Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 1027 kayıt bulundu.

Davranış Biyolojisi Nedir

1)Yurt seçimi (Teritoryum Tesisi) Bireyler beraberliklerini sürdürüp belirli bir kuluçka alanının emniyetini sağlayabilmek için bir alana, gereksinim duyarlar. Bu alan yurt ve teritoryumdur. Kurulacak yurt alanının, çıkacak yavrulara besinin kolayca sağlanabileceği uygun bir arazi parçası olması gerekir. Yurt alanlarının sınırları, bireylerin (genellikle erkeklerin) şubat sonundan mayıs ayına kadar yoğun olarak sürdürdükleri yurt belirleme ötüşü ile saptanır. Bu ötüşlerin diğer bir amacı da yurdun kurulduğunu seçilecek eşe duyurmak ve rakip erkek bireylere gözdağı vermektir. Gözdağına rağmen kurulacak yurda bir saldırı olursa, erkekler arasında şiddetli kavgalar olur. Bu tür davranışlar aynı tür içinde (interspesifik) olduğu gibi farklı türler arasında (intraspesifik) olabilir. Yapılan kavgalar genellikle tarafların karşılıklı olarak birbirlerine, keskin ve kesik kesik bağırmaları ile başlar. Kavga esnasında bireyler kafalarını birbirlerine uzatarak kısık sesler çıkarırlar. Boyun ve kuyruk tüyleri dikleşir ve kanatları yanlara hafifçe açılır. 2)Yuva Sunumu Yuva sunumu erkek bireylerce yapılır. Erkekler şubat sonundan itibaren, dişilere sunacakları yuvalara girip çıkar ve ot parçası, tavuk ve güvercin tüyleri gibi materyaller getirirler. Erkeğin işgal ettiği yuvayı dişi kabullenirse yuva ikisi tarafından müştereken yapılır. Dişinin ilgisini çekip yuvayı ona beğendirmek için erkek bireyler yuvalara, her seferinde içeride daha az kalmak üzere girip çıkar. Bu arada erkek yuva sandığı üzerinde veya yuva deliğinden dışarıyı gözleyerek sağa-sola bakar. Yuvadan çıktıktan sonra yuvaya en yakın dala tüner, bazen yuvanın üstüne konar ve tekrar içeri gibi yapıp yuva giriş deliğini vücudu ile kapatır, hemen sonra geri çıkar. Dişi yuvaya yakın bir yere gelince, erkeğin daldan dala yer değiştirip çok sık öttüğü ve dişinin ilgisini çekmek istediği izlenir. Daha çok yuvanın üstünde yapılan bu hareketler: kendi ekseni etrafında dönme; kafayı sağa-sola oynatma, ileriye uzatma; kanatları yana açma ve kanat tüylerini titretme; kuyruk tüylerini yukarı kaldırma; bazen de bir kanadı aşağı itip telekleri yere sürme şeklidir. Yuva sunma ilgi çekme hareketlerine, dişi birey kayıtsız kalır ve sunulan yuvayı kabul ettiği anlamı taşıyan erkeğin faal olduğu yuvaya girme uçuşu yapmazsa, erkeğin ötüşünü daha canlı ve keskin olarak bir başka yuva veya dal üzerinde, fakat dişiyi gözden kaçırmayacak şekilde sürdürdüğü görülür. Dişi bu sırada sunulan yuvalardan birine yönelme uçuşu yapar. Yapılan ilk uçuş genellikle yuva deliğine yakın dallar üzerine olur. Burada kısık kısık ses çıkarıp kafasını sağa sola ve öne uzatarak, etrafını izler. Bazen yuva deliğine girmeye çalışır, ve hemen geri döner. Bu arada erkek yuva deliğinden içeri girerek dişiye kur hareketleri ve ötüşleri yapar. Dişi bu davranışlara karşılık vererek yuva deliğine konup onu izler ve içeriye kısa bir süre için de olsa girer çıkar. Dişinin yuvaya sıklıkla girip çıkması ve yuvada daha uzun süre kalması onun yuvayı kabul ettiğini gösterir. Yuvaya giriş çıkışların sıklaşması ve erkeğe daha yakın bir yere konma girişimleri ile birlikte, erkeğin çiftleşme öncesi yaptığı kur hareketleri görülür. 3)Çiftleşme Çiftleşmeden önce dişi ve özellikle erkeğin sürekli aktif oldukları ve dallar üzerinde oynaştıkları gözlenir. Bu kur hareketleri eşlerin uyarılması için yeterlidir. Çiftleşmede erkeğin dişinin üstüne çıktığı ve omuz kemeri yada ensesini gagası ile kavradığı görülür. Çiftleşme süresi genellikle 3-6 saniye arasında değişir. Erkek dişinin üzerinden inince kanatlarından birini yere doğru uzatarak tekrar çiftleşme teşebbüsünde bulunur. Mart-Kasım ortasına kadar olan dönemde çiftleşme faaliyetleri iklim koşullarına ve özellikle sıcaklığa bağlıdır. Dişi 4-5 yumurta bırakır. Kuluçka süresi 10-11 gün sürer. Yavrular 15-19 günde yuvadan uçar. Kuluçka başarısı % 90’dır. 4)Besin Arama Hareketleri Besinlerini genellikle toprağın üstünde ve ağacın yapraklı kısımlarında ararlar. Topraktaki yemi açığa çıkarmak için, toprağı tırnakları ile eşelerler. Topraktaki kurumuş yaprak ve otları yana atarlar. Ağaçtaki gizli zengin besinlere ulaşınca, dalın üstünde kanatlarıyla pırpır yaparak bunlara yakalar. Uçabilen böcekleri de çok yakından takip ederler. Besin olarak; kelebek tırtılı, böcek larvaları, böcekler ve sinekler hayvansal besinlerini oluşturur; buğday, arpa, mısır, tohumları taze ot yaprakları bitkisel besinlerini oluşturur. Beslenme grup halinde gerçekleşir. Bu sırada gruptan birkaç birey tehlikelere karşı gözcülük yapar. 5)Rahatlama (konfor) Hareketleri Serçeler güneş banyosu yaparken, vücut tüylerini kabartıp,kanatlarını hafifçe yere doğru açar, güneş ışınlarının vücudun bütün bölgelerine girmesi için kendi ekseni etrafında dönerler. Bunlarda sıklıkla gözlenen davranışlardan biri de kum ve su banyosundaki hareketlerdir. Bunun için, özellikle vücutlarının üst kısımlarındaki tüyleri gevşeterek, hızlı bir şekilde sağa-sola sıçrarlar. Su içine girince, su içer, kum banyosunda daima kumları gagalar ve içinde yiyebileceği besinler varsa onları yer. Tepinme hareketleri: Suda ve özellikle kumda tepinme hareketlerine rastlanır. Sudan veya kumdan çıkınca, kanadın biri sabit şekilde durur, diğeri omuzdan aşağıya inerek şiddetli bir şekilde silkelenir. Daha sonra diğer kanadı ile aynı hareketleri yapar. Yakında bulunan bir ağaca veya dal üzerine konarak tüylerini gagaları ile düzeltirler. Bazen ayak parmaklarıyla başın üst kısmını düzeltirler. Gagayı da bir dala sürterek temizlerler. 6)Ötüşler Yuva Çevresindeki Ötüşler: Kur yaparken ve rakiplerini korkutmak için aralıksız ve yüksek bir sesle öterler. Bu tür ötüşler sırasında tüylerini kabartırlar. Yalvarış Ötüşleri: Biraz gelişmiş civcivler ve uçma durumuna gelmiş yavrular kısık bir sesle ve çok sesli olarak öterler. Uçma durumuna gelmiş yavruların yer arama ötüşleri, tek düze yüksek sesledir. Ana-Babaları bu ötüşlere bir şeyler anlatır gibi yumuşak ve sessizce karşılık verir. Diyalog Kurma Ötüşleri: Yalnız kalan birey, grubu bulabilmek için kısa ve keskin bir şekilde öter. Tehlikeye Karşı Alarm Ötüşleri: Kuralsız olarak yüksek sesle ve uzatarak öterler. Yavrular tehlike altında ise tehdit unsuruna 1 metre kadar yaklaşacak şekilde alçak uçuşlar yaparlar. KAYNAKLAR 1) ERDOĞAN, Ali, Ankara/Beytepe Serçe Populasyonları ile İlgili Biyolojik Çalışmalar 19-27 (1982)

http://www.biyologlar.com/davranis-biyolojisi-nedir

Mantarlar ( Fungi)

Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır.

http://www.biyologlar.com/mantarlar-fungi

Vitamin türleri

Herkes tarafından bilinen 13 vitamin vardır. Bunlar temelde, yağda çözünenler ve suda çözünenler olarak iki gruba ayrılır ama gerçekte 20 vitamin vardır. En küçük vitamin A, C, D ve K vitaminleriyken, en büyük vitamin türü E vitaminidir. Orta boy moleküllü B vitaminleri ise pek kullanılmaz. Dört vitamin türü, yağda çözünebilir ve bu sayede vücudun yağ dokusunda depolanırlar. Bunlar: A vitamini, D vitamini, E vitamini ve K vitamini. A Vitamini Göz sağlığı için çok önemlidir. E vitaminiyle alınırsa daha iyi gözlere sahip olunur. Yumurta, avokado, karaciğer, süt, havuç, sebze, ceviz, balık yağı gibi besinlerde vardır. Oluşumu sırasında böbreklerin rolü vardır. Zaten A vitamini böbreklerde bulunan tek vitamindir. Yeşil sebzelerde bulunur. Kalorisi yüksektir. A vitamininin (diğer yağda eriyen vitaminler olan D, E, K vitaminleri gibi) fazlası zararlıdır. Özellikle gebe kalmayı planlayanlarla gebelerin A vitamini içeren ilaçlardan ve yiyeceklerden (karaciğer) uzak durması önerilmektedir. Gebelikte düşük ve anormallik yapma riski vardır. Çoklu vitamin içeren ve gebelerce çok tüketilen ilaçlarda da ne yazık ki A vitamini bulunmaktadır. Yağda eriyen, vücutta depolanan bu tarz ilaçların gebelere verilen dozun toksik (zehirleyici) dozda olmaması özgürce alınabileceği anlamına gelmemektedir. İlaç olarak alınan A vitaminin doğal yollarla alınan A vitaminine göre daha riskli olduğu kabul edilmektedir. Nitekim İngiltere Royal Kolej yayınladığı "Gebe Takip Kılavuzu"nda A vitamini içeren ilaçların ve yiyeceklerden karaciğerin gebelere verilmemesini önermektedir. A vitamini fazlalığı aşağıdakilere neden olabilir: Doğum anormallikleri, Karaciğer problemleri, Kemik mineral yoğunluğunda azalma ve osteoporoz, Uygunsuz kemik büyümesi, Deride uygunsuz renk değişimi, Saç dökülmesi, Yoğun cilt kuruluğu ve pullanmalar A vitamini eksikliğinde görülen hastalıklar: Gece körlüğü, Bağışıklık sistemi zayıflığı, Büyüme-gelişme yavaşlaması D Vitamini Provitamin şeklinde alınan D vitamini deri altında uv. ışınları ile aktifleşir. D vitamini Ca ve P'un emilmesini ve kemiklerde depo edilmesini sağlar. D vitamini eksikliğinde çocuklarda raşitizm,yetişkinlerde osteomalazi hastalıklarının oluşmasını sağlar. Fazlası kireçlenmeye neden olur. En önemli kaynak güneş ışınıdır. Ayrıca karaciğer, balık, yumurta, tereyağı, peynir ve mantarda bulunur. E Vitamini Çocukların büyümesi için E vitamini gereklidir. Yaralarının iyileşmesi için E vitamini gerekir (protein yarayı kötüleştirir). Karaciğer, yağ dokusu, ince bağırsak ve mide E vitamini sentezler. Kimyasal yapı itibarı ile bir tokoferol olup antisterilite vitamin olarak da bilinir. Tokol ve tokotrienoltürevlerinin farklı bileşikleri E vitamini aktivitesi gösterir. En aktifi alfa-tokoferoldür. Provitamin olarak kullanılır. D vitamininden daha güçlüdür. E vitamini sinir sisteminin, kasların, hipofiz ve sürrenaller gibi endokrin bezlerin ve üreme organlarının fonksiyonları için öneme sahiptir. E vitamini, biyolojik bir antidoksidan olup, atardamar hastalıklarının ve kanserin önlenmesi için gerekli olan bir antioksidandır. Bitkisel ve sıvı yağlarda, kırmızı et, karaciğer, tahıl, tahıl ürünleri vb. lerde bulunan E vitamini eksikliğinde kaslar gelişemez ve E vitamini yapıcı-onarıcı özelliğe sahip her şeyi yaptığı için, bazı kozmetik ürünleri de E vitamini içermektedir. Kozmetik ürünlerinde sadece B5 ve E vitaminleri bulunur. Tokoferol (E1) vitamininin tokoferolleri: Alfa tokoferol - E1A (Diğer adı: Provitamin E) Beta tokoferol - E1B (Diğer adı: Pro-E1B) Gama tokoferol - E1G (Diğer adı: EProteinToko1) Delta tokoferol - E1D (Diğer adı: DeltE1) Mega tokoferol - E1M (Diğer adı: Megadel) K Vitamini K vitamini, yeşil sebze, çay ve ciğerde bulunan ve kan pıhtılaşmasında önemli bir yeri olan vitamindir. Karaciğerde protrombin yapılmasında kullanılır. Yokluğunda kan ile ilgili belirtiler ortaya çıkar. Normal olarak bağırsaklarda bulunan bakteriler tarafından sentezlenir. Yetersizliğinde pıhtılaşmada sorunlar ve aşırı kanama ortaya çıkar. Vücudumuzdaki bakteriler tarafından da üretilir. Vücudumuzu hastalıklardan korur. yaraların iyileşmesi için K vitamini gereklidir. Suda çözünenler Diğer dokuz vitamin türü ise suda çözünür ve pek çoğu vücutta depolanmaz. Bunlar: C vitamini, tiyamin (B1), riboflavin (B2), niyasin (B3), pantotenik asit (B5), piridoksin (B6), siyanokobalamin (B12), biyotin, folik asit (folacin). C Vitamini (askorbik asit) C vitamini veya askorbik asit, turunçgiller, koyu yeşil sebzeler ve patateslerde bulunan ve kollajen sentezinde yer alan, antioksidan bir vitamindir. Ayrıca demir emilimini de olumlu etkiler. Yetersizliğinde eklem ağrıları, yaraların geç iyileşmesi, skorbüt gibi sorunlara neden olabileceği gibi enfeksiyonlara karşı kişiyi daha zayıf kılar. Küçük yaşlarda diş eti kanaması ve grip C vitamini eksikliğinde, fazlalığında da ishal görülür. B1 Vitamini (tiyamin) Hemen hemen tüm canlı dokularda bulunur ve pirofosforik ester şeklinde görülür. Pentozfosfat çeviriminde alfa-keto asit dekarboksilazların ve transketolazın koenzimidir. Eksikliği başta sinir ve kalp hücreleri olmak üzere beslenmeleri için özellikle glikoza gereksinim duyan hücrelerde metabolizma bozukluğuyla sonuçlanır ve beriberiye neden olur. B2 Vitamini (riboflavin) Tahıllar, et ve ciğerde bulunan bir vitamindir. FAD'ın içeriklerindendir. Yetersizliğinde ariboflavinoz görülebilir. B3 Vitamini (niyasin) Et, balık ve kuru yemişlerde bulunan ve NAD ile NADP koenzimlerinin içeriklerinden olan, solunum için önemli bir vitamindir. Yetersizliğinde pellagra görülebilir. B5 Vitamini (pantotenik asit) Birçok gıdada, özellikle de ciğer ve baklagillerde bulunan önemli bir vitamindir. E vitamininin içeriği olan pantotenik asit, karbonhidrat ve yağ metabolizmasında yer alır. Yetersizliğinde yorgunluk ve uyuşukluk hissedilebilir. B12 Vitamini (siyanokobalamin) Siyanokobalamin veya B12 ciğer, balık ve süt ürünlerinde bulunan ve DNA metabolizmasında koenzim olarak yer alan bir vitamindir. Alyuvarların olgunlaşmasında da gereklidir. Yetersizliğinde anemi ve kilo kaybı görülebilir.

http://www.biyologlar.com/vitamin-turleri

BİTKİ FİZYOLOJİSİ DERS NOTLARI

Bilindiği gibi fizyoloji organeller, hücre ve dokular ile organ ve organizmaların canlılığını sağlayan işlevlerini, ilişkilerini ve cansız çevre ile etkileşimlerini inceleyen bilim dalıdır. Bitki fizyolojisi de bu çerçevede mikroalglerden ağaçlara kadar tüm bitkilerde bu konuları araştırır. Günümüzde bilgi birikiminin ve iletiminin çok hızlı artışı nedeniyle bilim dallarının sayılarındaki artış yanında sürekli yeni ara dalların ortaya çıkması sonucu bilim dalları arasındaki sınırları çizmek zorlaşmış ve giderek anlamını yitirmeye başlamıştır. Fizyoloji fizik ve kimya ile moleküler biyoloji, sitoloji, anatomi ve morfoloji ile biyofizik, biyokimya verileri ve bulgularından yararlanarak tıp ve veterinerlik, ekoloji ve çevre, tarım ve ormancılık ile farmasi ve gıda, kimya mühendisliği gibi uygulamalı bilimlerrindeki gelişmeler için altyapı sağlamaktadır. Bitki fizyolojisi de bitkilerle ilgili olan konularda aynı şekilde çalışarak.diğer temel ve uygulamalı bilimlerin gelişmesine katkıda bulunmaktadır. Uzunca bir süre önce fizyoloji ile biyokimyanın konuları arasındaki sınır netliğini kaybetmiştir. Giderek diğer bilim dalları ile aradaki sınırlar da bilgibirikiminin artışı sonucunda zayıflayacaktır. BİTKİ FİZYOLOJİSİNİN KONUSU VE DALLARI Klasik olarak fizyoloji, beslenme fizyolojisi, metabolizma fizyolojisi ve büyüme gelişme fizyolojisi olarak üç ana dala ayrılır. Bu yaklaşımla bitki fizyolojisinde beslenme kara bitkilerinin havadan, su bitkilerinin de sudan sağladığı gazlar ve kara bitkilerinin havadan sağladığı su buharı ile toprak veya sudan sağladıkları mineral iyonları, nasıl alındıkları ile ilgili konular beslenme fizyolojisi başlığı altında toplanır. Metabolizma fizyolojisi de bu çerçevede alınan hammaddelerin, hangi maddelere dönüştürüldüğü ve kullanıldığı, işlevlerinin neler olduğu, hangi durumlarda bu tabloda ne yönde ve nasıl değişimler olduğunu inceler. Biyokimya ile en yakın olan daldır. Metabolizma fizyolojisinin karmaşık ve genişkapsamlı oluşu nedeniyle de primer ( birincil, temel ), sekonder ( ikincil ) ve ara Metabolizma, primer Metabolitlerin depolanan ve gerektiğinde sindirilen dönüşüm ürünlerini konu alan alt dallara ayırılması gereği ortaya çıkmıştır. Büyüme ve gelişme fizyolojisi ise beslenme ile alınan, Metabolize edilen maddelerin kullanılması ile organellerden, bitki hücrelerinin embriyo düzeyinden başlayarak organlar ile bitki organizmalarına kadar büyümelerini, belli bir yönde farklılaşarak özel işlevler kazanmalarını, bütün bu olayları etkileyen etmenleri ve etkileşimlerin mekanizmalarını inceler. Büyüme ve gelişme fizyolojisi hem moleküler biyoloji hem de biyokimya ve ekoloji ile yakından ilişkilidir. Çünkü büyümeyi ve sonra gelişmeyi tetikleyen mekanizma ve özellikle farklılaşmanın şekilleri açısından kapasite genetik yapı ve baskı, biyokimyasal özellikler ile çevre koşulları ile yakından ilişkilidir. Bilgi birikiminin artışı ile bitki gruplarına has özellikleri inceleyen veya yüksek bitkilerin yaşamında ve uygulamalı bilimlerde önemli yer tutan belli olgu ve gelişmeleri konu alan alt dallar ortaya çıkmıştır. Bitki hücre fizyolojisi, alg fizyolojisi, çimlenme fizyolojisi, çiçeklenme fizyolojisi, stres fizyolojisi, bunlardandır. Ayrıca fizyolojik olayların açıklanabilmesi gerekli temel bilgileri sağlayan fizik, enerjetik, kimya, fizikokimya ve biyokimya gibi dalların katkıları oranına göre de biyofizik, fiziksel biyokimya, biyo-organik veya inorganik kimya gibi dallara benzer şekilde biyofiziksel, biyokimyasal fizyoloji gibi alt dallara ayrılır. Günümüzde botaniğin ve diğer temel ve teknolojik bilimler ile dallarının konuları ile ilişkinin yoğunluğuna göre adlandırılan alt dallara da ayrılmıştır. Bitki ökofizyolojisi, ürün fizyolojisi, depolama fizyolojisi, fizyolojik fitopatoloji bu alt dallara örnek olarak verilebilir. Bu tür konu sınıflandırmaları çerçevesinde bitki fizyolojisini, fizyolojinin temel konularının bitkileri diğer canlılardan ayıran temel özelliklerin fizyolojik yönlerinden başlayarak ele almak ve bu temeller üzerinde açılım gösteren özel konulara yönelerek işlemek yararlı olabilir. Bilindiği gibi canlıların en temel özellikleri aldıkları enerjiyi belli sınırlar içinde olmak üzere çevreden alabilmeleri, kullanabilmeleri, depolayabilmeleri ve gerektiğinde açığa çıkarabilmeleri, biyolojik iş yapabilmeleridir. Cansızlardan enerjice etkin olmaları ile ayrılırlar, doğal cansız evren enerji karşısında tümüyle edilgendir. Bu nedenle de bitki fizyolojisini biyolojinin temeli olan biyoenerjetiğin temel konularını anımsayarak incelemeye başlamak gerekir.

http://www.biyologlar.com/bitki-fizyolojisi-ders-notlari

Patoloji

Patoloji, eski Yunanca hastalık anlamındaki 'pathos' teriminden türetilmiştir ve hastalıkların bilimsel yöntemlerle incelenmesi anlamında kullanılır. Daha geniş anlamıyla patoloji, hastalıklara yol açan nedenleri, bunların doku ve organları etkileme biçimlerini, hastalıklı doku ve organların özellikle morfolojik (biçimsel, görüntüsel) özelliklerini inceler. Bu anlamda patoloji, tıbbın temelini oluşturur. Tarihçe İlk çağlarda; hastalıkların tanrıların insanları cezalandırmak için kullandıkları bir araç olduğuna inanılıyordu. Her hastalık bir günahın, suçun cezasıydı. Bu inanç, din adamlarının etkinliğini ve gücünü de artırıyordu. Batı Anadolu ağırlıklı eski Yunan uygarlığında ve sonraları ibni Sina'nın yaklaşımlarında, hastalıklar ile tanrı(lar) arasındaki bağı koparma çabaları olmuştur. Atardamarlarda hava değil, kan bulunduğunun anlaşılması bile, insanlık tarihinin yakın dönemlerindedir (Galen, MS 200). Orta çağ boyunca Avrupa'da hastalıkların içsel ve dışsal nedenleri olduğu yönünde (ilahi olmayan) düşünceler ortaya atılmış ve böyle düşünenler genellikle bundan zarar görmüşlerdir! Rönesans ile birlikte, hastalıklar konusunda fiziksel neden-sonuç ilişkileri gündeme gelmiş, salgın hastalıklardan insandan insana geçen etkenlerin sorumlu olabileceği gibi görüşler "gözleme dayanarak" ortaya atılmıştır. Dolayısıyla, "gözlem"in hastalıkları anlama açısından önem kazanması ve bugün anladığımıza yakın anlamda patolojik incelemeler yapılması rönesans ile başlar. Eski Mısır uygarlığında da "haruspex" isimli saray görevlilerinin belli hayvanların organlarını kesip inceledikleri bilinmektedir. Özellikle karaciğerin kesit yüzünü değerlendiren "haruspex"leri ilk patologlar olarak görmek mümkün olabilir. Ancak, "haruspex"lerin (sözcük anlamı:kâhin)incelemeleri o karaciğerde ne olduğunu açıklamayı değil, uğruna bir hayvanın karaciğeri çıkarılan kişinin geleceğinin ne olduğunu tahmin etmeyi amaçlıyordu! Patologluk, bu falcılık yönünü zamanla kaybetmiştir!. Patolojinin büyükbabası olarak kabul edilebilecek kişi, Padua Üniversitesi anatomi profesörü Giovanni Battista Morgagni'dir (1682-1771 veya 1777). Morgagni'nin 1761'de yayımladığı kendi yaptığı 700 otopsiyi anlattığı kitabı bir dönüm noktasıdır. Bundan sonraki dönemde "etiyoloji", "lezyon" ve "semptom" arasında ilişki kurularak bugün bildiğimize yakın, tanrısal yönü olmayan, bir "hastalık" kavramı oluşmuştur. Bu dönemde Bichat, Laennec, Dupuytren, Hodgkin, Addison, Paget, Rokitansky gibi; adları bugün de yaşayan hekimler, patoloji bilgisinin artmasına katkıda bulunmuşlardır. İnsan ve hayvanların aynı mikroskobik yapıtaşlarından (hücrelerden) yapıldığını ilk kez söyleyen, histolojinin babası olarak kabul edilen Theodor Schwann (1810-1882) da böyledir. Patolojinin 1980'lere kadar kullanılmakta olan yaklaşımlarının hemen tümünün kaynağı olarak "hücresel patoloji"nin kurucusu Rudolph Ludwig Karl Virchow (1821-1902) gösterilmektedir. Histopatolojik incelemeye dayanan bu yaklaşımda "hücre"; yaşamı, hastalıkları ve ölümü açıklamaya yönelik tüm çabaların odak noktasını oluşturur. "Omnis cellula a cellula" (her hücre bir hücreden doğar) sözü bu yaklaşımın temelidir. Virchow, hastalıklı hücrelerin de sağlam hücrelerden oluştuğunu vurgulayan ilk bilim adamıdır. Politik radikalliği ile de bilinen Virchow'un başyapıtı "Fizyolojik ve Patolojik Histolojiye Dayanan Hücresel Patoloji" art arda verdiği 20 konferansın ardından 1858'de yayımlanmış ve bilginin hızla biçim ve içerik değiştirmesine karşın, sonraki yüzyıl boyunca etkinliğini sürdürmüştür. "Tromboz", "lösemi", "atrofi", "hipertrofi", "miyelin" gibi pek çok terim ilk kez Virchow tarafından kullanılmıştır. Günümüzde, moleküler yöntemlerin gelişmesi ile bu tür yöntemler de patolojik incelemelerde gittikçe artan biçimde kullanılmaya başlanmıştır. Bunlar arasında, DNA başta olmak üzere, "genetik materyal" ile ilgili olanların önemi özellikle artmaktadır. Ülkemizde patoloji, Osmanlı döneminin tek tıp fakültesi olan askeri tıp fakültesinde (Gülhane) Alman bilim adamları tarafından ilk kez uygulanmıştır. Dolayısıyla, Patoloji Türkiye'ye Gülhane ile gelmiştir. İlk Türk patologlarının tümü askerdir. Ülkemizde patolojinin kısa bir tarihi bu konuda daha fazla bilgi edinmenizi sağlayabilir. Tıp eğitiminde patolojinin yeri Günümüzde tıp fakültesi düzeyindeki bütün okullarda patoloji en ağırlıklı derslerden biri olarak okutulmakta ve ders saati sayısının çokluğu açısından da pek çok kurumda ilk sırayı almaktadır. Bu dersler bir veya iki seneye yayılmaktadır. Gelişmiş ülkelerde de, yalnızca 'ders anlatma' yolu ile öğretim pek çok kurumda neredeyse tümüyle ortadan kalkmakta olmasına rağmen, öğrencinin başarısının değerlendirilmesinde patoloji bilgisinin ölçülmesi önemini korumaktadır. Patoloji öğretiminden beklenen; öğrencinin hastalıklı doku ve organları inceleyerek, neden (etiyoloji) ve sonuç (hastalık bulguları) arasındaki bağlantıları kavrayabilmesini sağlamaktır. Patoloji eğitimi, hastalıklar bilgisine görsel bir boyut kattığı için, öğrenilenlerin daha anlaşılır ve kalıcı olmasını sağlama açısından önemlidir. Bu yönleriyle patoloji, 'temel' bir tıp dalıdır. Patolojide öğrenilenler, hemen tüm klinik dallarda o dala özgü bilgilerin öğrenilmesini kolaylaştırır. Tıp pratiğinde patolojinin yeri ve patoloji uzmanının işlevleri Patolog, hemen yalnızca yataklı sağlık kurumlarında hizmet veren, hem cerrahi hem dahili bilim dalları ve servisler ile ilişkili bir uzmandır. Bu açıdan patoloji bir 'laboratuar' bilim dalı olarak görülebilir. Ülkemizdeki akademik uygulamalarda ise patoloji, 'cerrahi' bilim dalları arasında yer alır. Tıp Fakültelerinde Patoloji Anabilim Dalı, idari açıdan Cerrahi Tıp Bilimleri Bölüm Başkanlığı'na bağlıdır.

http://www.biyologlar.com/patoloji-1

BİYOLOJİK TÜR KAVRAMININ UYGULANMASINDAKİ GÜÇLÜKLER

Biyolojik tür kavramının doğal taksonlara uygulanmasında bazı zorlukların ortaya çıkması gerçegi bu kavramın geçersiz olduğu anlamına gelmez. Bu durum Simpson (1961: 150) ve Mayr (1963: 21-22) tarafından gösterilmiştir. Genel olarak kabul edilen pek çok kavram belli durumlar veya spesifik örneklere uygulandığında benzer zorluklara sebep olmuşlardır. Örneğin bir ağaç kavramı yayılan juniperler, cüce söğütler, dev kaktüsler ve strangler fig’lerin mevcudiyetiyle geçersiz kılınmamıştır. Bir kavram ve onun özel bir duruma uygulanması arasında net bir ayrım yapılmalıdır. Biyolojik tür kavramının uygulanmasındaki daha ciddi problemler yetersiz bilgi, tek ebeveynli üreme ve evrimsel olarak orta durumluluk durumlarından kaynaklanmaktadır. Yetersiz Bilgi Bireysel varyasyonlar bütün çeşitleriyle belli bir morfotipin ayrı bir tür mü ya da değişken bir populasyon içinde sadece bir fenon mu olduğu hakkında şüphelere yol açar. Eşeysel dimorfizm, yaş farklılıkları, polimorfizm ve diğer varyasyon tipleri bir tabiat tarihi çalışması veya populasyon analizleri sırasında bireysel varyasyonlar olarak ortaya konulabilir. Normal olarak korunmuş örneklerle çalışan neontologlar da fenonları (morfotipler) tür olarak vermek zorunda olan paleontologların karşılaştığı aynı problemle karşılaşır. Tek Ebeveynli Üreme Pek çok organizmadaki üreme sistemleri, yeni bir bireyin oluşturulması sürecinde ebeveyn bireyler arasında genetik materyalin zorunlu bir rekombinasyonu prensibine dayanır. Kendini dölleyen hermafroditlik ve diger automixis, partenogenez, gynogenesis ve vejetatif üreme (bölünmüş parçaların gelişimi) tipleri tek ebeveynli üremenin bazı tipleridir. Bu durum aşağı omurgasızlarda nadir değildir, Partenogenez hatta böcekler arasında ve aşağı omurgalılardan sürüngenlere kadar bile vardır. Evrimsel biyolojide belirlendiği gibi, bir populasyon kendi içinde üreyen bir gruptur. Bu tanımlamaya göre eşeysiz bir biyolojik populasyon aksine bir durumdur. Buna rağmen populasyon kelimesi içinde eşeysiz olmanın aksine olmadığı bir kombinasyonu da kapsayan diğer kullanımlara da sahiptir. Kendi içinde üreme hayvanlarda conspesific’liğin en son testi olduğu ve bu kriter sadece eşeyli üreyen populasyonlarda geçerli olduğu için tek ebeveynli üreyen organizma taksonlarında kategorik sıranın belirlenmesi zordur. Taksonomist klonlar, saf hatlar, biotipler ve böyle organizmaların bu şekilde devam eden zincir veya stoklarını nasıl değerlendirecektir ? Bu şekildeki tek ebeveynli soylar zaman zaman agamospecies, binomlar veya paraspecies olarak tanımlanmaktadır. Hangi tanımlama seçilirse seçilsin bu şekildeki mevcudiyetlerin biyolojik türlerin bölümleri olmadığı hatta oldukça farklı olduğu bilinmelidir. Ghiselin (1987) tür teriminin eşeysiz klon gruplarına uygulanmasının uygunluğunu oldukça güzel bir şekilde sorgulamıştır. Özellikle afidler, gal waspları (Cynipidae), Daphnia (Crustacea), rotiferler, digenetik trematodlar gibi bazı hayvan gruplarında eşeyli ve partenogenetik jenerasyonlar arasında düzenli bir dölamaşı görülebilir. Bu gibi durumlarda jenerasyonlardan hiç birisi ayrı bir biyolojik tür statüsü kazanmaz, nomenklatürel tanımda olduğu gibi geçici klonlara bu statü verilmez. Ancak özellikle afidlerde partenogenetik jenerasyonlar bazen tekrar eşeyselliğe dönmekte başarısız olmakta ve partenogenez sürekli hale gelmektedir. Bu jenerasyonlar eşeysel ırklardan konak bitki tercihleri veya renk genleri bakımından farklı hale geldiklerinde bu partenogenetik taksonların farklı türler olarak isimlendirilebileceği önerisinin ciddi biçimde gözden geçirilmesi gerekmektedir. Sürekli olarak tek ebeveynli üreyen hatlar durumunda morfolojik farklılığın derecesi temelinde bunlara tür statüsünün verilmesi geleneklere uygundur. Tek ebeveynli üreyen organizma çeşitleri arasında genellikle iyi belirlenmiş morfolojik kesintiler vardır. Bu kesintiler açık bir şekilde eşeysiz klonlarda görülen çeşitli mutanlar arasında doğal seleksiyonla üretilmiştir. Bu şekildeki kesintilerin mevcudiyeti ve morfolojik farklılıkların miktarının tek ebeveynli üreyen tipler arasında tür sınırlarını çizmek için kullanılması geleneklere uygundur. Eşeysel organizmalarda tür tanımlanması sadece analojiye değil ayrıca diğer benzer gruplardan bir kesintiyle ayrılan her morfolojik grubun kendine ait bir ekolojik nişi işgal etmesine dayanır; yani her grup kendi evrimsel rolünü oynar. Bdelloid rotiferler gibi hepsi zorunlu olarak partenogenezle üreyen gruplarda tanımlanmış biyolojik türler için belli bir biyolojik anlamın delilleri vardır. Tamamen partenogenetik üreyen ve muhtemelen dallanıp ayrılmış olan biparental türlerin bilinmediği, ve içinde iyi biyolojik türler kadar farklı olan bir grup olan örnekler bilinmektedir. Nomenklatürel tanımlama böyle durumlarda maruz görülmüştür. Çeşitli crustaceanlarda (ör. Artemia salina L.) olduğu gibi bir “tür” içinde üreme izolasyonuna sahip çesitli kromozomal tipler bulunduğunda bunları nomenkletürel olarak tanımlamak uygun olabilir. Bunlar geleneksel olarak ırklar olarak tanımlanmasına rağmen üreme bakımından izole olmuş kromozomal populasyonları (mikro) species olarak tanımlamak daha mantıklıdır. Erkek eşeyin bulunmadığı veya fonksiyonsuz olduğu yaklaşık 1000 hayvan türü bilinmektedir. Bu şekildeki komple-dişi türler partenogenezin bu tipi için olan kullanılan özel bir terim olan thelytoky ile ürerler. Mayotik mekanizmalara dayanarak bu gibi türlerde homozigotluk veya heterozigutluğa doğru bir eğilim vardır. Homozigotluk üreten tip nadirdir, ancak birkaç böcek grubuyla sınırlıdır ve zaman zaman normal olarak iki eşeyli üreyen sibling türler bu thelytokous türlerle yan yana bulunmaktadır. Heterozigotluk oluşturan pek çok thelytoky durumunun, türler arası bir hibrit olarak ortaya çıkan bir bireyde partenogenez (thelytoky) için oluşan bir değişiklikten kaynaklandığı ani türleşmenin bir ürünü olarak görülmektedir. Bu kategorideki mevcut türler nispeten yakın zamandaki türleşme olaylarının sonucu olarak görülmektedir, bu kısa zaman taksonomik zorluklar oluşturmak için yeterli bireysel varyasyonları biriktirmek için yeterli zaman sağlayamamıştır. Belirtilen bu durum güney ABD ve Meksika’da bulunan hep-dişi bir kertenkele cinsi olan Cnemidophorus için de geçerlidir. Salamander ve balıklardaki bilinen thelytoky durumları çekirgelerde görülen bir durumda olduğu gibi hibridizasyonun bir sonucudur. Bazı özel durumlarda (ör. Rana esculenta, Poeciliopsis) mayoz boyunca erkek kromozomları yoktur ve ebeveyn türlerden (gynogenesis, veya pseudogamy) birinin erkek tarafından döllenmesi ile gelişen zigotun genotipine erkeklerin katkı sağlamamasına rağmen yumurtanın gelişimini uyarmak için gerekmektedir. Hayvanların iki uzak türü arasındaki hibridizasyon açık şekilde her zaman total sterilite veya eşeysel üremenin bozulmasıyla sonuçlanır. Sikluslu partenogenetik gruplarda bazı türlerde eşeyli üreme sürekli olarak yok olabilir. Bunun konak türdeki bir anahtar ile düzenlendiği durumlarda (bazı afidlerde oldugu gibi) tür statüsü hakkında bazı şüpheler oluşur. Hermafroditler çoğu zaman eşeyli ürer, yani yumurtanın döllenmesi farklı bir bireyin spermatozoası ile yapılır. Ancak bazı türler tamamen kendi kendini döller (automixis). Bu durum Foltz et al. (1982)’ın bazı salyangoz türlerinde buldugu gibi homozigotluğu artırır. Evrimsel Orta Durumluluk Populasyonlar arasındaki üreme ayrılığı olarak belirtildiği gibi tür ancak lokal bir faunanın boyutsuz durumunda komple klasik ayrılıkta mevcuttur. Uzay (enlem ve boylam) ve zaman boyutunda uzanan tür taksonlarından bahsedildiğinde, safha yeni başlayan bir türleşme için oluşturulur. Populasyonlar ayrı türler haline gelme aşamasındaki bu durumlarda bulunabilir. Bu durumdaki populasyonlar ayrı bir türün bazı özelliklerini kazanmış, bazılarını da kazanamamıştır. Ayrılma aşamasının hangi safhasında ayrılan populasyonlar bir tür olarak adlandırılır? Morfolojik ayrılığın kazanılması üreme izolasyonunun kazanılmasıyla yakından ilişkili değilse bir karar vermek özellikle zordur. Bir taksonomistin karsılaştığı ve evrimsel olarak orta durumlu olmaktan kaynaklanan çesitli zorluklar aşagıdaki gibi özetlenebilir. 1- Üreme izolasyonun eşdeger morfolojik değişim olmadan kazanılması: Morfolojik farklılığı olmayan (veya çok az olan), ancak üreme bakımından izole olmuş türler sibling türler olarak adlandırılır. 2- Üreme izolasyonu olmaksızın güçlü morfolojik farklılıkların kazanılması: Bazı hayvan ve bitki cinsleri temas kurdukları bölgelerde tesadüfi olarak kendi arasında üreyen ancak morfolojik olarak oldukça farklı populasyonlara sahiptir. Böyle durumlarda morfolojik olarak farklı her populasyonun tipolojik bir çözüm olarak ayrı türler olarak tanımlanması açıkça uygun değildir. Bunun tersi olarak iki türü arasındaki üreme izolasyonun ara sıra bozulduğu cinsler vardır. Böyle türleri conspesific olarak değerlendirmek zıt ekstremlere götürebilir. Morfolojik farklılık ve üreme izolasyonun aynı zamana rastlamadığı durumlarda genelleştirilmiş bir çözüm yoktur. Burada bir uzmana tek öneri türler biyolojik olarak anlamlı doğal mevcudiyetler oluşturduğu bir durumda türleri sınırlandırmasıdır. 3- İzolasyon mekanizmalarının ara sıra bozulması (hibridizasyon): İyi türler arasında bile üreme izolasyonu ara sıra bozulabilir. Bu durum çoğunlukla sadece steril veya düşük yaşama şansına sahip tesadüfi hibritlerin üretilmesine yol açar ve taksonomik bir probleme yol açmaz. Daha nadir olarak izolasyonun tamamen lokal bir bozulması söz konusudur ve bu durum geniş ölçüde hibrit swarmların ve az çok tamamıyla introgression üretilmesiyle sonuçlanır. Hibrit bireyler, hibrit yapıları keşfedilmeden önce bazen tür olarak tanımlanırlar. Bu isimler, hibrit durumları belirlenince geçerliliklerini yitirir. Sadece populasyonlar taksonlar olarak tanınır ve hibritler populasyon degildir. Bütün populasyonların bir hibridizasyonun sonucunda oluştuğu durumlar taksonomik olarak oldukça zordur. Orijinleri hibridizasyona dayanan çeşitli doğal populasyon tipleri bilinmektedir. a- Hibrit swarmlar: Belli türlerde pek çok simpatrik alanda devam ettirilen üreme izolasyonu lokal olarak bozulabilir, bu durum lokalize olmuş hibrit swarmların üretilmesiyle sonuçlanır. Böyle durumlarda ebeveyn türlerin tür statülerinin korunması önerilir. Meksika’da yasayan Pipilo erythrophthalmus ve P. occi türleri bu duruma örnek olarak verilebilir. Üreme izolasyonunun bu şekilde lokal bir bozulmasından kaynaklanan hibrit populasyonlara her hangi bir taksonomik tanımlama verilmemiştir. Sadece olabilecek bir istisnada üreme izolasyonu öyle bütün bir şekilde kırılabilir ki iki ebeveyn tür tek bir tür halinde birleşebilir. Taksonomik literatür bu durumu yorumlayan çok sayıda durum içerir, ancak bu durumu eksiksiz bir şekilde ortaya koyan tek bir analiz yoktur. b- Hibridizasyonla olusturulan partenogenetik türler: A ebeveyn türünden 1 kromozom takımı ve B ebeveyn tününden 1 kromozom takımına sahip bir bireyin üretilmesiyle sonuçlanan hibridizasyon, kromozom setinin allotetraploidi şeklinde tam olarak ikiye katlanmasına yol açar. Bitkilerde böyle bireyler derhal kendi kendini dölleyen hatta çapraz dölleme yapan allotetraploid bir tür oluşturur. Hayvanlarda çapraz döllenmenin olması neredeyse tamamen zorunludur, yeni bir allotetraploid ancak partenogeneze yol açarak kendini devam ettirebilir (thelytoky). Bu şekildeki hibrit türler genellikle morfolojik olarak iyi bir şekilde karakterize edilirler ve bunların orijin tarzı keşfedildikten sonra bile genellikle geçerli türler olarak tanımlanırlar. Daha kompleks durumlar kısmi partenogenezde ortaya çıkar; oligoketler, planarialar, buğday bitleri, güveler (Solenobia), diğer böcekler, bitler ve kabuklularda görüldüğü gibi bazen triploidi veya daha yüksek poliploidi ile kombine olur. Burada tek bir “türde” iki eşeyli diploidler, thelytokous diploidler ve thelytokous poliploid “ırklar” bulunabilir. Bu ırkların morfolojik olarak ayrılamamakla birlikte üreme bakımından izole olmuşlardır. Bu thelytokous ırklardan çoğu hibridizasyonun ürünüymüş gibi görünmezler. 4- Semispecies ve allospecies: Coğrafik izolatlar zaman zaman tür ve alttür arasındaki bir ara statüdedir. Bazı kriterler tabanında bunlar tür olarak değerlendirilebilir; diğer kriterler temelinde ise değerlendirilemez. Taksonomist tarafından bu şekildeki şüpheli populasyonların yakın olarak ilişkili oldukları türün alttürü olarak değerlendirilmesi genellikle daha uygundur. Diger bazı durumlarda böyle izolatlar açıkça tür seviyesine ulaşır ancak bir üsttürün üyeleri olarak kalırlar. Böyle populasyonlar allospecies olarak dizayn edilebilir. Dairesel çakışmalar ve sınır boyu çakışması durumları evrimsel olarak orta durumluluğun diğer örnekleridir. Sonuçlanan taksonların sıralanması metoduna, evrimsel olarak orta durumluluğun derecesi ve uygunluğu temelinde durumdan duruma karar verilmelidir. Tür ve alttür arasındaki taksonlar genellikle semispecies olarak nitelenir.

http://www.biyologlar.com/biyolojik-tur-kavraminin-uygulanmasindaki-guclukler

İhtiyoloji

Ihtiyoloji (Ichthylogy) eski Yunancada balık anlamına gelen ‘ikhtu’ ve bilim anlamına gelen ‘logos’ kelimelerinden oluşan balıkbilim olarak adlandırılan Zoolojinin Balıklar üzerinde çalışan bir branşıdır. Ihtiyoloji(balıkbilim) bilimadamlarının inceleme alanın da iskeletli balıklar(Ostichthyes),kıkırdaklı balıklar(Chondrichtyes)ve Çenesiz balıklar(Agnatha) bulunmaktadır. Ekseriyetle her bir yıl içinde resmi olarak yaklaşık 250 yeni balık türü keşfedilip isimlendirilmektedir.Nisan 2009 tarihli son güncellemelere göre Balık veritabanında 31,200 balık türü tanımlanmıştır Omurgalıların toplam tür sayısından daha fazla balık türü bulunmaktadır. Balıkçılık bilimi(Fisheries Science),Deniz Biyolojisi(Marine Biology),Içsular bilimi(Limnology) ihtiyolojinin çalışma alanıyla yakından ilgilidir. Ihtiyoloji bilimi tarih içinde her birinde çok sayıda önemli gelişmelerin yaşandiğı ,birbiriyle bağlantılı olan çeşitli dönemlerde gelişme göstermiştir.Bu dönemler şunlardır; 1-)PRE-HISTORICAL DÖNEM (M.Ö 38.000-M.Ö 1500) 2-)JUDEO-CHRISTIAN DÖNEM (M.Ö 1500-M.S 40) 3-) MEDITERRANEAN DÖNEM (M.Ö335-M.S 80) 4-) EUROPEAN RENAISSANCE DÖNEM (13.-16.YÜZYIL) 5-) EXPLORATION AND COLONIZATION DÖNEM (16.-17. YÜZYIL) 6-)MODERN DÖNEM (17. YÜZYILDAN GÜNÜMÜZE)

http://www.biyologlar.com/ihtiyoloji-1

Filogenetik Hakkında Bilgi

Biyolojide filogenetik çeşitli organizma grupları (örneğin türler veya topluluklar) arasındaki evrimsel ilişkinin araştırmasıdır. Bu ilişkiler filogeni olarak adlandırılır. Filogenetik terimi Yunanca kökenlidir, "kabile, ırk" anlamına gelen file veya filon  ve doğumla ilişkili anlamındaki genetikos ("doğum" anlamında olan genesis kökünden gelir) terimlerinden türetilmiştir. Organzimaların sınıflandırması ve adlandırması olan taksonomi, filogenetikten büyük miktarda etkilenmiştir ama yöntemsel ve mantıksal olarak farklıdır. Bu iki saha, "kladizm" veya "kladistik" olarak bilinen filogenetik sistematik bilim dalında örtüşürler. Filogenetik sistematikte taksonları birbirinden ayırdetmek için sadece filogenetik ağaçlar kullanılır. Evrimsel hayat ağacının araştırılması için filogenetik analiz yöntemleri vazgeçilmez hâle gelmiştir. İlgili bir kavram olan filogenez, bir biyolojik türün (veya bir organizmalar grubunun) bir dizi şekillerden geçerek meydana gelen evrimsel gelişimidir. Bu terim bir organizmanın belli bir özelliğinin (örneğin anatomik bir yapısının) gelişimi için de kullanılabilir. Bu ismin sıfat hali filogeniktir.

http://www.biyologlar.com/filogenetik-hakkinda-bilgi

TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI

BİYOLOG MESLEĞİ, GÖREV ALANLARI, BİYOLOGLARIN YETKİ VE SORUMLULUKLARI İLE BİYOLOG ODALARI VE TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI Genel Gerekçe Türkiye Cumhuriyeti Anayasası'nın 135 inci maddesinin verdiği hak ve teşvikten yola çıkarak, Biyologların görev alanları, yetki ve sorumlulukları ile Türkiye Biyolog Odaları ve Biyologlar Birliği kanunlarının teklif edilmesi kararlaştırılmıştır. 1933 Üniversite reformu ile ilk defa İstanbul Üniversitesinde nebatat ve hayvanat kürsüsü olarak öğretime başlayan Biyoloji bölümleri ilk mezunlarını 1937de vermiştir. 68 yıldır kadrosu olan ama yetki ve sorumluluğu belli olmayan Biyologların yetki ve sorumluluklarının belirlenmesi için bu kanun tasarısı hazırlanmıştır. Biyoloji biliminin eğitimini alarak Biyolog unvanını kullanmaya hak kazanmış kişilerin; tüm bilimsel, hukuki ve çalışma alanlarındaki görev ve sorumluluklarını belirlemek, mesleki özlük haklarını korumak ve mesleki faaliyetlerini kolaylaştırmak, bu kanun teklifinin temel gerekçesini oluşturmaktadır. Biyoloji, canlı sistemlerin bilimidir. Biyologlar ise; canlılarla ilgili araştırma, (deney, gözlem, koleksiyon, istatistik, koruma, kontrol, inceleme, test, tanı ve değerlendirme) yapar. Canlıların gelişimi, evrimi, kalıtımı, fizyolojisi, ekolojisi, korunması, tanı ve sınıflandırılması, davranışlarını ve özelliklere etki eden faktörlerin neden ve sonuç ilişkilerini araştırır, tanımlar. Aynı zamanda Biyolog, Biyoloji yada Biyolojinin özelleşmiş alt dallarında laboratuar ve arazi çalışmaları yapar. Bu çalışmalarla ilgili yetki ve sorumlulukları taşır. Çalışmalarını yaparken çeşitli biyolojik, matematiksel, fiziksel ve kimyasal yöntemlerle, uygun araç ve gereçlerden yararlanır. Çalışma sonuçları çevre, sağlık, üretim, eğitim, teknoloji ve ekonomi gibi yaşamsal alanlarda uygulanır. Ülkemiz iklim koşulları, coğrafi konumu ve jeomorfolojik yapısı nedeniyle çok zengin ve kendisine özgü bir Biyolojik çeşitliliğe sahiptir. Avrupa'nın sahip olduğu tür sayısına yakın bir flora (bitkiler) ve fauna (hayvanlar) zenginliğine sahip ülkemizin bu biyolojik zenginliğinin korunması konularında dünya ülkeleri arasında hak ettiği yeri alması Biyologların bu tür çalışmalara etkin bir biçimde katılmasıyla mümkün olacaktır. Ülkemiz Biyolojik zenginliklerinin belirlenmesi, korunması Türkiye Büyük Millet Meclisi tarafından değerlendirilmiş 1996 yılında 96/8857 karar sayısı ile Milletlerarası Biyolojik Çeşitlilik sözleşmesi kabul edilerek Biyolojik çeşitlilik daha da önem kazanmıştır Biyolojik zenginliklerle, kalkınma arasında sıkı bir ilişki mevcuttur. Zira tüm ekonomik faaliyetler temelde doğal kaynaklara dayanmaktadır. Bu da biyolojik sistemlerin etkin bir biçimde araştırılması ve anlaşılmasına bağlıdır. Canlı doğal kaynaklarımızı akılcı bir biçimde değerlendirerek kendilerini yenileme, kapasitelerini yitirmeden gelecek kuşaklara aktarabilmek için Biyologlara ihtiyaç vardır ve her zaman olacaktır. Biyologlar,çevre, eğitim, tarım,orman,tıp, sağlık ve ekonomi gibi hayati konularda ülkemizde önemli sorumluluklar yüklenerek hizmet vermektedirler. Bu yüzyılın Biyoloji çağı olacağı göz önüne alınarak Biyologların görev, yetki ve sorumlulukları ile Biyolog Odaları ve Türkiye Biyologlar Birliği Kanun tasarısı hazırlanmıştır. Ulusal Programda Biyologların yeri; Ülkemizin hazırladığı AB'ye uyum için ulusal programda kısa ve orta vadede yer alan beşeri tıbbi ürünler ve gıdaların piyasa kontrolü başlığı altında yer alan uyum yasalarının hazırlanmasında ve uygulanmasında biyologların rolü kaçınılmaz olacaktır. Bilindiği gibi 560 sayılı KHK r0; Gıdaların Üretimi Tüketimi ve Denetlenmesine Dair Yönetmelikr1; te ülke mevzuatında yer almayan hususlarda Uluslar arası mevzuata uyumlu işlem yapılacağı belirtilmektedir. Bu mevzuatın içeriğini bilen ve yorumunu yapabilecek kabiliyetteki biyologların varlığı ülkemiz için bir avantajdır. AB için hazırlanan Ulusal Programda Beşeri Tıbbı Ürünler başlığı içerisinde yer alan biyolojik ürünlerin İyi Üretim Uygulamaları (GMP) na göre üretilmesi, etkili ve güvenli sunumu için yasal olarak görev ve sorumluluklarının belirlenmesi zorunlu olan biyologlarının katkısı büyük olacaktır. Ayrıca tıbbi cihazlar konusunda AB ülkelerinde eğitim almasını önerdiğimiz teknik personel içerisinde mesleki yatkınlıklarından dolayı biyologların olması ülkemiz lehine bir durum olacaktır. Ulusal Programda bitkisel ürünler başlığı altında; transgenik bitkilere ilişkin düzenlemelerde, arıcılığın geliştirilmesi maksadıyla flora çeşitleri, flora mevsimi ve kapasitelerinin haritalandırılması ve de arıcılık Araştırma Enstitülerinin tüm ülkeye etkin bir şekilde hizmet vermesinin sağlanacağı ifade edilmektedir. Genetik, entomoloji, bitki anatomisi,patolojisi ve fizyolojisi konularında yeterli eğitim almış biyologların bu gelişmelere sağlayacağı katkı yadsınamaz düzeyde olacaktır. Aynı zamanda yerli hayvan gen kaynaklarının korunacağı ve bu maksatla Hayvan Gen Bankasının kurulacağı ifade edilmektedir. Tüm dünyada olduğu gibi ülkemizde de bitki ve hayvan gen bankalarının kurulması biyologların işbirliği ile sağlanacaktır. Ormancılık alanında;yaklaşık yarısı verimli durumda olan 20,7 milyon hektarlık ormanlık alanın 1,8'i biyolojik çeşitlilik olmak üzere yüzde 17,5'i korunan alanlar Olarak değerlendirilmektedir. Ormanların ekosistem yaklaşım dahilinde, devamlılık, çok amaçlı yararlanma, biyolojik çeşitlilik ile su ve yaban hayatının korunması doğrultusunda; eko turizm, verimlilik, kirlenme, yangın-böcek-heyelan-kar-çığ-sel-don ve kuraklık gerçekleri ile ergonomik faktörler dikkate alınarak işletilmesi, korunması ve geliştirilmesi için biyologların görev ve sorumluluklarına ihtiyaç duyulacağı açık bir gerçektir. Ayrıca korunan alanlar ve nesli tehlikede olan yaban hayatı ile bitki türleri dikkate alınarak yeniden incelenmelidir. Yeşil ve yaşanabilir bir çevre yaratma konusunda gerekli toplumsal iradenin oluşturulması amacına katkı sağlayacak olan Biyolog Odaları ve Biyologlar Birliğine ait yasa Tasarısının desteklenmesi AB uyum sürecinde olan ülkemiz için bir avantaj olacaktır. AB ülkelerinin üçüncü ülkelerle olan ticaretlerinde Bitki Sağlığı Sertifikası geçerlidir. Üye uygulaması mevcut değildir. Bu uygulamanın yürürlüğe konabilmesi için bitki anatomisi,fizyolojisi, morfolojisi,taksonomi ve sistematiği konusunda birikimi ve terminoloji yatkınlığı olan ülkemiz biyologlarının değerlendirilmesi esas olmalıdır. AB ülkeleri ile Ortak Balıkçılık Politikasının Belirlenmesinde; etkin bir koruma ve kontrol sisteminin oluşturulması ile denizlerdeki ve iç sulardaki doğal ortamın korunması, kontrolü, ve geliştirilmesini sağlamak, kaynakların rasyonel kullanımı ile ilgili tedbirleri almak gerekecektir. Yetiştiricilikle; yapılan üretimin çevre, turizm, ulaştırma ve diğer ilgili sektörlerle etkileşimi dikkate alarak geliştirmeye ve yaygınlaştırmaya önem vermek gerekecektir. Ayrıca gerekli altyapı tamamlandıktan sonra açık deniz balıkçılığına geçmek gerekecektir. Ülke sularının ekolojik ve limnolojik özellikleri belirlenecek, ortama en uygun ve ekonomik değeri yüksek türlerin yetiştirilmesi için balıklandırma faaliyetlerine geçilerek teknik ve hijyenik şartların sağlanması gerekecektir. Yetiştiricilikten elde edilecek deniz ürünlerinin yaklaşık yüzde 80r17;inin AB ülkelerine ihraç edileceği planlanırken, bu çalışmalar içerisinde aktif olarak yer alan biyologlarla ilgili Oda ve Birlik yasasının kabul edilmesi ülkemiz biyologlarının bu çalışmalara arzu edilen katkıyı sağlayacağı anlamını taşır. Ülkemizin farklı ekolojik karakterdeki ekosistem mozaiği, binlerce hayvan ve bitki türü ile bunların ırk ve populasyonlarının barınmasına imkan sağlamıştır. Ülkemizde üç bine yakın endemik olmak üzere dokuz binin üzerinde bitki türü tespit edilmiştir. Hayvan türlerinin ise seksen bin olduğu tahmin edilmektedir. Ülkemiz aynı zamanda yeryüzünün en önemli gen merkezlerindendir. Biyolog Odaları ve Türkiye Biyologlar Birliğinin hazırlayacağı ve hazırlanacak olan koruma projelerine katılması ve giderek karar süreçlerinde etkili olması; Türkiye'nin AB' ye uyum sürecinde, uluslar arası ilişkilerin güçlenmesinde Doğa Koruma konusunda avantajlı duruma gelmesine katkı sağlayacaktır. Ulusal Politikamızın belirlenmesinde; yukarıda sözü edilen tüm konu ve kavramlara sahip çıkabilecek, onları zenginleştirecek, takipçisi olabilecek nitelikteki insan gücü olan biyologlara ve onların meslek birliği olan Biyolog Odaları ve Türkiye Biyologlar Birliğir17;ne şiddetle ihtiyaç duyulacağı göz önüne alınmalıdır. Uluslar arası sözleşmeler ve Biyologlar; Dünyada, biyolojik çeşitlilikle ilgili uluslararası sözleşmelerde fauna ve flora ile birlikte doğal kaynakların yönetimi ve yok edilişinin durdurulması çalışmalarında daha çok biyologlar sorumluluk almaktadır. Avrupa'nın Yaban Hayatı ve Yaşama Ortamlarını Koruma Sözleşmesi olarak bilinen Bern Sözleşmesi ile ilgili olarak fauna ve floranın korunarak gelecek nesillere aktarılması konularında; CITES Sözleşmesi olarak bilinen "nesli tehlikede olan yabani hayvan ve bitki türlerinin uluslararası ticaretine ilişkin sözleşme" gereği yabani türler ya da onların derileri ve trofelerinin ihracatı, transit ve ithalatı ile ilgili konularda; Sulak Alanlar Sözleşmesi olarak ifade edilen Ramsar Sözleşmesi ile sulak alan ekosistemlerindeki bitki ve hayvan toplulukları ve su kuşlarının biyolojisi, ekolojisi ve yayılışı konularında; Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesinde biyolojik çeşitliliğin korunmasında, biyolojik kaynaklardan özellikle genetik çeşitlilikten sağlanan faydanın eşit ve adil paylaşımı konularında biyologlar görev almak zorundadır. Birleşmiş Milletlerin kuraklık ve çölleşmeye maruz ülkeler kapsamına aldığı Türkiye'de de çölleşme ile mücadelede asıl görev alması gereken biyologlardır. Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesine ek Cartagena Biyogüvenlik Protokolü ile biyolojik çeşitlilik, transgenik canlılar, gen transferi ile ilgili konularda ve bu kapsamda taraf olacağımız diğer sözleşmelerin kapsamında olan alanlarda biyologların doğrudan görev, sorumluluk ve yetki almaları ulusal çıkarlar açısından çok önemlidir. Biyologların Şikayet ve İstekleri Türkiye'de biyologların çalışma yerlerinde konumları ile ilgili karşılaştıkları güçlükler son yıllarda aşılmaz hale gelmiştir. Bugün bu sorunlar biyologlarla ilgili gündemin ana konusunu teşkil etmektedir. Biyologların çalıştıkları sahalarda görev, sorumluluk ve yetkileri ile ilgili bir mevzuat yoktur. Ülkemizin doğal kaynaklarının korunmasında, temel tıpla ilgili uygulamalarda, ormancılık ve tarımla ilgili konularda doğrudan görev almaları gerekirken bu görevlerdeki biyologlara, araştırma, koordinasyon, inceleme, planlama, proje ve analiz aşamalarında bilfiil sorumluluk aldıkları halde yetki verilmemektedir. olarak çalışmaktadırlar. Avrupa birliğine tam üyelik aşamasında olan Türkiye'de bu yanlış uygulamalar Avrupa Birliği normlarına ve meslek standartlarına uymamaktadır. Bu nedenlerle demokratik bir ülke olan Türkiye'de biyologların hak ettikleri görev, sorumluluk ve yetkilerin tam olarak belirlenmesi ve bir mevzuat kapsamında görevlendirilmeleri bir zorunluluk haline gelmiştir. Düzenleyen karakecili Düzenleme Tarihi: 19/05/2008 Mehmet İPEK Eskişehir Osmangazi Üniversitesi Gokhan #2 Mesaj Tarihi 18/02/2008 Yönetici Mesaj Sayısı: 211 Katılım Tarihi: 07.02.08 Yasal girişimler 1991 yıllarda çok yoğunlaşmış. İlk yasa tasarısı çok yoğun tartışmalar sonucunda hazırlanmış kitap haline getirilmiş ve TBMM´ne Tınaz Titiz 'in bakanlığı döneminde verilmiştir. Meclis'de yoğun muhalefetle karşılaşılmış Tıp ve Ziraatçıların karşı çıkması ve meclisin tatile girmesi nedeniyle görüşülememiştir. Burada en önemli sorun odalaşmak isteyen meslektaşlarımızın etkin destek vermemeleridir. Bu 2007 yılına kadar böyle devam etti. Oda yasası 1995-1996 yıllarında yeniden güncellenerek TBMM için çalışmalara başlandı. Bu dönemde yasa, komisyonlarda görüşülmeye başlanmış Hükümet adına görüş otuşturmak üzere Sağlık Bakanlığı görevlendirilmiştir. Sağlık Bakanlığında yapılan toplantıya o dönemdeki yönetim ile birlikte Biyologlar Derneği danışmanı olarak üniversiteden hocalarımızda katılmıştır. Sağlık Bakanlığı, Meslek Yasası´nın çıkmasını ancak odalaşmanın karşısında olduğu konusunda bir görüş benimseyerek komisyona göndermiş ve yasanın çıkmasını engellemiştir. 2000 yılında 3. kez güncelenen yasa Osman Durmuş kanalıyla meclise gönderilmiş ama çıkarılamamıştır. 2005 yılında 4. güncellenen yasa tasarısı Kanunlar kararlar dairesine oradan da Salih Kapusuz'a verilmiş. Ne kadar haklı olursanız olun talep edenlerin hem örgütlülükleri hem de güç dengeleri üzerindeki etkinlikleri yasaların çıkması üzerinde çok etkilidir. Kanun yapma yetkisi siyasetin elindedir. Siyasetin zayıf noktası ise oy ve oy potansiyelidir. Eğer güç olamazsak hiç bir hak kazanamayız. Bunun için birlik olmalıyız ve dernek çatısı altında birleşmeliyiz. Şu anda resmi olarak kurulmuş iki dernek bulunmakta. En azından bunlardan her hangi birine üye olmalıyız ki sayı gücümüz olsun. Aksi taktirde değil meslek odası, ekmek yiyeceğimiz iş sahası bile bulamayız. Düzenleyen Gokhan Düzenleme Tarihi: 18/02/2008 BİYOLOGLAR BİRLİĞİ DERNEĞİ Genel Sekreter Gökhan KAVUNCUOĞLU Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/turkiye-biyologlar-birligi-kanun-tasarisi

