iyice gelişmiştir. 3.1.1.2 Ovaryum Safha 1: Foliküller başlangıçta küçük, boş ve belirgin değildir. Folikül duvarları, gelişen oositler ve kök hücreleri ile belirginleşmiştir. Oogonia ve primer oositler küçüktür ve yumurta sarısı yoktur. Bu aşamadaki primer oositlerin çekirdeği büyüktür ve belirgindir. Sık demetler şeklinde folikül duvarına doğru yapışma olmaktadır. Oogenesis ilerlemektedir. Birkaç büyük oositin uzamaya başlaması ile genç oositler bölünmektedir. Safha 2: Oositler, lumenlere doğru genişlemiş ve yığılmaya başlamıştır. Sekonder oositler yoğun miktarda görülmektedir. Primer oosit ve serbest oosit birkaç tanedir. Bu serbest oositler, lümel merkezinde görülmektedir. Hala folikül duvarları ile bağlantılı olan uzamış oositler ile hemen hemen olgunlaşmış olan oositler yoğun olarak bulunmaktadır. Oositler konik ve oval şekildedirler. Bağ dokusunun alanı iyice azalmıştır. Safha 3: Birleşmiş foliküller, bir çekirdekçiği ve çekirdeğinin gözüktüğü polygonal şekilli, tamamen serbest olan oositler ile doludur. Sekonder oosit bir kaç tanedir. Safha 4: Oositler olgunlaşmış atıma hazır hale gelmişlerdir. Bağ dokusu tekrar belirginleşmeye başlamıştır. Ayrıca oositlerin şekli hekzogenal hale gelmiştir. Bazı boşalmış ve yıkıma uğramış foliküller bulunmaktadır. Avrupa istiridyesi, Ostrea edulis sukseksif hermafroditizm gösterir. Seksüel olgunluğa ilk ulaştığı zaman gonad normal olarak bir erkek gibi gelişir ve sperm verir. Gonad spermi bıraktıktan sonra dişi safhasına geçer ve sperm yerine yumurta üretir. Bu düzenli bir şekilde tüm yaşamı boyunca devam eder. Erkek tarafından dışarı bırakılan spermalar dişi tarafından su alma kanalı ile alınarak yumurtalar dişinin içinde döllenir. Döllenmiş yumurtalar 8-10 gün kadar dişinin palial boşluğunda kuluçkalandıktan sonra dışarıya serbest yüzen veliger larva durumunda bırakılırlar(Alpbaz ve Hindioğlu, 1991). Avrupa istiridyesinin döl verimi üzerine sıcaklığın, besinin, büyüklüğün ve yaşın etkisi büyüktür Avrupa istiridyesinin larva boyu 150-190µm büyüklüktedir. 120-130µm büyüklükte larvalar görülse de, yetiştiricilikte büyük larvalar alınır. Küçük larvalar elenir. Böylece daha dayanıklı ve sağlıklı bireyler elde edilebilir. Suya bırakılan veliger larvaları velumları sayesinde hareket ederler. Besin olarak fitoplanton tüketirler. 10-15 gün pelajikte yaşamlarını sürdüren larvalar 290-300µm ve bazen de 360µm büyüklükte iken zemine inerek, hayatlarının geri kalan kısmını sürdürecekleri sert bir substratuma kendilerini tespit ederler. Larvanın kuru ağırlığı hareketli dönemi boyunca 1µg’dan 4µg’a çıkar. Bunun %75-80’i kabuk ağırlığıdır. Yeni bırakılmış bir larvanın kuru ağırlığının %14’ü glikojen, %15,5-22,5’i yağdır. Crassostrea genusuna ait istiridyeler ise 100 milyonun üzerinde yumurta dökebilmektedirler. Bu yumurtaların hepsi aynı zamanda değil, üreme dönemi boyunca bırakılırlar. Crassostrea gigas’da ise dişi birey yumurtalarını deniz suyuna bırakır ve erkek bireyin bıraktığı spermalar ile su içinde döllenme olur. Yumurtalar yaklaşık 50µm büyüklükte olup çok küçüktürler. Yumurtalar ovaryumda iken armut şeklindedir. Ovaryumdan bırakılıp su ortamında döllendikten sonra spiral şekil alır. Birinci ve ikinci polar vücut görünerek yarılma devam eder. Gelişme, morula, blastula ve gastrula safhalarına doğru ilerler. Veliger safhada larvanın velumu ortaya çıkar ve aktif hareket etmeye başlar. Daha sonra D şekilli larvaya dönüşür. Larvada umbo oluştuğunda umbo safhasındadır ve kabuk uzunluğu 0,2mm’ye ulaştığında metamorfoz başlar(Bardach ve ark., 1972). Larva metamorfoz aşamasına geldiğinde anacına benzer bir hal alır. Her iki genusda da benzer belirti olan göz noktası ve ayağın görülmesi metamorfozun en önemli işaretidir. Zemine inen larvada velum kaybolur ve yüzme hareketi ayak ile sürünme hareketine dönüşür. Uygun substrat bulduğunda kendini sol kabuğundan salgıladığı özel bir salgı ile oraya yapıştırarak sesil hayatı başlamış olur. Hareket kabiliyeti artık bitmiştir. 4-İSTİRİDYE YETİŞTİRİCİLİĞİ İstiridye kültüründe yavru bireyler ya kuluçkahanelerde üretilerek ya da doğal alanlardan toplanarak elde edilmektedir. Kuluçkahaneden yavru üretimi gerçekleştirilirse, genetik seleksiyonlar yapılarak hızlı büyüyen, zor şartlara karşı dayanıklı, et verimi fazla, hastalıklara karşı dayanıklı bireylerin elde edilmesi söz konusu olabilmektedir(Rodriguez ve Frias, 1992). Doğal ortamdan toplanan yavrularda ise böyle bir seleksiyon şansı yoktur. 4.1. Kuluçkahaneden Yavru Temini Bu kültür yönteminde kıyısal alanda bir kuçkahane binasının olması gerekmektedir. Bir istiridye kuluçkahanesinde filtre odası, fitoplankton üretim birimi, anaç, larva ve yavru üretim birimi olmalıdır. 4.1.1. Deniz Suyu İstiridye kültüründe suyun filtrasyonu önemli bir konudur. Anaç ve yavru biriminde kullanılan suyun 40-60µm’lik kum filtrelerinden geçmesi yeterli olurken, fitoplankton ve larva üretiminde kullanılacak suyun 20, 10, 5, 1µm’lik kartuj filtrelerinden geçerek partiküllerden ve suda bulunabilecek diğer organizmalardan ayrılması gerekmektedir. Bazı üreticiler deniz suyu ile gelebilecek bazı organizmaların istiridye larvaları tarafından besin olarak değerlendirilebileceğini düşünerek kaba bir filtrasyon yapmaktadırlar. Fakat üretimi riske atmamak için iyi bir filtrasyon ve sterilizasyon önemlidir. Suyun iyi filtre edilmiş olması U.V. ışınları ile yapılacak sterilizasyon etkisini arttırmaktadır. 4.2. Anaç Özellikleri Genellikle istiridye anaçları üretim zamanında doğal stok alanlarından döl almak amacıyla kuluçkahaneye getirilir ve döl alma işlemi tamamlandıktan sonra tekrar denize bırakılırlar. Bu anaçlar hızlı büyüyen, zor şartlara karşı dayanıklı, et oluşturma kapasitesi yüksek, düzgün kabuk şekilli gibi özelliklere sahip istiridye stoklarından seçilmasi tercih edilir. 4.2.1. Anaç istiridyelerden döl alım yöntemleri Olgun istiridyelerden yumurta ve larva elde etmek için birkaç yöntem vardır. İstiridyenin yumurta ve larvalarını ortama normal olarak kendi isteği ile bırakması haricinde yumurtlamayı uyarıcı şok yöntemler de uygulanır. Bu şok yöntemler şöyledir; Termik şok: Şok yöntemlerin en çok kullanılanıdır. Olgun istiridyelerin ani olarak sıcak sudan soğuk suya, soğuk sudan sıcak suya bırakılması ile olur (Field, 1922). Bu işlem birkaç defa tekrarlanır ve istiridyenin larva bırakması beklenir. Kimyasal şok: İstiridyelerin manto boşluğuna 2cc, 0.5 mollük KCL solüsyonu enjekte etmek sureti ile yapılmaktadır. (Bayne; 1965) Elektrik şok: İstiridyelere düşük voltta elektrik verilmek sureti ile uygulanır (Iwata, 1950; Sugiura, 1962). Mekanik şok: İstiridyelerin adduktor kasına enjektör iğnesi ile dokunularak uyarı yapılmaktadır (Loosanoff ve Davis, 1963). Diğer Yöntemler Diseksiyon yöntemi Olgun İstiridyelerin kapama kasları kesilerek gonadlardaki yumurta veya spermler C.gigas’ta alınırken, O. edulis’te palial boşluktaki larvalar alınabilir. Sperm solusyonu Yumurtlamayı uyarmak için suya sperm solüsyonu verildiğinde de istiridyeler bir süre sonra yumurta bırakmış olur. Bu amaçla şok uygulamalar sonrasında elde edilecek fazla sperm solusyonu kullanılabilir. Şok yönetemlerin uygulanmasından yaklaşık 30dk sonra istiridyeler döllerini su ortamına dökerler. Eğer istiridyeler döllerini bırakmaya hazır değiller ise şok yöntemler ile başarılı bir sonuç elde edilemez. İstiridyeler bilindiği gibi yaz aylarını üreme için kullanılır. Kışın ise doğada üreme görülmez. Laboratuvarda uygun koşullar yaratılarak kış aylarında da istiridye üretimi yapılabilir. Bunun için doğal ortamdan alınan istiridyeler 10°C sıcaklıktaki suya bırakılırlar. Ortama alışan damızlıkların tutulduğu havuzdaki su sıcaklığı tedrici olarak 18°C’ye veya biraz daha yüksek sıcaklığa çıkartılır. Bu sıcaklıkta istiridyeler 2-4 hafta tutulur. Bu süre üretim mevsimine bağlı olarak değişir. İstiridyeler bu süre içerisinde gonadlarını olgunlaştırırlar ve sıcaklık 20°C’ye ulaştığında döllerini dökerler. Bu işleme gonad olgunlaştırarak döllerin alınması işlemi denilir. Burada kullanılan anaçlar genellikle genetik olarak istenilen özelliklere sahip özel anaçlardır. 4.3. Larva Kültürü Yumurta veya larvalar anaç biriminde elde edildikten sonra larva birimine alınırlar. Burada 50lt’den 2tona kadar silindir-konik polyester tanklar kullanılabilmektedir. Tank hacmi üretim kapasitesine ve üreticinin tercihine bağlı olarak değişir. Bu tankların alt kısmında bir su çıkış vanası olur. Tanklar 40watt’lık floresan lambalar altına yerleştirilir. Tuzluluğu ‰33-35 ve sıcaklığı 20-22 °C olan iyi filtre edilip sterilize edilmiş deniz suyu doldurulur. Bu tanklara başlangıçta veliger larvaları 10 adet/ml’yi geçmeyecek şekilde stoklanır. Larvalar büyüdükçe stoklama yoğunluğu 3-5adet/ml’ye indirilir. Tankların temizliği gün aşırı yapılır. Tank suyu tamamen süzülerek larvalar yıkanır ve temiz su ile doldurulmuş yeni tanka aktarılırlar. Bu temizlik işlemi larva kültür boyunca devam eder. Veliger safhasında 170-190µm büyüklükte olan larvalar metamorfoza yakın gözlenmiş safhada iken 240-350µm boya ulaşırlar. 4.3.1 Fitoplankton Üretimi Kuluçkahanede bulunan anaç, larva ve yavru istiridyelerin besinleri bu birimde üretilerek temin edilir. Larva beslemede açıklanan Wells-glancy veya Milford yöntemine göre kültür gerçekleştirilmektedir 4.3.1.1 Wells-glancy yöntemi Wells-glancy yönteminde deniz suyu sadece kum filtresinden geçirilir ve sera ortamındaki büyük hacimli tanklara(20-30 tonluk) gönderilir. Tanklara deniz suyu ile gelen fitoplankton hücrelerinin artmasına izin verecek nutriyent karışımı verilir. Bu tank suyu 5-6 gün içinde kahverengi veya yeşil renk aldığında doğrudan larva tanklarında besleme amaçlı kullanılır. Bu yöntemin dezavantajı deniz suyu iyi filtre edilmediği için zararlı fitoplanktonlar türleri de kısa sürede çoğalarak istiridye larvalarına zarar verebilir. Suyla birlikte gelen zooplanktonlar hem larvalara predatör olarak zarar verdiği gibi bazıları da ortamda çoğalan besine ortak olur. Deniz suyu sterilize edilmediği için hastalıklara neden olabilecek mikroorganizma bulaşması da söz konusu olabilir. Böyle bir kültür yönteminde larva yetiştirciliği riske atılmış olmaktadır. Bu yönteme dayalı yapılan fitoplankton kültürü daha çok yavru veya anaç beslemede kullanılabilir. Wells-glancy yöntemi fitoplankton üretim masrafını çok azalttığı için tercih edilmektedir(Bardach ve ark., 1972). 4.3.1.2. Milford yöntemi Milford yönteminde ise alg hücreleri tek tek ayrı tüplerde ve saf kültür olarak inkübatörde muhafaza edilir. Larva kültürüne başlamadan önce bu hücreler steril şartlar altında arttırılmaya başlar. Kültür suyu 0.45µm göz açıklığındaki Milipore filtreden süzüldükten sonra otoklavda sterilize edilir. Kültür hacmi 6lt’yi geçtiğinde suyun filtrasyonu 1µm’lik kartuj filtrelerde, sterilizaysonu ise U.V. lambalarından yararlanarak yapılır. Böylece larva beslemede istenilen hücrelerin kültürü ayrı tanklarda yapılmış olur. Kültür biriminin iyi bir fitoplankton artışı sağlanması için 18-22°C arasında olması sağlanır. Şeffaf polyester tanklar veya naylon torbalarda(50-500lt hacimli) kültür gerçekleştirilir(Bardach ve ark., 1972). 4.3.2 Larva Besleme Milford yöntemine göre kültüre alınan fitoplankton hücrelerinden larvalara ilk olarak Isochrysis galbana ve Monochrysis lutheri besin olarak verilir. Larvalar büyüdükçe Tetraselmis suecica, Dunaliella tertiolecta, Chaetoceras calcitrans gibi besinler kullanılmaktadır. Genellikle tek tür beslemesinden ziyade karışık türler ile besleme iyi sonuç vermektedir. Isochrysis galbana, Monochrysis lutheri 100 000 hücre/ml, Tetraselmis suecica, Dunaliella tertiolecta 50 000-80 000 hücre/ml larva tankında olacak şekilde besleme yapılır. Karışık besleme başlangıçta %50 Monochrysis lutheri ve %50 Isochrysis galbana, larva metamorfoza yaklaştığında ise %20-30 Tetraselmis suecica ile karışık besleme yapılır. Beslemede kullanılacak fitoplankton hücrelerinin canlı olmasına dikkat edilir. Bu nedenle logaritmik artış fazında iken fitoplankton hasat edilerek larvalara verilir. Chlorella sp., ve Phaedactylun tricornutum besleyici değeri düşükolduğu için kullanılması tercih edilmez. Ayrıca Chlorella sp kalın hücre duvarına sahip olmaları nedeniyle larvalar tarafından sindirilememekte ve metabolik artıkları istiridye larvaları için toksik etkiye neden olmaktadır. Bu sebeplerden dolayı kabuklu larva kültüründe besin olarak kullanılmazlar(De Pauw, 1981). Son yıllarda kurutulmuş alg tozlarının kullanılması ile kuluçkahaneler fitoplankton üretim birimlerini küçültmüşler veya tamamen kaldırmışlardır. İhtiyaç duydukları kadar toz fitoplanktonu satın alarak larva beslemede kullanmaktadırlar(De Pauw, 1981). Metamorfoz Larva kültüründe metamorfoz dönemi en önemli dönemlerden biridir. Larvaların günlük sayımları ve ölçümleri alınırken göz ve ayak noktasının oluşumu çok iyi takip edilmelidir. Bu dönemde larvalar zemine iner ve kendilerine uygun gördüklere yerlere yapışırlar. Larva kontrolü iyi yapılmadığı taktirde larvalar tank çeperlerine yapışırlar ve buralardan çıkarılmaları çok zor olur. Böylece bir larva üretim dönemi başarısızlıkla bitmiş olur. Metamorfoz aşamasına gelen larvalar ya ayrı tanlara alınırlar ya da bulundukları tanklar içersine yapışma işlemi başlamadan önce çeşitli kollektör malzemeleri bırakılarak larvaların bunların üzerine yapışması sağlanır. Burada kullanılan kollektör malzemesi larvanın en çok tercih ettiği materyal olan istiridye kabuklarıdır. Bir ip üzerine 3-4 cm aralıklar ile dizilen istiridye kabukları larva tanklarının içerisine tank dibine değecek boyda hazırlanarak sık bir sekilde tank yüzeyinden aşağı doğru sarkıtılırlar. 3-5 gün içinde larvalar bu kabuklar üzerine tutunarak metamorfozlarını tamamlamış olurlar. Bu yeni tutunmuş istiridye yavrularına “spat” adı verilir. Yeni tutunmuş bir spat 1,2-5,7mg canlı ağırlığa sahiptir. Bu spatlar 10-11 hafta sonra 220-500mg canlı ağırlığa ulaşır. Yavrular kollektörler vasıtası ile yetiştirme alanlarına taşınarak uygun sistemlerde büyümeye alınırlar(Utting, 1988). Eğer spatlar tek tek herhangi bir yüzeye yapışık istenmiyorsa, metamorfoz aşamasında iken su sikülasyonunun olduğu spat tanklarına alınırlar. Bu tanklar. 50cm genişliğinde, 30cm derinliğinde olup 2m uzunluğundadır. Tankların içine derinliği 10-15cm olan altı plankton bezi ile çevrelenmiş tepsiler tabanları dibe değmeyecek şekilde yerleştirilir. Tanka su girişi herbir tepsinin üstünden olurken su çıkışı ana tankın sifon çıkışından olmaktadır. Başlangıçta tepsilerin plankton bezi büyüklüğü 150µm’dir. Bu sistemin esas özelliği larvalar bu tepsilere yerleştirilmeden önce kum haline getirilmiş istiridye ve midye kabuklarının tepsi tabanındaki plankton bezini örtecek şekilde yayılmasıdır. Plankton bezi başlangıç boyunun larva boyuna göre çok küçük olmasının nedeni de bu kabukların tepsiden akıp gitmesini engellemek içindir. Kabuk tozu serpilen tepsilere larvalar bırakılır ve 3-5 gün içinde larvalar bu kabuk tozlarına yapışırlar. Zaman içinde spat istiridyeler büyüdükçe kabuk tozları görünmez, spatlar gözle rahatlıkla görünür hale gelirler. Spat büyüklüğüne paralel olarak tepsinin plankton bezi göz açıklığı arttırılır. Spatların 2-3mm boya kadar bu sistemlerde kalabilmektedir. Bu aşamada verilen deniz suyu sadece kaba filtreden geçmektedir ve besin olarak da diatom ağırlıklı besleme yapılmaktadır. Kuluçkahanelerde yapılan larva çalışmaları sırasında metamorfoz aşamasına yaklaşan istiridye larvalarının tutunmasını uyarmak ve hızlandırmak için bazı neuroaktif bileşikler kullanılmaktadır (Shau-Hwaitan ve Wong, 1995). Bazı araştırıcılar bu amaçla sıcaklığı arttırırken bazıları da tank suyuna kabuklu glikojeni, potasyum klorür veya bakır klorür solusyonu kullanırlar(Nell ve Holliday, 1986).. Bu bileşikler larvalarda göz noktası ve ayak oluştuktan sonra kullanılarak larvaların hemen hepsinin aynı anda metamorfozu tamamlaması sağlanmış olur. Kuluçkahanede 3-4mm boya ulaşana kadar spat istiridyeler tuttulur. Bu aşamadan sonra deniz alanında hazırlanmış olan uygun sistemlere taşınarak yetiştiriciliğe devam edilir. 4.4. Doğal Ortamdan Yavru Temini İstiridyelerin yavruları doğal ortamdan ya dreçler ile avlanarak toplanırlar ya da istiridye yataklarının olduğu alanlara üreme dönemlerinde bırakılan çeşitli malzemelerden hazırlanmış kollektörler ile toplanırlar. İstiridyeler biyolojik yapılarından dolayı tutunmak için özellikle kendi anaç kabuklarına benzer materyalleri tercih etmektedirler. Eğer ortamda kabuk yoksa, spatlar buldukları sert substrata kendini yapıştırırlar(Pascual ve Zampatti 1995). Birçok ülkede, yarı kontrollü yetiştiricilik çalışmalarında, spat istiridyelerin toplanmasında, geleneksel yöntemlerin yanında geliştirilmiş yeni malzemelerden hazırlanan kollektörler de kullanılmaktadır. 4.4.1 Kollektör Tipleri Spat toplamada kullanılacak kollektör tipi önemlidir. Şimdiye kadar birçok materyal ve dizayn kullanılmıştır. Fakat bunlardan hiçbiri için her yerde ve her tür için çok iyi sonuç veren sistem denilemez. Bir tür için iyi olan kollektör diğer bir tür için arzu edilen sonucu vermeyebilir(Bardach ve ark., 1972). Uzak doğuda mangrov (Rhizophora sp., Avicennia sp.) bitkilerinin kökleri ile başlayan spat toplama işlemi günümüzde kiremit, çeşitli mollusk kabukları(midye, istiridye, tarak gibi), ahşap, PVC, metal materyallerin kullanımına kadar uzanmaktadır. (Burrell, 1980; Heral, 1990). 4.4.1.1 Kabuk kollektörler Japonya’dan Amerika’ya kadar çok yaygın bir kullanım alanına sahiptir. Bir ucu sivri olan özel çekiçlerle delinen kabuklar, 2 m. uzunluğundaki galvaniz tele dizilmektedir. Teldeki kabuk sayısı 80 ila 100 arasında değişmektedir. Kabuklar arasında mesafe bırakabilmek için önceleri bambu kamışlar kullanılmaktaydı, ancak maliyet ve geri dönüşüm açısından daha karlı olan plastik tüpler son yıllarda tercih edilmektedir. Kabukların bol olduğu bölgelerde ise herhangi bir mesafe bırakmadan ip veya galveniz tel üzerine üst üste gelecek şekilde kabuklar dizilerek kollektörler hazırlanmaktadır (Korringa, 1976a-b; Haven ve ark., 1987; Mann ve ark., 1990). Fransa’da Ostrea edulis spatlarının toplanmasında kabuk kollektörler içerisinde en iyi sonucu midye kabukları vermektedir. Bu kabuklar ince uzun ağ fileler içerisine yerleştirilmekte ve daha önceden hazırlanmış olan metal çerçeveler üzerine bağlanarak deniz tabanına bırakılmaktadır. Bunlar daha çok gel-git’in olmadığı derin sulara yerleştirmektedir (Heral, 1990). Hazırlanan tüm kabuk kollektör çeşitleri raf veya sallardan sarkıtılarak denize bırakılırlar. Bir çok kuluçkahanede, çeşitli kabuklular kırılıp toz haline getirildikten sonra metamorfoz aşamasına gelmiş larvaların yerleştirildiği tavaların tabanına serilmekte ve larvaların bu kabuk tozlarına tutunması sağlanmaktadır. Bu istiridye yavrularının tek tek elde edilmesi amacıyla da avantajlı bir yöntemdir. Bu şekilde elde edilen spat istiridyeler torbalara yerleştirilip kültür sistemlerine yerleştirlmektedir(Pascual ve Zampatti, 1995). 4.4.2 Kiremitler Kollektör olarak kullanılan kremitler, yaklaşık olarak yarı silindirik şekildedir. 33cm uzunluğunda, 15cm genişliğinde ve ortalama 5cm yüksekliğindedirler. Bu kiremitlerden birinin ortalama ağırlığı 900gr’dır. Kiremitler 10’luk gruplar halinde bir araya getirilirler ve Bouquets olarak adllandırılırlar. Bu onluk grupların oluşturulması için kısa kenarından 7,5cm uzaklıkta iki delik açılmaktadır. 110cm uzunluğunda 1,5mm kalınlığında galvanizli tel ile köşeler kesişecek şekilde birbirine bağlanmaktadır. Daha sonra kirece batırılıp kuruyuncaya kadar bekletilmektedir Kiremit kollektörlerde, kireç solusyonunun kullanılması ile spatlar kiremitler üzerinden rahatlıkla çıkarılmaktadır(Walne, 1974; Korringa, 1976a-b; Heral, 1990). Hollanda’da S-tipi kiremitler istiridye yavrusu toplamak için daha uygun olduğu bildirilmektedir (Dutch Tipi). Burada kullanılan kiremitlerin kuru ağırlıkları 2kg’dır. Ancak deniz suyu içindeki ağırlıkları ortalama 2,5kg. cıvarındadır. 35x23cm boyutlarında ve 13mm kalınlığındadırlar. Bu kiremitler de kreç ile kaplandıktan sonra denize bırakılmaktadırlar (Korringa,1976b). Gerek Crassostrea gerekse Ostrea türleri için gel-git’in olduğu alanlarda yaygın olarak kullanılan kremit kollektörler zemine yerleştirilmektedir. Kollektörlerin bırakılacağı alanlar daha önceden deniz yıldızları ve yengeçlerden temizlenerek kollektör veriminin olumsuz etkilenmesi önlenmiş olur. 4.4.3. Plastik malzemeler Günümüzde geleneksel olarak kullanılan bir çok materyalin yanında kolay şekil verilebilen plastik malzemeler de kullanılmaktadır. Bu malzemelerin maliyeti diğer kollektörlere göre daha yüksek olmasına karşın, tekrar kullanılması nedeni ile tercih edilmektedir. PVC çubuklar, yarı silindir plastik kollektörler, plastik levhalar ve fileler en çok kullanılan plastik materyal tipleridir(Korringa, 1976a-b). Dayanıklı ve hafifitirler., spat hasatı pratiktir. 