Herbaryum Örneklerinin Kullanim Alanlari

Herbaryum örneklerinin kullanilma amaçlari ise asagidaki gibi siralanabilir; a) Herbaryumlarda bulunan bitki örnekleri, morfolojik çalismalar yaninda söz konusu bitkinin kök, gövde, yaprak ve çiçek gibi degisik organlarinin mikroskobik olarak incelenmesinde materyal olusturur. b) Florasi incelenen bölgelerde, bitki gruplarinin dagilisi büyük oranda herbaryum kayitlarina göre belirlenir. c) Bitkisel üretim, ekoloji ve taksonomi gibi konularda, okul içi egitimde ögrenim amaçli herbaryumlardan faydalanilmaktadir. Ögrencilere özellikle iklim ve mevsimin uygun olmadigi ortamlarda, bitki karakterlerinin gösterilmesi, cins ve türlerin tanitilmasi, herbaryumlardaki bitki örnekleri ile pratik olarak gerçekleşir. d) Çayır - mera vejetasyonlarını olusturan türlerin, süs bitkilerinin, kültür bitkilerinin ve yabanci otlarin teshisinde herbaryumlar en değerli kaynağı olusturur. Zira son yillarda taksonomik yayinlari inceleyerek bitki tanima teknigi önemini büyük ölçüde kaybetmistir. e) Özellikle tür ve varyete isimleri temel kabul edilerek, düzenlenen herbaryumlardaki bitki örnekleri kromozomlarla yapilan poliploidi çalismalarinda (zaman içinde seri olustugundan) degerli birer belgesel kayit anlami tasir. f) Entomolojik ve fitopatolojik çalismalarda konukçu bitkiye bagli teshislerde de büyük önem arz eder.

http://www.biyologlar.com/herbaryum-orneklerinin-kullanim-alanlari

Virüslerin Kesifi

Virüs latince zehir anlamına gelir. Virüsler 19. Yüzyılın sonlarına doğru keşfedilmiştir. Robert KOCH, Louis PASTAEUR ve diğer bakteriyologlar , canlılarda görülen birçok hastalıklara bakterilerin sebep olduğunu bulmuşlardır. Fakat bazı hastalıklar onları çok şaşırtıyordu. Çünkü hastalığın meydana geldiği organizmada, bu hastalığa sebep olabilecek bir bakteri bulunamıyordu. Araştırmacıların dikkatini çeken böyle bir hastalığa tütün yaprağında rastlanmıştı. Hasta bitkinin yaprakları , mozayik bir şekilde lekelenip buruştuğu için , bu hastalığa tütün mozaiyik hastalığı adı verilmiştir. Virüsler önceleri bakterilerin salgıladığı bir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak bakterilerin salgıladığıbir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak hastalık yapabileceği gösterildi. Hasta olan tütün bitkisinden çıkarılan özüt, porselen bir filtreden geçirilerek bakteriler tutuldu. Süzülen özüt, sağlıklı tütün bitkisinin yapraklarına sürüldüğünde, bitkinin hastalandığı görüldü. Hollandalı mikrobiyolog M.W. BEIJERINCK hastalığın kısa zamanda bitkinin bütün organlarına yayıldığını tespit etmiştir. Özütte hiç bakteri kalmadığı halde, sağlıklı bitkiyi hastalandıran bu faktöre, BEIJERINCK, “hastalık yapan canlı sıvı” adını vermiştir. 20. yüzyılın başlarında, tütün mozayik virüsünden başka, bitki, insan ve hayvanlarda çeşitli hastalıklar yapan virüsler keşfedilmiştir. Mesela bunlar arasında salatalık, marul ve patateste mozayik hastalığı yapan virüsler sayılabilir. Ayrıca insanlarda sarı humma, çocuk felci, grip, kızamık, kızamıkçık, kabakulak ve suçiçeği gibi hastalıklara sebeb olan virüsler de bilinmektedir. 1930 yılına kadar, virüslerin sebeb olduğu bir çok hastalık tanımlanmasına rağmen, virüslerin yapısı ve özellikleri hakkında fazla bilgi elde edilememiştir. Amerikalı mikrobiyolog Wendell M. STANLEY, 1935 yılında tütün mozayik virüsünü, yaşadığı bitkiden ayırmayı başarmıştır. Bu araştırmacı, saf olarak elde ettiği virüs kitlesini mikroskopta incelediğinde, iğne şeklinde kristaller görmüştür. Daha sonra bu kristallerin nükloproteinler olduğu anlaşılmıştır. Aynı yıllarda STANLEY, izole ettiği tütün mozayik virüsü (TMV) kristallerini elektron mikroskobunda inceleyerek çubuk şeklinde yapılar olduğunu görmüştür. İzole edilmiş tütün mozayik virüsleri cansız gibi görünmesine rağmen, suda biraz bekletilerek tütün yaprağına sürüldüğünde, bitkinin hastalandığı tespit edilmiştir. Bu çalışmalarla, virüslerin ancak canlı hücrelere üreyebildiği anlaşılmıştır. Virüsler, canlı hücrelerde yaşayan mecburi parazitler olup, içinde yaşadığı hücrenin metabolik mekanizmasını kendi hesabına kullanabilen canlılardır. Gerçekten, bir virüs konukçu hücreye girdikten sonra, kendisi için gerekli proteinleri ve nükleik asitleri üretebilmektedir. Yani virüsler, girdiği hücrelerde, metabolizma makinasının direksiyonunu ele geçirmekte ve onu kendi lehine yönlendirebilmektedir. Virüslerin Özelikleri genom: Bir organizmanın sahip olduğu genleri taşıyan DNA’nın tamamıdır. Her organizmanın kendi genomu vardır. Kalıtım maddeleri (genomları) DNA veya RNA olabilir. Sadece proteinkılıf + DNA dan oluşurlar. Bu yapılarından dolayı kopmuş kromatin parçasına benzerler. Hücre organelleri, sitoplazmaları, enerji üretim sistemleri ve metabolizma enzimleri yoktur.Hem canlı hem cansız olarak sayılırlar. Virüslerin canlı sayılmasının nedeni cnalı bir hücre içine girdiğinde DNA eşlemesi yapabilmeleridir. Virüslerin cansız sayılmalarının nedeni hücre dışında cansızların özelliği olan kristal yapıda bulunmalarıdır. Bazı virüslerde virüsün bir hücrenin içine girmesini sağlayan enzimlerde buluna bilir.virüsün üremesi için canlı bir hücreye girmesi şarttır. Virüs girdiği hücrenin ATP’sini ,enzimlerini, nükleotitlerini kısaca herşeyini kendi leyhine kullanan tam bir parazittir. Virüs DNA sının içine girdiği bakteri DNA sından baskın olması ve bu bakteriyi kendi hesabına yönetmesi DNA nın yönetici özelliğine en iyi örnektir.bakteri içine girenvirüse bakteriyofaj denir. Virüs bir hayvan hücresine girdiğinde interferon denilen hormon benzeri bir madde salgılar. Bu madde diğer hücrelere vücutta virüs bulunduğunu haber vererek korumayı sağlar. Virüslerin Büyüklüğü ve Şekli Bütün virüsler o kadar küçüktür ki , bunlar ışık mikroskobunda ayrı parçalar halinde görülemezler. Ancak elektron mikroskobunda belirli şekilde görülmektedir. Büyüklükleri genel olarak 15-450 milimikron arasında değişir. Çocuk felci virüsünün elektron mikroskobuyla alınan fotoğrafı, virüs parçacıklarının pinpon topuna benzer minik yuvarlaklar halinde olduğunu göstermiştir. Virüslerin Yapısı Biyologlar virüslerin canlı tabiatının eşiğinde yani en alt basamağında bulunan varlıklar olarak kabul ederler. Çok küçük çok ilksel organizmalardır. Bu bakımdan virüsler hakkındaki bilgilerimiz henüz çok değildir. Biyologlar çok ince ve dikkatli araştırmaları sonucu virüslerin bir nükleit asit RNA öz maddesi ile bunu saran bir protein kılıftan meydana geldiğini bulmuşlardır. Öz madde virüsün çeşidine göre bir RNA veya DNA olabilir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer, onların içinde çoğalırlar. Bu virüslere Bakteriyofaj (bakteri yiyen virüs) denir. Bakteriyofajlar bakterileri yiyerek yaşarlar. Bakterilerin içinde ürer ve en sonunda içinde yaşadıkları hücreleri yok ederler. İnsan ve hayvanlarda hastalık yapan virüslerin çoğu da, etrafı protein kılıf ile çevrili DNA ipliğinden başka bir şey değildir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer ve onların içinde çoğalırlar. Bu virüslere bakteriyofaj veya kısaca faj (faj virüsleri) denir. Faj bakteri yiyen anlamına gelir. Virüslerin Yaşama Şekilleri Canlı hücrelerden alınan virüsler hücre dışında yaşayamazlar; fakat, yeniden bir hücreye bulaştırılırlarsa hemen çoğalmaya başlarlar. Şu halde, virüsler mecburi parazit olup, ancak canlı hücrelerin içinde yaşayabilirler. Virüsler; çiçekli bitkilerde, böceklerde, bakterilerde, hayvan ve insan hücrelerinde yaşarlar. Bazen çeşitli hastalıklara sebep olurlar. Hattâ bir görüşe göre, bazı kanserlerin bile sebebi virüslerdir. Çiçekli bitkilerden tütün, patates, domates, şeker kamışı ve şeftali gibi faydalı bitkilerin hastalıkları üzerinde yapılan çalışmalarda, 100’den fazla değişik bitki virüsü bulunmuştur. Arı, sinek ve kelebek gibi bazı böcek takımlarının bir çok türlerinde yaşayan virüsler vardır. Bu virüsler, özellikle böcek larvalarında hastalıklara sebep olurlar. Böceklerde hastalık yapan virüsler, zararlı böcveği ortadan kaldırmak için biyolojik mücadelede de kullanılmaktadır. Birçok bakteri ve bazı mantarlarda yaşayan fajlar bulunmuştur. Omurgalılardan sadece balıklarda, kurbağalarda, memelilerde, kuşlarda ve bihassa kümes hayvanlarında yaşayan virüsler tespit edilmiştir. Her virüs çeşidi çoğunlukla vücudun belli bir kısmına girer ve belirli hücreler içinde çoğalabilir. Sarı humma virüsleri karaciğerde;kuduz virüsleri beyinde ve omurilikte; çiçek, kızamık, siğil virüsleri ise deride çoğalır. Virüsler sadece hücre içinde faaliyet gösterdiklerinden hücreye zarar verir ve antibiyotiklerden etkilenmez. Belli bazı virüslerin bulaştığı hücreler, aynı tipten ikinci bir virüs enfeksiyonuna karşı bağışıklık kazanır. Hücre, canlı veya sıcaklıktan öldürülmüş bir virüsle muamele edilince “interferon” denilen bir madde salgılar. İnterferon bazı hastalıklar için hücrelerde bağışıklık meydana getirir. Meselâ kızamık, kabakulak ve kızıl gibi hastalıkları geçirenler, kolay kolay bu hastalığa yeniden yakalanmazlar. Vücudun ve virüslerin bu özelliğine dayanarak bazı virüs hastalıklarına karşı aşılar geliştirilmiştir. Çiçek, sarı humma ve kuduz aşıları belli başlı virütik aşılardır Virüslerin Üremesi Virüsün canlılığını sürdürmek için bulunduğu canlıya konak canlı adı verilir. Virüs konak canlıya girdiğinde konak canlının DNA sı virüsün hesabına çalışmaya başlar. Yani virüs girdiği canlıyı yönetimi altına alır. Artık konak canlı kendi eşlenmesi yerine virüsün yönetici maddesini eşler. Ribozomlarıyla virüsün proteinlerini sentezler. Konak canlıda sayısı hızla artar. Konak canlının hücre zarı parçalanarak virüsler açığa çıkar. Kendilerine yeni konak canlı ararlar. Eğer canlı bir hücre yoksa kristaller meydana getirirler. Devamlı üreyen virüslere Litik Virüs denir.bazı hallerde virüs girdiği konak canlıya zarar vermeden kalabilir. Virüsün yönetici maddesi konak canlının yönetici maddesine yapışırsa konak canlı virüsün yönetimine girmez. Konak canlının yönetici maddesinin bir parçası haline gelebilir. Virüs çoğalamadığı içinde konak canlıya zarar veremeyecektir. Böyle virüslere Lizogenik Virüs denir. Virüsler bitkilerde ve hayvanlarda hastalık meydana getirirler. Ancak bu zarar girdikleri bitki veya hayvan hücresinde yönetimi ele geçirirlerse mümkündür. Virüslerin nükleik asitlerindemutasyonlar meydana gelebilir. Biyolojik açıdan eniyi incelenen virüsler “Bakteriyofaj”lardır. Bunlara bakteri yiyen virüslerde denilebilir. Birde kuyrukları vardır. Kuyruk bakteriye deydiğinde bakterinin o bölgesini eritir. Yönetici molekülü böylece bakteriye geçer. Lizogenik virüsse bakteri kromozomuna yapışır, orada profajı oluşturur.(Girdiği bakterinin kromozomuna yapışarak üremeden kalabilen Lizogenik virüs kromozomuna profaj denir.) Özet Olarak Virüsler 1-Canlı ve cansız arasında geçit oluştururlar. 2-Protein kılıf ve nükleik asitten oluşurlar.(DNA veya RNA) 3-Kristalleşebilirler 4-Kompşex enzim sstemleri yoktur. 5-DNA taşıyanlar bakterileri yiyebilir bunlara bakteriyofaj veya faj denir. 6-Grip, nezle, kızamık, frengi, kabakulak gibi hastalıkları yaparlar. 7-Virüs bir canlı hücrenin (örneğin bakterinin) çeperine yapışır. 8-Virüs DNA’si bakterinin içine enjekte olur. 9-Bakteri DNA’sının eşlenmesi durur. 10-Virüs DNA’sı bakterinin bütün biyokimyasal sistemlerini kullanarak kendini eşlemeye başlar. 11-Bakterinin protein sentezi sistemi virüs için gerekli protein kılıfı v.s. gibi yapıları bakteri malzemesi kullanılarak sentezlenir.bu yolla 100’den fazla virüs oluşur. 14-Bakterinin hücre duvarını delici enzimlerinde sentezlenmesi ve hücre duvarının erimesiyle virüsler dışarı çıkar.

http://www.biyologlar.com/viruslerin-kesifi

ÖRÜMCEĞİN HAYAT HİKAYESİ

Latince örümcek anlamına gelen arakne kelimesinin kökeni, Ovid'in Metamorfozlar adlı eserindeanlattığı mitolojik bir hikayedir. Buna göre, bilgelik tanrıçası Atene, çok güzel örgüler ören köylü kızı Arakne'yi kıskanır; onu bir örgü örme yarışmasına davet eder. Yarışma yapılır. Atene, güzel örgüsünde, olimpiyatlarda intikam tanrıçası Nmesis'in, tanrılara meydan okuyan ölümleri taşımasını tasvir etmiştir. Lakin, Arakne'nin örgüsü daha güzel olmuştur. Arekne örgüsünde ölümlere adaletsiz ve haksız davranışlarda bulunan tanrıları tasvir etmiştir. Yenilgiyi hazmedemeyen Atene, Arekne'nin örgüsünü yırtar ve Arekne'nin başına örgüde kullandığı mekikle vurur. Üzüntüyle oradan kaçan Arekne, bir ağacın dalına kendisini asar. Bunu gören Atene, Arekne'yi bir örümceğe çevirir; böylece tanrılara meydan okuyan Arekna hem cezalandırılmış olur, hem de örgü örmeye devam eder. Bu ilginç hikayeden sonra örümceklerin genel özelliklerini açıklayalım. Örümcekler böcek değildir. İkisinin en önemli farkı, böceklerin altı bacağı varken örümceklerin sekiz bacağı olmasıdır. Ayrıca böceklerin vücudu üç bölütlü, örümceklerinki ise iki bölütlüdür. Son olarak genelde böceklerin binlerce minik gözden oluşan bileşik gözleri vardır, örümceklerin ise genelde tane basit gözü vardır. Örümceklere duyulan aşırı tiksinti ve korkuya araknofobi denir. Aksine çoğu zararsızdır ve birçok zararlı böcekleri avlayarak tabiatı temizleyen bir yaratıktır. Antaktika dışında bütün kıtalarda, çok çeşitli iklim şartlarında ve çöllerde yaşayabilirler. Birçok örümcek türü, özellikle sonbaharın ılık günlerinde, ürettikleri iplikçikleri paraşüt gibi kullanarak, rüzgar yardımıyla kıtalardan çok uzak okyanus adalarına kadar yayılabilirler. 4500 metre yükseklikte bu şekilde uçmakta olan örümcekler görülmüş, en yakın karaya 1500 kilometre uzaklıktaki bir gemide bu tip örümcekler bulunmuştur. Örümcekler farklı kalitede ipekler üreten fabrikalar gibidirler. Karın bölgelerinin alt kısmında meme şeklindeki konik çıkıntılardan salgılanan ipeğimsi maddeyi çok çeşitli amaçlar için kullanırlar. Çoğu örümcekte salgısı ve yapısı farklı en az iki çeşit ipek bezi vardır. Bu bezlerin ürettiği ipliği kimyasal özelliklerine göre farklı işlerde kullanırlar. Her ipliğin esnekliği, dayanıklılığı, kalınlığı ve yapışkanlığı farklı olduğundan, hangi iplik hangi işe daha uygunsa orada kullanılır. Bazı ipleri av yakalamak için tuzak ağları kurmada, bazı ipleri yuvalarının içini döşemede, bazı ipleri de yumurta ve sperm topaklarını korumak için kullanırlar. Milimetrenin binde birinden daha ince olan bu iplik aynı kalınlıktaki çelik telden daha sağlamdır. Bu iplik kendi uzunluğunun dört katı kadar esneyebilir. Ayrıca çokta hafiftir; dünyanın çevresine sarılacak bu ipliğin ağırlığı sadece 320gr'dır. Örümceğin ipliği ve kurduğu yuva kendisi için çok uygundur. Fakat aynı yuva avları için bir tuzaktır. Örümceğin ağı büyüklüğüne göre çok geniş bir sahayı işgal eder ama bu görüntü aldatıcıdır. Asıl yuvası ortada küçük bir yerdir. Gerisi ise avlar için tuzaktır. Örümcek İpliğinin Yapısı Sentetik ve tabii liflerden daha güçlü olan örümcek ipeğinin üretimi, sentetik iplik üreten fabrikalardakine kısmen benziyor. İpek yapımında kullanılan keratin isimli protein; tırnak ve saçlarımızda, kuşların tüylerinde, memelilerin boynuzlarında, yılanların pullarında bulunan çok yaygın bir proteindir. İçinde birçok protein bulunan sıvı ipek maddesi, iplik haline gelmeden önce fışkırtılmak üzere bez kanalında ilerlerken, bu kanalın duvarını teşkil eden hücreler tarafından çok hızlı bir şekilde suyu çekilir; diğer kanaldaki hücrelerde hidrojen atomlarıyla bu suyu aside dönüştürürler. Yoğunlaşmış proteinler asit havuzuna girince, köprülerle birbirine bağlanarak iplik haline dönüşür. Bu sürecin alt birimlerinde, farklı iplik çeşitlerine göre farklı keselerde, farklı yollara sokularak daha değişik iplikler meydana getirilir. Farklı kimyevi maddeler, farklı oranlarda ihtiyaca göre karıştırılarak çok farklı çeşitte ip üretilmesine olanak sağlar. Böylece avlanmada kullanılan iplikler yapışkan, avlanma sonunda avla yuvaya dönerken örümceğin üzerinde yürüdüğü ipler daha sağlam ve esnektir. Ayrıca avın sarıldığı ipler şerit şeklinde ve hareket ettikçe sertleşen özellikte, yumurta keselerini koruyan ipler mikroplara karşı antibiyotikli, asansör olarak kullandığı ipler kaygan, yuvanın ilk kuruluşundaki temel ipler ayrı kalınlıkta, aralarındaki atkılar ise daha incedir. Bütün bu iplikleri örümcek, ayaklarının estetik hareketleriyle yönlendirir ve yerli yerine yapıştırır. Bazı iplikleri örümcek ayağındaki tarakla tarayarak düzeltir. İpliklerin gerilime maruz kaldığında üzerinde çatlaklar oluşmaması için her tarafı sıvı bir malzeme ile kaplanır. Estetik cerrahları bazı örümcek türlerine ait ipliği, hassas tendon ve eklem ameliyatlarında kullanmaya başlamışlardır. Örümcekler ağlarını kurmada iplerini yapıştırdığı noktaları aralarındaki açıları, dengeli ve gerginliğin hesaplarını da yapar. Örümcekler genelde böceklerle beslenirler. Aklımıza gelmeyecek taktiklerle birçok böceği yiyerek, ekolojik dengede önemli görevleri vardır. Böylece böceklerle baş etmemize yardımcı olurlar. Aksi halde böceklerin çokluğu ve mahsüllere verdiği zarar karşısında pes ederdik. Bunun yanında balık, hatta kuş ile beslenen örümcek türleride vardır. Alıntı Yapılarak hazırlanmıştır

http://www.biyologlar.com/orumcegin-hayat-hikayesi

FİTOTERAPİ Bitkilerle tedavi

Fitoterapi, bitkilerin bilimsel temele dayalı akılcı bir yaklaşımla hastalıkların tedavisi veya önlenmesinde kullanımını anlamına gelmektedir. Bitki ve Tedavi sözcüklerinden oluşan fitoterapi, terimi ilk kez, Fransız hekim Henri Leclerc(1870-1955) tarafından `La Presse Medical` adlı dergide, 1939 yılında kullanılmış olsa da bitkilerin tedavide kullanılışı aslında insanlığın ortaya çıkışı ile başlar. İlk insanlar, bitki ve hayvanları izleyerek tedavi yollarını bulmuşlar Bitkilerle tedavi insanlığın yaratıldığı günden bu yana devam etmektedir. İnsanlar ortaya çıktıktan sonra kendilerinden önce var olan bitki ve hayvanları izleyerek tedavi yollarını deneme yanılma yolları ile bulmuşlardır. Anadolu`da insanlar çaresiz hastalıklara karşı Kaplumbağaları takip ederek onların yedikleri bitkileri kullanarak tedavi yollarını bulmuşlar. Tarih öncesi dönemde yazı olmadığı için sözlü aktarımlarla kuşaktan kuşağa geçmiştir. Bunlar yapılan kazılarla ortaya çıkmıştır. Araştırmacılar Güney Doğu Asya`daki kapalı toplumların yaşayışlarından ve iskelet kalıntılarından faydalanmışlarıdır. İnsanlar tarımı 8000 yıl önce buluyor. Göçebe hayattan yerleşik hayata geçişleri tarımı keşfetmeleri ile oluyor.`Shanider 4 kazısı`nda M.Ö. 62000 yıl öncesine ait tohumlar bulunmuş ve halen Kuzey Irak`ta tıbbi amaçlı kullanılmaktadır. Alp dağlarında yapılan kazılarda 5300 yıl öncesine ait olan buz adam cesedin yanında kancalı kurt ve mantar bulunuyor ve ölümüne bunların sebep olduğu anlaşılıyor. Yüzyıllarca denenen tıbbi bitkilere ait bilgiler yazının icadından sonra M.Ö. 2000 başlarından itibaren dikkatle kaydedilmiş ve kuşaktan kuşağa zenginleştirilerek aktarılmıştır. Sümerliler tarafından M.Ö. 3000 – 700 yıllarında Mezopotamya`da kullanılmış bitkilerle ilgili ilk yazılı bilgiler Asur Kralı Assurbanipal`in (M.Ö. 668-627) kitaplığında çivi yazısıyla yazılmış 800 kil tablette bulunur. 120 mineral maddeye karşılık 250 bitkisel drog adının geçtiği kil tabletlerdeki bilgiler aynı zamanda en eski eczacılık kayıtlarıdır. Bitkilerle tedavide kullanılan yaprak, çiçek, tohum, kök, kabuk, v.s., gibi bitki organlarına `DROG` adı verildiğini belirtelim. Bazen tüm bitki, drog olarak kullanılır. Droglar, içindeki etkili bileşikler nedeni ile hastalıkların tedavisinde kullanılır. Bu arada `İLAÇ` terimi: Birleşmiş Milletler Örgütü`ne bağlı olarak 1948`de kurulmuş Dünya Sağlık Örgütü ilacı, fizyolojik sistemleri veya patolojik durumları, kullananın yararına değiştirmek veya incelemek amacı ile kullanılan veya kullanılması öngörülen bir madde ya da ürün olarak tanımlamaktadır. İlaç, sadece patolojik duruma karşı etkili olmalı, diğer yapıları ve organizmanın fizyolojik aktivitelerini etkilememeli, etkisi doza bağımlı ve geçici olmalıdır. Bitkisel ilaç dendiğinde de tedavi edici değere sahip bitki kısımlarından ( droglardan ) hazırlanan, ekstre veya distilatlar kullanılarak üretilen pomat, damla, şurup, draje, kapsül, tablet ve injektabl preparatlar anlaşılır. Bitkilerden elde edilen maddeler doğrudan ilaç yapımında kullanılabilirler. Bitkisel ilaçları şöyle gruplayabiliriz: Bitkinin tümü, bir organı veya bunlardan hazırlanan tıbbi çaylar, tentürler, uçucu yağlar, sabit yağlar. Saf bileşikler: Droglardan izole edilen saf bileşiklerdir. Standardize edilmemiş ekstre: Kalitesi ve farmakolojik etkisi belli olmayan ekstre. Standardize ekstre: Klinik ve farmakolojik etkisi belli olan ekstre. Dünyada 250.000 kadar bitki türü bulunmaktadır. 300 tanesi dünya çapında kullanılan bu türlerin % 6`sının biyolojik aktivitesi, % 15`nin ise kimyasal içeriği bilinir. XIX. Yüzyıl başlarından itibaren, kimyanın gelişimi sonucu doğada bulunmayan ve tamamen sentezle elde edilen maddelerin tedavi edici etkisinin yanında istenmeyen yan etkilerinin olması hatta bazen bunların hayatı tehdit edici boyutta oluşu, önemli bir sorunu da beraberinde getirdi. Dünya Sağlık Örgütü günümüzde, özellikle gelişmekte olan ülkelerdeki halkın yaklaşık % 80`inin `GELENEKSEL TIP` (= folklorik tıp, yerli tıp, ortodoks olmayan tıp, alternatif tıp, halk tıbbı, resmi olamayn tıp, halk hekimliği, halk eczacılığı ) bilgilerini kullandığını bildirmektedir. Söz konusu ülkelerde modern tıp uygulamalarının yanı sıra, tarihi ve kültürel nedenlerle `Geleneksel Tıp` geçerliliğini korumaktadır. Dünya Sağlık Örgütü de, geleneksel tıp uygulamalarının modern bilimin ışığı altında değerlendirilmesine olanak sağlamak üzere, ilk olarak Çin`de uygulanan geleneksel sağlık programları ile 1970`den sonra ilgilenmeye başlamış, 1977 yılında bilimsel ve geleneksel tıbbın işbirliği gelişiminin hızlanması amacı ile, Cenevre`de bir toplantı düzenlenmiş, toplantının sonucu bir rapor halinde 1978`de yayımlanmış, aynı yıl, geleneksel tıbbı resmen tanımış, uygulamaya koyduğu `Geleneksel Tıp Programı` ( Traditional Medicine Programme) gereği Chicago`da Illinois Üniversitesi`nde NAPRALERT adlı veri tabanını kurmuştur. Bu sayede araştırıcılar, geleneksel olarak kullanılan bitkiler, bunların etkinliği ve geleneksel tıp sistemleri hakkında önemli ölçüde bilgi sahibi olmuşlardır. Bugün gelişmiş ülkelerde özellikle son yıllarda `Alternatif` ve `Tamamlayıcı` tıbba yöneliş vardır. Bitkisel ilaçları kullanmadan önce dikkat edilecek hususlar: Önerilen ilaç formülasyonları içinde, ilk sıradakini tercih etmek gerekir. Başka şekilde belirtilmemişse; infüzyon, dekoksiyon, buğu, losyon, tablet veya kapsül ve tentür hazırlanması ile ilgili standartlara uymak gerekir. Bitkinin önerilen kısmından başkası kullanılmaz. Evde yapamazsanız, güvenilir bir firmadan, tablet, fitil, uçucu yağ, merhem ve tentür alabilirsiniz. İlacı kullanmadan önce uyarıları okumak gerekir. İkiden fazla bitkisel ilacı dahilen veya haricen, kullanmamak gerekir. Bitkisel ilaçların diğer ilaçlarla uyumlu olup olmadığına dikkat etmek gerekir. Bitkisel ilaçlar rahatsızlıkla ilgili şikayetler geçene kadar kullanılır. Eğer bir ilacı 3 haftadan fazla kullanacak olursanız, muhakkak bir doktora danışın. Eğer 2 – 3 hafta içinde bir iyileşme olmazsa veya daha kötüye gidiş söz konusuysa ya da herhangi bir şüphe varsa, muhakkak bir doktorun görüşüne başvurulur. Verilen miktarlar aksi belirtilmedikçe, daima kuru droglar içindir. Çocuklar için doz belirtilmemişse, tüm dozlar erişkinler içindir. Kural olarak; 6 – 12 aylık çocuklarda, erişkin dozun 1/10`u, 1 – 6 yaş için, erişkin dozun 1/3`ü, 7 - 12 yaş için ise, erişkin dozun ½`si kullanılır. 70 yaşın üzerinde metabolizma yavaşladığından, yaşlıların erişkin öngörülen dozun ¼`ünü kullanmaları gerekir. Belirtilen doza kesinlikle uymak gerekir. Dozu iki misli arttırmak etkiyi iki misli arttırmaz. 6 aylıktan küçük bebeklere hiçbir bitkisel ilacı hazırlamaya kalkışılmaz ve hazır formülasyonlar da doktor gözetiminde dikkatli kullanılır. Hamileliğin ilk 3 ayında, çok yaşamsal değilse bitkisel ve diğer ilaçlardan kaçınmak gerekir. Tüm hamilelik sürecinde alkol içeren tentürlerden ve belirtilen bitkileri kullanmaktan kaçınmak gerekir. Genellikle tıbbi bitkiler, öncelikle sağlık sorunlarının giderilmesinde işe yararsa da, büyük bir bölümünden, vücudu temizlemede ve besin takviyesi şeklinde de yararlanılır. Diğer bir deyişle, bu bitkileri hiçbir sorunumuz yokken de kullanarak sağlığımızı sürdürebilir ve hastalıklardan korunabiliriz. Aslında tüm bitkisel tedavi şekillerinde amaçlanan, hastalığın tedavisi değil, sağlıklı yaşamın korunmasıdır. Kaynak: Merkezefendi Geleneksel Tıp Derneği

http://www.biyologlar.com/fitoterapi-bitkilerle-tedavi

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

İki binli yıllarla beraber kök hücrelerin rejeneratif tıp (yenileyici tıp) alanındaki öneminin giderek arttığını ve tıbbın geleceğini şekillendirme potansiyelini gözlemlemekteyiz.

http://www.biyologlar.com/kok-hucrelere-bakistanimlar-kavramlar-ve-siniflandirmalar

Bilim Kurguyu Gerçeğe Dönüştüren 5 Nanobilim Yolu

Bilim Kurguyu Gerçeğe Dönüştüren 5 Nanobilim Yolu

Rus yazar Boris Zhitkov, 1931'de anlatıcının karışık ameliyatları gerçekleştirmek için minyatür eller oluşturduğu kısa hikayesi olan Mikrohand'leri yazdı.

http://www.biyologlar.com/bilim-kurguyu-gercege-donusturen-5-nanobilim-yolu

Çörek mantarı (Boletus edulis)

Çörek mantarı (Boletus edulis)

Çörek mantarı (Boletus edulis), Boletaceae familyasından yenilebilen mantar türü. Bilimsel adındaki bolet latincede "üstün mantar", edulis te "yenebilen" anlamındadır.

http://www.biyologlar.com/corek-mantari-boletus-edulis

Virüslerin Yapısı

Biyologlar virüslerin canlı tabiatının eşiğinde yani en alt basamağında bulunan varlıklar olarak kabul ederler. Çok küçük çok ilksel organizmalardır. Bu bakımdan virüsler hakkındaki bilgilerimiz henüz çok değildir. Biyologlar çok ince ve dikkatli araştırmaları sonucu virüslerin bir nükleit asit RNA öz maddesi ile bunu saran bir protein kılıftan meydana geldiğini bulmuşlardır. Öz madde virüsün çeşidine göre bir RNA veya DNA olabilir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer, onların içinde çoğalırlar. Bu virüslere Bakteriyofaj (bakteri yiyen virüs) denir. Bakteriyofajlar bakterileri yiyerek yaşarlar. Bakterilerin içinde ürer ve en sonunda içinde yaşadıkları hücreleri yok ederler. İnsan ve hayvanlarda hastalık yapan virüslerin çoğu da, etrafı protein kılıf ile çevrili DNA ipliğinden başka bir şey değildir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer ve onların içinde çoğalırlar. Bu virüslere bakteriyofaj veya kısaca faj (faj virüsleri) denir. Faj bakteri yiyen anlamına gelir.

http://www.biyologlar.com/viruslerin-yapisi

BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER

Radyasyonun Biyolojik Etkileri Radyasyonun organizmaya olan etkileri akut ve kronik şekilde olmaktadır. Akut etkiler insanda radyasyona maruz kalındıktan kısa bir süre sonra klinik bulgular ile ortaya çıkmaktadırlar. Bunlar merkezi sinir sistemi (100 Sv ve üzeri), gastrointestinal (10-100 Sv) ve hemato­poietik (2-10 Sv) sendromlardır. Sendromların ortaya çıkışı absorbe edilen dozla ilişkilidir.4 Bu sendromlar bir süre sonra bireyi ölüme götürür. Radyasyonun kronik etkileri ise hücrenin ölümüne yol açmayan ancak genetik materyallerinde onarılamayan bozukluklara neden olan olaylar sonucunda ortaya çıkarlar. Kanser yapı­cı etkisi, genetik etkisi ve ömür kısaltıcı etkisi bunlara örnektir. Canlıların somatik ve genetik özellikleri kromozomlarda taşındığı için radyasyonun kromozomlarda meydana getirdiği zararlı etkiler günümüzde ve gelecekte toplum sağlığı açısından oldukça önemlidir. Dozimetri Çeşitleri ve Biyolojik Dozimetri Toplu halde veya bireysel olarak radyasyona maruz kalan bireylerin absorbe ettikleri radyasyon dozu; fiziksel veya biyolojik yöntemlerden biri ile yada her ikisiyle birlikte belirlenebilir. Bu işlem dozimetri olarak adlandırılır. Meslekleri gereği radyasyonla çalışanların fiziksel dozimetri çeşidi olan Film, Cep ve Termolüminesan dozimetrilerden birini taşımaları gerekir. Ancak fiziksel dozimetrenin vücut üzerindeki konumu nedeni ile yetersiz kalması, büyük kitlelerin zarar gördüğü toplumsal radyasyon kazalarında ise bireylerde fiziksel dozimetrenin bulunamaması ve biyolojik çeşitlilik nedeniyle kişilerin radyo duyarlılığının farklı olması biyolojik dozimetriye üstünlük sağlamakta bu nedenle de fiziksel ölçümlerin biyolojik metotlarla desteklenmesi gerekmektedir. Uluslararası Atom Enerjisi Ajansı(IAEA) radyasyon kazası durumlarında, fiziksel dozimetri ile birlikte biyolojik dozimetrinin de absorbe edilmiş dozun belirlenmesinde bağımsız olarak kullanılmasını önermiştir. Şekil 1’de dozimetri çeşitleri özetlenmiştir. Biyolojik dozimetri, genel anlamı ile kişilerin absorbe ettikleri radyasyon dozunun biyolojik indikatörler (belirleyiciler) kullanılarak ortaya çıkarılmasına denir. Biyolojik Dozimetri için ideal koşullar; 1-Dozları tahmin etmek için seçilen etkiler iyonizan radyasyonlara özgü olmalı (dientrik aberasyonları gibi), 2-Radyasyona maruz kalma sonucu oluşan etki kalıcı olmalı, eğer kalıcı değilse zamana bağlı olarak oluşan değişiklikler bilinmeli, 3-Oluşturulan kontrol doz-cevap eğrilerinde dozların aralığı mesleki ışınlamalarda olduğu gibi çok küçük dozları ve kaza durumlarında olduğu gibi birkaç Gy’e varan dozları da içermeli, 4-Farklı radyasyon kalitelerinde uygulanabilmeli (Co, X-ışını, nötron v.b), 5-Biyolojik materyal kolay elde edilebilmeli (kan gibi), 6-Ölçümler kolay ve hızlı olmalı kısa sürede sonuç elde edilmeli, 7-Kronik ve homojen olmayan ışınlamalara da uygun olmalı. Yukarıdaki özellikleri taşıyan ideal bir biyolojik dozimetri yöntemi bilinmemektedir. Fakat, insan periferal kanından lenfosit kültüründen kromozom analizinin yapılması bugün için bilinen en iyi biyolojik dozimetri yöntemidir. Biyolojik dozimetri çeşitlerinden olan kromozom dozimetrisi (sitogenetik dozimetri), kişilerin absorbe ettikleri radyasyon dozu ile insan lenfositlerinde oluşan kromozom aberasyonları arasındaki kantitatif ilişki esasına dayanır. İyonizan radyasyonların kromozomlarda oluşturdukları hasar 20.yy başlarından beri bilinmektedir. İlk olarak X-ışınlarının Drosophila'da kromozom aberasyonu oluşturduğunun bulunması ve takip eden yıllarda araştırıcıların yaptıkları çalışmalar sonucunda ilk olarak 1962 yılında kromozom aberasyonları, radyasyona maruz kalan bireylerde absorbe edilen radyasyon miktarını tespit etmek için kullanılmıştır. Kromozom aberasyonlarının absorbe radyasyon dozunun belirlenmesinde kantitatif biyolojik indikatör olarak kullanılmasından bu yana radyasyon kazaları sonunda absorbe edilmiş olan doz tayininde standartlaşmış bir yöntem olarak kullanılmaktadır. Radyasyonun canlılarda oluşturduğu etkileri değerlendirmek için başka biyolojik indikatör sistemler de geliştirilmiştir. Elekton spin rezonans, Biyokimyasal indikatörler (kıl, tükürük, saç, sperm vs), Retikülosit sayımı, Mutasyon noktalarının analizi, Monoklonal antibodyler vs. Bu tür sistemlerin çoğu örnek almadaki güçlükler, hücrelerin asenkron popülasyon (hücre siklusunun farklı evrelerinde) şeklinde bulunması ve hücrelerin yaşam sürelerinin kısa olması, yöntemin belli dozlarda etkili olması ve bazen de ışınlanma süresinin önemi nedeniyle dozimetri amacıyla rutin olarak kullanılamazlar. Biyolojik Dozimetri Amacıyla Kullanılan Kromozom Aberasyonları Unstabil (kalıcı olmayan) asimetrik kromozom aberasyonlarından olan disentrik aberasyonlar ve eşdeğerleri (trisentrik ve sentrik halka) absorbe radyasyon dozunun indikatörü olarak diğer aberasyonlara göre daha çok güvenilirdirler. Çünkü disentrik kromozom aberasyonları radyasyona özgüdürler yalnızca özel birkaç radiomimetik kimyasal (bleomisin, endoksan vs) tarafından oluşturulabilir. Doğal görülme sıklıkları (back-ground) düşüktür (1/2000) ve kolay belirlenirler. Bazı araştırıcılar doz tahminlerinde disentrik eşdeğeri kabul edilen sentrik halka (ring) kromozomları da disentriklerle birlikte kullanmaktadırlar. Sentrik halka oluşumu unstabil kromozomlarının oluşum yüzdesi içinde %5-10 civarında olduğundan doz hesaplamalarında kullanılmamaları önemli bir kayıp değildir. Serbest asentrikler, disentrik, trisentrik ve sentrik halka gibi kromozom aberasyonlarına eşlik etmez ve onlardan bağımsız olarak bulunurlar. Bu aberasyonlar radyasyon dışıetkenlerle de oluşturulabildikleri için tek başına doz tahmininde kullanılmamaktadırlar. Disentrik, trisentrik ve sentrik halka kromozom aberasyonlarının oluşumu Şekil 2’de şematize edilmiştir. Translokasyon olarak adlandırılan iki kro­mozom arasındaki simetrik değişimler de son yıllarda geliştirilen floresan boyama teknikleri (fluorescens in situ hybridisation; FISH) sayesinde biyolojik dozimetri amacıyla kullanılmaktadır. Kromatid tipi kırıklar büyük oranda kimyasal ajanlar tarafından oluşturulduğundan biyolojik dozimetri amacıyla kullanılmamaktadır. Son yıllarda yine insan periferal lenfositleri kullanılarak absorbe edilen radyasyon dozunun belirlenmesi amacıyla Mikronukleus testi çalışmaları yapılmaktadır. Mikronukleuslar sitoplazma içinde ana nukleusun dışında fakat nukleus ile şekil, yapı ve boyanma özellikleri bakımından aynı olan küçük küresel yapılardır. Radyasyona maruz kalmış lenfositlerde hasar gören kromozomlar ve onların asentrik parçaları veya mitotik iğdeki hatalar sonucu kromozomun tamamının kutuplara çekilememesi sonucu oluşurlar. Şekil 3 A’da bölünmekte olan binukleat bir hücrede kutuplara çekilemeyen bütün bir kromozom ve asentrik fragmentten mikronukleus, B’de ise yine binukleat bir hücrede disentrik köprüden nukleoplazmik köprü ve mikronukleus oluşumu şematize edilmiştir. Binukleat hücrelerdeki hücre başına düşen mikronukleus sıklığının mononukleat hücrelerdekinin iki kat olması nemlidir. Kromozom aberasyonlarının doğal oluşum sıklığı konusunda, farklı populasyonlar ile yapılan araştırmalarda özellikle disentrik sıklığında farklılıklar gözlenmiştir. Doğal disentrik oluşum sıklığının farklı bulunması, laboratuva koşulları, sayıcı ve değerlendiriciler arasındaki farklılıklar nedeniyle her biyolojik dozimetri laboratuarının kendi koşullarında, çeşitli radyasyon kalitelerinde ve farklı radyasyon dozlarında oluşturacakları kontrol doz-cevap eğrilerine sahip olmasını gerekli kılmıştır. Olası bir radyasyon kazasında alınacak radyas­yonun tipine göre, absorbe radyasyon dozunun miktarı o tipteki kontrol doz-cevap eğrilerin­den faydalanılarak bulunmaktadır. Kontrol doz-cevap eğrileri daha önce radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış sağlıklı bireyler­den alınan kanların akut ve homojen ışınlanmaları sonucunda oluşturulur. Biyolojik dozi­ metri amacıyla yapılan kontrol doz-cevap eğri­leri genellikle 50 mGy ile 4 Gy arasında yapılır. Eğriler oluşturulurken 0 ve 1 Gy arasında en az 5 doz noktasının olmasına özen gösterilir. Çünkü radyasyon kazaları genelde bu dozlar arasında meydana gelir.10 Standart eğri oluşturulurken çok küçük doz (<0.5 Gy) nokta­larında doz-cevap ilişkisini ortaya koymak için çok fazla hücre saymak gereklidir. Kalibras­yon eğrisini oluşturmak için toplam 10.000­15.000 hücre, bireysel doz tahmini yapmak için ise 500-1000 hücre saymak yeterli­dir. Elde edilen aberasyon verimi dikka­te alınarak %95 güvenilirlik sınırları içinde kontrol doz-cevap eğrisi çizilir. Aynı laboratuvar koşullarında 200 kV X-ışını ve Co­60 gamma radyasyonu ile ışınlanma sonucu oluşturulan kontrol doz-cevap eğrileri birlikte Şekil 4’de görülmektedir. GEREÇ VE YÖNTEMLER Materyalin Elde Edilmesi, Işınlanması Kontrol doz-cevap eğrilerini oluşturmak amacıyla elde edilen kan örnekleri genç, sağlıklı, sigara içmeyen, radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış bireylerden alınır. Kontrol grubu ve birinci mitozun (M1) ikinci mitoza (M2) oranını belirlemek için alınan kanlar ayrılır. Kan örnekleri steril, içleri heparin kaplı tüpler içine alınır. Eğriyi oluştururken, kullanılan doz noktalarına ait kan örnekleri radyasyon kalitesine uygun şekilde, doz hızı, dozun homojenitesi gibi kriterlere özen gösterilerek 370C’da ışınlanır. Kültür ve Tespit İşlemleri Kontrol doz-cevap eğrileri oluşturmak için ışınlanmış kan örnekleri ve radyasyona maruz kalmış bireylerde absorbe dozun tayini için alınan (~5 ml) kan örnekleri steril şartlarda, Moorhead ve arkadaşlarının mikrokültür tekniğine uygun olarak kültüre alınır. Bu yöntemde genellikle kültür stok medyumu olarak RPMI-1640+L-Glutamin, Penicilin ve Streptomicin kullanılır. Kültür ortamına mitojen olarak PHA (phytohemaglutinin) ve hücrelerin metafazda durmaları için Kolsemid kullanılır. Kültür süresi sonunda (toplam 48 saat) 0,075M KCL ile hipotonik şok uygulanır. Bu işlem sonunda 1:3 oranında asetik asit/metanol karışımı ile tespit işlemleri tamamlanır ve metafaz kromozomlarının lamlar üzerinde iyi bir şekilde dağılmaları sağlanır. % 5 Giemsa boyası ile boyanarak incelenecek duruma getirilir. Uygulanan kültür metodu Şekil 5’­de kısaca özetlenmiştir. M2/M1 Oranı ve Biyolojik Dozimetride Önemi İnsan vücudunda yaklaşık 5.2x1012 lenfosit dolaşır. Lenfositlerin % 70’i T- lenfositlerdir ve bunların yaklaşık %98’i ufak, hücre siklusunun bölünmeyen bir fazında (G0) bulunur. G0 fazında olmaları dolayısı ile biyolojik ömürleri uzundur. Metabolik olarak inaktiftirler. T-lenfositlerin kolay elde edilebilmeleri, radyasyona duyarlı olmaları, biyolojik ömürlerinin uzun olması (%90’nın yaşam süresi ortalama 3 yıl) (38) ve akut vücut ışınlamalarından 3 yıl sonra dahi lenfositlerdeki kromozom aberasyonlarının %50 sinin hala korunuyor olması, kaza üzerinden uzun yıllar geçse bile absorblanan dozun belirlenmesine olanak tanır. İnsan periferal kanında bulunan lenfositler stimüle edilerek G0 fazından çıkıp hücre siklusunda ilerlemeye başlarlar. Siklusta ilerleme hızı hücreler arasında farklılık gösterdiğinden periferal kanda senkronize olan lenfositler bölünmeye teşvik edildikleri invitro ortamda asenkron hücre popülasyonu haline gelirler. Bu yüzden bazı lenfositler M1 bölünmede iken siklusta hızlı ilerleyen bazı lenfo­sitler M2 da olurlar. Radyasyona maruz kalındıktan sonraki ilk bölünme (M1) de lenfositlerde oluşan disentrik kromozom aberasyonlarının %50’si kaybolur. Bu yüzden doz tahmini yapılırken, M1 lenfositlerde bulunan disentrik kromozom aberasyonlarının sayımı esas alınır. M2/M1 belirlenmesi için kültür ortamına BrdU (bromodeoksiüridin) ila­ve edilir. Timidin analogu olan BrdU, DNA replikasyonu esnasında timidinin yerini alır. DNA’nın yapısına girer. Floresan Plus Giemsa (FPG) boyama tekniği32 ile boyanan metafaz kromozomları Floresan mikroskopta incelenerek M2 ve M1’de olan hücreler ayırt edilir. Metodun iyi çalıştığının göstergesi olarak, M2 de olan hücreler M1den %10 daha az olmalıdır. Bu değerlerin üzerinde bulunduğunda absorbe radyasyon dozunun hesaplanmasında bazı düzeltme faktörleri kulanılır. Kültür ortamına BrdU ilave edildikten sonra DNA replikasyonu sırasında BrdU’nun DNA’nın yapısına girişi, M1 ve M2’deki hücrelerde BrdU almış kromozomların görünüşü Şekil 6’da gösterilmiştir. Kromozomların değerlendirilmesi Hazırlanan preparatlar değerlendirilirken kromozomları birbirinden belirgin olarak ayrılmış, görünüşleri düzgün ve iyi boyanmış diploid metafazlar dikkate alınır. Kromozomlar sayılırken sayıları 2n=46 ve üzeri olanlar değerlendirmeye alınır. Hücrede kararsız aberasyonlar (disentrik, sentrik halka ve serbest asentrik) bulunduğunda kromozom sayıları ile belirlenen aberasyonların birbirini dengelemesine özen gösterilir. Örneğin, hücrede bir disentrik aberasyonun varlığında ona eşlik eden bir asentrik ile sayının 46 da tutulması; bir sentrik halka bulunduğunda yine eşlik eden bir asentrik ile sayının 47 olması, bir trisentrik bulunduğunda ona eşlik eden 2 adet asentrik ile sayının 46 olması gibi durumlara dikkat edilir. Değerlendirmelerde bir trisentrik 2 disentriğe, bir sentrik halka bir disentriğe eşdeğer olarak kabul edilmektedir. 4 Gy 200 kv X-ışını uygulanan ve yukarıda anlatılan metoda uygun olarak hazırlanan ve değerlendirilen bir me­tafaz plağında disentrik ve asentrik kromozom aberasyonları Şekil 7’de görülmektedir. İstatistiksel ve Matematiksel Yöntemler Farklı iyonlaştırıcı radyasyonların eşit dozlarının birim uzaklıkta bıraktıkları enerjilerinin ve dolayısıyla oluşturdukları iyonlaşma yoğunluklarının farklı olması nedeniyle oluşturdukları kromozom aberasyonları verimleri de farklıdır. Düşük Lineer Enerji Transfer (LET)’li radyasyonların herhangi bir dozunda iyonizasyon rastgele dağılır. Kromozom hasarının da aynı olasılıkla ger­çekleştiği düşünülürse aberasyon dağılımı da rast gele olacaktır. Bu rast gele dağılımın düşük fre kanslarda meydana gelmesi Poisson dağılımı ile uygunluk gösterir. Bu bilgilere dayanarak X-ışınları ve γ gibi düşük LET’li radyasyon ile akut ve homojen ışınlanma sonucunda oluşan kromozom aberas­yonlarının Poisson dağılımına uygunluk gösterdiği belirlenmiştir. Yüksek LET’li radyasyonlarda ise iyonizasyon yoğunluğu fazla olduğundan iyonizasyon hücreler arasında rast gele dağılmaya­caktır. Yüksek LET’li radyasyonların absorblanması sonucu birbirine yakın hücrelerde birden fazla aberasyonlu hücre oluşacak ve bu oluşum Poisson dağılımından uzaklaşacaktır. Homojen olmayan ışınlamalarda ve kronik ışınlamalarda disentriklerin hücrelere dağılımlarının Poisson dağılımından sapmaları büyük olacağından Poisson’a uygunluk göstermez. Bu yüzden kontrol doz-cevap eğrileri oluşturulurken ışınlama homojenitesini kontrol etmek için disentriklerin Poisson dağılımına uygunluklarının belirlenmesi gerekir. Elde edilen aberasyon dağılımının (disentrik) Poisson'a uygunluğunu araştırmak için ilk önce her doz noktasına ait varyanslar (σ²) hesaplanır. Daha sonra varyansların aberasyon (disentrik) frekanslarına (Y) oranından elde edilen dağılım oranı (σ²/Y) bulunur. Bu dağılım oranları U testi formülünde yerine konularak her doz noktasına ait U değerleri hesaplanır. U testi sonuçlarının –1,96 ve +1,96 arasında olması dağılımların Poisson’a uygunluğunu ispatlar. Çoşkun M, Coşkun M. Biological dosimeter and related developments. Cerrahpaşa J Med 2003  

http://www.biyologlar.com/biyolojik-dozimetri-ve-ilgili-gelismeler

Araştırmacılar Yetişkin İnsanlarda Boy Uzunluğunu Etkileyen Yeni Genetik Varyasyonlar Buldu

Araştırmacılar Yetişkin İnsanlarda Boy Uzunluğunu Etkileyen Yeni Genetik Varyasyonlar Buldu

Boy uzunluğunu etkileyen yüzlerce DNA değişimleri zaten tanımlanmıştır ama bu alışılmış DNA değişimleri boy uzunluğunu genellikle 1 mm’den az etkiler. Resim kaynağı: Popular Science Monthly, D. Appleton ve Company, 1887.

http://www.biyologlar.com/arastirmacilar-yetiskin-insanlarda-boy-uzunlugunu-etkileyen-yeni-genetik-varyasyonlar-buldu

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

BİYOTEKNOLOJİK ÜRÜNLER, ORGANİK ÜRÜNLER VE ULUSLARARASI TİCARETTEKİ GELİŞMELER

Modern biyoteknoloji ifadesi, genel olarak, modern bilgi ve tekniklerin uygulanması ile yapılan, genetik mühendisliğine dayalı tekniklerle gerçekleştirilen biyoteknolojiyi tanımlamakta kullanılmaktadır. Günümüzde özellikle tarım ve eczacılık sanayi alanlarında, modern biyoteknoloji yöntemleri kullanılarak çeşitli özelliklere sahip yeni canlı türleri elde etmek mümkün hale gelmiş, bu şekilde üretilen tarım ürünleri ve bunları içeren işlenmiş ürünler ile eczacılık sanayi ürünleri uluslararası ticarete giderek artan oranda konu olmaya başlamıştır. Pahalı ve ileri teknoloji altyapısını gerektiren bu ürünler bünyelerinde birtakım riskleri de barındırmaktadırlar. Çeşitli çevrelerde, bu ürünlerin doğal canlı çeşitliliğine, insan sağlığına ve sosyo-ekonomik yapıya zarar verebileceği öngörüleri bulunmakta, ancak bu zararın boyutları tahmin edilememektedir. Bu nedenle bir çok ülke, bu alandaki ulusal politikalarını tespit ederek, anılan ürünlerin ticaretini, doğaya salımını ve kullanımını disiplin altına almışlardır. Organik ürün ifadesi, üründen çok ilgili ürünün üretim sürecini öne çıkaran bir anlam içermektedir. Uluslararası Gıda Kodeksi tanımına göre, organik tarım; “topraktaki biyolojik hareketi, biyolojik dönüşümü ve biyolojik çeşitliliği de içeren tarımsal eko sistem sağlığını artıran ve zenginleştiren bir üretim ve işletim sistemidir”. Organik tarım denildiğinde, sentetik girdilerin kullanımının yasaklandığı, toprağın doğal zenginliğini artıran bir ürün ekim sıralamasına göre üretimin esas alındığı, insan ve çevre sağlığı üzerinde zararlı etkileri olmayan doğal girdilerin kullanımının gerekli tutulduğu bir üretim süreci anlaşılmaktadır. Son zamanlarda, özellikle gelişmiş ülkelerde organik tarım ürünlerine yönelen talep gelişme yolundaki ülkeler için yeni ihracat olanakları ortaya çıkarmıştır. Buna bağlı olarak, belirli ülkelerdeki organik ürün üretimi ve ihracatında büyük bir gelişme kaydedilmiştir (Örneğin: AB’- deki bebek gıda sanayiinin talebini karşılamak üzere üretilen tropik meyveler, Güney Afrika pazarı için üretilen Zimbabwe baharatları, AB pazarı için altı Afrika ülkesinde üretilen pamuk, vs.). Bu açıklamalar ışığında, bu çalışmada genelde tarım ürünlerinin, özelde modern biyoteknoloji yöntemleriyle üretilen ürünler ve organik ürünlerin uluslararası ticaretinde kaydedilen gelişmeler; uygulanan çok taraflı ticaret kuralları; Dünya Ticaret Örgütü (DTÖ)’ nde tarım ürünleri ticaretini ilgilendiren yeni müzakere sürecinde bu ürünlerle ilgili olarak ortaya çıkabilecek gelişmeler ve bu ürünlere yönelik tüketici yaklaşımları konusuna yer verilmektedir. I. Küreselleşme, Dünya Ticaretindeki Gelişmeler, Biyoteknolojik ve Organik Ürünler: Dünya ticaret hacmindeki gelişmeler, uluslararası sermaye hareketlerindeki artış, çok uluslu şirketlerin gün geçtikçe daha fazla büyümesi ve güçlenmesi küreselleşmede etkili olan unsurlardır. Bu unsurlar aynı zamanda tarım ve gıda sektöründeki gelişmelerde ve teknolojik ilerlemelerde de etkili olmuştur. Küreselleşme ve iletişim olanaklarındaki gelişmeler dünya ticaretinde değişikliklere yol açmış, yeni ürünleri ve kavramları ortaya çıkarmıştır. Modern biyoteknolojideki gelişmelere bağlı olarak biyoteknolojik ürünlerin ve ayrıca, refah ve bilinçlenme düzeyindeki artışa bağlı olarak organik ürünlerin ticareti konusu gündeme gelmiştir. Uruguay Round çok taraflı ticaret müzakereleri sonucunda kabul edilen anlaşmaların 1995 yılında hayata geçmesiyle birlikte tarım sektörünün küresel ekonomiye entegrasyonu hızlanmış ve çok taraflı ticaret sisteminde tarım ürünleri ticaretine uygulanacak kurallar hükme bağlanmış; teknik engel ve sağlık önlemi olarak yapılacak uygulamalar belirli bir disiplin altına alınmış; fikri mülkiyet hakları alanında uygulanacak kurallar belirlenmiş; yeni bir kurumsal yapıyla etkin olarak çalışan bir uluslararası kuruluşa -Dünya Ticaret Örgütü (DTÖ)- hayat verilmiştir. Günümüzde, genel olarak, konvansiyonel ürünler olarak tanımlanan geleneksel ürünler ile modern biyoteknoloji yöntemleri kullanılarak üretilen genetik ürünler ve organik ürünlere uygulanan çok taraflı ticaret kuralları arasında farklılıklar bulunmamaktadır. Çok taraflı ticaret sisteminin bütün bu ürünler için geçerli olan en temel prensipleri; yerli ve yabancı ürünler arasında ayırım yapmamayı öngören milli muamele kuralı, bir ülke ürünlerine yönelik lehteki uygulamanın bütün diğer üye ülkelerin ürünlerine yönelik olması gerektiği konusundaki MFN kuralı ve ayrıca, dış ticaret uygulamalarında açıklığı öngören şeffalık kuralıdır. İlgili DTÖ Anlaşmalarına -Ticarette Teknik Engelller Anlaşması (TBT) Sağlık ve Bitki Sağlığı Önlemleri Anlaşması (SPS)- göre ticarette sağlık önlemi veya teknik önlem olarak yapılmasına izin verilen uygulamalarda, modern biyoteknoloji yöntemleriyle üretilen ürünler için özel düzenlemelere yer verilmemiştir. Fakat, ilgili Anlaşmalara göre, bilimsel temellerinin olması ve uluslararası standartlara dayanması koşuluyla, bu ürünlerin dış ticaretinde teknik önlem veya sağlık önlemi alınması mümkün bulunmaktadır. Diğer taraftan, DTÖ Ticaretle Bağlantılı Fikri Mülkiyet Hakları (TRIPS) Anlaşması, sanayide uygulanabilir olması ve bir yeniliği de beraberinde getirmesi koşuluyla teknolojik gelişmelerin patente bağlanabileceği hükmünü içermektedir. Bu kapsamda biyoteknolojik üretimdeki gelişmeler de patent konusu olabilmektedir. Modern biyoteknoloji yöntemleriyle üretilen ürünlerin ticaretinde uygulanacak kurallar konusu 1999 yılının başlarında DTÖ gündemine gelmiştir. Bu ürünlerin büyük bir ticari potansiyel olarak ortaya çıkması, Biyolojik Çeşitlilik Sözleşmesi kapsamında hazırlanan ve Cartagena’da yapılan Biyogüvenlik Protokolü taraflar toplantısının başarısızlıkla sonuçlanması ve bunu izleyen dönemde çeşitli DTÖ üyesi ülkelerin biyoteknolojik yöntemlerle üretilen çeşitli ürünlerin ticareti, üretimi ve kullanımında bu ürünleri doğal ürünlerden ayıran kontrol mekanizmalarını oluşturduklarına ilişkin (izin, risk değerlendirme veya etiketleme zorunluluğu) bildirimlerini DTÖ’ ne iletmeleri sonucunda konu özellikle tarımla bağlantılı olarak DTÖ gündemine girmiştir. DTÖ’nün Seattle Bakanlar Konferansı hazırlıkları sırasında ABD, Japonya ve Kanada gündeme getirdikleri bir öneri ile, genetik olarak değiştirilmiş mikroorganizmalardan üretilen ürünlerin ticaretindeki uygulamalar ve bunların ilgili DTÖ Anlaşmaları kapsamında incelenmesi amacıyla, bir çalışma grubu kurulmasını istemişlerdir. Dünya ticaretindeki diğer konuların yanısıra, tarım ürünleri ticaretinde de geniş kapsamlı yeni bir serbestleşme hareketini ve daha ileri bir entegrasyonu başlatması beklenen ve Millenium Round olarak tanımlanan ticaret müzakereleri; geçtiğimiz yıl Aralık ayında Seattle’da yapılan DTÖ’ nün III. Bakanlar Konferansında, gündemdeki konular üzerinde uzlaşmaya varılamaması nedeniyle başlatılamamıştır. Biyoteknolojik ürünler ve organik ürünlere uygulanacak kurallar konusu sadece DTÖ’ de değil, aynı zamanda farklı uluslararası kuruluşlarda da ele alınmaktadır. Temel gıda güvenliğini kontrol amacıyla uygulanacak genel standartları oluşturma görevi, Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO) ile Dünya Sağlık Örgütü (WHO) tarafından, ortak gıda standart programını uygulamak üzere kurulan "Codex Allimentarious Commission"a verilmiştir. Bu kapsamda anılan Komisyon, biyoteknolojik yöntemlerle üretilen ürünler ve organik ürünler için uygulanacak temel gıda standart programlarını oluşturmaktadır. Konuyla ilgili diğer uluslararası kuruluşlar ise; Birleşmiş Milletler Sanayi Kalkınma Teşkilatı (UNIDO), Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO), Dünya Sağlık Örgütü (WHO), Uluslararası Genetik Mühendisliği ve Biyoteknoloji Merkezi (ICGEB), Ekonomik İşbirliği ve Kalkınma Teşkilatı (OECD), Birleşmiş Milletler Çevre Programı (UNEP), Biyolojik Çeşitlilik Sözleşmesi (CBD), Uluslararası Hayvan Hastalıkları Ofisi (OIE), Uluslararası Organik Tarım Hareketleri Federasyonu (IFOAM)dır. II.Gelişme Yolundaki Ülkeler, Seattle Konferansı ve Biyoteknolojik Ürünlerin Ticareti: Dünya ticaretini yönlendiren kuralların belirlendiği tek uluslararası kuruluş olan DTÖ’ nün toplam 136 üyesinin %80’nden fazlası; gelişme yolundaki ülkeler, en az gelişmiş ülkeler ve pazar ekonomisine geçiş sürecini yaşayan ülkelerden oluşmaktadır. Günümüzde, çok taraflı ticaret kurallarının gelişmiş ülkelerin tekelinde şekillenmediğini belirtmek mümkündür. Dünya ticaretinde büyük beklentilere yol açan ancak, başarısızlıkla sonuçlanan Seattle Bakanlar Konferansı sırasında, gelişmiş ülkelerin dünya ticaretindeki gelişmeleri tek başlarına yönlendiremeyecekleri ve gelişmekte olan ülkelerin çıkarlarını da dikkate almak zorunda oldukları anlaşılmıştır. Seattle görüşmelerinin yeni çok taraflı ticaret müzakerelerini başlatmaktaki başarısızlığının altında yatan en önemli iki nedenden birincisi, gündemdeki konular üzerinde, özellikle de çevre, sağlık, tarım, kültürel çeşitlilik, tekstil, fikri mülkiyet hakları, sosyal standartlar, rekabet gibi hassas konularda, gelişmiş ve gelişme yolundaki ülke çıkarları ve beklentileri arasında önemli farklılıkların bulunması ve her iki tarafın da taviz vermemesidir. İkinci neden ise, kamuoyu baskısıdır. Küreselleşmeyle birlikte birçok konunun birbiriyle bağlantılı olarak ele alınması gerekliliği ortaya çıkmış ve kamuoyu kendisini ilgilendiren alanlardaki gelişmelere karşı duyarlılığını sivil toplum kuruluşları kanalıyla, yoğun bir biçimde ortaya koymuştur. Gelişme yolundaki ülkelerin ve kamuoyunun, modern biyoteknoloji yöntemleriyle üretilen ürünlerin ticaretiyle ilgili olarak, üzerinde önemle durdukları ve hassas oldukları konular şunlardır: Modern biyoteknolojinin tarım sektöründeki eski sorunlara yeni çözümler üreterek kırsal kalkınmaya katkı sağlayabileceği belirtilmektedir. Ancak, biyoteknolojik araştırma yöntemleri geleneksel yöntemlere göre daha pahalıdır ve daha zor uygulanabilmektedir. Bu nedenle araştırmalar az sayıdaki ülkede, belirli firmalar tarafından sürdürülmektedir. Geleneksel yöntemlere göre sürdürülebilir gıda üretimi iklim, toprak ve su koşullarına bağlıdır. Modern biyoteknolojik yöntemlerle yapılan üretimde bunlardan bağımsız olarak üretim yapabilme olanağı bulunmaktadır. Ancak bu tür bir üretimin biyolojik çeşitlilik, insan, hayvan ve bitki sağlığı üzerinde kısa, orta ve uzun dönemde oluşturabileceği olumsuzlukların bilinmesi ve önlenmesi gerekmektedir. Modern biyoteknoloji yöntemleriyle yapılacak üretimde, kullanılan teknolojinin ne kadarının dışarıdan ithal edileceği, ne kadarının içeride üretileceği önemlidir. Bu yöntemlere başvurulduğunda sadece ürünün alınması yeterli olmayacak, teknolojinin de alınması gerekecektir. Modern biyoteknoloji alanındaki pek çok yenilik patente bağlanmıştır. Patent uygulaması, teknolojiyi üretmeyen ancak kullanmak durumunda olan ülkeler açısından ağır bir bedel ödenmesi anlamına gelmektedir. Çok uluslu şirketlerin zengin biyolojik çeşitliliğe sahip gelişme yolundaki ülkelerdeki canlı türlerinin genetik materyallerini patente bağlamaları ve ticari ürün olarak kullanmalarının önüne geçilmesi gerekmektedir. III. DTÖ Tarım Müzakereleri ve Biyoteknolojik Ürünlerin Ticareti: Her nekadar, DTÖ Seattle Bakanlar Konferansı yeni ticaret müzakerelerini başlatmak konusunda başarısızlıkla sonuçlanmış ise de, bu durum DTÖ Tarım Anlaşması kapsamında yapılması gereken tarım müzakerelerinin başlatılmasına engel olamamıştır. DTÖ Tarım Komitesi’nin 23 Mart 2000 tarihinde başlayan toplantısında tarım ürünleri ticaretindeki çok taraflı ticaret müzakerelerinin başlatılmasına karar verilmiştir. Tarımdaki reform sürecinin devamı ile ilgili olarak, DTÖ Tarım Anlaşmasının 20. Maddesi kapsamında yapılması öngörülen ticaret müzakerelerinde: tarımsal desteklemelerde azaltma, tarımdaki korumaların azaltılması, doğrudan ticaretle ilgili olmayan konular (tarımın çok yönlülüğü), başlıkları altında; pazara girişin kolaylaştırılması, iç destekler ve ihracat desteklerinin azaltılması, “peace clause” olarak tanımlanan sulh hükmünün gözden geçirilmesi, tarımın çok yönlü etkilerinin tartışılması, gıda güvenliği ve kalitesi konularının ele alınması beklenmektedir. Müzakereler sırasında, gıda güvenliği ve tarım ürünleri ticaretindeki engellerin kaldırılması başlıkları altında, belirli ülkelerin, özellikle de ABD'nin, modern biyoteknoloji yöntemleri kullanılarak üretilen genetik ürünlerin ticaretini kolaylaştırmaya yönelik uluslararası çerçevenin oluşturulması konusunda ısrarlı davranmaları beklenmektedir. Bu doğrultuda, DTÖ’de, yeni tarım müzakereleri döneminde, üzerinde önemli pazarlıkların yapılabileceği alanlardan birinin modern biyoteknoloji ile üretilen tarım ürünlerinin ticaretinde uygulanacak kurallar olduğunu belirtmek yanlış olmayacaktır. IV.Tüketici Eğilimleri ve Organik Ürünlerin Ticareti: Son zamanlarda, özellikle gelişmiş ülkelerdeki tüketici talebi refah ve bilinçlenme düzeyindeki artışa, iletişim ve ulaşım olanaklarındaki gelişmeye bağlı olarak organik ürünlere yönelmektedir. Tarım ürünü üreticisi ve ihracatçısı bazı gelişmekte olan ülkeler, bu talebi karşılamak üzere, organik tarım ürünlerinin üretimi ve ticareti üzerine yoğunlaşmaktadırlar. Organik tarımın öneminin sürekli arttığını belirtmek mümkündür. Ancak, organik ürün ve pazarlarla ilgili araştırmalar sınırlı, geleceğe ilişkin tahminler ise yetersizdir. Diğer taraftan, Dünya ticaretinde, organik ürünlerin ticareti biyoteknolojik ürünlerin ticareti kadar hızla artmamaktadır. Organik tarım ürünlerine yönelen talep gelişme yolundaki ülkeler için yeni ihracat olanakları yaratmıştır. Ancak, organik tarım ürünlerinin, organik olmayan ürünlere göre daha pahalıya üretilmesi ve satılması; organik tarım işletmeciliğine geçişin belirli bir zamanı gerektirmesi; organik üretimin sertifikayla belgelenmek durumunda olması ve organik ürün ve pazarlarla ilgili araştırmaların sınırlı olması organik ürün ticaretinin yaygınlaşmasının önündeki en önemli nedenlerdir. 1997 yılı itibariyle dünyada 10.455 milyon dolar tutarında olduğu belirlenen organik ürün perakende satışlarının % 50'sinden fazlası Avrupa ülkelerinde gerçekleşmiştir. Avrupada en gelişmiş organik gıda ve içecek pazarına sahip olan ülkeler Almanya, Fransa, İtalya ve İngiltere'dir. 1997 yılındaki satışların yaklaşık % 40'ı ABD'de, %10'u ise Japonya'da yapılmıştır. V. Biyoteknolojik Ürünlerin Ticareti: Dünya ticaretinde biyoteknolojik ürünlerin pazar payı hızla artmaktadır. Bu yöntemle büyük ölçekli üretim yapılabilmesi ve ayrıca, biyoteknolojik ürünlerin üretilmesi için gerekli teknolojik gelişmenin patent haklarının saklı tutulabilmesi nedenleriyle ticari kazancın boyutları da hızla artmaktadır. Modern biyoteknoloji yöntemleriyle elde edilen ürünlerin yaklaşık %74'ü ABD'de, geriye kalanı ise Arjantin (%15); Kanada (%10); Avustralya, Meksika, İspanya, Fransa Güney Afrika ve Çin Halk Cumhuriyeti'nde (%1) üretilmektedir. Bugün için, modern biyoteknoloji yöntemleriyle üretilen yaklaşık 80 adet genetik ürünün uluslararası ticarete konu olduğu bilinmektedir. Yapılan araştırmalar, 1998 yılında biyoteknolojik yöntemlerle üretilen bitkilerin tüm satışlarının 1,5 milyar dolar civarında olduğunu, bu ürünlerin 1995-1998 dönemindeki satış gelirlerinin % 20 oranında arttığını göstermektedir. Bu trendin devam etmesi halinde, sözkonusu bitkilerin tüm satışlarının bu yıl 3 milyar dolara, 2005 yılında 8 milyar dolara, 2010 yılında ise 25 milyar dolara ulaşabileceği tahminleri yapılmaktadır. Biyoteknolojik ürünlerin tamamında, orta ve uzun dönemde, 100-150 milyar dolarlık potansiyel bir ticaret hacminden söz edilmektedir. VI. Tüketici Tercihleri ve Uluslararası Ticaret: Uluslararası ticareti yönlendiren unsurlardan biri tüketici tercihleridir. Tüketiciler bilimsel ve teknolojik gelişmeler karşısında daha bilinçli davranmak durumunda olan kesimdir. Bu kesim konuya sağlık, çevre ve etik kurallar olmak üzere üç farklı açıdan yaklaşmaktadır. Genel olarak tüketiciler, teknolojik gelişmelerin çok yönlü etkilerinin bulunduğunu ve bu etkilerin bazılarının olası riskleri de beraberinde getirdiğini bilirler ve kararlarını bilinçli olarak vermek isterler. Ayrıca, bunları bilimsel ve etik değerlendirmelerin gerektirdiği kritik kararlar olarak görürler. Yapılan araştırmalar, OECD ülkeleri arasında, Kuzey Amerika ülkeleri ile Avrupa ülkeleri arasında, biyoteknolojik ürünlere yaklaşım şeklinde önemli farklılıklar bulunduğunu ortaya koymaktadır. Bir kesim -Amerikalılar- gıda üretimi için modern biyoteknolojinin kullanımına olumlu yaklaşır ve modern biyoteknolojinin gıda üretimi açısından olduğu gibi, çevrenin de yararına olduğunu belirtirken, diğer kesim -Avrupalılar- bu düşüncenin aksine konuya şüpheyle yaklaşmaktadır. Amerika ve Avrupa ülkeleri arasındaki bu yaklaşım farklılığı mevzuat düzenlemelerine de yansımıştır. AB genetik olarak değiştirilmiş mikroorganizmalardan üretilen ürünlerin onaylanması konusunda ABD'den farklı bir süreç izlemekte ve uygulamaları "ihtiyatlılık" ilkesine dayanmaktadır. AB'nin Yeni Gıdalar Yasası, biyoteknolojik yöntemlerle üretilen ürünlerin etiketlenmesini gerektirmektedir. Biyoteknolojik ürünlerin ticaretinde uygulanacak kurallar konusunda, AB ile ABD arasında ciddi görüş farklılıkları bulunmaktadır. AB uluslararası kuruluşlardaki çalışmalarda, biyoteknolojik ürünlere yönelik etiket uygulamasının yaygınlaşması için çalışmaktadır. ABD ise, bu ürünlerin besin değeri, sağlık üzerine etkileri ve alerjik özellikleri bakımından incelendiğini ilgili kuruluşlar tarafından onaylanan genetik ürünlerin geleneksel benzerlerinden farklı bir sağlık riski taşımadığının kanıtlandığını belirtmekte, AB'yi ticarette korumacı uygulamalar yapmakla suçlamaktadır. Her iki taraf konuyu Transatlantik Ekonomik Ortaklığı, Transatlantik İş Diyaloğu ve OECD bünyesinde ve ayrıca, DTÖ tarım müzakereleri kapsamında görüşmektedir. Tüketiciler açısından esas olan kaygı, gıda üretiminde genetik biliminin kullanılmasının olası bilinmeyen riskleridir. Bu durum sağlık ve çevre açısından kabul edilebilir risk düzeyinin tanımlanmasını da güçleştirmektedir. Bu kaygılar tüketicileri, modern biyoteknoloji yöntemleriyle üretilen ürünlerin etiketlenmesi veya bu ürünlerin orta ve uzun dönemli etkileri konusunda risk değerlendirmesinin yapılması yönünde talepte bulunmaya yönlendirmektedir. VII. Etiketleme Uygulaması ve Uluslararası Ticaret: Çoğu kez, modern biyoteknoloji yöntemleriyle üretilen ürünler ile geleneksel yöntemlerle üretilen ürünleri birbirinden ayırt edebilmek mümkün değildir. Ancak, etkin pazar çözümlerine ulaşabilmek için, tüketicilerin aldıkları ürünle ilgili her türlü bilgiye ulaşabilmeleri gerekir. Bu doğrultuda etiketleme, uluslararası ticarette sıkça karşılaşılan ve tartışılan bir uygulamadır. Uluslararası ticarette önemli olan etiketleme uygulamasının ne şekilde yapılacağıdır. Uygulama gönüllü mü olmalıdır, yoksa zorunlu mu? Etikette ürünün içeriği mi tanımlamalıdır, yoksa üretim süreci mi? Etiketlerde yer verilecek bilginin kapsamı ne olmalıdır? Uluslararası ticarette yaygın olarak karşılaşılan uygulama, ürünün içeriğinin tanımlandığı etiket uygulamalarıdır. Genel olarak, üretim ve işleme yöntemleri (production and process methods) etiket programlarına konu olmamıştır. Genetik ürünlerin dış ticarete konu olmasıyla birlikte, OECD ve DTÖ'de, ticarette teknik engeller ve çevre ile bağlantılı ticaret önlemleri kapsamında, üretim ve işleme yöntemlerine ilişkin bilginin de etiketlemeye konu olabilmesi tartışılmaya başlanmıştır. Bu konu üzerinde henüz bir uzlaşmaya varılamamıştır. 1999 yılı içerisinde Japonya, Avustralya, Yeni Zelanda, AB, İsviçre, Norveç gibi ülkeler biyoteknolojik ürünlerle ilgili ulusal etiket programlarını devreye sokmuşlardır. Modern biyoteknoloji yöntemleriyle üretilen ve ayrıca, herhangi bir işlemden geçmeyen ürünlerde doğrudan etiketleme yapılabilmekte ancak, bunların işlenerek kullanılması durumunda etiketleme uygulamasında güçlük bulunmaktadır. Yapılan çeşitli araştırmalarda, bütün dünyada tüketiciye sunulan işlenmiş gıda maddelerinin yarısında modern biyoteknoloji yöntemleriyle üretilen genetik ürünlerin bulunduğu tahminleri yapılmaktadır. Ürünün çiftlikten alınıp nihai ürün olarak tüketiciye sunulmasına kadar geçen her aşamada, kullanılan girdilerin tanımlanmasını gerektiren ve üretici ve tüketiciler için gıda zincirindeki bütün ürünleri izleyebilme olanağı veren bir yöntem olan ve organik ürünler için de uygulanabilen "identity preservation" sisteminin getirdiği yüksek maliyet nedeniyle biyoteknolojik yöntemler kullanılarak üretilen ürünlere uygulanmasında güçlük bulunmaktadır. Genel olarak, ürünün paketi ile ilgili olan etiketleme uygulaması, ürünün niteliğini ilgilendiren ve sağlık önlemi olarak uygulanan ürün standartlarına göre ticareti daha az bozucu uygulamalar olarak kabul edilmektedir. Ayrıca biyoteknolojik yöntemlerle üretilen ürünler için tüketicinin satın alma kararını olumsuz yönde etkileyen bu uygulama, organik ürünlerin ticaretinde teşvik edici bir etki yaratmaktadır. VIII. Türkiye'de, Biyoteknolojik Ürünlerin İthalatı, Organik Ürünlerin İhracatı: Ülkemiz İthalat Rejimi kapsamında kamu ahlakı, kamu düzeni ve kamu güvenliği ile insan, hayvan ve bitki sağlığının korunması veya sınai ve ticari mülkiyetin korunması amacıyla ilgili mevzuat hükümleri çerçevesinde önlem uygulanan ürünler kapsamı dışındaki tüm ürünlerin ithali serbesttir. Ayrıca, bütün tarım ve gıda maddelerinin ithalatında Tarım ve Köyişleri Bakanlığı'ndan, eczacılık sanayi ürünlerinin ithalatında ise Sağlık Bakanlığı'ndan kontrol belgesi alınması gerekmektedir. Dış ticaretle ilgili veriler arasında, ülkemize modern biyoteknoloji yöntemleriyle üretilen tarım ve gıda maddelerinin ithal edildiği yönünde bir bilgi bulunmamaktadır. Ancak, önümüzdeki dönemde kaydedilecek gelişmelere bağlı olarak, bu konunun gündeme gelmesi kaçınılmaz olacaktır. Bu nedenle, modern biyoteknoloji yöntemleriyle üretilen ürünler için geçerli olacak çok taraflı ticaret kurallarının oluşturulmasından önce, bu alanı düzenleyen ulusal düzenlemelerin yapılmasında yarar bulunmaktadır. Ancak, ulusal düzenlemeler yapılırken, modern biyoteknoloji alanındaki gelişmelerin de düzenli bir şekilde izlenmesi ve bunun sonuçlarının ulusal düzenlemelere yansıtılması gerekmektedir. Bu kapsamda, çağdaş sistemlerde geçerli bir uygulama olan ve tüketicilere almak istedikleri ürünle ilgili her türlü bilgiye ulaşabilmeleri imkanını veren etiketleme uygulamasına geçilmesi etkin pazar çözümlerine ulaşabilmek bakımından yararlı olacaktır. Diğer taraftan, Türkiye'de 1997 yılı sonu itibariyle 18 000 hektar alanda organik tarım üretimi yapılmaktadır. 1998 yılı sonuna kadar bu miktarın % 25 oranında artması beklenmektedir. Türkiye'deki organik tarım üretimi ağırlıklı olarak ihracata yöneliktir ve en önemli ihracat pazarları AB ve ABD'dir. Tarım sektörünün geleceği ile ilgili stratejik değerlendirmeler kapsamında organik tarımın Türkiye'nin dış ticaretinde yeni açılımlar sağlayabilecek önemli bir üretim alanı olarak görülmesi mümkündür. Ancak, bu durumda organik tarım yöntemleriyle yapılacak üretimin gerektirdiği altyapının (bilgi, belgelendirme ve kurumsal yapı, vs.) oluşturulması ve desteklenmesi gerekmektedir. DTÖ'nde yeni başlayan tarım müzakereleri kapsamında bu konulara ilişkin olarak gündeme getirilen önerilerin dikkatle izlenmesi ve bu ürünlerin uluslararası ticaretinde uygulanacak prensipleri de içerebilecek yeni çok taraflı ticaret kurallarının ülkemiz şartları ve önceliklerine göre şekillendirilmesine çalışılmasında yarar görülmektedir. Kaynakça: DTÖ Belgeleri. OECD Belgeleri. FAO Belgeleri. Codex Allimentarious Commission Belgeleri. ITC, Organic Food and Beverages:World Supply and Major European Markets. Center For International Development at Harvard university (CID), Biotechnology in International Trade Gernot Brodnig; Weatherhead Center for International Affairs, Harvard University. DPT 8. Beş Yıllık Kalkınma Planı, Biyoteknoloji ve Biyogüvenlik Özel İhtisas Komisyonu Taslak Raporu İGEME Dış Ticaret Bülteni- Şubat 2000.

http://www.biyologlar.com/biyoteknolojik-urunler-organik-urunler-ve-uluslararasi-ticaretteki-gelismeler

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar. 4. KAYNAKLAR  Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi  Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY  Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY  www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

Sibernetik Organizmalaştırdığımız Böcekler

Diğer bir adıyla sayborg böcekler, yani Robocop gibi böcekler. Vücutlarına eklenen teknolojik araçlarla normalinden daha gelişmiş yeteneklere sahip olan canlıların prototiplerini oluşturmak için kullanılan böcekleri inceleyeceğiz. Sibernetik organizma (cybernetic organism), kısaltılıp dilimize girmiş haliyle sayborg (cyborg) hem biyolojik hem de yapay (elektronik, mekanik veya robotik) parçalardan oluşmuş canlılara deniyor [1]. Sayborgların insan olması gibi bir anlayış hakim olmasına karşın, bu tarz bir kısıtlama kesinlikle yok. Mikro-organizmalar bile bu tanımlamaya dahildir. Zaten sibernetik organizma adının çağrıştırdığı gibi herhangi bir organizmaya uygulanabilir; yeter ki bu teknolojik ve yapay öğeler, bahsi geçen organizmanın değiştirilmemiş haline kıyasla daha yüksek seviyelerde özelliklere sahip olmasını sağlasın. Diğer taraftan bir elektromekanik sisteme veya bir robota eklenecek olan canlı organlar veya dokular da robotun sayborga dönmesine sebep olacaktır. Popüler kültürden örnekler vermek gerekirse, organik ve sentetik parçalardan oluşturulan Robocop, Star Trek’teki Borg Queen (Şekil 1) veya Battlestar Galactica’daki insan saylonlar (cylon) ve Terminatör’ler en akılda kalan sibernetik organizmalardır. Yeri gelmişken sıkça karıştırılan iki terim olan sayborg ve androidin ayrımını da yapalım. Android insan dış görünümünü andıran robotlara verilen isim. Farkettiğiniz üzere bir android aynı zamanda bir sayborg olabilir de (yukarıdaki örnekler), olmayabilir de (örn: ASIMO, bkz. Tekinsiz Vadi).Sayborgların sadece bilim kurgu öğeleri olduğunu zannetmeyin, bu paragrafın sonunda neredeyse hepimizin birer sayborg olduğuna ikna edeceğim belki de sizleri. Öncelikle tanımı gereği gündelik hayatlarımızda kullandığımız bazı elektronik fiziksel eklentiler, bizleri birer sayborga dönüştürüyor. Kalp pilleri, kohlear ve retinal implantlar, insülin pompaları bazı organlarımızın yerini alarak değiştirilmiş vücut organlarımız haline geliyor. Bu sebeple bir başka yazımızda işlediğimiz beyin-makine arayüzleri olarak kullanılan protez kollar ve bacaklar da bizleri birer sayborga dönüştürüyor. Hatta bazı filozoflar ve teorisyenler işi daha da ileri götürerek, kontak lensler ve işitme cihazlarını bile eksik olan biyolojik yetilerimizi güçlendirmeye yaradıkları için sibernetik güçlendirmeler olarak görüyor, ancak ben bu fikire kesinlikle katılmıyorum. Çünkü bu şekilde insanların kullandığı bütün aletleri listeye eklemek mümkün.Sayborg böcekler Şekil 2: Sayborg böceğin üstten ve yandan görünümleri Berkeley bilim insanları 2009 yılında bir böceğin uçma yetilerini kontrol edebildiklerini iddia ettiler (Şekil 2). Bir beyin-makine arayüzü olan ve sinirsel uyarım yapan bir implant sayesinde böceğin uçuşunu başlatıp, yönetip, durdurabildiklerini de aşağıdaki video aracıyla kanıtladılar. Hatta bazalar kasları uyararak böceği istedikleri yöne doğru döndürebildiler. Ama esas işin enteresan kısmı böceğin sadece gerektiği zaman istenilen yöne gitmesine izin veren implantın gömülme detayları (Şekil 2). Eğer böcek istenilen yöne doğru uçuyorsa, yönelim sinyali kesiliyor ve böcek kendini tekrar stabilize edip yoluna koyulmaya devam ediyor, ancak bu sefer bilim adamlarının istediği yöne doğru uçuyor. Aslında bir nevi kontrol edilebilir zombiye dönüşmüş durumda, çünkü bu mekanizma sadece böcek istenilen hareketleri yapmadığında devreye giriyor. Kalkış ve inişlerde böcek kendi karar verip hareketleri otonom olarak yönlendiriyor, çünkü bu tarz bir karmaşık bir bilgiyi böceğe gönderip böcek dinamiğini kontrol etmek oldukça meşakkatli bir iş.DARPA sibernetik böceklere yönelik her türlü araştırmayı destekliyor [2]. Gaz sensörleri, mikrofonlar ve video kameralarla donatmayı planladıkları böceklere utanmasalar bir de minik roketler takacaklarını söyleyecekler (tabii henüz onu söyleyemiyorlar.)         Bu projedeki esas zorluk henüz koza evresinde olan canlıların Mikro ElektroMekanik Sistem (MEMS) devrelerini içerilerine alarak büyümelerini sağlamak ve elektronik-biyonik hibrit böcekler üretmek. Böylece güve (Şekil 3) veya böcek büyüdüğü zaman içlerindeki elektronik devrelere kontrol komutları gönderilebilecek [3].             Şekil 4: Böceği koza evresindeyken beynine yerleştirilen bir implantla kontrol etmek mümkün. i) Koza evresi, ii) Erişkin evresi, Kaynak: Boyce Thompson EnstitüsüAynı takım bundan önce de aşağıda videosunu seyredebileceğiniz sayborg güvelerle çalışmıştı. Gaz sensörleri, düşük çözünürlüklü kameralar ve mikrofonları da kapsayan silikon zihin arayüzleri hayvanların koza evresindeyken beyinlerine yerleştirilebiliyor (Şekil 4). Bu şekilde güve büyüdüğünde arama-kurtarma ve gözetleme görevlerinde kullanılabiliyor. Bir işitme cihazı piliyle beslenen bu elektromekanik düzeneğe sahip güvelerle çalışmanın bir dezavantajı mevcut, o da güvelerin kısa ömürleri. Ayrıca farkettiğiniz üzere USB girişi bulunan bu güveler yukarıdaki böcekler gibi serbest değiller.     Enerji ihtiyacı nasıl karşılanıyor?Şekil 5: Bir bozuk para büyüklüğündeki böceğe takılmış yaylar sayesinde enerji üretmek mümkünSayborg böcekler uzunca bir zamandır kullanılıyor olsalar da, minicik cüsseleri onları tam olarak istenilen birer insansız hava taşıtına çevirmiyor. Bu böcekler (örn. gergedan böceği) genellikle sadece kendi ağırlığının %30’unu taşıyabiliyorlar ki bu da 2.5 grama tekabül eder. Böcekler kendi hayatta kalma enerjilerini kendileri üretiyor olsalar da, eğer bu böceğe kamera veya başka yükler takmak isterseniz, dışarıdan enerji üretmeniz gerekiyor. Eğer sabit bir pil eklerseniz de zaten pilden geriye yer kalmayacağı için yeni sensörler eklemek de imkansız hale geliyor. Az güç harcayan bir alıcı-verici kullandığınızı düşünseniz bile düzenli veri işleme ve aktarımı için yaklaşık 1 ile 100 miliwatt arası enerji gerektiriyor.Bu noktada bilim insanlarının uyguladığı iki adet yöntem var. Birincisi böceğin kendi kaynaklarından enerji elde etmek. Michigan ve Western Michigan Üniversitesi bilim insanları piezoelektrik maddeden yaptıkları bir enerji jeneratörünü, böceğin kanat çırpmasından elektriğe dönüştürecek bir sistem geliştirdiler (Şekil 5). Her kanada takılacak her bir yaydan, 100 mikrowatt (μW) enerji üretilebiliyor ki, böceği yönetmek için kullanılan ortalama 80μW’tan bile daha fazla [4]. Bu tarz bir enerji kaynağında karşılarına çıkabilecek tek sorun böceğin kendi enerjisini toplamak için bir meyve arası vermesi.İkincisi enerji sağlama yöntemi ise nükleer pil kullanmak. Cornell Üniversitesi araştırmacıları 12 yıllık yarı ömre sahip, radyoaktif nikel-63 (Ni-63) izotopu kullanarak enerji sağlanan bir mikro elektromekanik sistem (MEMS) radyo frekans alıcı-vericisi kullandılar. Bu sayede onlarca yıl kendi enerjisini kendi sağlayan bir böcek yaratmış oldular ( her ne kadar böceğin ömrü bu kadar olmasa da). Bu düzenek 10 mikrosaniyede bir, 5 miliwattlık ve 100 Megaherzlik radyo frekansı yayınlayabiliyor. Tabii ki gene Amerikan Savunma Bakanlığı İleri Araştırma Projeleri Ajansı (DARPA) sponsorluğunda yapılan bu projede kontrol devreli güveler ve böcekler kullanılmış.Peki radyoaktif enerji veri transferini sağlayacak enerjiye nasıl dönüştürülüyor? İzotoptan çıkan elektronlar, silikon ve piezoelektrik bir manivela (40 mikrometre kalınlığında ve 4-8 milimetre uzunluğunda) üzerinde negatif yük birikimine sebep oluyorlar [5]. Bu manivela görece daha pozitif olan Ni-63 tabakaya doğru yaklaşmaya ve bükülmeye başlıyor. Tam değeceği sırada, bu negatif yük, tabakaya zıplama yapıyor ve yükünden kurtulan manivela tekrar başlangıç pozisyonuna geri dönüyor. İşte hareket enerjisi de tam bu geri dönme hareketi sırasında elde ediliyor. Bu döngü, izotop tüm enerjisi tükenene kadar devam ediyor, yani yaklaşık 100 yıl kadar.Her bir zıplama hareketi yaklaşık 3 dakika alıyor. Bu da her 3 dakikada bir elektrik üretildiği ve veri transferi yapılabileceği anlamına geliyor. Eğer daha farklı zaman aralıkları hedefleniyorsa, biriken elektron sayısına göre ayarlanmış bir MEMS sistemine ihtiyaç var, ve bu rahatlıkla mümkün. Tüm bu düzeneğin büyüklüğü 1 santimetrekare alan kaplıyor.En önemli çekince, bu radyoaktif kaynaktan aynı zamanda beta yayılımı yapılıp yapılmadığı ve hayvanın ve üzerindeki mekanizmanın zarar görüp görmediği. Bilim adamları sadece 21 nanometre penetrasyon yapan bu nükleer kaynağın zararsız olduğu iddiasında.Sayborg Sinekler:Şekil 6: A) Yuların ucundaki sinek, B) Yuların bağlı olduğu düzeneğin etrafı LED ekranlarla çevrili, C) Sineğin kanat çırpışlarıyla hareket eden robot, D) Kamera düzeneğiETH Zürih Üniversitesi Robotik ve Akıllı Sistemler departmanında çalışan bilim insanları 2010 yılında meyve sinekleri üzerinde yaptıkları araştırmalar sonunda, odada bulunan engellerin etrafından uçurabildikleri bir sayborg sinek yaratmayı başardılar. Bunun için yarattıkları deney koşulları çok sıradışı (Şekil 6).Aldıkları bir sineği sabit bir yulara bağlayarak (Şekil 7), çevresine 360 derecelik bir LED ekran yerleştirilmek suretiyle farklı görüntülere maruz bıraktılar [6]. Bu görüntüler sineği sağ veya sol kanatlarını hızlı veya yavaş şekilde çırpmak için tahrik eden görüntülerdi. Yani sineğe bir nevi sanal gerçeklik yaşatıyorlardı. Bu esnada aynı ortamda bulunan bir kamera sistemi de sineğin kanat çırpma hareketlerini bir robotu kontrol etmek için gerekli komutlara çeviriyordu. Bilim insanları amaçlarının sineklerdeki temel uçuş kontrol mekanizmalarını anlayıp, daha iyi canlı-taklitçi robotlar yapmak olduğunu söylüyorlar.Şekil 7: Meyve sineğinin uçmaya çalışsa bile yerinden kıpırdayamayacak şekilde sabit kaldığı düzenekKamera düzeneği kanat çırpış frekansı, pozisyonu, fazı ve genliğini algılabilecek kalitede seçilmiş. Bu bilgiler bir algoritma sayesinde robotun hareketlerine çevrilmiş ve hareket eden robotun üzerinde bulunan kamera ve yakın mesafe sensörleri sayesinde ise tekrar sineğin çevresinde gördüğü LED ekrandaki hareket görüntülerine çevrilmiş. Benzer düzenekleri popüler sinemadaki Matrix ve özellikle de Avatar filmlerinden hatırlarsınız. Böylece sinek kendisi hareket ettiği için ve çevresi de hareket ettiği simülasyonunu gerçekleştirdiği için, gerçek dünyada ilerlediği izlenimine kapılıyor.Sonsözİstekleri dışında uçmak zorunda bırakılan, bir düzeneğe bağlanan veya radyoaktiviteye maruz kalan bu hayvancağızların, hem zihinsel olarak hem de fiziksel olarak birer zombiye döndükleri aşikar. Acaba bu tarz sorunları hedef alan ve bilimsel araştırma kisvesi altında da olsa hayvanlara eziyeti suç sayan bir sayborg etiğinin bilime sunulma vakti gelmedi mi [7]?Kaynaklar:[1] http://en.wikipedia.org/wiki/Cyborg[2] http://www.darpa.mil/MTO/Programs/himems/index.html[3] http://www.technologyreview.com/computing/22039/[4] http://spectrum.ieee.org/automaton/robotics/military-robots/micro-energy-harvesters-will-make-cyborg-insects-unstoppable[5] http://spectrum.ieee.org/semiconductors/devices/nuclearpowered-transponder-for-cyborg-insect[6] http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/cyborg-fly-pilots-robot-through-obstacle-course[7] Kevin Warwick, Cyborg morals, cyborg values, cyborg ethics, Ethics and Information Technology, Volume 5, Number 3, 131-137, DOI: 10.1023/B:ETIN.0000006870.65865.cf Yazar : Gökhan İnce http://www.acikbilim.com/2012/06/dosyalar/sibernetik-organizmalastirdigimiz-bocekler.html Açık Bilim Haziran 2012

http://www.biyologlar.com/sibernetik-organizmalastirdigimiz-bocekler

Histoloji Preparatlarının Hazırlanması

Canlılardan alınan doku ya da organ parçalarını mikroskopla incelenir duruma getirebilmek için takip ettiğimiz işlemlerin tümüne birden histolojik teknik adını veriyoruz. Bu amaçla kullanılan yöntemler uygulayacağımız mikroskobi tekniğine bağlı olarak ilk bakışta bazı farklılıklar görünse de temelde prensipler aynıdır. Bu konuyla ilgili temel prensipleri anlayabilmek için klasik ışık mikroskobunda inceleyeceğimiz bir preparatın hazırlanışını görelim.Tespit (Fiksasyon)Bir histolojik incelemenin sağlıklı bir şekilde yapılabilmesi için dokuya ait yapı özelliklerinin, kimyasal içeriklerinin iyi korunmuş olması gerekir. Bunun için canlılara ait preparatların hazırlanışında ilk temel prensip hücre ve dokuları canlıdakine en yakın şekilde tutabilmektir.Bunun için ilk hedef otolizi engellemek olmadır. Canlı hücre içinde, etrafı membranla çevrili, eritici enzimler içeren, lizozom adını verdiğimiz organeller vardır. Hücre bu yapıları sindirim amacıyla kullanır. Ölümden sonra eritici enzimler sitoplazma içine geçerek hücreyi eritmeye başlar. Bu olaya kendini eritme anlamına gelen otoliz adı verilir. Otolize uğramış hücreler normal görünümünü kaybederek incelenmesi imkansız hale gelir. Otolizi engellemek amacıyla kullanılan bazı maddeler lizozomların içindeki enzimlerin sitoplazmaya geçişini ve erimeyi önlerler. Bu olaya tespit ya da fiksasyon, bu amaçla kullanılan maddelere de fiksatör adı verilir. Pek çok tespit maddesi ve tespit yöntemi vardır. Uygulayacağımız tespitin sonraki işlemlere, özellikle boyama işlemine bir zarar vermiyor olmasına dikkat etmek gerekir. Örneğin, klasik yöntemlerle tespit ve takip edilen dokularda yağ hücreleri içindeki  depo yağını korumak imkansızdır. Hücrelerdeki yağ içeriği takip işlemleri esnasında akar, hücrelerin içleri sonradan boş görünür. Eğer bir çalışmada bu hücreleri yağ içerikleri ile beraber görmek istiyorsak fiziksel bir tespit yöntemi olan dondurma tekniğine başvurabiliriz.Fiziksel olarak tespit yöntemlerine örnek olarak periferik kan yayma preparatlarının boyanmadan önce ısıtılarak ya da doğrudan kurutularak tesbitini verebiliriz.Otoliz nedir? Fiksasyon hangi amaçla yapılır?Kimyasal tespit yöntemleri hem kullanılma sıklığı hem de kullanılan fiksatörlerin çeşitliliği açısından daha çok zenginlik gösterir. En bilinen ve yaygın kullanılan fiksatör formoldür. Formol genellikle %10'luk sulu çözeltisi şeklinde kullanılır. Ticari formol %100'lükmüş gibi kabul edilerek 1 kısım formol, 9 kısım suyla karıştırılarak tesbit sölüsyonu hazırlanır. Ayrıca, glutaraldehit, osmium tetraoksit, bazı asitler, alkoller ya da bunların kombine formları daha az sıklıkla kullanılan kimyasal fiksatörlere örnek olarak verilebilir. Bütün fiksatiflerin istenenözelliklerinin yanı sıra istenmeyen bazı etkileri de vardır. Değişik kombinasyonlar kullanılarak istenen tespit özelliklerinin artmasını, istenmeyen bazı etkilerin en aza indirgenmesini sağlamak mümkündür. Birleşik olarak kullanılan fiksatörler çoğu kere ilk bulup kullanan araştırıcının adıyla anılırlar (Bouin, Carnoy, Zenker gibi).Elektron mikroskopta incelenecek preparatların hazırlanmasında ultrastruktürel yapının detaylı incelenebilmesi için çift fiksasyon işlemine gereksinim vardır. Bu işlemde önce tamponlanmış glutaraldehit ilk fiksatör olarak, daha sonra tamponlanmış osmium tetroksit ikinci fiksatör olarak kullanılır.Birleşik tespitten ne anlıyorsunuz?Doku ve organlardan alınan parçaların tespitinde aşağıdaki konulara dikkat etmek gerekir:- Tespit ve takipte kullanılan sölüsyonların dokunun içine iyi işlemesi için parçaların yeterince küçültülmüş olmasına özen gösteriniz. Parçanın boyutlarının 0.5 cm. yi geçmiyor olması daha olumlu sonuç verecektir.- Parçalar alındıktan hemen sonra bekletilmeden tespit sıvısına konulmalıdır.- Parçalar büyük ve kanlı ise tespit sıvısı yenilenmelidir.- Tespit sıvısının, hacim olarak konulan parça ya da parçaların minimum kırk katı fazlalığında olmasına çalışılmalıdır.- Uygulayacağımız her tespit yöntemi için önerilen süreye uyulmalıdır.- Tespitten sonra parçalar iyi yıkanmalı, yapay görüntülere neden olmaması için tespit maddesi dokudan tamamen uzaklaştırılmalıdır.- Ayrıca SAĞLIĞIMIZ AÇISINDAN:Histoloji laboratuvarlarında kullanılan pek çok madde gibi tespit maddelerinin buharlarının canlı hücre ve organizma için son derece zararlı olduğunu aklımızdan çıkarmayıp, bu işlemlerin çeker ocak denilen yerlerde yapılmasına dikkat etmeliyiz. Eğer bu mümkün olmuyorsa laboratuvar ortamının çok iyi havalandırılıyor olmasına özen göstermeliyiz.Tespitte uyulması gereken kurallar nelerdir?Tespit işlemleri ne tür yerlerde yapılmalıdır, neden?DehidratasyonTespit edilmiş parçalar bu aşamadan sonra suyundan arındırılır. Bu işleme dehidratasyon adı verilir. Dehidratasyon işlemi için suyu kolaylıkla kendi bünyesine kabul eden etil alkol, izopropil alkol, dioksan, anilin gibi maddeler kullanılır. Bunlardan en yaygın kullanılanı etil alkoldür. Derecesi absolu alkole kadar ulaşan banyolardan geçirilen parçalar daha sonra ışığı geçirgen hale getirilir. Bu işleme şeffaflaştırma (clearing) işlemi denir. Bu amaçla en sık kullanılan madde ksiloldur. Ayrıca benzen, toluen, kloroform gibi maddeler bu amaçlakullanılan maddelere örnektir.Bu işlemler petri kutuları gibi buharlaşmayı engellemek için düzgün kapaklı cam kaplarda elle takip şeklinde yapılabildiği gibi otomatik takip makineleri ile de yapılabilir. Otomatik takip makineleri zaman ayarlaması yapılabilen, doku parçalarının istenilen kaplarda istediğmiz kadar kalmasını sağlayan makinelerdir.Dehidratasyon nedir? Hangi maddeler bu amaçla kullanılırElektron mikroskop için hazırlanan preparatlar da doku parçaları dehitratasyon işleminden geçirilir. Bu işlem için de yine ethanol kullanılır. Gömme işleminden önce plastik eritici olan propilen oksit gibi maddelerde infiltre edilir.Bloklama (Gömme)Parçalardan rahatça kesitler alabilmek, düzgün kesit yüzeyleri sağlayabilmek için gömme ya da bloklama olarak ifade ettiğimiz işleme başvururuz. Parafin, jelatin, selloidin, karbovaks gibi maddeler bu işleme uygundur. En yaygın kullanılan madde parafindir. 56-60 derecede sıvılaşan parafin etüvde hazır tutulur. Parça prizmatik kalıplar içine konur, üzerine sıvı parafin dökülür. Parafin laboratuvar ısısında mum gibi donarak sertleşir. Kalıptan çıkarınca içinde bizim doku parçamız da bulunan düzgün prizmatik bir parafin bloku elde ederiz. Parafinintersüller boşluklara hatta hücrelerin içine bile penetre olarak dokuyu daha sabit ve kesilebilir hale getirir. Elektron mikroskop için ışık mikroskobuna oranla çok daha ince kesitlere ihtiyaç vardır. Bu nedenle gömme ya da bloklama işleminde daha sert plastik maddeler gereklidir. Bunun için epon, araldit gibi epoxy plastik maddeler kullanılır.Bloklama işleminde ne tür maddeler kullanılır?Kesit AlmaBlokladığımız doku ve organ parçalarında düzgün ince kesitler almak için kullandığımız aletlere mikrotom denir. Işık mikroskop incelemeleri için kullandığımız mikrotomlar mikron düzeylerinde ince kesitler alabilirlerken elektron mikroskop araştırmalarında kullanılan ultramikrotomlar angström inceliklerinde kesitler sağlarlar. Işık mikroskobu için kesitler almakta kullandığımız mikrotomlarda çelik bıçaklar kullanılırken, EM için kesitler aldığımızultra mikrotomlarda cam ya da daha iyisi elmas bıçaklar kullanılır. Işık mikroskop çalışmalarında genellikle 6-10 mikronluk kesitler kullanılır. Mikrotomların bıçakların hareketli olduğu kızaklı mikrotom denilen tipleri ya da bıçaklarının sabit, kesilecek blokların hareketli olduğu rotari mikrotom tipleri vardır. Mikrotom aracılığıyla parafin bloklardan isteğimiz kalınlıklarda dilimler keserken blok içindeki parçadan da aynı kalınlıkta kesitler elde etmiş oluruz. Daha sonra lam üzerinde alınan kesitler boyama işlemine hazır olurlar.Xylol gibi bazı solventler doku içindeki lipidler gibi bazı maddeleri eritebilirler. Bu istenmeyen etkinin önüne geçmek için cryostat adı verilen dondurma mikrotomları kullanılır. Dokular bu yöntemle düşük ısıda aniden dondurularak takip işlemlerinden geçirilmeden ve bloklanmadan kesit alınabilir hale gelir.Mikrotom ve Ultramikrotom neye denir?Boyama (Kolorasyon)Çok ufak ayrıcalıklar dışında dokuların büyük bir kısmı renksizdir ve boyanmadığı sürece ışık mikroskobunda incelenmesi zordur. Çeşitli doku ve hücre kısımlarının yapıları nedeniyle farklı kimyasal özellikteki boyaları farklı bir şekilde tutmaları histolojide boyamanın esasını teşkil eder. Histolojik araştırmalarda kullanılan boyaların büyük bir çoğunluğu asit veya baz özelliğinde olup dokudaki ionize köklerle elektrostatik bağlantı yaparlar. Bu şekilde doku ve hücrelerin daha belirgin bir şekilde ortaya çıkması sağlanırken diğer yandan kimyasalyapısını bildiğimiz boyalarla reaksiyona giren yapıların kimyasal özellikleri ortaya konmuş olur. Histolojik boyalar renklendirici gruplarının asit ya da baz oluşuna göre asit ve bazik boyalar olmak üzere iki ana grupta toplanırlar. Bazik boyaları çeken, o boyanın renginde boyanan hücre ve doku kısımları bazofil boyanıyor ya da bazofili gösteriyor diye tanımlanır.Genel olarak granüllü endoplazmik retikulumun yoğun olduğu kısımlar, hücre çekirdeği bazofili gösteren yapılardır. Asit boyalarla reaksiyona girerek onun renginde boyanan hücre ya da doku kısımları için asidofil boyanıyor ya da asidofili gösteriyor denir. Bazı ayrıcalıkları olmakla birlikte hücre sitoplazması, kollajen lifler, mitokondrium ve lizozomlar asidofilik yapılardır. Bazik boyalara örnek olarak Metilen Mavisi, Jansiyan Viyole, Bazik Füksin, Azokarmin, Safranin, Hematoksilin, Nükleer Fast Red verilebilir. Eozin, Pikrik Asit, AsitFüksin, Oranj G, Eritrosin, Kongo Kırmızısı, Light Green gibi boyalar asit boyalara örnektir.Boyalar bazı yöntemlerde tek olarak kullanılır. Bazı yöntemlerde ikili ya da daha çok boya içeren birleşik yöntemler dediğimiz şekillerde kullanılırlar. Birleşik yöntemlerde kesitler birbiri ardından bazik ve asit boyalarla işleme tabi tutulurlar. Birleşik boya yöntemlerinden ikili olanlara örnek olarak çok yaygın bir boyama yöntemi olan Hematoksilin+Eozin (HE) yöntemi gösterilebilir. Azokarmin, Oranj G ve Anilin Mavisinden oluşan Heidenhein İn Azan yöntemi ise üçlü bir boyama yöntemidir.Asidofili ve bazofili neye denir?Birleşik boyama neye denir?Bazı boyalar, bazı yapıları boyanan çözelti renginden farklı bir renge boyarlar. Bu olaya metakromazi, böyle boyalara da metakromatik boyalar denir. Örneğin toluidin mavisi dokuya düşük konsantrasyonda bağlandığında mavi renkte boyar (ortokromatik). Oysa bir yapıya yüksek konsantrasyonda bağlandığında mor-kırmızı renkte boyar (metakromatik). Toluidin mavisinin Mast hücrelerinin granüllerini mor-kırmızı boyaması metakromatik boyanmadır.Bazı lipidler, makromoleküller metafosfat, sülfomukopolisakkaritler, nükleik asitler metakromazi gösteren yapılardır. Toluidin mavisi, Metilen mavisi, Azur A gibi boyalar ise metakromatik boyalara örnek verilebilir.Ortokromazi ve metakromazi nedir?Bazı boyalar deneysel amaçla doğrudan canlıya verilebilir. Bu renkli maddeler organizmada bazı yerlerde tutularak canlıda boyanma sağlarlar. Örneğin, tripan mavisi deney hayvanının dolaşımına verildiğnide karaciğer kupffer hücreleri tarafından tutulur. Böylece hayvan daha canlıyken sitoplazması mavi tanecikler tarzında boyunmış olur. Vital boyalardan Tripan mavisi, Kongo kırmızısı, Çini mürekkebi, Alizarin ve Lityum karmin asit karakterde vital boyalardır. Metilen Mavisi, Nötral Red, Janus Green, Krezil Viyole ve Nigrosin bazik karakterdevital boyalardır.Vital boyamanın diğer boyama yöntemlerinden farkı nedir?Boyama işleminden sonra kesitler yeni baştan dehidrate edilir ve şeffaflaştırılır. Daha sonra üzerlerine lamel kapatılarak korunur. Preparatların kapatılmasında Kanada Balsamı ya da son zamanlarda ucuzluğu ve çabuk kuruması yönünden tercih edilen bazı sentetik yapıştırıcılar kullanılmaktadır. Uzun süre saklanılması düşünülen preparatları doğrudan güneş ışığı ya da kuvvetli ışıklardan sakınmak gerekir. Aksi takdirde boya solacaktır.Dokuların renkli boyalarla boyanmasının yanı sıra altın, gümüş gibi bazı metallerin seçici olarak bazı kısımlara çöktürülmesi de o bölgelerin mikroskop altında kolayca belirlenmesini sağlayan boyadışı bir renklendirme yöntemi olarak karşımıza çıkar.

http://www.biyologlar.com/histoloji-preparatlarinin-hazirlanmasi-1

Evrimin Kanıtları Var mı?

" Hayvan türlerinden biri olarak, biz insanlar, diğer türler gibi evrimin yasalarına uyarız. Bu savı, destekleyecek birçok kanıta da sahibiz. Öncelikle, diğer omurgalı hayvanlarda bulunan birçok benzer ve kökendeş (homolog) yapıya ve organa sahibiz. Diğer hayvanlarda işlev gören birçok yapıyı biz körelmiş olarak taşırız. Embriyomuz gelişirken, solungaç keselerini, basit kalbi; ilkel boşaltim tiplerini, diger omurgali hayvanlardakine benzeyen kuyrugu ve buna benzer birçok yapiyi göstermesi kökendeşligimizin tipik kanitlaridir. Kanimizin serumundaki proteinler ve kirmizi kan hücrelerindeki antijenler insansi maymunlarinkine dikkati çekecekk kadar benzerdir. Gerçekte, bu bakimdan, kuyruksuz maymunlara kuyruksuz maymunlardan daha çok benzeriz. Birçok genimiz, diger omurgali hayvanlarinkinin aynisidir. İnsan evriminin en önemli özelliği, beyin büyümesi, özellikle büyükbeyinin izlenimleri saklama ve öğrenme işlevini yüklenerek, beynindiğer kısımlarına göre oransal olarak çok daha fazla gelişmesidir. Buna bağlı olarak, üstün zekanın ortaya çıkaracağı hünerleri yerine getirebilmek için ilk olarak harektte kullanılan ön üyeler, el olarak kullanılmaya başlamıştır." ( Ali Demirsoy , Kalıtım ve Evrim, 5. Baskı, 1991 Ankara s:716-717) Atların fosilerini milyonlarca yıl geriye izleyebiliyoruz. Çünkü yeterince fosil bulunmuştur. " Halbuki insan fosilleri çok seyrek bulunur. Bunun nedeni, insanın atalarının çok yakın zamanda oluşması ve fosilleşmek için zamanın oransal olarak kısa olması; diğer hayvanlara göre yaygın ve fazla bireyli popülasyonlar oluşturmaması ve en önemlisi oransal olarak diğerlerine göre çok daha zeki olmaları nedeniyle tehlikeyi önceden sezinleyerek, bataklık, katran kuyuları ve fosilleşmenin uygun olacağı tuzaklardan uzak durmaları ve kaçmaları olarak düşünülebilir. Önsezimizle bu tuzaklardan uzaklaşmış ve tehlike sırasında da el hünerlerimizle çoğunluk kurtulmayı sağlamışızdır. Halbuki diğer hayvanlar bu olanaklardan yoksundular ve bu nedenle bol miktarda fosil bırakabilmişlerdir. Keza birçok hile ve araçla yırtıcı hayvanlardan kurtulmayı başarmış ve bu yolla kemiklerin fosilleşmesi de önlenmiştir. Bunun yanısıra, toplumsal ayaşama geçiş de bu tehlikeleri büyük ölçüde azaltmıştır. Bol miktarda fosilin bulunamaması insanın soy dizisinin açıklanmasında bazı karanlık noktalar bırakmıştır. Bütün bunlara karşın, elimizde birikmiş kanıtlar, insanın maymun benzeri bir atadan, bugünkü insana, Homo sapiens ' e geliştiğini göstermeye yeterlidir." (Demirsoy, s:717) Turkana Çocuğu Antropologlar, birbirinden ayrı düşmüş dişler, tek tek kemikler, kafatası parçaları; insana özzgü tarihöncesinin öyküsü çoğunlukla, bu ipuçlarından oluşturulur.”Umut kıracak kadar eksik olsalar da, bu ipuçlarının büyük önem taşıdığını inkar etmiyorum; onlar olmasa, insana özgü trihöncesinin öyküsünü anlatamazdık.Bu mütevazi kalıntılarla karşılaşmanın getirdiği benzersiz heyecanı da gözardı etmiyorum; bunlar, bizim geçmişimizin, et ve kandan oluşan sayısız kuyşakla bize sağlanan parçalarıdır. Ama nihai ödül yine de bütün haldeki bir iskeletin keşfedilmesidir.” (Richard Leakey, İnsanın Kökeni Varlık/Bilim s:7) " 1984 yazının sonlarında çalışma arkadaşlarımla birlikte, nefeslerimizi toplu olarak tutmuş ve sürekli artan umudumuz deneyimin katı gerçekliği karşısında sönmüş bir haldeyken, bu hayalin şekillenmeye başladığını gördük. .Eski bir kaftasına ait küçük bir parça bulduk. Dikkatle kafatasının diğer parçalarını aramaya başladık ve umduğumuzdan çok daha fazlasını bulduk. Bu keşfi izleyen ve açık sahada yedi aydan fazla bir zamana denk gelen beş kazı mevisimi boyunca ekimiz, bin beşyüz ton tortu çıkardı ve sonuçta 1.5 milyon yıldan fazla bir süre önce eski gölün kıyısında ölmüşü birinin eksiksiz iskeletini bulduk. Turkana çocuğu adını taktığımız bu birey öldüğünde yalnızca dokuz yaşındaymış; ölüm nedeni ise hala bilinmiyor.Arka arkaya fosil kemikleri çıkarmak gerçekten eşi bulunmaz bir deneyimdi:kollanr, bacaklar, omurga kemikleri, kaburgalar, leğen kemiği, çene, dişler ve yine kafatasları. Çocuğun iskeleti şekilleniyor ve 1.6 milyon yıl parçalar halinde yaşadıktan sonra birey olarak yeniden oluşturuluyordu.İnsan fosili kalıntılarında, yalnızca 100 bin yıl öncesindeki Neanderthal dönemine dek, bu iskelet kadar eksiksiz bir başka şey bulunamamıştır... Tarihöncesi insan ailesinin çeşitli türlerinin herbiri bilinmese bile bir etiket, yani tür adi, taşiyor ve bu adlari kulanmaktan kaçinmak olanaksiz. Inas türleri ailesinin de kendine özgü bir adi var: Insangiller (homonidler) Meslektaşlarimdan bazilari geçmişteki tüm insan türleri için “insangil” terimini kullanmayi yegliyorlar. “Insan” sözcügünü yalnizca bizim gibiler için kullanilmasi gerektigini savunuyorlar.Yani, yalnizca bizim düzeyimizde zekaya, ahlak duygusuna ve içedönük bilince sahip olanlari “insan” olarak tanimliyorlar. Ben farklı bir bakış açısına sahibim. Esik insangilleri dönemin diğer insansı (kuyruksuz) maymunlarından ayıran, dik durarak hareket etme evriminin, sonraki insan tarihinin temeli olduğunu düşünüyorum. Uzak atamızın iki ayaklı bir insansımaymun haline gelmesiyle birlikte pek çok diğer evrimsel yenilik de mümkün oldu ve sonuçta, Homo ortaya çıktı. Bu nedenle tüm insangil türlerine “insan” demekte haklı olacağımızı düşünüyorum. Tüm eski insan türlerinin bizim günümüzde bildiğimiz zihinsel dünyaları yaşadıklarını söylemek istemiyorum. “İnsan” tanımı en basit düzeyde, dik yürüyen- iki ayaklı- insansı maymuları içerir. .. Turkana çocuğu, insan evrimi tarihinin dönüm noktasını oluşturan bir tür olan Homo erectus ’un üyesiydi. Kimi genetik kimi de fosillerden olmak üzere farklı kanıt dizilerinden, ilk insan türünün yaklaşık 7 milyon yıl önce ortaya çıktığını biliyoruz. Yaklaşık 2 milyon yıl önce Homo erectus sahneye çıktığında, insanın tarihöncesi oldukça uzun bir yol almıştı. Homo erectus’un ortaya çıksamından önce kaç insan türünün yaşayıp öldüğünü henüz bilmiyoruz; en azzından altı, belki de bu rakamın iki katı sayıda tür olmalı. Ama Homo erectus’ tan önce yaşayan tüm insan türlerinin, iki ayaklı olkala birlikte, pek çok açıdan insansımaymun benzeri özellikler taşıdıklarını biliyoruz.Beyinler görece küçük, yüzleri sivri çeneli (yani, öne doğru çıkık) ve beden yapılarının kimi özellikleri- örneğin göğüs huni şeklinde, boyun kısa ve bel yok- insandan çok insansımaymun benzeriydi.Homo erectus ’ta beyin büyüdü, yüz düşleşti ve beden daha atletik yapili hale geldi. Homo erectus’la birlikte, kendimizde gördügümüz pek çok fiziksel özellik de ortaya çikti; anlaşilan insanin tarihöncesi, 2 milyon yil önce çok önemli bir dönem noktasindan geçmişti. Homo erectus ateş kullanan, avciligi beslenme düzeninin önemli bir parçasi haline getiren, modern insanlar gibi koşabilen, belli bir zihinsel kaliba göre taş aletler yapabilen ve harekat alanini Afrika’nin ötesine taşiyabilen ilk insan türüdür. Homo erectus’un konuşma diline sahip olup olmadigini kesin olarak bilemiyoruz; ama buna işaret eden çeşitli kanitlar var. Bu türde belli bir benlik bilinci, insansi bir bilinç olup olmadigini da bilmiyoruz ve büyük olasilikla asla bilemeyecegiz; ama ben oldugunu düşünüyorum. Homo sapiens’in en degerli özellikleri olan dil ve bilincin tarihöncesi kalintilarinda hiçbir kanit birakmadigini söylemeye herhalde gerek yok. Antropoloğun hedefi, insansımaymun benzeri bir yaratığı bizim gibi insanlara dönüştüren evrim olaylarını anlamaktır. Bu olaylar romantik bir açıdan, büyük bir tiyatro eseri gibi tanımlanmış ve gelişen insanlığa da öykünün kahramanı rolü verilmiştir. Oysa gerçek büyük olasılıkla çok daha basittir ve bu değişimi epimaceradan çok, iklimsel ve ekolojik değişimler yönlendirmiştir. Yine de bu, dönüşümün ilgimizi dahha az çekmesine neden olmuyor. Biz, doğal dünylyayı ve bu dünyadaki yerimizi merak eden türüz.Şu andaki halimeze nasıl ggeldiğimizi ve geleceğimizin nasıl olacağını bilmek istiyoruz; bilmek zorunluluğu duyuyoruz. Bulduğumuz fosiller bizi fiziksel açıdan geçkmişimize bağlıyor ve sundukları ipuçlarını, doğayı ve evrim tarihimizin izlediği yolu anlamala yolu olarak yorumlamaya yönlendiriyor. İnsanoğlunun tarihöncesine ait daha pek çok kalıntı gün ışığına çıkartılıp incelenene dek hiçbir antropolog kalkıp da, “Bu, tüm ayrıntılarıyla şöyle oldu” diyemez. Ama araştırmacılar, insan tarihöncesinin genel şekiline dair pek çok konuda aynı fikirdeler. İnsanın tarihöncesinde dört temel aşama kesinlikle saptanabiliyor. İlk aşama, 7 milyon yıl önceki, iki ayaklı ya da dik hareket eden insansımaymun benzeri bir türün geliştiği insan ailesinin kökenidir. İkinci aşama, iki ayaklı türlerin çoğalması yani biyologların uyarlayıcı ışınım adını verdikleri bir süreçtir. 7 milyon ile 2 milyon yıl öncesi arasında her biri birbirinden biraz farklı ekolojik şartlara uyarlanmış pek çok değişik iki ayaklı insansımaymun gelişti. Bu insan türleri arasından birisi, 3 milyon ile 2 milyon yıl önce arasında, önemli oranda büyük bir beyin geliştirdi. Beyin boyutundaki büyüme üçüncü aşamayi oluşturur ve insan soyagacinin, Homo erectus ’tan sonuçta Homo sapiens’e dek uzanan dali olan Homo cinsinin kökenine işaret eder. Dördüncü aşama , modern insanlarin kökenidir; bizim gibi, dogada başka hiçbir şekilde görülmeyen dile, bilince, sanatsal düş gücüne ve teknolojik yenilikçilige sahip insanlarin ortaya çikişidir. Bu dört temel olay, kitabımızdaki bilimsel anlatının yapısını oluşturuyor. İleride de görüleceği gibi, insanoğlunun tarihöncesini araştırıken yalnızca neyin, ne zaman olduğundan öte, neden olduğunu da sormaya başlıyoruz. Bizler ve atalarımız, artık tıpkı fillerin ya da atların evrimi incelenirken olduğu gibi, aşamalı bir evrim senaryosu bağlamında inceleniyoruz. Bu, Homo sapiens’in pek çok açıdan özel olduğunu yadsımak anlamına gelmiyor: en yakın evrimsel akrabamız olan şempanzeden bile bizi ayıran pek çok şey var; ama artık, doğayla bağlantımızı biyolojik anlamda anlamaya başladık. Son otuz yıl içinde bilim dalımızda, daha önce eşi görülmemiş fosil keşiflerinin ve bu fosilleri yorumlayıp sundukları ipuçlarını bütünleştirmekte kullandığımız yenilikçi yöntemlerin sayesinde, çok önemli ilerlemeler kaydedildi. tüm bilimlerde olduğu gibi antropolojide de uygulayıcı bilimler arasında dürüst ve kimi zaman da şiddetli fikir farklılıkları görülür. Bu fikir farklılıkları kimi zaman fosil ve taş aletler gibi verilerin kimi zaman da yorumlama yöntemlerinin yetersizliğinden kaynaklanır. Kısacası, insanın tarihöncesi hakkında pek zok soruya kesin yanıtlar verilemez. Örneğin: İnsan soyağacının tam şekli nedir? Gelişmiş konuşma dili ilk olarak ne zaman ortaya çıktı? İnsanın tarihöncesinde beynin çarpıcı oranda büyümsenie yol açan neydi? İlerideki bölümlerde bu fikir farklılıklarının hangi konularda ve neden oluştuğuna değinecek ve zaman zaman kendi tercihlerimi belirteceğim. Yirmi yılı aşkın antropoloji çalışmalarım sırasında pek çok eşsiz meslektaşımla birlikte çalışma şansına eriştim ve hepsine şükran duyuyorum. (Richard Leakey, İnsanın Kökeni Varlık/Bilim s: 9-14) Organik Evrimin Ana İlkeleri “Organik evrim onusunda ana ilkelerin açığa çıkarılması ve öğretilmesi toplumların düşünce sistemlerinde büyük yansımalara neden olduğu ve olacağı için, sadece doğanın temel yasalarını açıklamaya dönük olan böyle bir bilimsil alan, ne yazık ki, belirli çevrelerde tehlikeli bidr gelişim olarak değerlendirilmektedir. Çünkü evrim kavramı, zaman süreci içerisinde bir değişmeyi açıklar; sonsuzluk ve değişmemezlik evrimin ilkelerine aykırıdır. Dolaysıyla evrim kavramı. dogmatik düşünceye, yani herşeyin olduğu gibi benimsenmesine izin vermeyen bir bilim dalıdır. Bu ise, belirli koşullara ve düşüncelere, olduğu gibi, yüz yıllardır, düşünmeden uymuş toplumları; keza bunun yanısıra toplumların bu uyumundan çıkarları için yeterince yararlanan çevreleri rahatsız etmektedir. Evrim kavramının kendisi de sabit değildir, zaman süreci içerisinde yeni bilimsel çalışmaların ışığı altında değişmek zorundadır.Çünkü kendini zaman süreci içerisinde değiştiremeyen, yeni bilgilerin ve gelişimlerin etkisi altında yenileyemeyen her şey ve her kavram yok olmak zorundadır. Bu yasa, tüm canlılar ve kavramlar için geçerli görünmektedir. Evrim kavramı özünde üç alt kavramı içine alır: 1. Anorganik evrim: Cansızların değişimini inceler; özellikle evrenin oluşumundan, canlıların temel maddelerini oluşturan cansız maddelerin oluşumuna kadar ortaya çıkan olayları kapsar. 2. Organik evrim: Canlıların değişimini inceler. 3. Sosyal evrim: Toplumların değişimini inceler. Biyioloji bilimi, özellikle organik evrimi tapsar. Organik evrim buguünb de devam etmektedir.; hatta bugün tarihin birçok devrelerinden daha hızlı olmaktadır. Son binkaç yüzbbin senede yüzlerce yeni bitki ve hayvan türü meydana gelirken, yüzlercesi de yeni tür oluşumları için ayrılmaya başlamıştır.Fakat bu ayrılma ve türleşme o kadar yavaş yürümektedir ki, gözlemek yalnız tarihpsel belgelerin bir araya getirilmeleriyle ve karşılaştırılmalarıyla mümkün olacaktır. Biyilojik evrimin oluştuguna ilişkin kanitlayici tipik örnek,15. yüzyilin başlarinda Madeira yakininda, Porta Santo denen küçük bir adaya birakilan tavşanlarda gözlenmiştir. Tavşanlar, Avrupa’danh getiriymişti. Adada dger bir tavşan türü ve getirilen tavşanlarin düşmanlari olmadigi için getirilen tavşanlar anormal derecede çogaldilar ve sonuçta 400 yil sonra,Avrupa’daki anaçlarindan tamamen farkli yapilar kazandilar. Öyle ki, büyüklükleri, Avrupadakilerin yarisi kadar oldu; renklenmeleri tamamen degişti ve daha gececi hayvanlar oldular.En önemlisi, atalariyla biraraya geldiklerinde, artik çiftleşip yeni bir döl meydana getiremiyorlardi. Yani yeni bir tür özelligi kazanmiştilar. Canlılar arasında benzerliklerin ve farklılıkların nasıl ortaya çıktığı, bilimsel olarak ilk defa, Charles Darwin’in gözlemleriyle gün ışığına çıktığı ve açıklandığı için, evrim kavramı ile Darwin’in ismi ve kişiliği özdeşleştirilerek “Darwinizm” denir. Evrim Konusundaki Düşüncelerin Gelişimi Canılların birbirinden belirli derecelerde farklılıklar gösterdiğine ve aralarında belirli derecelerde akrabalıklar olduğuna ilişkin gözlemler, düşünce tarihi kadar eski olmalıdır. Yavruları atalarından, kardeşlerin birbirinden belirli ölçülerde farklı olduğu çok eskiden gözlenmişti. Bitkilerin ve hayvanların benzerlik derecelerine göre, türden başlayarak belirli gruhlar oluşturduları saptanmıştı. Fakat kalıtım konusunda bilgiler yeterli olmadığı ve özellikle bir türün binlerce yıllık gelişimi düşünür bir birey tarafından izlenemediği için, çeşitlenme ve akrabalık bağları tam olarak açıklanamamıştır. Bazı bireylerin yaşam savaşında üstün niütelikler taşıdığı, dolaysıyla ‘doğal seçme’ eskiden de bilinçsiz olarak gözlenmişti. Fakat evrim konusundaki bilimsel düşüncelerin tarihi, diğer bilim dallarına göre çok yenidir.