4.4.4. Bambu kamışı ve ahşap materyaller Özellikle Filipinler’de Crassostrea eradelie için kullanılan bir kollektördür. Hazırlanışı basit olduğu için Filipin’li üreticiler tarafından özellikle tercih edilmektedir. Bu bambu kamışlar 5-10cm çapında ve sağlam olanları tercih edilmektedir. Bambu kamışları kesildikten sonra güneşte kurutulmakta ve eğer kalın bambu kamışları varsa bunlar da ikiye ayrılarak kullanılmaktadır. Daha önceleri bu ülkede istiridye kabukları yaygın olarak kollektör yapımında kullanılmasına karşın, bambu kamışlarının iyi bir spat toplayıcı olmasının belirlenmesinden sonra istiridye kabuklarının kullanımı azalmaya başlamıştır. Kullanılan bu kamışlar intertidal alanlara 0,3-0,7m aralıklar ile yanyana dikilmektedir. Her bir bambu sırası arasında bir küçük tekne gezebilecek kadar mesafe bırakılmaktadır. Bambu kamışlarının sıralar halinde kullanımının dışında kamışların bir araya getirilmesi ile ızgaralar hazırlanmıştır. Hazırlanan bu ızgaralar deniz dibine dik olacak şekilde ve özellikle gel-git alanlarına yerleştirilmektedir (Bardach ve ark., 1972). 4.4.5. Ahşap ızgaralar Avusturalya’da Crassostrea commercialis ‘in spatlarını toplamada tahta ızgaralardan yararlanılır. 2m uzunluğundaki ve 22-25mm2 yüzey alanına sahip olan bu çıtalar belli aralıklar ile kafes şeklinde çakılarak ızgaralar oluşturulur. Bunlar zeminden 1-1,3m yukarıdaki raflara üst üste gelecek şekilde yerleştirilerek tren yoluna benzer uzun hatlar oluşturulur. Her bir sıra arasında tekne girecek kadar mesafe bırakılır(Kesteven, 1941). Pek yaygın olmamakla birlikte, ahşap kaplamalar güneş altında kurutulup spral şekline getirilerek, spat toplama için kullanılmaktadır (Quayle,1969). 4.4.6 Kayrak taşı Kayrak taşı, özellikle Fransa’da kullanılan materyaldir. İnce kare parçalar halinde kesilen taşlar bir çelik tel üzerine araları 4-5cm mesafe ile dizilirler. Tel üzerindeki taş adeti 15 ila 20 adet arasındadır. Bu şekilde hazırlanan kollektörler gel-git etkisinde olan raf sistemlerinin üzerine yerleştirilerek kullanılmaktadır. Bu taşlar aynı zamanda ince uzun dirtdörtgen şeritler halinde de değerlendirilebilmektedir. Hazırlanan dirtdörtgen plakalar aralarında 5-6cm’lik mesafe ile yan yana gelecek şekilde birleştirilirler ve raflar üzerine bırakılırlar(Berthome ve ark., 1984). 4.4.7 Spat toplamada kullanılan diğer malzemeler İngiltere’nin bazı bölgelerinde kullanılan, ince bir beton tabakası ile kaplanmış yumurta kolileri Karasal hayvanların kümesi olarak kullanılan küçük tel kafesler, Seramikten hazırlanmış, çatı kremitlerine benzer yarı silindirik yapılar, Plastik ile kaplanmış tel ızgaralar, Çimentolu alçı taşı, İnce dilimler halinde kesilmiş lastik parçaları çeşitli dizaynlarda hazırlanarak kollektör olarak kullanılmaktadır((Bardach ve ark., 1972; Mann ve ark., 1990; Soniat ve ark., 1991; Lök ve Yolkolu, 1999). Günümüze kadar birçok kollektör materyali ve dizaynı denenmiş olmasına karşın genel olarak en iyi kollektör şudur demek yanlış olur. Bir tür veya bölge için iyi olan bir kollektör, diğer bir tür ve bölge için arzu edilen sonucu vermeyebilir. Bir yörede kullanılacak olan kollektörün seçiminde dikkat edilecek belli başlı özellikler vardır. Bu özelliklerin başında istiridyenin türü gelmektedir ki, yetiştiriciliği yapılacak olan türün özellikle hangi materyallere tutunduğunu belirlemek gerekmektedir. Kullanılacak olan kollektör tipinin ekonomik açıdan maliyetinin düşük olması ve tekrar kullanılabilirliğinin olabilmesi yada dayanıklılığının uzun vadeli olması tercih sebebini oluşturmaktadır. Yine seçilen kollektör tipinin o yörede bol miktarda olması aranılan özellikler arasındadır. Larvalar yapışmak için temiz, sert yüzeyleri tercih eder. Kollektörler yapışkan, kaygan veya düz zeminli olmamalıdır. Kaba yüzeyler larvalar tarafından daha çok tercih edilmektedir. Kollektör rengi önemsizdir. Kollektörler batabilme özelliğine sahip olmasına karşın hafif olmalı, larvaların hareketine izin verecek kadar kollektörler arasında su hareketi olmalıdır. Kollektörler ile yavru toplama işlemine başlamadan önce, o bölgede mevcut olan istiridye yatakları ve bu istiridyelerin üreme zamanlarının çok iyi belirlenmesi gerekmektedir. Bu amaçla araştırıcılar bölgede plankton çekimi yapıp istiridye larvalarının bolluğunu ve yaşını takip ederek en uygun zamanı bildirirler. Bazı bölgelerde ise üreticiler geçmiş yılların tecrübesine göre kollektörlerini denize bırakırlar. Eğer kollektörler denize çok erken bırakılırlarsa çok fazla sayıda balanus veya diğer arzu edilmeyen fouling organizmalar kollektörlere yapışır ve spat toplama başarısını olumsuz etkiler. Kollektörlerin bırakılacağı alanlarda yapılacak ön çalışmalar ile en iyi kollektör tipi ve en uygun spat toplama zamanı tespit edilir(Mori, 1987). Larva toplama zamanı araştırma istasyonları tarafından belirlenir ve ilgilenen üreticilere ilan edilir. Yeni yapışan larva 0.3mm büyüklüğündedir. Yaklaşık bir ay sonra 1-1.5cm olur. Bu boydan sonra kollektörden ayrılarak büyütme alanlarına transfer edilirler. Bazı yetiştiriciler kollektör tipleri uygun ise spatları ayırmadan ya aynı alanda ya da gelişmenin daha iyi olacağı başka bir alana taşıyarak uygun kültür sistemlerine yerleştirilerek büyümeye alınırlar. 5- YETİŞTİRİCİLİK YÖNTEMLERİ Gerek kuluçkahaneden elde edilen ve gerekse doğal alanlardan toplanan yavru istiridyeler, pazar boyuna kadar büyütülecekleri yetiştirme alanlarına yerleştirilirler. Yetiştirme alanlarının seçiminde aşağıdaki konulara dikkat edilmelidir: a) İstiridyenin büyümesine izin verecek uygun su koşullarına(sıcaklık, tuzluluk) sahip olmalıdır. b)Evsel ve endüstriyel bir atık girdisi olmamalıdır. c)Plankton açısından zengin olmalıdır. d) Toksik plankton patlaması olmamalıdır. e)Suda belli bir su akıntısı olmalı, durgun su olmamalıdır f)Denizyolu ulaşımı üzerinde olmamalıdır. 5.1 Dip Kültürü Gel-git etkisindeki kıyı alanlarında uygulanana en eski kültür yöntemidir. İplere dizilmiş olan kabuk kollektörler spatlar tutunduktan sonra iplerden çıkarılarak spatlar ile birlikte deniz tabanına bırakılırlar. Bu genç bireyler 22 ay bu alanda kalırlar. Bir yaz sezonunun geçmesi et dolgunluğu için yeterli olmaktadır. İstiridyeler sonbaharda hasat edilirler. Hasat işlemi elle veya dreçler ile yapılır. Toplanan istiridyeler basınçlı su ile yıkanarak temizlenir ve pazara sunulurlar. Bu dip kültür sistemi zemine hazırlanan raylı sistemler ile biraz daha geliştirilmiştir. Raylı sistemlere istiridye büyüklüğüne uygun göz açıklığına sahip kasalar yerleştirilir. Kasaların üstü ağ fileler ile örtülür. Böylece sular yükseldiğinde kasa içersindeki istiridyelere bazı organizmaların zararı olmayacaktır. Ayrıca kasalara yerleştirilen istiridyeler zemine direk temastan kurtulmuş olmaktadırlar. Böylece istiridye üstünde çamur birikerek boğulma riski de azaltılmış olmaktadır(Iversen, 1976). 5.2.Sehpalarda kültür Dip kültüründe zararlı organizmalar ve istiridyeler üzerinde çamur birikmesi verimin düşük olmasına neden olmaktadır. Bu nedenle üreticiler ilk zeminden uzak kültür yöntemi olarak sehpa sistemini uygulamaya başlamışlardır. Gelgitin fazla olduğu yerlerde zeminden 30cm yukarıda ve 2m uzunlukta olacak şekilde metal çubuklardan 30-40cm genişliğinde sehpalar yapılmaktadır. Bu sehpalar üzerine kollktörlerden temizlenen veya kuluçkahanelerden alınan spatlar plastik torbalar içersine konarak yerleştirilir. Plastik gözenekli torbalar sehpalara her iki ucundan metel maşalar ile sabitlenirler. İstiridyeler büyüdükçe torbaların göz açıklığı da büyültülür. 2-2,5 yıl sonra istiridyeler hasat edilir. Bu sistemin en önemli sorunu torbalar üzerinde makro alg birikiminin fazla olması ve gözenekleri kapatmasıdır. Torbalar sık sık kontrol edilmeli ve fazla alg birikimi temizlenmelidir. Temizleme işleminde algin tamamı alınmaz. Kalan algler torba üzerinde sular çekildiğinde gölgeleme yaptığı için istiridyelerin sıcaklıktan etkilenmesini azaltır(Bardach, ve ark., 1972). 5.3.Raf Kültürü Raf kültürü ile istiridye yetiştiriciliği hem horizontal, hem de vertikal alanda yapılır hale gelmiştir. Gelgit etkisinin az olduğu deniz derinliği 1.5-2m’den 5-6m’ye kadar olan kıyısal alanlarda raf kültürü uygulanmaktadır. Bazı üreticile gelgit etkisindeki alanlarda da uygulamaya almaktadır. Bambu kamışlar aralarında 2-3m mesafe olacak şekilde 2 ila 5m derinliklerdeki suların bulunduğu yerlere çakılırlar. Diğer bambular ise denize dik çakılan kazıkların üstlerine yatay olarak olarak bağlanırlar. Bu rafların dizaynı uzun ikili sıralar halinde olabileceği gibi 10x10m ebatlarında da yapılabilir. Bu durumda bambu sıraları arasındaki mesafeler 50-60cm olacak şekilde ayarlanır. İstiridye spatlanın tutunduğu kollektörler yatay bambu kamışlarının üzerinden 40-50cm aralıklar ile sarkıtılarak spatların büyümesine izin verilir. Bu sistemde kollektör uçlarının deniz tabanına değmemesine dikkat edilir. Böylece zararlı organizmalardan kollektörler uzak tutulmuş olur. Raf sisteminde bambu kamışı dışında dayanıklı ahşap materyaller ve deniz suyuna dayanıklı metal konstrüksiyon da kullanılmaktadır(Korringa, 1976a-b). 5.4 Sal Kültürü Sallarda yetiştiricilik genellikle iç denizlerde uygulanır. Salların inşasında tropik kuşakta 10-15cm çaplı bambular veya sedir ağacı kullanılmaktadır. Birbirine 30 veya 60cm aralıkla monte edilirler. Salların ebadı, 9x5,4m dir. Bu büyüklükdeki bir sal, 500-600 adet istiridye kollektörü(spatlı) taşır. Salların yüzdürülmesinde tercihen dayanıklı plastik variller (50 galonluk), fıçılar veya yüzdürücüler (stypor) kullanılır. Sallar 5-10m aralıklarla birbirlerine bağlanır. Bir ünite yaklaşık 10 saldan teşekküldür. Salların büyüklükleri ve sayıları değişiklik gösterebilir(Bardach, ve ark., 1972; Burrell, 1980). Sallar genellikle bambulardan yapılır. Plastik borularda bu amaçla kullanılabilir (PVC sulama boruları). Bu tür malzemenin esneme payı fazladır. Elemanlar 8 numara telle bağlanır. Salların sabitlenmesi için (deniz demiri) çapalar kullanılır, diğer bir yöntem ise, biri 3 tonluk, diğeri 5 tonluk iki beton bloğun yardımı ile sabitlemektir. Sert havalarda salı sürükleyen dalgalar güçlü ise, 3 tonluk bloğu oynatırlar. 5 tonluk bloğu oynatmaya çalışırken dalga aralarında 3 tonluk blok boşu alarak dibe çöker ve salın sürüklenmesini önler. Çapalı sabitlemede çapayı bırakmak ve ipin kopması çok görülmüştür. Bir salın ömrü 5 yıldan fazla olabilmektedir. Sal kültürü ile 25mm büyüklüğündeki bir istiridye 9 ay içinde pazar büyüklüğüne ulaşabilmektedir. Bu sistem ile su alanında hem horizantal, hem de vertikal olarak yararlanma söz konusudur. Dipte yapılan bir kültür ile karşılaştırıldığında verim en az%50 artmaktadır. 5.5. Halatlarda Kültür Aralarında 3-6m mesafe ile bir kalın halat üzerine sabitlenmiş yüzdürücülerden oluşur. Yüzdürücü olarak 30-40 lt hacimli plastik bidonlardan yararlanılır. Bu sistem tek halat ile hazırlanabileceği gibi arasında 30-40cm mesafe olacak şekilde çift halat olarak da hazırlanabilir. Uzunluğu 60-75m arasında değişir. Her hattın ucunda duruma göre 1-3 arası çapa bulunur ve deniz dbine sabitlenir. Her ünitede 10-12 yüzdürücü vardır.Yüzdürücülere bağlı olan ana halat bedene spatlar tutunmuş kabuk kollektörler asılabileceği gibi, içinde istiridye olan ağ fileler de asılabilir. İstiridye kollektörleri veya fileleri 30cm aralıkla asılırlar. Sahilden uzak derin sularda kurulabilir ve zor hava şartlarına karşı dayanıklıdır. Sistemin yıpranma ömrü diğer sistemlere göre daha uzundur. Planktonnun daha az olduğu derin, sahilden uzak sularda kurulması tercih edilen bir sistem olduğundan spatların Pazar boyuna ulaşması 2 yılı geçebilir(Bardach, ve ark., 1972; Iversen, 1976; Burrell, 1980). 5.6 Kafes Kültürü Kollektörler ile toplanıp bir yıl sonra seyreltilen istiridyelerden güzel şekilli olanlar seçilirler. Tel çerçeveli ızgara şeklindeki kafeslere herbirinin ayrı ayrı konabileceği bölmelere istiridyeler yerleştirilir, sal veya halat sistemlerinden asılır. Yaklaşık 6-8 ay sonra 10-20 cm uzunluğa ve 10-30 gr et ağırlığına ulaşır. Bu yöntem daha çok istiridyeler pazara çiğ olarak sunulacağı durumlarda uygulanır. Izgara sistemi nedeni ile sıkışan istiridyelerde kabuk şekli düzgün olarak büyüme gerçekleştiğinden tüketici tarafında tercih edilmektedir. Sal veya halat kültür alanlarındaki yerleşim akıntı, tuzluluk, besin ve yerel balıkçılık aktivitelerine bağlı olarak ayarlanmalıdır. Yoğun istiridye ölümleri kıyısal ve acı sularda yapılan kültür alanlarında ve doğal stoklarda görülmektedir. Bu ölümlerin başlıca nedenleri; -yetersiz beslenme -aşırı yağmurlar ve seller nedeni ile oluşan ekstrem tuzluluk ve sıcaklık değerleri, -predatörlerin aşırı üreyip yayılması, -çamur birikimi, -düşük oksijen seviyeleri, -yoğun stoklamalar -hastalıklardır. Bunlara ilaveten yaz aylarında seksüel olgunlaşma ve yumurtlama esnasında da anaç istiridyelerde yoğun ölümler görülmektedir. 6-Zararlı Organizmalar İstridye doğal ortamda iken suda mevcut olan diğer canlılar tarafından da bazı etkilere maruz kalmaktadır. Bu etkilerin başında onları besin olarak kullananlar, yaşadıkları ortama ve besine ortak olanlar, üzerinde yaşayarak direk ve indirek etki edenler veya kabuklarını delip içine girerek yaşamlarını istiridye içinde geçirenler gelmektedir. Kabuklu yetiştiricileri bu zararlıları bilip önlem almak zorundadırlar. Bu zararlıları predatörler(bazı balık türleri, yengeçler, istiridye matkabı, deniz yıldızı, ahtopot ve deniz kuşları (Haemotopus ostrolegus), rakip canlılar ve fouling, boring organizmalar olarak sınıflandırmak mümkündür(Korringa,1976a-b, Spencer, 1990; Lök ve Köse, 1999). Bunların dışında kabuklularda toksik madde birikimlerine neden olan Gonyaulax sp., Dinophysis sp. gibi fitoplanton türlerinin olduğu alanlardan istiridye hasatı yapılmamalı veya toksik etkisi geçene kadar beklenmelidir. Toksik fitoplankton patlamaları sonucunda toplanıp tüketilen istiridye, midye gibi kabuklu su canlıları bünyelerinde biriktirdikleri toksite nedeni ile insanlarda ölümlere kadar varan sonuçlar ile karşılaşılabilmektedir(Hindioğlu, 1998). 7- SONUÇ İstiridye kültürü Romalılar zanında başlamış ve günümüze kadar birçok kültür yöntemi ve sistemi geliştirilmiştir. Kültür uygulamaları ülkelere, istiridye türüne ve üreticinin tercihine göre değişiklik göstermektedir. Üreticiler kendi ülke şartları için en uygun sistemi geliştirmişler ve halen daha başarılı sonuçlar alma yönünde çalışmalar devam etmektedir. Ülkemizde ise istiridye kültürünün başlatılması hem ekonomik sonuçları hem de uygun deniz alanlarının değerlendirimesi açısından önemli olacaktır. KAYNAKLAR Alpbaz, A., 1993. Kabuklu ve eklembacaklılar yetiştiriciliği. E.Ü. Su ürünleri Fakültesi yayınları No. 26, s. 82-130. Bardach, J. E., Ryther, J.H., McLarney, W. O., 1972. Oyster culture. Aquaculture, The Farming and Husbandry of Freshwater and Marine Organisms :. pp. 674-742. Bayne, B. L., 1965. Growth and delay of metamorphosis of the larvae of Mytilus edulis(L.) Ophelia, Vol:2, No:1, Denmark. Berthome, J.P., Prou, J., Razet, D. & Garnier, J., 1984. Premiere approche d’unemethode d’estimation previsionelle de la production potentielle d’huitre creuse C.gigas d’elavage. Haliotis 14 39-38. Brausseau, D. J.,1995. Gametogenesis and spawning in intertidal oysters (Crassostrea virginica) from Westrn Long Island Sound. Journal of Shellfish Research. Vol.14, No.2 pp.483-487. Burrell, Jr.V.G., 1980. Oyster culture. In: Huner,J.V., ve Brown E.E.(eds), Crustacean and Mollusk Aquaculture in the United States. pp. 235-305. Claus, C., 1981. Trends in nursery rearing of Bivalve Molluscs. In:Claus, C., De Pauw, N., Jaspers, E.(eds) Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.1-33. Cole, H. A., 1942.Primary sex phase in Ostrea edulis. Quart. J. Micros. Sci., 83. pp. 317-356. De Pauw, N., 1981. Use and Production of Microalgae as Food for Nursery Bivalves. In:Claus, C., De Pauw, N., Jaspers, E.(eds). Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.35-69. Field, I. A., 1922. Biology and Economic Value of the Sea Mussel Mytilus edulis. Bull. U. S. Bur. of Fisheries, Vol: 38, pp. 127-259, Washıngton. Garcia-Dominguez F., Ceballos-Vazquez , P. B., Qezada A.T. 1996. Spawning cycle of the pearl oyster, Pinctada mazatlanica (Hanley, 1856) (Pteriidae) at Isla Espirito Santo, Baja California Sur, Mexico. Journal of Shellfish Research, Vol.15, No.2. pp.293-303. Haywood, E. L., Soniat, T. M.1992. The use of cement-stabilizied gypsum as cultch for the Eastern oyster, Crassostrea virginica (Glein, 1791). J Shellfish Res.vol.11, No.2 pp. 417-419. Haven, D. S., Zeigler, J. M., Dealteris, J. T., Whitcomb, J. P., 1987. Comparative Attachment, Growth and Mortalities of Oyster (Crassostrea virginica) Spat on Slate and Oyster Shell In The James River, Virginia. Journal of Shellfish Research , Vol:6, No:2, pp. 45-48. Heral, M.,1990. Traditional oyster culture in France. In: Barnabe, G. (ed.), Aquaculture Vol.1, pp. 342-387. Hindioğlu, A., Alpbaz, A., 1991. İstiridye (Ostrea edulis, L.1758) larvası üretimi üzerine araştırmala. Eğitiminin 10.yılında Su Ürünleri Sempozyumu, sayfa: 578-589. Hindioğlu, A., Serdar, S., Yolkolu, S., 1998. Kabuklularda (Bivalve-Mollusk) algal biotoksin ve insan üzerindeki etkileri. Özhan, E. (ed.) Türkiye’ nin Kıyı ve Deniz Alanları II. Ulusal Konferansı,Türkiye Kıyıları 98 Bildiriler Kitabı,22-25 Eylül 1998.ODTÜ Ankara pp.173-187. Iversen, E.S., 1976. Farming the edge of the sea, pp.134-158. Surrey England. Iwata , K. S., 1950. Spawing Mytilus edulis discharge by electirical stimulation. Bull. Jap. Soc. Scic. Fish. 15, pp.443-446. Loosanoff, V.L., Davis, H.C., 1963. Rearing Molluscs. Advances in Marine Biology. Vol. I, pp. 14-106. Academic Press, London. Lök, A., Yolkolu, S., 1999. İstiridye yavrularının (spat) toplanmasında kullanılan kollektör tipleri. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.109-114. Lök, A., Köse, A., 1999. İstiridye kültüründe karşılaşılan zararlı organizmalar. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.114-119. Mann, R.; Barber, B.J.; Whitcomb, J. P., Walker, K. S., 1990. Settlement of oysters, C. virginica (Glein, 1791), on oyster shell, expanded shale and tire chips in the James River, Virginia. J Shellfish Res, vol. 9, No.1 pp.173-175. Mori, K., 1987. Managed coastal water for oyster culture in Japan. In: Michael, R. G.(eds.).Ecosystems of the World 29 Managed Aquatic Ecosystems pp.125-143. Nell, A. J., Holliday J. E., 1986. Effects of potassium and copper on the settling rate of Sydney rock oyster (Saccostrea commercialis) larvae. Aquaculture, 58 pp.263-267. Kesteven, G.L., 1941. The biology and cultivation of oysters in Australia. CSIRO, Divisionof Fisheries. Report 5, pp.1-32. Korringa, P., 1976a. Farming the cupped oysters of the genus Crassostrea P.219. Elsevıer Scientific Publishing Company-Newyork Korringa, P.,1976b. Farming the flat oysters of the genus Ostrea P.231 Elsevier Scientific Publishing Company-Newyork. Pascual, M.S., Zampatti, E.A., 1995. Evidence of a Chemically mediated adult-larval interaction triggering settlement in Ostrea puclchana: applications in hatchery production-Aquaculture133, pp.33-34 Rodriguez J., Frias, J. A., 1992. Tropical mangrove oyster production from hatchery-raised seed in Cuba. Journal of Shellfish Research, vol. 11, No.2, pp.455-460. Quayle,D. B., 1969. Pacific oyster culture in British Columbia. Fisheriesresearch Board of Canada Biological Station, Nanaimo, B.C. pp. 57-65. Shau-Hwaitan ve Tat-meng Wong, 1995. Introduction of settlement and Metamorphosis in The Tropical Oyster, Crassostrea belcheri (Sowerby), byNeuroactive Compounds, Journal of Shellfish Research, vol. 14 pp.435-438. Soniat, T. M., R. C. Bioadhurst III & E.L. Haywood III. 1991.Alternatives to clamshell as cultch for oysters, and the use of gypsum for the production of cultchless oyster. J Shellfish Res. 10:405-410. Spencer, B.E., 1990. Cultivation of Pacific oysters. Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research. No: 63, p.47. Sugiura, Y., 1962. Electirical induction of spawing in two marine invertebrates (Urechis unucintus and hermahproditic Mytilus edulis). Biol. Bull. Woods Hole Cilt:123, pp.203-206. Utting, S.D., 1988. The growth and survival of hatchery-reared Ostrea edulis L. spat in relation to environmental conditions at the on-growing site.Aquaculture,69:27-38. Walne, P. R., 1974. Culture of Bivalve Mollusch 50 years experience at Conwy.Fishing News Books Ltd. Farnham, Surrey England. Yolkolu, S., 2000. İstiridye (Ostrea edulis)’nin gonad gelişimi ve cinsiyet oranı üzerine bir araştırma. E.Ü. Su Ürünleri Fakültesi. Yüksek Lisans Tezi, p.69.