http://www.biyologlar.com/evrimin-kanitlari-var-mi

Paleozoyik

(1. Zaman) 545 milyon önce başlamış, 250 milyon yıl önce sona ermiştir. Yaklaşık olarak 295 milyon sürmüştür. Paleozoyik’in ilk döneminde (kambriyen) hayvanlar aleminde hızlı bir evrimleşme ve dolayısıyla çeşitlenme olmuştur. Çoğu kitapta bu çeşitlenme “kambriyen patlaması” olarak ifade edilmektedir. Kambriyen patlamasına (hayvanların çeşitlenmesi) neden olan faktörler çeşitli olabilir. Bunların başında ekolojik faktörler gelir. İkincisi jeolojik faktörler gösterilmektedir. Son yıllarda bir diğer faktör olarak genetik etkenler gösterilmektedir. Genetik faktör olarak Hox genlerinin hayvanlarda evrimleşmesiyle önemli bir etkide bulunduğu sanılmaktadır. Bilinen hayvan şubelerinin bir çoğunun paleozoyikte ortaya çıkmış ve çeşitlenmiştir. Tüm tartışmalara karşın "Kambriyen Patlaması" olarak adlandırılan ve bu süreçte, sadece 25 milyon yıl içinde bugün bilinen hayvan şubelerinin neredeyse hemen hepsi ortaya çıkmış ve hızla evrimleşmişlerdir. Paleozoyik’in ikinci dönemimde (ordovisiyen) ilk omurgalılar (balıklar) oluşmuş, dönemim sonuna doğru bitkiler ve böcekler kara yaşamına geçmişlerdir. Paleozoyik’in devoniyen dönemimde çift yaşamlılar (amphbia) oluşmasıyla omurgalılarda karasal yaşama uyum sağladı. Devoniyen’de balıkların çeşitliliğinden dolayı bu döneme “Balık Çağı” adı da verilmektedir. Kömür devri olarak da bilinen karbonifer döneminde yeryüzünün çoğu kısmında bataklık ormanları şeklinde dev boyutlu bitkiler bulunuyordu. Dünya kömür rezervlerinin büyük bir bölümü bu devire ait olduğundan, devire "karbon içeren" anlamında Karbonifer adı verilmiştir. Karbonifer tüm dünya karalarının ekvatoral düzlemde bir araya toplanmaya başladığı ve büyük bir bölümünün günümüz Amazon ormanlarına benzetilebilecek yağmur ve bataklık ormanlarıyla kaplı olduğu bir devirdi. Dev boyutlu bitki örtüsünün yanı sıra, dev boyutlu böcekler, kırkayaklar ve akrepler ve çeşitli iki yaşamlılar bu devrin önemli canlılarıydı. Yine bu dönemde paleoziyik başında tek olan dünya karaları (Rodinia) parçalanmış ve tekrar birleşmek üzere yeni bir dünya kıtasını (Pangea) oluşturmaya başlamıştır. Karbonifer'in sonuna doğru iklim kuraklaşmaya başladı. Kuraklaşan iklimle birlikte bitkilerin ve ormanların yapısı da değişti ve yeni ortamda sürüngenler kendilerini yavaş yavaş göstermeye başladı. Paleozoyik’in son döneminde (permiyen) pangea tamamen oluştu. Bataklık ormanlarının yok oldu. Sürüngenler yaygınlaşmaya başladı ve dönemim sonunda hayvanlar dünyasında büyük bir yokoluş olmuştur (İlk Kitlesel Biyolojik Yokoluş). Hayvan türlerinin % 90 kadar yol olduğu varsayılmaktadır. İLK KİTLESEL BİYOLOJİK YOKOLUŞ 1. zaman (Paleozoyik) yaklaşık 295 milyon yıl sürdü. Zamanın sonuna kadar omurgalı sınıflardan balıklar, çift yaşamlılar (kurbağalar) ve sürüngenler hızla evrimleşti. zaman sırasındaki en önemli olay canlıların sulardan karalara çıkması ve buralarda kendilerine yeni yaşam alanları bulmasıydı. Bu olay bitkiler - balıklar - çift yaşamlılar - sürüngenler arasındaki evrimsel ilişkilerle gerçekleşti. 1. zaman sonundaki ani iklimsel değişiklikler biyolojik toplu bir yok oluşa neden olmuştur. Tüm türlerin % 90 - 95'i oradan kalktı. Böylece bir çok tür 2. zamana geçemedi.

http://www.biyologlar.com/paleozoyik

Biyoterörizm ve Biyolojik Silahlar

Biyoterörizm kavramı, 11 Eylül 2001 tarihini takiben ABD’de posta kaynaklı şarbon vakalarının görülmesiyle günlük hayatımıza girmiştir. Biyoterörizm kişiler, gruplar veya hükümetler tarafından gerek ideolojik, gerekse politik veya finansal kazanç sağlamak amacıyla hastalık yaratıcı patojenlerin (biyolojik savaş araçlarının-BSA) sivil halk üzerinde, hayvanlarda ve bitkilerde hastalık oluşturmak ve/veya ölüme neden olmak amacıyla açık veya gizli şekilde yayılması şeklinde tanımlanmaktadır. Peki biyolojik silahlar nedir?. Klasik olarak “Biyolojik Silahlar” sadece yaşayan canlılara kitlesel zarar veren patojen (bakteri, virüs, mantar) veya doğada patojen olmayan ancak genetik olarak değiştirilmiş mikroorganizmalar ile bu etkenlerin toksinleri olarak tanımlanmaktadır. Neden insanoğlu biyolojik silahları üretmektedir?. Nükleer, kimyasal ve konvansiyonel silahlarla karşılaştırıldıklarında biyolojik silahların çeşitliliği onları diğerlerinden ayıran en önemli özelliği oluşturmaktadır. Bulaşıcılığı yüksek, kolay ve hızlı üretilebilen, aşı ve tedavisi kullanıcı tarafından kolaylıkla kendi yandaşlarına uygulanabilen hemen hemen tüm mikroorganizmalar biyolojik saldırı amaçlı kullanılabilir. Günümüzde 43 mikroorganizma biyolojik silah adayı olarak kullanılabilir olmakla birlikte, bunlar arasında en önemlileri; şarbon, brusella, veba, Q ateşi, tularemi, çiçek, viral ensefalit, viral hemorajik ateş, botulizm toksini ve stafilokoksik enterotoksin B'dir. Biyolojik Silah Olarak mikroorganizmaların Avantajları: • Çok geniş alana dağılabilmesi (etki alanının geniş olması) • Kolay üretilebilir depolanabilir ve Üretim merkezlerinin kamufle edilebilir olması • Düşük maliyetle üretilmesi Kilometrekare kare başına düşen insan sayısının %50’sini etkileyen doz (LD50) baz alınarak maliyet hesaplandığında, konvansiyonel silahlar 2000$, nükleer silahlar 800$, kimyasal silahlar 600$, biyolojik silahlar ise 1 dolara mal olmaktadır. Bu nedenle biyolojik silahlar “Fakirin Atom Bombası” olarak tanımlanmaktadır. • Kullanımlarının kolay olması ve iz bırakmaması Biyolojik silah ajanları renksiz, kokusuz, tatsız olmaları nedeniyle insan gözüyle görülemezler. Aerosol bulutu halinde atıldığı zaman, mikroskopik boyutlardaki partiküller (1-10 m çapında) solunum ile akciğerlerin uç bölgelerine ulaşırlar. Ayrıca, etkilerinin ancak kuluçka süresinin sonunda görülmesi nedeniyle maruz kalanlar semptomlar ortaya çıkana kadar hedef olduklarının farkına varamazlar ve bu arada salgın yayılmış olur. • Az miktarının büyük kitleleri etkilemesi ve oldukça fazla sayıda insanda hastalık ve/veya ölüme neden olabilmesi: Örneğin Washington bölgesine, rüzgar yönünde 100 kg. aeresol şeklindeki şarbon sporunun yayılmasını takiben, 130000 ile 3000000 arasında ölüm gözleneceği, CDC tarafından geliştirilen bir ekonomik modele göre ise saldırıya maruz kalan her yüz bin kişi için 26.2 milyar dolarlık bir bütçe kaynağı gerektiği hesaplanmıştır. Bu da bir BSA’nın etkisinin bir megatonluk nükleer savaş başlığı etkisinden büyük, bir hidrojen bombasının etkisine ise eşit ya da daha büyük olacağı anlamına gelmektedir. • Dış ortam koşullarına dayanıklılığının yüksek olması: Örneğin şarbon sporu toprakta 40 yıldan daha uzun süre kalabilmektedir. • Bazı etkenlerin insandan insana bulaşma olasılığı: Veba, çiçek, kanamalı ateş gibi BSA’ya bağlı enfeksiyonların insandan insana bulaşarak salgın oluşturma ve böylece silahın hedef aldığı kitleden çok daha büyük bir kitleyi etkilemesi mümkün olmaktadır. Ayrıca BSA’lar yayılımı takiben insan vücudu gibi uygun bir ortam bulduklarında çoğalmaya başlarlar; bu şekilde kullanıldıkça çoğalan başka bir silah bulunmamaktadır. • Kitleler üzerinde panik etkisi yaratması ve sağlık sisteminde çökmeye neden olması sayılabilir Kendisini kullananlara zarar verebilmesi, etkilerinin önceden tahmin edilememesi ve uzun süre doğada kalabilmeleri ise BSA’ların olumsuz yönleridir. Biyolojik ajanların kullanımı temel olarak üç yolla olmaktadır: Kontamine su ve gıdalar, infekte vektörler ve aerosolizasyon aracılığıyla ile uygulanabilirler. Ancak, vektörlerin geniş kitleler üzerinde etkili olmaması ve gelişmiş ülkelerin su sistemlerindeki ileri düzeydeki arıtma teknolojisi nedeniyle BSA’nın bu şekilde kullanımı sınırlı olup, tercih edilmez. Aerosol, yapısı nedeniyle geniş bir yayılım sağladığı için biyoterörizmde kullanılan en etkin araçtır. Aerosol şeklinde hazırlanmış biyolojik silahlar; bakterilerin tarım ilaçlaması şeklinde uçaklardan veya sprey tanklarından yerleşim yerlerinin üzerine püskürtülmesi suretiyle etkili olurlar. Düşük maliyeti ve kolay uygulanabilmesi tekniğin avantajları olmakla birlikte etkili olabilmesi için ideal hava koşulları gereklidir. Şiddetli rüzgar, yağmur ve güneş ışınları gibi hava koşulları etkilerinin azalması ayrıca uygulama hatasına bağlı kullanıcının da zarar görmesi gibi olumsuzlukları da söz konusudur. BSA’nın çeşitliliği, hangisinin kullanacağının önceden bilinmemesi, kimyasal silahlarda olduğu gibi hemen belirti vermemesi, bu nedenle de olay mahallinin bilinememesi, hastalık tablosunun birbirine benzemesi dolayısıyla etkenin hangi ajan olduğunun kolayca belirlenememesi ve o bölgede doğal bir salgın olabileceği ihtimali gibi etmenler BSA’nın saptanmasını önemli ölçüde güçleştirmektedir. Yanısıra hangi ajanın ne zaman kullanılacağının bilinmemesi aşı gibi koruyucu önlemlerin uygulanmasını da imkansız kılmaktadır. Biyolojik saldırı olduktan sonra bazı bakterilere karşı antibiyotikler ile proflaksi uygulanabilirse de genetik olarak bu ilaçlara karşı dirençli hale getirilmiş BSA’nın olabileceği göz önünde bulundurulmalıdır. Etkili bir savunma için, saldırı olmadan önce ülkedeki ilgili kurum ve kuruluşların rasyonel ve ekonomik bir şekilde organizasyonu ayrıca operasyonda görev alacak teknik personelin teorik ve pratik eğitimlerinin yapılması gerekir. ABD Hastalık Kontrol ve Önleme Merkezi tarafından (CDC) biyolojik silahlara karşı savunma stratejileri beş ana başlık altında sınıflandırılmıştır. 1.Hazırlık, önlemler 2.Saptamak, gözetim (ilk olgular, otopsi) 3.Etkenin özelliklerini iyi bilme 4.Koruyucu yöntemlerin geliştirilmesi 5.İletişim ağının sağlıklı çalışması Ne zaman ve nereden geleceği tahmin edilemeyen biyoterörist saldırılara %100 hazırlıklı olmanın olanağı yoktur. Ancak, hangi BSA’nın karşı tarafın elinde olduğunu bilmek ve bu ajanlara karşı tanı, tedavi ve korunma açısından hazırlık yapmak esastır. BSA’nın kullanılmasını takiben hastanelerin aktive edilmesi, arındırma, izolasyon, karantina, proflaksi, aşılama, otopsi ve diğer koruyucu önlemlerin belirlenip sağlık örgütünün salgına vereceği savunma yanıtı için epidemiyolojik kapasitenin artırılmasına yönelik hazırlık planları geliştirilmelidir. Bu hazırlık planları, BSA’nın tanımlamasına yönelik yerel, bölgesel ve ulusal laboratuvarların tanı olanaklarına göre belirlenmiş bir laboratuvar ağı oluşturmalarını ve ajanların moleküler karakterizasyonu dahil her türlü incelemeyi yapabilecek çok gelişmiş bir referans laboratuvarının kurulmasını, laboratuvar ağı içerisinde verilerin sağlıklı paylaşımı için bilgisayar ağının kurulması, ulusal veya bölgesel düzeyde sürveyans sisteminin oluşturulması ile şüpheli olguların tanısı ve değerlendirilmesi için standart kriterlerin geliştirilmesini içermektedir. Ayrıca, sağlık personelinin nükleer, biyolojik ve kimyasal ajanlar (NBC) konusunda sürekli eğitilmesi gereklidir. Ulusal ve bölgesel düzeyde ilgili birimler arasında hızlı ve etkin bir iletişim ağının oluşturulması, kesin ya da şüpheli saldırı durumlarında paniğe meydan vermeden halkın bilgilendirilmesi sağlanmalıdır. BSA’nın ne gibi hastalıklar oluşturabileceği, tanı, tedavi ve korunma yolları hakkında toplumun eğitilmesi, biyolojik saldırı sırasında ve sonrasında halkı bilgilendirecek ve endişelerini giderecek eğitim materyallerinin hazırlanması gereklidir. Günümüzde, BSA’nın hızlı saptanmasına yönelik farklı sistemler geliştirilmiştir. Bu tanımlama sistemleri BSA kullanımına bağlı oluşan yapay bulutların analizine dayanan askeri sistemler ile (15 dakika içerisinde) olay yerine taşınabilir sistemler veya laboratuvarda uygulanan moleküler yöntemlere (bir saatten daha az zaman içerisinde) dayanmaktadır. “Biyolojik silahlara karşı korunmada en etkin yol koruyucu giysi ve maske kullanmaktır”. Savaş ortamında yapılabilecek bir biyolojik saldırıda 1-10'luk partikülleri filtre edebilen bir maske ve NBC koruyucu elbisesi birçok BSA için belli derecelerde güvenlik sağlayacaktır. Besin ve su kaynakları zincirinin de biyolojik ajan açısından izlenmesi gereklidir. Bütün teknolojik gelişmelere rağmen, sabunlu su ile vücudun ve özellikle ellerin yıkanması, halen oldukça geçerli ve önemli bir korunma yöntemidir. Biyolojik savaş ajanlarının gelişmesi ile beraber dünyada bu silahların üretimi, stoklanması ve kullanımının önlenebilmesi için 1925 yılında Cenova Protokolü, 1972 yılında Biyolojik Silahlar Konvansiyonu (BWC-Biological Weapons Convention) imzalanmış, farklı tarihlerde bu konvansiyonun gözden geçirildiği toplantılar yapılmıştır. Sonuç olarak, potansiyel BSA'ların tanısını koyabilecek referans laboratuvarların kurulması veya mevcut olanlara bu özelliklerin kazandırılması, olay yerinde tanımlama sistemlerinin sağlanması ve BSA’ları tanıyan, etkilerini ve taktik kullanımını bilen uzman biyolojik örnek alma ekiplerinin kurulmasına yönelik düzenlemelerin yapılması için bilimsel kuruluşlar, Üniversiteler ve TSK'lerin bu konularda işbirliği içinde çalışması ülkemiz güvenliği ve çıkarları açısından son derecede önemlidir. KAYNAKLAR • Bellamy RJ, Freedman AR. Bioterrorism. Q J Med 2001;94:227-234. • Kortepeter MG, Parker GW. Potential biological waeapons threats. Emer Infect Dis 1999;5(4):523-527. • Spencer RC, Lightfood NF. Preparedness and Response to Bioterrorism. J Infect 2001;43:104-110. • USAMRIID’s Medical Management of Biological Causalties Handbook.4rd ed. Feb 2001. • Henderson A, Inglesby V, O’Toole T. Bioterrorism Guidelines for Medical and Public Health Management. ASM press 2002. • Prevention of a Biological and Toxin Arms Race and the Responsibility of Scientists. Eds.Geissler E, Haynes RH. Akademie-Verlag Berlin 1991. • Public health response to biological and chemical weapons—WHO guidance(2004). Chapter 3&4, p 38-76. • Erdem H, Pahsa A. Biyolojik Silah Saldırılarına Yönelik Ulusal ve Bölgesel Yaklaşımlar. Infek Derg 2002;16(3) Ek. Uzm.Dr.Selçuk Kılıç RSHMB Salgın Hast. Arş.Md., Parazitoloji Laboratuvarı Kaynak: T.C. SAĞLIK BAKANLIĞI Refik Saydam Hıfzıssıhha Merkezi Başkanlığı ve Temel Sağlık Hizmetleri Genel Müdürlüğü Cilt:4 Sayı:5 Eylül-Ekim 2005 AYLIK EPİDEMİYOLOJİ RAPORU

http://www.biyologlar.com/biyoterorizm-ve-biyolojik-silahlar

HİSTOLOJİ PREPARATLARININ HAZIRLANMASI

Canlılardan alınan doku ya da organ parçalarını mikroskopla incelenir duruma getirebilmek için takip ettiğimiz işlemlerin tümüne birden histolojik teknik adını veriyoruz. Bu amaçla kullanılan yöntemler uygulayacağımız mikroskobi tekniğine bağlı olarak ilk bakışta bazı farklılıklar görünse de temelde prensipler aynıdır. Bu konuyla ilgili temel prensipleri anlayabilmek için klasik ışık mikroskobunda inceleyeceğimiz bir preparatın hazırlanışını görelim. Tespit (Fiksasyon) Bir histolojik incelemenin sağlıklı bir şekilde yapılabilmesi için dokuya ait yapı özelliklerinin, kimyasal içeriklerinin iyi korunmuş olması gerekir. Bunun için canlılara ait preparatların hazırlanışında ilk temel prensip hücre ve dokuları canlıdakine en yakın şekilde tutabilmektir. Bunun için ilk hedef otolizi engellemek olmadır. Canlı hücre içinde, etrafı membranla çevrili, eritici enzimler içeren, lizozom adını verdiğimiz organeller vardır. Hücre bu yapıları sindirim amacıyla kullanır. Ölümden sonra eritici enzimler sitoplazma içine geçerek hücreyi eritmeye başlar. Bu olaya kendini eritme anlamına gelen otoliz adı verilir. Otolize uğramış hücreler normal görünümünü kaybederek incelenmesi imkansız hale gelir. Otolizi engellemek amacıyla kullanılan bazı maddeler lizozomların içindeki enzimlerin sitoplazmaya geçişini ve erimeyi önlerler. Bu olaya tespit ya da fiksasyon, bu amaçla kullanılan maddelere de fiksatör adı verilir. Pek çok tespit maddesi ve tespit yöntemi vardır. Uygulayacağımız tespitin sonraki işlemlere, özellikle boyama işlemine bir zarar vermiyor olmasına dikkat etmek gerekir. Örneğin, klasik yöntemlerle tespit ve takip edilen dokularda yağ hücreleri içindeki depo yağını korumak imkansızdır. Hücrelerdeki yağ içeriği takip işlemleri esnasında akar, hücrelerin içleri sonradan boş görünür. Eğer bir çalışmada bu hücreleri yağ içerikleri ile beraber görmek istiyorsak fiziksel bir tespit yöntemi olan dondurma tekniğine başvurabiliriz. Fiziksel olarak tespit yöntemlerine örnek olarak periferik kan yayma preparatlarının boyanmadan önce ısıtılarak ya da doğrudan kurutularak tesbitini verebiliriz. Otoliz nedir? Fiksasyon hangi amaçla yapılır? Kimyasal tespit yöntemleri hem kullanılma sıklığı hem de kullanılan fiksatörlerin çeşitliliği açısından daha çok zenginlik gösterir. En bilinen ve yaygın kullanılan fiksatör formoldür. Formol genellikle %10'luk sulu çözeltisi şeklinde kullanılır. Ticari formol %100'lükmüş gibi kabul edilerek 1 kısım formol, 9 kısım suyla karıştırılarak tesbit sölüsyonu hazırlanır. Ayrıca, glutaraldehit, osmium tetraoksit, bazı asitler, alkoller ya da bunların kombine formları daha az sıklıkla kullanılan kimyasal fiksatörlere örnek olarak verilebilir. Bütün fiksatiflerin istenen özelliklerinin yanı sıra istenmeyen bazı etkileri de vardır. Değişik kombinasyonlar kullanılarak istenen tespit özelliklerinin artmasını, istenmeyen bazı etkilerin en aza indirgenmesini sağlamak mümkündür. Birleşik olarak kullanılan fiksatörler çoğu kere ilk bulup kullanan araştırıcının adıyla anılırlar (Bouin, Carnoy, Zenker gibi). Elektron mikroskopta incelenecek preparatların hazırlanmasında ultrastruktürel yapının detaylı incelenebilmesi için çift fiksasyon işlemine gereksinim vardır. Bu işlemde önce tamponlanmış glutaraldehit ilk fiksatör olarak, daha sonra tamponlanmış osmium tetroksit ikinci fiksatör olarak kullanılır. Birleşik tespitten ne anlıyorsunuz? Doku ve organlardan alınan parçaların tespitinde aşağıdaki konulara dikkat etmek gerekir: - Tespit ve takipte kullanılan sölüsyonların dokunun içine iyi işlemesi için parçaların yeterince küçültülmüş olmasına özen gösteriniz. Parçanın boyutlarının 0.5 cm. yi geçmiyor olması daha olumlu sonuç verecektir. - Parçalar alındıktan hemen sonra bekletilmeden tespit sıvısına konulmalıdır. - Parçalar büyük ve kanlı ise tespit sıvısı yenilenmelidir. - Tespit sıvısının, hacim olarak konulan parça ya da parçaların minimum kırk katı fazlalığında olmasına çalışılmalıdır. - Uygulayacağımız her tespit yöntemi için önerilen süreye uyulmalıdır. -Tespitten sonra parçalar iyi yıkanmalı, yapay görüntülere neden olmaması için tespit maddesi dokudan tamamen uzaklaştırılmalıdır. - Ayrıca SAĞLIĞIMIZ AÇISINDAN: Histoloji laboratuvarlarında kullanılan pek çok madde gibi tespit maddelerinin buharlarının canlı hücre ve organizma için son derece zararlı olduğunu aklımızdan çıkarmayıp, bu işlemlerin çeker ocak denilen yerlerde yapılmasına dikkat etmeliyiz. Eğer bu mümkün olmuyorsa laboratuvar ortamının çok iyi havalandırılıyor olmasına özen göstermeliyiz. Tespitte uyulması gereken kurallar nelerdir? Tespit işlemleri ne tür yerlerde yapılmalıdır, neden? Dehidratasyon Tespit edilmiş parçalar bu aşamadan sonra suyundan arındırılır. Bu işleme dehidratasyon adı verilir. Dehidratasyon işlemi için suyu kolaylıkla kendi bünyesine kabul eden etil alkol, izopropil alkol, dioksan, anilin gibi maddeler kullanılır. Bunlardan en yaygın kullanılanı etil alkoldür. Derecesi absolu alkole kadar ulaşan banyolardan geçirilen parçalar daha sonra ışığı geçirgen hale getirilir. Bu işleme şeffaflaştırma (clearing) işlemi denir. Bu amaçla en sık kullanılan madde ksiloldur. Ayrıca benzen, toluen, kloroform gibi maddeler bu amaçla kullanılan maddelere örnektir. Bu işlemler petri kutuları gibi buharlaşmayı engellemek için düzgün kapaklı cam kaplarda elle takip şeklinde yapılabildiği gibi otomatik takip makineleri ile de yapılabilir. Otomatik takip makineleri zaman ayarlaması yapılabilen, doku parçalarının istenilen kaplarda istediğmiz kadar kalmasını sağlayan makinelerdir. Dehidratasyon nedir? Hangi maddeler bu amaçla kullanılır Elektron mikroskop için hazırlanan preparatlar da doku parçaları dehitratasyon işleminden geçirilir. Bu işlem için de yine ethanol kullanılır. Gömme işleminden önce plastik eritici olan propilen oksit gibi maddelerde infiltre edilir. Bloklama (Gömme) Parçalardan rahatça kesitler alabilmek, düzgün kesit yüzeyleri sağlayabilmek için gömme ya da bloklama olarak ifade ettiğimiz işleme başvururuz. Parafin, jelatin, selloidin, karbovaks gibi maddeler bu işleme uygundur. En yaygın kullanılan madde parafindir. 56-60 derecede sıvılaşan parafin etüvde hazır tutulur. Parça prizmatik kalıplar içine konur, üzerine sıvı parafin dökülür. Parafin laboratuvar ısısında mum gibi donarak sertleşir. Kalıptan çıkarınca içinde bizim doku parçamız da bulunan düzgün prizmatik bir parafin bloku elde ederiz. Parafin intersüller boşluklara hatta hücrelerin içine bile penetre olarak dokuyu daha sabit ve kesilebilir hale getirir. Elektron mikroskop için ışık mikroskobuna oranla çok daha ince kesitlere ihtiyaç vardır. Bu nedenle gömme ya da bloklama işleminde daha sert plastik maddeler gereklidir. Bunun için epon, araldit gibi epoxy plastik maddeler kullanılır.  Bloklama işleminde ne tür maddeler kullanılır?  Kesit Alma Blokladığımız doku ve organ parçalarında düzgün ince kesitler almak için kullandığımız aletlere mikrotom denir. Işık mikroskop incelemeleri için kullandığımız mikrotomlar mikron düzeylerinde ince kesitler alabilirlerken elektron mikroskop araştırmalarında kullanılan ultramikrotomlar angström inceliklerinde kesitler sağlarlar. Işık mikroskobu için kesitler almakta kullandığımız mikrotomlarda çelik bıçaklar kullanılırken, EM için kesitler aldığımız ultra mikrotomlarda cam ya da daha iyisi elmas bıçaklar kullanılır. Işık mikroskop çalışmalarında  genellikle 6-10 mikronluk kesitler kullanılır. Mikrotomların bıçakların hareketli olduğu kızaklı mikrotom denilen tipleri ya da bıçaklarının sabit, kesilecek blokların hareketli olduğu rotari mikrotom tipleri vardır. Mikrotom aracılığıyla parafin bloklardan isteğimiz kalınlıklarda dilimler keserken blok içindeki parçadan da aynı kalınlıkta kesitler elde etmiş oluruz. Daha sonra lam üzerinde alınan kesitler boyama işlemine hazır olurlar. Xylol gibi bazı solventler doku içindeki lipidler gibi bazı maddeleri eritebilirler. Bu istenmeyen etkinin önüne geçmek için cryostat adı verilen dondurma mikrotomları kullanılır. Dokular bu yöntemle düşük ısıda aniden dondurularak takip işlemlerinden geçirilmeden ve bloklanmadan kesit alınabilir hale gelir. Mikrotom ve Ultramikrotom neye denir? Boyama (Kolorasyon) Çok ufak ayrıcalıklar dışında dokuların büyük bir kısmı renksizdir ve boyanmadığı sürece ışık mikroskobunda incelenmesi zordur. Çeşitli doku ve hücre kısımlarının yapıları nedeniyle farklı kimyasal özellikteki boyaları farklı bir şekilde tutmaları histolojide boyamanın esasını teşkil eder. Histolojik araştırmalarda kullanılan boyaların büyük bir çoğunluğu asit veya baz özelliğinde olup dokudaki ionize köklerle elektrostatik bağlantı yaparlar. Bu şekilde doku ve hücrelerin daha belirgin bir şekilde ortaya çıkması sağlanırken diğer yandan kimyasal yapısını bildiğimiz boyalarla reaksiyona giren yapıların kimyasal özellikleri ortaya konmuş olur. Histolojik boyalar renklendirici gruplarının asit ya da baz oluşuna göre asit ve bazik boyalar olmak üzere iki ana grupta toplanırlar. Bazik boyaları çeken, o boyanın renginde boyanan hücre ve doku kısımları bazofil boyanıyor ya da bazofili gösteriyor diye tanımlanır. Genel olarak granüllü endoplazmik retikulumun yoğun olduğu kısımlar, hücre çekirdeği bazofili gösteren yapılardır. Asit boyalarla reaksiyona girerek onun renginde boyanan hücre ya da doku kısımları için asidofil boyanıyor ya da asidofili gösteriyor denir. Bazı ayrıcalıkları olmakla birlikte hücre sitoplazması, kollajen lifler, mitokondrium ve lizozomlar asidofilik yapılardır. Bazik boyalara örnek olarak Metilen Mavisi, Jansiyan Viyole, Bazik Füksin, Azokarmin, Safranin, Hematoksilin, Nükleer Fast Red verilebilir. Eozin, Pikrik Asit, Asit Füksin, Oranj G, Eritrosin, Kongo Kırmızısı, Light Green gibi boyalar asit boyalara örnektir. Boyalar bazı yöntemlerde tek olarak kullanılır. Bazı yöntemlerde ikili ya da daha çok boya içeren birleşik yöntemler dediğimiz şekillerde kullanılırlar. Birleşik yöntemlerde kesitler birbiri ardından bazik ve asit boyalarla işleme tabi tutulurlar. Birleşik boya yöntemlerinden ikili olanlara örnek olarak çok yaygın bir boyama yöntemi olan Hematoksilin+Eozin (HE) yöntemi gösterilebilir. Azokarmin, Oranj G ve Anilin Mavisinden oluşan Heidenhein İn Azan yöntemi ise üçlü bir boyama yöntemidir. Asidofili ve bazofili neye denir? Birleşik boyama neye denir? Bazı boyalar, bazı yapıları boyanan çözelti renginden farklı bir renge boyarlar. Bu olaya metakromazi, böyle boyalara da metakromatik boyalar denir. Örneğin toluidin mavisi dokuya düşük konsantrasyonda bağlandığında mavi renkte boyar (ortokromatik). Oysa bir yapıya yüksek konsantrasyonda bağlandığında mor-kırmızı renkte boyar (metakromatik). Toluidin mavisinin Mast hücrelerinin granüllerini mor-kırmızı boyaması metakromatik boyanmadır. Bazı lipidler, makromoleküller metafosfat, sülfomukopolisakkaritler, nükleik asitler metakromazi gösteren yapılardır. Toluidin mavisi, Metilen mavisi, Azur A gibi boyalar ise metakromatik boyalara örnek verilebilir. Ortokromazi ve metakromazi nedir? Bazı boyalar deneysel amaçla doğrudan canlıya verilebilir. Bu renkli maddeler organizmada bazı yerlerde tutularak canlıda boyanma sağlarlar. Örneğin, tripan mavisi deney hayvanının dolaşımına verildiğnide karaciğer kupffer hücreleri tarafından tutulur. Böylece hayvan daha canlıyken sitoplazması mavi tanecikler tarzında boyunmış olur. Vital boyalardan Tripan mavisi, Kongo kırmızısı, Çini mürekkebi, Alizarin ve Lityum karmin asit karakterde vital boyalardır. Metilen Mavisi, Nötral Red, Janus Green, Krezil Viyole ve Nigrosin bazik karakterde vital boyalardır. Vital boyamanın diğer boyama yöntemlerinden farkı nedir? Boyama işleminden sonra kesitler yeni baştan dehidrate edilir ve şeffaflaştırılır. Daha sonra üzerlerine lamel kapatılarak korunur. Preparatların kapatılmasında Kanada Balsamı ya da son zamanlarda ucuzluğu ve çabuk kuruması yönünden tercih edilen bazı sentetik yapıştırıcılar kullanılmaktadır. Uzun süre saklanılması düşünülen preparatları doğrudan güneş ışığı ya da kuvvetli ışıklardan sakınmak gerekir. Aksi takdirde boya solacaktır. Dokuların renkli boyalarla boyanmasının yanı sıra altın, gümüş gibi bazı metallerin seçici olarak bazı kısımlara çöktürülmesi de o bölgelerin mikroskop altında kolayca belirlenmesini sağlayan boyadışı bir renklendirme yöntemi olarak karşımıza çıkar.

http://www.biyologlar.com/histoloji-preparatlarinin-hazirlanmasi

Bitkilerde Virüs hastalıkları Tanımı ve Mücadelesi

Virüs, kelime olarak “Zehir” anlamına gelmektedir. 17. ve 18. yüzyılda yanlış olarak, sebebi bilinmeyen bütün hastalıklar için kullanılmıştır. Yıllar geçtikçe gerek virüslerin kendileri gerekse meydana getirdikleri hastalıklar hakkındaki bilgiler çoğalmış ve virüs kelimesi daha özel bir anlam taşımaya başlamıştır. Bugün bile bilimde sebebi bilinmeyen hastalık veya bozuklukların etmenlerini virüs olarak nitelendirmek eğilimi vardır. Virüslerin Bazı Özellikleri: 1. Virüsler bir çeşit nükleik asit içerirler. Bu ya RNA (Ribonükleik asit) veya DNA(Desoxyribonükleik asit) olur, fakat hiçbir zaman ikisi bir arada bulunmaz. Bu özellik virüsleri diğer bütün hücresel organizmalardan ayırır. Bugün bilinen bitki virüslerinin bir ikisi hariç hepsi RNA yapısındadır. 2. Virüsler sadece nükleik asitleriyle ve canlı konukçu hücreleri içinde çoğalırlar. Bir virüs partikülünden izole edilen çıplak nükleik asit uygun konukçu hücresinde çoğalabilir ve etrafındaki protein kılıfıyla bütün bir virüs partikülünü oluşturabilir. Hiç bir normal hücresel nükleik asit formu bu işlemi yapamaz. 3. Bir hücre içerdiği enzimlerle gıda maddelerindeki potansiyel enerjiyi, sentez için gerekli yüksek enerji bağlarına dönüştürür. Fakat virüsler enzim ihtiva etmezler ve sentez için gerekli yüksek enerjiyi konukçu hücrelerinden temin ederler, konukçu hücrelerde meydana gelen yüksek enerjiyi kullanırlar. Bitkilerde virüs enfeksiyonunun en belirgin simptomları genellikle yapraklarda görülür. Virüs enfeksiyonları bitkilerde büyüme ve gelişmeyi idare eden mekanizmaları bozduğu için çeşitli bitkiler üzerinde çeşitli virüslerin meydana getirdiği simptomlar farklı olabileceği gibi, belirli bir virüsün değişik konukçularda göstereceği simptomlarda değişik olabilir. Örneğin, lahanada siyah halka lekeler yapar virüs şalgamda mozaik belirtisi gösterir. Virüslerin bitkilerde oluşturduğu belirtiler iç ve dış belirtiler olmak üzere iki ana grupta toplanır. Dış Belirtiler: Virüslerin enfekte etmiş olduğu bitkilerde dış belirtiler pigment oluşum mekanizmasının bozulması sonucunda renk değişikliği olarak belirir. Genellikle bu renk değişikliği yaprağın kendi yeşil renginden daha açık veya daha koyu renk şeklinde olur. yapraklardaki bu renk değişimi her zaman aynı değildir. Mozaik, benek, damar açılması ve bantlaşması şeklinde değişiklikler gösterir. Mozaik: Yaprak yüzeyinde belirgin koyu ve açık yeşil veya yeşil ve sarı renk değişikliğidir. Bu tip belirtide farklı renkteki kısımların kenarları keskin çizgi halindedir. Benek: Mozaikte olduğu gibi açık, koyu veya sarı yeşil renk değişikliğidir. Fakat bu tip belirtide farklı renkler keskin bir çizgi ile sınırlanmamış olup renkler bir birine karışmış gibidir. Danar Açılması veya Bantlaşması: Bu tip belirti damar dokusuna yerleşen virüsler tarafından, damarların yaprak dokusundan daha açık veya sarı renk şeklinde oluşturulmasıdır. Matlaşmanın meydana gelmesi de yine damara bitişik yaprak dokusunun daha açık bir renk alması ve damarların adeta şeffaflaşması şeklindedir. Pigmentasyondaki bu değişiklik çoğu zaman çiçek ve meyveler üzerinde de görülebilir. Şekil Bozuklukları: Hücrelerin bölünmesine, gelişmesine ve hücrelerdeki hormon faaliyetine etki eden virüs enfeksiyonları bitkilerde anormal gelişme, cüceleşme, yaprak ve meyve şekillerinin bozulması hatta meyve tadının değişmesi gibi bozukluklara yol açar. Örneğin, hıyar mozaik ve tütün mozaik virüsleri ile enfekte olmuş domateslerde yaprak ayasının daralıp uzamasıyla “iplikleşme” denilen belirti meydana çıkar. Pek çok virüs, yapraklarda çok değişik kıvrımlara, yaprak ayası dişliliğinin bozulmasına yaprakların etlenip kalınlaşmasına, sertleşip gevrekleşmesine sebep olabilir. Bazı virüs enfeksiyonları da yapraklarda “enasyon” denilen oluşumlara neden olur. enasyonlar anormal hücre bölünmesi sonucunda yaprak veya gövde üzerinde meydana gelen yaprağa benzer uzantılardır. Anormal hücre bölünmesi meyvelerin de şekillerini bozar ve değerini düşürür. Rozetleşme: Cüceleşme meydana getiren virüs enfeksiyonlarının büyüme noktasında ölüm meydana getirdiği veya hormonal dengeyi bozduğu düşünülmektedir. Domateslerde çalılaşma yapan virüs hastalığında büyüme konisindeki faaliyetin tamamen durması sonucu yan gözler sürmeye başlar ve bitki çalı görünüşü alır. Rozet belirtisi gösteren virüs hatalıklarında ise hücrelerin uzamasını sağlayan hormon düzeni bozulmakta ve üst üste yığılan hücreler bitkiye bu “rozetleşme” görünümünü vermektedir. Nekrozlar: Bitki üzerinde lokal veya sistemik olarak meydana gelen nekrozlar virüs enfeksiyonlarının en yaygın belirtilerindendir. Bir lokal lezyon sadece virüsün giriş yaptığı noktada veya etrafında meydana gelen nekrotik veya klorotik nokta ve konsantrik halka şeklinde olabilir. Virüs enfeksiyonlarında lokal lezyon reaksiyonu gösteren konukçularda virüs sadece bu lezyonlarda bulunur ve bitkinin diğer kısımlarına taşınmaz. Diğer bir deyişle virüs inoküle edildiği yerde lokalize olur, sistemik hale geçmez. Enfeksiyonlara sistemik reaksiyon gösteren konukçularda ise virüs giriş noktası ne olursa olsun bütün bitkiye yayılır ve genellikle enfeksiyon belirtileri genç dokularda daha belirgin olarak ortaya çıkar. İç Belirtiler: Virüs enfeksiyonlarının oluşturduğu en ilginç iç simptomlar “inclusion bodies” olarak bilinen hücre içi oluşumlardır. Bu oluşukların bir kısmı stoplazma, bir kısmı nukleus, bir kısmı da hem stoplazma hem de nukleus içinde bulunabilir. Bu oluşuklar üç gurupta toplanabilir. 1. Amorf, granül veya ipliksi yapıda olanlar, 2. Kristal formlar, 3. Küresel formlar. Bu oluşuklar virüslerin teşhisinde yardımcı oluşuklardır. FİZYOLOJİK DEĞİŞİKLİKLER: Enfekteli bitkilerde respirasyonun sağlıklı bitkilere göre daha yüksek olduğu genel bir düşüncedir. Fakat son araştırmalar enfekteli bitkilerde respirasyon oranının inokulasyondan sonra geçen zaman, bitkinin fizyolojik durumu, çevre şartları ve inokule edilen yapraklara göre değiştiğini ortaya koymuştur. Virüs enfeksiyonlarının fotosentez üzerine büyük etkileri vardır. KORUNMA YOLLARI Virüs hastalıkları çok çeşitli yollarla yayılabildiklerinden ve enfeksiyon görüldükten sonra bitkilerin tedavisinin pratik ve ekonomik olmaması yüzünden bitki virüslerinin yayılmasını önlemek başlıca korunma yoludur; fakat buda her hastalık için değişik olabilir. Virüs hastalıklarını önlemek için uygulanan metodlar altı grupta toplanabilir. 1-Virüs enfeksiyonu kaynaklarının yok edilmesi :Yabancı otların virüs hastalıkları enfeksiyonu için önemli kaynaklar olduğu bilinmektedir. Bir çok virüs hastalığı yabancı ot tohumlarıyla bir yıldan diğer yıla geçmekte ve yabancı otların çoğu yine birçok virüs simtom göstermeden taşınmaktadır. Ayrıca nematodlarla taşınan virüsler ve yabancı ot tohumlarına geçen virüsler arasında bir ilişki olduğu ortaya konulmuştur. Bundan başka kültürü yapılan ürünler de diğer ürünleri enfekte eden virüslere konukçuluk edebilir. Örneğin, yonca bitkisi, bezelye ve fasulyede hastalık yapan virüslerle bulaşık olabilir ve başlıca vektör olan Mikcrosiphum pisi de yoncada kışı geçirir. Bı yüzden çok yıllık baklagil bitkileri hassas olan tek yıllık bitkilere yakın olanlarda yetiştirmek gerekir. 2- Vektörlerden kaçınmak : Bitkileri izole etmek, vektör-virüs-konukçu çemberini kırmak, vektörleri önlemek için yapay çitler kullanmak gerekir. Ekim dikim zamanını ayarlamak suretiyle afidlerin en aktif oldukları devrelerden kaçınılabilir; bütün bu yöntemler uygulanırken zarara sebep olan virüs hastalığının tarlada yayılışının nasıl ve ne şekilde olduğunun bilinmesi gerekir ki en doğru kontrol metodu en doğru olduğu zamanda uygulanabilsin. 3- Doğrudan doğruya vektörlerle savaşmak : Virüs enfeksiyonlarını kontrol altında tutmak bakımından insektisitlerin değeri hiç şüphesiz büyüktür ama bunları tam zamanında ve yerinde kullanmak bile ancak dolayısıyla bir etki sağlar. Böceklerin ilacı bünyelerine alabilmesi için bir süre bitkiler üzerinde beslenmeleri gerekir ve bu süre içinde virüsü de bünyelerine alabilirler ve ölümden önce diğer bitkilere geçebilirler. Özellikle persistent olmayan virüsler hızla diğer bitkilere bulaşmış olur. En iyi insektisitler bile virüs hastalıklarını sadece azaltabilir, hiçbir zaman elemine edemezler. Fakat vektör konukçu ve virüs ilişkileri iyi bilinip insektisitler uygun zamanda kullanıldığında oldukça iyi bir kontrol sağlanabilir. 4- Dayanıklı çeşitler yetiştirmek : Bu metod virüs hastalıklarının kontrol altına alınmasında en ümitvar olanıdır. Enfeksiyona dayanıklı çeşitler, hassas çeşitler gibi virüsten zarar görmezler. Hipersensitif çeşitler de virüs tarafından şiddetle enfekte edilip derhal ölüme gittiklerinden diğer bitkiler için potansiyel inokulum kaynakları olmaktan çıkarlar. 5. Enfekteli bitkilerin tedavisi:Bazı durumlarda enfekteli bitkilerin sıcakılık veya kimyasal maddelerle muamele etmek mümkündür. Doğrudan doğruya virüs hastalıklarının kimyasal yönden bunun için pratik bir değer taşımamaktadır. Bu uygulamanın prensbi nukleik asit metabolizmasını etkileyen kimyasal maddeler kullanarak virüsün bitki bünyesinde çoğalmasını önlemektir. 6. Özel üretim metodları: Bitkilerin virüsten arınmış klonlarının yetiştirilmesi için kullanılır. Birçok virüs büyüme konisindeki genç meristem dokusunda bulunmaz, bundan faydalanarak bu doku izole edilip özel besleyici ortamda yetiştirilirse sonuçta virüssüz bitki elde edilir. Virüse yakalanmış bitkilerin tedavisinde çok zor ve pahalı metodlar uygulanmakta ve sonuçta her zaman tatminkar olmamaktadır. Bu yüzden ürünlerin virüs hastalıklarına yakalanmasını önlemek çok daha pratik ve ucuz bir yoldur.