http://www.biyologlar.com/istiridye-biyolojisi-ve-yetistirme-teknikleri

İnsanların Etçil mi Yoksa Otçul mu Olduklarının Kanıtları Nelerdir?

İnsanlar tür olarak aslında otçul veya etçil değil omnivor yani her şeyi yiyebilen, herşeyobur veya herşeycil bir türdür.. Bunun kanıtları: 1 Diş yapısı: Dişlerimiz her ikisini, hem et hem de bitki yemek ve öğütmek için evrilmiştir. 2 Sindirim sistemi: Hem et hem de bitkileri sindirmeyi tolere edecek, çoğu bitki ve hayvansal kaynaklardan besin elde edebilecek şekildedir. İstisnalar ise selüloz ve kitindir. Bunları sindiremeyiz. 3 Primat araştırmaları: Diğer primatlar, yaşayan en yakın akrabalarımız da omnivordur. Bu liste Şempanzeler, Orangutanlar ve Gorilleri içerir. Hatta çoğu primatlar aynı zamanda böcekçildir de. 4 Besinler: Sıkı şekilde vegan beslenen insanlar sağlıklı bir beslenme sağlayabilmek için besin kaynaklarını çok titiz bir şekilde takip etmeleri gerekir. Vegan beslenmek yani hiç bir şekilde ne süt, ne yumurta tamamen bitkisel bir şekilde beslenmek sadece modern Dünyada ve günümüz zamanında mümkün hale gelmiştir. Zira daha önce neolitik çağlarda ,nsan toplulukları büyük oranda henüz avcı ve toplayıcı iken hangi kaynak olursa olsun – hayvansal ya da bitkisel – besin elde edebilmek hayati önem taşıyordu ve insanların bu konuda herhangi bir seçme hakkı bulunmuyordu. 5 Arkeolojik Kanıtlar: En erken atalarımızdan elde edilen kanıtlar onların her zaman et tüketmiş olduklarını göstermektedir. Bu kanıtlar arasında insansıların yaşadığı fosil sitelerde geride bıraktıkları kemik kanıtlar ve fosilleşmiş dışkıları yani koprolitler vardır.

http://www.biyologlar.com/insanlarin-etcil-mi-yoksa-otcul-mu-olduklarinin-kanitlari-nelerdir

BALIKESİR VE ÇANAKKALE’NİN ENDEMİK BİTKİLERİ

Milattan önce 1200’ler: Anadolu Yarımadasında kurulu, dünyanın iki süper devletinden biri olan Hitit İmparatorluğu aniden yıkılır. Bütün Hitit şehir kalıntılarında bu tarihlere ait kalın bir kül tabakası vardır. Söz konusu yıkım sadece Hititler değil, bütün Anadolu halkları için geçerlidir. Batıdan doğuya doğru hızlı bir şekilde genişleyen, vahşi bir yıkım göz önüne serilir. Öyle hızlı ve ani bir yıkımdır ki bu, Anadolu yazılı kaynaklarında işgalle ilgili bir belgeye rastlamak neredeyse olanaksızdır. Vahşi, göçebe ve savaşçı kuzey halkları (Deniz halkları) Balkanlardan Anadolu’ya saldırmışlar, burayı boydan boya tahrip ettikten sonra Doğu Akdeniz ve Mısır’a kadar dayanmışlardır. Mısır yazılı metinleri bu saldırıdan dehşetle, saldırganların Mısır’dan kovulmalarından ise övgüyle bahsetmektedir. Tarihin gördüğü en vahşi saldırı, belki de ilk dünya savaşıdır bu. Anadolu insanı barbar kabileler tarafından katledilmiş, uygarlık tamamen yok edilmiştir. Öyle etkili bir saldırıdır ki, yıkımdan sonra, bin yıldan beri Anadolu’da kullanılan ve uygarlık ölçütü olarak bilinen yazı ortadan kalkmıştır. Arkeoloji literatüründe “Karanlık Çağlar” olarak adlandırılan dönem bu yıkım ile başlamıştır. MÖ 1200-750 yılları arasında Anadolu kör bir karanlığa gömülmüştür. Yazının olmadığı, kentlerin ortadan kalktığı bu dönemle ilgili olarak ancak ilkel kabilelere özgü basit keramik parçalara ulaşılabilmiştir. Kuzey halklarının doğal olarak Anadolu’ya ilk saldırı noktası Kuzeybatı Anadolu olmuştur. Bu bölgede o zamanın en önemli siyasi ve ekonomik gücü ise Troya Uygarlığı’dır. MÖ. 3200’lerden MS. 500’lere kadar 4000 yıl sürekli iskan edilen antik kent MÖ 1200’lerde Yunanistan üzerinden gelen vahşilerin saldırısına uğramıştır. İzmirli hemşehrimiz Homeros’un İlyada ve Odessa adlı eserlerinde bu işgal epik ve lirik bir dille anlatılır. Tanrı ve tanrıçalar bu savaşı izlerken takım tutar gibi iki taraftan birini tutarlar. Tanrılar tanrısı Zeus bu savaşı Çanakkale ve Balıkesir arasındaki Kazdağlarından (İda Dağı) izler. 1756 metre rakımla en yüksek noktası olan Gargaros’tan (günümüzdeki ismi Kartal Çimeni) savaşı izleyen baştanrı insanlara benzer duygu, düşünce ve davranışlarıyla savaş süresince bu dağdadır. Aslında İda ismi anatanrıça inancını ifade eder. Roma döneminde bu dağa “Magna Mater İdae”, yani Anatanrıça İda denilirdi. Zeus kültünün, bu inancın üzerine, kuzey halklarından Dor’ların istilasıyla yerleştiği tahmin edilmektedir. Zeus bu dağın en üst noktasına yerleşmesine, dolayısıyla herkesten üstün olduğunu göstermek istemesine rağmen yöre insanı hiçbir zaman Anatanrıça inancından vazgeçmemiştir. Antik çağda Kazdağı ve dolayları bitkilerin ve bereketin tanrıçası olan Kibele ve onun devamı Artemis tapkısının en etkin alanlarındandır. Kazdağı eteklerinde, Altınoluk ile içiçe olan Antandros (Anti+andros=Erkek karşıtı)’da Artemis inancı egemendir. Anatanrıçayı savaş ve kıyımla ortadan kaldırmaya çalışan barbarların tanrılarına karşı yöre halkının günümüzdeki feminist harekete benzer bir tepki vermiş olması da mümkündür. Aksi halde önemli bir antik kenti “erkek karşıtı” olarak adlandırmazlardı. Yöre insanının erkeğe düşman olması mümkün olamayacağına göre, bu tepki ataerkil kültür ve erkek baştanrıya karşı olmalıdır. Günümüzde bile bu tepki yöre kültüründe görülmektedir. Genelde dağların en yüksek doruğu kutsal kabul edilirken, günümüzde yöre halkı Kazdağının zirvesi Kartalçimeni yerine dağa aşağıdaki Sarıkız Tepesi’ni inanç alanı olarak görmektedir. Özellikle Türkmen köyleri arasında kutsal bilinen bu tepede Sarıkız ile ilgili bir de açıkhava sunak yeri (Türbe) vardır. Yöre insanı bu sunağa gelmekte, Sarıkız Ana’ya mumlar adamakta, bez parçaları bağlamakta, ayrıca buradaki zirve defterine yazılar yazarak Sarıkız’dan sorunlarına çare bulmasını istemektedir. Sarıkız’ın hikayesi ve ritüeli ile Tanrıça Artemis’inki de birbirine çok benzer. Her ikisine de tepelerde tapınılır, her ikisi de bakiredir. Sarıkız’ın ölüm nedeni de bakire olmadığı yönündeki iftiralardır. Dağ, anatanrıça inancıyla ilgili bir yer iken, ataerkil kabilelerin işgali ile Anatanrıça zirveyi Atatanrıya bırakmıştır. Anatanrıça ikincil konuma düşerek, daha alçak bir tepeye yerleşince yöre insanı da onu takip etmiştir. (Sarıkız efsanesinin kökeninde de anatanrıçayı baştanrılıktan indirmek isteyen ataerkil halkların söylenceleri olduğu düşünülebilir ve söylence Troya savaşlarının olduğu Geç Tunç Çağına tarihlenebilir). Yöre insanı zirveye çıkarak Zeusa yakarmak yerine Sarıkız tepesine çıkıp anatanrıçaya (Kibele-Artemis) yakarmıştır. Zira anatanrıça bitkilerin, beslenmenin ve bitkisel ilaçların tanrıçasıdır. Zirveye çıkıp ne istenebilir ki yıldırımın ve şiddetin tanrısından. Besleyen ve sağaltan Anatanrıçaları ortaya çıkaran ise önemli bir endemizm merkezi olan Kazdağları’ndaki biyolojik zenginliktir. Kazdağları özgün bitkisel zenginlikleriyle gerek günümüzde ve gerekse antik çağlarda küskün (Erkekler tarafından mağdur edilmiş), ancak üretken ve hastalıkları iyi eden kadınların mekanıdır. Troya savaşları sırasında zehirli okla yaralanan Paris, Kazdağlarında yaşayan ve güzel Helene uğruna terkettiği karısı Oinone’den kendisini bitkilerden yaptığı ilaçlarla iyileştirmesi için Kazdağına çıkar. Ancak Oinone kendisine ihanet eden kocasını yüzüstü bırakır, Kazdağı bitkilerinden yapılmış ilaçlardan mahrum bırakır onu, Paris de bu dağda ölür (1). Homeros Oinone’nin hangi tür bitkilerden ilaçlar yaptığını bize söylemiyor. Dolayısıyla tıbbi potansiyeli olan bütün Kazdağı bitkilerinin sağaltıcı kadınlar tarafından kullanıldığını öngörebiliriz. Örneğin Digitalis trojana (Troya yüksük otu) tıbbi potansiyeli olan ve sadece Balıkesir ve Çanakkale’de yetişen (Kazdağındaki Kapıdağda ve Zeytinli’nin 5 km yakınında, 600-800 metrelerde) endemik bitkilerimizdendir. Nitekim batılı bilim adamları, aynı türden Digitalis purpurea adlı yüksük otunun kanserli hücreleri tedavi edici etkisini keşfetmişlerdir. Bu bitkinin kalp kaslarının güçlenmesini de sağladığı belirtilmektedir (2). Tıbbi etkileri araştırılmamış yüzlerce bitkimiz, özellikle endemik bitkilerimiz Türkiye’nin geleceğini şekillendirecektir. Bu bitkilerden elde edilecek ilaçlar -bitkilerimiz çok lokal alanlarda yetişebildiklerinden- gelecekte bizim uluslararası ilaç endüstrisi, gen teknolojisi ve farmakoloji alanında söz sahibi olmamızı sağlayabileceklerdir, yeterki koruyalım, yeterki yaşatalım endemik bitkilerimizi... Yöre insanı da Kazdağlarındaki özgün bitkileri hastalıklarını iyileştirmek için toplar. Günümüzde Kazdağının Türkmen kadınları, özellikle yaşlı olanları yörenin bitkilerini baştacı ederler (Resim 1) (3). Çünkü onların hepsi birer tanrıçadır; bitkileri onlar tanır, bitkilerden ilaçları damıtarak hastaları sağaltırlar. Başlarına çiçek takarak Kazdağına öykünürler, o zaman Anatanrıça İda’dır onlar. Yörenin endemik şakayıkını (Paeonia masculi subsp. bodurii) konduruverirler başlarına, ölmezotlarını veya diğer adıyla altınotunu taktıklarında başlarına; kocamışlıklarını unutuverirler de ölmeyeceklerini sanırlar, yoksulluktan takamadıkları beşibirliklerin yerine altınotu ile avunurlar. Balıkesir Etnoğrafya müzesine uğrarsanız (Kuva-i Milliye Müzesi), Altınotu süslemeli kadın başlığını görebilirsiniz. Sadece yaşlılar değil, evlenecek genç kızlar başlarına bitki motifli başlıklar takarlar, botanik bahçesine dönen gelin başlıklarının hepsi, murada ermeden hakka yürüyen Sarıkız’a adanmıştır, kuru bitkilerden oluşan gelin başlığını takan her genç kız Sarıkızdır artık... Her ne kadar Milli Park olması dolayısıyla Kazdağlarından bitki toplamak yasaklanmış olsa da bu yasağa uyulmadığı görülmektedir. Yöre insanını Kazdağlarına çıkmaktan alıkoymak oldukça zordur. Zira Sarıkız inancının gücü insanları bu dağa çıkarmaktadır. Binbir zorlukla, traktörlerle, tozdan heykellere dönmüş insanların Sarıkızı gördükten sonra zirvede bitki toplaması herhalde ritüel bir davranıştır. Zira zirvede karşılaştığımız her köylüye, adaçayı ve kekik gibi Kazdağı bitkilerinin toplanmasının yasak olduğu hatırlatıldığında “Biz hayır için topluyoruz” karşılığını vermektedirler. Yani bitkilerin toplanması kutsal bir amaca özgülenmektedir. İşte size Anatanrıça inancı, işte bu inançla bağlantılı bitkisel ritüel... Sarıkız tepesinin biraz aşağısında Kapıdağı denen yükseltide, sadece burada yetişebilen ve yok olma tehlikesi altındaki endemik kekiğimiz Thymus pulvinatus da bitki toplayıcılarından nasibini almaktadır (Resim: 2) (4). Yetişme alanı 30 metrekareyi geçmeyen, Temmuz ve Ağustosta çiçeklenen bu kekik türü Kazdağından başka bir yerde yetişmemektedir. Köylüler tarafından çay yapmak amacıyla köklenerek hasat edildiği için bitki yok olma tehlikesi altındadır. Bu tür, Anadoluda yetişen Thymus türleri içinde en dar yayılış alanına sahip olanıdır. Bu yüzden yetişme alanı acilen korumaya alınmalıdır. Sarıkız türbesine çıkarsanız bir gün, zirve defterine şöyle yazın: “Sevgili Sarıkız Ana, benim de sorunlarım var; hastalık, geçim derdi, sevdalık. Ama çok şükür hayattayım. Sen önce çocuklarının ölümüne çare bul, kekiğine sahip çık”. TROYA SAVAŞINDA ROL ALAN ÖZGÜN BİTKİLER Troya’ya girmek isteyen Akha ordusu, 10 yıl savaştıktan sonra bu amacına ulaşamayınca tahtadan bir at yapar, bunun içine savaşçılarını koyar ve Troya’yı bu yöntemle işgal eder. Ancak söz konusu tahta atı yapmak için savaş alanından bir hayli uzak olan Kazdağındaki köknar ağacını kullanırlar. Troya atının yapıldığı Kazdağı köknarının bilimsel adı da Abies nordmanniana subsp. equi-trojani’dir (Resim 3). Equus Latince de “At” anlamına geldiğinden. Kazdağı Köknarının literatürdeki adı aslında “Troya Atının Köknarı” dır. Anadolunun özgün söylencesinin kaynağında yine Anadolunun özgün bir bitkisi bulunmaktadır. Her ne kadar Akhaların Troya’yı tahta at ile alt ettikleri söylenmekteyse de Troyalıların bu kadar basit bir numarayı yutmayacakları akla daha yakındır. Köknardan tahta at yapılarak bir ülkenin yok edilmesini o zamanın ağaçlarla ilgili inançlarına bağlamak daha mantıklıdır. Nitekim Troyalıların çağdaşı olan Hitit Devletinin anlaşma metinlerinde Köknar ağacı ile ilgili hükümler bu konuda bizlere ipucu vermektedir. Hitit devleti ile Hurri Devleti arasında yapılan bir anlaşma metninde “Hurriler bu antlaşmanın ve yeminin sözlerine uymazsa, bir köknar ağacı kesilip devrildiğinde artık büyümeyeceği gibi...biz Hurrileri karımız, çocuklarımız ve ülkemizle birlikte bu köknar ağacı gibi bırak. (Kesilmiş) Köknar ağacının nasıl zürriyeti yoksa...biz Hurrileri ülkemizle birlikte ve çocuklarımızla birlikte zürriyetsiz bırak” (5). denilmektedir. Yukarıdaki Hitit metninden hareketle; Troya’yı alamayan yağmacı Akhaların en sonunda büyüsel ve simgesel bir yola başvurdukları, mahvetmek istedikleri ülkenin insanlarını yok edebilmek için Kazdağındaki Köknar ağaçlarını keserek bunlardan heykeller yaptıkları akla daha mantıklı gelmektedir. Zira ülkenin köknarlarının kesilmesi ile bu köknarların yetiştiği topraklardaki insanların yok olması arasında Hitit inancında paralellik kurulduğu görülmektedir. Troya bölgesi Hititlerle benzer kültüre sahip, onlara akraba Luvilerin ülkesidir. Belki de Akha ordusu yerel halkın bu inancını bildiğinden ve onların moralini bozmak istediğinden, Kazdağının Köknarlarını keserek Troya halkına umutsuzluk aşılamayı planlamış da olabilir. Diğer bir olasılık ta Troya’yı ele geçiren ve halkını öldüren Akhalar’ın yaptıkları bu soykırımın simgesi ve zaferlerinin sembolü olarak Köknar ağacından çeşitli heykeller yapmış olmaları da olabilir. Günümüzde yöre insanı endemik Kazdağı Köknarının yapraklarını, içtiği çayın içine atar, çayını reçine kokulu bir şekilde içer. Köknar ağacının çayın içine katılması muhtemelen antik çağlardan kalan bir uygulamadır. Zira üreme ve soyun devamı ile özdeşleştirilen bu ağacımızın yaprağının çaya sadece koku vermediği, muhtemelen insanların soyunu devam ettirmek istemesi ile ilgili bir uygulama olduğu akla gelmektedir. Troya savaşının ayrıntılarını öğrenmek için Homeros’un İlyada ve Odessa adlı şaheserlerini okumak gereklidir. İlyadada, Troya kralının oğlunun bir Akha tolgası vasıtasıyla ölümü ile ilgili olarak; “Bir bahçede, meyvesinin ve yaz yağmurunun altında/Haşhaş çiçeği nasıl yana eğerse başını/Tolganın ağırlığıyla baş öyle yana düştü” (6) denmektedir. Ne ilginçtir ki Balıkesir dolaylarında endemik bir haşhaş türü yetişir. Ancak Troyalıların kaderine benzer onun kaderi de. Papaver somniferum subsp. pullatum olarak adlandırılan bu haşhaş bitkimiz yok olma tehlikesi altındadır. Homeros muhakkak biliyordu bu haşhaşı, yoksa özdeşleştirir miydi ölen insanlarla bu narin bitkimizi. Hitit dilinde (Muhtemelen ona akraba Troyadaki Luvi dilinde de) Haşşika olarak adlandırılan haşhaş bitkisinin ismi 4.000 yıldan bu yana değişmeyen ender kelimelerden biridir. Kültürel sürekliliğin önemli göstergelerinden biri olan dil benzerliğinin temelinde de özgün bitkilerimiz vardır. Aslında bir gelinciktir Haşhaş ve gelincikgiller ailesindendir. Gelincik Çiçeği Kibele inancında Attis’in kanlarını temsil eder. Dolayısıyla ölen genç ve yakışıklı erkeklerin sembolüdür. İlyada’da da bunu görürüz. Sadece haşhaş mı, baharda çevresinde kıpkızıl gelincikler açan, Burhaniye ve Havran’daki Madra dağlarında yaklaşık 10 kadar Kibele Açıkhava sunağı da yok olmak tehlikesi altındadır. 1999 yılında, halen Adramytteion kazılarını yürüten Arkeolog Doç. Dr. Engin Beksaç tarafından keşfedilen ve hala koruma altına alınmamış olan bu açıkhava sunakları dinamitlenmektedir. Bunun en hazin örneği Bahadınlı Köyünün yakınında yer alan “Dedekaya” Kibele Açıkhava sunak alanıdır. Eğer bir gün yolunuz Bahadınlı köyüne düşerse ve Dedekaya Kibele Sunağı’nın dinamitlerle parça parça olduğunu görürseniz, ve aylardan baharsa, ve kan kırmızıysa tarlalar, bilin ki gelincikler göç yolundadır. İlyada da İris, Tanrı Zeus’un habercisidir. İlyada da; “Böyle dedi o, yel gibi giden İris fırladı/Vardı İda dağının doruklarından koca Olimpos’a” dizeleri vardır. Gerçekten de Kazdağında endemik bir İris (süsen) türü yetişir, İris kerneriana’dır onun bilimsel adı. Eğer Kazdağını gezerken bu süsenimize rastlarsanız, mutlaka Koca Tanrı Zeus size bir şeyler iletmek çabasındadır. Troya savaşının en yoğun döneminde Zeus’un karısı, kıskanç Hera Kazdağına çıkar; Zeus’u baştan çıkarmaktır amacı. Kadınlara hiçbir zaman hayır diyemeyen baştanrı Zeus Kazdağının doruğunda birlikte olur Hera ile. Homeros İlyada’sında şöyle anlatır bu olayı: “...Böyle dedi, aldı karısını koynuna, sarıldı/Tanrısal toprak yumuşak bir çimen saldı/Taptaze Lotos bir halı serdi toprakla aralarına/Safranlardan, sümbüllerden tatlı bir halı/Uzanıverdi ikisi de halının üstüne/Sardı onu güzel bir altın bulut/Buluttan çiğ damlaları akıyordu pırıl pırıl/Tanrıların babası yüksek Gargaros tepesinde/Koynunda karısı mışıl mışıl uyuyordu”. İlyadayı okuyan Alman araştırmacı Schliemann okuduklarının kılavuzluğu ile Troya’yı ve Troya hazinesini keşfetmişti. Botanik bilimcileri için de başlıbaşına bir rehber kitaptır İlyada. Neden derseniz, yukarıdaki dizelerde bahsedilen safran (çiğdem) ve sümbüller gerçekten de burada yetişir, hem de endemik olarak. Hatta bunlardan birisinin ismi de Gargaros tepesinin adıyla anılır: Crocus gargaricus (Gargaros çiğdemi) adlı endemik çiğdemin üzerinde sevişmiştir Zeus. Bu çiğdemin aynı zamanda güzel bir kokusu da vardır. Ayrıca Crocus candidus ve Crocus biflorus subsp. nubigena adlı çiğdemler de Kazdağının endemik bitkileridir, Muscari latifolium adlı endemik misksümbülü de Kazdağının 1100 metrelerinde yetişir. Şimdi sorarım sizlere, özgün çiçek ve bitki türleri arasında, binbir çeşit kokuyla çepeçevre bir ortamda, yanınızda da sevgiliniz varsa ne yaparsınız? Sevişirsiniz elbet. Tanrılar tanrısı Zeus bile Kazdağı florasının bu oyununa gelmişse, siz çiğdeme ve sümbüllere karşı gelebilir misiniz? Homeros çiğdem bitkisini şafakla özdeşleştirir ayrıca, “Safran urbalı şafak ta yayılınca denize” der. Homeros mutlaka çiğdem bitkilerince zengin, denizi gören ve güneşin en erken göründüğü bir yerde şafağın sökmesini gözlemiş olmalıdır. Kazdağının zirvesi bu açıdan en ideal yerdir. Troya savaşında ölen Troyalı savaşçılar hep keten kumaşa sarılır, cenaze törenleri için hazırlanırlar. İlyada’da, Troya’nın en önemli savaşçısı olarak anlatılan Hektor’un cenaze töreni ile ilgili olarak ozanımız şöyle der: “İki keten çarşafla bir entari bıraktılar arabada/Bunlar ölüyü eve götürürken sarmak içindi/Yıkadı hizmetçiler ölüyü, ovdular yağla/Sardılar bir entariye, güzel bir keten çarşafa”. Bir başka dizede de “Kızlar keten giymişlerdi ipince/ Kızlar güzel çelenkler takmışlardı başlarına” denmektedir. Görüleceği üzere keten törensel bir giysidir. Gerek cenaze ve gerekse kutlama törenlerinde keten özellikli bir yer tutmaktadır. Anadolu ve Troya kültüründe keten en önemli giysi hammaddesidir. Zira Anadolu endemik ketenler açısından çok zengindir. Balıkesir’in de endemik bir keteni vardır: Linum hirsutum var. platyphyllum olarak adlandırılan bu ketenimiz yöre kültürünün itici güçlerinden biridir. Ancak yaşamı tehlikededir onun, kültürünü biçimlendirdiği Troya’nın verdiği mücadele gibi yaşama tutunmak istemektedir. Troyalı yiğitlerin cansız bedenlerini sarıp sarmalayan, antik çağ kızlarına güzellik katan keten yok olursa, Troya kültüründen de bir parça yok olacaktır. Çanakkale ve Balıkesir yöresi endemik bitkiler kadar endemik olmayan nadir bitkiler açısından da zengindir. Örneğin yaşam alanı Ege’deki Yunan adaları olan, ülkemizde ise sadece Marmara adasında yetişen bir orkide türü vardır. Orkidenin üzerinde 4 nokta olduğundan botanikçiler ona ‘dört noktalı orkide’ ismini vermişlerdir (Orchis quadripunctata) (Resim 4) (7). Ayrıca Türkiyede İzmirde yetiştiği bilinen Orchis lactea (sütbeyaz orkide) bu ilimiz dışında sadece Balıkesir’in Alibey (Cunda) adasında yaşayabilmektedir. BİTKİ ADLARINDA YÖREDEN YANSIMALAR Çanakkale ve Balıkesir’in endemik bitkilerinden bir bölümü antik Troya kent ve uygarlığından isimlerini almışlardır: Çanakkale: Achillea fraasii var trojana, Beta trojana var. trojana (Troya pancarı), Digitalis trojana (Troya yüksük otu), Ranunculus pedatus subsp. trojanus (Troya düğünçiçeği), Sideritis trojana (Troya yayla çayı). Balıkesir: Armeria trojana, Carduus nutans subsp. trojanus (Troya devedikeni), Galium trojanum (Troya yoğurt otu) bunlardandır. Bazı endemik bitkiler Kazdağının antik dönem ve günümüzdeki ismiyle isimlendirilmişlerdir: Çanakkale: Erysimum idaea, Jasione idaea (Kazdağı uyuzotu). Balıkesir: Astragalus ideae (Kazdağı geveni), Hieracium idae (Kazdağı mercangüşü), Hypericum kazdagensis (Kazdağı koyunkıranı) bunlara örnektir. Balıkesir’in endemik bitkilerden biri bilimsel ismini Kazdağının zirvesi olan Gargaros (Kartalçimeni) yöresinden almaktadırlar: Bu bitki Crocus gargaricus (Gargaros çiğdemi)’tur. Endemik bitkilerden bir bölümü isimlerini yörenin ırmaklarından almaktadır. Balıkesir: Hieracium scamandris (Karamenderes mercangüşü), Verbascum simavicum (Simav Çayı Sığırkuyruğu). Çanakkale: Verbascum scamandri (Eskimenderes sığırkuyruğu) bu bitkilere örnektir. Balıkesir endemik bitkilerinden birisi Troya savaşının önemli kahramanlarından biri olan Odysseus’un ismini taşımaktadır. Bu bitki Centaurea odyssei (Odysseus peygamber çiçeği) dir. TEHLİKEDEKİ ENDEMİK BİTKİLER Çanakkale ve Balıkesir’in tehlike altındaki bitkileri aşağıdaki tabloda gösterilmiştir (8, 9). Tablonun incelenmesiyle de görüleceği gibi Kazdağında yetişen bitkiler yoğun bir tahribatla karşıkarşıyadırlar. Milli Park sınırları içerisinde olmasına karşın herkesin kolayca girebildiği ve yok olmak üzere olan endemik bitkilerini toplayabildiği bir dağdır Kazdağı. Hatta bu toplama faaliyeti evsel tüketimi aşmış, nadir bitkiler pazarlarda satılır hale gelmişlerdir. Kazdağının doruğuna adım attığınızda, yasak olmasına rağmen ızgarasını yakmış, rakısını yudumlayan keyif erbabının yanısıra, torbalarını dağın nadir bitkileriyle tıka basa doldurmuş insanları ve hatta keçi sürülerini bile görebilirsiniz. Bu manzarayı gördükten sonra diğer milli parklarımızın hali nicedir diye sormadan edemezsiniz. Çanakkale ve Balıkesir’in Yok Olma Tehlikesi Altındaki Endemik Bitkileri Bitkinin Bilimsel Adı Bitkinin Türkçe Adı Bitkinin Yetiştiği Yer ÇANAKKALE Achillea fraasii var. trojana - Kazdağı, Susuzdağı 1500 m, Allium kurtzianum Yabani soğan Kazdağı, Susuzdağı, mermerli alanlar Dianthus ingoldbyi Karanfil Gelibolu, Anzak’ta Peucedanum arenarium subsp. urbanii Domuzkuyruğu Kazdağı, 1500m Ranunculus pedatus subsp. trojanus Troya düğünçiçeği Erenköy, Menderes Dağı Tripleurospermum baytopianum (10) - Keşan ve Kadıköy arasındaki Kurudağ’da, 200 metrelerde Verbascum scamandri Eski Menderes sığırkuyruğu Kazdağında BALIKESİR Centaurea sericea Peygamber Çiçeği Dursunbey’de Papaver somniferum subsp. pullatum Haşhaş Thymus pulvinatus Kekik Kazdağında bulunan Kapıdağı bölgesinde, 1500-1600 metreler DİPNOTLAR 1-Şefik Can, Klasik Yunan Mitolojisi, İnkılap Kitabevi, İstanbul, 1994 2-“Kansere Karşı Yüksük Otu”, Cumhuriyet Bilim-Teknik Dergisi, 16.02.2002 tarihli nüsha 3-Atilla Erden, Anadolu Giysi Kültürü, Ankara, 1998 4-K.H.C. Başer, F. Satıl, G. Tümen, “Thymus Pulvinatus”, The Karaca Arboretum Magazine, TÜBİTAK Yayınları, Haziran 2001, 5-Güngör Karauğuz, Hitit Devletinin Siyasi Antlaşma Metinleri, Çizgi Kitabevi, Konya, 2002 6-Homeros, İlyada (Çev: Azra Erhat/A. Kadir), Can Yayınları,13. Basım, İstanbul, 2002 7- C.A.J. Kreutz, Die Orchideen der Türkei, B.J. Seckel, Netherland, Raalte, 1998 8-Tuna Ekim, Mehmet Koyuncu, Hayri Duman, Zeki Aytaç, Nezaket Adıgüzel; Türkiye Bitkileri Kırmızı Kitabı (Eğrelti ve Tohumlu Bitkiler); Türkiye Tabiatını Koruma Derneği, Van 100. Yıl Üniversitesi, Ankara, 2000 9- DAVİS, P.H., Flora of Turkey and the East Aegean Islands. Edinburg at the University Press,1969 10-Bu bitkinin resmi Bilim ve Ütopya Dergisinin Ağustos-2002 sayısında, “Turhan Baytop’un Ardından” adlı bölüm içerisinde yer alan, Prof. Dr. Ekrem Sezik’in yazısı içerisinde yayınlanmıştır.

http://www.biyologlar.com/balikesir-ve-canakkalenin-endemik-bitkileri

Mağaracılık Nedir?

Mağaracılık, öncelikle, mağaraların araştırılması ve haritalanması amacıyla yapılan bir doğa sporudur. Tüm doğa sporlarında olması gerektiği gibi, amaç doğayla yarışmak değil, doğayla uyumlu bir yaşam ve spor pratiğinin sağlanmasıdır. Mağara ortamının bilimsel açıdan incelenmesi ile ilgilenen bilim dalı “speleoloji” (mağarabilim), bu amaçla mağara araştırmaları yapanlar ise “speleolojist” (mağarabilimci) olarak adlandırılmaktadır. Sportif amaçlarla mağara araştırmaları yapanlara “caver” (mağaracı), bu spor dalına ise “caving” (mağaracılık) denmektedir. Mağaralar, yapılarına göre, yatay ve dikey olmak üzere iki şekilde sınıflandırılabilir. Yatay mağaraları araştırmak için “Temel Mağaracılık Eğitimi” almış olmak, uygun kıyafetlere ve bir ışık kaynağına sahip olmak yeterlidir. Dikey mağaraları araştırmak için ise, bunlara ek olarak “Tek İp Tekniği” (SRT- Single Rope Techniques) eğitimi almak ve özel ipler ve teknik malzemelere sahip olmak gerekmektedir. Mağaracılık organize bir ekip çalışmasını ve yeterli eğitimi gerektirir. Bazı doğa sporlarında olduğu gibi “solo” -tek başına mağaracılık- düşünülemez. Mağaracılığın diğer doğa sporlarından belki de en büyük farkı gün ışığından uzak, çoğunlukla karanlık ve ıslak bir ortamda yapılmasıdır. Bu yüzden son derece dikkat ve konsantrasyon gerektiren bir doğa sporudur. Sportif mağaracılık, araştırmacı ve bilimsel gelişmeye hizmet eden yanı ile, coğrafya, jeoloji, hidrojeoloji, biyoloji, arkeoloji ve antropoloji gibi birçok bilim dalı ile yakın ilişkidedir ve bunlara veri sağlar. Bu anlamda Mağarabilim (Speleoloji) başlı başına bir bilim dalıdır. Mağaracılık, bir takım sporu olması ve mekanın da mağaralar olması sebebiyle, kaçınılmaz olarak mağaraların doğal ortamına etki eden bir uğraştır. Bu etkinin en az seviyede olması bilinçli mağaracılar sayesinde olacaktır. Mağaracılığın, dünya tarafından kabul gören temel ilkesi şudur: * Zamandan başka bir şey öldürme! * Ayak izinden başka bir şey bırakma! * Fotoğraftan başka bir şey çıkarma! mad.org.tr

http://www.biyologlar.com/magaracilik-nedir

Mağarabilim (Speleoloji) Nedir?

Mağaracılığın sportif bir uğraş ya da hobi olarak ele alınabilecek bir yanı olmakla birlikte, bilimsel açıdan incelenmesini gerektiren birçok özelliği de bulunmaktadır. Mağaralarda yapılan bilimsel çalışmalar sonucu, mağarabilim anlamına gelen speleoloji ortaya çıkmıştır. Speleoloji kısaca, mağaraların jeolojik, hidrojeolojik, minerolojik, biyolojik, arkeolojik, paleolontolojik, pleoantropolojik yöntemler kullanılarak incelenmesi çalışmalarının tamamını kapsayan bir disiplin olarak tanımlanabilir. Speleoloji kelimesi ilk olarak Emile Riviere tarafından Yunan’ca bir sözcükten türetilmiştir. Yunan’ca spelaion (mağara) ve logos (bilim) kelimelerinin birleşiminden meydana gelen speleoloji dünyadaki en genç bilimlerden biridir. Speleoloji son 30 yıl içinde ciddi birçok ilerlemeler kaydetmiştir. Speleoloji sayesinde dünyamızın milyonlarca yıl süren evrimi içinde nasıl bir gelişim gösterdiği, jeolojik formasyonun biyoloji ve farklı disiplinleri nasıl etkilediği gibi birçok konudaki düşüncelerimiz gelişme kaydetmiştir. Yeraltı su sistemleri, bunların oluşumları, karstik şekillenmeler konusunda yapılan hidrojeolojik incelemeler tatlı su kaynaklarının en verimli şekilde kullanımını gündeme getirmiştir. Mağaralarda sürdürülen arkeolojik araştırmalar insanın geçmişini kavrayabilmemiz açısından çok önemli bulguların gün ışığına çıkmasını sağlamıştır. Ülkemizde mağara araştırmalarının tarihçesine baktığımızda, başlangıçta mağaracılığın tamamen bilimsel bir tarzda ele alındığını görürüz. 1870’li yıllardan hemen hemen 1950’li yıllara kadar bu şekilde devam etmiştir. 1950’lerden itibaren mağaracılığın sportif olarak ya da turizm kapsamında değerlendirilmeye başladığını görüyoruz. Bu tarihten itibaren mağaracılığın bilimsel yanının ikinci planda kalması yapılan araştırmalarda devlet desteğinin azalmasıyla yakından ilişkilidir. Ülkemizde speleolojik araştırmalar, başlangıç dönemi göz ardı edilirse yeni yeni gelişme kaydetmektedir. Bu tür çalışmaların devletin maddi desteği ile yürütülebilmesi son yıllarda speleolojik araştırmaların üniversite bünyesinde oluşturulacak birimlerce ele alınmasını daha uygun hale getirmiştir. Bir bölgede yürütülecek mağara araştırması için öncelikle bölgenin jeolojik ve topografik bilgilerinin oluşturulması gerekmektedir. Daha sonra yapılacak çalışmaları yürütebilecek konusunda uzman bir kadro gereklidir. Elde edilecek verilerin incelenmesi, ulusal ve uluslar arası çevrelere duyurulması gibi çalışmalar akademik bir çalışma birimini şart koşmaktadır. mad.org.tr

http://www.biyologlar.com/magarabilim-speleoloji-nedir

Türkiye’nin bitkisel zenginliği

Türkiye bitki genetik çeşitliliği bakımından özellikli bir konumdadır. Toplam 78 milyon ha yüzölçümüne sahip ülkemizde 10.754 takson bulunduğu ifade edilmektedir (Vural, 2003). Bu rakam tüm Avrupa kıtasındaki tür adedinin biraz altındadır. Canlı türlerinin ilk kez olarak ortaya çıktığı ve dünyaya yayıldıkları yerler olarak bilinen gen merkezlerinden iki tanesi; Akdeniz ve Yakın Doğu Gen Merkezleri ülkemiz üzerinde buluşmaktadır (Vavilov, 1994). Ayrıca üç farklı bitki coğrafya bölgelerinin (İran-Turan, Akdeniz ve Avrupa-Sibirya) ülkemizde buluşması ve tarihsel gelişimi içinde Anadolu’nun göç yolları üzerinde bulunması ve birçok medeniyetlere ev sahipliği yapması gibi unsurlar da çeşitliliğin artmasında yardımcı olmuştur. Bezelye, buğday, çavdar, keten, mercimek, nohut, pancar, soğan türleri, üçgül, yonca, yulaf gibi otsu bitkiler yanında; Antep fıstığı, armut, asma, elma, erik ve nar gibi odunsu bitkiler Türkiye’den orijin almaktadır. Ülkemiz bitki tür adedinde olduğu kadar kültürü yapılan bitkilerin çiftçi çeşitleri bakımından da zengindir. Tarla ve bağ-bahçe tarımı Türkiye’de çok eski bir geçmişe dayanmaktadır. Çeşitli kazılardan toplanan bilgilerden, tahıl tarımının yaklaşık 10.000 yıl önce Anadolu’da başladığı sonucu çıkarılmaktadır. Türkiye’de yapılan çeşitli arkeolojik kazılardan sağlanan bilgiler tahıl tarımının yaklaşık 10.000 yıl önce Anadolu’da başladığını kanıtlamıştır (Harlan, 1992). Buğday ve arpanın dünyada ilk kez “Verimli Hilal” adı verilen alanda kültüre alındığı, eskiden beri yaygın şekilde kabul görmüştür. Yakın zamanda yayınlanan birçok araştırma bulgularına göre (Heun ve ark., 1997; Diamond, 1997; Nesbit ve Samuel, 1998; Lev-Yadun ve ark., 2000; Özkan ve ark., 2002; Salamini ve ark., 2002) dünyada buğday tarımının ilk kez yapıldığı yer olarak ülkemizin güneydoğusundaki Karacadağ ve yöresini göstermektedir. Ülkemizde kültürü yapılan bitkilerden buğdayın 25, arpa ve yulafın 8, çavdarın 5 (Fırat ve Tan, 1998), mercimeğin 4, nohutun 10, bezelyenin 5, yoncanın 34, mürdümüğün 59, üçgülün 104 ve fiğin de 60 adet yabani akrabası vardır (Açıkgöz ve ark., 1998). Endemizm bakımından da büyük bir yoğunluğun yaşandığı ülkemizde 10.754 adet taksondan 3.708 adetinin (% 34,5) endemik olduğu belirtilmektedir (Vural, 2003). Endemizmin en yoğun olduğu yöreler Batı, Orta ve Doğu Toros Dağları, Amanos dağı, Van gölünün güneydoğusu boyunca uzanan bölge, Kuzeydoğu Anadolu’da Gürcistan sınırına yakın kısımlar, Doğu Geçit bölgesinde Gümüşhane, Erzincan dolayları, Kuzey geçit bölgesinde Çankırı, Kastamonu dolayları, Orta Anadolu’da Tuz Gölü ve çevresi, Uludağ ile Kaz Dağları olarak sıralanabilir.