http://www.biyologlar.com/bitkilerde-virus-hastaliklari-tanimi-ve-mucadelesi

Evrim Konusunda ilk Düşünceler

Dini Düşünceler: Düşünebilen insanin, dogadaki çeşitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düşünceler başlamiş demektir. İlk yaygın düşünceler, Asur ve Babil yazıtlarında; daha sonra bunlardan köken alan Ortadoğu kökenli dinlerde görülmüştür. Hemen hepsinde insanın özel olarak yaratıldığı ve evrende özel bir yere sahip olduğu vurgulanmış; türlerin değişmezliğine ve sabitliğine inanılmış ve diğer canlılar konusunda herhangi bir yoruma yer verilmemiştir. Bununla beraber Kuran’da yaratılışın kademeli olduğu vurgulanmıştır. Yalnız bir Türk din adamı, astronomu ve filozofu olan Hasankale’li İbrahim Hakkı(1703-1780), insanların değişik bitkilerden ve hayvanlardan köken aldığını belirtmiştir. 17. yüzyıla kadar, piskopos Ussher’in ve diğerlerinin savunduğu ‘türlerin olduğu gibi yaratıldığı ve değişmeden kaldığı fikri’ yani ‘Genesis’ geniş halk kitleleri tarafından benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya İÖ 4040 yılında, Ekim ayının 4'ünde sabah saat 9.00'da yaratılmıştı. Bu düşünce Ussher tarafından İncil’e eklenmiştir. Daha sonra yine Hıristiyan din adamları olan Augustin (İS 354-430) ve Aquinas (İS 1225-1274) tarafından canlıların basit olarak tanrı tarafından yaratıldığı ve daha sonra değişerek çeşitlendiği savunulmuştu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlaşilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden oluştugu ileri sürülerek, yaratilişin ilk olark inorganik kökenli oldugu ve daha sonra eşeylerin ortaya çiktigi savunulmuştur. Yunanlılardaki ve Ortaçağdaki Düşünceler: Yunan filozoflarından Empedocles, İÖ 500 yıllarında bitkilerin tomurcuklanma ile çeşitli hayvan kısımlarını, bu kısımların da birleşmesiyle hayvanların oluştuğunu savunmuştu. Thales(İÖ 624-548), Ege Denizindeki canlıları çalışmış ve denizlerin canlılığın anası olduğunu ileri sürmüştür. Aristo (İÖ 384-322) bitkiler ve hayvanlar konusunda oldukça geniş bilgiye sahipti. Onların doğruya yakın tanımlarını vermiş ve gelişmişliklerine göre sınıflandırmıştır. Canlıların metabiyolojik olarak değişerek birbirlerinden oluştuklarına ve her birinin tanrıların yeryüzündeki ilahi taslakları olduklarına inanmıştır. Daha sonra, canlıların kökenini Der Rerum Natura adlı şiirinde veren Lucretius (İÖ 99-55) u anmadan ortaçağa geçemeyeceğiz. Yeni Çağdaki ve Yakın Çağdaki düşünceler: Rönesans ile canlılar konusundaki bilgilerin, en önemlisi evrim konusundaki düşürnürlerin sayısı artmıştır. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarının, dişlerinin, kemiklerinin ve diğer parçalarının bugünkü canlıların benzer tarafları ve farkları saptanmıştır.Ayrıca yüksek dağların başında bulunan fosillerin, yaşayanlarla olan akrabaliklyarı gözlenmiştir. Bu gözlemlerin ışığı altında, her konuda çalışmış, düşünür ve sanatçı olan Leonardo da Vinci, canlıların tümünün bir defada yaratıldığını ve zamanla bazılarının ortadan kalktığını savunmuştur. Buna karşılık birçok doğa ibilimcisi, canlıların zaman zaman oluştuklarını doğal afetlerle tamamen ortadan kalktıklarını ve yeniden başka şekillerde yaratıldıklarını ileri sürmüştür. Bu şekilde farklı devirlerde 2arklı canlıların yaşaması kolaylıkla açıklanabiliyordu. Her doğal yıkımdan sonra, oluşan canlıların, organizasyon bakımından biraz daha gelişmiş olduklarına inanılıyordu. Bu kurama “Tufan Kuramı” denir. Bu yıkımın yedi defa olduğu varayılmıştır. Cuvier, 1812 yılında, fosiller üzerinde ünlü kitabını yanılayarak fosillerin, kesik, kesik değil, birbirlerinin devamı olacak şekilde olduklarını bilimsel olarak açıklamıştır. 18. yüzyılın sonu ile 19. yüzyılın başlangıcında, üç İngiliz jeoloğun çalışmalarıyla katstrofizm kuramı yerine ‘Uniformizmi’ kuramı getirildi. Hutton 1785'te geçmişte de bugünkü gibi jeolojik kuvvetlerin rol oynadığını, yükselmelerin ve alçalmaların, keza erozyonlaların belki de daha kuvvetli olurak meydene galdiğini ve yüksek dağlarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yaılabileceğini buldu. John Playfair’in yapıtı 1802'de yayınlandı. Üçüncü araştırıcı, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanısıra, canlıların büyük afetlerle değil, çevre koşullarının uzun sürede etki etmesiyle değiştiğini savundu. Kitabının bir yerinde ‘geçmişteki güçler bugünkünden hiç de çok farklı değildi’ diye yazmıştır. Bu yaklaşım, Nuh Tufanı’nın gerçeküstü olduğunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemiştir. Lamarck’ın Düşünceleri Organik evrimi konusunda ilk kapsamlı kuram 1809 yılında ‘Philosophie Zoologique’ adlı yapıtıyla, Fransız zooloğu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamanının meslektaşları gibi, tüm canlıların, gelişimlerini ve işlevlerini denetleyen bir canlılık gücüyle donatıldığına ve değişen çevre koşullarına karşı bir savaşım gücünün olmadığına inanıyordu. Kitabında, hayvanları, karmıaşıkyıklarına göre düzenlemeye çalışırken, yanlışlığı daha sonra kesin olarak saptanan bir varsayımı ileri sürdü: “ Eğer bir onrgan fazla kullanılıyorsa, o organ gelişmesini sürdürerek, daha etkin bir yapı kazanır”. Bu varsayıma ‘lamarkizm’ denir. Ayrıca canlının yaşamı boyunca kazanmış olduğu herhangi bir özelliğin, gelecek döllere geçtiğine de inanmıştı. Örneğin demircinin oğlunun kol kasları diğerlerine göre daha iyi gelişir. Zürafalırın atası kısa boyunlu olmalıran karşın, yaşadıkları ortamın bir zaman sonra kuraklaşarak, dibi çıplak ve çayırsız ağaçların bulunduğu ortama dönüşmesi sonucu, zürafalar ağaçların yapraklarıyla beslenmek zorunda kaylmışlar ve böylece boyunları dölden döle uzamıştır. Körfarelerin gözlerini, karıncaayısının dişlerini yitirmesini; su kuşlarının perde ayakları kazanmasını bu şekilrde açıklamıştır. Bu üaçıklamalar,kalıtımın yasaları ortaya çıkarılmadan önce, çok iyi bir açıklama şekli olarak benimsendi. Fakat kalıtım konusunda bilgiler gelişince, özellikle Weismann tarafından somatoplazma ile germplazma arasındaki kuramsal farklar bulununca, evrimsel değişmenin, vücut hücrelerinde olmadığı, sadece eşeysel hücrelerdeki kalıtsal materyalin etkisi ile yürütüldüğü anlaşıldı. Böylece Lamarck’ın varsayımı tümüyle geçerliliğini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre koşullarına uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, doğduğu zaman taşıdığı kalıtım materyalinin izin verdiği ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüşler, fakat inandırıcı olamamışlardır. Charles Darwin ve Alfred Wallace’ın Görüşleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkıda bulundu. Birincisi, organik evrim düşüncesini destekleyen zengin bir kanıtlar dizisini toplayarak ve derleyerek bilim dünyasına sundu. İkincisi, evrim mekanizmasının esasını oluşturan ‘Doğal Seçilim’ ya da diğer bir deyimle ‘Doğal Seçim’ kuramının ilkelerini ortaya çıkardı.Evrim Kuramı, bilimsel anlamda 19. yy kuramıdır; ama bu kuram 20. yy’da büyük bir kuram niteliğini aldı. Bu nedenle Darwin’ i biraz daha yakından tanımalıyız: Darwin, 1809'da İngitere’de doğdu. Babas, onun hekim olmasını istiyordu; 16 yaşında Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak başladığı hekimlik eğitimini ve daha sonra başladığı hukuk eğitimini sıkıcı bularak her ikisini de bıraktı. Sonunda Cambridge Üniversitesi’ne bağlı Christ Kolejinde teoloji (= dinibilimler) öğrenimi yaptı. Fakat Edinburg’daki arkadaşlarının çoğu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kırkanatlıları toplayan bir grupla ilişki kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanıdı ve onun önerileri ile dünya çevresinde beş sene sürecek bir geziye katılmaya karar verdi. Beagle, 1831 yılında Devonport limanından denize açıldı. Lyell’in kitabını gezisi sırasında okudu ve dünya yüzünün devamlı değiştiğini savunan düşüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanları inceliyor; sayısız gözlem yapıyor ve dikkatlice notlar alıyordu. Gemi, ilk olarak Güney Amerika’nın doğu sahilleri boyunca güneye inip, daha sonra batı kıyılarından kuzeye doğru yol aldı. Bu arada Arjantin’in Pampas’larında soyu tükenmiş birçok hayvanın fosilini buldu ve yine jelojik aktmanlardaki fosillerin değişimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratıldığına ilişkin düşüncelere olan inancını yitirmeye başladı. Yine insan da dahil, çeşitli bitki ve hayvan türlerinin değişik ortamylara yaptıkları uyumları, bu arada yaşadığı bir deprem olayı ile yeryüzünün nasıl değişebileceğini gözledi. Beagle, 1835 yılında, Güney Amerika kıtasının batı kıyısına yaklaşık 1000 km kadar uzak olar Galapagos adalarına ulaştı. Bu adalarda yaptığı gözlemlerde, büyük bir olasılıkla aynı kökenden gelmiş birçok canlının coğrafik yalıtım nedeniyle, birbirlerinden nasıl farklılaştıklarını ve her canlının bulunduğu ortamdaki koşullara nasıl uyum yaptığını bizzat gözledi. Örneğin ispinoz kuşlarının, dev kaplumbağaların, dev kertenkelelerin, adalara ve her adanın değişik koşulları taşıyan bölgeliren göre çeşitlenmelerini, yapısal uyumlarını, varyasyonlarını ve sonuç olarak uyumsal açılımlarını gördü. Buradaki bitkilerin ve hayvanların hemen hepsi, Amerika kıtasının güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzaklığı oranında farklılaşmalar gösteriyordu. Daha sonra araştirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu araştirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulaşti. Darwin, ileri süreceği fikrin yankı uyandıracağını, dolaysıyla yeterince kanıt toplaması gerekeceğini biliyordu. Kanıtlar evrimsel dallanmayı göstermekle birlikte, bunun nasıl olduğunu açıklamaya yetmiyordu. İngiltere’ye varışından itibaren 20 yıl boyunca biyolojinin çeşitli kollarındaki gelişmeleri de dikkatlice inceleyerek, gözlemlerini ve notlarını biraraya getirip doğal seçilim konusundaki düşüncesini ana hatlarıyla hazırladı. 1857 yılında düşüncelerini kabataslak arkadaşlarının görüşüne sundu. Bu sırada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yıl Malaya’da ve Doğu Hindistan’da dört yıl Amazon ormanlarında bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanların dallanmalarındaki ve yayılışlarındaki özelikleri görmüş ve doğal seçilim ilkesine ulaşmış, bir doğa bilimcisi olan Alfred Russel Wallace’ın hazırlamış olduğu bilimsel kitabın taslağını aldı. Wallace, Darwin’e yazdığı mektupta eğer çalışmasını ilginç bulursa, onu, Linnean Society kurumuna sunmasını diliyordu. Çalışmasının adı “ Orjinal Tipten Belirsiz Olarak Ayrılan Varyetelerin Eğilimi ” idi. Darwin’in yıllarını vererek bulduğu sonuç, yani canlıların yavaş yavaş değişmesine ilişkin görüş, Wallace’ın çalışmalarında yer almaktaydı. Durum, Darwin için üzücüydü. Fakat arkadaşlarının büyük baskısıyla, kendi çalışmasını, Wallace’ınkiyle birlikte basılmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basılmadan duyulan bu düşünceler 24 Kasım 1859'da “Doğal Seçilim ya da Yaşam Savaşında Başarılı Irkların Korunmasıyla Türlerin Kökeni” kısaltılmış adıyla Türlerin Kökeni yayınlandı. İlk gün kitapların hepsi satıldı. Herkes, organik evrim konusunda yeni düşünceler getiren bu kitabı okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazırladı. Çünkü jeolojide, paleontolojide, embriyolojide, karşılaştırmalı anatomide birçok aşama yapılmış ve birden yaratılmanın olanaksızlığı ortaya konmuştu. Darwin, uysal bir adam olduğundan, bir tepki yaratmamak için, eserinin son kısmını tanrısal bir yaratılış fikrini benimsediğini yazarak bitirmişti. Buna rağmen, başta din adamları ve bazı bilim adamları dini inançlara karşı geliniyor diye bu çalışmaya karşı büyük bir tepki başlattılar. Hatta eseriyle Darwin’e çok büyük yardımlarda bulunan Lyell ve gezisi sırasında geminin kaptanlığını yapan Fitzroy , bu karşı akımın öncüleri oldular. Bu arada Huxley, çok etkin bir şekilde Darwin’e destek oldu. Darwin, çalışmalarına devam etti, birinci eserinde değinmediği insanın evrimiyle ilgili düşüncelerini İnsanın Oluşumu ve Eşeye Bağlı Seçilim adlı eseriyle yayımladı. Bu eserde insanın daha önceki inançlarda benimsenen özel yaratılışı ve yeri reddeliyor, diğer memelilerin yapısal ve fizyolojik özelliklerine sahip olduğu ve iyne diğer çcanlılar gibi aynı evrimsel yasalara bağlıolduğu savunuluyordu. Ayrıca eşeyseyl seçmenin, türlerin oluşumundaki önemi belirtiliyordu. Darwin’in “İnsanın Oluşumu ” adlı eseri, başlangıçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelişmeler ve bulgular, özellikle kalıtım konusundaki bilgilerin birdikmesi, Darwin’in görüşünün ana hatlarıyla doğru olduğunu kanıtlamıştır. Doğal Seçilim Kuramının Ana Hatları (Darwin- Wallace Temellerini atmıştı) Bu kuram, ana hatlarıyla iki gerçeği, üç varsayımı ortaya çıkarmıştır. Gerçekler şunlar: 1. Tüm canlılar, ortamdaki sayılarını koruyacak matematiksel oranların üzerinde çoğalma eğilimindedir. Elemine edilen bireylerle bu fazlalık azaltılır ve popülasyonların dengede kalması sağlanır. Doğal koşullar sabit kaldıkça bu denge korunur. 2. Bir türe ait popülasyondaki bireylerin kalıtsal özelliği birbirinden farklıdır. Yani canlı popülasyonlarınnın hepsi varyasyon gösterir. Darwin ve Wallace, bunun nedenini tam anlayamadılar ve varyasyonların canlıların iç özelliği olduğunu varsaydılar. Bugün bu varyasyonların mutasyonlarla oluştuğu bilinmektedir. Varsayımlar: 1. Ayakta kalan bireylerin sayısı, başlangıçta meydana gelenlerden çok daha az olduğuna göre, ayakta kalabilmek için canlılar arasında karşılıklı, besin, yer vs için, saöaşım, ayrıca sıcaklık, soğukluk, nem vs. gibi doğal koşullara karşı bir mücadele vardır. Bu savaşım ve mücadele bir ölüm kalım kavgasıdır. Gerek besin ve yer gereksinmesi aynı olan canlı türleri arasında ve gerekse normalden daha fazla sayıda bireyle temsil edilen popülasyonlardaki aynı türe bağlı bireyler arasında, yani doymuş popülasyonlarda bir yaşam kavgası vardır. Bu görüş ilk defa Malthus tarafından ortaya atılmıştır’Yaşamak İçin Savaş”. 2. İyi uyum yapacak özellikleri (= varyasyonları) taşıyan bireyler, yaşam kavgasında, bu özellikleri taşıayan bireylere karşı daha etkili bir savaşım gücü göstereceğinden, ayakta kalır, gösteremeylenler ise yok olur. Böylece bulunduğu bireye o koşullara en iyi uyum yapabilecek yeteneği veren özellikler, gelecek döllere kalıtılmış olur. Bu varsayımın anahtar cümleciği “Biyolojik olarak En İyi Uyum Yapan Ayakta Kalır”dır. 3. Bir bölgedeki koşullar digerlerinden farkli oldugundan, özelliklerin seçimi de her bölgede, koşullara göre farkli olur. Çevrede meydana gelecek yeni degişiklikler, tekar yeni uyumlarin meydana gelmesini saglar. Birçok döl boyunca meydana gelecek bu tipp uyumlar, daha dogrusu dogal seçilim, bir zaman sonra, atasindan tamamen degişik yeni bireyler toplulugunun ortaya çikmasini saglar’Uyumsal Açilim’. Farklilaşmanin derecesi, eskiyle yeni popülasyondaki bireyler bir araya getirildiginde çiftleşmeyecek, çiftleşse dahi verimli döller meydana getiremeyecek düzeye ulaşmişsa, artik bu iki popülasyon iki farkli tür olarak degerlendirilir. Bir ata popülsayondaki bir kisim bireyler, taşidiklari varyasyon yetenekleriyle herhangi yeni bir ortama uyum yaparken, diger bir kismi da taşidigi farkli varyasyonlar nedeniyle daha degişik bir ortama uyum yapabilir. Böylece uyumsal açilim ortaya çikar. Bununla beraber, bitkiler ve hayvanlar, yaşam kavgasinda, bulundugu koşullarda, yarari ya da zarari olmayan diger birçok varyasyonu da meydana getirebilir ve onlari daha sonraki döllere aktarabilir. Darwin’in kuramı o karar akla yatkın ve o kadar kuvvetli kanıtlarla desteklendi ki, birçok biyolog onu hemen kabul etti. Daha önceki varsayımlar, yararsız organların ve yapıların neden meydana geldiğini bir türlü açıklığa kavuşturamamıştı.Bugün, türler arasında görülen birçok farkın, yaşam savaşında hiç de önemli olmadığı bilinmektedir.Fakat bu küçük farkları oluşturan genlerdeki herhangibir değişiklik, yaşam savaşında büyük değerleri taşıyan fizyolojik ve yapısal değişikliklerin oluşmasına neden olabilir. Uyumsal etkinliği olmayan birçok özelliği oluşturan genler, kromozomlar içinde yaşamsal öneme sahip özellikleri oluşturan genlerle bağlantı halinde olabilir. Bu durumda bu varyasyonlar elenmeden gelecek döllere aktarılabilir. Bu uyumsal etkinliği olmayan genler, bir popülasyon içerisinde gelecekteki değişikliklerde kullanılmak üzere ya da genetiksel sürüklenmelerde kullanılmak üzere fikse edilmiş olarak bulunur. Evrim Kuramına Bilimsel İtirazlar Belki insanlık tarihinin ilk dönemlerinden beri uygulanmakta olan öğretim ve eğitim yöntemleri, belki dini inançların etkisi, belki de insanın doğal yapısı, insanın yeniliklere karşı itirazcı olmasına neden olmuştur. Bu direniş, en fazla da eksik kanıtlarla desteklenmekte olan Evrim Kuramı’na yapılmıştı ve yapılmaktadır. Özellikle dogmatik düşünceye yatkın olanlar, bu karşı koymada en önemli tarafı oluşturur. Bununla birlikte son zamanlarda, birçok aydın din bilimcisi de olmak üzere, iyi eğitim görmüş toplumların büyük bir kısmı Evrim Kuramı’na sahip çıkmaktadır. Evrim Kuramı’na, Darwin’den beri bilimsel karşı koymalar da olmuştur. Özellikle varyasyonların zamanla popülasyonlardan kaybolacağı inancı yaygındı. Çünkü bir varyasyona sahip bir birey, aynı özellikli bireyle çifleşmediği takdirde, bu varyasyonun o popülasyondan yitirileceği düşünülmüştü. Popülasyon genetiğinde, çekinik özelliklerin, yitirilmeden kalıtıldığı bulununca, itirazların geçerliliği de tümüyle kaybolmuş oldu. Darwin, Pangeneze, yani anadan ve babadan gelen özelliklerin, bir çeşit karışmak suretiyle yavrulara geçtiğine inanarak hataya düşmüşü. Eğer kalıtsal işleyiş böyle olsaydı, iyi özelliklerin yoğunluğu gittikçe azalacaktı ve zamanla kaybolacaktı. Halbuki, bugün, özelliklerin sıvı gibi değil, gen denen kalıtsal birimlerle kalıtıldığı bilinmektedir. İkinci önemli karşıkoyma, bu kadar karmaşık yapıya sahip canlıların, doğal seçimle oluşamayacağıydı. Çünkü bir canlının, hatta bir organın oluşması, çok küçük olasılıkların biraraya gelmesiyle mümkündü. Fakat cınlıların oluşmasından bugünekadar geçen uzun süre ve her bireyde muhtemelen ortaya çıkan küçük değişikliklerin, yani nokta mutasyonların, zamanla gen havuzunda birikmesi, sonuçta büyük değişikliklere neden olabileceği hesaplanınca, bu karşı koymalar da kısmen zayıflamıştır. Üçüncü bir karşikoymaya yanit vermek oldukça zordur. Karmaşik bir organ yarar saglasa da birden bire nasil oluşabilir? Örnegin omurglilarda, gözün bir çok kisimdan meydana geldigi bilinmektedir. Yalniz başina bir kismin, hehangi bir işlevi olamaz. Tümü bir araya geldigi zaman görme olayi saglanabilir. O zaman degişik kisimlarin ya ayni zamanda birden meydana geldigini varsaymak gerekiyor- bu popülasyon genetegi açisindan olanaksizdir- ya da yavaş gelşitigini herhangi bir şekilde açiklamak gerekiyor. Bir parçanin gelişmesinden sonra digerin gelişebilecegini savunmak anlamsizdir; çünkü hepsi birlikte gelişmezse, ilk gelişen kisim, işlevsiz olacagi için körelir ya da artik organ olarak ortadan zamanla kalkar. Bununla birlikte, bu teip organlarin da nokta mutasyonlarin birikmesiyle, ilkelden gelişmişe dogru evrimleştigine ilişkin bazi kanitlar vardir. Evrim Kuram’nda dördünrcü karanlık nokta, fosillerdeki eksikliktir. Örneğin balıklardan amfibilere, amfibilerden sürüngenlere, sürüngenlerden memelilere geçişi gösteren bazı fosiller bulunmakla birlikte(bazıları canlı olarak günümüzde hala yaşamaktadır), tüm ayrıntıyı verebilecek ya da akrabalık ilişkilerini kuşkusuz şekilde aydınlatabilecek, seri halindeki fosil dizileri ne yazık ki bazı gruplarda bulunanamımıştır. Bununla birlikte zamanla bulunan yeni fosiller, Evrim Kuramı’ndaki açıklıkları kapatmaktadır. Anorganik Evrim Bulutsuz bir yaz gecesi gökyüzüne bakan her insan, içinde yaşadigi evrenin nasil oluştugunu, onun sonsuzlugunu, içinde başka canlilarin, belki de düşünebilir canlilarin bulunabilecegini ya da sinirli oldugunu, özellikle o sinirin ötesinde neler olabelecegini, dünyadakilerden başka canli olmadigini, kapatilmiş oldugu evrensel yalnizligi ve karantinayi düşününce irkilir.Bu duygu coşkularimizin kaynagi, inançlarimizin temeli ve çok defa teslimiyetimizin nedeni olmuştur. Ilkçaglardan beri evrenin yapisi üzerinde varsayimlar ileriye sürülmüş ve çok defa da bu görüşler, belirli çevrelerce politik basiki araci olarak kullanilmiştir. Yüzyilimizin oyldukça güvenilir ölçümlerinin ve gözlemlerinin ışığı altında ortaya atılan Anorganik Evrim Kuramı’nı incelemeden, evrenin oluşumu konusundaki düşüncelerin tarihsel gelişimine kısaca bir göz atalım. Gerek ilkçağlarda, gerekse ortaçağda, evrenin merkezinin dünya olduğu ve dünyanın da sabit durduğu savunulmuş, diğer tüm gök cisimlerinin Dünya’nın ektrafını saran evrensel kürenin kabuğu üzerinde çakılı olduğu varsayılmıştır. Bu zarfın ötesi, Tanrısal gök olarak tanımlanmıştır. Bruno’ya kadar hemen tüm görüşler, evrenin sınırlı boyutlar içerisinde olduğu şeklindeydi. İlk -ve ortaçağın değişik bir çok toplumunda tanrı kavramının gök cisimler ile özdeşleştirildiği görülmektedir. Gökyüzünün mekaniği konusunda ilk ciddi gözlemler, Asurd, Babil, Mısır kültürlerinde yapılmış, bazı evrensel ölçümler ve ilkeler bulunmuştur.Fakat yaratılışı konusundaki düşünceler çoğunlukla din adamlarının tekeline bırakılmıştır. İlk defa Giordano Bruno, yıldızların da bizim Güneş sistemimiz gibi, gökte asılı olarak durduğunu ve evrenin sonsuz olduğunu zamanın din adamlarına ve filozoflarına karşı savundu. Çünkü Bruno’ya göre, evren, tanrının kendisiydi ve onu sınırlı düşühmek Tanrı kavramına aykırı düşmekteydi. Düşünüclerinden dolayı 17 Şubat 1600 yılında, Roma’da, halkın gözü önünde yakıldı. Immanuel Kant, Bruno’dan 150 yıl sonra, evreni Tanrının yarattığını savunarak, onun sonsuz büyük olması gerekeceğini, pozitif bir kanıta dayanmadan ileri sürdü. Daha sonra Olbers, gökyüzünün, geceleri neden karanlık olduğunu merak etti. Çünkü ışık veren gökkcisimlerinin, ana hatlarıyla evrende homojen bir dağılım gösterdiği bilinmekteydi. Fiziki yasalarından bilindiği kadarıyla, bir kaynaktan gelen ışık şiddeti uzaklığın karisi ile aazalmaktaydı.Fakat buna karşın küresel bir şekilde, hacim, yanrıçapın, yani uzaklığın küpüyle artmaktaydı. Dolaysıyla dühnyaya ışık gönderen kaynakların ışık şiddeti, uzamklıklarının karesi oranında çoğalmaktaydı. Bu durumda, evrenin çapının büyüklüğü oranında, dünyaya gelen ışık miktarı fazla olmalıydı.Halbuki geceleri karanlıktır, yani dünyanın gökyüzünü aydınlatacak kadar ışık gelmemektedir. Öyleyse evrenin boyutları sınırlı olmalıydı. Olbers’in bizzat kendisi, bu inanılmazı sınırlı evren tanımını ortadan kalrdırmak için, ışık kaynaklarının gittikçe azaldığını varsaymıştır. Yüzyılımızda, ünlü fizikçi Einstein, evren konusunda hesaplarını yaparken, onun sabit boyutlar içerisinde çıktığını gördü. Sonuç kendisine dahi inanılmız geldi. Bu nedenle sonucu değiştirmek için, denklemlerine, yanlışlığı sonradan saptanan, doğal kuvvetler dediği, bir takım kozmik terimler ekledi. Hubble, 1926 yılında, çıplak gözle görülmeyen; ama fotoğraf camında iz bırakan, bizden çok uzak birtakım spiral nebulalar saptadı. Spiral nebulaların, uzun dalgalı ışık (kırmızı ışık) çıkardıkları 1912 yılından beri bilinmekteydi. Hubble, 1929 yılında, bu nebulalaların ışığının kırmızıya kaymasını, Doppler etkisi ile açıklayarak, ünlü kuramını ortaya attı. Yani tüm nebulalar bizden ve muhtemelen birbirlerinden büyük hızlarla uzaklaşmaktaydı, yani evren her saniye yapısını değiştirmekte, genişlemekydi. Böylece dünyaya gönderdikleri ışığın frekansında, kaynağın hızla uzaklaşmasından domlayı, azalma, yani ışığın döküldüğü yerde, ışığın kırmızıya kaydığı gözlenmekteydi Işık kaynakları gözlenen yere doğru hızla yaklaşsaydı, ışıklarının maviye kaydığı, yani gözlem yerine ulaşan ışığın frekansında artma görülecekti. Bu cisimlerin hızı bizden uzaklaştıkça artmaktaydı.Gözlenebilen en uzaktaki gök cisimleri (dünyadan 8 milyar ışıkı yılı uzakta ve 240. 000 km/s hıza sahip) birkaç yıml içerisinde tamamen kayboluyor, yerlerini kuvvetli radyo dalgaları veren kuasarlara bırakıyorlardı Kuasarların nasıl birg ök cismi oldukları tam olarak bilinmemektedir. Birçok astrofizikçi, cisimlerin kuasarlara dönüştüğü bu bölgeleri, evrenin kıyıları olarak tanımlamada fikir birliği etmektedir. Hubble’ın bu bulgularını duyan Einstein, daha önce denklemlerine eklediği kozmik terimleri ve ilave sayıları sessizce geri çekti. Çünkü, onlarsız yaptığı tüm işlemler hemen henmen doğruydu. Böylece evrenin büyüklüğünün sonlu, yapısının değişken olduğu kesin olarak kanıtlanmaktaydı. Evren patlarcasına genişliyor, buna bağlı olarak birim hacimdeki madde miktarı, yani yoğunluk azalıyordu. Bu genişlemenin bir başlangıcı olmalıydı. (Demirsoy, Ali, Yaşamin Temel Kurallari Cilt-1, Kisim-1, Onbirinci Baski, Ankara 1998, s:543-555) Evrim Kuramında Bir Paradoks İngliz bilim adamı Charles Darwin (1809-1882) ve Alfred Russel Wallace (1823-1913) gerek yaptıkları seyahatler sonucunda elde etmiş oldukları coğrafik deller gerekse mevcut karşılaştırmalı anatomi çalışmalarıyla emriyoloji bilgilerini kullanmak suretiyle ve de Malthus’un da etkisiyle, şekkillendirdikleri evrim kuramında canlıların yaşamlaranı sürdürebilmelerinde iki gücün etkin olduğunu belirlemişlerdir. Bunlardan birisi doğal eleme gücüdür; canlı bu güç sayesinde çevre şartlarına uyum göstererek yaşamını devam ettirebilme şansına sahip olabilir; kendine nisbetle şartlara uyum göstermeyenler yaşamlarını sürdüremezler, yok olurlar. Uyum gösterenler ise çevre şartlarına uygun olarak değişim gösterirler. Böylece, meydana gelen değişimler sonucunda yeni türler ortaya çıkar. Ancak, canlılarda bir ikinci güç daha vardır; o da ataya dönüş gücüdür (atavizm). Canlı ne kadar asıl tipinden uzaklaşmış olursa olsun, atalarına dönüş meyli taşır ve dolaysıyla söz konusu dönüşü yapabilir. Bunun tipik örneğini Darwin, güvercinlerde göstermiştir. Evcilleştirilmiş güvercinlerin yabanıl kaya güvercinlerine dönüş göstermesi gibi. Evrim kuramını desteklemek üzere, bu iki güce ek olarak, Darwin ve Wallace ‘koruyucu benzerlik’ ten söz ederler. Buna göre canlılar yaşamlarını sürdürebilmek için doğal çevre şartlarına uyarlar; örneğin çölde yaşayan canlıların renkleri sarı tonlarındadır; ormanda yaşayan hayvanların renkleri çok parlaktır; kutuplardaki hayvanlar için ise aynı şekilde, çevreye uyum göstermiştir; genellikle beyaz renktedir. Buna paralel olmak üzere, hayvanların kendilerini korumak için bazı başka korunma yollarını da denedikleri görülmüştür. Bazı hayvanlar, sansarlar gibi, kötü koku salar ya da seslerini daha güçlü hayvanlara benzeterek düşmanlarına karşı kendilerini korur. Koruyucu benzerlik, aslında evrim kuramıyla garip bir şekilde zıt düşmektedir. Çünkü eğer canlı, mimikri, yani daha güçlüyü taklit etme şeklinde bir kuruyucu benzerlik gücüne sahipse, o takdirde, nisbeten kuvvetli olan canlılara karşı koruyucu bir silah geliştirmiş olur ve her ne kadar evrim kuramına göre, yaşamını sürdürebilmek için güçlü olması gerekiyorsa da, taklit kaabiliyeti sayesinde, zayıf olsa da, yaşamını sürdürebilme şansına sahip olur. Doğabilimler yapmış oldukları araştırmalarla, doğada birçok mimikri belirlemeyi başarmışlardır. (Esin Kahya, AÜ DTCF Felsefe Bölümü, Bilim ve Teknik, Mayıs 1995, 330. sayı) Bilgi Çocuklarımızın yüzüne aynaya bakar gibi bakıyoruz. Onlar bizim yeniden dirilişimizdir. Kendileri tıpkı bize benzer yapabilmeleri çin hücrelerinde bulunan, bizim fiziksel yapımızı belirleyen bilgiyi, onlara sperm ve yumurta olarak veriyoruz. Bu bilgi bizim geleceğe armağanımızdır. Hücre yapımı için gerekli bilgi; harita, plan veya taslak niteliğindedir. Bir rehber, bir kitap, bir broşür gibi de denebilir. Bu rehber çok özel bir yaratmayı gerçekleştirecek olan aracının veya makinenin, canlı üretme makinesinin “anlayacağı” eksiksiz bir bilgi anahtarı olmalıdır. Genler Genetek bilimi, her canlının özelliklerinin (örneğin göz rengi) kalıtımla geçtiğini, yani yavruda hassas bir şekilde yeniden ortaya çıktığını göstermişttir. Kişisel özelliklerini düzenleyen bilgi, “genler” denilen özel varlıklarla nesilden nesile geçer. Her belirgin kalıtımsal özelliğin ayrı bir geni daha vardır. Genetik biliminin kurucusu Gregor Mendel 1860'larda, genlerin kalıtımla gerçek şeyler gibi; sulandırılmadan, bölünmeden, karışmadan aktarıldığını açığa çıkardı. Öyleyse genler, her biri (s:19) organizmanın belirli bir özelliğini içeren, kalıtımla yavruya aktarılabilen küçük bilgi paketleridir diyebiliriz. 1920'lerde büyük genetikçi Thomas Hunt Morgan, genlerin hücrei içindeki yerlerini buldu. Bütün hücrelerde, çekirdek dedğimiz kapalı bir kap vardır. Hücre bölünüp iki hücre haline gelirken, ilk önce bu çekirdeğin bölündüğü, dolaysıyla hücre içinde önemli bir rolü olduğu daha önce de biliniyordu. Yani, tek hücrenin servetini yeni hücrelere eşit bölüştürme işlemi, çekirdekte başlıyordu. Dahası; mikroskop, çekirdeğin içinde kromozom denilen iplik gibi yapıları açığa çıkardı. Bu yapılar, çekirdeki bölünmeden kendilerini bir kat artırıyorlar ve her kromozom dizini, bir yeni “yavru” hücrenin içine yerleşiyordu. Bu düzenleme yüzünden, koromozomların genlerin yuvaları olmalarından kuşkulanıyorlardı. Morgan, adi meyve sineklerini deney hayvanı olarak kullanarak bunun gerçekten de doğru olduğunu, bir dizi ince deneyle kanıtladı. Bu işi tamamlandığında, genlerin kromozom ipliklerinin etrafında top top sarılmış oldukları artık biliniyordu. Genler Neden Yapılmışlardır? Kromozomlar (genler) neden yapılmışlardı? Biyolojide kuşkusuz çok önemli bir yeri olan Oswald Avery’nin deneyleri bu soruya çok açik ve parlak bir yanit getirdi. Çalişmalari, şimdi “moleküler biyoloji” dedigimiz modern çagi açti. 1940'larin başinda Avery, iki tarafli zatürreye (akciger iltihasbi) neden olan bakteriyle ugraşiyordu (penisilin bulunmadan önce, en büyük ölüm nedenlerinden biriyldi bu hastalik). Yaptigi deneylerde açiklayamadigi şaşirtici sonuçlar buldu. (s:20) Ölü zatürre bakterileri, kötü niteliklerini, zatürre yapmayan türden canli bakterilere geçirebiliyorlardi. Bu, tehlikeli ölü bakterilerin, canli ve zararsiz bakterileri tehlikeli hale getirebilmeleri demekti.Bu nitlik bir defa geçirilince artik kalici oluyor ve bir zamanlar iyi huylu olan bakterilerin gelecek kuşaklarina kalitimla geçiyordu. Hastaliga neden olabilme kapasitesi bir veya bir grup özellekten kaynaklanir. Bu özellikler, genler tarafindan kontrol edilir ve kalitimla geçirilirler. Avery, ölü baterilerin parçalandiklarini, vücutlarinin bilgi taşiyan kimyasal maddeler çikardigini, canli baketirelirn de bulari besin olarak kullandiklarini düşündü. Yani genler, canli bakterilere girip onlarin kalitimlarini belirtiyorlardi. Avery ve arkadaşlari, bu gene benzer maddeyi kesin olarak belirlemek üzere çalişmaya başladilar. İnsan, Tıp bilimi için, genlerin kimyasal özelliklerinin bulunmasından daha önemli bir problem olabileceğini düşünüemez. Ancak bu kesinlikle insanlar, hatta hayvanlar üzerinde de incelenebilecek bir problem değildi. Neyse ki zatürre yapan bakteriler, Avery’e uygun bir sistem getirdiler. Bu iyi ve değerli bir model-deney sistemi örneği oluşturuyordu. Aslında, bütün genetik bilgi birikimi, 100 yıl önce Gregor Mendel’le başlangıcından bugünkü araştırmalara kadar, büyük ölçüde basit deney modellerine dayanır. Bezelyeler, meyve sinektleri, ekmek küfü ve bakteriler... Avery’nin üzerinde çalıştığı bakteriler geretik olarak birbirinin tıpkısıydı. Başka cinslerle karışmamış, safkan bakterilerdi bunlar. Hızla üreyebiliyorlardı öyle ki kalıtım özelliklerini birçok kuşağın üzerinde izlemek olanaklıydı. Zatürreye neden olma yetenekleri, farelere verilerek kolayca ölçülebiliyordu. Avery’nin yaptığı önemli deneyleden biri, probleme açık bir yanıt getirdi. Ölü bakterilerden dağılan bir molekül karışımını aldı ve içine DNA’yı “bozan” bir enzim ekledi. DNA’nın bozulması, karışımın zararsız bakterileri zararlı bakteriye çevirebilme yeteneğine bir son verdi. Buna ek bir deneyle Avery ve arkadaşlari, zararsiz bakterileri hastalik yapan bakteriye çeviren maddenin “deoksiribonükleik asit” veya DNA oldugunu kanitladilar. DNA: Deoksiribonükleik Asit Aslında, DNA’yı Avery bulmadı. Bu işi, Avery’den altmış yıl önce Friedrich Miescher adında bir araştırmacı yapmıştı. O ve onu izleyen bilim adamları bu konuda bir sürü kimyasal bilgi toplamışlardı. DNA’nın zinci şeklinde birbirine bağlı, büyük miktarlarda fosforik asit içeren “nükleotid” denilen moleküllerden oluştuğu biliniyordu. Bunlar, o zamana kadar hücrede bilinen en büyük moleküllerdi. Avery, DNA’nın kalıtımın temel maddesi olduğunu gösterdi. Başka ir deyişle “bir şeyi kalıtımla geçirmek demek, bir parça DNA aktarmak demektir”. Genler DNA’dır. Bilgi DNA’dır ve DNA bilgidir. Avery’nin ispatından beri, DNA konusunda bilinenler öyle şaşırtıcı bir hızla arttı ki, 1960'larda (s: 22) artık bilginin DNA’da nasıl kodlandığını bu bilginin nasıl hücre maddesine dönüştüğü ve DNA’nın gelecek kuşakla paylaşılmak üzere nasıl kopya edildiğini biliyorduk. Bu zorlu yarışa bir çok bilim adamı katıldı; ama James Watson ve Francis Crick ’in DNA’nın doğru yapısının ikili sarmal, yani içiçe dönen iki zincir olduğunu düşünüp bulmaları en büyük aşamalardan biridir. Öyleyse işte DNA’nin temel özelliklerine bakalim: 1.Molekül zincir şeklindedir( Degişik basit molekül çeşitlerinin birbirine eklenmesinden oluşmuş zincir şeklindeki madde) 2.Olağanüstü uzun ve son derece incedir.Hücrenin çekirdeği 100 kere büyütülseyydi aşağı yukarı iğne ucu büyüklüğünde olacaktı, yani gözün ancak seçebileceği kadar. İte bu küçücük çekirdek içinde katlanmış durumda bulunan DNA açılırsa, boyu, bir futbol sahasının boyu kadar olur. 3. Zincirde dört çeşit halka vardir (nükleotid denilen moleküller). Isimleri adenilik asit, guanilik asit, sitidilik asit ve timidilik asit; kisaltmalari A. G, C ve T. 4. Bu dört tür halkanın bağlanma biçimi, adi bir zincirin halkaları gibi birbirinin aynıdır. 5. Halkaların şaşmaz bir düzeni vardır, bu kitaptaki harflerin düzeni gibi. Bundan sonra, zincirler üzerine söyleyecek çok şeyimiz olacak. Bir zinciri her resimleyişimizde, buradaki beş biçimden hangisi en uygun, en açiklayicisiysa onu kullanacagiz. Kuşkusuz, gerçek zincirlr bizim resimlerde gösterdiklerimizden çok daha uzundur. DNA = Dil = Bilgi Şimdi dört çeşit halkasi olan bir zincirimiz olsa ve bunun yeni bir bireyin oluşmasi için gerekli bütün bilgiyi içerdigini bilsek, bu sirrin halkalarin siralanmasinda veya düzenininde yattigi sonucunu çikarmamiz gerekir. Zincirin bu kadar çok anlam taşimasinin başka bir açiklamasi olamaz. Bilgi, böylece harita veya plan olmak yerine, düz bir yüzey üzerinde iki boyutlu bir şeye, daha dogrusu tek boyutlu “yazili” talimat dizinine dönüşür. Burada dille-benzetme (analoji) yapilabilir.DNA alfabesinin dört harfi var, ama bunlarla yazilabelecek mesajlarin sayisi sonsuzdur. Tipki iki harfli Mors alfabesiyle (nokta-çizgi) söylenebileceklerin sinir olmadigi gibi. Kitaplardaki harfler kağıt üzerindeki yerlerine göre diziler halinde bağlanmışlardır. DNA içindeki dört nükleotid halkası ise gerçek kimyasal bağlarla dizi halinde bağlanmıştır. Belli bir organizma içindeki toplam DNA’da bir kitap gibi düşünülebilir.(s:24) Bu kitapta, bütün harfler, deyimler, cümleler ve paragfraflar bir zincir oluşturacak biçimde birbirine eklidir. Organizmanın bütün bölümleri ve bütün işlevleri böylece tanımlanır. Bu organizmanın özdeş bir ikizi varsa, o da aynı DNA’ları içerir, aynı kitaptan bir tane daha diye düşünülebilir; ne bir harf, ne bir sözcük farklıdır ikisi arasında. Aynı türün başka bir organizması da, gramerda sık sık ve göze çarpıcı farklar olduğu halde, benzer bir kitabı oluşturur. Değişik türlerin kitapları, içlerinde bir sürü benzer cümleler de olsa oldukça değişik öyküler anlatırlar. Yukarıdaki benzetmede zincirin parçaları olan genler, aşağı yukarı cümlelerin krşılığıdırlar. Bir gen, organizmanın belirli bir yapısını oluşturan veya işlevini gören bir harf (nükleotid) dizidir. Genler, çok uzun bir DNA molekülünde arka arkaya eklenmiş cümleler gibidirler. Bir İnsan Oluşması İçin Ne kadar Bilgi Gerekli? Bilginin ne olduğunu gördükten sonra isterseniz, canlıları oluşturmak için ne kadar bilgi gerektiği üzerine kabaca bir fikir edinelim: 1. Bir bakteri, canlı yaratıkların en basitlerindendir, 2 000 civarında geni vardır. Her gen 100 civarında harf (halka) içerir. Buna göre, bir bakterinin DNA’sı en azından iki milyon harf uzunluğunda olmalıdır. 2. İnsanın, bakteriden 500 kat fazla geni vardır.Öyleyse DNA en azından bir milyar harf uzunluğundadır. 3. Bir bakterinin DNA’sı bu hebsaba göre, her biri 100.000 kelimelik 20 ortaama uzunlukta romana, insanın ki ise bu romanlardan 10.000 tanesine eşittir! Dilden Maddeye DNA dilinin anlamı, belirli bir canlı organizmayı tanımlamasındadır. Başka bir deyişle genler, maddenin, yaşamın gerçek özünün, gerçek canlı unsurun yaratılması için gerekli bilgiyi verirler. DNA dili fizik olarak yaşamaya, nefes almaya, hareket etmeye, et üretmeye nasıl çevrilebiliyor? Bu soruyu yanıtlamadan önce, nelerden yapılmış olduğumuzu bilmemiz gerekir. Proteinler Bu konu zor görünebilir ama aslında öyle değil. Bizi oluşturan en önemli malzeme proteindir denilebilir. Diğer yapı maddelerimiz (su, tuzlar, vitaminler, metaller, karbohidratlar, yağlar vb.) proteinlere destek olmak üzere bulunurlar. Proteinler yalnızca kütlemizin (suyu saymazsak) çoğnu oluşturmakla kalmayıp, aynı zamanda vücut ısımızı, hareketlerimizi ayarlarlar, düşüncelerimizin ve duygularımızın da temelini oluştururlar. Kısacası bizi oluşturan ve yaptığımız her şey proteinlere dayanır. Örneğin, kendimi gözlüyorum: bütün kütlesi proteindir; ne görüyorsam (kürkü, gözleri, hareket etmesi bile) proteindir. İçindeki her şyey de proteindir. Ayrıca kendime çok özel bir kişilik veren herşey de özel proteinlerle belirlenmiştir. DNA’nın yönlendirilmesiyle yapılan proteinler birey olmanın, tek olmanın, bütün türlerin fiziksel temelidir. Metal, otomobil için neyse, protein bizim için odur. Otomobilde başka malzemeler de vardır; ama yapıyı ve işlevi sağlayan en önemli eleman metaldir. Hem görünüşü, hem de işleme yeteneğini belirler. Bir arabanın diğerinden farkını; biçimini, niteliği ve metal kısımların durumu belirler.(s:26) Şimdi, yeni bir soru ve başka bir ayrintili inceleme için haziriz. Proteinler neden yapilmişlardir? İşte özelliklerinin listesi: 1. Zincir moleküldürler. 2. Uzundurlar ama DNA kadar değil. 3. Yirmi çeşit protein halkasi vardir. Bunalara amino asitler denir. 4. Yirmi birimin de bağlantı biçimi tamamen aynıdır. 5.Yirmi birimin veya halkanın düzeni veya diziliş sırası hassas ve kesindir. Bu düzen, hangi protein olduğunu ve sonuçta işlevinin ne olduğunu belirler. Amino asitler, isimlerinin ilk üç harfi eklenmiş zincir halkalariyla gösterilirler. Yirmi amino asit şunlardir: fenilalanin, leusin, izoleusin, metyonin, valin, serine, prolin, treoinin, alanin, tirosin,histidin, glutamin, asparajin, lisin, aspartik asit,glutamik asit, sistein, triptofan,arjinin,glisin. Çeviri Bu beş özelligin DNA zincirininkine ne kadar benzedigini gördünüz. Halkalari özel bir düzende olan zincirler, protein alfabesinde yirmi çeşit harften oluşuyor;DNA alfabesinde ise dört harf var. DNA bilgisinin protein maddesine dönüşmesinin aslinda dildeki gibi bir çeviri işlemi oldugu hemen (s: 27) görülebilir. Dört harfli bir alfabedeki harf dizisinden, yirmi harfli bir alfabenin harf dizisine geçilmektedir. Mors dilinden (iki harfli nokta-çizgi alfabesinden) Ingilizce gibi yirmisekiz harfli alfabesi olan bir dile çeviri yapmaya da benzetilebilir bu. Bütün olan biten aslında bu kadar.Hücerelerin protein zincirleri içinde binlerce çok ufak, son derece basit çeviri makinesi var. Bunlara “ribosomlar” deniyor. Şu şekilde çalışırlar: Önce DNA bilgisinin bir bölümü, bir gen, bir enzim (bu işlemin hızlanmasına yardım eden bir protein) tarafından kopye ediliyor. Mesajcı RNA (mesajcıribonükleik asit) dernilen bu gen kopyası da bir zincirdir. RNA molekülleri,DNA moleküllerinin hemen hemen aynı zincir moleküllerdir; ama onlar kadar uzun değildirler. Bir DNA molekülü bir çok geni içerir, bir mesajcı RNA molekülü ise yalnızca bir tek genin kopyasıdır. Bu RNA moleküllerine “mesajcı” denir, çünkü genin mesajının, ribosomlar yolu ile DNA’nın hücredeki yeri olan çekirdekten proteinlerin yapıldıkları hücrenin çekirdek dışındaki kısmına (stoplazma) taşırlar.(s:28) Gen kopyası mesajcı RNA bir ucunu ribosoma bağlar, Ribosom okuyucudur;mesajcı RNA’nın içindeki nükleotidlerin (harflerin) dizilişini okur; ama bildiğimiz anlamlı bir sözcük çıkarmak yerine protein çıkarır. Bu şu şekilde gerçekleşir: Özel enzimler amino asitleri “transfer” RNA (tRNA) denilen küçük bir RNA molekülüne bağlarlar. Yirmi amino asitin her biri özel RNA molekülüne bağlanır. Amino asite bağlanmış tRNA’lar kendilerini ribosoma yöneltirler. Ribosom, gerekli tRNA’yı (bağlı amino asitlerle birlikte) o anda mesajcı RNA’dan okuduğu deyimlere uygun olarak seçer. Yani eğere ribosom mesajcıdan ala amino asitini (alanin) belirleyen bir grup nükleotid mesajını okumuşsa, bu amino asitin (Hayatın Kökleri, s:29) bağlı olduğu gruba uygun nükleotidleri olan bir tRNA seçer. Mesajcı nükleotidin, belli bir amino asite uygunluğu, nükleotidlerin doğal uygunluk ilişkisine dayanır.Mesajcı üzerindeki her nükleotid dizisi, transfer RNA üzerindeki uygun nükleotid dizisiyle mükemmel bir şekilde eşleşir. Her yeni aminoasit ve onun tRNA’sı ribosoma gelip uygun biçimde yerleştikçe, amino asit kendisenden önce ribosoma gelmiş olan amino asitle kimyasay olarak birleşir. Böylece, halkalar sırayla birer birer bağlanır. Ribosom mesajı okudukça protein zincirinin boyu durmadan inin okunma ıbitince, bütühn protein halkası serbest bırakılır. Böylece yeni bir protein doğmuş olur. Bir genboyu DNA’nın içindeki nükleotid dizilişi, bir protein içindeki amino asit dizisini tam olarak belirler. Bir gen, bir protein. Bir gen; bir protein kavramı bizim proteinlerin nasıl oluştuğunu öğrenmemizden çok uzun zaman önce bulunmuştu.1930'larda ekmek küfü üzerine bir dizi parlak deney yapan biyokimyacı George Beadle, bir teks gen içindeki değişikyiklerin, bir tek proteinde bozulmaya yol açtığını göstermişti.Buna dayanılarak yapılan çcalışmalar bakteri kullanılarak ilerletildi ve genişletildi. Bu büyük çalışma ve burada anlatacağımız niceleri, herman Müller’in 1920'lerdeki DNA’daki değişmelerin (mutasyon), istenildiğinde canlı sistemleri x-ışınlarına tutarak sağlanabaleceğini gösteren önemli buluşu olmasaydı başarılamazdı. DNA, bir hücrdede bulunan değişik p;roteinler kadar gen içerir (bakteride 2000; insanda 200.000). Protein yapan makinenin bu çeviri işlemindeki şaşmayan hatasizligi,kuşkusuz dikkate deger. bir hücrenin yaşamasi için gerekli binlerce proteinin üretilmesinde ancak bir-iki yanlişligüa yer olabilir. Insanlarin yahptigi hiçbir makine, bunun gibi 200 romana eşdeger bir yaziyi bu kadar az yanlişla yazamaz. t-RNA’nın Bulunması Hocam Paul Zamecnik ve ben, 1956'da transfer RNA’yı birlikte bulduk ve neye yaradığını açıkladık. Zamecnik daha önce ribosomların, üzerinde proteinlerin biraraya getirildiği strüktürler olduğunu göstermişti.Ben de bu tarihten bir yıl önce amino asitlerin özel bir dizi enzimle aktif hale getireilebildiğini (yani diğer amino asitlerle reaksiyona hazırlandığını) kanıtlamıştım (bu dördüncü bölümde anlatılıyor). Ama arada eksik bir şey vardı: amino asitlerin bağlanabileceği ve onlara (Hayatın kökleri, s: 31), mesajcı RNA’ların gösterdiği yerlere yerleştirilmelerini sağlayan kimliği kazandıracak bir şey. Paul Zamecnikle birlikte, hücreler içinde amino asitlere önemli bir yatkılnığı olan, yani onlarla olağandışı bir sıklıkla bağlanabilen küçük RNA molekülleri olduğunu gördük. Proteinin yapılışnıda ki eksik olan halkayı bulduğumuzu hemen anladık. Bir sürü yoğun ve zevkli deneyden sonra, ondan sonraki yılın sonlarına doğru,tRNA’nın protein yapımına katılım yönteminin size daha önce açıkladığım oldukça tam bir resimini elde ettik. Zincirlerden Üç Boyutlu Varlıklara Buraya kadar öykü yeterince doyurucu; canlı mekanizmalar, zincirleri dil olarak kullanırlar. Plandan bitmiş üretime geçmek, basit bir çeviri işidir. Ama hala aşmamız gereken bir engelimiz var. Çeviri bir simgeyi başka bir simgeye, tek boyutu tek boyuta, bir zinciri başka bir zincire, nükleotitleri amino asitlere dönüştürülüyor. Zincirden “maddeye” nasıl varabiliriz? Protein moleküllerinin görevlerini yerine getirmelerine, dokunabildiğimiz, kavrayabildiğimiz şeylere, tohumlara, çiceklere, kurbağalara, size, bana bir boyuttan üç boyuta sıçramak zorundayız demek ki. Yanıt, protein zincirleri içindeki halkaların yani aminoasitlerin özelliğinde yatıyor. Protein molekülleri, zincir oldukları halde asılnrad (fiziki olarak) gerçek zincirlerde olduğu gibi üç boyutlu yapılardır. Proteinin yirmi değişik amino asiti, etkisiz simgeler değildirler. Herbirinin kendine özgü kimyasal özellikleri vardır. Bazıları zincirdeki ikiz eşleriyle kimyasal bağlar yapmayı yeğlerken, bazıları daha çok asit, bazıları da alkali özelliğini gösterir. Kimi suyu aramak eğilimindeyken, kimi de sudan kaçar. bazıları öyle biçimlendirilmişlerdir ki zinciri bükebilirler. (s: 32). Birkaç tanesinin de bir proteinin yalnızca bir tek işe yaramasına katkıda bulunacak özel marfetleri vardır.Bu amino asitler zincirdeki yerlerine göre zincirin son biçimini belirler. Zincirler tamamlandıkları zaman, bir çeşit ip yumağı oluşturmak için kendi kendilerine içiçe dolanıp katlanırlar. çözülmüş zincirdeki amino asitlerin “sırası”, molekülün katlanmak için hazır olduğu zaman nasıl davranacağını, ne yapacağını “şaşmaz” bir şekilde belirler. katlanma biçimi de protein molekülünün şeklini, özelliklerini, işlevini belirler. Kas proteinler için, bir gen, protein yapar makinelere son bitmiş biçiminde katlanabeilecek ve komşu liflerin üzerinedn kayabilecek çok uzun bir protein zinciri yapmasini emreder. Böylece kisalabilen uzun lifler oluşur. kan hücrelerindeki oksijen taşiyan protein zinciri hemoglobin, özel bir üç boyutlu katlahnma biçimine sahiptir. Böylece yalnizca kendisine özgü bir yolla oksijeni tutma ve serbest birakma işlevini yerine getirebilir. Sonuç olarak herbirini siralanişi, genler içindeki nükleotidlerin siralanişiyla belirlenmiş binlerce protein zinciri, özel biçimlerde katlanip, özel işlevler elde ederler. Düzen Yaratmak, Çoğu Kez Zincir Yapmaktır Birinci bölümde düzen konusunda söylediklerimizi hatırlayın: Yaşam, sürekli düzensizliğe giden bir evrende düzene yönelik çalışır.Şimdi bunun ne demek olduğunu çok daha açıkça görebiliriz. Canlı olmak, daha önceden şaşmaz bir kesinlikle tanımlanmış bir düzenle, halkaları zincire eklemektir. Düzen bir defa kurulunca, son biçimin ve işlevin elde edilmesi hemen hemen kendiliğinden gelir diye düşünülebilir. İsterseniz, bir parçayı bir başka parçanın önüne koymak (Hayatın Kökleri, s: 33) kendiliğinden sonuca götürüyor diye düşünebilirz bu düzeni. Zayıf Kimyasal Bağlantıların Önemi Hücrelerin önemli molekülleri yani DNA,RNA ve proteinler üzerine yapılan bir çalışmadan çok ilginç bir genelleme ortaya çıkmıştır. Aslında “zayıf” kimyasal bağlantılar, yaşam için son derece önemil işlevler taşırlar.Güçlü bağlantılar (sağlam kovalent bağlar), amino asitleri protein içinde birbirine bağlayanlar cinsinden veya RNA ve DNA içinde nükleotidleri bağlayanlar cinsinden olanlardır.Bunlar zincirin her halkasında komşuyu sıkıca tutarlar. Zayıf bağlantılar ise bütün büyük zincirlerde katlanma noktalarını belirleyen ve molekülün biçimini sağlayanlardır. DNA’da iki zinciri,çift sarmalı oluşturmak iççin birarada tutan nükleotidler arasında zayıf halkalar vardır. Bunlar ileride göreceğimiz gibi RNA üretiminde çok greklidirler. Proteinin içinde,onu işlevine uygun katlanmış biçimlerde tutan amini asitler arasındaki bağalantılar da zayıftır. Ribosomlar üzerinde yeni protein yapımında,transfer RNA üzerinde tamamlayıcı biçimdeki nükleotidlere uydurarak,tam yerlerini “bulurlar”. Bu önemli bağlantıların özelliği,zayı oluşları yüzünden çok kısa sürmeleridir. Görevlerini yaparlar ve sonra kolayca çözülüp yeniden kullanılabilirler. Hayatla İçli Dışlı Cansız Varlıklar: Virüsler Virüsler ya da DNA’lı ya da RNA’lı proteinden yapılmışlardır. Yani ya DNA ya da RNA biçiminde bilgiyi içerirler ve protein biçiminde birşyelerin yerine geçebilen bir kimlikleri vardır. Ama yardımcısız kendi kendilerine üreyemezler. Yardım (s:34) canlı hücereler tarafından sağlanır. Virüsün proteinleri,onun bir hücre bulup içine girmesine yol açar. Virüs, orada kandini üretecek makinaları;hücrenin makinalarının bulur. Üreme işini tamamladıktan sonra kendisi ve yeni virüsler,aynı tatsız işi başka hücrelerde yinelemek üzere o hücreden çıkarlar.Bu olaylar sırasında virüs,”ev sahibi” hücreyi öldürebilir,ona zarar verebilir,değiştirebilir veya hiçbir şey yapmaz;bu virüsün ve hücrenin cinsinei bağlıdır. Bir virüsün hücrede neden olabileceği önemli bir değişiklik de onu kansere dönüştürmesidir. Bu esrarlı olay, 8. Bölümde göreceğimiz gibi en son kanser araştırmalarındaki yoğun çabaların temelinde yatlmaktadır. Hücrelerden daha basit oldukları halde,virüslerin daha ilkel olmadıklarını sanıyoruz. çok uzak geçmişte bir zaman, normal hücerelerine parçalarıyken kopup kendi asalak “yaşama” biçimlerini kurmuş olmaları mümkün görünüyor. Virüslerin bağımsız olarak üreme yetenekleri olmadığı için kendi başlarına canlı olduklarını düşünemiyoruz. Ölümlülük ve Ölümsüzlük Şimdi,bir bireyin yaratilmasinin bir dizi yazili talimat gerektirdigini biliyoruz. Bunlar milyonlarca yildir dikkate deger bir baglilikla tekrar tekrar kopye edilmişlerdir; ama her birey yalnizca birkaç on yil içinde yaşar ve ölür. O zaman bu talimatlarin ölümsüz olup olmadiklarini sorabiliriz. En azindan bir biyolog için her hangi bir şey ne kadar ölümsüz olabilirse,genetik bilgi de o kadar ölümsüzdür diyebiliriz. Aslinda ölümlü her birey,gelecek kuşaklara geçirilecek tarifnamenin geçici koruyucusudur;sopanin DNA oldugu bir bayrak yarişinda koşucu... Bir birey yaşaminin,ancak atalarindan çocuklarina geçirdigi bilgi kadar önemi (Hayatin Kökleri, s:35) vardir. Bazi güveler agizsiz dogarlar ve dogduklari andan başlayarak açiliktan ölüme mahkimdurlar. Tek işlevleri,çiftleşip daha çabuk yumurtlayarak güve bilgisini gelecek kuşaga geçirmektedir. Eğer DNA ölümlünün ölümsüzlüğü ise,insanları inatçı merakı,daha ötesini de sormadan edemez;Bütün bunlar nasıl başladı?(Hayatın Kökleri, s:19-36). Başlangiç Hangisi önce geldi, tavuk mu yumurta mı? Bu çok duyulmuş bir sorudur ama yanıtlanamaz. Yanıtlanamamasının sebebi “tavuk yumurtadan, yumurta tavuktan vs.” diye zaman içinde bitmez tükenmez bir geriye doğru sayış gerektrmesi değil, bu şekilde geriye giderken biriken küçük değişikliklerle tavuğun tavukluktan,yumurtanın da yumurta olmaktan çıkmasıdır.Tavuğun bir milyar yıl gerilere giden soy ağacını incelersek;tüylü arkadaşımızı,hayal gücümüzü ne ölçüde zorlarsak zorlayalım adına “tavuk” diyemeyeceğimiz atalara bağlayan bir değişimle karşılaşırız. Benim tahminim, bir milyar yıl önceki tavuk atasının her halde,toplu iğne başından küçük ve okyanusta yaşayan bir yaratık olduğu. Kendi soyumuzu gerilere doğru izlersek,yine buna benzer bir sonuçlar karşılaşırız. Ne kadar geriye gidebiliriz? Bir başlangiç oldugunu düşünmemiz gerek. Bundan önçeki bölümde sözü edilen,DNA’nin ölümsüzlügünü benzetmesine şimdi daha iyi bir perspektiften bakmaliyiz.Dünyamizin şimdiki canli biçimlerini dogracak tüm bilgiyi taşiyan bu kocaman moleküllerin,çok uzak bir geçmiş zamanda, alçakgönüllü bir başlangiçlari olmasi gerek. (s: 37) En iyi tahminlere göre yaşam; bundan üç milyar yil önceki Dünya'da başladi.Üç milyar yil önce Dünya'miz iki milyar yaşindaydive canlilari barindiracak kadar sogumay başlamişti.Son derece küçük ve oldukça basit deniz yaratiklarinin iki milyar yildan daha eski fosilleri var. Bu fosilleşmiş yaratiklarin atalari herhalde daha da küçüktü.. En ilkel canli biçimi, belki de bugün bolca bulunan basit tek hücreli canlilara hiç benzemeyen bir tek-hücreydi. Öyleyse bizim yoğunlaşacağmız soru şu: bir hücre,yaşamaya ilk olarak nasıl başlamış olabilir, bu aşama nasıl mümkün olabilir? Soru”hücre nasıl yaşamaya başladı?” değil;bu hiçbir zaman yanıtlanayacak bir sorudur. Çünkü bu olaya tanıklık edecek kimse yoktu o zaman; ama yaşamın nasıl oluşabileceğini sormak hakkımızdır. Akıllıca tahminler ve olasilıkıları gösteren deneyler yapabiliriz. Gerekli Maddeler Jeologların, paleontologların, fizikçilerin,biyologların çalışmalarına dayanarak,dünyanın üç milyar yıl öncesi nasıl bir yer olabileceği konusunda oldukça iyi bir fikrimiz var. Bilim kurgu kitapları ve filmelri olayı çok canlı ve belki de doğru resimliyorlar;lav ve kayalardan oluşmuş,gri, tümüyle kısır,hiç yeşili olmayan manzaralar,patlayan yanardağlar,sivri dağ tepeleri,buharlaşan denizler,alçak bulutlar,arada çakan şimşeklerle gürültüyyle parçalanan ve sürekli yağan yağmurlar. Herhangi bir canlı tarafından görülmemiş ve duyulmamış olaylar. Kuşkusuz bu, sizin ve benim için çok sefil bir ortam olurdu. ÜAma yaşamın başlangıcı için iyi bir düzendi. Herşeyi harekete geçirmek için gerekenler şunlardı: 1. Ilık bir ortam 2. Çok miktarda su(s:38) 3. Gerekli atomların kaynakları/karbon,hidrojen,oksijen,nitrojen ve fosfor) 4. Enerji kaynağı. Su ve ısı, sorun değildi. Dünya soğurken, milyonlarca yıllık yağmur okyanusları doldurmuş hala sıcak olan Dünya bu okyanusyarı ısıtmıştı. Şimşekler bol bol enerji sağlıyorlardı. Bulutlar aralandığı sıralarda da Güneş’ten ulraviyole ışınları geliyordu(Bu ışınlar o zaman şimdi olduklarından çok daha güçlüydüler, çünkü atmosferimizi sarran ozon tabakası henüz oluşmamıştı. Ozon, yeryüzünde bitki yaşamının sonucu olarak yavaş yavaş birikmiş bir oksjijen tabakasıdır. Bu tabaka ultraviyole ışınlarını geçirmez). Bu koşullar;kuşkusuz başlangiçta,en basit birimlerin,bilgi zincirlerinin (DNA) ve hücre maddesi zincirlerinin (protein) oluşmasi için yeterince basitti. Ama zincirlerimiz olmadan önce halkalarimizin olmasi gerekir. Önce DNA nükleotidleri ve proteinlerin amino asitleri oluşmalidir. Bildigimiz gibi, bu halkalar ufak moleküllerdir. Bunlar, karbon, hidrojen,oksijen,nitrojen ve fosfor elementlerinin kimyasal olarak baglanip düzenlenmeleriyle oluşurlar. Basit Moleküllerin Doğuşu Öyleyse işte senaryomuz: Deniz suyunda erimiş karbon,hidrojen,oksijen,nitrojen ve fosfor içeren basit bileşikler, ultraviyole işinlari ve şimşeklerle sürekli bombardiman edilmiyorlar. Bu arada bir kismi kalici ve dengede olan,degişik kombinasyonlara da zorlaniyorlar. İşlem yüz milyonlarca yıl boyunca sürerken,denz, elemanlarının değişik kombinasyonları yönünden giderek zenginleşiyor. Yeni moleküller,bu arada nükleotidler ve amino asitler birikiyor. Sonunda denizin son derece bol ve bütün yeni molekül(s:39) çeşitlerini içeren koyu bir çorbaya dönüştüğüü bir zaman geliyor. Zamanın Önemi Sözkonusu süreçte zamanın önemini kavramak için biraz duralım. Zaman ne kadar uzun olursa bir şeylerin olması da o kadar olasıdır. Kimyasal tepkimeler için de bu doğrudur. Zaman sınırlaması olmazsa,yeterince uzun süre beklenirse en olanaksız tepkimeler gerçekleşebilir. Eğer bu tepkimelerin ürettikleri bileşikler kalıcı (dengeli) iseler, deniz suyunun nisbeten değişmez maddeleri haline geleceklerdir. İçinde canlı Olmadığı için Çorba Varlığını sürdürebilir Şimdidenizin çorba gibi olma düşüncesi size aşiri görünebilir. Bunun bugünkü deneylerimizle karşilaştiralabilecek hiçbir yani yoktur. Böyle zengin bir oluşumun birikmesi,canlilar onu hemen yiyip biterecegi çin bugün belik de olanaksizdir. Bakteriler ve diger açgözlü yaratiklar şimdi çok kalabaliklar ve ne zaman iyi bir besin kaynagi belirse,hemen onu tüketiyorlar. Kaynak kuruyana kadar üreyip sayilarini arttiriyorlar. Görüyorsunuz ki eskiden yaşam olmadiggi için okyanuslar çorba gibi olabilirdi. Eski Olayların Laboratuvardaki Benzerleri Aslında,anlattıklarımız hiçbir zaman kanıtlanamayacak bir hipotez. Yine de biz,laboratuvarda bunların olabileceğini gösterebiliriz,Eskiden olduğu öne sürülen koşulların laboratuvarda istenen tepkiyi sağlaması kuşkusuz olanaklıdır. Üç milyar yıl önce denizde bulunduğu (s: 40) düşünülen basit bileşikler bir cam kapta suda eritilebilirler. Kap, şimşekylerin enerji katkısını sağlamak üzere bir elektrik kaynağına bağlanır. Ssitemin bütün parçaları hiçbir canlı hücre olmadığından emin olabilmemiz için önceden sterilize edilir. sonra kaptakilerin bir süre pişmesi için elektrik verilmeye başlanabilir. sonunda kap açılıp içindekiler incelenir. Bu deneyin yapılmış olduğunu ve sonucun tümüyle inandırıcı olduğunu sevinerek söyleyebilirim. Hem nükleotidler hem amino asitler beş elementten bu şekilde oluşturulabildiler. yani yaşam zincirlerinin halkaları, deniz benzeri bir ortamda şimşikleri enerji kaynağı olarak kullanılmasıyla üretildi. Zincir Moleküllerinin Doğuşu Bundan sonraki adım,açıkça görülüyor ki halkaları,DNA gibi ve protein gibi zincirler oluşturmak için birleştirmektir.İlkel koşulların laboratuvarda yapılmış benzerlerinin,halkaların oluşumu aşamasını sağlamasına bakarak,çalışma ilerletilirse halkaların zincir biçiminde eklenebileceğini de düşünmek akla yakındır. Nitekim kısa zincirlerin oluştuğunu gröüyoruz. Basit kimyalarıyla bugünün DNA’larına ve proteinlerine benziyorlar. Yined hatırlayalım, bu deneyler yalnızca oylabileceğini gösterir, ne olduğunu değil. Durum, Thor Heyerdahl’ın Polinezya Adaları halkının Güney amerika’dan batıya yelken açarak, şimdiki yurtlarını buldukları savını kanıtlamaya çalışırken kaşılaştığından farklı değil. sal üzerinde aynı yolculuğu başarıyla yaparak,yalnızca polinezyalıların gerçekten bu yolculuğu yaptığını kanıtlamış olmadı, benzer taşıt kullanan herhangi birinin de aynı işi yapabileceğini gösterdi(s:41) Bir Hücreye Doğru Bu noktadan sonra,hücdreyi daha çok tanımak için beş önemli adıma daha göz atabiliriz. Hücrenin ikiye bölünmesi DNA’nın ikiye bölünmesi Zarlar Çift zincirli DNA Yapısal proteinler Enzimler tek zinciril DNA Proteinler Yağlar Nükleotidler Aminoasitler karbon, hidrojen,oksijen, azot(nitrojen) ve fosfor 1. Enzimlerin ortaya çıkması Enziler, hücre içindeki bütün kimyasal tepkimeleri hızlandıracak özel protein molekülleridir. Bugün canlı hücre;herbiri kenid özel işini yapan, besin maddelerini parçalayan,besinden enerji üreten, basit moleküllerden zincir yapımını kolaylaştıran ve sayısız başka işler yapan binlece enzim içerir. Olayların denizdeki başlangıt çağlarında yavaş gelişimleri, ancak enzimlerle hızlandırılabilirdi, İlk enzimler, raslatısal olaramk birbiren eklenmiş kısa aminoasit zincirleri olsa gerek. Tekrar tekrar “deneme-yanılma”yla bu kombinasyonların bazıları; birtakım reaksiyonları hızlandırabilecek,yalnız kenidlerine özgü bir yeteneği elde etmiş olmalılar.(s: 42) 2. DNA’nın çift Kat oluşu. Okyanuslar boyunca DNA zincirinin rasgele eklenen nükleotidlerle yavaş yavaş uzamasini gözünüzün önüne getirmeye çaliştiginzda baszi anlamli diziler oluşcaktir.Burada “anlamli”, birkaç yeni ilkel proteini yapmak için gereken bilgiyi içermek olarak kullanilmiştir. Bunladan bazilari, yararli enzimler veya önemli yapilarin parçalari olacktir. Basit bir çift kat halinde birleşme bunu sagladi. birbiren sarilmiş ipliklerin zarar görmesi,ayri ayri tek başlarini olduklari zamandan daha az olasiydi.Dahasi, çift kat olmak,DNA’nin üremesi için gereklidir. 3. DNA’nın Çoğalması Bu, çift sarmal DNA zincirindeki her ipliğin,kendisini tıpatıp bir kopyasını yapması,sonuçta ikinçci bir çift sarmalın(s:43) oluşması demektir. son erece basit ve zarif olan bubişlem,bir halatın çözülüp ayrılışı gibi iki zincirin birbirinden ayrılmasıyla baş