http://www.biyologlar.com/turkiyenin-bitkisel-zenginligi

Mikrobiyolojinin Tarihçesi ve tarihi gelişimi

Ilk Çaglarda Ilk insanlar, hayatin baslangici, doga, dogal olaylar (yagmur, kar, dolu, simsek, yildirim, gök gürültüsü, zelzele, su taskinlari, vs.), ay, dünya, yildizlar, günes, bulasici hastaliklar ve ölüm gibi kavramlar üzerinde fazlaca durmuslar, içinde bulundugu veya yakin iliskide olduklari toplumlarin törelerine göre bazi izahlar ve yorumlar yapmislar ve bunlara inanmislardir. Çözümleyemedikleri konularda, bunlari, insan veya doga üstü kuvvetlere, ilâhlara, cinlere ve seytanlara veya mucizelere baglamislardir. Hastaliklar ve ölümlerin, tanrilar veya insan üstü güçler tarafindan, yeryüzündeki kötü kisilere ceza olarak gönderildigine inanmislar ve bu inançlarini da yüzyillar boyu devam ettirmislerdir. Kötülüklerden ve kötü ruhlardan kurtulmak için, bu insan üstü kuvvetlere tapilmasi, adak verilmesi korku ve saygi duyulmasi ve dua edilmesi, o devirlere ait dinsel kisiler tarafindan siki bir sekilde ögütlenirdi.Bu amaçlari gerçeklestirmek için, özel yerler, tapinaklar yapildigi gibi, tanrilarin gazabindan korunmak için de çesitli hayvanlarin yani sira bazen insanlar da kurban edilirdi. Yapilan arkeolojik kazilarda, kaya tabakalari arasinda bakteri fosillerine benzeyen olusumlara rastlandigi ve bunlarin milyonlarca yil öncesine ait oldugu bildirilmistir. Hatta, kömür tabakalari içinde bakteri fosillerinin bulundugu Renault tarafindan da iddia edilmistir. Permian tabakalarinda rastlanilan dinozorlarin hastalikli kemiklerinin bakteriler tarafindan meydana getirilmis olacagina kuvvetle bakilmaktadir. Dinozorlardan ayri olarak, magara ayilari ve diger hayvanlarin fosillerindeki kemik bozukluklari ve eosen devrine ait üç tirnakli atlarda tesadüf edilen dis çürüklerinin de mikrobial orijinli olabilecekleri ileri sürülmüstür. Milattan Önce 8000-7000 yillari arasinda Mezopotamya bölgesinde yasayan insanlarin hastaliklar, ölümler ve bunlarin nedenleri hakkindaki bilgi ve görüsleri yok denecek kadar azdi. Bunlarin, insan üstü kuvvetler tarafindan olusturulduklarina inaniyorlar, bunlardan korkuyorlar ve bu duygularini da saygi ve tapinma tarzinda gösteriyorlardi. Zamanla, halk, bazi bitki ve hayvanlarin zehirleyici nitelikte olduklarini ve bir kisim bitkilerin de bazi hastaliklara iyi geldigini ögrenmis ve böylece, yenecek veya yenmeyecek, bitki ve meyveleri belirlemisler ve hastaliklarin sagaltiminda kullanilacak olanlari da saptamislardir. Ilkel yasantinin hüküm sürdügü bu dönemde hayata, dogaya ve dogal olaylara insan üstü kuvvetlerin hakim olduguna inanilirdi. Eski Misirlilar döneminde (MÖ. 3400-2450), yagmur sularini toplamak ve lagim sularini akitmak için kanallar, arklar ve borular yapilmistir. Eski krallik devresinde baslayan bu tür çalismalara yeni kralliklar döneminde de (MÖ. 1580-1200) devam edildigine rastlanilmaktadir. Bu tarihlerde bazi saglik kurallarinin konuldugu ve bunlara titizlikle uyuldugu papirüslerden anlasilmaktadir. En eski papirüs olan Kuhn papirüs 'ünde (MÖ. 1900) köpeklerdeki paraziter hastaliklardan ve muhtemelen, sigirlardaki sigir vebasindan bahsedilmektedir. Bunlarin sagaltimi için hayvanlarin kendi hallerine birakilmasi ve tütsü edilmeleri önerilmektedir. Smith papirüs 'ünde (MÖ.1700) yaralarin sagaltiminda taze etin, ve hemorajilerde koterizasyonun kullanilabilecegine dair bilgiler bulunmaktadir. Bu papirus, o devirlere ait bazi önemli tibbi bilgiler de vermektedir. Ebers papirüs 'ünde (MÖ. 1550), hastaliklarin esas nedenlerinin seytanlar oldugu ve hastaliklarin ancak sihir ve dualarla giderilebilecegi belirtilmektedir. Bazi hastaliklarin tedavisinde sinek ve timsah pisliklerinin ve farelerin yararli olacagina da inaniliyordu. Hayat solugunun da sag kulaktan çiktigi zannediliyordu. Heredot 'un eserlerinde, Misirlilarin tuzu antiseptik olarak kullandiklari belirtilmektedir. Elliot Smith tarafindan bulunan ve MÖ. 1000 yilina ait oldugu sanilan mumyalarda spinal tüberkulozise rastlandigi açiklanmistir. Eski Yunanlilar dönemi MÖ. 3400 yillarina kadar uzanmaktadir. Ancak, bu periyoda ait bilgiler pek yeterli degildir. MÖ. 1850-1400 yillarinda bazi saglik kurallarinin konuldugu, ventilasyona dikkat edildigi, ark ve kanallarin açildigi, mabetlerin ve yerlesim yerlerinin kaynak su ve agaçlik yerlerde kurulmasina özen gösterildigi anlasilmaktadir. Tababet ve tedavinin kurucusu veya babasi sayilan Hipokrat (Hippocrates, MÖ. 460-377), halk sagligi ve hastaliklari konusunda 7 cilt kitap yazmis ve bunlarda sitma, lekeli humma, çiçek, veba, sara ve akciger veremine ait bilgilere yer vermistir. Tip alanina deneysel yöntem, gözlem ve arastirma prensiplerini getirmis olan Hipokrat, hastaliklari vücüdun vital sivilarindaki bozukluklara baglamis ve hastaliklari akut, kronik, epidemik ve endemik olarak siniflandirmistir. Ayrica, yaralarin sagaltiminda kaynatilmis su ile irrigasyonu, operatörlerinin ellerini ve tirnaklarini temizlemelerini, yaralarin etrafina bazi ilaçlarin sürülmesi gerektigini de vurgulamistir. Bilgin, hastaliklarin topraktan çikan fena hava ile su, yildiz, rüzgarlarin yönü ve mevsimlerin etkisiyle olustuguna da inanmistir (miasmatik teori). Hipokrat, ayni zamanda, 4 element (ates, hava, su, toprak), 4 kalite (sicak, soguk, nem, kuru) ve vücudun 4 sivisi (kan, mukus, sari safra, siyah safra) üzerinde de bilgiler vermis, bunlari ve birbirleri ile olan iliskilerini açiklayan görüsler getirmistir. Senenin çesitli mevsimlerinde isinin ve nemin degismesinin hastaliklarin çikisinda önemli rol oynadigini da savunmustur. Aristo (Aristoteles, MÖ. 384-322), veba, lepra, verem, trahom ve uyuz hastaliklari ve bunlarin bulasma tarzlari hakkinda bazi açiklayici bilgiler vermistir. Ayrica, temasla bulasmaya da dikkati çekmis ve vebali hastalarin soluk havasinin bulasici oldugunu da belirtmistir. Empedokles (Empedocles, MÖ. 450-?), Sicilya'da batakliklarin kurutulmasinin malaryayi kontrol altina alacagina deginmis ve malarya ile batakliklar arasinda bir iliskinin varligini gözlemistir. Aristofan (Aristophanes, MÖ. 422-385) malarya ve bulasmasi hakkinda bilgiler vermistir. Zamanla, miasmatik görüs ve düsünüs, yerini vücuttaki dogal delikler (porlar) teorisine birakmistir. Bunun taraftarlari arasinda, Eskülap (Esclepiades, MÖ. 124), Temison (Themison, MÖ. 143-23) ve Tesalus, (Thesallus, MS. 60) gibi düsünürler bulunmaktadir. Bu bilginler arasinda da bazi farkli görüslerin olmasina karsin, genelde birlestikleri ortak nokta, vücudun dogal delikleri arasindaki uyumun degismesinin hastalik ve ölümlerin nedeni olacagidir. Galen (Gallenos, MS. 120-200), hastaliklarin nedenleri hakkinda daha ziyade, miasmatik görüse katilmis ve desteklemistir. Bilgin, Hipokrat 'in 4 sivi teorisini kabul etmekte, sivilarin azalmasi veya artmasini hastaliklarin nedeni olarak göstermekteydi. Galen, gözlemlerine göre, sahislari 4 gruba (kanli, flegmatik, safrali ve melankolik) ayirmistir. Galen, ayni zamanda, kan almanin bazi hastaliklarin sagaltimi için yararli olacagini da düsünmüstür. Anadolu'da büyük bir imparatorluk kuran Hititler (Etiler, MÖ. 2000) hastaliklarin ilahi kuvvetler tarafindan olusturulduguna inanirlardi. Romalilar döneminde, su ve lagim kanallarinin yapildigi, temiz gida ve içme suyuna önem verildigi anlasilmaktadir. Eski Ibraniler (MÖ. 1500), Babilliler’in hastaliklarin nedenleri ve ölümler hakkindaki görüslerini, genellikle, benimsemislerdi. Bu dönemde, hastaliklardan korunmak için bazi kurallarin konuldugu ve adli tibba ait de bazi esaslarin saptandigi açiklanmaktadir. Ancak, Ibraniler arasinda, hastaliklarin günahkâr insanlara, ilâhi kuvvetler tarafindan gönderildigi görüsü yaygindi. Liviticus 'un kitabinda, dogumdan sonra kadinlarin çok iyi temizlenmeleri gerektigine, menstrasyon hijyenine, bulasici hastaliklardan korunmaya, temiz olmayan esyalara dokunmamaya, izolasyon ve dezenfeksiyonun bazi hastaliklarin (veba, uyuz, antraks, sara, trahom, verem, frengi) kontrolünde gerekli olduguna dair bazi açiklamalar bulunmaktadir. Bu dönemde, difteri, lepra, gonore ve diare bilinmekteydi. Musa peygamber (MÖ. 1300), zamaninda bazi saglik kurallari konulmussa da, bunlara sonradan uyulmamistir. Bu dönemde, özellikle, gida hijyenine önem verilmis, domuz eti, ölmüs hayvanin eti, deniz kabuklu hayvanlarin eti, kan ve yagin yenmemesi ögütlenmistir. Hindular (MÖ. 1500) döneminde, Sanskrit'ler de, hastaliklarin nedenleri olarak seytanlar, cinler ve büyücüler gösterilmektedir. Büyük kral Asoka (MÖ. 269-232) zamaninda hayvan hastanelerinin kuruldugu ve tarihi yazilarda tedavi ile iliskili bazi bilgilerin bulundugu açiklanmistir. Hindistan ve Seylan'da MS. 368'de, hastanelerin kuruldugu belirtilmektedir. Sustrata (MS. 500) dogal ve doga üstü olarak 120 hastalik bildirilmistir. Bu dönemde, malaryanin sinekler tarafindan bulastirildigi bilinmekte ve farelerin de vebadan öldüklerinde evlerin terk edilmesi geregine dikkat çekilmektedir. Sustrata, bunlarin yanisira, çocuk bakim ve hijyenine ait bilgiler de vermektedir. Sacteya adli sanskritte de insanlari çiçege karsi asilamada kullanilan yöntemler bildirilmektedir. Eski Çin Medeniyeti (MÖ. 3000-2000) döneminde yazilan "Materia Medika" adli kitapta kan dolasimina ait bilgiler verilmekte, dolasimin kanin kontrolünde yapildigi, kanin sürekli ve günde bir defa dolastigi bildirilmektedir. Ayrica, kitapta, akupunktur ve nabiz hakkinda da bazi bilgilere yer verilmistir. Bu dönemde, Çin'de frengi, gonore ve çiçek hastaliklari bilinmekte ve bunlara karsi bazi önlemlerin de alinmakta oldugu belirtilmektedir. Milattan Sonra 2. asirda hashasin agri kesici olarak kullanildigi da zannedilmektedir. Wong Too (MS. 752), insan ve hayvanlarda rastlanilan hastaliklar ve bunlarin sagaltim yöntemlerini "Dis Alemlerin Sirlari" adli eserinde 40 bölümlük bir yazida toplamistir. Konfüçyüs (MÖ. 571-479) döneminde kuduzun tanindigi ve bazi önlemlerin alindigi bilinmektedir. Eski Çin döneminde, hastaliklarin nedeni olarak, erkek ve olumsuz unsur olan Yang ile disi ve olumlu öge olan Yu 'nun arasindaki düzenin bozulmasina baglanmaktadir. Milattan önceki dönemlere ait olan Eski Japonya'da, hastaliklarin ilahi kuvvetler tarafindan insanlara ve hayvanlara gönderildigine inanilir ve bazi saglik kurallarina da dikkat edilirdi. Eski Iran'da, hastaliklarin nedenleri ilahi ve büyüsel kuvvetlere baglanmaktadir.Zerdüst dinini temsil eden Avesta adli kitapta hastaliklara, hekimlere ve saglik kurallarina ait bölümler bulunmaktadir. Iyilik tanrisi olan Ahura Mazda ve karanliklarin ruhu (seytan) Ahirman kabul edilir ve bunlara saygi gösterilir ve dualar edilirdi. Babil döneminde (MÖ. 768-626), saglik kurallarina dikkat edildigi, hastaliklari önlemek ve sagaltmak için bazi ilaçlarin kullanildigi, bu konulara deginen 800'den fazla tabletten anlasilmaktadir. Hastalari tedavide, ayin ve dualar edilir ve büyüler kullanilirdi. Zincir vurmak ve kamçilamak da dahil olmak üzere, insanlarin içindeki seytan ve kötü ruhlari çikarmak ve atmak için 50'ye yakin çare belirtilmekteydi. Hastalanan sahislarin cinlere ve seytanlara yakalanmasi tarzinda düsünülürdü. Bu dönemde, lepranin bilindigi, bulasici oldugu ve hasta kisilerin ayrilmasi gerektigine de inanilirdi. Milattan önceki Türklerde, insan ve hayvanlardaki hastaliklara ve jeolojik ve meteorolojik olaylar ile fena ruhlarin (Erklik) yol açtigina inanilirdi. Iyi ruhlar ise insan ve hayvanlari korurlardi. Ülgen en büyük tanriyi, Erklik de kötülükleri temsil ederdi. Samanlar, kötü ruhlarin yaptiklari fenaliklari ve hastaliklari önlerlerdi. Ruhlara inanma temeli üzerine kurulan Samanizm'de samanlar (ruhlarla iliski kurabilen dinsel kisiler), hastalari iyi etmek için çesitli dualar okur, danslar yapar ve esyalari atesten geçirirlerdi. Müslümanlik döneminde, insan ve hayvan hastaliklari hakkinda bir çok yazilar yazilmis ve gözlemler yapilmistir. Ilk hastanenin Sam'da MS. 707'de kurulmus oldugu açiklanmistir. Bagdat'da yasamis olan Ebubekir Mehmet bin Zekeria El Razi (MS. 854-925), yazdigi "Tip Ansiklopedisi'nde" çiçek ile kizamik hastaliklarini tanimlamis ve bulasici hastaliklarin fermentasyona benzedigini bildirmistir. Buharali Ibni Sina (Avicenna, MS. 980-1038), bulasici hastaliklarin gözle görülmeyen kurtçuklardan ileri geldigini ve korunmak için temizligin önemli oldugunu vurgulamistir. Ayrica, yazdigi kitaplarda, bazi hastaliklari da (plörizi, verem, deri ve zührevi hastaliklar) tanimlamis ve korunmak için de bazi ilaç adlarini vermistir. Abu Marvan Ibn Zuhr (MS. 1094-1162), tip konusunda 6 cilt kitap yazmis ve birçok hastaliklari da (mediastinal tümor, perikarditis, tüberkulozis, uyuz, vs.) tarif etmistir. Ak Semsettin (MS. 1453), kitabinda malaryanin ayni bir bitki tohumu gibi, görülmeyen bir etkeni oldugunu ve vücuda girdikten sonra üredigini açiklamistir. 02. Orta Çagda Orta Çag döneminde de Hipokrat ve Galen'in görüsleri kabul görmüs ve fazlaca taraftar toplamistir. Roger ve Roland (11. ve 12.asirlar arasinda) Salorno'da kurulan ilk bagimsiz medikal okulda çalismislar, kanseri tanimlamislar, paraziter hastaliklarda civali bilesikleri kullanmislar ve irinin yaranin içinde meydana geldigini bildirmislerdir. Orta Çag döneminde, veba, lepra, erisipel, kolera, terleme hastaligi (muhtemelen influenza) ve frengi gibi hastaliklar oldukça fazla yaygindi. Milyondan fazla insanin bu hastaliklardan öldügü açiklanmistir. Venetian Hükümeti, infekte gemileri limanlara sokmamak için bazi karantina önlemleri almis ve bir halk sagligi örgütü kurmustur (1348). Boccacio (1313-1375), yazdigi Dekameron (decameron) adli eserinde, öldürücü ve yaygin olan vebanin bulasmasi hakkinda ayrintili bilgiler vermistir. Bu dönemde, sirke antiseptik olarak tavsiye ediliyordu. 03. Rönesans Döneminde Rönesans Döneminde (1453-1600), bilimde ve özellikle tip alaninda yeni gelismeler meydana gelmistir. Hastaliklarin nedenleri olarak gösterilen ilahi ve insanüstü kuvvetlere inanisa ve miasmatik görüslere karsi çikilmaya baslandi. Deneylere, gözlemlere ve bu tarzdaki arastirmalara önem verildi. Paracelcus (1493-1541), hastaliklari 5 esas nedene (kozmik, gidalardaki zehirler, ay ve yildizlar tarafindan kontrol edilen dogal olaylar, ruh ve seytanlar, ilahi nedenler) baglamistir. Çiçek, tifo, kizamik gibi hastaliklar 1493-1553 yillari arasinda oldukça yaygin ve öldürücü seyretmekteydi. Fracastorius (1478-1553), yayimlandigi kitabinda (1546), bulasici hastaliklarin jermler (Seminaria morbi) tarafindan saglamlara nakledildigi, bulasmada direkt temas, hastalarin esyasi ve havanin önemli oldugu üzerinde durmustur. Böylece, ilk defa jerm teorisi ortaya atilmis ve bulasmada da canli varliklarin (Contagium vivum) rol alabilecegi düsünülmüstür. Fracastorius, ayrica, veba, frengi, tifo ve hayvanlardaki sap hastaligi üzerinde de bazi çalismalar yapmistir. Bir sahisdan digerine geçen hastaliklarin, o sahisda da ayni veya benzer hastalik tablosu olusturdugu, Fracastorius'un gözlemleri arasinda yer almaktadir. Von Plenciz (1762), Fracastorius'un görüslerini benimseyerek, hastaliklarin gözle görülemeyen küçük canlilar araciligi ile bulasabilecegini ileri sürmüstür. 04. Mikroskobun Gelistirilmesi Mikroskoplarin temelini olusturan ilk basit büyütecin Roger Bacon (1214-1294) tarafindan yapildigi ve bazi objelerin incelendigi bilinmektedir. Hollandali bir gözlükçü olan Zacharias Janssen 1590 yilinda, iki mercekten olusan basit bir büyüteç yaparak, bazi objeleri 50x ve 100x büyütebilmistir. Cornelius Drebbel ve Hans'in da, 1590-1610 yillari arasinda benzer tarzda bazi büyütme aletleri gelistirdikleri açiklanmistir. Galileo Galilei (1564-1642), 1610 yilinda, Italya'da, bir tüp içine yerlestirdigi bir seri mercekle, daha fazla büyütme gücü elde etmistir. Kepler, 1611'de, iki mercekten olusan bir büyütme aleti gelistirmistir. Petrus Borellus (1620-1689), yaptigi büyüteçle uzaklari daha iyi görebildigini açiklamistir. Robert Hooke (1635-1703) ve Nehemiah Grew gelistirdikleri büyütme aletleri ile (200x) bazi objeleri ve bitkileri incelediklerini açiklamislardir. Hooke, 1665'de, yayimladigi Micrographia adli eserinde yüksek organizmalarin ve flamentöz mantarlarin mikroskobik görünümlerini çizmis ve bunlar hakkinda bilgiler vermistir. Athanasius Kircher (1602-1680), 32 defa büyütebilen aleti yardimi ile vebali hastalarin kaninda bazi kurtçuklari gördügünü iddia etmistir. Histolojinin kurucusu olarak taninan Italyan bilgin Marcello Malpighi (1628-1694), basit bir mikroskop yardimi ile akciger dokusunu incelemistir. Jan Swanmmerdan 1658'de, alyuvarlari mikroskopla incelemistir. Pierre Borrel (1620-1671), bakterileri görebildigini iddia etmistir. Hollandali bir tüccar ve amatör bir mercek yapimcisi olan Antony van Leeuwenhoek (1632-1723), 200 defadan fazla büyütebilen ve iki metal arasina yerlestirilmis bikonveks mercekten olusan büyütme aleti ile yaptigi çesitli incelemelerde mikroskobik canlilar dünyasini bulmayi basarmistir. Bu nedenle kendisine mikrobiyolojinin kurucusu gözü ile bakilmistir. Yaptigi arastirmalar arasinda, kanal ve ark sularinda protozoa, bir gece bekletilmis yagmur sularinda bakteri, dis kiri, biber dekoksiyonu, mantar,yaprak, salamander kuyruk kan dolasimi, seminal sivi, idrar, gaita, vs., materyaller, esas konusunu olusturmustur. Ilk bakterileri 1676 yilinda görerek, sekil ve hareketlerini izlemis ve sekillerini çizerek bu konuda hazirladigi 200'den fazla mektubunu Londra'daki "Phylosophical Transaction of the Royal Society" ye göndermis ve Ingilizce olarak yayimlanmasi saglanmistir. Bu mektuplarinda, özellikle, dis kiri ve biber infusyonundan yaptigi muayenelerde milyonlarca küçük canliya (hayvanciklara, animaculate) rastladigini da belirtmistir. Arastirici, ayni zamanda, bakterileri yüksek isida tuttugunda veya sirke ile muamele ettiginde öldüklerini de belirtmistir. Huygens, 1684'de, iki mercekli oküleri gelistirmistir. Chester Moor Hall ve John Dalland, 1773'de, birbirlerinden bagimsiz olarak, dispersiyonu düzelten mercekler gelistirdiklerini açiklamislardir. J.N. Lieberkühn, 1739'da, A. van Leeuwenhoek'in mikroskobunu daha da gelistirmistir. Chevalier, 1824'de, mikroskopta birçok mercekleri bir araya getirerek basarili olarak kullanmistir. J.J. Lister, 1830'da, modern mikroskobun prensiplerini koymustur. Ernest Abbe (1840-1905), 1870'de, akromatik objektif ve kondansatörü yapmis ve kullanmistir. A. Abbe ve Carl Zeiss (1816-1866), apokromatik mercek sistemini bulmuslardir. Andrew Ross (1798-1853), 1843'de binoküler mikroskobu yapmistir. J.J. Woodvard, 1883-1884'de, mikroskop yardimi ile fotograf çekmeyi, Heimstadt, Carl Reichert (1851-1922) ve Lehmenn, ilk olarak fluoresans mikroskobu yapmayi basarmislardir. Louis de Broglie elektron mikroskobun esasini bulmustur. Max Knoll ve Ernst Ruska ilk elektron mikroskubu yapmislardir (1933). 05. Spontan Generasyon Teorisi (Abiyogenezis) Uzun yillar, canlilarin kendiliginden meydana geldikleri görüsü, oldukça fazla bir taraftar bulmustu. Bunlara göre, canlilar, çamurdan, dekompoze organik materyallerden, sicak sulardan ve benzer karakterleri gösteren durumlardan orijin almaktadir. Van Helmont (1477-1544), farelerin meydana gelebilmesi için, toprak içeren bir tülbent içine bugday ve biraz da peynir konulduktan sonra ahir veya benzer bir yerde hiç dokunulmadan uygun bir süre bekletilmesinin yeterli olacagini iddia etmistir. Ayrica, havada kalmis etlerde kurtçuklarin olusmasi da bu görüs için destek kabul ediliyordu. Francesco Redi (1626-1697), canlilarin bir önceki canlidan gelmekte oldugu görüsünü savunan ve bunu deneysel olarak gösteren ilk bilim adamidir. F. Redi, iki kavanoz içine et ve balik koyduktan sonra birinin agzini sikica baglamis ve digerini açik birakmistir. Deneme sonunda, agzi kapali olan kavanozdaki et ve balikta kurtçuklarin bulunmadigini, buna karsilik açik olanda ise kurtçuklarin varligini göstermistir. Tülbent üzerinde sinek kurtlarinin bulunmasina ragmen içinde olmamasi, kurtçuklarin sinekler tarafindan meydana getirildigi görüsünü de dogrulamistir. Arastirici, ayrica, kurtçuklardan sineklerin meydana gelisini de izlemistir. Böylece, etin belli bir süre içinde kurtçuklara dönüsü veya etin kurtçuk meydan getirmesi görüsü (spontan generasyon) gölgelenmis ve reddedilmistir. Biyolog, sair ve lisanci F. Redi, 105 parazitin tanimini yapmistir. Bu görüsleri nedeniyle kilisenin zulmüne ugramis, odun yiginlari üzerine konulmus ve kanaatini degistirmedigi için de yakilmistir. Louis Joblot (1647-1723), samani iyice kaynattiktan sonra ikiye ayirarak kavanozlara koymus, bunlardan birinin agzini iyice kapatmis digerini ise açik birakmistir. Açik olan kavanozda birkaç gün sonra mikroorganizmalarin üredigini buna karsilik, kapali olanda ise böyle bir seyin olusmadigini gözlemistir. Böylece, L. Joblot, bir kere ve iyice kaynatilarak her türlü canlidan arindirilmis bir ortamda, yeniden bir canlinin olusamadigi ve canlilarin kendiliginden meydana gelemeyecegini ispatlamistir. Bu da, F. Redi gibi, dekompoze hayvan ve bitki materyallerininin kendiliginden bir canli olusturma yetenegine sahip olamayacagi görüsünü benimseyerek, abiyogenezis teorisinin olanaksiz oldugunu kanitlamistir. John Needham (1713-1781), yaptigi denemede, isitilmis ve agzi kapatilmis et suyu içeren bir kavanozda bir süre sonra canlilarin üredigini gözlemis ve benzer durumu isitilmamis ve agzi kapali olan kavanozda da saptamistir. Bu arastirmasina göre, J. Needham, spontan generasyon görüsüne katilmis ve desteklemistir. Buna göre, isitilarak tahrip edilen mikroorganizmalar sonradan yeniden hayatiyet kazanarak kendiliginden olusmuslardir. Hayvansal dokularin "vejetatif veya vital kuvvetleri" olduklarina ve cansiz materyalleri canli hale getirebilecegine de inanmistir. Bu görüs, bir natüralist olan Buffon tarafindan da dogrulanarak kabul görmüstür. Lazzaro Spallanzani (1729-1799), yaptigi bir seri deneme sonunda, J. Needham'in çalismalarini ve görüsünü reddetmis ve isitmanin yeterli derece ve sürede yapilmadigini ileri sürmüstür. L. Spallanzani, isitmanin yeterli derece ve sürede yapildiktan ve agizlarinin, mantar yerine, atesle ve hava girmeyecek derecede kapatilmasi halinde herhangi bir animakulatin meydana gelmeyecegini açiklamistir. Needham, bu görüse karsi olarak, uzun süre kaynatmanin organik maddelerdeki "vejetatif veya vital kuvvetleri" yok edecegini ve spontan jenerasyon için gerekli olan güçleri ortadan kaldiracagini belirtmistir. Buna karsi, Spallanzani verdigi yanitta, ayni süre kaynatilmis et suyu veya saman enfusyonunun agzi açik birakilirsa belli bir süre sonra içinde tekrar animakulatlarin meydana gelecegini belirtmistir. Lavoisier, 1775 yilinda yaptigi denemelerde havada oksijenin varligini saptamis ve bunun yasam için gerekli oldugunu vurgulayarak, spontan jenerasyon teorisinin dogrulugunu iddia etmistir. Arastirici, kaynatmakla siselerin içindeki oksijenin disari çiktigini buna bagli olarak da et suyu veya saman infusyonunda canlilarin olusmadigini da savunmustur. Schulze ve Schwann, Lavoisier'in oksijeni bulmasindan yaklasik 61 yil sonra, yaptiklari bir seri çalismada, eger hava sülfürik asit veya potasyum hidroksit solüsyonundan (Schulze, 1836) veya çok sicak bir cam tüpten (Schwann, 1837) geçirildikten sonra et suyuna veya saman infusyonuna gelirse herhangi bir mikroorganizmanin üremedigini gözlemlemislerdir. Ancak, bu denemeye karsi çikanlar, havanin bu tarz isleme tabi tutulmasinin havadaki hayat jermlerinin asitten veya sicak cam tüpten geçerken tahrip olacaklarini ve böylece abiyogenezis'in olusamayacagini savunmuslardir. Schwann, ayrica oksijenin yalniz olarak, ortamda mikroorganizmalarin olusmalarina veya üremelerine yeterli olamayacagini da açiklamistir. Schröder ve von Dush, 1854 ile 1861 yillari arasinda, Schulze ve Schwann'in arastirmalarina bazi yenilikler ilave etmislerdir. Söyle ki, bunlar havayi asit veya isitilmis tüpten geçirmek yerine, pamuktan geçirerek et suyu veya saman infusyonuna vermisler. Deneme sonunda, ortamda herhangi bir animakulata rastlamadiklarini açiklamislardir. Bu deneme ile , hem pamugun mikroplari tutabilecegini ve hem de asit veya sicak havanin animakulat olusmasina zararli bir etkisi olmadigini da göstermislerdir. Ancak, bazilari, havadaki tozlarda bulunan bazi canlilarin, havanin asit veya alkaliden veya pamuktan geçirilisi sirasinda tutulacagini iddia etmislerdir. Sonralari, pamukta da mikroorganizmalarin bulunabilecegi ortaya konulmustur. John Tyndall (1820-1893), ön tarafinda cam bulunan agaçtan bir kültür kutusu hazirlamis ve iki yan tarafina camdan küçük pencereler yerlestirmis ve tozlari tutmasi için de , kutunun iç yüzü gliserinle sivamistir. Yandaki küçük camdan gönderilen isik (isinlari) yardimi ile kutunun içinde tozlarin bulunmadigi saptanmis ve optikal olarak temiz bulunmustur. Sonra kutu içindeki tüplere pipetle steril besiyerleri konmus ve tüpler alttan isitilarak steril hale getirilmistir. Tüpler içindeki besiyerleri oda sicaklik derecesine kadar ilitildiktan sonra besiyerlerinin steril olarak kaldiklarini gözlemlemistir. Bu denemenin sonucuna göre, toz içermeyen havanin mikropsuz olacagi görüsüne varilmistir. Tyndall, yaptigi bir seri çalismada, mikroorganizmalarin iki formunun olabilecegine dikkati çekmistir. Termolabil (vejetatif formlar) ve termostabil (sporlu mikroorganizmalar). Fraksiyone sterilizasyonla sivilarin mikroorganizmalardan arindirilmasinin mümkün olabilecegini de saptayarak kendi adi ile anilan Tindalizasyon (Tyndallization, fraksiyone sterilizasyon) yöntemini bulmustur. 