http://www.biyologlar.com/evrim-konusunda-ilk-dusunceler

Keneler Hakkında Bilgi

Keneler Keneler zorunlu kan emici artropodlar olup, Dünya’nın her bölgesinde gözlenmektedirler. Ülkemizde halk arasında kene, sakırga, yavsı, kerni gibi isimlerle bilinmektedirler. Kenelerin sistematikteki yeri ve önemli türlerin isimleri aşağıda verilmiştir. Anaç: ARTHROPODA Anaç bölümü : CHELICERATA Sınıf altı: Acarina (Acari) Dizi: Metastigmata Aile: İxodidae Soy: İxodes Tür: İxodes ricinus Soy:Hyalomma Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Soy: Amblyomma (Türkiye’de yok) Tür: Amblyomma variegatum Soy: Haemaphysalis Tür: Haemaphysalis parva Tür: Haemaphysalis sulcata Tür: Haemaphysalis punctata Tür: Haemaphysalis inermis Soy: Dermacentor Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Tür: Rhipicephalus appendiculatus (Türkiye’de yok) Aile:Argasidae Soy: Ornithodorus Tür: Ornithodorus lahorensis Soy: Argas Tür: Argas reflexus Tür: Argas persicus Soy: Otobius Tür: Otobius megnini Günümüzde Argasidae ve Ixodidae ailelerine bağlı 850 türü bilinmektedir. Amblyomma soyu dışındaki soylara bağlı birçok kene türü, Türkiye’de yaygın olarak bulunmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Genel Morfolojik ve Biyolojik Özellikler Keneler morfolojik olarak diğer artropodlardan farklı olup, vücütları tek bir parçadan oluşmuştur. Vücudun ön tarafında ağız organelleri yer almktadır. 1.Aile: İxodidae (şekil 1) İxodidae ailesindeki türlere sert kene, mera kenesi veya yaz kenesi denir. Bu ailede bulunan türlerde caput, thorax ve abdomen tamamen birbirleriyle birleşmiştir. Olgunlarında ve nimflerinde 4 çift ayak , larvalarında ise 3 çift ayak vardır. Nimflerinde genital organlar henüz oluşmamıştır. Dorsalden bakılınca ağız organelleri görülebilir. Ağız organellerinin oturduğu kısıma basis caputili denir. Ağız organellerinin arkasında dişilerde vücudun önünde ve üst kısmında okul önlüğü yakası şeklinde kitini bir organ teşekkül ederki buna scutun denir. Erkeklerde bu oluşum dorsalde tüm vücudu kaplar, buna conscutum denir. Bu bakımdan erkekler kan emdiği zaman vücutlarında değişiklik olmaz. Buna karşılık dişiler kan emip doyunca normal büyüklüğünün 10 katı kadar genişleyebilir. Ağız organelleri 1 çift chelicer, chelicer kılıfı ve hipostom denilen delmeye ve kan emmeye yarayan organelden oluşur. Bu organellere rostellum denir. Rostellumun iki yanında bir çift palp bulunur. Ayrıca kenelerin dorsal kısmında, tür tayininde önemi olan, çukurluklar, feston, cervical oluklar ve noktalamalar bulunur. Ventralde ise anüs ile ikinci çift coxalar hizasında genital delik bulunur. Bu yüzde dişilerde anal oluk, erkeklerde ise kitini plaklar yer alır. Yine ventralde 4’üncü coxanın arkasında bir çift stigma bulunur. Ayaklarının sonunda bir çift tırnak ve tırnakların ventral yüzeyinde ise tutunmaya yarayan zar şeklinde pulvillum adı verilen organel vardır. (Argasidae’lerde bu organel yoktur). Önde birinci çift ayakta tarsuslar üzerinde Haller organeli denen bir çukurluk yer almıştır. Bu yapı duyu organelidir. Dişi kenelerde ovaryum ile barsak irtibat halindedir. Bu yüzden bazı keneler kan emerken parazitleri sindirim sisteminden ovaryumlarına geçirirler. Bu parazitler ovaryumdan yumurtaya geçerek, yumurtadan çıkan larvaları enfekte ederler. Bu larvalar kan emerken parazitleri de hayvanlara taşırlar (transovaryal nakil). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Biyoloji Keneler kan emerek beslenir, ancak bu diğer kan emen artropodlardan farklıdır. Keneler konakların tutunup ağız organellerini deri içine sokarlar ve burada sabitlenip doyana kadar aynı yerden kan emerler. Argasidaeler çok kısa sürelerde çok miktarda kan emip doydukları halde, Ixodidae ailesindeki kenelerin doyması için birkaç gün ile birkaç hafta arasında süre gerekmekte, hata bu süre içinde bazı Ixodidae türleri gömlek değiştirip diğer gelişme dönemlerine geçmektedirler. İxodidae türleri, genellikle ilkbahar ve sonbahar mevsimleri arasında aktiftirler. Bunlar evcil hayvanların kulak kepçesi içinde ve dışında, boyun altında, karın, anal ve perianal bölgeler ile sırt ve kuyruk üzerinde bulunurlar. Dişi keneler, erkeklerden daha fazla kan emerler. Hayatları boyunca geçirdikleri her dönemde (larva-nimf-olgun ) mutlaka kan emmek zorundadırlar. Erkek ve dişiler kan emme esnasında çiftleşirler. Ovipardırlar. Dişi keneler yumurtalarını taş, toprak ve merada yaprakların altına, toplu ve birbirine yapışık şekilde bırakırlar.Yumurtlama süresi ve miktarı, dişi kenenin az veya çok kan emmesine ve diğer dış faktörlere bağlı olarak değişir. Ayrıca türlere göre de yumurta sayısı değişiklik gösterir. Ortalama 3.000-15.000 arasında yumurta yumurtlarlar. Dişiler yumurtladıktan sonra ölürler. (Argasidae türleri ölmez). Yumurtadan çıkan larvalar 3 çift bacaklıdır. Birinci çift ayak tarsuslarında bulunan Haller organı konak bulmaya yarar. Türlere göre farklı sürelerde konaklardan kan emerler ve kan emdikten sonra yine değişen sürede gömlek değiştirirerek. 4 çift ayaklı nimf olurlar. Nimflerde larvalar gibi henüz genital organlar gelişmemiştir. Aç olan nimfler kan emer doyar ve gömlek değiştirdikten sonra aç olgun hale gelir. Erkek ve dişi olgun keneler kan emerken çiftleşir ve doyduktan sonra dişi toprağa düşer ve yumurtlar. Bu siklus böyle devam eder. Biyolojik gelişmeye göre konak değiştirmeleri esas alınarak İxodidae ailesine bağlı türler 3 grupta toplanır. a-Bir konaklı kene: Merada yumurtadan çıkan larvalar konak hayvana hücum eder, ondan kan emip doyduktan sonra konak üzerinde gömlek değiştirip nimf olur. Aç nimf kan emip doydukyan sonra konak üzerinde gömlek değiştirir. Ortaya çıkan aç olgun kenenin erkek ve dişisi kan emdikten sonra çiftleşir, dişiler konak hayvanı terkedip toprağa düşer yumurtlar ve ölür. Yani larva-nimf ve olgun safhalar bir hayvanda geçer. Örneğin, Boophilus annulatus. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com b-İki konaklı kene: İki konaklı kenelerde, larva ve nimf dönemini bir konakda geçirir, nimfler kan emip doyduktan sonra konak hayvanı terkederler. Meskende veya merada gömlek değiştirip aç olgun hale gelirler. Aç olgun keneler ikinci bir hayvana hücum ederek ondan kan emer, çiftleşir ve doyar. Daha sonra dişi kene toprağa düşer, yumurtlar ve ölür. Yani larva-nimf bir hayvanda, olgunu ise başka bir hayvanda geçer. Örneğin, Hyalomma türleri ve Rhipicephalus bursa. c-Üç konaklı kene: Üç konaklı kenede larva bir hayvandan kan emip doyar ve toprağa düşer.Toprakta gömlek değiştirip aç nimf olur.Aç nimf’ler ikinci bir hayvana hücum ederler. Ondan kan emip doyduktan sonra toprağa düşerler ve gömlek değiştirip aç olgun kene haline gelirler. Aç olgun keneler üçüncü bir hayvana hücum eder, kan emer ve çiftleşirler. Doyduktan sonra dişiler konak hayvanı terkedip toprakta yumurtlar ve ölürler. Yani bu kene türleri, larva, nimf ve olgun dönemlerinde ayrı ayrı veya aynı hayvana 3 kez gelmek suretiyle kan emer, gömlek değiştirme dönemlerini ise toprakta geçirirler. Dişiler yine yumurtalarını tprağa bırakırlar. Örneğin, İxodes ricinus, Dermacentor marginatus ve Haemophysalis punctata. İxodidae ailesine bağlı soylar, kenelerin ağız organellerinin uzun yada kısa olmasına göre birbirinden ayırtedilebilir. Ayrıca anal oluğun anüsü önden ve arkadan çevirmesi de soy ayrımında kullanılır. Buna göre İxodidae ailelerinde 7 soy vardır (Şekil 2). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 2. Ixodidae ailesinde bulunan soyların ayırım anahtarı. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şelil 2. Ixodidae ailesindeki soyların ayırım anahtarı Anal oluk anusun önünde Soy: BOOPHILUS Soy: RHIPICEPHALUS Soy: DERMACENTOR Soy: ANOCENTOR 7 feston 11 feston Feston var, anal oluk belirgin, Coxa I’de derin yarık var Feston yok, anal oluk belirsiz, Coxa I bütün Basis capituli altıgen şeklinde Basis capituli dikdörtgen şeklinde Soy: HAEMAPHYSALIS II. Palp eklemi laterale çıkıntı yapar II. Palp eklemi düz Soy: AMBLYOMMA Soy: HYALOMMA Ağız organelleri Basis capituliden çok daha uzun, II. Palp ekleminin boyu eninden daha fazla Ağız organelleri Basis capituli ile yakın uzunlukta, II. Palp ekleminin eni ile boyu birbirine yakın Soy: IXODES Anal oluk anusun arkasında Capitulum terminalde yerleşmiş, üstten bakıldığında görülür, Scutum var Capitulum ventralde yerleşmiş, üstten görülmez, Scutum yok Argasidae Ixodidae Basis capituli II. Palp segmenti Basis capituli II. Palp segmenti Anal oluk Anus Ağız organelleri uzun olanlar Soy: İxodes Sadece bu soyda anal oluk anüsü önden çevirir. Ayak çiftleri öne yakındır. Göz yoktur. Türkiye’de tek türü bulunur. Tür: İxodes ricinus Soy:Hyalomma Palplerin ikinci ekleminin boyu eninin 2 katıdır.Bacakları uzun yapılıdır (Şekil 3). Göz vardır. Bu soya bağlı 5 tür Türkiye’de bulunmaktadır. Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Şekil 3. Hyalomma sp. (erkek) Soy: Amblyomma Bu soya bağlı türler Afrika keneleridir. Ağız organelleri çok uzundur. Scutum üzerinde renkli alanlar mevcuttur.Göz vardır. Bir tür Türkiye’de Suriye sınırında bir vakada bildirilmişse de, ülkemizde olmadığı kabul edilmekltedir. Ağız organelleri kısa olanlar Soy: Haemophysalis Palplerin ikinci eklemi bazis caputuliyi yanlardan aşar. Göz yoktur. Daha çok Sonbahar ve Kış aylarında görülür. Bu soya bağlı 4 tür Türkiye’de bulumaktadır Tür: Haemophysalis parva Tür: Haemophysalis sulcata Tür: Haemophysalis punctata Tür: Haemophysalis inermis Soy: Dermacentor Bazis caputuli ağız organellerini yanlardan aşmıştır. Göz vardır. Scutum üzeri gri, açık kahverengi ve beyaz renklerde nakışlıdır. Daha çok Sonbahar aylarında aktiftirler ve konak hayvanların koyruk uçların bulunurlar. Türkiye’de 2 türü yaygındır. Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Ağız organelleri çok kısa olup, coxa 1’de yarık yoktur. Göz vardır. Türkiye’de bir türü bulunur. Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Coxa 1’de derin bir yarık olmasıyla Boophilus türlerinden ayrılır.Göz vardır. Bu soya bağlı 3 tür Türkiye’de yaygındır. Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Keneler, insan ve hayvan hastalıklarının naklinde rol oynayan en önemli vektörlerdendir ve diğer artropod gruplarının aksine bir çok çok farklı yapıdaki enfeksiyöz etkenleri (bakteri, virus, parazit, mantar) taşıyabilme yeteneğine sahiptirler. Kırım-Kongo Kanamalı Ateşi ve Keneler KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden askerlerde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda önem kazanmıştır. Ixodidae ve Argasidae ailesine bağlı 31 kene türünün virusun vektörü olabileceği bildirilmesine rağmen, bunların tümünün vektör potansiyeli gösterilememiştir. Kenenin tam anlamı ile vektör kabul edilebilmesi için, etken izolasyonu dışında, kenenin virusu duyarlı hayvanlara aktarabilme ve viremik hayvanlardan alabilme yeteneğinin de olması gerekmektedir. Bu kriterler yukarıda bildirilen 29 türden sadece bazılarında gözlenebilmiştir. Bunun yanında bazı türler virusu hem transovarial hem de transtadial olarak taşırken bazıları sadece transtadial olarak taşıyabilmektedir. Günümüzde hastalığın başlıca vektörlerinin Hyalomma marginatum marginatum, H.m.rufipes ve H.anatolicum anatolicum olduğu kabul edilmektedir. Ancak, Hyalomma türlerinin olmadığı bazı ülkelerde etkenin Ixodes ricinus, Dermacentor spp., Rhipicephalus spp. ve Boophilus annulatus gibi kenelerden izole edilmiş olması, diğer kenelerin de vektörlük potansiyelinin düşünülmesi gerektiğini göstermektedir. H.a.anatolicum ve H.m.marginatum genellikle iki konutlu gelişim gösterirler. H.a.anatolicum’un, gerek larva ve nimfleri, gerekse erişkinleri genellikle evcil ruminantları (özellikle sığırları) tercih etmesine karşı, H.m.marginatumun’un genç gelişme dönemleri (larva ve nimf) çoğunlukla küçük hayvanları (tavşan, kirpi, kanatlılar, fare, yabani memeliler) ve az olarak da büyük memeliler ve insanı tercih etmekte, erişkinleri ise ağırlıklı olarak evcil memeliler (sığır, at, koun, keçi, köpek) ve az olarak da küçük memeliler (tavşan, kirpi) ile insanı tercih etmektedir (Şekil 4). Göç eden kuşlar bu kenenin bölgeler arasında yayılışından büyük ölçüde sorumludur. H.marginatum, Güney Avrupa, Kuzey Afrika, Anadolu, Kafkaslar ve Eski Sovyet Cumhuriyet’lerini içine alan geniş bir yayılış alanına sahiptir. Bu keneler Şubat ile Aralık ayları arasında hayvanlar üzerinde görülebilse de, erişkinler Mart-Ağustos, larva ve nimfler ise Haziran-Kasım dönemlerinde aktif olarak kan emerler. Kışı, genellikle doymuş nimf veya aç erişkin şeklinde, ahırlardaki duvar çatlaklarında veya meralardaki (yarı-ormanlık alanlarda) kemirici yuvaları, toprak içinde veya ağaç kovuklarında geçirirler. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 4. Hyalomma m.marginatum’un yaşam döngüsü. (Konak hayvanların büyüklükleri kenenin tercih sırasına göre orantılanmıştır). Kenelerle Mücadele Günümüze kadar kullanılan hiç bir mücadele yöntemi (bir kaç sınırlı alan hariç), tam bir kene eradikasyonu sağlayamamıştır. Hali hazırda kene eradikasyonunun neredeyse olanaksız olduğu kabul edilmektedir. Yapılan çalışmalar 2 temele dayanmaktadır: I. Kenelerle nakledilen hastalıkların ortadan kaldırılması veya azaltılması (aşı çalışmaları vs) II. İnsan ve hayvanlardan kan emen kenelerin sayısını düşük maliyetlerle kabul edilebilir sınırlara indirilmesi a. Akarisid kullanımı Kenelerle mücadele genellikle konak hayvanların ve çevrenin düzenli aralıklarla akarisid ilaçlarla ilaçlanması esasına dayanmaktadır. Bu konu üzerinde çok uzun yıllar boyunca durulmuş olmasına rağmen, bir türlü istenen düzeyde başarı sağlanamamıştır. Her ne kadar akarisid kullanımı gerekli olsa da, bu oldukça zahmetli ve masraflıdır. Kaldı ki, büyük çapta programlı uygulamaların yapılması oldukça zordur. Akarisid ile kene konrolünün başlıca 7 zorluğu vardır 1. Kenelerin yoğun biçimde tarım ve orman alanları içinde yayılmış olması, çevreye zarar verecek düzeyde akarisid kullanımını gerektirmektedir. 2. Akarisilerin kenelerin konakları üzerinde tutundukları bölgelere ulaşabilmesi ancak konağın tüm vüudunun yıkanmasını gerektirmektedir 3. Konak üzerinde bulunmadıkları süre içinde keneler akarisid ilaçların ulaşamayacağı yerlerde saklanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com 4. Kenelerin yüksek orandaki üreme yeteneği (3000-7000 yumurta) ilaçlamaların düzenli bir sıklıkta yapılmasını gerektirmktedir. 5. Kenelerin uygun olmayan çevre koşullarında çok uzun süreler boyunca canlı kalabilmeleri. 6. Kenelerin konak seçiminde çok alternatifinin olması 7. Akarisid direncinin oluşması b- Kenelerin yaşam alanlarının değişrtirilmesi 1- Herbisidal ilaç kullanımı 2- Arazi yakma 3- Arazinin sürülmesi 4- Kuru yaprak tabakasının hatta orman taban örtüsünün kaldırılması Ancak, bu gibi önlemlerin uygulanması sonucunda kene populasyonunda sağlanan azalma, kenelerin yok edilmesinden çok, konak hayvanların bu gibi elverişsiz hale gelmiş ortamlardan uzaklanmasına bağlanmaktadır c- Konak hayvanların ortadan kaldırılması Bu yöntem özellikle dar bölgelerde kısıtlı konak kullanan keneler için kullanılsa da (Amblyomma americanum’un eradikasyonu için belli bölgelerde geyik populasyonunu ortadan kaldırmak), bu yöntem çok miktarda konak alternatifi olan keneler için uygun değildir. d- Biyolojik kontrol Kenelerin doğal düşmanlarının ortama salınması üzerinde çalışmalar olsa da, çok pratik değeri yoktur e-Kendi kendini ilaçlama Bu yöntem özellikle yaban hayvanları üzerindeki keneleri de etkilediğinden oldukça umut vericidir. Hayvanların ilgisini çekecek çeşitli obejelerin (yemlik, içinde yem bulunan plastik boru, ilaçlı pamuk) üzerine uzun etkili akarisid salınımını sağlayan düzenekler kurularak hayvanların kendi kendilerini ilaçlaması sağlanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com

http://www.biyologlar.com/keneler-hakkinda-bilgi

YAPRAKLARIN GENEL YAPISI

Bitkiler besinlerini üretirken sadece topraktan faydalanmazlar. Topraktaki minerallerin yanında, suyu ve havadaki CO2'i de kullanırlar. Bu hammaddeleri alıp yapraklarındaki mikroskobik fabrikalardan geçirerek fotosentez yaparlar. Fotosentez işleminin aşamalarını incelemeden önce fotosentezde son derece önemli bir role sahip olan yaprakların incelenmesinde fayda vardır. YAPRAKLARIN GENEL YAPISI Hem genel yapı olarak, hem de mikrobiyolojik açıdan incelendiğinde yaprakların her yönüyle en fazla enerji üretimini sağlamak üzere planlanmış, çok detaylı ve kompleks sistemlere sahip oldukları görülecektir. Yaprağın enerji üretebilmesi için ısı ve karbondioksidi dış ortamdan alması gerekir. Yapraklardaki tüm yapılar da bu iki maddeyi kolaylıkla alacak şekilde düzenlenmiştir. Öncelikle yaprakların dış yapılarını inceleyelim. Yaprakların dış yüzeyleri geniştir. Bu da fotosentez için gerekli olan gaz alış-verişlerinin (karbondioksidin emilmesi ve oksijenin atılması gibi işlemlerin) kolay gerçekleşmesini sağlar. Yaprağın yassı biçimiyse tüm hücrelerin dış ortama yakın olmasını sağlar. Bu sayede de gaz alış-verişi kolaylaşır ve güneş ışınları, fotosentez yapan hücrelerin hepsine ulaşabilir. Bunun aksi bir durumu gözümüzün önüne getirelim. Yapraklar eğer yassı ve ince bir yapıya değil de herhangi bir geometrik şekle ya da anlamsız rasgele bir şekle sahip olsalardı yaprak fotosentez işlevini sadece güneş ile doğrudan temas eden bölgelerinde gerçekleştirebilecekti. Bu da bitkilerin yeterli enerji ve oksijen üretememesi anlamına gelecekti. Bunun canlılar için en önemli sonuçlarından biri de hiç kuşkusuz ki yeryüzünde bir enerji açığının ortaya çıkması olurdu. Yapraklardaki özel olarak "tasarlanmış" olan sistemler sadece bunlarla sınırlı değildir. Yaprak dokusunun önemli bir özelliği daha vardır. Bu özellik ışığa karşı duyarlı olmasıdır. Bu sayede ışık kaynağına yönelme, yani fototropizm adı verilen olay gerçekleşir. Bu, saksı bitkilerinde de rahatça gözlemlenen, bitkilerin yapraklarını güneşin geldiği yöne doğru çevirmesine neden olan olaydır. Bitki böylelikle güneş ışığından daha fazla faydalanabilir. Yapraklar bitkilerin hem nükleer enerji üreten santralleri, hem besin üreten fabrikaları, hem de önemli reaksiyonları gerçekleştirdikleri laboratuvarlarıdır. Yapraklarda hayati önem taşıyan bu işlemlerin nasıl gerçekleştirildiğini anlamak için yaprakların fizyolojik yapısını da kısaca incelemek gerekir. Yaprağın iç yapısının enine kesiti alınarak bakılacak olursa dört tabakalı bir yapı olduğu görülecektir. Bu yapılardan ilki kloroplast içermeyen epidermis tabakasıdır. Yaprağı alttan ve üstten örten epidermis tabakasının özelliği, yaprağı dış etkilerden korumasıdır. Epidermisin üstü koruyucu ve su geçirmez mumsu bir madde ile sarılıdır. Bu maddeye kütiküla adı verilir. Yaprağın iç dokusuna baktığımızda ise genelde iki hücre tabakasından oluştuğunu görürüz. Bunlardan iç dokuyu oluşturan Palizad dokuda kloroplastça zengin hücreler, aralarında hiç boşluk bırakmadan yan yana dizilirler. Bu doku fotosentezi yürüten dokudur. Bunun altında bulunan Sünger doku ise, solunumu sağlayan dokudur. Sünger dokudaki hücreler, diğer bölümlerdeki hücrelere göre daha gevşek bir şekilde birbirine kenetlenmiştir. Ayrıca bu dokunun hücreleri arasında hava ile dolu boşluklar vardır. Görüldüğü gibi bu dokuların hepsi yaprağın yapısında son derece önemli görevlere sahiptir. Bu tür düzenlemeler yaprakta ışığın daha iyi dağılıp yayılmasını sağlayarak fotosentez işleminin gerçekleşmesi açısından son derece büyük bir önem taşırlar. Bütün bunların yanı sıra yaprak yüzeyinin büyüklüğüne göre yaprağın işlem yapma (solunum, fotosentez gibi) yeteneği de artar. Örneğin birbirine geçmiş tropikal yağmur ormanlarında genellikle geniş yapraklı bitkiler yetişir. Bunun çok önemli sebepleri vardır. Sürekli ve çok miktarda yağmurun yağdığı, birbirine geçmiş ağaçlardan oluşan tropikal ormanlarda güneş ışığının bitkilerin her yerine eşit ulaşması oldukça zordur. Bu da ışığı yakalamak için gerekli olan yaprak yüzeyinin artırılmasını gerekli kılar. Güneş ışığının zor girdiği bu alanlarda bitkilerin besin üretebilmeleri için yaprak yüzeylerinin büyük olması hayati önem taşımaktadır. Çünkü bu özellikleri sayesinde tropik bitkiler değişik yerlerden, en fazla faydalanacak şekilde güneş ışığına ulaşmış olurlar. Tam aksine kuru ve sert iklimlerde ise küçük yapraklar bulunur. Çünkü bu iklim şartlarında bitkiler için dezavantaj olan asıl nokta ısı kaybıdır. Ve yaprak yüzeyi genişledikçe su buharlaşması, dolayısıyla ısı kaybı artar. Bu yüzden ışık yakalayan yaprak yüzeyi, bitkinin su tasarrufu yapabilmesi için iktisatlı davranacak şekilde tasarlanmıştır. Çöl ortamlarında yaprak kısıtlaması aşırı seviyelere ulaşır. Örneğin kaktüslerde yaprak yerine artık dikenler vardır. Bu bitkilerde fotosentez etli gövdenin kendisinde yapılır. Ayrıca gövde suyun depolandığı yerdir. Fakat su kaybının kontrol edilmesi için bu da tek başına yeterli değildir. Çünkü her ne kadar yaprak küçük olsa da gözeneklerin bulunması su kaybını devam ettirecektir. Bu yüzden buharlaşmayı dengeleyecek bir mekanizmanın varlığı zorunludur. Bitkiler de, fazla buharlaşmayı düzenleyen bir çıkış yoluna sahiptirler. Bünyelerindeki su kaybını, gözenek açıklığının kontrolü ile denetim altında tutarlar. Bunun için gözenek açıklıklarını genişletir veya daraltırlar(porları) Yaprakların tek görevi fotosentez için ışığı hapsetmeye çalışmak değildir. Havadaki karbondioksidi yakalayıp onu fotosentezin oluştuğu yere ulaştırmaları da aynı derecede önemlidir. Bitkiler bu işlemi de yaprakların üzerinde yer alan gözenekler vasıtasıyla gerçekleştirirler. KUSURSUZ BİR TASARIM: GÖZENEKLER Yaprakların üzerindeki bu mikroskobik delikler ısı ve su transferi sağlamak ve fotosentez için gerekli olan CO2'i atmosferden temin etmekle görevlidirler. Gözenek olarak adlandırılan bu delikler, gerektiğinde açılıp kapanabilecek bir yapıya sahiptirler. Gözenekler açıldığında yaprağın hücreleri arasında bulunan oksijen ve su buharı, fotosentez için gereken karbondioksit ile değiştirilir. Böylece üretim fazlalıkları dışarı atılırken, ihtiyaç duyulan maddeler değerlendirilmek üzere içeri alınmış olur. Gözeneklerin ilgi çekici yönlerinden biri, yaprakların çoğunlukla alt kısımlarında yer almalarıdır. Bu sayede, güneş ışığının olumsuz etkisinin en aza indirilmesi sağlanır. Bitkideki suyu dışarı atan gözenekler, eğer yaprakların üst kısımlarında yoğun olarak bulunsalardı, çok uzun süre güneş ışığına maruz kalmış olacaklardı. Bu durumda da bitkinin sıcaktan ölmemesi için gözenekler bünyelerindeki suyu sürekli olarak dışarı atacaklardı, böyle olunca da bitki aşırı su kaybından ölecekti. Gözeneklerin bu özel tasarımı sayesinde ise, bitkinin su kaybından zarar görmesi engellenmiş olur. Yaprakların üst deri dokusu üzerinde çifter çifter yerleşmiş bulunan gözeneklerin biçimleri fasulyeye benzer. Karşılıklı içbükey yapıları, yaprakla atmosfer arasındaki gaz alışverişini sağlayan gözeneklerin açıklığını ayarlar. Gözenek ağzı denilen bu açıklık, dış ortamın koşullarına (ışık, nem, sıcaklık, karbondioksit oranı) ve bitkinin özellikle su ile ilgili iç durumuna bağlı olarak değişir. Gözenek ağızlarının açıklığı ya da küçük oluşu ile bitkinin su ve gaz alışverişi düzenlenir. Dış ortamın tüm etkileri göz önüne alınarak düzenlenmiş olan gözeneklerin yapısında çok ince detaylar vardır. Bilindiği gibi dış ortam koşulları sürekli değişir. Nem oranı, sıcaklık derecesi, gazların oranı, havadaki kirlilik… Yapraklardaki gözenekler tüm bu değişken şartlara uyum gösterebilecek yapıdadırlar. Bunu bir örnekle şöyle açıklayabiliriz. Şeker kamışı ve mısır gibi uzun süre sıcağa ve kuru havaya maruz kalan bitkilerde, gözenekler suyu muhafaza edebilmek için gün boyunca tamamen ya da kısmen kapalı kalırlar. Bu bitkilerin de gündüz fotosentez yapabilmek için karbondioksit almaları gerekir. Normal şartlar altında bunu sağlayabilmek için de gözeneklerinin olabildiğince açık olması gerekir. Bu imkansızdır. Çünkü böyle bir durumda bitki, sıcaklığa rağmen sürekli açık olan gözenekleri yüzünden devamlı su kaybeder ve bir süre sonra da ölür. Bu nedenle bitkinin gözeneklerinin kapalı olması gereklidir.

http://www.biyologlar.com/yapraklarin-genel-yapisi

Hexanchus griseus ( BOZ CAM GÖZ KÖPEK BALIĞI )

Alem: Animallia Şube: Chordata Sınıf: Chondrichthyes Alt sınıf: Elasmobranchii Takım: Hexanchiformes Familya: Hexanchidae Cins: Hexanchus Tür: H. griseus Hexanchus griseus; altı solungaçlı köpek balığı, boz camgöz gibi de adlandırılabilir. Boyları 5 metre kadardır. 8 metre olanlarına da rastlanılmıştır. Baş kısadır. Burun kısa ve geniştir ve gözlerde başa göre küçüktür. Sırt koyu kahve rengi ya da koyu gri ve karın kısmı kirli beyazdır. Yandan bakılınca pektoral yüzgecinin hemen sol üstünde sağlı sollu 6 çift solungaç yarıklarının bulunması bu türün en önemli özelliğidir. Bu özelliğinden dolayı Hexanchidae familyasına dahildir. Üstte 4 altta 6 sıra kesici (canine) dişlere sahiptir. Gövdeleri mekik biçimindedir hidrodinamiktir ve bu sayede iyi yüzücülerdir.Bu özelliği sayesinde sınıflandırmada pleurotremata ordosunda yer alır. Gözün arka tarafında ilk solungaç yarığının körelmesiyle oluşan spirakulum denilen küçük bir delik vardır ve bu delik oksijen difüzyonuna yardımcı olur. Kuyruğu heteroserk yapıdadır bu özelliği kuruğun üst lobunun alt lobundan uzun olması anlamına gelir. Yaşayan köpek balıklarının en ilkelidir ve jura devrinden kalma fosillerle bir çok benzerlik sergilerler. Genellikle balıklar, kalamar crustacea ve bazı balıklar ile beslenirler. İnsanlar için henüz tehlikeli olabildiğine dair bir kayıt bulunamamıştır. Ovovivipar üreme gösterirler, bir üreme sezonunda 20-50 arası embriyo meydana getirebilirler. Yavrularının boyları 60-70 cm.'dir. Gençleri kıyıya yakın ergin olanları derinlerdedir. Gündüzleri deniz tabanında dinlenip geceleri avlanırlar. Bentopelajik ya da mezopelajiktirler, 70-2000 metre arası derinliklerde dağılım gösterirler. Geceleri yüzeyde de bulunurlar (epipelajik). Eti insanlar için zehirlidir. Türkiye sularında ve atlas okyanusunda mevcuttur.

http://www.biyologlar.com/hexanchus-griseus-boz-cam-goz-kopek-baligi-

Canlıların Ortak Özellikleri

Canlı ve cansızların aynı kimyasal ve fiziksel yasalara bağlı olduğuna inanan felsefeye Materyalizm ya da mekanik görüş, buna karşılık canlıların farklı yasalar altında hareket ettiğini ve canlılığın mistik bir güç ile meydana geldiğini benimseyen görüşe de Vitalizm ya da kadercilik denir. Her iki görüşün de temelinde belirli kimyasal ve fiziksel ilkelerin yattığı bir gerçektir. Canlılk ile cansızlığı virüslerde birbirinden ayırmak oldukça zordur (uygun koşullarda canlı özelliği, uygun olmayan koşullarda ise kristal hale geçerek cansız özelliği gösterir). Daha ileriki kademelerde canlılık özelliği belirgin hale geçerken, o zaman da canlının bitki mi yoksa hayvan mı olduğu konusunda bazı sorunlar ortaya çıkar. Nitekim birhücreli bazı hayvan grupları bugün hem botanikçiler hem de zoologlar tarafından incelenmektedir. (Örneğin; kamçılılardan öglenanın karanlıkta hayvansal, ışıkta bitkisel davranması, evrimsel gelişimde her iki grubun bu kademede ortak bir organizasyona ve ataya sahip olduğu fikrini güçlendirmektedir.) Bu aşamadaki ortaklık, daha sonraki kademelerde "bu bir canlıdır"yargısını açıkça verdirecek ortak özellikleri beraberinde vermiş; uyuma göre bu özellikler sonradan geliştirilmiştir. A. ÖZEL BİR KİMYASAL DİZİLİME SAHİP OLMALARI Cansızlar, kimyasal bağların izin verdiği ölçüler içerisinde bir bileşime sahiptirler. Canlılar ise bu kimyasal bağların dizilimini özel bir şekilde saptarlar. Tüm canlılar genleri oluşturan çekirdek asitlerini -genellikle DNA (bazı virüslerde RNA)- içerirler. Gensiz bir canlılık düşünemeyiz. Çünkü genler değişik yaşam formlarının sentez ve replikasyonundan (eşlenmesinden) sorumludur. Tüm genler aynı birimlerden; fakat değişik dizilimlerden oluşmuştur. Dolayısıyla tüm canlıların yapısına giren protein, bu genlerin yapısal değişikliğine uygun olarak, her hücrede farklı amino asit dizilimine sahip olurlar. İlave olarak karbonhidrat, yağ, ve su içerirler. Tüm bu maddelerin özel karışımı protoplazmayı meydana getirir. B. HÜCRESEL DİZİLİM Canlıların büyük bir kısmı (kural olarak çokhücreliler) hücre olarak bilinen birimlerden yapılmıştır. Her hücre çok ince zarla (plazma zarı) çevrilmiştir. Bu zar erimiş maddelerin ve suyun hücre içerisine girip çıkmasına izin verir. Her iki yönde de geçirim bakımından çok özelleşmiş seçici bir yeteneği vardır. Hücre bir çok kimyasal değişimin yapılabilmesi için değişik enzimleri ve en önemlisi yalnız başına kendinin aynını üretebilecek yeteneğe sahiptir. C. ORGANİZASYON Canlıların vücut kısımlarının görev bölümüne ve belirli kurallar içerisinde canlılık etkinliğini devam ettirmelerine organizasyon denir. Bütün hayvan ve bitkilerin vücudu, yapısal ve işlevsel olarak birim kabul edilen hücrelerden yapılmış olmasına karşın homojen değildir. Farklılaşmış vücut kısımları değişik görevleri üzerine almıştır. Hatta birhücreli canlılarda, ergin evrede, boy ve şekil sabit olmakla beraber, hücrenin farklı kısımları farklı görevleri üzerine almıştır. D. UYARILMA Bütün canlıların çevrelerindeki fiziksel ve kimyasal koşulların değişmesine karşı tepkileri kalıtsaldır. Basit organizmalarda uyarı, genel olarak bütün vücutla algılandığı halde, yüksek organizmalarda duyu organlarının yeri merkezileşmiştir. Örneğin; ışık gözle, koku burunla, tat dille, basınç ve sıcaklık deriyle vs. Uyarının alınması ve gerekli tepkinin gösterilmesi, canlının evren içerisinde en uygun yerde ve koşullarda yaşamasını sağlamayı yaratmaktadır. E. HAREKET Beslenme, korunma, üreme, yayılma, en rahat edebileceği bölgeyi bulma vs. gibi yaşamın temel işlevlerini yürütebilmek için, ilkel organizmalarda ya vücudun tamamıyla protoplazmik hareket ya bir kısmıyla sil ve kamçı hareketi ya da yüksek organizmalarda görülen, yürüme, yüzme, ve uçmanın sağlanması için belirli organ oluşumları görülür. Birçok canlı tüm yaşamı süresince belirli bir yere bağlı kalmasına karşın, vücudun değişik kısımlarının çevre koşullarına göre değişimi de hareket olarak kabul edilir. Örneğin; bitkilerde ışığa (fototropizm), yerçekimine (geotropizm), neme (higrotropizm), vs. ye yönelim bir hareket kavramı içerisinde değerlendirilir. F. ENERJİ KULLANIMI Canlılığın en önemli öğelerinden biri büyüme, üreme, yenilenme vs. için enerjiye olan gereksinimleridir. Hücre kendi başına enerji üretemez; dışarıdan kaynak sağlamak zorundadır. Hayvanlar enerji bağları içeren molekülleri yıkmak (katabolik tepkimeler) suretiyle gerekli enerjiyi sağlarlar. (karbonhidrat, yağ ve proteinden). Küçük molekülleri büyük moleküller halinde bağlayarak (anabolik tepkimeler) yapı taşlarını ve enerji depolanmasını da yapabilirler. Bu tepkimelerin tümüne birden biyoenerjitik denir. Bir moleküldeki enerjinin büyük bir kısmını kullanma oksijen kullanmakla olur; yani tamamıyla oksitlenmelidir (aerobik solunum=oksijenli solunum). İlkel canlıların bir kısmı (bazı mikroorganizmalar, özellikle mayalar) ve bazı endoparazitler (bağırsak solucanları gibi) bu kaynak maddeleri oksijensiz yıktığı için enerjinin pek az bir kısmından yararlanabilir (anaerobik solunum=oksijensiz solunum). Pek az bir organizma grubu da bazı inorganik maddeleri yıkmak suretiyle enerji elde eder; azot, demir ve kükürt bakterileri bunlara tipik örneklerdir. Dünyada serbest oksijenin olmadığı devirlerde, canlılar enerjilerini bu yollarla sağlıyorlardı. Bitkiler ise (saprofit ve parazit olanların bir kısmı hariç) enerji kaynağı olarak güneş ışınlarını kullanır. Güneş ışınlarının kuantlarındaki enerjiyi kimyasal bağlar halinde (nişasta) tutarlar ve bu kimyasal bağlar tüm adrıbeslek (heterotrof) canlıların enerji kaynağını ve yapı maddelerini oluşturur. İlk evrelerde (bitkiler oluşmadan önce) enerji kaynağı olarak UV ışınlarının katalizlediği bazı ilkin organik moleküller kullanılmıştır. Ozon perdesi oluştuktan sonra bu kaynak büyük ölçüde kurumuştur. G. ÇEVREYE UYUM Canlılar kural olarak yaşadığı ortamın koşullarına uyum yapabilecek yeteneğe sahiptir. Bu durum homeostatik tepki olarak bilinir. Değişik koşulların bulunduğu ortamda en uygun yeri seçmeye çalışır; şayet tam anlamıyla uygun ortam bulamazsa, yapısal değişikliklerle (mutasyonların yardımıyla) bu uyum sağlanmaya çalışılır. Günlük uyumlardan binlercesini farkında olmadan yaparız. Örneğin gözün karanlığa ve aydınlığa uyum yapması gibi. Çevre koşullarının değişmesi canlı bünyesine en az etki bırakacak şekilde iletilmeye çalışılır (özellikle sıcakkanlılarda); örneğin çölde ve kutuplarda insan kanı her zaman aynı sıcaklıktadır. Canlı, uyum yapabildiği oranda hayatta kalma şansına sahiptir. Bu oran ise kalıtsal yapı ile saptanmıştır. Bu sınırların dışındaki uyumlar ancak mutasyonlarla sağlanabilir. H. ÜREME Hiçbir canlı sonsuz olarak yaşamını devam ettiremez. Herhangi bir şekilde, üremeyle, kalıtsal materyal gelecek kuşaklara aktarılır. Birhücrelilerde bölünme aynı zamanda çoğalmayı sağlamasına karşın, çokhücrelilerde üreme belirli vücut kısımlarına özgü bir yetenek olarak ortaya çıkmıştır. Bazı canlı gruplarında gen değişimi olmaksızın (eşeysiz) üreme görülmesine karşın (birhücrelilerde mitoz bölünme; çokhücrelilerde tomurcuklanma, dallanma, partenogenez çoğalma, bitkilerde çeliklenme vs.) kural olarak eşeyli üreme çok daha sıktır. Bu şekilde değişik gen kombinasyonları ortaya çıkarak daha başarılı döllerin meydana gelmesini sağlar. Bu, evrim mekanizmasının en önemli ögelerinden biridir. İ. EVRİMSEL UYUM VE VARYASYONLARIN KALITIMI Tüm canlılar genlere sahiptir ve genlerin tümü de mutasyonla değişebilir. Bu, aynı türün farklı bireylerinin kalıtsal olarak değişmesini sağlar. Dolayısıyla o anda faydalı olan mutasyonları taşıyan bireyler seçilir, zararlı olanlar uyum yapamadığı için ortadan kaldırılır ve evrimsel bir yönlendirme ortaya çıkar. Bu, zamanla türün değişmesine neden olur; özellikle çevre koşulları değiştiği zaman. Kalıtsal uyumlar meydana gelmeseydi, hiçbir tür yaşamını sürdüremeyecekti; çünkü çevre koşulları devamlı olarak değişmektedir. I. BÜYÜME Çevresindeki anorganik (ham) maddeleri kendi protoplazma yapısına çevirme, büyüme olarak bilinir. Bitkilerde (çok yıllık) kural olarak sınırsız bir büyüme görülmekle beraber, hayvanlarda her türün kendine özgü şekil ve büyüklüğe ulaşmasına kadar devam eder. Çok hücreli hayvanlarda genellikle bir büyüme evresi vardır. Bu evrede büyüme hızlıdır. Daha sonraki evre olgunluk evresidir, büyüme yoktur; fakat protoplazmanın yenilenmesi için devamlı besin yadımlaması (asimilasyonu) vardır. Protoplazma, metabolik tepkimeler sonucu sürekli olarak yıkılır, eğer yaşam devam edecekse bu protoplazmanın yenilenmesi gerekir. Birhücrelilerde büyüme, çoğalma ile sonuçlanmasına karşın; çokhücrelilerde vücudun gelişmesini ve irileşmesini sağlar. Yaşlılık evresinde protoplazmanın yenilenmesi gittikçe azalır; hücre yavaş yavaş işlevini; ilerlemiş ve yaygınlaşmış durumlarda da yaşamını yitirir. Bu bozulma herhangi bir yaşta, yeterince besin alınmadığında veya nitelik bakımından doyurucu olmadığında da ortaya çıkabilir. Yenilenmenin kusursuz olması protoplazmanın içerdiği maddelerin eksiksiz olmasıyla sağlanabilir. Büyüme her türde kalıtsal yapıyla sınırlandırılmıştır. Bunun alt ve üst sınırları çevre koşullarıyla belirlenmistir.

http://www.biyologlar.com/canlilarin-ortak-ozellikleri-2

Kanser Tedavisine Bakteriler ve Nano Robotlar

Kanser Tedavisine Bakteriler ve Nano Robotlar

Kana enjekte edilen ilaçların hastalıklı hücrelere adrese teslim ve nokta atışı ulaştığı zamanların eşiğindeyiz. Bizleri gereksiz bıçakaltı işlemlerden ve ilaçların yan etkilerinden koruyacak, bakteri ve nano robotların insanların iyiliği için işbirliği yaptıkları tıbbi yöntemleri inceleyeceğiz.Askerleri küçültüp mikro boyutlara getirebilecek teknolojinin sırrına sahip bilim adamı Jan Benes, CIA ajanlarının yardımıyla SSCB’den kaçar. Ancak bu esnada profesörü Amerika’ya götüren konvoy KGB ajanları tarafında saldırıya uğrar. Kafasına darbe alan Benes’nin beyninde ne yazık ki bir pıhtı oluşur. Bir grup bilim adamı ve teçhizatlı askerler Benes’nin beynindeki tıkanıklığı açmak için küçültülerek profesörün beynine doğru yola çıkarlar. Bu görevi başarıp tekrar eski boyutlarına dönmek için sadece bir saatleri vardır. Bir bilim kurgu filmi olan Olağanüstü Yolculuk’un (Fantastic Voyage), minik bir geminin insan vücudundaki hastalıklarla savaşmasının kurgulandığı 1966 yapımlı senaryosunu okudunuz.Bundan neredeyse 40 yıl sonra Kanada’nın Montréal Politeknik Üniversitesi araştırmacıları aynı hedefe ulaşmak için kolları sıvadılar. Bu tarz bir gemi yaratmak için 70li ve 80li yılların klişe bilim kurgu teknolojisi olan küçültücü lazer ışınlarını kullanmadılar. İzledikleri yöntem nanoteknoloji sayesinde ürettikleri mikroskopik (bir saç telinden çok daha ince) aletleri damarlarımız içerisine vererek, doğrudan hastalığın merkezine yönlendirme üzerine kurulu. Bu sıradışı yöntemle ilaçların kanserli dokulara adrese teslim gönderilmesi ve böylece sağlıklı hücrelerin bundan zarar görmemesi mümkün. Ayrıca ameliyatsız, kesiksiz ve kansız bir işlem. Özellikle kanser tedavisi başta olmak üzere, neredeyse tüm tıbbi yöntemleri kökten değiştirebilecek olan bu yaklaşımın 2008′den 2012 yılına kadar gelişimine göz atacağız.Makaledeki tüm gelişmelerin arkasında yatan beyin Kanada Montréal Politeknik Üniversitesi bilgisayar mühendisliği profesörü Sylvain Martel. Martel’in araştırmalarının temelinde yatan teknik aslında basit bir nakliyat işini andırıyor. Damarlarımızdaki kan içerisinde rahatça dolaşan bir bakteri kirala, ilaçları bakteriye yükle, hastalığın adresini ver ve nakliyat sonlandığında bakteriyle işin bitsin. Ancak ne yazık ki bakteriler kredi kartı kabul etmiyorlar.Bu yüzden Profesör Martel, oldukça sıradışı bir fikir geliştiriyor. Kanda yüzebilen, canlı bakterileri alarak onlara mikroskopik boncuklar ekliyor. Bu boncuklar yük taşımak için ideal boyutlarda. Bu sayede bakterileri birer kamyonete çeviriyor. Martel’den önce de bu fikir vardı, ancak diğer bilim insanları bu bakterilerin kendi kendilerine yüzme özelliklerinden faydalanmaya çalışıyorlardı. Martel’in sıradışı fikri ise, bu minik kamyonları manyetik rezonans görüntüleme (MRI) yardımıyla kendi kontrolüyle sürüyor olmasıydı. Bunun için Martel doğal halinde manyetik zerreler (tanecikler) barındıran bakteriler kullanmayı düşündü. Doğada bu zerreler bakterilerin derin sularda oksijenden uzaklaşacakları şekilde ilerlemelerine yardımcı oluyorlar. Aynen bir pusulanın iğnesinin doğrultusunu kullanma prensibimiz gibi. İşte bu noktada MRI aleti devreye giriyor. MRI ile yaratılacak yapay manyetik alan sayesinde bu bakterilerin istenilen doğrultuda ilerlemesi sağlanıyor. Bu sebeple Martel bu bakterilerini nanobot olarak nitelendiriyor.Bahsi geçen bakteriler flagella adındaki kuyruklara sahip ve hızlı bir şekilde kan içerisinde yüzebiliyorlar. Her bir bakteri iki mikron çapında olduğundan insan vücudundaki en küçük damara bile rahatça sığabiliyor. 2008 yılında 150 nanometre büyüklüğünde olan bu römork boncuklarıyla ilk olarak antikor hücreleri taşımak üzere tasarlandı. Doğadan esinlenmekten de öte, doğayı kullanan bu yöntemde temel amaçlardan biri de boncuk hacminin büyütülmesi. Bu boncukların boyutlarının büyümesi daha çok madde taşınabilmesi anlamına geliyor. Yani kamyondan, tıra geçiş yapmak gibi. Sonuç: Deneylerde saniyede 10 santimetre ilerleyen bakterilerle, bir domuzun şahdamarında 1.5 milimetrelik bir boncuğu taşıtmayı başardı [1].Bu bakterilerin bir dezavantajı, geniş damarlarda kendi başlarına yüzemiyor oluşları. Debiye karşı koyabilecek kadar kuvvetli değiller. Bu yüzden araştırmacılar bakterileri de içinde taşıyacak büyüklükte manyetik olarak kontrol edilebilen bir aracı hastalıklı bölgeye kadar taşımayı önerdiler. Bir çeşit polimerden yapılan bu araç bakterileri salıverdikten sonra kanda çözünüyor. İçerdiği nano taneciklerle kontrol edilebilen bu araç saniyede yaklaşık 200 mikron hızla ilerleyebiliyor ve saniyede 30 defa yönü değiştirilebiliyor [2].Bu araştırmaya gelen eleştiriler kanda çözünen manyetik partiküllerin nasıl kandan uzaklaştırılacakları ve bakterilerin hedefe ulaşmadan vücudun bağışıklık sistemi tarafından yok edilip edilmeyeceği üzerine. Ancak Mantel deneylerde çıkan sorunçların bu tarz bir durumu yansıtmadığı ve bakterilerin bağışıklık sistemi tarafından zaten henüz tanınmadığı için nanobotların rahatlıkla hedefe ulaşacak kadar vakitleri olduğu yönünde görüş bildiriyor.Bakteriler illa gerekli mi?Peki ama bu nanobotlar neden bakterilere ihtiyaç duyuyor? Neden bilim insanları kendi pervanelerine sahip robotlarla antikorları veya ilaçları hasta bölgelere taşıyacak bir düzenek tasarlamıyorlar? Aslında bu mümkün. Bu tarz robotlar zaten tasarlanmış durumda. Ancak sorun bu robotlara gerekli olan gücü sağlayacak bir düzeneğin (örn:pil) henüz keşfedilmemiş olması. Ayrıca, büyük çaplı sistemlerde (örn: denizaltı, gemi) etkin olan tahrik sistemleri ve yüzme hareketlerinin mikro çaplı sistemlerde çok daha karmaşık olması. Bu sebeple robotları kontrol etmek oldukça güçleşiyor. İşte bu yüzden işinin ehli olan ve milyonlarca yıldır en iyi bildiği işi yapan bakteriler kullanılıyor. Seçilen bakteri, MC-1 adı verilen, dönen kırbaçımsı kuyruğu sayesinde çoğu türden 10 kat daha hızlı yüzebilen, ve saniyede 200 mikrometre hızlara çıkabilen bir bakteri.Aynı grubun 2009 yılında sıçanlar üzerinde yaptığı deneylerde 50 mikrolitrelik bakteri içeren bir çözeltiyi enjekte ettiklerini ve ne bakterilerin hayvanlara zarar verdiğini, ne de bakterilerin genel olarak zarar gördüğü gözlenmiş. Zehirlenmeye sebebiyet vermeden yaklaşık 40 dakika sonra kan içerisinde öldükleri ve daha sonra da bağışıklık sistemi tarafından temizlendiği belirtilmiş [3].Bakterileri robota dönüştürmek2010 yılında aynı araştırma ekibi bu sefer akıllara zarar bir demonstrasyona imza atıyorlar. Bakterileri mikro-manipülasyon işleri için kullanıp mikro-robotları sürmelerini sağlıyorlar.  Bu deneyin sonunda bize göstermek istedikleri şey, bu bakterilerin sadece basit nakliyat işleri için kullanmak zorunda olmadıkları. Eğer doğru şekilde kontrol edilebilirlerse, ilaç taşımanın yanında patojenleri algılamakta, farmakolojik ve genetik testleri bulundukları yerde ifşa edebilecek mikro laboratuvarlar inşa etmekte bakterileri kullanmanın mümkün olabileceğini kanıtlamak istiyorlar. Bunun için de bakterilere Mısır’daki Djoser piramidini örnek alan bir mikro-piramit inşa ettiriyorlar. 5000 bakterisinin bir sürü halinde çalıştıkları ve sadece minik epoksi tuğlalar kullarak 15 dakikada bir piramit oluşturdukları videoyu aşağıda seyredebilirsiniz [4]:KANSER TEDAVİSİNDE BAKTERİLER VE NANO ROBOTLAR     Kana enjekte edilen ilaçların hastalıklı hücrelere adrese teslim ve nokta atışı ulaştığı zamanların eşiğindeyiz. Bizleri gereksiz bıçakaltı işlemlerden ve ilaçların yan etkilerinden koruyacak, bakteri ve nano robotların insanların iyiliği için işbirliği yaptıkları tıbbi yöntemleri inceleyeceğiz.Askerleri küçültüp mikro boyutlara getirebilecek teknolojinin sırrına sahip bilim adamı Jan Benes, CIA ajanlarının yardımıyla SSCB’den kaçar. Ancak bu esnada profesörü Amerika’ya götüren konvoy KGB ajanları tarafında saldırıya uğrar. Kafasına darbe alan Benes’nin beyninde ne yazık ki bir pıhtı oluşur. Bir grup bilim adamı ve teçhizatlı askerler Benes’nin beynindeki tıkanıklığı açmak için küçültülerek profesörün beynine doğru yola çıkarlar. Bu görevi başarıp tekrar eski boyutlarına dönmek için sadece bir saatleri vardır. Bir bilim kurgu filmi olan Olağanüstü Yolculuk’un (Fantastic Voyage), minik bir geminin insan vücudundaki hastalıklarla savaşmasının kurgulandığı 1966 yapımlı senaryosunu okudunuz.Bundan neredeyse 40 yıl sonra Kanada’nın Montréal Politeknik Üniversitesi araştırmacıları aynı hedefe ulaşmak için kolları sıvadılar. Bu tarz bir gemi yaratmak için 70li ve 80li yılların klişe bilim kurgu teknolojisi olan küçültücü lazer ışınlarını kullanmadılar. İzledikleri yöntem nanoteknoloji sayesinde ürettikleri mikroskopik (bir saç telinden çok daha ince) aletleri damarlarımız içerisine vererek, doğrudan hastalığın merkezine yönlendirme üzerine kurulu. Bu sıradışı yöntemle ilaçların kanserli dokulara adrese teslim gönderilmesi ve böylece sağlıklı hücrelerin bundan zarar görmemesi mümkün. Ayrıca ameliyatsız, kesiksiz ve kansız bir işlem. Özellikle kanser tedavisi başta olmak üzere, neredeyse tüm tıbbi yöntemleri kökten değiştirebilecek olan bu yaklaşımın 2008′den 2012 yılına kadar gelişimine göz atacağız.Makaledeki tüm gelişmelerin arkasında yatan beyin Kanada Montréal Politeknik Üniversitesi bilgisayar mühendisliği profesörü Sylvain Martel. Martel’in araştırmalarının temelinde yatan teknik aslında basit bir nakliyat işini andırıyor. Damarlarımızdaki kan içerisinde rahatça dolaşan bir bakteri kirala, ilaçları bakteriye yükle, hastalığın adresini ver ve nakliyat sonlandığında bakteriyle işin bitsin. Ancak ne yazık ki bakteriler kredi kartı kabul etmiyorlar.Bu yüzden Profesör Martel, oldukça sıradışı bir fikir geliştiriyor. Kanda yüzebilen, canlı bakterileri alarak onlara mikroskopik boncuklar ekliyor. Bu boncuklar yük taşımak için ideal boyutlarda. Bu sayede bakterileri birer kamyonete çeviriyor. Martel’den önce de bu fikir vardı, ancak diğer bilim insanları bu bakterilerin kendi kendilerine yüzme özelliklerinden faydalanmaya çalışıyorlardı. Martel’in sıradışı fikri ise, bu minik kamyonları manyetik rezonans görüntüleme (MRI) yardımıyla kendi kontrolüyle sürüyor olmasıydı. Bunun için Martel doğal halinde manyetik zerreler (tanecikler) barındıran bakteriler kullanmayı düşündü. Doğada bu zerreler bakterilerin derin sularda oksijenden uzaklaşacakları şekilde ilerlemelerine yardımcı oluyorlar. Aynen bir pusulanın iğnesinin doğrultusunu kullanma prensibimiz gibi. İşte bu noktada MRI aleti devreye giriyor. MRI ile yaratılacak yapay manyetik alan sayesinde bu bakterilerin istenilen doğrultuda ilerlemesi sağlanıyor. Bu sebeple Martel bu bakterilerini nanobot olarak nitelendiriyor.Bahsi geçen bakteriler flagella adındaki kuyruklara sahip ve hızlı bir şekilde kan içerisinde yüzebiliyorlar. Her bir bakteri iki mikron çapında olduğundan insan vücudundaki en küçük damara bile rahatça sığabiliyor. 2008 yılında 150 nanometre büyüklüğünde olan bu römork boncuklarıyla ilk olarak antikor hücreleri taşımak üzere tasarlandı. Doğadan esinlenmekten de öte, doğayı kullanan bu yöntemde temel amaçlardan biri de boncuk hacminin büyütülmesi. Bu boncukların boyutlarının büyümesi daha çok madde taşınabilmesi anlamına geliyor. Yani kamyondan, tıra geçiş yapmak gibi. Sonuç: Deneylerde saniyede 10 santimetre ilerleyen bakterilerle, bir domuzun şahdamarında 1.5 milimetrelik bir boncuğu taşıtmayı başardı [1].Bu bakterilerin bir dezavantajı, geniş damarlarda kendi başlarına yüzemiyor oluşları. Debiye karşı koyabilecek kadar kuvvetli değiller. Bu yüzden araştırmacılar bakterileri de içinde taşıyacak büyüklükte manyetik olarak kontrol edilebilen bir aracı hastalıklı bölgeye kadar taşımayı önerdiler. Bir çeşit polimerden yapılan bu araç bakterileri salıverdikten sonra kanda çözünüyor. İçerdiği nano taneciklerle kontrol edilebilen bu araç saniyede yaklaşık 200 mikron hızla ilerleyebiliyor ve saniyede 30 defa yönü değiştirilebiliyor [2].Bu araştırmaya gelen eleştiriler kanda çözünen manyetik partiküllerin nasıl kandan uzaklaştırılacakları ve bakterilerin hedefe ulaşmadan vücudun bağışıklık sistemi tarafından yok edilip edilmeyeceği üzerine. Ancak Mantel deneylerde çıkan sorunçların bu tarz bir durumu yansıtmadığı ve bakterilerin bağışıklık sistemi tarafından zaten henüz tanınmadığı için nanobotların rahatlıkla hedefe ulaşacak kadar vakitleri olduğu yönünde görüş bildiriyor.Bakteriler illa gerekli mi?Peki ama bu nanobotlar neden bakterilere ihtiyaç duyuyor? Neden bilim insanları kendi pervanelerine sahip robotlarla antikorları veya ilaçları hasta bölgelere taşıyacak bir düzenek tasarlamıyorlar? Aslında bu mümkün. Bu tarz robotlar zaten tasarlanmış durumda. Ancak sorun bu robotlara gerekli olan gücü sağlayacak bir düzeneğin (örn:pil) henüz keşfedilmemiş olması. Ayrıca, büyük çaplı sistemlerde (örn: denizaltı, gemi) etkin olan tahrik sistemleri ve yüzme hareketlerinin mikro çaplı sistemlerde çok daha karmaşık olması. Bu sebeple robotları kontrol etmek oldukça güçleşiyor. İşte bu yüzden işinin ehli olan ve milyonlarca yıldır en iyi bildiği işi yapan bakteriler kullanılıyor. Seçilen bakteri, MC-1 adı verilen, dönen kırbaçımsı kuyruğu sayesinde çoğu türden 10 kat daha hızlı yüzebilen, ve saniyede 200 mikrometre hızlara çıkabilen bir bakteri.Aynı grubun 2009 yılında sıçanlar üzerinde yaptığı deneylerde 50 mikrolitrelik bakteri içeren bir çözeltiyi enjekte ettiklerini ve ne bakterilerin hayvanlara zarar verdiğini, ne de bakterilerin genel olarak zarar gördüğü gözlenmiş. Zehirlenmeye sebebiyet vermeden yaklaşık 40 dakika sonra kan içerisinde öldükleri ve daha sonra da bağışıklık sistemi tarafından temizlendiği belirtilmiş [3].Bakterileri robota dönüştürmek2010 yılında aynı araştırma ekibi bu sefer akıllara zarar bir demonstrasyona imza atıyorlar. Bakterileri mikro-manipülasyon işleri için kullanıp mikro-robotları sürmelerini sağlıyorlar.  Bu deneyin sonunda bize göstermek istedikleri şey, bu bakterilerin sadece basit nakliyat işleri için kullanmak zorunda olmadıkları. Eğer doğru şekilde kontrol edilebilirlerse, ilaç taşımanın yanında patojenleri algılamakta, farmakolojik ve genetik testleri bulundukları yerde ifşa edebilecek mikro laboratuvarlar inşa etmekte bakterileri kullanmanın mümkün olabileceğini kanıtlamak istiyorlar. Bunun için de bakterilere Mısır’daki Djoser piramidini örnek alan bir mikro-piramit inşa ettiriyorlar. 5000 bakterisinin bir sürü halinde çalıştıkları ve sadece minik epoksi tuğlalar kullarak 15 dakikada bir piramit oluşturdukları videoyu aşağıda seyredebilirsiniz [4]:Her bir bakteri 4 pikoNewtonluk kuvvet uygulayabilecek kuyruk organellerine sahip. Tek başına küçük olmasına karşın 5000 tanesini birlikte çalıştırdığınız zaman bir piramit yaptırabiliyorsunuz.Hayvanlar üzerindeki ilk klinik deneyler2011 yılının başında Mantel ve ekibi, hazırladıkları tüm sistemi gerçek anlamda ilk kez bir canlıda denediler, tek bir farkla bu kez bakterileri es geçtiler. MRI kullanarak yönlendirdikleri bir mikro taşıyıcı sistemi karaciğerinde tümör olan bir tavşana doxorubicin adlı bir kemoterapi ilacı taşımak için kullandılar. Bu taşıyıcı sistem iddia edildiği gibi vücut içerisinde yok olacak cinste bir polimerden üretilmişti. Polimerin tasarımı, farklı hızlarda çözünecek şekilde yapılmıştı, böylece yeterli dozda ilaç iletimi sağlanıyordu. Her bir taşıyıcının yüzde otuzu manyetik nano taneciklerken kalan yüzde yetmişi ilaçtı. Mantel sadece kemoterapi değil, radyoterapi ilaçları olan radyoaktif maddelerin de iletiminin mümkün olduğunu belirtti [5].Bazı kan damarları “Y” şeklinde çatallandıklarından geleneksel ilaç iletim sistemlerinin yaklaşık yüzde 50 ihtimalle tümörlü dokunun olduğu yöne, yüzde 50 ihtimalle de karaciğerin alakasız bir bölgesine gidip yan etkiye sebebiyet veriyorlar. İşte Mantel’in bu sistemi manyetik kontrolü sayesinde hiçbir çatallanmadan etkilenmeyecek bir özelliğe sahip olduğu için fark yaratıyor. Ayrıca hiçbir kan damarına zarar vermiyor. Geleneksel kemoterapide kateter (sonda) ile yapılan bir ilaç sevkiyatı, kateterin tümöre çok yaklaşıncaya kadar karaciğerin dibine kadar sokulması ve bu sırada da tabii ki bir çok damara zarar verilmesi anlamına geliyor. Bu sebeple de hastalar günlerce, hatta haftalarca damarlarının iyileşmesini bekliyorlar ki, yeni bir doz daha alabilsinler. Ancak manyetik mikrotaşıyıcı robotlar kullanıldığında, sondanın damarlara bu kadar yakınlaşmasına gerek kalmıyor. Zarar görmeyen damarlar sayesinde de hasta arka arkaya günler içerisinde birçok dozu az az ancak hızlı bir şekilde alabiliyor. Bu şekilde de kimyasal zehirlenmelerin önüne geçiliyor.Ekip, 2011 yılının sonunda tekrar bakterili nanobot sisteminin testlerine yöneldi. Ancak Mantel’in görüşüne göre bu metodlar her ne kadar hayvanlar üzerinde etkili olsa da pratik hayatımızdaki uygulamalarından 4-7 yıl uzaktayız.Not: Konuyla ilgili daha fazla bilgi sahibi olmak isteyenlere Sylvian Mantel’in İngilizce altyazılı Fransızca bir TEDx sunumunu seyretmelerini öneriyorum.Kaynaklar:[1] http://apl.aip.org/resource/1/applab/v90/i11/p114105_s1?isAuthorized=no[2] http://www.technologyreview.com/computing/21619/?a=f[3] http://www.newscientist.com/article/dn17071-bacteria-take-fantastic-voyage-through-bloodstream.html[4] Sylvain Martel, Mahmood Mohammadi: A robotic micro-assembly process inspired by the construction of the ancient pyramids and relying on several thousand flagellated bacteria acting as micro-workers. Intelligent Robots and Systems, pp 426-427,  2009.[5] http://www.healthimaginghub.com/feature-articles/digital-radiography/2945 Yazar hakkında: Gökhan İncehttp://www.acikbilim.com/2012/07/dosyalar/kanser-tedavisinde-bakteriler-ve-nano-robotlar.html

http://www.biyologlar.com/kanser-tedavisine-bakteriler-ve-nano-robotlar

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

Senozoyik

(3. zaman) . Memeli ve Ot devri 65 milyon önce başlamış, 2 milyon yıl önce sonlanmıştır. Yaklaşık olarak 63 milyon sürmüştür. Senozoik tersiyer ve kuaterner olmak üzere iki döneme ayrılarak incelenir. Tersiyer başında ikinci toplu yok oluşun ardından yeryüzünde her şey yeniden başladı. Yaşam tümüyle normal hale gelinceye kadar yaklaşık 10 milyon yıl geçmişti. Büyük felaketten keseli ve plasentalı memelilerin ilkel tipleri az bir kayıpla kurtulmuştu. Bunlar, dallanan evrim kollarıyla çeşitlenerek karaları işgal etmeye ve dinozorlardan boşalan evrimsel alanları hızla doldurmaya başladı. Bu zamanda kıtaların birbirinden ayrı takımadalar biçimindeki konumu, memelilerin birbirinden etkilenmeden farklı evrimsel çizgilerde çeşitlenmelerine neden olmuştur. Tersiyerin eosen bölümünde primatlar görülmeye başlanmıştır. Bu dönemde At, fil, deve gibi günümüzdeki dev cüsseli hayvanları 10 kğ’ dan az olan küçük hayvanlar şeklinde ortaya çıkmışlardır. Yine eosende, kuzey Amerika ile Asya arasındaki Bering boğazı iklimsel değişiklikler nedeniyle bir çok hayvan grubu için kara köprüsü oldu. Böylece, çağımız toynaklılarının (atların) ataları Avrupa, Asya ve Kuzey Amerika'ya yayıldı. Oligosen bölümünün en önemli olayı Himalaya dağ kuşağının yükselmesidir. Tersiyerin miyosen bölümünde kıtalar arasındaki su engellerinin zaman zaman kalkmasıyla; Avrupa-Asya-Afrika, Asya-Kuzey Amerika arasında hayvansal göçler yaşandı. Tersiyerin PLİYOSEN (yaklaşık 20 milyon yıl) bölümünde hominidler (insan soyu) ortaya çıkmıştır. Bölümün sonunda hominidler oldukça etkili olmaya başlamış ve jeolojik son dönemine kendi ismini verecek kadar etkili olmuşlardır. Daha önce belirtildiği gibi senozoik (3. zaman)’in son dönemi kuaterner olarak adlandırılmıkatadır. Kuaterner Antropozik (insan zamanı) olarak da adlandırılmaktadır. Kuaterner (Antropozoik) dönemi, en önemli buzulların görüldüğü dönem olan Pleistosen (Buzul çağları) ve şimdiki zaman anlamında Holosen olmak üzere iki bölüme ayrılır. Pleyistosen insan türlerinin evrim geçirdiği bir devredir. İnsan alet yapmaya ve ateşi kullanmaya bu devrede başladı. Pleyistosen'de buzul çağlar ile bunları bölen ılıman hatta tropik dönemler de yaşandı. Buzul dönemlerde buzullar ılıman kuşağa doğru ilerleyerek zaman zaman karaların yüzde otuzunu kapladı; buna bağlı olarak deniz seviyeleri düştü ve kıtalar arasında karasal bağlantılar oluştu. Bu durum hayvan ve insan türlerinin göçlerine olanak sağladı. Pleyistosen sonunda buzul çağları sona ermiş; iklim ılımanlaşmış ve denizler hemen hemen günümüzün seviyesine ulaşmıştır. Pleyistosen sonunda gerçekleşen yok oluşla birçok hayvan türünün soyu tükenmiştir. Pleyistosen'de yaşanan son buzul çağının sona ermesiyle başlayan devre yaklaşık 10 bin yıl öncesinden başlayan ve günümüze ulaşan bir zaman dilimi holosen olarak adlandırılmaktadır. Buzul çağları arasında daha sıcak bir buzul arası dönemi ifade eden Holosen, insanlığın tüm kayıtlı tarihini ve uygarlığını içerir. Bu devrede insanlar yerleşik hayata ve tarım toplumuna geçerek pek çok uygarlık kurmuşlar ve doğayı ciddi olarak etkileyip değiştirmişlerdir.