06. Hastaliklarda Jerm Teorisi Mikroorganizmalarin bulunmasindan sonra, spontan jenerasyon (abiyogenezis) teorisi, yavas yavas yerini, bir canlinin diger canlidan türeyebilecegi (biyogenezis) görüsüne birakmistir. Viyanali bir doktor olan Marcus Antonius von Plenciz, 1792'de, "Hastaliklarda Jerm Teorisi" adi altinda yayimladigi bir eserinde konu üzerinde görüslerini açiklamis ve her hastaligin kendine özgü görülmeyen bir nedeni olduguna dikkati çekmistir. Louis Pasteur (1822-1895), kuduz, tavuk kolerasi ve antraks hastaliklari üzerinde bazi arastirmalar (korunma ve asilama) yapmis ve ayrica sarap ve biranin maya hücreleri tarafindan fermente edildigini de (fermentasyon) saptamistir. Bunlarin yani sira, optimal kosullarin disinda üretilmeye çalisilan mikroorganizmalalar da bazi degismelerin meydana gelebilecegini, özellikle, virülensde olusan varyasyonlarin, asilama ile koruyucu etki göstereceklerini saptamistir. Pasteur, 1879-1880 yillari arasinda, hayvanlardaki antraks hastaligina karsi hazirladigi iki attenüe susla (Pasteur-1 ve -2) bagisiklik elde etmis ve koyunlari bu hastaliktan korumustur. Bu çalismalarin yani sira, 1885'de, kendi yöntemi ile virüs fiksli tavsan omuriligini bir desikatöre uygun bir süre (8-14 gün) koyarak kurutmus ve böylece hazirladigi asi ile korunmanin mümkün olabilecegini ortaya koymustur. Bu konu üzerinde de Paris'te bir konferans vermistir. Fermentasyon üzerindeki çalismalari sonunda da, Pasteur asagidaki esaslari ortaya koymustur: 1) Bira veya sarapta meydana gelen her degisme, bunlari fermente eden veya bozan mikroorganizmalar tarafindan ileri gelmektedir. 2) Fermente eden etkenler, hava, kullanilan alet ve maddelerden gelmektedirler. 3) Bira veya sarap herhangi bir mikroorganizma içermezse, hiç bir degisiklige ugramaz. Pasteur, yaptigi çalismalarin sonucuna göre, kendi adi ile anilan pastörizasyonun esasini da kurmustur. Bir Ingiliz cerrahi olan Joseph Lister (1827-1912), Pasteur 'ün prensiplerini cerrahiye uygulamistir. Operasyonlarda dezenfektan bir maddeye (asit fenik) batirilmis sargilar kullanarak infeksiyonun önüne geçmistir. Böylece, Lister cerrahide, antiseptiklerin önemini ve antisepsinin yerini ortaya koymustur (1852). Schoenlein, 1839'da, deri hastaliklarindan olan favus ve pamukçuk'un mantarlardan ileri geldigini saptamistir. Edwin Klebs (1834-1913), Löffler ile birlikte difteri hastaliginin etkenini izole etmeyi basarmislardir. Bilim adami, bunun yanisira, travmatik infeksiyonlar, malarya ve kursun yaralari üzerinde de bazi faydali çalismalar yapmistir. Hayvanlarda da, deneysel olarak, ilk tüberkulozis lezyonlarini olusturmayi basarmistir. Karl Joseph Eberth (1835-1926), insanlarda tehlikeli bir hastalik olan tifonun etkenini (Eberthella typhosa) bulmustur. Robert Koch (1843-1910), mikroorganizmalari saf üretebilmek için kati besiyerlerini gelistirmis ve karisik kültürlerden saf kültürler elde etmeyi basarmistir. Böylece, bakteriyolojiye yeni teknikler getirmistir. Koch, ayni zamanda, hastaliklar üzerinde de bazi kriterler ortaya koymustur. Bunlar da "Koch postulatlari" olarak bilinmektedir. 1) Hastaliklar spesifik etkenler tarafindan olusturulurlar, 2) Etkenler izole edilmeli ve saf kültürler halinde üretilmelidir, 3) Duyarli saglam deneme hayvanlarina verildiklerinde hastalik olusturabilmeli ve 4) Tekrar saf kültürler halinde üretilebilmelidirler. Bu 4 görüs uzun yillar geçerliligini korumustur. Koch, mikroorganizmalari anilin boyalari ile boyama yöntemlerini de gelistirmis ve bakteriyoloji alaninda uygulanabilir hale getirmistir. Antraks hastaliginin bulasma tarzini ve etkeninin sporlu oldugunu da saptayan Koch, 1882'de, tuberkulozis'in etkenini de izole edebilmis ve sonralari, tuberkulozlu hastalarin teshisinde çok yararlar saglayan bir biyolojik madde olan "Tüberkülin"i de hazirlamistir. Otto Obermeier (1843-1873), 1873' de, Borrelia recurrentis 'i bulmustur. Karl Weigert (1845-1904) bakterileri boyamada anilin boyalarini kullanmistir. B. Bang (1848-1932), sigirlarda yavru atimlarina yol açan hastaligin etkenini (Brucella abortus) bulmustur. Agostino Bassi, 1835' de, ipek böcegi hastaligini açiklamis ve bunun kontak ve gida ile bulastigini göstermistir. George Gaffky (1850-1918), tifonun etkenini (E. typhosa) saf kültürler halinde üretmis ve tifonun etiyolojisini açiklamistir. John Snow, 1839'da, epidemik koleranin sulardan bulastigina dikkati çekmistir. William Welch (1850-1939), 1892'de, gazli kangrenin etkenini (C. welchii) ve Hansen'de 1874'de, lepra hastaliginin etkenini (Hansen basili, M. johnei) tanimlamislardir. Nicolaier, 1885'de, topraktan tetanoz mikrobunu izole etmis ve hastaligi hayvanlarda deneysel olarak meydana getirmistir K. Shige, 1898'de, dizanteri basilini bulmus M.leprae'nin de kültürü üzerinde çalismalar yapmistir. Friedrich Löffler (1852-1915), Koch ile birlikte difteri basilini üretmeye çalismislar ve 1884'de saf kültürler halinde üretebilmislerdir. W. Löffler, 1882'de, domuz erisipel etkenini bulmustur. David Bruce (1855-1931), malta hummasinin, nagana hastaliginin ve uyku hastaliginin etkenlerini bulmus ve uyku hastaliginin çeçe sinegi ile bulastigini da ortaya koymustur. Ronald Ross (1857-1923), 1896'da, Plasmodium malaria 'nin yasam tarzini saptamis ve bunu aydinlatmistir. Theobald Smith (1859-1934), Texas sigir hummasinin kene ile nakledildigini saptamistir. Albert Neisser (1885-1916), insanlarda gonore'nin etkeni olan gonokok'lari bulmustur. Hideye Noguchi (1878-1928), kültür teknikleri ve hayvan zehirleri üzerinde çalismalar yapmistir. Treponema pallidum 'u da saf kültürler halinde üretmistir. 07. Virolojinin Tarihçesi Bakteriler üzerinde yapilan çalismalardan sonra, nedenleri saptanamayan bir çok hastaliklar konusunda da yogun arastirmalar yapilmaya baslanmistir. Bakterileri geçirmeyen filtrelerin bulunmasi, bu yöndeki incelemeleri daha kolay hale getirmistir. Pasteur, Berkefeld ve Chamberland kendi adlari ile taninan ve bakterileri tutan filtreleri yapmayi basarmislardir. Iwanowski, 1892'de, ilk defa tütün mozaik virusunu bulmustur. Yine ayni yillarda, Löffler ve Frosch, sigirlarda önemli hastaliklara yol açan sap virusunun filtreleri geçtigini saptamislardir. Nicolle ve Adil Bey, 1899'da, sigir Vebasi virusunun filtreleri geçebildigini açiklamislardir. Tword, 1915'de, Ingiltere'de ve d'Herelle, 1917'de, Fransa'da bakteriyofajlari bulmuslar ve bunlarin süzgeçleri geçtiklerini göstermislerdir. W. Reed ve ark.1901'de, insanlarda sari humma (Yellow fever) hastaligi etkeninin filtreleri geçtiklerini kanitlamislardir. 08. Immunolojinin Tarihçesi Insan ve hayvanlari hastaliklardan koruma çalismalari çok öncelere kadar uzanmaktadir. Bu yöndeki ilk adimi, bir Ingiliz olan, Edward Jenner (1749-1823) atmistir. Bagisikligin kurucusu olarak tanilan arastirici, sigir çiçegi alan bir sahsin, insan çiçegine karsi bagisik olacagini ve hastalanmayacagini göstermis ve asilama ile immunitenin elde edilebilecegi görüsünü yerlestirmistir. Pasteur de ayni tarzda, hazirladigi birçok asilarla (tavuk kolerasi, koyun antraksi ve kuduza karsi yaptigi asilar) ve bunlarla elde ettigi bagisiklik o devir için çok önemli buluslar arasindadir. Emil Roux ve Alexander Yersen, 1888'de, difteri toksinini bulduktan sonra, Emil Von Behring de difteriye karsi antitoksin elde etmeyi basarmistir. August Von Wassermann (1886-1925), frenginin teshisinde Bordet Gengou, fenomenini uygulamis ve kendi adi ile bilinen Wassermann reaksiyonunu ortaya koymustur. Nuttal, 1888'de, hayvanlarin kaninda B. anthracis için bakterisidal etkiye sahip maddelerin bulundugunu saptamistir. Paul Ehrlich (1854-1916) ve Bordet bagisikligin humoral ve Elie Metschnikoff (1845-1916) da hücresel (fagositoz) yönlerini açiklamis ve bunlarin önemi üzerinde durmuslardir. Jules Bordet (1871-1962) ve Gengou ile birlikte komplement fikzasyon reaksiyonunu bildirmislerdir. Albert Calmette (1868-1933) ve Guerin ile birlikte BCG 'yi hazirlamislardir. H. Durham ve Max Gruber, 1896'da, mikroorganizmalarin spesifik antiserumlar tarafindan aglutine olduklarini göstermislerdir. 09. Mikolojinin Tarihçesi Mantarlarin varliginin taninmasi çok eski zamanlara (Devonian ve Prekambium) kadar uzanmaktadir.Bitkiler üzerinde mantarlarin üredigini ve bazi zararlara neden olduguna ait ilk bilgileri Vedas (MÖ. 1200) vermektedir. Romalilar zamaninda, depolarda saklanan danelerde ve tahillarda mantarlarin üredigini Pliny (MS. 23-79) bildirmektedir. Yine bu dönemlerde, mantarlara ait bazi resimlerin çizildigi, Pompei'deki kazilardan anlasilmaktadir. Loncier, çavdar mahmuzunu (Claviceps purpurae mantarinin sklerotiumu) taniyan ve bunun morfolojik özellikleri hakkinda bilgi veren kisi olarak taninmaktadir (1582). Clusius (1526-1609), mantarlar üzerinde arastirmalar yapmis ve elde ettigi bilgileri 28 sayfalik bir monograf içinde yayimlamistir. Gaspard Bauhin (1560-1624), mantar üzerinde arastirmalar yapmis ve hazirladigi "Pinax Theatri Botanici" adli eserinde 100 kadar mantarin özelliklerini bildirmistir (1623). Marcello Malpighi (1628-1694), Rhizopus, Mucor, Penicillium ve Botrytis gibi bazi mantarlar üzerinde arastirmalar yapmis ve bunlara iliskin özlü bilgiler vermistir (1679). Van Sterbeeck (1630-1693), yenilebilen mantarlarla zehirli olanlar arasinda ayrimlari belirtmeye çalismis ve bu konudaki görüslerini yayimlamistir. Hooke (1635-1703), mantarlar üzerinde birçok arastirmalar yapmis ve bunlari "Micrographia" adli yapitinda resimleyerek Royal Society 'ye sunmustur. Arastirici, özellikle, iki mantar üzerinde (Phragmidium ve Mucor) incelemeler yapmis, bunlarin bitki olduklarina ve bitkilerden orijin aldiklarina inanmistir (1667). Tournefort (1656-1708), çesitli mantarlar ve likenler üzerinde incelemeler yaparak bunlari, morfolojik ve diger karakterlerine dayanarak, 6 gruba (1-Fungus, 2-Boletus, 3-Agaricus, 4-Lycoperdon, 5-Coralloides, 6-Tubira) ayirmis ve "Element de Botanique" adli eserinde yayimlamistir (1694). Sebastian Vaillant (1669-1750), mantarlar üzerinde ayrintili çalismalar yapmis, bazilarini alfabetik olarak klasifiye etmis, önemli gördüklerinin de resimlerini çizmis ve "Botanicon Parisiense" adli kitabinda açiklamistir (1727). Antonio Micheli (1679-1737), mantarlar üzerinde yaptigi inceleme ve arastirmalari grup isimlerinden yararlanarak siniflandirmis (Clavaria, Clathrus, Geaster, Lycoperdon, Phallus, Tuber gibi) ve bunlari "Nova Genera Plantarum" adli eserde yayimlamistir (1729). Arastiricinin, çizdigi resimler ve verdigi bilgilere dayanarak spesifik identifikasyon yapilabilir. Bu eserin çok degerli oldugu ve mantarlarin ayrimlarinda bazi önemli anahtarlari açikladigi bildirilmektedir. Kendisinin yaptigi özel klasifikasyonda bazi büyük mantarlara özel yer vermis ve bunlari Fungi lamellati (Agaricaceae), Fungi porosi (Polyporaceae) ve Fungi romosi (Clavariaceae) diye 3 gruba ayirmistir. Botrys ve Rhizopus gibi bazi mantarlari da saf kültürler halinde üretmistir. Carl Von Linne (Linneaus, 1707-1778), bir botanikçi olan bu arastirici, kendi yaptigi klasifikasyon içinde mantarlari "Species Plantarum" adli yapitinda "Cyrptogamia Fungi" sinifinda toplamis ve Agaricus, Boletus, gibi bazi generik isimler de kullanmistir. (l753). Gleditsch (l7l4-l786), mantarlarin sporlari ve sporulasyon özellikleri üzerinde arastirma ve incelemeler yapmis ve bu karakterlerine göre mantarlari 2 ana bölüme ayirmistir. Builliard, Discomycetes, Pyrenomycetes, Mucorales ve Mycetozoa 'lar üzerinde arastirmalar yapmis ve bulgularini "Champignon de France" de yayimlamistir (l79l). Hendrik Persoon (l76l-l836), mantarlara iliskin incelemelerini, taksonomik bir yapit olan "Synopsis Methodica Fungorum" da toplamistir (l80l). Ayrica kendisinin 3 volum halinde olan, l822 ve l828 yillarinda yayimlanan "Mycologia Europaea" adli çalismalari da vardir. Arastirici, mantarlari 2 sinif, 6 ordo ve 71 genusa ayirarak bir klasifikasyon yapmistir. Schweinitz (l780-l834), Kuzey Amerika'da, North Carolina eyaletinde 3000 ve Pennsylvania'da da l200 mantar toplayarak incelemis ve bunlari "Synopsis Fungorum Carolina Superioris ve Synopsis Fungorum in America Boreali Medico Degantium" adli yayinlarda açiklamistir. Elias Fries (1794-1878), bugünkü mantarlar sistematiginin esasini kurmus ve Isveç'de de mantar klasifikasyonu ile bir fonun kurulmasinda önderlik etmis olan arastirici çalismalarini "Systema Mycologicum" adli eserde toplamistir. Josef Cordo (l809-l849)' nun, mantarlar üzerindeki çalismalarini 6 cilt halinde olan "Icones Fungorum Hucusque Cognitorum" adi altinda yayimlanmistir. Anton de Bary (1831-1888), mantarlarin yasam dönemleri üzerinde incelemeler yaparak bir çok kapali noktalari aydinliga kavusturmustur. Mycetozoa 'nin yasam siklusunu dönemini 1859'da açiklamistir. Harton Peck (1833-1917) de 2500 tür mantar üzerinde çalismistir. Andrea Saccardo (1845-1920), mantarlar üzerinde 1880 yilina kadar yapilmis inceleme ve arastirmalari, 25 cilt halinde olan ve ilki 1882'de yayimlanan "Sylloge Fungorum" adli eserde toplamistir. Son cilt, ölümünden sonra 1931'de yayimlanmistir. Bu çalismalarda, 80.000 mantar türü bildirilmistir. Tulasne'nin güzel resimlerle süslenmis olan "Selecta Fungorum Carpologia" adli eseri 1861-1865 yillari arasinda ve 3 cilt halinde basilmistir. Bunlardan sonra bir çok arastirici, mantarlar üzerinde çok degerli çalismalar yapmis ve bunlari siniflandirmaya çalismislardir. Patouillard, Quelet, Cooke (1871-1883), Massee (1892-1895), Bresadola (1927-1932), ayrica, Engler, Prantl, Rabenhorst, Sydows, Oudemans, Seymour, gibi arastiricilar da mantarlar üzerinde inceleme ve çalismalar yapmislardir. Mantarlar, bitkilerde oldugu gibi, insan ve hayvanlarda da çesitli hastaliklara (mycoses) neden olurlar. Mantarlarin bitkilerde hastalik olusturduguna dair birçok yayinlar vardir (Fontana (1767), Prevot (1807), Berkeley (1832), Kühn (1858), de Bary (1866), Hartig (1874), Woronin (1878), Whetzel (1918). Lafar, mayalarin endüstride kullanilmalari hakkinda, "Technische Mykologie (1904)" adli yayinda bilgi vermistir. Baliklarda (sazanlarda) Saprolegnia türü mantarlardan ileri gelen infeksiyonlar hakkindaki bilgilere, 1748 yilinda yayimlanan "Transactions of the Royal Society" adli bilimsel dergide rastlanmaktadir. Richard Owen (1804-1892), Avian Aspergillosis üzerinde çalismalar yapmis ve bulgularini nesretmistir (1832). Agostina Bassi (1773-1856), ipek böceklerindeki mantar hastaliklari üzerinde çalismalar yapmis ve bulgularini bir monografta ayrintili olarak açiklamistir (1837). Berg (1806-1887), insanlardaki Candida albicans infeksiyonlari üzerinde arastirmalar yapmis ve bulgularini yayimlamistir. David Gruby (1810-1898), insanlardaki Dermatophyt infeksiyonlari ile ilgilenmis ve bunlara ait bir rapor düzenlemistir. Sabouraud (1864-1938), medikal mikoloji üzerinde çok degerli çalismalar yapmis ve bu konuda da bir kitap yayimlamistir (1910). Bugün mantarlarin çesitli yönlerini (morfolojik, fizyolojik, biyokimyasal özellikleri ve antijenik yapilari, patojeniteleri epidemiyolojileri ve diger karakterleri) açiklayan çok degerli arastirmalar yapilmakta ve henüz kesinlik kazanmamis veya tam olarak bilinmeyen yönleri aydinlatilmaya çalisilmaktadir. 10. Mikrobiyoloji Alaninda Nobel Ödülü Kazanan Bilim Adamlari 1901 Emil Von Behring Difteri antitoksini ve serumlarla sagaltma yöntemleri 1902 Sir Ronald Ross Malarya üzerinde arastirmalar 1905 Robert Koch Verem etkeninin bulunmasi ve verem üzerinde çalismalar, bakteri kültürleri üzerine arastirmalar 1907 C.L.A Laveran Hastalik yapan protozoonlar 1908 Elie Metschnikoff Bagisikligin hücresel yönü ve fagositoz 1908 Paul Ehrlich Humoral bagisiklik 1913 C.Robert Richet Allerji ve anaflaksi 1919 Jules Bordet Bagisiklik ve komplement fikzasyon reaksiyonu 1928 C.J.H. Nicolle Tifüsun naklinde bitlerin rolü 1930 Karl Landsteiner Insan kan guruplari üzerinde arastirmalar 1939 Gerhard Domagk Prontosilin bulunmasi ve antibakteriyel etkisi 1945 Sir Alexander Fleming, E.Boris Chain, Sir H.Walter Florey Penicilinin bulunmasi ve etkileri 1948 P.Hermann Müller DDT’nin bulunmasi. 1951 Max Theiler Yellow fever asisi üzerinde arastirmalar 1952 S.Abraham Waksman Streptomisinin bulunmasi 1954 J.Franklin Enders, Thomas H.Weller, Frederich C.Robbins Poliomiyelit virusu ve diger viruslarin hücre kültürlerinde üretilmeleri. 1958 Joshua Lederberg, George V.Beadle, Edward L.Tatum Mikrop genetigi 1960 Sir F.M.Burnet Transplante dokularin immunolojik kontrolleri. 1965 Andre Lwoff, Jacques Monod, François Jacob RNA’nin bulunmasi. 1966 Charles Huggins, Peyton Rous Kanser ve kanatli sarkomu üzerinde çalismalar 1967 R.Granit, H.R.Hartlin, G.Wald Fotoreseptörlerin fonksiyonlari. 1968 R.W.Holley, H.Gobind, M.W. Nirenberg protein sentezinde genetik kodlarin çalismasi. 1969 M.Delbrück, A.D.Hershey, E.Luria Bakteriyofajlarin hakkinda yayinlar 1970 J.Axelrod. S.Bernard Katz, Ulf von Euler, Earl W.Sutherland AMP’nin metabolizmadaki önemi 1971 E.Sutherland AMP’nin metabolizmadaki önemi 1972 Porter,R.R, Edelman,G.M Immunoglobulinler üzerinde sütrüktürel çalismalar. 1973 K.Von Frisch, K.Lorenz, N.Timbergen Evolusyon ve analoji üzerinde çalismalar 1974 C.de duve, G.E.Palade Hücre anatomisi,sitokrom ve mitokondrialar hakkinda yayinlar 1975 D.Baltimore, R.Dulbeco, H.M. Temin RNA’ya bagli DNA polimerase üzerinde 1976 Baruch Blumberg Serum hepatiti. 1976 Daniel C.Gajdusek Latent virus hastaliklari 1977 Rosalyn Yellow Radio immunoloji üzerinde çalismalar 1977 Andrew Schally, Roger Guillemin Üç ayri hormon serbest birakma faktörleri üzerinde arastirmalar 1978 N.O.Smith, D.Nathans, W. Arber Restriksiyon enzimlerinin bulunmasi ve bunlarin kullanilmasi 1980 B.Benarerraf, G.Snell, J.Dausset Histokompatibilite antijenlerinin bulunmasi 1980 P. Berg, W.Gilbert rekombinant DNA teknolojisinin gelismesi 1980 F.Sanger DNA sekans analizlerinin yapilmasi. 1982 A.Klug Kristalografik elektron mikroskobun gelismesi, virus yapisinin aydinlatilmasi 1984 C.Milstein, G.J.F.Köhler Monoklonal antikorlarin elde edilmesi. 1984 N.K.Jerne Immunolojide teorik çalismalar 1986 E.Ruska Transmisyon elektron mikroskobunun gelismesi 1987 S.Tonegawa antikor çesitliliginin genetik prensipleri. 1988 J.Deisenhofer, R.Huber, H.Michel Bakteri membranlarnda fotosentetik reaksiyon merkezleri. 1988 G.Elion, G.Hitching Kanser, malarya ve viral infeksiyonlarin tedavisinde kullanilan ilaçlarin gelistirilmesi 1989 J.M.Bishop, N.E.Varmus, S.Altman Onkogenlerin bulunmasi 1989 T.R.Cech Katalitik RNA’larin bulunmasi 1990 J.E.Murray Immunsupresif ajan kullanarak transplantasyon 1992 E.H.Fisher, E.G.Krebs Protein kinasenin bulunmasi 1993 R.J.Robets, P.A.Sharp DNA’nin farkli segmentlerindeki genler 1993 K.B.Mullis PCR’nin bulunmasi 1993 M.Smith Site directed mutagenezis Türkiye 'de Mikrobiyolojinin Kurulmasi Yurdumuzda mikrobiyoloji alanindaki ilk çalismalar asi yapmakla baslamis ve buna da çiçek hastaligi ve asi hazirlama çabalari önderlik etmistir. Bu yöndeki aktiviteler, 1840 yilindan sonra giderek gelismis ve çiçek asisi hazirlanarak basari ile kullanilmistir. Pasteur 'ün, Paris Tip Akademisi'nde, 27 Ekim 1885'de verdigi "Isirildiktan Sonra Kuduzdan Korunma" adli bildiri dünyada büyük yankilar yarattiktan ve ayni teblig 31 Ekim 1885'de Istanbul'da yayimlandiktan sonra, kuduz üzerindeki çalismalari yakindan izlemek amaci ile, Osmanli Hükümeti tarafindan, Tibbiye Mektebi Dahiliye Muallimi Dr. Aleksander Zoeros Pasa baskanliginda, Veteriner Hekim Hüseyin Hüsnü ve Zooloji Muallimi Dr. Hüseyin Remzi Beyler 'den olusan üç kisilik bir heyet, Pasteur 'ün yanina Fransa'ya gönderildi (1886). Bu heyetle birlikte, Padisah Abdulhamid, Pasteur 'e verilmek üzere, bir nisan ve laboratuarina yardim için 1000 altin göndermistir. Paris 'de Pasteur 'ün yaninda 6 ay kalan ve kuduz hastaligi asisinin hazirlanmasi ve kullanilmasi konularindaki tüm bilgileri ögrenen heyet, yurda döndükten sonra da bu hastalik üzerindeki "Daül-kelb Ameliyathanesi"nde asi yapimina baslamistir (1887). Vet. Hekim Hüseyin Hüsnü ile Dr. Hüseyin Remzi Beyler de, Pasteur ve Chamberland'in eserini "Mikrob Emrazi Sariye ve Sarboniyenin Vesaili Sirayeti ve Usulü Telkihiyesi" adi altinda tercüme etmisler ve yayimlamislardir (1887). Ayrica, Dr. Remzi Bey, "Kuduz Illeti ve Tedavisi" adli 19 sayfalik bir brosür nesretmistir (1890). Tip Mekteplerinde 1891'de okutulmaya baslanan bakteriyoloji dersi, Veteriner Mekteplerinde ancak 1893'den sonra ve Dr. Rifat Hüsamettin Bey tarafindan okutulmaya baslanmistir. Istanbul 'da 1893 'de, kolera vakalarinin çikmasi üzerine, önleyici tedbirlerin alinmasi ve hastaligin üzerinde gerekli arastirmalarin yapilmasi için, Fransa'dan Dr. Andre Chantemesse getirildi. Istanbul'da 3 ay kadar kalarak kolera konusunda çok olumlu çalismalar yapan bu kisiye, Rutbei Üla ile nisan verildi. Bu arada, Dr. Chantemesse, ülkemizde bir bakteriyoloji laboratuarinin kurulmasi üzerinde israrla durdu ve böyle bir müessese kuruldugunda bunun idaresi için Dr. Maurice Nicolle'i tavsiye etti. Dr. M. Nicolle, 1893'de, Istanbul'a geldi ve Gülhane'de Tibbiye Mektebi civarindaki bir binada çalismaya basladi. Bu laboratuar, sonradan, Bakteriyolojihane-i Osmani olarak adlandirildi ve Dr. Nicolle buranin müdürlügüne atandi. Çalisma konularinin fazla olmasi nedeniyle, bu bina da sonralari dar gelmege basladi. Bu yüzden, Nisantasi 'ndaki Süleyman Pasa konagina nakledildi. Bu yeni binada, bakteriyoloji üzerinde kurslar düzenleyen Dr. Nicolle, doktor kursiyerlerin yani sira çok takdir ettigi Veteriner Dr. Refik Güran'i da seçerek istirak ettirdi. Dr. Maurice Nicolle (1862-1920), Istanbul'da kaldigi 8 sene içinde, laboratuarlari basari ile yürütmüs, çok kiymetli çalismalarda (sigir vebasi, keçi ciger agrisi, sark çibani, P. aeruginosa'nin pigmenti, sigir babesiozu, pnömokok, vaksin virusu) bulunmus ve ülkemizde mikrobiyolojinin yerlesmesi ve gelismesinde büyük katkilari olmustur. Osmanli Imparatorlugu zamaninda bakteriyoloji ve viroloji çalismalari hem insan hekimligine ait çesitli müesseselerde (Telkihhane-i Sahane, Daülkelb Ameliyathanesi, Bakteriyolojihane-i Sahane, Mekteb-i Tibbiye-i Askeriye ve Mektebi Tibbiye-i Mülkiye ve diger laboratuvarlarda) ve hem de Veteriner Hekimlige ait organizasyonlarla (Bakteriyolojihane-i Baytar'i, Baytar Mektebi Alisi, Askeri ve Sivil Baytar Mektepleri, Pendik Bakteriyoloji hanesi ve diger müesseselerde) yürütülmüstür. Dr. M. Nicolle 'den baska, çalismalari ve buluslari ile adlari dünya literatürlerine geçmis çok degerli meslektaslarimiz bulunmaktadir. Bunlardan kisaca bahsetmek yerinde olur. Ahmet Refik Güran (1870-1963), Dr. M. Nicolle ile birlikte 7 sene gibi uzun bir süre çalismis, mikrobiyoloji alaninda birçok degerli çalismalar yapmis ve yayimlamistir. Bakteriyolojihane-i Osmani'de; sularda bulunan kolibasillerin envari, Vebaibakari hastaligi ve serumu, lökosit sayimi, keçi ciger agrisi hastaligi; Baktriyolojihane-i Baytari'de: Barbon asisi, sarbon asisi, sarbon serumu, tavuk kolerasi asisi, kuru serum, kan alma ve vermeye yarayan alet ve periton kanülü yapan Dr. Refik Güran, ayrica ilk Türk peptonunu da yapmayi basarmistir. Yukarida bildirilen çalismalari yani sira, daha birçok önemli incelemeleri ve ihtira berati almis oldugu buluslari da olan Dr. Refik Güran, yurdumuzda bakteriyolojinin kurulmasinda, gelismesinde, bakteriyoloji laboratuar veya enstitülerinin açilmasinda, bakteriyologlarin yetismesinde çok büyük katkilari olmus bir bilim adamimizdir. Adil Mustafa Sehzadebasi (1871-1904), Dr. R. Güran'in çok yakin çalisma arkadaslarindan biridir. Dr. Nicolle ile birlikte ve özellikle sigir vebasi üzerinde yaptiklari arastirmalarla kendilerini dünya literatürlerine geçirmislerdir. Bu iki bilim adami, ilk defa, sigir vebasi etkeninin filtreleri geçtigi ve süzüntünün hastalik yapici nitelikte oldugunu deneysel olarak ispat etmislerdir (1897). Fransa'da Prof. Nocard'in yaninda da çalisarak difteri serumu hazirlayan Dr. Adil Bey, ayrica, malleus ve piroplasmosis üzerinde de degerli arastirmalar yapmistir. Kendisi, sivil ve askeri okullarda da bakteriyoloji ögretmenliginde bulunmustur. Nikolaki Mavridis (Mavraoglu) (1871-1955), Veteriner mikrobiyoloji alaninda çok degerli çalismalar yapmistir. Özellikle, sigir vebasi, keçi ciger agrisi, malleus, tavuk kolerasi, barbon ve diger hayvan hastaliklari üzerinde kiymetli çalismalari vardir. Mavraoglu, Refik Güran ve Adil Sehzadebasi Bey 'lerin çok yakin çalisma arkadaslaridir. Osman Nuri Eralp (1876-1940), bakteriyoloji ve viroloji üzerinde degerli arastirmalar yapmis bir bilim adamidir. Çalismalarini, özellikle, tüberküloz, tüberkülin, sarbon, sigir vebasi, kolera, gonokok, frengi, sütte yasayan ve sütle bulasan mikroorganizmalar ve diger konular kapsamaktadir. Riza Ismail Sezginer (1884-1963), Baytar Yüksek Mektebinde salgin hastaliklar, bakteriyoloji ve gida kontrolü dersleri vermis, Istanbul mezbahasinin kurulmasinda önemli rol oynamis ve bunun laboratuvar sefi olmus ve ayrica kiymetli çalismalar yapmis olan bir bakteriyologumuzdur. Ahmet Sefik Kolayli (1886-1976), sigir vebasi virusunun insanlarda hastalik olusturmadigini, sigir vebasina tutulan hayvanlarin kesilerek etlerinin askerlere yedirilebilecegini, böyle etleri yiyenlerde hastalik görülmesi halinde kendisinin kursuna dizilmesini isteyen ve bu cesareti gösteren degerli bir bilim adamidir. Çatalca'da bulunan aç ve gidasiz askerlerin bu etleri yemesinden sonra Edirne sehri düsmandan bu askerler sayesinde kurtarilmistir. Sefik Kolayli Bey özellikle, sigir vebasina karsi serum hazirlamis ve böyle müesseselerde bulunmustur. Ayrica, tüberkülin, mallein, tavuk kolerasi ve barbon asilari da hazirlamis, sigir vebasi, antraksin teshisi, çiçek asisi, keçilerin bulasici salgin ciger agrisi üzerinde de çalismistir. Yukarida adlari bildirilen bilim adamlarinin disinda, kendilerini bu ise adamis daha birçok kiymetli bakteriyologlarimiz bulunmaktadir. Bunlar arasinda, Cafer Fahri Dikmen, Josef, Ahmet Hamdi, Ethem Eren, Mustafa Hilmi, Ibrahim Erses ve digerleri sayilabilir. Baslangiçta, hayvan hastaliklarina karsi hazirlanan asi ve serumlar ile insan hastaliklarini ilgilendiren biyolojik maddeler ayni bina içinde yapildigindan, Veterinerler ile Doktorlar birlikte çalismaktaydilar. Sonra is hacminin ve eleman miktarinin artmasi üzerine laboratuarlar birbirlerinden ayrilmak zorunda kalmistir. Bakteriyoloji ve viroloji alaninda, Osmanli Imparatorlugu zamaninda, çalismis, degerli arastirmalar ve yayinlar yapmis birçok doktorlar da bulunmaktadir. Bunlar arasinda, Hüseyin Remzi, Rifat Hüsamettin Pasa, Hasan Zühtü, Kemal Muhtar, Sait Cemal, Aleksandr Zoeros Pasa, Ahmet Sadi, Cemalettin Muhtar, Riza Arif ve digerleri. Bu kisilerin de ayni sekilde, yurdumuzda mikrobiyolojinin gelismesinde ve yerlesmesinde önemli katkilari olmustur. Prof. Dr. Mustafa Arda Kaynak : Temel Mikrobiyoloji

http://www.biyologlar.com/mikrobiyolojinin-tarihcesi-ve-tarihi-gelisimi

Söğüt Ağacı - Salicaceae (Söğütgiller)

En eski arkeolojik kalıntıları Anadolu neolitik çağ yerleşimlerinde bulunmuştur. Anadolu'nun ilk yazılı metinlerinin sahibi olan Hititler, şişiyamma adını verdikleri söğüt ağacından ilaç elde etmişlerdir. Eski Sümer ve Mısır kayıtlarında söğüt ağacı kabuğunun ağrı ve ateş tedavisinde kullanıldığı ile ilgili bilgiler yer almaktadır. M.Ö. 5.YY'da Yunanlı doktor Hipokrat söğüdün ilaç olarak kullanımından bahsetmiştir. Amerika yerlilerinin de söğüdü tedavi amacıyla sık sık kullandığı bilinmektedir. MÖ 8. ve 7. yüzyıl topluluklarından İskitlerin yere koydukları söğüt dallarıyla geleceği gördüğünü iddia eden kâhinleri vardı. İki bin yıl sonrasında Mevlânâ'nın Mesnevi eserinde "Parlak güneş benimle tutulsun. Söğüdün sırrı açıklansın." denmiştir. Kehanetten sorumlu Anadolu tanrısının Apollon'un aynı zamanda güneşi semolize etmesi, söğüt bağlantılı kehanet-güneş-Apollon kültüne işaret eder. Ayrıca Sepetçi söğüdü (Salix viminalis) ve Keçi söğüdü (Salix caprea) gibi söğüt türlerinin Anadolu'da antik dönemlerden beri sepet yapımında kullanılması, sepetin Antik Yunancasının mystica olması, söğüt ağaçları ile kehanet ve gizem kültleri arasındaki bağlantıyı gösterir. Nitekim kehanetin tanrısı Apollon ile ilgili ilahilerde söğütten söz edilir. Örneğin; Apollon, hırsızlığı saptanan Hermes'in ellerini, söğüt dallarından yapılan iplerle bağlamak ister. Ama ipler yere düşer, birbirine sarılır, çoğalır, yeniden söğüt ağaçlarına dönüşürler. Böylece Apollon, küçük kardeşinin tanrısal gücünü kabul eder. : "Böyle konuştu Apollon ve ellerini bağladı Hermes'in Söğütten yapılmış sağlam iplerle Ama ipler düştü yere ve ayaklarının dibinde hızla büyüdüler Birbirine dolanarak yere kök salan söğütler Hızla sarıp sarmaladılar ve aldılar içlerine her şeyi." [1] Genellikle su kenarlarında bulunan salkım söğütlerin saklanmaya elverişli olmasının de gizem ve kehanetle ilişkilendirilmesinin nedeni olduğu ileri sürülür. Söğüt ağacı kabuğundaki ilaç için kullanılan aktif madde salisindir. Kristal formu ilk olarak 1828'de Fransız eczacı Henri Leroux tarafından ayrıştırılmıştır. Saf formu İtalyan kimyager Raffaale Piria tarafından elde edilmiştir. Suda çözündüğü zaman asit özelliği gösterdiğinden (ph 2.4) Salisilik asit olarak adlandırılmıştır. 1897'de Felix Hoffmann sentetik olarak salisin maddesinin değiştirilmiş bir formunu elde etmeyi başardı. Yeni bileşik salisilik asitten daha az mide problemlerine yol açıyordu. Bu yeni ilaç, yani Asetil Salisilik Asit Hoffman'ın işvereni olan Bayer firması tarafından Aspirin olarak adlandırıldı ve dünyanın en çok kullanılan ilacı haline geldi. Âlem: Plantae (Bitkiler) Bölüm: Magnoliophyta (Kapalı tohumlular) Sınıf: Magnoliopsida (İki çenekliler) Takım: Malpighiales Familya: Salicaceae(Söğütgiller) Cins: Salix L. Türkiye'de bulunan türler Türkiye'de doğal olarak yetişen 27 söğüt türü bulunur. Ak söğüt (Salix alba) Acem söğüdü (Salix acmophylla) Badem yapraklı söğüt (Salix triandra) Boylu söğüt (Salix excelsa) Boz söğüt (Salix cinerea) Defne yapraklı söğüt (Salix pentandra) Gevrek söğüt (Salix fragilis) İğde yapraklı söğüt (Salix elaeagnos) Karşılıklı yapraklı söğüt (Salix amplexicaulis) Keçi söğüdü (Salix caprea) Kafkas söğüdü (Salix caucasica) Mersin yapraklı söğüt (Salix myrsinifolia) Misk söğüdü (Salix aegyptiaca) Salkım söğüt (Salix babylonica) Sepetçi söğüdü (Salix viminalis) Salix apoda Salix armenorossica Salix elbursensis Salix pedicellata Salix pentandroides Salix pseudododepressa Salix pseudomedewii Salix wilhelmsiana Türkiye'deki endemik söğüt türleri Anadolu söğüdü (Salix anatolica) Erguvani söğüt (Salix purpurea) (Denizli söğüdü) Rize söğüdü (Salix rizeensis) Trabzon söğüdü (Salix trabzonica) Söğüt (Salix), söğütgiller (Salicaceae) familyasından Salix cinsini oluşturan boylu ağaç veya bodur çalı halinde, çoğunluğu kışın yaprak döken, ender olarak da her dem yeşil kalan odunsu bitkiler. Aspirin ilacının aktif maddesi olan salisin, söğüt ağacının kabuğundan elde edilir Söğütler, almaşık, bazen hemen hemen karşıt, uzun yapraklı, kısa saplı ağaç ya da ağaççıklar’dır. Yapraklarını kışın döker. 250 kadar da türü vardır. Tomurcukların iç yanı yünsü tek bir pulla kaplıdır. Birey eşli ve sapsız olan çiçekleri tırtılsı başaklar halinde topludur. Erkek çiçeklerde serbest ya da birbirine kaynamış 2 ila 5 erkek organ vardır; dişi çiçekler üstünde iki tepeciği bulunan bir yumurtalık durumundadır. Meyvesi iki çene halinde açılan bir kapçıktır; küçük tohumları birçok ipeksi tüy taşır. Söğüt, genellikle nemli topraklarda biten, dere ve su kenarlarına dikilen bir orman ağacı türüdür. Bazılarının esnek ve dayanıklı dalcıkları sepet yapımında kullanılır. Türlerin pek çoğu aralarında melezleşir. Türkiye’de en fazla rastlanan Söğüt türü ak Söğüt’tür(salix alba). Bu söğüt 25-30 m’ye ulaşabilen ve 100 yıl kadar yaşayabilen bir ağaçtır. Söğütlüklerde ve dere boylarında yetiştirilir. Aksöğütten başka şu türler bulunur: Yaygın bir süs ağacı olan ve 8-10 metreye ulaşan, sarkık dallı salkımsöğüt (S. Babylonica ya da S. pendula); çoğunlukla Doğu ve Kuzeydoğu Anadolu’da görülen ve dalların esnekliğinden ötürü sepetçiliğe çok elverişli olan sorgun ya da sepetçi söğüdü (S. viminalis) dür. Sorgun, Anadolu’nun çeşitli yörelerinde özellikle Kastamonu, Daday, Kızılcahamam’da yetişen gevrek söğüt (S. fragilis) türüdür. Sorgun ve Sepeçi Söğüdü, Ak Söğüt’le birlikte dar yapraklı söğüt ya da sorgun söğüdü diye adlandırılır. Belgrad ormanlarında, Sapanca Zonguldak, Bolu yörelerinde yetişen söğütlere boz söğüt (S. cinerea) adı verilmiştir. Hemen hemen tüm orman bölgelerinde yetişen, hızla gelişen fakat 50 yıldan fazla yaşamayan, odunundan kazık, herek, sırık yapımında yararlanılan söğüt türüne keçi söğüdü (S. caprea) adı verilmiştir. Ankara, Kızılcahamam, Malatya dolaylarında yetişen söğüt türüne erguvani söğütü (S. purpurea) adı verilmiştir. Bursa, Gümüşhane, Çoruh ve Erzurum yörelerinde yetişen söğüt türüne badem yapraklı söğüt (S. amygdalinea) adı verilir. Bolu, Düzce, Ilgaz dağı bölgesinde yetişen söğüte iğde yapraklı söğüt (S. alargnos) adı verilmiştir. Söğüt ağacının hekimlikteki yeri Bazı söğüt türlerinin kabukları kurutularak halk hekimliğinde halen kullanılmaktadır. Kokusuz ve acımsı lezzettedirler. Tanen (%15) ve etkili madde olarak bir glikozit (salisin) içerir. Toz ya da dekoksiyon halinde yatıştırıcı, güçlendirici, peklik verici ve romatizma ağrılarını giderici olarak kullanılır. Yaprakları ve kökleri de aynı amaçla verilebilir. Söğüt zararlısı hayvan Söğüt ağaçlarında beslenen bir tür olan söğüt yaprak böcekleri, çokça ağaç üzerinde bulunan böceklerdir. Mavi, yeşil ya da mor renkli olabilen bu böcekler yapraklarla beslenirler. Yazar: Tuncay Bayraktar www.bilgiustam.com

http://www.biyologlar.com/sogut-agaci-salicaceae-sogutgiller

Genom Projelerinin Faydaları

Alzheimer ve bazı kanser türlerinin tedavisinde, şimdiden bazı ilerlemeler sağlandığı biliniyor. Önümüzdeki birkaç yıl içinde yeni tedavi yöntemleri ve ilaçların, dünyanın çeşitli yerlerindeki araştırmacılar tarafından ortaya çıkarılması söz konusu olabilecek. Ancak kalp hastalığı gibi, hem genetik hem de çevresel nedenleri bulunan hastalıklar için daha uzun yıllar (20, 30, 40 yıl) beklenmesi gerekecek. İnsan genom Projesinin temel amacı, insan DNA’sında bulunan 3 milyar kadar baz çiftinin dizilimini ve bunların % 2-5 ‘ini oluşturan genlerin yerini bulmak. Bu aslında zor bir iş; çünkü insan genomunda kesin sayısı şimdilik bilinmiyor olsa da 40 bin ile 80 bin arasında gen olduğu sanılıyor. Dış görünüşümüzdeki onca farklılığa rağmen, aslında biz insanların kalıtsal yapısı büyük ölçüde birbirine benzer. İnsanların DNA yapılarının %99, 9’u ortaktır. İnsan Genom Projesi de bu ortak genleri bulmayı hedefliyor. Yaklaşık 15-20 yıldır bu projeyle uğraşılmasına rağmen henüz genom projesi tam olarak çözülebilmiş değildir. Ortaya çıkacak veri bankası, insanı insan yapan genlerin yanında bir insanı başkalarından ayıran genleri de gösteren eşsiz bir kaynak olacak. İnsan Genom Projesi (İGP); insanın tüm kalıtsal materyalinin şifresinin çözümlenmesini ifade etmektedir. Bu kalıtsal materyalin yani DNA’nın (Deoksiribonükleik asit) şifresi dört bazın (A= Adenin, T= Timin, C= Sitozin, G= Guanin) rastgele bir araya gelmesiyle oluşmaktadır. Yan yana gelen bu bazlar aynı zamanda karşılıklı eşleşerek DNA’nın ikili sarmal yapısını oluşturur. Vücudun tüm fonksiyonları DNA sarmalındaki anlamlı baz dizilerinden (gen) köken alan proteinlerle yapılır. İGP, 1989 yılında Amerika’da bir grup bilim adamının insan genomunda yer alan proteini kodlayan (ekzon) ve kodlanmayan (intron) bölgelerin baz dizilerinin bulunması amacıyla başlattıkları bir projedir. Bu amaçla oluşturdukları organizasyon (HUGO- Human Genom Organization), Amerikan Enerji Ajansı (DOE) ve Ulusal Sağlık Enstitüsünün (NIH) desteğiyle kurulmuş ve 1990 yılında projeye resmi bir nitelik kazandırılmıştır. Tüm insan genomunun baz dizisinin ortaya konmasını amaçlayan projeye kısa zamanda, İngiltere, Fransa, Almanya, Japonya, Rusya, Çin, Kanada’nın da içinde yer aldığı 18 ülke, birçok gönüllü kuruluş ve özel firmalar destek vermiş ve günümüzde binlerce bilim adamının çalıştığı uluslar arası bir proje halini almıştır. Bu proje Celera, IBM, Compag, Dupond, Sanger gibi dünyanın büyük şirketlerinin de katılımıyla her yıl 200 milyon dolar bütçeyle desteklenmiştir. Haziran 2000 itibariyle biten insan genom dizisi taslağı, Şubat 2001 yılında kamuoyuna duyuruldu ve Nisan 2003’te tamamlandı. İnsan genomunun dizisinin elde edilmesi önemli bir kilometre taşı olmakla birlikte, bunun işlevinin tam olarak anlaşılabilmesi daha uzun zaman alacaktır. Çünkü ortaya çıkacak bilgiler, işlenmesi gereken “ham” bilgiler olacaktır. Bunların işlenmesi, yani hangi genlerin hangi kalıtsal özelliklerle ya da hastalıklarla ilişkili olduğunu bulma işi genin ifadesinin (protein sentezi) anlaşılmasıyla mümkün olacaktır. Buda daha uzun ve komplike çalışmaları içeren bir süreci kapsamaktadır. Bununla birlikte şimdi elde edilen veri tabanıyla bile birçok hastalığın (Nörofibromatozis Tip1 ve Marfan Sendromu2) kromozomlar üzerindeki yerleşimi ve dizisi saptanmıştır. Yani genomik tıp birçok hastalığın tanı ve tedavisine umut getirecektir. İGP kapsamında birçok mikroorganizma, hayvan ve bitkinin (özellikle tarımsal bitkiler) genomlarının haritalanması ve dizi analizleri yapılmaktadır. Örneğin mikroorganizmaların genomunun dizilenmesi infeksiyon hastalıklarının tanı ve tedavisinde yeni olanaklar sağlarken diğer yandan tarımsal bitkilerin dizi analizi de gen aktarımlı, doğal olmayan ürünlerin geliştirilmesini gündeme getirmiştir.Moleküler mekanizmalar açıklandıkça ilaç teknolojisi değişecek ve metabolizmanın işlevini etkileyecek moleküller hücreye sentezlettirilerek veya özel taşıyıcı moleküller aracılığıyla spesifik olarak hücreye verilerek tedavi protokoller uygulanabilecektir. Bu proje ile elde edilen bilgilerin 21. y.y ’da tıp dünyasında çok büyük yenilikler ve keşifler getireceği beklenmektedir. Bu bilgiler aynı zamanda, bir çok genetik hastalığın tedavisini de mümkün kılabilecektir. İnsan Genom Projesi’nde ilk beş yıllık hedeflerin arasında aşağıdaki amaçlar bulunmaktadır: İnsan genomunun haritasını çıkarmak Model olarak kullanılabilecek diğer bazı canlıların da gen haritalarını çıkarmak Veri toplanması ve dağılımı Etik, kanuni ve sosyal düşünceler Araştırma eğitimi Teknoloji gelişimi Teknoloji transferi Bunlar da Olacak mı? Gen haritası talebi! 21. yüzyılın genetik mucizesine yetişenler gün gelecek yalnız eş seçerken değil, sağlık sigortası yaptırırken, birilerini işe alırken ya da birilerine ev kiralarken; muhataplarından birer adet “gen haritası” talep edebilecekler. Genom Projesi kaça mal oldu? Tüm deneyin maliyetinin 200 milyon dolar civarında olduğu hesaplanıyor. Türkiye de bu projenin içinde mi? Maalesef. Dünyada gelişmiş bir çok ülke bu çalışmanın içerisine girmişken, Türkiye’de henüz bu konuda parmakla gösterilecek örnek bir çalışma, ya da araştırma kurumları bulunmamaktadır. Üniversiteler bünyesinde kısmen yapılmaktadır. Çünkü henüz yetişmiş elemanlarımız yoktur. Ama geçtiğimiz 7-8 yıl içinde gerek okulumuzdan, gerekse ülkemizin diğer güzide okullarından yetişmiş, Genetik Mühendisliğinde okuyan, doktorasını yapmakta olan bir çok öğrencimiz bulunmaktadır. Bunların bir kısmı ülkemizde bir kısmı ise yurt dışında lisans ya da doktora seviyesinde eğitim almaktadırlar. İnancımız şudur ki; geleceğin Genetik Mühendisleri yetişmektedir ve yetiştiklerine inandıkları ve imkân sağladığımız gün ise ülkemize bu teknolojiyi taşıyacaklardır. Genom Projesi Tüm Hastalıklara çare olacak mı? Büyük bir ihtimalle. Bütün hastalıklar, insan genlerindeki arızalar ve yanlış diziliş nedeniyle oluştuğundan, genetik yapının tam olarak anlaşılması ve bunları “düzeltmenin” yolunun bulunması, hastalıkların da önlenmesi anlamına gelebilecek. Sadece genetik değil, çevresel faktörlerin neden olduğu hastalıklara da, daha ileri tedavi yöntemlerinin geliştirilebileceği sanılmaktadır. Genom Projesinin Faydalarını ne zaman görebileceğiz ? Alzheimer ve bazı kanser türlerinin tedavisinde, şimdiden bazı ilerlemeler sağlandığı biliniyor. Önümüzdeki birkaç yıl içinde yeni tedavi yöntemleri ve ilaçların, dünyanın çeşitli yerlerindeki araştırmacılar tarafından ortaya çıkarılması söz konusu olabilecek. Ancak kalp hastalığı gibi, hem genetik hem de çevresel nedenleri bulunan hastalıklar için daha uzun yıllar (20, 30, 40 yıl) beklenmesi gerekecek. Genom Projesinin Sakıncaları da olacak mı ? Elbette. Belirli hastalıklara neden olan belirli genler saptandığında, bu genlere sahip insanların kayıtları, işyerlerinin ve sigorta şirketlerini eline geçebilecek. Bu da, işe alınma ve sigortalama anında “tercih edilmeme” nedeni olabilecek. Doğumdan önce bebeğin genetik ‘arıza’sının ortaya çıkması, anne ve babalara “doğumdan vazgeçme” opsiyonu tanıyacak. Zengin ve yoksul ülkeler, bir ülkenin zengin ve yoksul bölgeleri ve vatandaşları arasında, genetik teknolojisinin kullanımı açısından farklılıklar, kaçınılmaz olarak yaşanacak. Bu da, sağlık ve yaş ortalaması açısından farkın açılmasına yol açacak. Genom Projesinin Deneyleri kimin genleriyle yapıldı? Tesadüfi olarak, her ırk ve cinsten önce 12, sonra da 24 insanın sperm ve kanları kullanılarak yapıldı. Her ne kadar her insanın genetik yapısı, bir diğerinden farklılık gösterse de genel farklılık oranı (varyasyon) binde 2 oranında yaşanıyor. Bu yüzden, elde edilen bulguların tüm insanlığa uygulanabileceği ve herkesin derdine çare olabileceği düşünülüyor. Genom projesinin Geldiği Son Nokta Genom projesi, ne basında abartıldığı gibi hastalıkları tamamen bitirip ölümsüzlüğü getiren ne de faydasız bir çalışma değildir. Elbetteki insan sağlığına faydaları olmuştur, olacaktır da. Ama bunlar hiçbir zaman için sanıldığı gibi ölümsüzlüğü getirmeyecektir. Yalnızca, yaşarken daha sağlıklı bir hayat sürülebilecek ya da birçok hastalık belki tarihe karışacaktır. Ama hiçbir zaman için bu proje sayesinde insanlık, sanıldığı gibi bütün hastalıklarına çare bulamayacaktır. Şu an itibariyle bu çalışmayı yürüten bilim adamları, genom projesine ek olarak yeni bir projeye daha imza attılar; “Proteom Projesi”. Bu projeyle vücuttaki bütün proteinlerin incelenmesi amaçlanmaktadır. En çok merak edilen sorular ve cevapları.. İnsan Genom Projesi nedir? 18 ülkenin destek verdiği proje, 1990 yılının ekim ayında başladı. Projenin amacı insanın gen haritasının, yani genetik şifresinin çözülmesi. Genom Projesine kimler katıldı? ABD’nin liderliğinde yürütülen araştırmaya 18 ülke katıldı. Avustralya, Brezilya, Kanada, Çin, Danimarka, Fransa, Almanya, İsrail, İtalya, Japonya, Kore, Meksika, Hollanda, Rusya, İsveç, İngiltere ve AB’ye bağlı enstitüler destek verdi. Gen haritası nedir? Her insanda trilyonlarca hücre var. Hücre çekirdeğinde ise insanın fiziksel ve sağlık durumunu belirleyen kromozomlar, kromozomlarda da DNA’lar var. Buna bilimde ‘‘genetik şifre’’ deniyor. DNA ne işe yarıyor? Kendi ekseninde dönen ve iplerle bağlanan bir asma merdiveni andıran DNA sarmalında anne ve babadan alınan 23′er kromozom bulunuyor. Kromozomların taşıdığı yaklaşık 100 bin gen, DNA sarmalının üzerinde yer alıyor. Genler DNA’nın küçük bir bölümünü oluşturuyor. Genler ne işe yarıyor? Genler insanın saç renginden, boyuna, ayak numarasından yakalanacağı hastalıklara kadar kişinin hayatını belirleyen kimyasal madde olan proteinlerin salgılanmasını sağlıyor. Gen haritası ne zaman tamamlandı? DNA 2003 yılında tam anlamıyla deşifre edildi ve proje tamamlandı. Genom Projesi nasıl işimize yarayacak? Hastalıkların teşhis ve tedavisi kolaylaşacak. Şeker, kalp, kanser gibi her yıl milyonlarca insanın ölümüne neden olan hastalıklar çok önceden teşhis edilip önlenebilecek. Gen terapisi nedir? Hastalığa neden olan değişime uğramış gen onarılarak hastalık önlenmeye çalışılıyor. Hatalı genin yerine sağlıklısı enjekte ediliyor. Human Genome Projesi sayesinde araştırmacılar, şimdiye kadar Alzheimer, ırsi bağırsak ve meme kanseri gibi birçok hastalık konusunda önemli genetik bilgi sahibi oldular. Hayvanların genetik haritaları niye çıkarılıyor? Fare ve meyve sineklerinin genetik işleyişiyle insanınki arasında büyük benzerlikler bulunuyor. Onların genetik yapısının deşifre edilmesi, insanın anlaşılmasını kolaylaştıracak. Sağlık dışında gen haritası ne işe yarayacak? Gen haritası, biyoarkeoloji, antropoloji, evrim süreci ve tarihi göçlerin anlaşılmasını kolaylaştıracak. Bu sayede insanların ne zaman, nereden göç ettiğini, kimlerle akraba olduğumuzu öğrenebileceğiz.

http://www.biyologlar.com/genom-projelerinin-faydalari

Ağaçların Yaşı ve Hayatı Nasıl Bulunur?