http://www.biyologlar.com/senozoyik

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Fotosentez

Dünya, canlı yaşamına en uygun olacak şekilde, özel olarak tasarlanmış bir gezegendir. Atmosferindeki gazların oranından, güneşe olan uzaklığına, dağların varlığından, suyun içilebilir olmasına, bitkilerin çeşitliliğinden yeryüzünün sıcaklığına kadar kurulmuş olan pek çok hassas denge sayesinde dünya yaşanabilir bir ortamdır. Yaşamı oluşturan öğelerin devamlılığının sağlanabilmesi için de hem fiziksel şartların hem de bazı biyokimyasal dengelerin korunması gereklidir. Örneğin nasıl ki canlıların yeryüzünde yaşamaları için yer çekimi kuvveti vazgeçilmez ise, bitkilerin ürettiği organik maddeler de yaşamın devamı için bir o kadar önemlidir. İşte bitkilerin bu organik maddeleri üretmek için gerçekleştirdikleri işlemlere, daha önce de belirttiğimiz gibi fotosentez denir. Bitkilerin kendi besinlerini kendilerinin üretmesi olarak da özetlenebilecek olan fotosentez işlemi, bunların diğer canlılardan ayrıcalıklı olmasını sağlar. Bu ayrıcalığı sağlayan, bitki hücresinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini direkt olarak kullanabilen yapılar bulunmasıdır. Bu yapıların yardımıyla, bitki hücreleri güneşten gelen enerjiyi insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve yine çok özel yollarla depolarlar. İşte bu şekilde fotosentez işlemi tamamlanmış olur. Gerçekte bütün bu işlemleri yapan, bitkinin tamamı değildir, yaprakları da değildir, hatta bitki hücresinin tamamı da değildir. Bu işlemleri bitki hücresinde yer alan ve bitkiye yeşil rengini veren "kloroplast" adı verilen organel gerçekleştirir. Kloroplastlar, milimetrenin binde biri kadar büyüklüktedir, bu yüzden yalnızca mikroskopla gözlemlenebilirler. Yine fotosentezde önemli bir rolü olan kloroplastın çeperi de, metrenin yüz milyonda biri kadar bir büyüklüktedir. Görüldüğü gibi rakamlar son derece küçüktür ve bütün işlemler bu mikroskobik ortamlarda gerçekleşir. Fotosentez olayındaki asıl hayret verici noktalardan biri de budur. SIR DOLU BİR FABRİKA: KLOROPLAST Kloroplastta fotosentezi gerçekleştirmek üzere hazırlanmış thylakoidler, iç zar ve dış zar, stromalar, enzimler, ribozom, RNA ve DNA gibi oluşumlar vardır. Bu oluşumlar hem yapısal hem de işlevsel olarak birbirlerine bağlıdırlar ve her birinin kendi bünyesinde gerçekleştirdiği son derece önemli işlemler vardır. Örneğin kloroplastın dış zarı, kloroplasta madde giriş-çıkışını kontrol eder. İç zar sistemi ise "thylakoid" olarak adlandırılan yapıları içermektedir. Disklere benzeyen thylakoid bölümünde pigment (klorofil) molekülleri ve fotosentez için gerekli olan bazı enzimler yer alır. Thylakoidler "grana" adı verilen kümeler meydana getirerek, güneş ışığının en fazla miktarda emilmesini sağlarlar. Bu da bitkinin daha fazla ışık alması ve daha fazla fotosentez yapabilmesi demektir. Bunlardan başka kloroplastlarda "stroma" adı verilen ve içinde DNA, RNA ve fotosentez için gerekli olan enzimleri barındıran bir de sıvı bulunur. Kloroplastlar sahip oldukları bu DNA ve ribozomlarla hem kendilerini çoğaltırlar, hem de bazı proteinlerin üretimini gerçekleştirirler. Fotosentezdeki başka bir önemli nokta da bütün bu işlemlerin çok kısa, hatta gözlemlenemeyecek kadar kısa bir süre içinde gerçekleşmesidir. Kloroplastların içinde bulunan binlerce "klorofil"in aynı anda ışığa tepki vermesi, saniyenin binde biri gibi inanılmayacak kadar kısa bir sürede gerçekleşir. Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlarlarken, işte bu hız nedeniyle fotosentez zincirinin bazı halkalarında neler olduğunu anlayamamakta ve olanları hayranlıkla izlemektedirler. Anlaşılabilen en net nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır. AYDINLIK EVRE Bitkilerin fotosentez işleminde kullanacakları tek enerji kaynağı olan güneş ışığı değişik renklerin birleşimidir ve bu renklerin enerji yükü birbirinden farklıdır. Güneş ışığındaki renklerin ayrıştırılması ile ortaya çıkan ve tayf adı verilen renk dizisinin bir ucunda kırmızı ve sarı tonları, öbür ucunda da mavi ve mor tonları bulunur. En çok enerji taşıyanlar tayfın iki ucundaki bu renklerdir. Bu enerji farkı bitkiler açısından çok önemlidir çünkü fotosentez yapabilmek için çok fazla enerjiye ihtiyaçları vardır. Bitkiler en çok enerji taşıyan bu renkleri hemen tanırlar ve fotosentez sırasında güneş ışınlarından tayfın iki ucundaki renkleri, daha doğrusu dalga boylarını soğururlar, yani emerler. Buna karşılık tayfın ortasında yer alan yeşil tonlardaki renklerin enerji yükü daha az olduğu için, yapraklar bu dalga boylarındaki ışınların pek azını soğurup büyük bölümünü yansıtırlar. Bunu da kloroplastların içinde bulunan klorofil pigmentleri sayesinde gerçekleştirirler. İşte yaprakların yeşil gözükmesinin nedeni de budur. Fotosentez işlemi bitkilerin yeşil görünmesine neden olan bu pigmentlerin güneş ışığını soğurmasından kaynaklanan hareketlenme ile başlar. Acaba klorofiller bu hareketlenme ile fotosentez işlemine nasıl başlamaktadırlar? Bu sorunun cevabının verilebilmesi için öncelikle kloroplastların içinde bulunan ve klorofilleri içinde barındıran Thylakoid'in yapısının incelenmesinde fayda vardır. "Klorofiller, "klorofil-a" ve "klorofil-b" olarak ikiye ayrılırlar. Bu iki çeşit klorofil güneş ışığını soğurduktan sonra elde ettikleri enerjiyi fotosentez işlemini başlatacak olan fotosistemler içinde toplarlar. Thaylakoid'in detaylı yapısının anlatıldığı resimde de görüldüğü gibi fotosistemler kısaca, thylakoid'in içinde yer alan bir grup klorofil olarak tanımlanabilir. Yeşil bitkilerin tamamına yakını bir fotosistem ile tek aşamalı fotosentez gerçekleştirirken, bitkilerin %3'ünde fotosentezin iki aşamalı olmasını sağlayacak iki farklı fotosistem bölgesi bulunur. "Fotosistem I", ve "Fotosistem II" olarak adlandırılan bu bölgelerde toplanan enerji daha sonra tek bir "klorofil-a" molekülüne transfer edilir. Böylece her iki fotosistemde de reaksiyon merkezleri oluşur. Işığın emilmesiyle elde edilen enerji, reaksiyon merkezlerindeki yüksek enerjili elektronların gönderilmesine, yani kaybedilmesine neden olur. Bu yüksek enerjili elektronlar daha sonraki aşamalarda suyun parçalanıp oksijenin elde edilmesi için kullanılır. Bu aşamada bir dizi elektron değiş tokuşu gerçekleşir. "Fotosistem I" tarafından verilen elektron, "Fotosistem II" den salınan elektron ile yer değiştirir. "Fotosistem II" tarafından bırakılan elektronlar da suyun bıraktığı elek-tronlarla yer değiştirir. Sonuç olarak su, oksijen, protonlar ve elektronlar olmak üzere ayrıştırılmış olur. Ortaya çıkan protonlar thylakoid'in iç kısmına taşınarak hidrojen taşıyıcı molekül olan NADP (nikotinamid adenin dinükliotid fosfat) ile birleşirler. Neticede NADPH molekülü ortaya çıkar. Suyun ayrışmasından sonra ortaya çıkan protonlardan bazıları ise thylakoid zarındaki enzim kompleksleri ile birleşerek ATP molekülünü (hücrenin işlemlerinde kullanacağı bir enerji paketçiği) meydana getirirler. Bütün bu işlemler sonucunda bitkilerin besin üretebilmesi için ihtiyaç duydukları enerji artık kullanılmaya hazır hale gelmiştir. Bir reaksiyonlar zinciri olarak özetlemeye çalıştığımız bu olaylar fotosentez işleminin sadece ilk yarısıdır. Bitkilerin besin üretebilmesi için enerji gereklidir. Bunun temin edilebilmesi için düzenlenmiş olan "özel yakıt üretim planı" sayesinde diğer işlemler de eksiksiz tamamlanır. KARANLIK EVRE Fotosentezin ikinci aşaması olan Karanlık Evre ya da Calvin Çevrimi olarak adlandırılan bu işlemler, kloroplastın "stroma" diye adlandırılan bölgelerinde gerçekleşir. Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karanlık evrede kullanılan karbondioksiti, şeker ve nişasta gibi besin maddelerine dönüştürürler. Burada kısaca özetlenen bu reaksiyon zincirini kaba hatlarıyla anlayabilmek bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler milyonlarca yıldır bitkiler tarafından üretilmektedir. Üretilen bu maddeler diğer canlılar için en önemli besin kaynaklarındandır. Fotosentez reaksiyonları sırasında farklı özelliklere ve görevlere sahip enzimler ile diğer yapılar tam bir iş birliği içinde çalışırlar. Ne kadar gelişmiş bir teknik donanıma sahip olursa olsun dünya üzerindeki hiçbir laboratuvar, bitkilerin kapasitesiyle çalışamaz. Oysa bitkilerde bu işlemlerin tümü milimetrenin binde biri büyüklüğündeki bir organelde meydana gelmektedir. Şekilde görülen formülleri, sayısız çeşitlilikteki bitki hiç şaşırmadan, reaksiyon sırasını hiç bozmadan, fotosentezde kullanılan hammadde miktarlarında hiçbir karışıklık olmadan milyonlarca yıldır uygulamaktadır. Ayrıca fotosentez işlemi ile, hayvanların ve insanların enerji tüketimleri arasında da önemli bir bağlantı vardır. Aslında yukarıda anlatılan karmaşık işlemlerin özeti, bitkilerin fotosentez sonucu canlılar için mutlaka gerekli olan glukozu ve oksijeni meydana getirmeleridir. Bitkilerin ürettiği bu ürünler diğer canlılar tarafından besin olarak kullanılırlar. İşte bu besinler vasıtasıyla canlı hücrelerinde enerji üretilir ve bu enerji kullanılır. Bu sayede bütün canlılar güneşten gelen enerjiden faydalanmış olurlar. Canlılar fotosentez sonucu oluşan besinleri yaşamsal faaliyetlerini sürdürmek için kullanırlar. Bu faaliyetler sonucunda atık madde olarak atmosfere karbondioksit verirler. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider. FOTOSENTEZ İÇİN GEREKLİ OLAN HER ŞEY GİBİ GÜNEŞ IŞIĞI DA ÖZEL OLARAK AYARLANMIŞTIR Bu kimyasal fabrikada her şey olup biterken, işlemler sırasında kullanılacak enerjinin özellikleri de ayrıca tespit edilmiştir. Fotosentez işlemi bu yönüyle incelendiğinde de, gerçekleşen işlemlerin ne kadar büyük bir hassasiyetle tasarlanmış olduğu görülecektir. Çünkü güneşten gelen ışığın enerjisinin özellikleri, tam olarak kloroplastın kimyasal tepkimeye girmesi için ihtiyaç duyduğu enerjiyi karşılamaktadır. Bu hassas dengenin tam anlaşılabilmesi için güneş ışığının fotosentez işlemindeki fonksiyonlarını ve önemini şöyle bir soruyla inceleyelim: Güneş'in ışığı fotosentez için özel olarak mı ayarlanmıştır? Yoksa bitkiler, gelen ışık ne olursa olsun, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe mi sahiptirler? Bitkiler hücrelerindeki klorofil maddelerinin ışık enerjisine karşı duyarlı olmaları sayesinde fotosentez yapabilirler. Buradaki önemli nokta klorofil maddelerinin çok belirli bir dalga boyundaki ışınları kullanmalarıdır. Güneş tam da klorofilin kullandığı bu ışınları yayar. Yani güneş ışığı ile klorofil arasında tam anlamıyla bir uyum vardır Amerikalı astronom George Greenstein, The Symbiotic Universe adlı kitabında bu kusursuz uyum hakkında şunları yazmaktadır: Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır. Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş'i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş'e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz. FOTOSENTEZİN SONUÇLARI Milimetrenin binde biri büyüklükte yani ancak elektron mikroskobuyla görülebilecek kadar küçük olan kloroplastlar sayesinde gerçekleştirilen fotosentezin sonuçları, yeryüzünde yaşayan tüm canlılar için çok önemlidir. Canlılar havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar. Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda yaklaşık 92 milyar ton ve bitkilerin solunumları sırasında da yaklaşık 37 milyar ton karbondioksit atmosfere karışır. Ayrıca fabrikalarda ve evlerde kaloriferler ya da soba kullanılarak tüketilen yakıtlar ile taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da en az 18 milyar tonu bulmaktadır. Buna göre karalardaki karbondioksit dolaşımı sırasında atmosfere bir yılda toplam olarak yaklaşık 147 milyar ton karbondioksit verilmiş olur. Bu da bize doğadaki karbondioksit içeriğinin sürekli olarak artmakta olduğunu gösterir. Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelebilir. Örneğin atmosferdeki oksijen çok azalabilir, yeryüzünün ısısı artabilir, bunun sonucunda da buzullarda erime meydana gelebilir. Bundan dolayı da bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelebilir. Bütün bunların bir sonucu olarak da yeryüzündeki canlıların yaşamı tehlikeye girebilir. Oysa durum böyle olmaz. Çünkü bitkilerin gerçekleştirdiği fotosentez işlemiyle oksijen sürekli olarak yeniden üretilir ve denge korunur. Yeryüzünün ısısı da sürekli değişmez. Çünkü yeşil bitkiler ısı dengesini de sağlarlar. Bir yıl içinde yeşil bitkiler tarafından temizleme amacıyla atmosferden alınan karbondioksit miktarı 129 milyar tonu bulur ki bu son derece önemli bir rakamdır. Atmosfere verilen karbondioksit miktarının da yaklaşık 147 milyar ton olduğunu söylemiştik. Karalardaki karbondioksit-oksijen dolaşımında görülen 18 milyar tonluk bu açık, okyanuslarda görülen farklı değerlerdeki karbondioksit-oksijen dolaşımıyla bir ölçüde azaltılabilmektedir. Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, bitkilerin yaptığı fotosentez işlemidir. Bitkiler fotosentez sayesinde atmosferdeki karbondioksidi ve ısıyı alarak besin üretirler, oksijen açığa çıkarırlar ve dengeyi sağlarlar. Atmosferdeki oksijen miktarının korunması için de başka bir doğal kaynak yoktur. Bu yüzden tüm canlı sistemlerdeki dengelerin korunması için bitkilerin varlığı şarttır. BİTKİLERDEKİ BESİNLER FOTOSENTEZ SONUCUNDA OLUŞUR Bu mükemmel sentezin hayati önem taşıyan bir diğer ürünü de canlıların besin kaynaklarıdır. Fotosentez sonucunda ortaya çıkan bu besin kaynakları "karbonhidratlar" olarak adlandırılır. Glukoz, nişasta, selüloz ve sakkaroz karbonhidratların en bilinenleri ve en hayati olanlarıdır. Fotosentez sonucunda üretilen bu maddeler hem bitkilerin kendileri, hem de diğer canlılar için çok önemlidir. Gerek hayvanlar gerekse insanlar, bitkilerin üretmiş olduğu bu besinleri tüketerek hayatlarını sürdürebilecek enerjiyi elde ederler. Hayvansal besinler de ancak bitkilerden elde edilen ürünler sayesinde var olabilmektedir. Buraya kadar bahsedilen olayların yaprakta değil de herhangi bir yerde gerçekleştiğini varsayarak düşünsek acaba aklınızda nasıl bir yer şekillenirdi? Havadan alınan karbondioksit ve su ile besin üretmeye yarayan aletlerin bulunduğu, üstelik de o sırada dışarıya verilmek üzere oksijen üretebilecek teknik özelliklere sahip makinaların var olduğu, bu arada ısı dengesini de ayarlayacak sistemlerin yer aldığı çok fonksiyonlu bir fabrika mı aklınıza gelirdi? Avuç içi kadar bir büyüklüğe sahip bir yerin aklınıza gelmeyeceği kesindir. Görüldüğü gibi ısıyı tutan, buharlaşmayı sağlayan, aynı zamanda da besin üreten ve su kaybını da engelleyen mükemmel mekanizmalara sahip olan yapraklar, tam bir tasarım harikasıdırlar. Bu saydığımız işlemlerin hepsi ayrı özellikte yapılarda değil, tek bir yaprakta (boyutu ne olursa olsun) hatta tek bir yaprağın tek bir hücresinde, üstelik de hepsi birarada olacak şekilde yürütülebilmektedir. Buraya kadar anlatılanlarda da görüldüğü gibi bitkilerin bütün fonksiyonları, asıl olarak canlılara fayda vermesi için nimet olarak yaratılmışlardır. Bu nimetlerin çoğu da insan için özel olarak tasarlanmıştır. Çevremize, yediklerimize bakarak düşünelim. Üzüm asmasının kupkuru sapına bakalım, incecik köklerine… En ufak bir çekme ile kolayca kopan bu kupkuru yapıdan elli altmış kilo üzüm çıkar. İnsana lezzet vermek için rengi, kokusu, tadı her şeyi özel olarak tasarlanmış sulu üzümler çıkar. Karpuzları düşünelim. Yine kuru topraktan çıkan bu sulu meyve insanın tam ihtiyaç duyacağı bir mevsimde, yani yazın gelişir. İlk ortaya çıktığı andan itibaren bir koku eksperi gibi hiç bozulma olmadan tutturulan o muhteşem kavun kokusunu ve o ünlü kavun lezzetini düşünelim. Diğer yandan ise, parfüm üretimi yapılan fabrikalarda bir kokunun ortaya çıkarılmasından o kokunun muhafazasına kadar gerçekleşen işlemleri düşünelim. Bu fabrikalarda elde edilen kaliteyi ve kavunun kokusundaki kaliteyi karşılaştıralım. İnsanlar koku üretimi yaparken sürekli kontrol yaparlar, meyvelerdeki kokunun tutturulması içinse herhangi bir kontrole ihtiyaç yoktur. İstisnasız dünyanın her yerinde kavunlar, karpuzlar, portakallar, limonlar, ananaslar, hindistan cevizleri hep aynı kokarlar, aynı eşsiz lezzete sahiptirler. Hiçbir zaman bir kavun karpuz gibi ya da bir mandalina çilek gibi kokmaz; hepsi aynı topraktan çıkmalarına rağmen kokuları birbiriyle karışmaz. Hepsi her zaman kendi orijinal kokusunu korur. Bir de bu meyvelerdeki yapıyı detaylı olarak inceleyelim. Karpuzların süngersi hücreleri çok yüksek miktarda su tutma kapasitesine sahiplerdir. Bu yüzden karpuzların çok büyük bir bölümü sudan oluşur. Ne var ki bu su, karpuzun herhangi bir yerinde toplanmaz, her tarafa eşit olacak şekilde dağılmıştır. Yer çekimi göz önüne alındığında, olması gereken, bu suyun karpuzun alt kısmında bir yerlerde toplanması, üstte ise etsi ve kuru bir yapının kalmasıdır. Oysa karpuzların hiçbirinde böyle bir şey olmaz. Su her zaman karpuzun içine eşit dağılır, üstelik şekeri, tadı ve kokusu da eşit olacak şekilde bu dağılım gerçekleşir.   Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez" dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlı hücrelerin büyük bir çoğunluğu, basit bir algden, büyük ve karmaşık kara bitkilerine kadar fotosentez yaparlar. İnsan yaşadığı ortamda kendi gereksinmelerine göre bir çok değişiklikleri yapma yeteneğine sahip olmasına rağmen, tüm beslenme sorunu için tamamıyla diğer organizmalara bağlıdır. Bu besin piramidinin tabanını fotosentez yapan bitkiler oluşturur. Yediğimiz her şey, ya doğrudan doğruya bitkisel kökenli, ya da bu kökenden türemiş maddelerdir. Gerçekten fotosentez tek başına büyük bir olaydır. Her yıl dünyada 690 milyar ton karbon dioksit (CO2) ve 280 milyar ton su (H2 O) dan fotosentez yolu ile 500 milyar ton karbonhidrat üretilmekte ve 500 milyar ton oksijen atmosfere verilmektedir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Diğer bir kısım organizmalar ise serbest oksijen olmadan da enerji elde edebilirler (Anaerobik solunum). Fakat kompleks yapılı bitki ve hayvanlar, yaşamak için çok miktarda oksijen kullanmak zorundadırlar (Aerobik solunum). Öyleyse kompleks yapılı organizmaların canlılığının devamı ve yayılması oksijenin varlığına bağlıdır. Deney 1. Klorofil Elde Edilmesi Yeşil bitkilerin kloroplastlarında meydana gelen fotosentez de, havanın karbon dioksidi ve suyun varlığında karbonhidrat ve oksijen oluşturulmasıdır. Fotosentez olayını detaylı bir şekilde ortaya koymadan önce klorofil ile ilgili bazı deneyler gösterilecektir. Araç ve Gereçler: Isırgan otu (Urtica) yaprağı, kum, havan, kurutma kağıdı, tebeşir, benzen, alkol, su. Uygulama: Bir havan içine hücrelerin parçalanmasını kolaylaştırmak için kum ve alkol konulup ısırgan otunun yaprakları ilave edilerek iyice ezilir. Bunun sonucunda koyu yeşil boyalı bir eriyik elde edilir. Buna ham klorofil ekstresi adı verilir. Ham klorofil ekstresi hem klorofil, hem de diğer renk maddelerinden olan karotin ve ksantofil boyalı maddeleri de içermektedir. Bunları ayırmak için ekstre filitre kağıdından süzülür. Süzülen bu berrak ekstreden bir miktar alınarak bir deney tüpüne aktarılır. Tübün üzerine aynı miktarda benzen ile bir kaç damla su ilave ediler. Su ilave edilmesinin amacı alkol karışımının yoğunluğunu arttırıp, benzenin kolayca tübün üst kısmına çıkmasını sağlamaktır. Bir süre sonra tübün üst kısmında benzende eriyen klorofilin , alt kısmında ise alkolde kalan sarı renkli karotin ve ksantofil bulunur. Bu şekilde ayırmak, kaba bir yöntemdir. Bu ayrımı daha ayrıntılı bir biçimde gözleye bilmek için kağıt ve tebeşir yardımıyla basitçe yapılabilecek olan bazı uygulamaları örnek olarak verebiliriz. Bu uygulamada yukarıda adı geçen renkli maddeler molekül ağırlığı ve adsorbsiyon derecelerine göre ayrılırlar. Bir petri içine süzülmüş olan berrak klorofil ekstresinden bir miktar koyulur. İçerisine şerit şeklinde kesilerek hazırlanmış kurutma kağıdı ile tebeşir yerleştirilir. Bir süre sonra kağıdın ve tebeşirin üst kısımlarında sarı renkli karotin ve ksantofil, alt kısımda ise yeşil renkli klorofilin toplandığı görülür. Bu kademeli renk farkı adı geçen renk maddelerinin molekül ağırlıklarının ve adsorbsiyon derecelerinin farklı olmasında ileri gelir. Fotosentez Olayında Organik Madde Sentezlendiğinin Gösterilmesi Fotesentezde ışığın katalizörlüğü altında karbon dioksit ve suyun bitkiler tarafından birleştirilerek organik madde (glikoz) sentezlenmesidir. Bu maddeler ya olduğu gibi ya da uzun zincirler şeklinde paketlenerek nişasta şeklinde depolanırlar. Amacımız fotosentezin bir ürünü olan glikozun sentezlendiğini ortaya koymaktır. Araç ve Gereçler : Ebegümeci ve yaprağı iki renkli olan bir bitki yaprağı, siyah renkli kağıt, potasyum iyodür (KI), sıcak su. Uygulama : Yaprağı iki renkli olan bitkiyi alarak uzun bir müddet ışık altında tutunuz. Ebegümeci bitkisinin bir yaprağının yarısını siyah bir kağıt ile kapatarak diğer bitkiyle birlikte aynı sürede olmak şartıyla ışık altında bırakınız. Daha sonra bu bitkileri saplarından keserek kaynamakta olan suyun içerisinde hücrelerinin ölmesini ve çeperlerinin dağılmalarını sağlayınız. Bu iş için iki dakikalık bir süre yeterli olacaktır. Yapraklar yeşil rengini kaybedince potasyum iyodürle muamele ediniz. Işıkta kalmış yeşil renkli bölgelerin nişasta oluşumundan dolayı mavi bir renk aldığını, yeşil olmayan kısımların ise renk vermediğini göreceksiniz (Şekil 4. 3). Deney 3. Fotosentez İçin Karbondioksitin Varlığının Zorunlu Olduğunun Gösterilmesi Yeşil bir bitki oldukça yoğun olarak ışık altında bırakılsa bile, eğer ortamda karbon dioksit bulunmuyorsa bitki bir süre sonra sararmaya başladığı ve gelişiminin durduğu gözlenir. Bunu aşağıdaki gibi bir deneyle ispatlamak mümkündür. Araç ve Gereçler : Bir dal parçası, kavanoz, tüp, tıpa, potasyum hidroksit (KOH), su. Uygulama : Bir bitki dalı alınarak iki yaprağı içerisinde su ve potasyum hidroksit bulunduran bir tüple birlikte (tüpün ağzı açık durumda) geniş ağızlı bir şişe veya kavanoz içerisine bırakılır. Bir süre sonra dalın kavanoz içerisinde kalan kısmında yaprakların sararıp solduğu görülür. Bir müddet daha sonra ise yapraklar tamamen ölür. Buna neden olan faktör, büyük şişedeki karbon dioksitin potasyum hidroksit tarafından emilerek şişe içerisindeki yaprakların ışık ve suyu aldıkları halde karbon dioksit yetersizliğinden fotosentezi yapamamalarındandır. Böylece fotosentez için ortamda karbondioksite kesinlikle gereksinim duyulduğu ispatlanmış olur (Şekil 4. 4). Deney 4. Fotosentezi Etkileyen Faktörlerin Birlikte İncelenmesi Aynı canlı materyeli üzerinde, fotosentezi etkileyen faktörlerin birinin etkisini değiştirip (ışık, karbon dioksit, sıcaklık gibi) diğerlerininkinin sabit tutulması ile fotosentez hızında meydana gelen değişikliklerin incelenmesi ve bu faktörlerin etkilerinin karşılaştırılması şeklinde gösterilecektir. Araç ve Gereçler: Elodea bitkisi, beher, huni, ışık kaynağı, %4'lük potasyum bikarbonat (KHCO3), %1'lik KHCO3, termometre, ispirto ocağı, milimetrik kağıt. Uygulama: Bu deney için Elodea su bitkisi kullanılacaktır. Elodea bitkisi içi su dolu bir cam kaba alınır. Bitkinin üzeri çıkacak olan gaz kabarcıklarını toplayacak olan bir huniyle şekilde görüldüğü gibi kapatılır (Şekil 4. 5). Işık faktörünün etkisini ölçmek için önce normal ışıktaki kabarcık çıkışı tespit edilir. Bir lamba yardımıyla düzeneğe ışık verilir ve kabarcık çıkışı gözlenir. Fotosentez hızı ile aydınlatma şiddeti arasındaki ilişki grafikte gösterilir. Karbondioksit konsantrasyonunun etkisini inceleyebilmek için de başka bir kaba yine ortamı su ile hazırlanmış %4'lük KHCO3 çözeltisi konur. Yine bitki bu düzeneğin içine yerleştirilip bu konsantrasyondaki fotosentez hızı ölçülür. Aynı işlem %1'lik KHCO3 için tekrarlanır. KHCO3 konsantrasyonuna karşı kabarcık sayısındaki değişim grafiği çizilir. Sıcaklığın fotosentez üzerine etkisini ölçmek içinde aynı düzeneğin sıcaklığı ölçülür ve bu sıcaklıktaki kabarcık sayısı saptanır. Daha sonra sıcaklık ispirto ocağı yardımıyla arttırılır ve kabarcık sayısı belirlenir. Sıcaklık kabarcık çıkışı durana kadar arttırılır. Sıcaklık ile fotosentez ilişkisi bir grafikte gösterilir. Deney 5. Aerobik Solunum Bu deneyle karbonhidratların havadan alınan O2 ile CO2 ve H2 O ya kadar yıkılıp enerji açığa çıktığını göreceksiniz. Araç ve Gereçler: Çimlenmekte olan bezelye taneleri, balon joje, cam boru, beher, KOH, renkli bir sıvı. Uygulama: Bu deney için, CO2 tutma özelliğine sahip potasyum hidroksit (KOH) kristalleri pamuğa sarılarak çimlenmekte olan bezelye taneleri ile birlikte bir balon joje içine yerleştirilir. Daha sonra balon şekilde görüldüğü gibi bir ucu renkli sıvıya batırılmış kılcal boru ile birleştirilir. Bir süre sonra bezelyelerin solunum yapması sonucu O2 alınıp CO2 verilir. Dışarıya verilen bu CO2, KOH kristalleri tarafından tutulur ve azalan hacim kadar kılcal boruda sıvı yükselir. Deney 6. Anaerobik Solunum Havanın serbest oksijeni ile temas halinde olmayan bazı bitkiler, kendileri için gerekli olan enerjiyi, organik maddeleri enzimatik faaliyetlerle parçalayarak sağlarlar. Bu parçalanma sonucunda açığa çıkan gaz CO2 'tir. Araç ve Gereçler: Çimlenmekte olan nohut, deney tüpü, civa, beher. Uygulama: Çimlenmekte olan bir kaç nohut tanesini deney tüpünün içine yerleştirin. Sonra tüpü tamamıyla civa ile doldurun ve ters çevirerek yine civa dolu bir kabın içine batırın. Daha sonra cıva dolu kabın üzerine su ilave edin. Bir süre sonra tohumların anaerobik solunumu sonucu ortaya çıkan gaz tüpteki civayı aşağıya doğru ittiğini göreceksiniz (Şekil 4. 7). Bu da bize havadaki serbest oksijen yerine bitki dokularındaki bağlı oksijenin kullanıldığını gösterir. Deney 7. Fermantasyon Bazı organizmaların solunumu sonucunda substrat CO2 gibi çok basit bir ürüne kadar parçalanmaz. Solunum sonucunda daha kompleks bir madde açığa çıkar. Bu olaya fermantasyon denir. Araç ve Gereçler: %1 'lik glikoz çözeltisi, % 20 'lik Baryum hidroksit (Ba(OH)2), taze bira mayası, erlenmayer, cam boru, tıpa. Uygulama: Bir erlenin içine 200 cm3 %1 lik glikoz çözeltisi konulur. Daha sonra bu karışımın içine bir miktar taze bira mayası ilave edilir. Erlenin ağzı şekilde görüldüğü gibi cam boru takılmış tıpa ile kapatılır ve cam borunun diğer ucu yine tıpa ile kapatılmış % 20 'lik Ba(OH)2 çözeltisi içine batırılır. Ba(OH)2 içeren tüpte çökelmenin meydana gelmesi, olay sonucunda CO2 açığa çıktığını, alkol kokusu da fermentasyon sonucu alkolün meydana geldiğini gösterir Özet Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez"dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Bu ünitede bitkilerde fotosentez olayını, fotosenteze etki eden faktörleri, oksijenli ve oksijensiz solunum olaylarını, fermantasyon olayının nasıl meydana geldiği bazı deneylerle gösterilmeye çalışılmıştır. Değerlendirme Soruları Aşağıdaki soruların yanıtlarını verilen seçenekler arasından bulunuz. 1. Fotosentez için aşağıdakilerden hangisi gerekli değildir? A. CO2 B. Işık C. Klorofil D. KOH E. H2O 2. Aşağıdaki bileşiklerden hangisi CO2 tutabilme özelliğine sahiptir? A. H2O B. KHCO3 C. BaCO3 D. NaOH E. KOH 3. Fermantasyon sonucu aşağıdaki maddelerden hangisi oluşur? A. Glikoz B. Karbonhidrat C. Alkol D. Oksijen E. Protein 4. Aerobik solunumda karbonhidratlar, aşağıdaki hangi maddenin yardımıyla en küçük yapı taşları ve enerjiye kadar parçalanırlar? A. O2 B. CO2 C. H2 O D. KOH E. NaOH 5. Aşagıdakilerden hangisi fotosentezin hızına etki etmez? A. CO2 B. Glikoz C. Sıcaklık D. Işık E. Klorofil Yararlanılan ve Başvurulabilecek Kaynaklar Ocakverdi, H., Konuk, M., (1989) Bitki Fizyolojisi Laboratuvar Kılavuzu, Selçuk Üniv. Eğitim Fak. Yay: 14, Konya. Önder, N. Yentür, S., (1991) Bitki Fizyolojisi Laboratuvar Kılavuzu, İstanbul. Üniv. Fen Fak.Yay. No: 220, İstanbul. Önder, N., (1985) Genel Bitki Fizyolojisi, İstanbul Üniv. Fen Fak. Yay. No: 189, İstanbul. Ayrıntılar ve şekiller için tıklayınız: http://www.aof.anadolu.edu.tr/kitap/IOLTP/2282/unite04.pdf

http://www.biyologlar.com/fotosentez

3. Uluslararası Biyosidal Kongresi

3. Uluslararası Biyosidal Kongresi

Kongre Tarihi : 22-25 Kasım 2016 Kongre Merkezi : Antalya Maritim Pine Beach Hotel

http://www.biyologlar.com/3-uluslararasi-biyosidal-kongresi

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

Mikrodizi (Microarray) Nedir

Bu kavramı birçok yerde "mikrodizin" olarak da görmüşsünüzdür, o ayrı bir yazı konusu. Bu yazıda, daha önce detaylı bir şekilde bahsedeceğimi söylediğim mikrodizi teknolojisine giriş yapacağım. Mikrodizi veri analizi yerine, bu teknolojinin nasıl bir şeye benzediğinden bahsedeceğim. Bu teknoloji fazlasıyla popüler ülkemizde (dünyada artık Yeni Nesil Sekanslama konuşuluyor), bir süre daha devam edeceğe de benziyor. Temel birkaç sebepten birisi bu teknolojiyi uygulamayı bilen insan sayısı göreceli olarak hayli fazla, her yerde (evet, neredeyse her yerde) mikrodizi cihazı var, ve bu teknolojiyi kullanarak yayın çıkarmak göreceli olarak kolay. Bu durum da beraberinde gereğinden yüksek beklentileri ve uygunsuz teknoloji kullanımlarını getiriyor. Önce neden böyle bir teknolojiye ihtiyaç duyulduğundan başlayalım. Klasik bilimsel yaklaşım belirli bir vakit diliminde belirli bir faktörü incelemek üzerine kurulu. Bu nedenle p53 üzerine binlerce yayın var; ancak p53'ün tam olarak nasıl çalıştığına ilişkin elimizde tam bir bilgi yok, çünkü etkileşim mekanizmasını tam olarak anlayabilmiş değiliz. Buradaki anahtar kelime, "etkileşim" [interaction]. Yani klasik yaklaşımla, direksiyonun bir otomobil için çok önemli olduğunu anlayabiliyoruz. Hatta direksiyonun türler arasında (kamyon, otobüs, vapur, uçak vb.) korunduğunu ve bazen farklı şekillere büründüğünü ve buna rağmen aynı etkiyi yaptığını da kavrayabiliyoruz. Ama direksiyonun tam olarak nasıl çalıştığını klasik yaklaşımla anlayamıyoruz; çünkü bir başka deneyde direksiyonu sabit tutup gaza basıyoruz, bir başkasında otomobilin krank milini çıkarıp etkisine bakıyoruz, ve benzeri şeyler. Bu sıkıntı bilimin birçok dalında kendini gösteriyor, fakat özellikle de birden fazla faktörün işin içine girdiği alanlarda içinden çıkılmaz bir hal alıyor bu durum. Psikoloji bilimsel olarak geç kabul gören fakat hızlı ilerleyen bir dal. Klasik bilimsel yaklaşımla çözülemeyen bazı problemleri çözmek adına farklı bir yaklaşım ortaya çıkıyor. Gestalt psikolojisi denilen bu yaklaşım diyor ki: "Bütün, onu oluşturan parçaların toplamı değil, daha fazlasıdır." Yani deniyor ki, bir ormanı anlamak istiyorsanız teker teker her bir ağacı araştırmanız yetersizdir. Ormanı oluşturan şey, ağaçlar ve onların birbiriyle etkileşimidir. Yani p53'ün ne işe yaradığı çoğu zaman anlamsızdır; önemli olan, p53'ün diğer moleküllerle etkileşimini ortaya koymaktır. Yani direksiyonu çevirdiğimizde tekerlerin nasıl hareket ettiğini keşfetmek, belirli hızlarla giderken her bir derecelik direksiyon açısındaki değişmenin kaç metrelik sapmalara denk geldiğini görmek, her bir lastiğin aşınmışlığının bu sapmaları nasıl etkilediğini keşfetmek, direksiyon boşluğu denen şeyin aracın yönünü ayarlamayı nasıl etkilediğini bulmak tüm resmi görmektir. Elbette direksiyonun şekli, yapıldığı materyal vb. şeyler kıymetlidir ama, bütün resmin sadece ufak bir parçasıdır. Gestalt psikolojisini detaylı bir şekilde araştırmanızı öneririm; sistem biyolojisini anlamak için çok güzel bir başlangıç noktası bence. 1977 yılında Northern Blot adı verilen bir yöntem geliştirildi. Amaç, gen ifade miktarını hedef bir gen/transkript için belirleyebilmekti. Örneğin, p53 gen ifade miktarını bu yöntemle tayin edebiliyordunuz ve sadece bir veya birkaç gen ifade miktarını kendi aralarında farklı durumlar (hastalıklı - sağlıklı vb.) için kıyaslayabiliyordunuz. Burada önemli bir detay var; ilgilendiğiniz gen veya transkriptin DNA dizilimini, en azından bir kısmını bilmeniz gerekiyor ki ona göre probu tasarlayabilesiniz. Aslında bu durum aynı zamanda çok büyük bir kısıtlayıcı etkiye sahip; henüz keşfedilmemiş genler için bu yöntemi kullanabilmek mümkün değil. Hücredeki süreçleri daha iyi anlayabilmek için mümkünse hücredeki her detaya ilişkin veriye ihtiyacımız var. Genetik alanındaki araştırmalar ilerledikçe ve moleküller arası etkileşimin önemi farkedildikçe aynı anda onlarca gene ait özelliklere bakabilmenin daha faydalı olabileceği düşüncesi yaygınlaşmaya başladı; gestalt yaklaşımının biyoloji versiyonu gibi düşünebilirsiniz bu gelişme sürecini. Yeni bir teknolojinin geliştirilmesi biraz uzun sürdü; SAGE (Serial Analysis of Gene Expression) yöntemi bu arayışlar doğrultusunda ortaya çıktı, sene 1995. Henüz İnsan Genom Projesinin çıktıları bilinmiyordu ve araştırmacılar mümkün olduğu kadar çok gen ifade değişimini aynı anda gözlemleyebilmek istiyordu. Böylece, bir hastalık durumunda gen ifade miktarlarının sağlıklı bireylerin gen ifade miktarlarına göre nasıl değiştiği ve böylelikle hastalığa neyin neden olduğu, veya hastalığın neleri etkilediği/değiştirdiği anlaşılabilecekti. Yandaki şekil SAGE metodunu kısaca özetliyor. SAGE yönteminin bir diğer avantajı ise, hücredeki transkriptlerin ne olduğunu önceden bilmenizi gerektirmeyen ve yeni genlerin keşfine olanak sağlayan bir yaklaşıma sahip olması. Daha doğrusu, yeni bir genin ufak bir dizisini keşfetmekten bahsediyoruz, yine de bu o zamanlar için büyük bir keşif olarak düşünülebilir (Bir yazımda EST'lerden kısaca bahsetmiştim). SAGE metodu DNA dizilimlemeye dayanır ve o dönemde elimizdeki en iyi yöntem Sanger yöntemiydi. Eğer dizilimlemek istediğiniz DNA bölgesi fazlasıyla uzunsa bu hem uzun süreler, hem de yüksek maliyetler anlamına geliyor. Bu nedenle, yine aynı dönemde geliştirilen mikrodizi teknolojisi düşük maliyetler vadettiği için bir anda popüler hale geldi ve SAGE metodunun pabucunu dama attı. Oysa iki metodun karşılaştırmalarına baktığımızda, SAGE yöntemi mikrodizi teknolojisine göre çok daha kesin ve nicel sonuçlar verebiliyor. Maliyet avantajı fazlasıyla baskın gelmiş anlaşılan. Peki mikrodizi teknolojisi ne getirdi, temel farkı neydi? Bu yeni teknolojiyi, aynı anda gerçekleştirilen Northern Blot'lar gibi düşünebiliriz; binlerce ve bazen on binlerce Northern Blot, tek seferde, çok daha az sarf maliyetiyle. Yaklaşım aynı; önceden tasarlanmış ve bir transkripti tanımlayabilecek en az bir prob tasarlayın. Prob lafı biraz korkutucu geliyor başta ve bir kavram kargaşasına da yol açabiliyor. Kastettiğimiz şey, 20 ila 500 baz arasında uzunluğu olan tek zincirli bir DNA molekülü (ülkemizde yaygın olarak kullanılan Affymetrix teknolojisinde DNA molekülünün uzunluğu 25 baz olarak belirlenmiş). Olay tamamen hibridizasyon temelli ve bu nedenle tek zincirli DNA parçaları, eşlenecekleri diğer molekülleri bekliyorlar; onlar da hedef transkriptler. Bir video yüzlerce kelimeye bedel, buradan teknolojinin nasıl işlediğini izleyebilirsiniz. Birçok farklı mikrodizi teknolojisi ve yine birçok uygulaması var; yani aslında mikrodizi teknolojisi dediğimizde ortada yine ufak bir kavram kargaşası var ancak sistemin çalışması yukarıda bahsettiğimiz gibi. Peki sonra ne oluyor? Problara bağlanması için hücrelerden elde ettiğimiz DNA veya mRNA parçaları floresan moleküllerle işaretleniyor (kafamda, her bir nükleik asit molekülünün ucunda birer LED veya ampül varmış gibi hayal ediyorum). Problar sabit olduğu ve her bir pozisyonda hangi transkripti hedeflediği bilindiği için, o bölgelerdeki floresan ışımaya bakılıyor ve bu ışıma miktarının hücredeki gen ifadesi miktarıyla paralel olduğu varsayılıyor. Buradaki paralel olma ifadesi şu demek; elimizde sayısal veriler var ancak bunlar mutlak rakamlar değil. Çok ışıma varsa hücrede bu gen çok miktarda ifade ediliyor diye düşünüyoruz, az ışıma varsa az gen ifadesi var diye düşünüyoruz. Bu az veya çok olma durumu hücrede gerçekte kaç kopya transkript olduğu bilgisini vermiyor. Bu nedenle mutlaka bir referansa veya bir referans grubuna ihtiyacımız var. Mikrodizi ne değildir, tam da bu noktada başlıyor. Tek bir mikrodizi deneyiyle bir gene ait ifade değerini mutlak olarak söyleyemezsiniz, herhangi bir tespit yapamazsınız. Aynı değer grubuna ait örneklerle yapacağınız mikrodizi deneyleriyle de bunu yapamazsınız. Yani, 10 tane hasta bulup bunlardan alacağınız örneklerle yaptığınız mikrodizi deneyi, pratikte neredeyse hiç bir işe yaramaz, çünkü bu teknoloji böyle kullanılmaya uygun değil; mutlaka birden fazla referans çalışmaya ihtiyacınız var. Böylece elde ettiğiniz hasta örneklerine ait verilerin "çok" veya "az" olduğunu söyleyebileceğiniz bir referans noktası elde edebilirsiniz. Model organizma çalışırken referans veya kontrol grubu bulmak çok daha kolay ancak konu insan olduğunda sağlıklı bireylerden kontrol örneklerini nasıl bulabilirsiniz? Örneğin, sağlıklı bir bireye karaciğer biyopsisi yapmanın veya o bireyin beyninden parça almanın hem etik hem de yasal bir çok problemi var. O zaman bu dokulardan elde edilen örneklerle mikrodizi deneyleri yapılmayacak mı? Referansınız yoksa, evet, çalışmanın bir anlamı yok. Yeterince örnek toplayamıyorsanız, yine burada bir problem var. Elinizdeki değerler mutlak değerler değil ve bu değerlerin kendi içlerinde de sapmalar var, bu nedenle birçok örneğe ihtiyacınız var. Bütçeniz kısıtlıysa ve her bir deney grubu için sadece bir örnek çalışabilecekseniz, mikrodizi teknolojisine başvurmanın yine neredeyse hiç bir anlamı yok. Veya referans olarak kullanacağınız kontrol örnekleri gerçekten de kontrol değilse (deney grubu örnekleriyle aynı dokudan ve aynı şartlarda alınmadıysa vb.), o zaman yine yapacağınız çalışma tehlikeye giriyor. Yukarıda saydığım nedenlerden ötürü bir mikrodizi deneyi tasarlamadan önce bir biyoinformatik uzmanına veya bir biyoistatistikçiye danışmakta çok büyük faydalar var; bu sayede birçok hatanın ve verimsizliğin önüne geçilebilir. Her bir farklı üreticinin geliştirdiği mikrodizi teknolojileri de birbirinden farklı, bu nedenle bu konuda da bilgi sahibi olmak gerekiyor. Gözünüz korkmasın, Wikipedia'da ufak bir gezinti farklı mikrodizi teknolojileri hakkında fikir sahibi olmanız için yeterli.

http://www.biyologlar.com/mikrodizi-microarray-nedir

SOLUNUM SİSTEMİ FİZYOLOJİSİ

Solunum kelimesi iki anlamda kullanılabilir. Hücresel düzeyde, hücresel oksidatif Matabolizma anlamındadır. Organizma düzeyinde ise, gaz değişim yüzeylerinin, yani akciğerlerin atmosfer havası ile havalanması demektir. Solunum sistemi, dolaşım sisteminin atmosferle olan bağlantısını sağlar. Amfibian denilen kurbağa gibi hem karada hem de suda yasayan canlılarda ¤¤¤¤bolizma düşük olduğu için cilt solunumu yeterlidir. Eğer insanlarda kurbağalar gibi cilt solunumu yapsalardı, o zaman insanların ¤¤¤¤bolizması daha yüksek olduğu için, insan vücudunun yüzeyinin, gerçek yüzeyinden kat kat fazla olması gerekir idi. Akciğerler ağırlık olarak vücudun pek az bir kısmını oluştururlar, fakat yüzey olarak çok fazla bir yer kaplar. Yunan mitolojisine göre, "PNEUMA" yani nefes, görülmez kişisel bir ruhtur ve sahibine hayat verir. Sağlıklı insanlar, soluk almayı, değerini takdir etmeden, verilmiş bir hak gibi kabul ederler, çünkü soluk alıp verme hemen hemen gayretsizdir ve bilinçsizce yapılır. Oysa solunum hastalığı olanlar için, her soluk bir altın değerindedir. Solunum hastalıkları genellikle, soluk havasının ya sigara dumanı ya da kirli hava ile kirlenmesinden kaynaklanır. Solunum sisteminin bir diğer görevi de ses çıkarmaktır. Konuşurken, solunum sisteminde dolasan hava, ses tellerini titreştirir, oluşan bu sesin havayla dolu boşluklarda yankılanmasıyla bazı frekanslar diğerleri üzerine baskın çıkar, bu da her kişiye kendine has özel sesini verir. SOLUNUM SİSTEMİ ANATOMİSİ Solunum sistemi burun, ağız, farinks (yutak), larinks (gırtlak), trakea (soluk borusu), bronşlar, bronsioller, ve alveollerden oluşur. Trakeadan sonra ilk dallanan yapılara bronşlar, broşlardan sonraki daha dar çaplı yapılara da bronsioller denilmektedir. Bronşlar, bronsioller ve terminal bronsiollerde gaz alışverişi olmaz, bu kanallar anatomik ölü boşluk olarak adlandırılır. Anatomik ölü boşlukta bulunan hava hacmi 150 ml dir. Gaz değişimi yapılan alanlar ise respiratuvar bronsiol, duktus alveolaris, ve alveol keseleridir. Anatomik ölü boşluk nedeni ile her bir solunum ile akciğerlere alınan 500 ml havanın 350 ml sinde gaz değişimi yapılmaktadır. Diffüzyon: Gerek akciğerlerde gerekse hücre düzeyinde gaz alışverişi diffüzyon ile olmaktadır. Bu diffüzyon pasif bir olaydır, yani gazlar konsantrasyon farkları doğrultusunda diffüzyona uğrarlar. Bir sıvıda çözünmüş olan gazin konsantrasyonu o gazin kısmi basıncı ile ifade edilmektedir. Gazin kısmi basıncı büyüdükçe, konsantrasyonu da artmaktadır. Akciğerlere gelen venöz kanda, alveol içindeki atmosfer havasına oranla, CO2 basıncı daha yüksek, O2 basıncı ise daha düşüktür; bu sebeple, CO2 alveol içine verilirken, O2 de kana geçmektedir. Kanda oksijenin % 97 si eritrositler içinde hemoglobine bağlı olarak taşınır, geri kalan % 3 ise plazmada fiziksel olarak çözünmüş halde taşınmaktadır. Karbondioksit ise 4 şekilde taşınır. % 70 oranında plazmada HCO3 iyonu seklinde taşınır. Hücrelerde oluşan CO2, kana geçtiği zaman eritrositler içine alınır. Eritrositler içinde CO2, karbonik anhidraz enziminin etkisiyle H2O ile birleşir. Karbonik anhidraz: CO2 + H2O HCO3 + H Yukarıdaki reaksiyonda ortaya çıkan hidrojen iyonları hemoglobin molekülüne bağlanır, bikarbonat iyonları ise eritrositlerden plazmaya çıkar ve akciğerlere kadar plazmada gelir. Kan akciğerlere gelince, bikarbonat iyonlarının eritrositler içine girmesi ile reaksiyon tersine döner, sonuçta su ve karbondioksit oluşur ve solunum yoluyla dışarı atılır. Karbondioksitin % 70 i bu yolla taşınır. Karbondioksitin bir kısmı doğrudan hemoglobin molekülüne bağlanarak taşınır. Çok az bir kısmı plazmada fiziksel olarak çözünmüş halde taşınır. Az bir kısmı da plazma proteinleri ile karboamino bileşikleri oluşturarak taşınır. Solunum Sisteminin Fonksiyonları: 1.Oksijen temin eder. 2. Karbondioksiti atar. 3. Kanın hidrojen iyon konsantrasyonunu (pH sini) düzenler. 4. Konuşmak için gerekli sesleri üretir (fonasyon). 5. Mikroplara karsı vücudu savunur. 6. Kan pıhtısını tutar ve eritir. Solunum Sisteminin Organizasyonu: Sağ ve sol olmak üzere 2 akciğer vardır. Akciğerler esas olarak ALVEOL denilen (alveolus, tekil; alveoli, çogul) içi hava dolu küçük keseciklerden oluşur. Alveol kanla, atmosfer havasının gaz değiştirdikleri yerdir ve her bir akciğerde yaklaşık 150 milyon alveol vardır. HAVAYOLU dış ortamla, alveol arasında havanın geçtiği tüm tüplere verilen isimdir. Inspirasyon soluk alma demektir ve solunum sırasında dış ortamdan, havanın havayolları aracılığı ile alveollere hareket etmesidir. Ekspirasyon ise soluk verme demektir ve havanın alveollerden dış ortama, yine havayolu aracılığı ile verilmesi demektir. Soluk alıp verme sırasında, 1 dakikada yaklaşık 4 litre hava alveollere girip çıkarken, alveollerin çevresindeki kapiller damarlardan ise 1 dakikada 5 L kan geçer. Ağır egzersiz sırasında hava akışı 30-40 kat artabilirken, kan akimi da 5-6 kat artabilir. Her zaman için alveole giren hava ile alveol çevresindeki kapillerler içindeki kan birbiriyle orantılı olmalıdır. Alveoler hava ile kapiller kan birbirinden çok ince bir zar ile ayrılmıştır, bu zar oksijen ve karbondioksitin diffüze olmasına olanak tanır. Havayolu: Soluk alma sırasında, hava ya ağızdan ya da burundan farenkse geçer, farenks hem yiyecekler hem de hava için ortak bir geçiş yoludur. Farinks 2 tüpe ayrılır, birisi özafagustur ki buradan yiyecekler mideye geçer, diğeri ise larinks dir ki, bu havayolunun bir parçasıdır. Ses telleri larinkste bulunur, geçen havanın bu telleri titretmesi ile ses oluşur. Larinks trakea denilen uzun bir tüpe açılır. Trakeada 2 tane bronşa dallanır. Bir bronş sağ akciğere bir bronş da sol akciğere girer. (Bronchus=bronş, bronchi=bronşlar) Trakea ve bronşların duvarları kartilaj denilen kıkırdak dokusu içerir ve kartilaj bu yapılara esneklik ve dayanıklılık verir. Akciğerler içerisinde bronşların dallanması devam eder, her bir dallanma daha dar, daha kısa, ve daha çok sayıda tüp oluşması ile sonuçlanır. Bu dallanmalar sırasında kartilaj içermeyen ilk dallanmalardaki tüplere bronsiyol denir. Alveoller, respiratuvar bronsiyollerden itibaren görülmeye baslar. Havayolları larinksten itibaren 2 bölüme ayrılır. 1)İletici kısım 2)respiratuvar kısım. İletici kısımda hiç alveol olmadığı için bu kısımda gaz değişimi olmaz. Respiratuvar kısım ise respiratuvar bronsiollerden itibaren baslar. Bu kısımda gaz değişimi olur. Farinksten, respiratuvar bronsiollerin sonuna kadar tüm havayolu boyunca, epitelyal yüzeyler silya içerir. Tüm havayolu boyuna ayrıca mukus salgılayan epitel hücreleri ile çeşitli bezler bulunur. Silyalar sürekli olarak farinkse doğru hareket halindedirler. Bu yapıyı mukustan yapılmış bir yürüyen merdivene benzetebiliriz. Bu yürüyen merdiven sayesinde solunum havasındaki toz mukusa yapışır ve yavaş ama sürekli hareket halindeki silya hareketleriyle farinkse doğru iletilir ve farinkse varınca, burada yutulur. Bu mukus yürüyen merdiveni akciğerleri temiz tutmak için çok önemlidir. Silyer aktivite zararlı pek çok etkenle inhibe edilebilir. Örneğin sigara içmek silyaları saatlerce immobilize eder. Silyer aktivitenin azalması akciğer enfeksiyonu ile ya da atılamayan mukusun havayolunu tıkamasıyla sonuçlanabilir. İkinci koruma mekanizması fagositlerdir. Tüm havayolu ve alveoller boyunca bulunan fagositler solunumla alınan küçük parçacıkları ve bakterileri fagosite ederek bunların öteki akciğer hücrelerine ya da kan dolaşımına geçmesini önlerler. ALVEOL Alveoller küçük, içi hava dolu keseciklerdir. Alveol duvarının havaya bakan iç yüzleri yalnızca 1 hücre kalınlığındadır. Bu iç yüzey Tip I hücreleri denilen epitel hücreleri tarafından 1 sıra olarak oluşturulmuştur. Alveollerin duvarları ayni zamanda kapiller damarları da içerir. Kapiller damarların endotel hücreleri, alveol endotel hücrelerinden çok az bir interstisiyel sıvı ve bir bazal membranla ayrılmıştır. Sonuç olarak kapiller damarlardaki kan, alveollerdeki havadan yalnızca 0,2 m m kalınlığında bir bariyerle ayrılmıştır. Ortalama bir eritrositin çapının 7 m m olduğunu düşünürsek, 0,2 m m lik bir bariyerin ne kadar ince olduğu çok açıktır. Kapiller damarlar ile temas eden alveol yüzeyinin toplam alanı 75 m2 dir ki bu bir tenis kortunun alanına eşittir, ya da bir diğer deyişle, vücut dış yüzeyinin 80 katidir. Bu kadar ince ve büyük bir alan olması sebebiyle oksijen ve karbondioksit büyük miktarlarda hızlıca değişmektedir. Alveol epitelinde Tip I hücrelerine ek olarak daha az sayıda Tip II hücreleri vardır. Şekilsel olarak Tip I den daha büyük olan bu Tip II hücreleri surfaktan denilen bir madde sentezlerler. GÖGÜS KAFESİ Akciğerler toraks denilen göğüs kafesi içinde yerleşmiştir. Toraks kapalı bir bölmedir. Boyunda kaslar ve bağ dokusu tarafından sınırlanmıştır, altta ise diyafram denilen kubbe seklinde bir çizgili kas ile karından tümüyle ayrılmıştır. Toraks duvarları, omurilik, kostalar, iman tahtası (sternum), ve kostalar arasındaki kas olan interkostal kaslardan oluşur. Toraks duvarı ek olarak büyük miktarda elastik bağ dokusu içerir. Her akciğer plevra zari denilen bir zar ile tamamen kaplanmıştır. Bu zar iki katli bir zardır. Plevra zarını hayalde canlandırmak için içi su dolu bir balona bir yumruğu bastırdığınızı düşünün. Yumruk akciğeri temsil etmektedir, yumruğu ilk saran balon zari visseral plevrayı temsil etmektedir. İkinci katman ise pariyetal plevrayı temsil etmektedir. Visseral plevra ile parietal plevra arasında intraplevral sıvı denilen çok ince bir sıvı tabakası vardır. Bunun toplam miktarı sadece birkaç ml dir. Gelişim sırasında bu iki plevra zari arasında yaklaşık 4 mm Hg lik negatif bir basınç oluşur. Bu negatif basınç sayesinde, normalde kollabe olması gereken alveol açık kalır. Bu negatif basınç alveolleri dışa doğru çekerken, göğüs kafesini de içe doğru çeker. Göğsün kesici aletlerle olan yaralanmasında parietal plevra delindiği için plevral aralıktaki basınç atmosfer basıncına eşitlenir, yani negatif basınç kalmaz. Pnemotoraks denilen bu yaralanmada alveolleri dışa doğru çeken negatif basınç olmadığı için akciğerler kollabe olur, yani söner. İNSPİRASYON (SOLUK ALMA) Inspirasyon, diyafram ve inspiratuvar interkostal kasların kasılmasıyla baslar. Diyaframın kasılmasıyla göğüs boşluğu karına doğru büyür. Interkostal kasların kasılmasıyla da göğüs yukarı ve dışa doğru büyür. Göğüsün bu büyümesi intraplevral aralıktaki basıncı daha da negatif yapar. Bu da akciğerleri daha da büyüterek havanın akciğerlere doğru emilmesine yol açar. EKSPİRASYON (SOLUK VERME) Inspirasyonun sonunda, diyafram ve inspiratuvar interkostal kaslara giden sinirler, kasları uyarmayı sonlandırır ve böylelikle kaslar gevşerler. Göğüs duvarı ve dolayısı ile akciğerler pasif olarak orijinal değerlerine dönerler. Akciğerler küçülünce, alveollerin içindeki hava sıkışır ve alveol içi basınç atmosfer basıncını geçer. Dolayısı ile alveol içindeki hava kolayca havayollarından dışarı atılır. Sonuç olarak istirahat halinde ekspirasyon pasif bir olaydır, inspiratuvar kasların gevşemesi ve akciğerlerin elastikiyeti sayesinde gerçekleşir. Fakat egzersiz sırasında daha büyük miktarda hava dışarı atılmak zorunda olduğu için ekspiratuvar interkostal kaslar ve karin kaslarının kasılmasıyla göğüs daha aktif olarak küçülür. KOMPLİANS (ESNEME) Belirli bir basınç altında belirli bir maddenin ne kadar esneyebildiğine o maddenin kompliansi denir. Dolayısı ile akciğerlerin kompliyansi ne kadar çok olursa, esneyebilmeleri de o kadar çok olur. Tersine komplians azalmışsa akciğerlerin esneyebilmeleri de zor olur. Akciğerlerin kompliyansinin azaldığı hastalıklarda, esneklik azaldığı için, akciğerleri genişletmek için daha fazla güç uygulamak gerekecektir. Bu tür hastalar, yüzeysel ve hızlı solurlar. Akciğerlerin kompliansini etkileyen bir diğer faktör de alveollerin yüzey gerilimidir. Alveollerin yüzeyleri nemlidir ve alveoller ince bir su tabakası ile kaplı gibi düşünülebilir. Bu su tabakası gerilmiş bir balon gibi davranır ve akciğerlerin genişlemesini engelleyen bir güç gibi davranır. Akciğerlerin genişlemesini etkileyen bu güce "yüzey gerilimi" denir. Sonuç olarak akciğerlerin genişlemesi hem akciğerlerin elastik dokusunu germek, hem de bu yüzey gerilimini asmak için daha fazla enerjiye ihtiyaç duyacaktır. Alveollerdeki Tip II hücreler surfaktan denilen bir madde sentezlerler. Surfaktan yüzey gerilimini azalttığı için akciğerlerin kompliansini arttırır, yani akciğerleri genişletmek için daha az enerjiye gereksinim duyulur. Respiratuvar Distress Sendromu denilen hastalıkta yeni doğan bebekler yeteri kadar surfaktan sentezleyemedikleri için bu bebekler soluk alıp vermek için çok enerji harcarlar ve çocukların yorgunluktan bitkin düşerek ölmelerine neden olabilir. Gebe kadına kortizol yapılması çocukta surfaktan sentezini artırır. AKCİĞER KAPASİTELERİ Tek bir solukla akciğerlere alınan veya akciğerlerden çıkarılan hava msktarina tidal volum (soluk hacmi) denir, miktarı 500 ml dir. Pasif ekspirasyondan sonra akciğerlerde kalan hava miktarına fonksiyonel rezidüel kapasite denir, yaklaşık 2300 ml dir. Zorlu bir ekspirasyondan sonra, akciğerlerde kalan hava miktarına rezidüel volüm denir, miktarı 1200 ml dir. Normal bir inspirasyondan sonra zorlu inspirasyon ile akciğerlere alınabilen hava miktarına inspiratuvar yedek volüm denir, 3000 ml civarındadır. Normal pasif ekspirasyondan sonra zorlu ekspirasyon ile akciğerlerden atılan hava miktarına ekspiratuvar yedek volüm denir, 1100 ml civarındadır. Normal bir ekspirasyondan sonra, zorlu inspirasyon ile akciğerlere alınabilen hava miktarına inspiratuvar kapasite denir. Tidal volüm, inspiratuvar ve ekspiratuvar yedek volümlerin toplamı akciğerlere kas kuvveti ile alınıp verilebilen maksimum hava miktarını gösterir, ve buna vital kapasite denir. Vital kapasite genç erkeklerde 4,6 L genç kızlarda ise 3,1 L dir. Maksimum ekspirasyondan sonra akciğerlerde kalan hava miktarına residüel volüm denir, ve yaklaşık 1200 ml civarındadır. Vital kapasite ile residüel volümün toplamına ise Total akciğer kapasitesi denir. Bu bahsedilen volümlere statik volümler denir, çünkü bu ölçümler hava akimi olmadığı zaman yapılan ölçümlerdir. Zorlu ekspirasyon sırasında yapılan akciğer volüm değişikliklerine ise dinamik akciğer volümleri denir. Bunlar FEV1 ve FVC dir. FEV1 birinci saniyede akciğerlerden çıkarılabilen hava miktarıdır. FVC ise maksimum inspirasyondan sonra akciğerlerden çıkarılabilen maksimum hava miktarıdır. Sağlıklı genç bireylerde FEV1 4 L FVC ,ise 5 L dir ve oran 0,8 dir. GÖĞÜS HASTALIKLARI Göğüs hastalıkları iki genel kısma ayrılırlar. Obsruktif Hastalıklar: Bu hastalıklarda hava yolu direnci artmıştır (amfizem, astım). Restriktif Hastalıklar: Akciğer kompliansi azalmıştır (pulmoner fibrozis, respiratuvar distress sendromu).