Ağaçların yaşı ve yaşamları boyunca ne gibi badirelerden geçtiği, otopsi yöntemiyle belirlenebilmektedir. Bu otopsi işlemi, insanlara yapılan otopsi gibi düşünülebilir. Tek farkı, ağaçların hayatı gövdelerinde yer alan halkalara kaydedilir. Bu halkalar okunarak, ağaçlar hakkındaki bilgiler elde edilir. Bu olayla uğraşan bilim dalına ise, Dendroknoloji adı verilmektedir. Ağaçların kök, gövde vedalarında çeşitli halkalar meydana gelmektedir. Bu halkalar ağacın var olduğundan beri ağaçta yer alır ve daire şeklindedir. Ağaçta yer alan bu halkalar sayesinde ağacın yangına, çığa, şiddetli rüzgara ya da böcek istilasına uğrayıp uğramadığı anlaşılabilmektedir. Daha da ilginci ise bu tür olaylar yaşandıysa, bu olayların hangi yıllarda gerçekleştiği bile bu halkalar sayesinde öğrenilebilir. Daire biçimindeki halkalar, ağacın sürekli kaydını tutan bir bellek gibi düşünülebilir. Ağaçların enine kesitinde yer alan halkalar sayesinde, ağaçların büyüme miktarları, yaş, odun tipi, budanıp budanmadığı, yara alıp almadığı, çatlaklar, hayvanların vermiş olduğu zararlar, zararların kapatılma biçimleri, reçine kanalları gibi bilgiler çok kesin bir biçimde elde edilebilmektedir. Ağaçların Yaşını Belirleyen Yıllık Halkalar Ağaçlarda oluşan halkalar, bağlı bulundukları mevsim şartlarıyla doğrudan alakalıdır. Mevsimsel farklılıkların yer aldığı bölgelerde, büyüme sürekli değildir. Bu bölgelerdeki büyüme eylemi, ilkbaharda hızlı bir şekilde olurken, yaz mevsiminde bu hız azalır. Böylece büyüme hızı farkı meydana gelir. Hızlı büyümede odun halkaları açık renkli oluşurken, yaz mevsiminde bu halkalar koyu renkli oluşmaktadır. Yani ağaçta bir açık, bir koyu renkli halka bulunur. Bu halkalara yıllık halkalar adı verilir ve bir yıllık büyümeyi ifade ederler. Yıllık halkaların sayısı ise, ağacın yaşını verir. Yıllık Halkalar Sayesinde Belirlenen Diğer Özellikler Yıllık halkalar, öncelikle ağaçların yaşını belirlemek için kullanılır. Fakat bu yıllık halkalardan, daha birçok bilgi elde edilebilmektedir. Yıllık halkalardan; *Geçmişte meydana gelmiş olan erozyon hızının belirlenmesi *Geçmişte yaşanmış iklim değişiklikleri *Arkeolojik kalıntıları tarihleme *Önemli orman yangınlarının tarihini belirleme Bu tür bilgilerin elde edilebilmesi, doğa olayların ağaçlara bir şekilde etki etmesi yoluyla olmaktadır. Doğa olaylarının ağaçlara etkileri, yıllık halkaların şekil değiştirmesine yol açar. Her olay, bu halkalara değişik şekillerde etki eder ve bu etkiler bu bilgilerin elde edilmesini sağlar. İklim Olaylarının Tarihlendirilmesi: Ağaçlar, yıllara göre değişen sıcaklık ve yağış değerlerinden oldukça etkilenmektedir. Bu değişimler, yıllık halkalardaki aralıkları değiştirir. Çığ Olayların Tarihlendirilmesi: Çığ gibi doğa olaylarında yuvarlanan kayalar, ağaçlara çarparak yara meydana getirir. Çığ nedeniyle oluşan yaralar, daha sonradan yıllık halkalarda izler bırakır. Ağaçta meydana gelen yara kapatılmaya çalışılır ve odun üretilir. Sonra yaradan alınan kama şeklindeki bir kesitten alınan halkalar sayılarak, çığın meydana geldiği tarih belirlenmiş olur. Volkanik Olayların Tarihlendirilmesi İşlemi: Volkanik patlamalar sonucunda akan lavlar ağaçların kömürleşmesine neden olmaktadır. Bu olayda, ağaç gövdelerindeki yıllık halkalarda dar kesitler meydana gelir. Bu dar halkalar, volkan patlamalarının kanıtı olarak değerlendirilir. Depremlerin Tarihlendirilmesi: Ağaç halkalarından deprem ve tarihlerinin belirlenmesi, oldukça güç ve zordur. Bunu uygulamak için, deprem bölgesinde yer alan ağaçların incelenmesi gerekir. Depremler, yıllık halkalarında çok ani daralmalar meydana getirmektedir. Bu daralmanın nedeni ise, deprem sırasında oluşan hidrolojik olaylardır. Arkeolojik Tarihlendirme İşlemi: Bu işlem, bazı arkeolojik yapıların tarihlendirilmesinde kullanılan bir işlemdir. Anadolu’da antik ve tarihi kentlerde oldukça kullanılmaktadır. Bu tür belirlemeler genellikle kesilmiş ağaçlar aracılığıyla olmaktadır. Fakat, ağaçlar kesilmeden de ağaç halkalarından bilgiler elde edilebilmektedir. Yaşayan Ağacın Yaşının Belirlenmesi Yaşayan canlı haldeki ağacın yaşı da, artık belirlenebilmektedir. Bu belirleme işlemi, Artım Burgusu adı verilen bir alet aracılığıyla gerçekleşir. Bu alet daha çok, orman mühendislerinin işine yaramaktadır. Artım Burgusu adı verilen alet, ağacın 1.30 metre yüksekliğindeki gövdeye sokulmaktadır. Bu işlemin ardından, bir yaş halkası çubuğu alet yardımıyla dışarı çıkarılır. Bu çubuk, ağacın yıllık halkalarının çok kolay ve rahat bir şekilde sayılmasına olanak sağlamaktadır. Bu işlem kısaca böyle gerçekleşmektedir. İşlemde daha birçok teknik ayrıntı bulunmaktadır. Dünya üzerinde yaşı sayılan en yaşlı ağaç, Kaliforniya bölgesinde yetişmiş olan bir çam ağacıdır. Ve bu ağaç, tam 4900 yaşındadır. Fakat bu ağaç, şu anda yaşamamaktadır. Yazar: Erdoğan GÜL www.bilgiustam.com

http://www.biyologlar.com/agaclarin-yasi-ve-hayati-nasil-bulunur

ABD National Geographic Derneği Yönetim Kurulu, Kars ve Iğdır’ı Keşfetti

ABD National Geographic Derneği Yönetim Kurulu, Kars ve Iğdır’ı Keşfetti

KuzeyDoğa Derneği Başkanı Doç. Dr. Çağan Şekercioğlu’nun 2011 yılında National Geographic Dergisi tarafından Yılın Kâşifi seçilmesinden sonra, Şekercioğlu’nun davetiyle National Geographic Derneği Keşif ve Araştırma Komitesi yönetim kurulu, KuzeyDoğa Derneği’nin çalışmalarını ve Kars ve Iğdır’ın doğasını, tarihini ve kültürünü görmek için ilk kez Doğu Anadolu’ya geldi. Yönetim kurulu gezisi ile ilgili olarak, National Geographic yardımcı başkanı (executive vice president) Terry Garcia şunları söyledi: “Kars ve Iğdır’da gördüğümüz yaban hayatı ve doğa güzelliğinden son derece etkilendik. Bilim adamlarından oluşan ekibimiz muhteşem bir zaman geçirdi ve bölgenin insanları ve doğasını şimdi daha da takdir ettik.”National Geographic Araştırma, Keşif ve Doğa Koruma Yardımcı Başkanı Dr. John Francis ise “Doç. Dr. Çağan Şekercioğlu ve KuzeyDoğa Derneği’nin bölgedeki araştırma ve doğa koruma çalışmaları olağanüstü. Şekercioğlu, bölge halkını motive etmede ve doğa koruma çalışmalarını ulusal ve uluslararası platforma taşımada çok yetenekli, enerjik ve yaratıcı bir doğa koruma bilimci” dedi.1 Haziran’da Kars’a varan 45 kişilik heyet, KuzeyDoğa Derneği tarafından hazırlanan program kapsamında uçaktan iner inmez Doğu Anadolu’nun ilk ve tek Ramsar alanı ve 2009 Avrupa’nın Seçkin Turizm Cenneti (EDEN) Kuyucuk Gölü’ne götürüldü. Önce Kuyucuk Kuş Halkalama ve Eğitim Merkezi’nde Uzman Biyolog Sedat İnak liderliğinde çalışan KuzeyDoğa ekibi ve gönüllüleriyle tanıştı. Daha sonra ikiye ayrılan grup, dernek başkanı Doç. Dr. Çağan Şekercioğlu ve dernek projeler koordinatörü Önder Cırık rehberliğinde göl kenarında kuş gözledi. 2009 yılında KuzeyDoğa Derneği danışmanlığında Kars valiliği tarafından yapılan Türkiye’nin ilk doğa koruma amaçlı adası Erden Adayı da gören ziyaretçiler, daha sonra Kuyucuk Yönetim Planı kapsamında yapılan kuş gözlem kulesine çıkarak nesli dünya ölçeğinde tehlike altında olan ve Kuyucuk Gölü’nde üreyen bir çift dikkuyruk ördeğini büyük ilgiyle izlediler. Güneş batarken ziyaretçilerin şerefine Kuyucuk Gölü kenarında bir resepsiyon verildi. Kafkas Üniversitesi Rektörü Sayın Prof. Dr. Sami Özcan ve Arpaçay Kaymakamı Sayın Can Aksoy da resepsiyona katılarak National Geographic ekibine “Hoş geldiniz” dedi. Resepsiyon sonunda Kuyucuk Köyü’nde hazırlanan yöresel akşam yemeğine geçildi. Madımak çorbası, hengel ve cağ kebabı yiyen konuklar, yemek bitiminde kamp ateşi etrafında ısındılar. Sarıkamış’ta kalan ekip ertesi gün KuzeyDoğa Derneği’nin Iğdır’da yaptığı çalışmaları görmek üzere Aras Vadisi’ne hareket etti. Yol üzerinde Çalı Gölü’nde de üreyen bir çift dikkuyruk ördeği daha gördüler. Ağrı Dağı ve Aras vadisine hayran kalan ekip, bol bol fotoğraf çekti. Tuzluca’da küçük akbabaları araştıran KuzeyDoğa Derneği bilim koordinatörü Uzman Biyolog Emrah Çoban ve yaban hayatı uzmanı Lexo Gavaleshvili’den küçük akbabalarla ilgili bilgi aldılar. Alandaki 4 küçük akbabayı seyreden National Geographic ekibi, bir saat içinde nesli dünya ölçeğinde tehlikede olan  iki kuş türünü izlemiş oldu. Ekip, Tuzluca civarındaki yer şekillerine de hayran kaldı. Daha sonra Aras Kuş Araştırma ve Eğitim Merkezi’ne geçen National Geographic ekibi, orada Uzman Biyolog Yakup Şaşmaz liderliğinde çalışan KuzeyDoğa Derneği ekibi ve gönüllüleriyle tanıştıktan sonra halkalanmış iki büyük kamışçını, kındıra kamışçınını, alaca sinekkapanı ve ibibiği doğaya bıraktı. Halkalama ekibiyle sohbet eden National Geographic yönetim kurulu üyeleri, Yukarı Çıyrıklı köylüleri tarafından ikram edilen çayı içtikten sonra köyde verilen yemeğe geçtiler. Köylüler tarafından açık havada, kazanlar içinde ve odun ateşinde yapılan köy yemekleri, büyük bir kayısı ağacı altında oturan National Geographic ekibinden büyük takdir topladı. İlinin doğasına ve kültürüne sahip çıkan Iğdır milletvekili Sayın Sinan Ogan da Yukarı Çıyrıklı köyüne gelerek National Geographic ekibini karşıladı. Aras Kuş Araştırma ve Eğitim Merkezi’ni de ziyaret eden Ogan, bölgenin doğal zenginliği hakkında Doç. Dr. Çağan Şekercioğlu’ndan bilgi aldı. Sayın milletvekili, Iğdır’ın en önemli doğal alanlarından olan Aras Vadisi Sulak Alanı ve Karasu-Aralık Sazlıklarının koruma statüsü kazanması, korunması ve yönetim planlarının yapılması için meclis ve cumhurbaşkanlığı nezdinde girişimlerde bulunacağını ve bu alanların korunması için elinden geleni yapacağını belirtti. Sayın milletvekilinin ziyaretinden önce Aras’ta ilk defa yakalanan çalı bülbülü halkalandıktan sonra Ogan tarafından tekrar doğaya bırakıldı. Daha sonra köye geçen Ogan, National Geographic ekibiyle köy yemeği yedi. Ziyaretleri ve Iğdır ilini tüm dünyaya tanıttıkları için National Geographic Derneği Yönetim Kurulu’na ve doğa koruma, yaban hayatı araştırma ve biyokültürel turizm çalışmaları nedeniyle de KuzeyDoğa Derneği’ne teşekkür etti. Aras vadisi ziyaretinden sonra ekip Kars’ın önemli tarihi ve kültürel değeri Ani Ören yerini ziyaret etti. Alanda yaklaşık 4 saat geçiren National Geographic ekibi, Ani Harabelerine hayran kaldı. Akşamüzeri ise Sarıkamış-Allahüekber Dağları Milli Parkı’nı ziyaret etmek için Kızılçubuk vadisine gittiler. Ekip üyeleri, milli park bünyesinde bulunan orman, çayır, dağ ve akarsu ekosistemlerinin oluşturduğu peyzajlardan adeta büyülendiler. 7 kilometrelik Şehitlik Yürüyüş Parkurunu yürümek istediler, fakat programlarında yeterli zaman olmadığı için parkuru yürüyemediler ve çok pişman oldular. Akşam yemeği için otellerine dönen ekip KuzeyDoğa Derneği Başkanı Doç. Dr. Çağan Şekercioğlu’nun yapmış olduğu “Türkiye’nin İlk Yaban Hayatı Koridoru” sunumunu izlediler. Gece geç saatlerde, yaklaşık 15 kişilik bir grup ayı gözlemi için Sarıkamış çöplüğüne hareket etti. Daha Sarıkamış’ı çıkarken çayırlarda 3 yavrusuyla gezen bir dişi bozayı gören ekip dakikalarca bu güzel manzarayı izledi. Yavrulardan biri annesinin sırtında giderken, diğeri ise süt emdi. Ekip üyeleri çöplükte daha da yakından bir yaban domuzu ve iki bozayıyı izleme fırsatı buldular. 3 Haziran sabahı Kars’taki tarihi yapıları da gezdikten sonra Kars’tan ayrıldılar.Ekibin ziyareti boyunca KuzeyDoğa Derneği gönüllüleri Prof. Dr. Zati Vatansever, Doç. Dr. Erdoğan Uzlu ve Uzman Tıp Doktoru Banu Arslan ekibe eşlik ederek tüm lojistik ve olası sağlık problemleri için KuzeyDoğa Derneği’nin yanında oldular.National Geographic’in Kars ve Iğdır ziyaretleri konusunda KuzeyDoğa Derneği Başkanı ve Utah Üniversitesi Biyoloji Bölümü Öğretim Üyesi Doç. Dr. Çağan Şekercioğlu şunları söyledi:“Haziran 2011’de National Geographic Kâşifi ödülünü almak için Washington DC’ye gittiğimde, National Geographic Yönetim Kurulu gezisinin Türkiye’de yapılması konusunda kendileriyle konuştum. Kars ve Iğdır’a gelmeleri gerektiğini vurguladım ve Doğu Anadolu’nun muhteşem doğası, yaban hayatı ve misafirperver köy kültürünü görmeleri konusunda onları ikna ettim. Yönetim Kurulu gezisinin kalanı arkeolojik alanlara odaklı olduğundan, onlar da Doğu Anadolu’nun doğasını ve köylerini tecrübe etme fikrini çok beğendiler. Aylar süren ve çok detaylı bir hazırlık süreci sonunda, programımız dakika dakika belirlendi. Yönetim kurulu gelmeden önce, National Geographic Türkiye bir belgesel çekim ekibi yolladı ve bu ekip Kars’ın Kuyucuk Gölü ve Sarıkamış Ormanları ile Iğdır’ın Aras Nehri ve Tuzluca bozkırları gibi bölgenin önemli doğa alanlarında tanıtım çekimleri yaptı. Kars ve Iğdır’ın yöneticileri, il jandarma komutanlıkları, Kafkas Üniversitesi, Kuyucuk ve Yukarı Çıyrıklı köyleri ve KuzeyDoğa Derneği ekibinin özverili desteğiyle kusursuz, macera dolu ve çok başarılı bir gezi gerçekleşti. İki gün içinde 50 kişilik ekip Kuyucuk Gölü’nden Tuzluca’nın bozkırlarına, Aras Nehri’nden Sarıkamış ormanlarına kadar bölgenin önemli doğa alanlarını gördüler, Kars ve Iğdır’ın köylerinde yöresel yemekler yediler ve halkın misafirperverliğine tanık oldular. Unutulmaz bir macera yaşadıklarını söyleyen National Geographic ekibi, Kars ve Iğdır’ı dünyanın gündemine taşıyacaklarını vurguladılar. Görüldüğü gibi, Kars ve Iğdır’da doğa araştırma ve doğa koruma faaliyetlerinin devam etmesi, bölgenin dünya çapında tanınması, doğa turizmi ve bölge halkı için de çok önemlidir.” http://www.kuzeydoga.org

http://www.biyologlar.com/abd-national-geographic-dernegi-yonetim-kurulu-kars-ve-igdiri-kesfetti

Köpeklerin Kökeni Kurt DNA’sıyla Çözüldü

Köpeklerin Kökeni Kurt DNA’sıyla Çözüldü

Yeni keşfedilen bir kurt türüne ait DNA analizi, köpeklerin 40 bin yıl önce kurtlardan ayrılmış olabileceğini tespit etti. Köpeklerin insan tarafından evcilleştirildiği tarih de sanılandan daha eski olabilir. Bilim insanları, kurtlara ait kemikler üzerinde yapılan analizler sonucunda insanın en iyi dostu köpeğin sanılandan daha eski bir tarihte ortaya çıkmış olabileceğini ortaya çıkardı. Geçmişteki analizlerden elde edilen bilgiler kurt ile köpeklerin 16 bin ila 11 bin yıl önce birbirlerinden ayrılmış olduklarını öne sürmüştü. En son araştırmada, İsveç Doğal Tarih Müzesi’nden Love Dalen, Rusya’nın kuzeyindeki Taimyr kentinde bulunan 35 bin yıl öncesine ait bir kurdun genomunu çıkardı. Karbon tarihleme yöntemine göre yapılan analizde, kurt ile köpeklerin zamanla arasında oluşmuş olabilecek genetik farklılıkların tespit edilmesi amaçlandı. Analizler, kurt ile köpeklerin 27 bin ila 40 bin yıl öncesine uzanan dönemde birbirlerinden ayrıldığına işaret etti. DNA ve arkeolojik delillere dayanan en yeni sonuçlar, köpeklerin insanlarla sanılandan daha uzun bir zamandır yaşadığına işaret etti. Dalen ve ekibi, kuzey bölgelerinde yaşamış olan ilk köpek türlerinin Taimyr kurduyla çiftleşerek soğuğa karşı dirençli yeni türlee de ortaya çıkarmış olabileceğini belirtti. Bu köpek türleri arasında husky, Grönland kızak köpeği, Çin Shar-pei ve Finlandiya spitz türünün olduğu tahmin ediliyor. Evcilleştirme ne zaman başladı? Current Biology dergisinde yayımlanan araştırmada, köpeklerin ne zaman ve nasıl ortaya çıkmış olabileceğine dair yeni bilgiler elde edilse de, nasıl evcilleştirildikleri hakkında ipucu bulunamadı. Bilim insanları, 40 bin yıl öncesine uzanan dönemde değil, ardından gelen binlerce yılda köpeklerin insanlarla yaşamaya başlamış olabileceğini belirtti. Oxford Üniversitesi’nden Laurent Frantz, yaşanan farklılaşmanın ‘iki kurt popülasyonu arasında mı yoksa kurtlar ile köpekler arasında mı yaşandığını net olarak bilmediklerini’ not düştü. Dalen, ilk köpek türlerinin ortaya çıkışı hakkında daha detaylı bilgi edinebilmek için kurt ve köpeklere ait kalıntılar üzerinde genetik ve morfolojik analiz yapılması gerektiğini söyledi. Dalen, ‘ilk insanların son Buzul Çağı’nda köpeklerin yardımını almış olmasının büyük bir şans olduğunu’ söyledi. Çin Bilim Akademisi tarafından Mayıs 2013’te yayımlanan araştırmada, köpeklerin 32 bin yıl önce bozkurtlardan evrim geçirdiği öne sürülmüş ve binlerce yıl insanlarla yaşadıkları için sinir ve sindirim sistemlerinin bize çok benzediği belirtilmişti. Nature Communications dergisinde yayımlanan araştırmada, köpek ve insan beynindeki kimyasalları etkileyen kimyasalların benzer olduğu ifade edilmişti. http://www.gazeddakibris.com

http://www.biyologlar.com/kopeklerin-kokeni-kurt-dnasiyla-cozuldu

2500 Yıllık Beyin Ameliyatı

2500 Yıllık Beyin Ameliyatı

Rus bilim insanları, iki bin yıldan eski kafatasları üzerinde yaptıkları çalışmalarda antik zamanlara ait beyin ameliyatı yöntemlerini analiz etti. Antik doktorların basit el aletleriyle çok başarılı ameliyatlar yaptığı belirtildi. Rusya Arkeoloji ve Etnoğrafya Enstitüsü’ne bağlı araştırmacılar, Altay Dağları’nda bulunan iki bin yıldan eski kafatasları üzerinde antik beyin ameliyatı yöntemlerini araştırdı. Araştırmalar, antik zamanlarda doktorların basit el aletleriyle başarılı ameliyatlar yapmış olduklarına işaret etti. Rus arkeologların geçtiğimiz yıl Altay Dağları’nda keşfettiği üç kafatasının, Pazırık kültürüne ait insanlardan kalma olduğu tahmin ediliyor. 2300 ile 2500 yıllık kafatasları, beyin ameliyatının en eski yöntemi olarak bilinen trepanasyon izi taşıyor. Siberian Times gazetesine konuşan Rus beyin cerrahı Aleksey Krivoshapkin, ‘gördüklerinden çok etkilendiğini ve Altay insanlarının Hipokrat’ın yaşadığı zamanlarda beyin hastalıklarını tespit ederek ameliyat gerçekleştirebildiklerini’ söyledi. 2 bin yıldan eski kafataslarının ikisi erkeklere, biri de bir kadına ait.   Kazıma yöntemiyle ameliyat İlk olarak mikroskop altında yapılan analizler, kafa derisinin nasıl alındığına dair izler sunmadı. Antik beyin cerrahlarının kafatasını açmak için ilk olarak sivri bir alet ile kemiğin yüzeyini kestiği, ardından sık darbelerle delik açıldığı anlaşıldı. Krivoshapkin, ‘üç kafatasında da kusursuz bir trenapasyon izi bulunduğunu ve antik doktorların her adımını izlerden anlayabildiklerini’ söyledi. Yöntemin anlaşılmasının ardından, kullanıldığına inanılan bir bıçağın benzeriyle modern bir kafatasının aynı yöntemle açılması 28 dakika sürdü. 2500 yıl önce doktorların acıyı bastıran veya anestezi etkisi yapan bir tedavi uygulayıp uygalamadıkları bilinmiyor. http://www.gazeddakibris.com

http://www.biyologlar.com/2500-yillik-beyin-ameliyati

Çin’de 3 Gözlü Kafatası Bulundu

Çin’de 3 Gözlü Kafatası Bulundu

Çin’in Sincan Uygur Özerk Bölgesi’nde yapılan kazılarda bulunan 68 kafatasında, 2 yerine 3 göz oyuğu tespit edildi. Üç gözlü kafatasları, Urumçi’de bir müzede sergileniyor.Çinli bilim insanlarını şaşkına çeviren üç gözlü kafatasları, esasında 1986-1989 yılları arasında yapılan arkeolojik kazılar sonucu bulunmuştu. Şimdi Urumçi’de gözler önüne serilen kafataslarının 2 bin 200 ilâ 2 bin 800 yaşında olduğu tahmin ediliyor.Arkeologlar, kafataslarında 3’üncü gözün neden var olduğunu açığa çıkarmaları için kriminologlara başvurmayı planlıyor. Uzmanların ilk senaryosuna göre esrarengiz oyuklar, o zamanlar Çin’in kuzeybatısında yaşayan farklı kabileler arasındaki savaşlarda alınan ölümcül darbeler sonucu ortaya çıkmış olabilir. Diğer senaryo ise oyukların ‘kalp gözü’ denebilecek ‘üçüncü göze’ ulaşma çabasıyla yapılan cerrahi müdahaleler sonucu oluştuğunu varsayıyor.Tibet rahiplerinin ‘üçüncü göz’ arama yolunda kafataslarında oyuklar açtıkları biliniyor.http://www.gazeddakibris.com

http://www.biyologlar.com/cinde-3-gozlu-kafatasi-bulundu

 
3WTURK CMS v6.03WTURK CMS v6.0