http://www.biyologlar.com/solunum-sistemi-fizyolojisi

Rutin histopatolojik uygulamalar

Tespit (fiksasyon) Dokular insan vücudundan ayrıldıkları anda canlıdırlar ve taşıdıkları hastalığın (varsa) morfolojik bulgularını sergilerler. Tespit, dokuların o andaki görünümünün ısı, nem ve enzimlerin etkisiyle değişmesini, bozulmasını önlemek amacıyla yapılır. Tespit edilmeyen dokulardaki hücreler bir süre sonra bakterilerin ve içerdikleri sindirici enzimlerin etkisiyle otolize uğrar, morfolojik özelliklerini yitirir ve tanısal amaçlı incelemelerde kullanılamayacak duruma gelirler. Tespit işlemi için genellikle özel sıvılar kullanılır. Doku ve organlar kendi hacimlerinin 10-20 katı kadar tespit sıvısı içine bırakılırlar. Patolojide rutin amaçlar için en yaygın olarak kullanılan tespit sıvısı formalindir. Bu, seyreltik bir formaldehit (H-CHO) solüsyonudur. Tespit işlemi dokunun türü ve kalınlığına göre birkaç saat (karaciğer iğne biyopsisi) ile birkaç hafta (beyin) arasında değişen sürelerde olabilir. Yüzde seksenlik etil alkol, Bouin solüsyonu, Zenker solüsyonu, B5 solüsyonu, Carnoy solüsyonu ve glutaraldehit gibi başka tespit sıvıları da yeri geldikçe kullanılabilir. Sitolojik örneklerin havada kurutulmaları veya ısıtılmaları da tespit yöntemleri arasındadır. Bu tür tespit yöntemlerine daha çok hematolojik ve mikrobiyolojik boyalar kullanılacaksa başvurulur. Uygun formalin solüsyonunda bekletilen dokular aylar-yıllar sonra bile histopatolojik olarak rahatlıkla değerlendirilebilir. Takip (doku işleme) Tespitten sonraki aşamaların hemen hepsi otomatik makinelerde yapılabilir. İlk aşama, çoğunluğu sudan oluşan tespit sıvısının ve dokunun kendisinin başlangıçta içerdikleri suyun uzaklaştırılmasıdır (dehidratasyon). Bu, dokunun sertleşmesine yardım eder. Sert dokuların sonraki aşamalarda çok ince kesilebilmesi mümkün olur. (Bayat ekmekle taze ekmeğin kesilmeleri arasındaki fark gibi). Alkol, dokunun kırılganlığını artıran bir maddedir. Onun da ksilol yardımıyla ortamdan uzaklaştırılması gerekir. Daha sonra da, dokuda başlangıçta su içeren, sonra sırasıyla alkolle ve ksilolle infiltre olan aralıklara ısıtılarak sıvılaştırılmış parafinin girmesi sağlanır. Kullanılan parafin oda sıcaklığında katılaşır.Takibe alınan bütün örnekler numaralanır. Bu numaralar sonraki bütün aşamalarda dokuların konduğu kasetlerin üzerinde, bloklarda, preparatlarda ve raporlarda yer alır. Takip işlemleri, oda sıcaklığı ile 60 C arasındaki sıcaklıklarda yapılır. Negatif basınç (vakum) uygulanması ile, dokuların daha iyi ve daha kısa sürede işlenmeleri sağlanabilir. Ayrıca, özel mikrodalga fırınlar kullanılarak, normal olarak 8-16 saat süren bu işlemlerin süresini belirgin olarak kısaltmak ve 2 saatin altına indirmek mümkündür. Bloklama Parafinle infiltre edilmiş dokular, dikdörtgen prizma biçimindeki kalıplara konulur ve üzerlerine ısıtılmış parafinin dökülüp soğutulmasıyla bloklar elde edilir. Bu durumdaki dokuların çok ince kesilebilmeleri mümkün olur. Kesme Parafin bloklar; mikrotom adlı aygıt ile istenilen kalınlıkta (genellikle 4-5 mikron) kesilir, kesitler ılık su banyosuna, oradan da lamlar üzerine alınırlar. Bu kesitler önce ısıtılıp sonra bir solvent olan ksilole konularak deparafinize edilir, daha sonra da giderek daha sulu hale gelen alkollerden geçirilerek istenilen boyanın uygulanmasına geçilir. Boyama Rutin olarak kullanılan boya hematoksilen (mavi) ve eosindir (kırmızı). Kısaca "HE" veya "H&E" denilir. Bu yöntem ile, hücrelerin çekirdekleri mavi, sitoplazma olarak adlandırılan ve çekirdeği saran kısımları kırmızı-pembe boyanır. Çoğu hastalığın kesin teşhisi için bu yöntem ile boyanmış preparatların değerlendirilmesi yeterli olur. "Frozen section" ve intraoperatif konsültasyon Yukarıdaki rutin histopatolojik işlemlerin sağlıklı olarak yapılabilmesi için en az 10-15 saatlik bir süreye (mikrodalgalı yöntemler dışında) gereksinme vardır. Bu da, rutin patolojik incelemeye alınan bir örneğin tanısının en iyi olasılıkla ancak bir gün sonra verilebileceği anlamına gelir. Oysa, ameliyat sırasında hastada ameliyatın gidişini değiştirebilecek bir durumla karşılaşıldığında, dakikalar içinde verilecek bir tanıya gereksinme duyulabilir. Hastanın anestezi alma süresini uzatmamaya ve yeniden ameliyata alınmasına engel olmaya yönelik bir uygulama olarak "frozen section"a (dondurarak kesme) büyük hastanelerde sıkça başvurulur. Bu yöntem, dokuların istenilen incelikte kesilebilmeleri için dondurulmaları temeline dayanır. Özel bir aygıt (kriyostat) yardımıyla dokular -20 C sıcaklıkta kesilir ve hazırlanan kesitler hızlandırılmış yöntemle boyanırlar. Patolog, bu kesitleri inceleyerek vardığı sonucu ameliyatı yapan cerraha bildirir. Bütün bu işlemler, ameliyathaneye komşu bir patoloji bölümünde yapıldığında, 10-15 dakika kadar sürer. Bazı patoloji bölümlerinin ameliyathane içinde bu amaçla çalışan bir birimi bulunmaktadır. Dondurarak kesme yöntemiyle hazırlanan kesitlerin değerlendirilmesi güçtür ve bu işlem ancak deneyimli patologlar tarafından yapılabilir. Cerrahlar patologlardan "intraoperatif histolojik inceleme" istediklerinde, bu isteklerini mümkünse operasyondan önce, değilse operasyon sırasında ve hasta hakkındaki tüm önemli bilgileri sunarak iletmelidirler. İletişim eksikliği, intraoperatif histolojik incelemeden istenilen verimin alınmasını engeller ve bu uygulamanın hastaya zarar vermesine bile yol açabilir.Sitolojik yöntemler Dokuların insan vücudundan hiç can yakmadan alınması mümkün değil gibidir. Hastalar, seçme şansları olduğunda, tanılarının canları yakılmadan konulmasını tercih ederler. Gelişmiş ülkelerde hastaların bilinçlenmesine ve tıp teknolojisinin gelişmesine paralel olarak, doku almadan da morfolojik değerlendirme yapılabilmesini sağlayan yöntemler hızla yaygınlaşmaktadır. Romanyalı Dr. Aurel Babes tarafından 1927'de ilk kez bildirilen, 1950'lerde George Papanicolaou tarafından yaygınlaştırılan servikovaginal yayma yöntemiyle, rahim ağzından kendiliğinden dökülen hücrelerin morfolojik olarak incelenmesiyle, bir kanserin daha klinik bulgu vermeden yakalanabileceği ilk kez ve kesin olarak gösterilmiştir. Bu yöntemin uygulanması sayesinde, bugün kadınların serviks kanserinden ölmelerine seyrek rastlanmakta ve çoğu kanser daha oluşma aşamasındayken tam olarak çıkarılabilmektedir. Kapladıkları yüzeyden dökülen hücrelerin sitolojik olarak incelenmelerine 'eksfolyatif sitoloji' denilmektedir. (Servikovaginal yayma ve idrar sitolojisi gibi). Ayrıca, bu yöntemle birlikte veya ondan ayrı olarak, deri ve mukozayı kazıyarak hücre elde etmek mümkündür (kazıma yöntemi). Gittikçe yaygınlaşmakta olan 'aspirasyon sitolojisi' yöntemi ise, ulaşabileceği doku ve organların hemen hemen sınırsız olmasıyla diğer bütün sitolojik yöntemlerden ayrılmaktadır. Bu yöntemle, palpe edilebilen bütün organlardaki lezyonlara anesteziye ve özel aletlere gerek duyulmadan ince (dar çaplı) bir enjeksiyon iğnesiyle girilmekte ve aspire edilen hücreler lamlara yayılmaktadır. Derindeki organlara da ultrasound veya bilgisayarlı tomografi gibi görüntüleme yöntemleri eşliğinde girilebilmektedir. Elde edilen hücrelerin değerlendirilmesinde, her organ için ayrı bir bilgi birikimine ve deneyime gereksinme vardır. Bu nedenle, yöntemin yaygınlaşmasının önündeki en büyük engel, bu konuda yetişmiş patolog sayısının azlığıdır. Bir sitolojik incelemenin sonucu değişik koşullarda değişik anlamlar taşıyabileceği için, bu yöntemi uygulamak isteyen klinik doktorlarının patolog ile yakın ilişkide olmaları zorunludur. Dünyada ve ülkemizde pek çok birimde, yüzeysel lezyonların aspirasyonu da patolog tarafından yapılmaktadır. Bu yolla; örneklerin daha iyi alınması, gerekirse aspirasyonun hemen tekrarlanabilmesi ve tanının hem daha çabuk hem daha doğru konulması mümkün olmaktadır.

http://www.biyologlar.com/rutin-histopatolojik-uygulamalar

BİYOTEKNOLOJİK GELİŞMELER

Bu makale iki bölümden oluşmuştur. Birinci bölümünde, biyoteknoloji ile değişen dünya düzeninde olası devrimsel gelişmeler ve söz konusu gelişmelerin eğitim bilimleri açısından öngörülen doğurgusu ele alınmıştır. İkinci bölümde biyoteknoloji alanında dünyada ve Türkiye’de durum genel çizgileriyle özetlenmiş ve gelişmelerin eğitim sistemine olası yansımaları tartışmaya açılmıştır. Giriş Biyolojide DNA’nın yapısının çözümlenmesi 20. yüz yıldaki en önemli bilimsel gelişmelerden biridir. Bu gelişme alanda yeni çalışmalara ivme kazandırmıştır. Yeni teknolojilerin kullanıldığı ve uygulandığı bu çalışmaların doğurguları fiziksel ve doğal dünyayı değiştirebilecek niteliktedir. Bu nedenle bilimsel platformlarda yeni yüzyıl biyoteknoloji yüzyılı olarak tanımlanmaktadır. Biyoteknoloji ve Gelişmeler Biyoteknoloji kavramı, ilk kez 1919 yılında Ereky tarafından kullanılmıştır. Biyoloji ve teknoloji alanındaki gelişmeler, hiç kuşkusuz kavramın kapsamını genişletmiş; anlamını zenginleştirmiştir. Söz konusu gelişmeler, tarihsel süreç içinde, üç başat döneme ayrılmaktadır. (1,2,3,4,5) Geleneksel biyoteknoloji dönemi .- 1919 ve 1939’lu yılları kapsamaktadır. Bu dönemde, biyoteknoloji Ereky ‘nin kavramı ilk kullandığı anlamda ‘’ biyolojik sistemlerin yardımıyla hammaddelerin yeni ürünlere dönüştürüldüğü işlemleri’’ ifade etmektedir. Bu dönemdeki bilgi birikimi ve teknolojiyle biyolojik sistemler, herhangi bir değişime tabi tutulmaksızın ekmek, peynir, yoğurt, alkol vb. maddelerin üretilmesinde kullanılmıştır. Ara dönem.- 1940 ve 1973’lü yılları kapmaktadır. Bu dönemde genomlarında köklü bir değişiklik yapılmaksızın biyolojik sistemlerin, endüstride kullanım alanları genişletilmiş sınırlı tekniklerle antibiyotik, enzim, protein vb. maddelerin üretimi geliştirilmiştir. Modern biyoteknoloji dönemi.- Gelişmiş ve modern tekniklerin biyolojik sistemlere Uygulanmasına ilişkin çalışmaları kapsamaktadır. Mutasyonlar ya da rekombinant DNA Teknolojisi yardımıyla oluşturulan yeni fenotipik karakter taşıyan mutantlar veya transgenetik organizmalar endüstride ve tüm alanlarda yoğun biçimde kullanılmaya başlanmış ve kullanılmaktadır. Biyoteknoloji giderek genetik mühendisliği uygulamalarının tıbbi, zirai ve endüstriyel biyolojik maddelerin üretilmesi amacıyla kullanılmasını kapsamaktadır. Bu nedenle 20. yüzyılın son yıllarında biyoteknoloji, uygulamalı ve disiplinlerarası bir alan, ‘’moleküler genetik’’ ve ‘’rekombinant DNA teknolojisi’’ olarak tanımlanmaktadır. Artık bu teknoloji bir organizmanın genomlarında bulunan tüm bilgileri ve şifreleri değiştirmeyi; aynı ya da farklı cinse ait organizmalara DNA sekansları veya genleri aktarmayı, istenilen DNA baz sıralarını veya genlerini çıkarmayı, başka organizmalara aktarmayı ya da birleştirmeyi; DNA ve RNA baz sıralarını belirlemeyi, gen haritaları çıkarmayı; transgenetik hayvanlar, bitkiler, mikroorganizmalar üretmeyi, genetik düzeyde embriyolarda düzenlemeler yapmayı, yeni fenotip ve genotipte canlılar oluşturmayı, proteinler, enzimler, antibiyotikler hormonlar gibi tanılama, tedavi, koruma ve araştırmalarda kullanılan maddeler, kimyasallar üretmeyi olanaklı kılmaktadır. Biyoteknolojide ulaşılan aşama ve sürdürülen çalışmalar 21. Yüzyılı şekillendirecek devrimsel gelişmeleri içermektedir. Rıfkın bu gelişmeleri 1. genlerin izole edilmesi ve birleştirilmesi, 2. patentlenen yaşam, 3. ikinci yaradılış, 4. öjenik bir uygarlık, 5. gen sosyolojisi, 6. bilgisayar işi DNA, 7. yeniden keşfedilen doğa olmak üzere yedi başlıkta ele almıştır. (6) Demirsoy, söz konusu gelişmeleri 1. yapıyla ilgili 2. eğitim-öğretimle ilgili 3. işlevsel, 4. özgürlükler, 5. idari ve yasal, 6. düşünce zeminin evrimleşmesi olarak altı boyutta irdelemiştir.,(7) Bu makalede, yazar 21. yüzyılı şekillendirecek olası devrimsel gelişmeleri birbirleriyle örtüşür nitelikte olmaları nedeniyle bütünleştirerek beş başlıkta ele almayı uygun görmüştür. 1. İkinci Yaratılış ve Yeni Bir Evrenbilim Anlayışı 1973’te Cohen ve Boyer, iki ilişkisiz organizmadan bir parça DNA izole edip bu iki genetik materyali yeniden birleştirmişlerdir. Bunun ardından çok hızlı ve yoğun gelişmelerle ‘’ tıpkı materyallerin ve plastik maddelerin ustaca işlenmesi gibi canlı materyallerin imal edilmesi ‘’ aşamasına gelinmiştir. (8) Nitekim, 1986’da ateş böceğinden alınan ışık yayan genlerin bir tütün bitkisinin genetik koduna yerleştirilmesi ve tütün yapraklarının ışıldaması, 1997’de klonlanmış bir memeli hayvan olarak Dolly’nin, ardından insan geni taşıyan klonlanmış ikinci bir koyun olarak Polly’nin doğumu, ilk yapay insan kromozomunun yapılması, 2020 yılına kadar insan bedeninin % 95’inin laboratuvarlarda yetiştirilme organlarla değiştirilebilme olasılığı, insan genomu projesiyle 2002 yılına kadar bütün insan genomonunun yaklaşık 100.000 genin, ayrıntıları ve dizilişi ile saptanması çalışmaları vb. gelinen aşamanın göstergeleridir. Bütün bunlar genlerin, ilişkisiz türler arasında,- bitki, hayvan ve insan- tüm biyolojik sınırları aşarak; sayısız yeni yaşam biçimleri, yeni yaratıklar yaratmak için nakledilmesi, klonlanarak, seri ve kütlesel üretimle yeni yaratıkların çoğaltılması; doğal dünyanın insan eliyle laboratuvarlarda yeniden düzenlenmesi anlamına gelmektedir. Yaşamın kendisinin hazırlanması, düzenlenmesi, ayarlanması söz konusudur. Doğal yapıların değiştirilmesi , dünyanın yeniden yapılanması, insanın yapısının değişmesi aslında ‘’ ikinci yaratılış‘’ süreci gerçekleşmektedir. İnsanoğlunun böylesine doğaya müdahele edebilme; doğal dünyayı yeniden düzenleyebilme gücü sağlaması, yararların yanısıra; belirsizlikleri, riskleri de beraberinde getirmektedir. Genetik kirlenme, ekolojik dengelerin bozulması ve bunların sonuçları belirsizliklerin, risklerin kaynağını oluşturmaktadır. Örneğin mikro enjeksiyonla fare embriyolarına AIDS virüslü insan genomu verilmiş ve 1990’da çalışmanın sonuçları rapor edilmiştir. Farenin taşıdığı AIDS virüsü diğer fare virüsleriyle birleşerek, eskisinden daha öldürücü, daha hızla üreyen ve yeni hücreleri etkileme yeteneğini de kapsayan biyolojik karakteristikler kazandığı anlaşılmıştır. Üstelik yeni virüs yeni yollarla yayılabilmektedir. Bu yeni virüsü taşıyan farenin kasıtlı ya da kasıtsız olarak çevreye yayıldığını düşünmek bile genetik kirlenme ve ekolojik dengelerin bozulması konusunda belirsizliklerin ve risklerin niteliğini, kapsamını ortaya koymaktadır. Çalışmalarda gelinen nokta, genotip yapıları belli hastalık kalıplarına , önceden hazırlanmış belirli ırksal ya da etnik grupları yok etmek için seçimli toksinlerin klonlanlanabilmesini olanaklı kılmaktadır. Bu nedenle, genlerin biyolojik bir savaş aracı, bir silah olarak, kullanılma olasılıkları, tüm denemelerde kullanılan organizmaların haklarının korunamaması konuları sorgulanmakta ve biyoteknolojideki gelişmelere koşut olarak doğal çevrenin korunması, gelişmelerin izlenmesi, denetlenmesi zorunluluğu ortaya çıkmaktadır. Aksi halde insanoğlunun laboratuvarlarda başlayıp gerçekleştirdiği ikinci yaradılış sürecinde; doğal dünyada kendi tükenişini de hazırlaması olasıdır. Bu süreç aynı zamanda Rıfkın’ının tanımladığı ve vurguladığı ‘’ simyadan algeniye’’ kayan yeni bir kavramsal metaforu da beraberinde getirmektedir. Simya, ‘’madde bilimi, doğanın gizlerini çözme girişimi, maden, boya, cam imalatında, ilaçların hazırlanmasında uygulanan işlemler dizisi, aynı zamanda bir tür yoga, bir değişim bilimi, bir felsefe’’ olarak değerlendirilmektedir. Algeni ise ‘’ doğayı algılamanın, etkilemenin bir yolu, doğal durumda varolandan daha yeterli olduğuna inanılan yeni yaratıklar programlayarak doğal süreci hızlandırma girişimi, doğayla teknolojik girişimlere fizikötesi anlam verme çabası, doğa hakkında yeniden ve yeni bir düşünme yöntemi ve bir felsefe ‘’ olarak tanımlanmaktadır. (9) Bu düşünme yöntemi ve felsefesinde, ‘’ doğa artık bir sınırlamalar dizisi olarak değil, yaratıcı bir ilerleme süreci’’ olarak algılanmaktadır. Yaratıcı ilerlemenin itici gücü ise bilgidir. Bu da yaşamın evrimini, bilginin evrimiyle koşut gören, bilgide değişimin değişmezliğini vurgulayan, farkında olma, kestirme, uygun uyumlar sağlama süreçlerini ön plana çıkaran, Darwin’i bu boyutlarda sorgulayan yeni bir evren bilim anlayışı sunmaktadır. (10) 2.Yaşamın Patentlenmesi, Biyoteknolojiye koşut, endüstrisi de hızla gelişmektedir.(11) Gelişen bu endüstride uluslararası rekabet ve işbirliği aynı anda gerçekleşmektedir. Çünkü biyoteknolojinin ürünleri Farmasötik, temel kimyasal ve biyokimyasal maddeler, gıda ve tarım sektörlerini, teknikleri ise sağlık, çevre, ziraat, hayvancılık ve ormancılık sektörlerini inanılmaz bir biçimde etkilemektedir. Buluşları, yatırımları ve üretimi yapanlar dünya ticaretinde paylarını artırmak için yoğun çaba harcamaktadırlar. (12,13,14) Bu da dünyanın gen havuzunu patentlemek için, uluslar arası bir yarışı da beraberinde getirmektedir. Tüm yasal, yönetsel ve etik tartışmalara rağmen, biyoteknoloji yüzyılında, genetik mirası kapsayan bütün genlerin değişik sektörlerdeki uluslararası şirketlerin patentlenmiş özel mülkiyeti gibi bir konuma gelmesi beklenmektedir. 3.Öjenik Bir Uygarlığa Doğru Genetik mühendisliği kullanılan teknolojilerin doğaları gereği ‘’ öjenik’’ araçlar olarak değerlendirilmektedir. Öjenik, kavram olarak ilk kez 1883 yılında Galton tarafından seçimli yetiştirmeyle bir ırkın ya da organizmanın geliştirilmesi anlamında kullanılmıştır. Bu geliştirme iki boyutta gerçekleştirilebilir. Birincisinde organizmanın istenmeyen özelliklerinin bilinçli olarak yok edilmesi ikincisinde ise, özelliklerin düzeltilmesi için seçimli olarak yetiştirilmesi söz konusudur. İlk kullanıldığı ve II. Dünya savaşı dönemlerinde kavram zaman zaman dünya tarihinde yeni öjenik bir ırk yaratma söylemlerine, insanlık tarihinin utanç sayfalarını dolduran soykırım eylemlerine dönüşmüştür. Özellikle 1990’lı yıllarda biyoteknoloji alanındaki gelişmeler gerçek anlamda ve genetik düzeyde hastalıkları ve bozuklukları eleme şansını artırmıştır. Bu şans kendiliğinden rekombinant DNA, hücre kaynaşması vb. tekniklerin organizmaların genetik ozalitlerini ‘’düzeltmek’’ için kullanıldığı her işlemde öjenik bir anlayış oluşturmuştur. Bu nedenle söz konusu teknolojiler öjenik araçlar olarak değerlendirilmektedir. (15,16,17) Artık bu yeni öjenik anlayış, her boyutta yaşam kalitesinin yükseltilmesi söylemlerini ve piyasada oluşan arz-talep eylemlerini içermektedir. İnsanların fiziksel görünümlerini, ruhsal durum ve davranışlarını düzeltmek için , plastik cerrahiye ve psikotropik ilaçlara harcadıkları zaman, emek ve para göz önüne alındığında, kendileri ve daha doğmamış, çocukları için genetik müdahalelere ve tedavilere yaşam kalitesini yükseltmek amacıyla artan talepler doğal görünmektedir . Bu taleplerin kapsamı doğum öncesinde yapılabilen testlerle saptanan genetik rahatsızlıkların tedavi edilmesinden, tedavi amaçlı olmayan örneğin şişmanlamaya yatkın genetik yapısı nedeniyle ceninin düşürülmesine kadar geniş ve çok boyutludur.(18,19,20,21) Bütün bu gelişmeler söylemleri ve eylemleri farklılaşan yeni bir öjenik uygarlığın oluşumunu ifade etmektedir. Bu noktada hangi ülkelerin, toplumların söz konusu öjenik uygarlığın bir parçası olabileceği, bunu başaramayanların ne olacağı sorunu önem kazanmaktadır. Biyoteknolojik gelişmeleri gerçekleştiren ve sürdüren toplumların sosyal, politik, ekonomik vb. alanlarda bunu başaramayan toplumlara karşı tartışmasız bir üstünlük sağlayacakları ve bu üstünlüğün nasıl kullanılacağı etik anlamda ciddi kaygılar içermektedir 4. Biyobilişim Watson ve Crick DNA’yı kimyasal bilgi ile programlanmış bir kod olarak betimleyerek çözümlemişlerdir. Bu çözümlemede kullanılan dil, aynı zamanda bilgisayar bilimlerinde de kullanılmakta; biyolojik sürecin işlevini açıklamayı kolaylaştırmaktadır. Örneğin bilgisayarda donanımı oluşturan bilgi süreci canlı hücre de protein; yazılımı ifade eden somutlaşmış bilgi nükleit asit olarak değerlendirilmektedir. Embriyo hücreleri parelel çalışan ve birbirleriyle bilgi alışverişi yapan bilgisayar dizisine benzetilmekte; bilgisayarlarda ve hücrelerde karmaşık programları belleğin olanaklı kıldığı, bir çok hücreyle birlikte her biri gelişmeye yönelik bir kontrol programı boyunca bir adım atarak yetişkin bir bedeni oluşturduğu vurgulanmaktadır. (22,23) İşte bu ortak dil, iki alanda da bilim insanlarının çalışmalarını bütünleştirdikleri ‘’ biyobilişim’’ olarak tanımlanan disiplinlerarası bir alan oluşturmuştur. Bu alanda yapılan çalışmalar insan genomu projesi kapsamındaki tüm araştırmaların merkezi bir veri tabanında toplayan ‘’ The Genome Notebook’’ ‘unun geliştirilmesini, bilgisayarlarda biyolojik sistemlerin simulasyonları aracılığıyla çok yönlü ve amaçlı deneylerin yapılmasını olanaklı kılmaktadır. Bu da labaratuvar ortamlarındaki deneylerin önemli ölçüde risklerini azaltmaktadır. 1996’da canlı organizmaların genomlarındaki genetik bilgileri okumak için tasarlanan ve bilgisayar çiplerinin benzeri olan DNA çipleri ile bireysel hastalıkların taranabilmesi ve izlenebilmesi , söz konusu olmaktadır. (24,25) Biyobilişim alanında sürdürülen çalışmaların biyoteknolojik gelişmeleri daha da hızlandıracağı anlaşılmaktadır. Bu çalışmaların özellikle tıp alanında tanılama teşhis ve tedavi de bireysel uygulamaları; aksiyoner bir hekimlik anlayışını, yaşam süresini ve kalitesini geliştirmesi beklenmektedir. (26,27,28) 5. Biyososyoloji ve Sosyobiyoloji Biyoteknolojik gelişmeler biyososyoloji ve sosyobiyoloji gibi disiplinlinlerarası alanları, ve bu alanlarda yapılan çalışmalarıda geliştirmekte; zenginleştirmektedir. Biyososyoloji biyoloji ve sosyal çevre arasında sürekli karşılıklı ve ayrılamaz bir etkileşimi kabullenerek, biyososyal bir bakış açısıyla bu etkileşimin nasıl gerçekleştiğini irdelemektedir. Sosyobiyoloji çok daha geniş bir kapsamda türlerin özellikleri açısından olguların temel nedenlerini irdelemektedir. Bu anlamda biyososyoloji ve sosyobiyoloji aynı alanda alternatif bakış açıları ve çalışmalarla yeni açılımlar sunmaktadır. (29,30,31,32) Örneğin, kalıtımın ayırt edici kişilik özelliklerini hangi düzeyde etkilediğini belirlemeye yönelik bir çalışmada, üzüntü eğilimi ve yaratıcılıkta % 55, saldırganlıkta % 48, dışadönüklükte % 61 oranında belirleyici rol oynadığı ileri sürülmektedir. (33) Bir başka çalışmada babanın X kromozomundan geçen genler demetinin çocuklara başkalarının duygularını anlama başkalarıyla daha etkili ilişkiler kurma gibi daha iyi toplumsal beceriler aynı zamanda evrimsel bir üstünlük sağladığı savını destekler nitelikte bulgulara ulaşılmıştır. (34) Diğer bir çalışmada hem anne ve babanın hem de çocukların aynı genetik eğilimlere sahip olması durumunda karşılıklı genetik pekişmenin söz konusu olduğu bunun da aile fertleri arasındaki ilişkileri olumlu ya da olumsuz etkilediğine ilişkin bulgulara ulaşılmıştır. Örneğin hem anne ve babanın hem de çocukların kendiliğinden algılanan toplumsal güven duyma ya da aksine üst düzeyde huzursuzluk ve stres için genetik eğilimlere sahip olması durumunda her bir aile üyesinin genetik pekiştirme nedeniyle ya çok daha güçlü bir güveni ya da aksine huzursuzluk ve stresi ilişkilerine yansıttıkları belirlenmiştir. (35) Bu ve benzeri çalışmalar giderek tüm toplumsal sorunların çözülmesini genetik düzeyde düzenlemelere bağlayan tezlerin ve antitezlerin güçlenmesine yol açmıştır. Bazı bilim insanları ulusal ve uluslar arası alanda bireysel ya da toplumsal yeteneklerdeki herhangi bir gelişmenin sosyal, politik, ekonomik, eğitsel vb. düzenlemelerle değil genetik düzenlemelerle gerçekleşebileceğini ileri sürerken; diğerleri insanın çevresinden gelen bilgilere duyarlı dirik bir sistem olarak farklı çevrelerde farklı yeterlikler ve yetenekler ortaya koyabilecekleri düşüncesini benimsemektedirler. (36,37) Bireysel ya da toplumsal yeteneklerdeki herhangi bir gelişmenin sosyal, politik, ekonomik, eğitsel vb. düzenlemelerle değil genetik düzenlemelerle gerçekleşebileceği tezi iki gerekçeyle eleştirilmektedir. Birincisi bu tezin, kalıtsal yapıyla, kalıtsal yapının dışa yansıması ve çevresel değişkenler arasında var olan çok boyutlu karmaşık ilişkiyi göz ardı ettiği ileri sürülmektedir. İkincisi ise bu tezin gelecekte genotipe dayalı bir ayrımcılığı geliştirmesi ve yaygınlaştırması olasılığı vurgulanmaktadır. Nitekim ABD gibi biyoteknolojik gelişmelerin belli bir aşamaya geldiği ülkelerde genetik ayrımcılığın bazı örgütler tarafından uygulandığı belirlenmiştir. Bu uygulamalarda örgütler, çalışanlarına ve aday elemanlara genetik tarama testleri uygulamakta; işe alım ve yükseltilme sürecinde sonuçları dikkate almaktadırlar. Örneğin orak hücre anemisine ilişkin özelliklerin belirlenmesi sonucu, resesif gen taşıyıcılarının önemli bir çoğunluğunu Afrika kökenli Amerika’lıların oluşturduğu bir grubun hava kuvvetlerine alınması engellenmiştir. Genetik yapıları nedeniyle yetiştirilmeleri için kendilerine yapılan eğitim öğretim yatırımlarını uzun bir süre çalışarak örgütlerine geri ödeme olasılığı zayıf kişilere zaman ve kaynak ayrılmamaktadır. Okullarda öğrenciler zekaları, dikkatleri, akademik başarıları vb konularda genetik yapılarıyla değerlendirilerek sınıflandırılmaktadır. Genetik düzensizlik tanısı konulmuş öğrencilere öğretmenlerin daha farklı davranarak daha az ilgi sevgi ve destek verdikleri bununda kişisel güven toplumsal saygı ve kabul konusunda ciddi sorunlar yarattığı saptanmıştır. (38,39,40,41,42) Bir anti tez olarak gelişen; insanın çevresinden gelen bilgilere duyarlı, dirik bir sistem olarak farklı çevrelerde, farklı yeterlikler ve yetenekler ortaya koyabileceğine ilişkin düşüncede, DNA bir ‘’yapı taşları listesi’’ olarak değerlendirilmekte; ve buna rahimde gelişmekte olan embriyo örnek olarak verilmektedir. Çünkü, ‘’genomun çevresi yalnızca ısı ve beslenme gibi içsel olarak denetlenebilen etkenlerin dışında, döllenme sırasında yumurta hücresinde bulunan, anne tarafından sağlanan sayısız proteini kapsamaktadır. Bu proteinler ise, gen etkinliği etkilemekte; miktarlarındaki seçenek çeşitliliği ve yumurtadaki mekana dağılımlarıyla genetik olarak ikiz embriyoların dahi tek tek farklı biçimde gelişmelerine neden olabilmektedir.’’ (43) Bunun dışında, kalıtsal yapı ve dışa yansıması ile sosyal, politik, ekonomik, eğitsel düzenlemeler gibi çevresel değişkenler arasında çok boyutlu karmaşık bir ilişkinin varolduğu, bunun görmezden gelinemeyeceği vurgulanmaktadır. Bu nedenle de her şeyi genetik neden -sonuç ilişkisine dayalı olarak açıklayan düşünce modeli ‘’ basit genetik indirgemecilik’’ olarak nitelendirilmektedir. (44) Bütün bunlar biyoteknolojik gelişmelerin ve uygulamaların biyososyoloji, sosyobiyoloji ve diğer disiplinlerarası alanlarda çok sayıda ve kapsamlı çalışmaların yapılması zorunluluğunu bilim insanlarının bu anlamdaki sorumluluklarını ortaya koymaktadır. Bu sorumluluk, disiplinlerarası bir alan olan eğitim bilimlerinde, bilim insanlarının biyoteknoloji alanındaki gelişmelere ve bunun eğitim alanına yansımalarına ilgisiz ve duyarsız kalmamalarını gerektirmektedir. Uluslararası platformlarda eğitime ilişkin çalışmaların biyososyoloji veya sosyobiyoloji kapsamında sürdürüldüğü anlaşılmaktadır. Türkiye’de ise biyoteknoloji ve eğitim, bu alanda çalışacak bilim insanlarının yetiştirilmesi kapsamında ve eğitimbilimcilerin dışında tartışılmaktadır. Oysa biyoteknolojik gelişmeler ve eğitimle ilgili olası yansımaları sadece bilim insanlarının yetiştirilmesi anlamında ve yalnızca biyososyoloji, sosyobiyoloji alanlarında tartışılamayacak ya da eğitimcilerin dışında irdelenemeyecek kadar kapsamlı görünmektedir. Üstelik bu durum son yıllarda önemle vurgulanan disiplinlerarası etkileşim, paylaşım anlayışına da ters düşmekte; uzmanlık boyutunda sağlanacak katkıları sınırlandırmaktadır. Öyleyse biyoteknoloji alanındaki gelişmelerin bir sonucu olarak; disiplinlerarası bir alan olan eğitim bilimlerinde ‘’ biyoeğitim, biyotekeğitim’’ gibi tanımlanabilecek yeni bir disiplin geliştirilmelidir. Önerilen bu disiplin, biyoteknolojik gelişmeler ve eğitimin sürekli, karşılıklı ve ayrılmaz etkileşimini kabullenerek; biyoeğitsel bir bakış açısıyla; bu etkileşimin eğitimin yönetimi, denetimi ekonomisi, planlaması programları, öğretimi vb. boyutlarında, yaygın ve örgün eğitim kapsamında nasıl gerçekleştiğini, gerçekleşebileceğini açıklamaya adaydır. Bu yeni disiplin biyoteknoloji alanına kendi kapsamında ve bir önce sayılan boyutlarda bilgi, bulgu desteği sağlamalıdır. Makalenin bu, birinci bölümünde, biyoteknoloji ile değişen dünya düzeninde olası devrimsel gelişmeler ele alınmış ve söz konusu değişmelerin eğitim bilimleri açısından öngörülen bir doğurgusu olarak yeni bir disiplin önerilmiştir. İzleyecek ikinci bölümde, biyoteknoloji alanında dünyada ve Türkiye’de durum genel çizgileriyle özetlenecek ve gelişmelerin eğitim sistemine olası yansımaları tartışmaya açılacaktır. Yeni bir disiplinin önerildiği bu makalede, izlemeyi kolaylaştırmak amacıyla, sınırlı bir sözlük verilmiştir. Fenotip: Genelde bireyin genetik farklılığına ya da gen-çevre etkileşimini, klinik ya da Genome:genom: Bir ana babadan alınan kromozom seti Genotip. Bireyin genetik yapısı laboratuvar olarak gözlenebilen bir ya daha çok özelliğin esas olduğu bireyi belirleyen bir grup ya da kategori Mutasyon:Hücre kromozomlarında meydana gelen ve nesillere aktarılan DNA düzeyindeki değişiklikler Rekombinant DNA: Bir vektör DNA’sı ile yabancı gen sekansları birleştirerek oluşturulan molekül Resesif: Yavruya geçen ve onda kendini belli etmeden gizli bir şekilde kalan kalıtsal karakter Transgenetik organizma: Kendi kromozomlarında yabancı gen taşıyan organizma

http://www.biyologlar.com/biyoteknolojik-gelismeler

Hematokrit Testi

Hematokrit testi tahlil sonuçlarında, kısaltılmış şekli olan hct olarak gözükür.Hematokrit,kandaki alyuvarların (eritrositler)(Rbc) işgal ettiği hacmin total hacime oranı olarak bilinir.Bu nedenle oransal bir değer olduğu için % (yüzde) olarak belirtilir.Normal hematokrit değeri kadında ve erkekte cinsiyete göre farklılık göstermektedir.Örnek vermek gerekirse erkeklerde normal hematokrit değeri yetişkinler için % 41-53 dür.Bunun anlamı ise yetişkin erkeklerde 100ml kanda 41-53 ml eritrosit (kırmızı küre) bulunması demektir.Hematokrit değeri ,en sık olarak anemi(kansızlık) şüphesinde tanı koymak amaçlı değerlendirilen bir testdir.Hematokrit testinin erkek ve kadınlarda,yaş gruplarına göre olması gereken normal değerleri ve hangi durumlarda düşüp yükseldiği aşağıda belirtilmiştir.Erkek Kadın13-15 yaş %37-49 %36-4616-50 yaş %40-53 %36-46>50 yaş %41-53 %36-46Hematokrit testi klinikte sıklıkla anemi, kan kaybı, polistemi gibi durumların değerlendirilmesinde kullanılır.Hematokrit Testinin Yüksek Çıktığı Durumlar:Polistemi(kan hücrelerinin fazlalığı), egzersiz, hemokonsantrasyon (dehidratasyon, yanık, aşırı kusma, intestinal obstrüksiyon ) ve yüksek rakımda yaşayan kişilerdeHematokrit Testinin Düşük Çıktığı Durumlar:Anemi ve yatar pozisyonda Hct değeri düşer. Ayrıca saat 17.00-07.00 arasında ve yemeklerden sonra da Hct düzeyinde %10’luk bir düşme olabilir. http://tahlil.com

http://www.biyologlar.com/hematokrit-testi

HİSTOLOJİ BOYAMA YÖNTEMLERİNİN BİLİMSEL KONTROLU

Histolojik boyamanın kesin kimyasal reaksiyonlarla başarılabildiği gösterilmiştir, fakat daha az kesinlik kazanmış kimyasal ve fiziksel proceslerle başarılmaktadır. Bu; boyama yöntemlerinin çok sayıdaki farklı faktörlere göre oldukça değişeceği anlamına gelmektedir. Bu aynı zamanda geliştirilen boyama tekniklerinin çokluğunun nedenini ortaya koymaktadır. Fakat her histoloğun bu yöntemlerde başarısızlığa uğradığı olmuştur. Bunun nedenleri şunlar olabilir:l-Dokuların reaktif olmaması,2-Uygun olmayan fiksasyon,3-Boyaların kompozisyonundaki ve çözünürlüğündeki farklılıklar, 4-Yetersiz olgunlaşma veya bozulma {boya solusyonunun),5-Boyanın ve çeşme suyunun PH' sındaki veya ısısındaki değişmeler,6-Birçok diğer faktör olabilir. Boyamadaki bilimsel kesinliğin eksikliği, histoloğun en iyi sonuçları elde etmek için kendi yöntemlerini kontrol etmesi gerektiği anlamına gelmektedir. Eğer çeşme suyunun pH' sı veya yapısı değişirse veya iklimsel durumlar farklıysa, bir ülkede iyi çalışan bir yöntem diğer bir ülkede hatta aynı ülkenin bir başka bölümünde tatminkar olmayabilir. Bir boyama yönteminde verilen direktifler dikkatli olarak takip edilmelidir ancak değiştirilemez diye de düşünülmemelidir. Laboratuvar, özel doku elementleri, patolojik değişiklikler, bakteriler, metaller gibi maddeleri içerdiği bilinen dokuların kapatılmış boyanmamış parafin kesitlerin bir stoğunu bulundurmalıdır. Bunlar kontrol kesitler olarak kullanılmalıdır. İncelenecek kesitle aynı anda ve aynı yolla boyanmalıdır. Bu kontroller, glikojen veya asit-fast basiller gibi özel yapıların boyanmasındaki aksiliklerden uzak kalır ve sonradan dokunun glikojen veya asit fast basiller içerip içerrnediği mi yoksa tekniğin mi yetersiz olduğunu söylernek mümkün olamaz. Kontrol kesitine bir göz atmakla buna karar verilecektir. Her laboratuvar çalışanı bir tekniğin kontrol edilmiş varyasyonlarını yapma becerisinde olrnalıdır. Bir boyama yönteminin rastlantılara dayanan çok sayıdaki farklı şekilleri, şans eseri mükemmel sonuçlar verebilir fakat sonradan genellikle tekniği tekrar etmek mümkün değildir. Aynı doku bloğundan çok sayıda kesit alınmalı ve yöntemin her basamağındaki değişikliklerin bir serisi, teker teker ve her kesitte sadece bir değişiklik yapılarak yapılmalıdır. Tekniğin geri kalan bölümünü sabit tutarak, bu kesitlerle yöntemin hangi kısmında bu kesitlerin kusurlu olduğu ve nasıl düzeltilebileceği görülecektir. Ara sıra normal dokularda ve laboratuvardaki kontrol kesitlerde sezilebilir miktarda bulunrnayan nadir bir patolojik değişikliği veya yabancı bir maddeyi boyamak gerekir. Bu durumlarda bir suni doku bloğu incelenecek maddeyi içeren jelatinden yapılabilir veya materyel bir laboratuvar hayvanına enjekte edilebilir ve dokular kontrol kesitler olarak kullanılabilir.HEMATOXYLİN-EOZİN BOYASIHistolojik preparasyonlar için ençok kullanılan boyalar hemotaxylin ve eosin boyalarıdır. Buna kısaca H.E. boyası denir. Hemotoxylin bazik bir boya olarak kabul edilirse de kendisi bizzat boya değildir. Boya olarak tesir etmesi için zincirlerinden birinde bulunan guioid' in hematein' e okside olması lazımdır. Hemotaxylin hematein'e okside olması sulu bir solusyon içinde bir aydan fazla bir zamana ihtiyaç gösterir. Oksidasyon, sodium iodate veya mercuri choloride ilave etmekle hızlandırılabilir. Fakat hematein' in ileri bir oksidasyonunda solusyon boyanma yeteneğini kaybeder.Hematein zayıf , anyon yüklü, kırmızımtrak sarı bir boyadır. İzoelektrik noktası takriben 6.5' tur. Zayıf bir boyadır. Fakat bir mordant ile kullanılırsa koyu ve devamlı bir boya olur. Mikroteknikten hemateinle mordant olarak kullanılan maddeler genellikle aluminum ve demir tuzları, aluminum ve demir şaplar. ( alum) dır. En çok kullanlan şaplarPotasyum alum : K2S04Al2 (SO4)3 24 H2OAmmonium alum : (NH4)2 SO4'A12 (SO4)324 H2ODemir alum : (NH4)2SO4 Fe2(SO4)324 H20 dur.Aliminum ile demirin verdiği renk morluğu birbirinden farklıdır. Aluminyum mavi-mor bir renk verir. Suda erir,dokuya temas ettikten sonra ne su ne de etil alkol onu tekrar çıkartabilir. Aluminyumla hematein, bazik boya gibi etki eder (yani katyonik bir boya vazifesi görür). Demirli hematein ise siyah veya lacivert renk verir , fakat etkisi birincisi kadar basit değildir. Rutin teknikte, kesitler önce mordantlanır sonra boya ile ( hematein) muamele edilir, fazla mordant solusyonda differansiye edilir. Bu şartlar altında hematein bazik boya olarak tesir eder.Eosin: Eosin, fluorescein' in tetra broma türevidir. Zayıf asidik anyonik bir boyadır. Hemataxylin-Eosin boyası ile hücre ve doku elemanları aşağıda gösterildiği gibi boyanır. Çekirdek Mavi,siyah ve koyu maviSitoplazma PembeEritrositler KırmızıKas KırmızıFibröz Doku Açık pembeKıkırdak Açıktan koyu maviye kadar renk tonlarındaMükoz Mavimtrak ( metakromatik)Kalsifiye Doku Koyu maviProtein çökelekleri Pembeödem sıvısı)Bakteri toplulukları Koyu mavi Çekirdeklerin mavi-siyah renkte boyanmasının nedeni polianyonik DNA konsantrasyonunun fazla olması ve bazik hematein-mortantla kuvvetli bir şekilde etkilenmesidir. Durum kıkırdakta da aynıdır. Yalnız burada anyonik glikozaminoglikan daha yüksek konsantrasyondadır. Sitoplazma, her ne kadar pembe olarak tarif edilirse de mikroskopta maviye çalar pembe tonda görülmektedir. Sitoplazmadaki RNA hematein-mortantla birleşerek bu rengi alır. Eğer RNA çoksa mavilik daha belirgindir. Aynı durum anyonik polisakkaritlerden zengin mucin salgılayan hücreler için de sözkonusudur. Böylece diğer subselüler ve doku elemanlarının kimyasal yapısını gözönüne alarak bunların değişik renk alış nedenlerini açıklıyabiliriz. 1-HEMATOKSİLEN BOYA ÇÖZELTİSİHarris' s Alum haematoxylen 5.0 grAbsolu alkol 5 0 ccAliminyum amonyum sulfat 100 grDistile su 1000. 0 ccMerkurik asi t ( oksi t ) 2.5 gr Hematoksileni alkol içinde hafif ısı yardımıyla erit. Alumu ısı yardımıyla distile su içinde erit. Herbiri tamamen eridikten sonra iki solusyonu bir geniş erlenmayer içinde karıştır. Karışım süratle kaynar hale getir, ateşi söndür. Kabarcık1ar çıkarken merkurik oksiti yavaşca (azar azar) ilave et. Çözelti koyu mor renk alınca cam kabı soğuk su altına (dıştan) tutarak çözeltiyi soğut. Soğuyunca boyama için hazırdır. Fakat 2-3 gün kalsa daha olgunlaşır. Olgunlaşma, cam kabın ağzı gevşekce kapatılıp güneş ışığı alan bir yere bırakılarak sağlanır. Olgunlaşmış çözelti, koyu renkli şişelere alınıp, ağzı sıkıca kapatılarak karanlık yerlerde saklanır.2-ERLİCH ASİT HEMATOKSİLENİ Hemotoksilen 6.4 grAmmonium alimunyum sulfat 40 grEtil alkol 322 mlGliserol 322 mlDistile su 322 m125C'de 6-8 hafta beklenilir. Hemen olgunlaştırmak için 0.64 gr sodyum iodat eklenir. 3-ERLICH HEMATOKSİLENİHemotoksilen 4 gr% 95 Alkol 200 ccDistile su 200 ccGliserin 200 ccAmonyum veya potasyum aluminyum 6 grGlacial asetik asit 20 cc2 hafta veya daha fazla süre hava ve ışığa açık tuturak olgunlaştır. Hemen kullanmak istenirse 0.6 gr sodyum iodat eklenir. 4- %1 ‘lik ALKOLİK EOZİNEozin Y 10 gDistile su 50 mlEozini distile suda erit, % 95’lik etil alkolden 940 ml ilave et. Bu eozin stok olarak kalır ve eşit miktarda % 95 etil alkol ilavesi ile kullan.5-% 0.5 lik Sudaki EOZİNEozin Y 5 gDistile su 1000 ccEozini suda erit. Koyu ton arzu edilirse her 100 cc’lik solusyon için 0.5 cc glacial asetik asit ilave edilir. 6-HARRİS ALUM HEMATOKSİLENİHematoksilen 5 gAbsolu alkol 50 ccAlkolde ısıtalarak eritilitr.Amnium veya potasyum alum 100 gDistile su 1000 ccSuda ısıtarak alumu erit. Soğutulan 2 karışım birbirleri ile karıştırılıp tekrar süratle kaynayana kadar ısıtılır ve alev üzerinden alınır. Sonra yavaş yavaş mercury oksit ilave edilir ve tekrar ısıtılır. Menekşe rengini alır almaz soğuk su bulunan kap içersine oturtulur. Boya kullanılacağı zaman % 4 asetik asit glasiyal eklenir.7-EOZİNEozin yellowish 1 gDistile su 100 ccThymol 1 küçük kristal8-ERLİCH HEMATOKSİLENİHematoksilen 80 gAlkol (% 95) 2400 ccPotasyum alum (Alimunyum potasyum sulfat ) 240 gDistile su 1200 ccGlycerol 1200 ccGlasiyal asetik asit 120 cc1-Ksilol 30 dk.2-Ksilol 30 dk.3-Absolü Alkol Çalkalama4-% 95’lik etil alkol Çalkalama5-% 80’ lik alkol Çalkalama6-% 70’ lik alkol Çalkalama7-% 50’lik alkol Çalkalama8-% 30’ luk alkol Çalkalama9-Distile su Çalkalama10-Hematoksilen 5-8 dk11-Akarsu12-Asit-Alkol Daldırıp-çıkarma13-Akarsu14-Amonyak 30 saniye15-Akarsu16-Eozin 3-5 dk17-% 30’ luk alkol Çalkalama18-% 50’lik alkol Çalkalama19-% 70’lik alkol Çalkalama20-% 80’ lik alkol Çalkalama21-% 95’lik etil alkol Çalkalama22-% 100’lük etil alkol Çalkalama23-% 100’lük etil alkol Çalkalama24-Ksilol25-Ksilol (1 gece bekletilirse iyi olur) Hematoksileni alkolde çözün. Alumu sıcak su içinde çözüp gliserolü ekleyin, soğumaya bırakın. Azar azar aluma hematoksileni ekleyerek karıştırın. Bu solusyon temiz bir kapta olgunlaşmaya bırakılır. Ağzı hafifçe kapatılır. Olgunlaşma 6-8 hafta sürer ve solusyon boyama özelliğini yıllarca korur. Hematoksilende 45 dk. boyanır. 9- WEİGERT HEMATOKSİLENİSolusyon A: Hematoksilen 1 gAlkol 100 cc4 hafta olgunlaştırılır.Solusyon B: % 30 luk ferrik klorür-sulu 4 ccKonsantre HCl 1 ccSolusyon A ve B den eşit miktarda karıştırılıp 30 dakika içinde kullanılır ( 15-20 dak) 10-HEİDENHEİN HEMATOKSİLENİDemir Alum Çözeltisinin HazırlanışıAmmonium ferric sülfat 5 gDistile su 100 cc Hematoksilen Çözeltisinin HazırlanışıHematoksilen 0.5 gAbsolü alkol 10 ccDistile Su 90 cc 4 hafta olgunlaşmaya bırakın Uygulama 1-Kesitler suya indirilir2-Demir alumda 30 dakika –24 saat arasında bırakılır3-Akar suda çalkalama4-Heidenhein hematoksilende 30 dakika –24 saat arasında boyanır.5-Suda çalkalayın6-Demir alumda 1-30 dk. mikroskopla kontrol edilerek differansiye edilir.7-En az 10 dk. akar suda yıka8-Karşıt boyalar Van Gieson ve modifiye şekilleridir. 11-CARAZZİ HEMATOKSİLENİHematoksilen 0.5 gGlyserol 100 ccAluminyum potasyum sulfat 25 gDistile su 400 ccPotasyum iodat 0.1 g Hematoksileni gliserol ile karıştırın. Isı kullanmadan distile suda potasyum alumu çözün. Çözünme uzun zaman alabilir. Hematoksilene alumu karıştırarak yavaş yavaş ekleyin. 10 cc suda potasyum iodatı iyice karıştırarak çözün. 4-6 ay boyunca solusyon boyanma özelliğini korur.HEMATOKSİLEN - EOZİN BOYA TEKNİĞİ 1- Ksilol 30 Dakika2- Ksilol 30 Dakika3- Absolü Alkol Çalkalama % 100 Alkol4- %95'lik Alkol Çalkalama5- %80'lik Alkol Çalkalama6- %70 'lik Alkol Çalkalama7-%50' lik Alkol Çalkalama8-%30' luk Alkol Çalkalama9- Dis ile su Çalkalama10-Hematoksilen Çalkalama11- Akarsu Çalkalama12- Asit- Alkol Daldırıp çıkarma13- Akarsu Çalkalama14- Amonyak 30 saniye çalkalama15- Akarsu Çalkalama16- Eozin 3-5 dakikaSuda çalkalama17- %30 'luk Alkol Çalkalama18- %50'lik Alkol Çalkalama19- %70'lik Alkol Çalkalama20- %80'lik Alkol Çalkalama21-%95'lik Alkol Çalkalama22-Absolü Alkol (%100 Alkol) Çalkalama23- Ksilol 30 dakika24- Ksilol (Bir gece bekletilirse daha iyi şeffaflanır.)Asit-Alkolün Hazırlanışı% 80’lik etil alkol 500 ccHidroklorik asit 5 ccAmonyağın HazırlanışıDistile su 500 ccAmonyak 5cc8-KAPATMA (Mounting)Boyanan kesitler 1 damla Kanada balzamı veya entellan damlatarak lamel kapatarak kurumaya bırakılır. Bu maddeler hem mikroskopta kolay incelenmeyi sağlar hem de boyanmış kesitlerin yıllarca korunmasını sağlar RUTİN EL TAKİBİ ( 3-5mm kalınlığındaki bloklar için)1- Tespit2- Eğer gerekli ise suda yıkamak3-%70'lik alkolde gün boyunca (3-8 saat)4- % 90' lık alkolde bir gece (16 saat)5- Absolu alkol I de iki saat6- Absolu alkol II de üç saat7- Absolu alkol III de üç saat8- Toluene veya kloroform da gece boyunca ( 16 saat )9- Her birinde birer saat olmak üzere üç kez erimiş parafinden geçirmek}:10-Parafine gömmekHIZLI EL TAKİBİ ( 3 mm den kalın olmayan bloklar için )1- Carnoy- fiksatıtifinde 30- 60 dakika tespit2- Absolu alkol I de 30dk3- Absolu alkol I de 30 dk4- Absolu alkol III de 30 dk5- Ksilen veya. toluenle 15- 30 dk ( şeffaflanıncaya kadar )6- Vakum fırınında herbirinden yirmişer dk. olmak üzere üç kez erimiş parafindengeçirme7- Gömme RUTİN OTOMATİK TAKİP ( 3-5 mm kalnlığındaki bloklar için )1- %70' lik akolde üç saat2-% 90' lik alkolde üç saat3- Absolu alkolde ( I'de ) 1 saat4- Absolu II'de 1 saat5- Absolu alkol III ' de 2 saat6- Absolu alkol IV de 2 saat7- Toluen I' de 1.5 saat8- Toluen II' de 2.5 saat9- Erimiş parafin I' de 3 saat10- Erimiş parafinde II ' de 3 saat11-GömmeToplam: 22 saat 48 SAATLİK OTOMATİK TAKİP (3-5 mm kalınlığındaki bloklar için ) 1-% 10’ luk formal salin 4 saat2-% 10’ luk formal salin 4 saat3-% 70 lik alkol 4 saat4-% 90’lık alkol 4 saat5- Absolu alkolde I'de 4 saat6- Absolu II'de 4 saat7- Absolu alkol III ' de 4 saat8- Absolu alkol IV de 4 saat9-Kloroform I 4 saat10-Kloroform II 4 saat11-Erimiş parafin I 4 saat12-Erimiş parafin II 4 saatEL İLE HIZLI TAKİP1-Bouin fiksatifi ile tespit 6-7 saat2-Çeşme suyunda yıkama 3-% 70’lik alkol 60 derecelik etüvde 1 gece4-% 96’ lık alkol 60 derecelik etüvde 1 saat 5-% 96’ lık alkol 60 derecelik etüvde 1 saat 6- Absolu alkolde ( I'de ) 60 derecelik etüvde 1 saat7- Absolu II'de 60 derecelik etüvde 1 saat8- Ksilol 60 derecelik etüvde 1 saat9-Ksilol 60 derecelik etüvde 1 saat10-Parafin 60 derecelik etüvde 1 saat11-Parafin 60 derecelik etüvde 1 saat12-GömmeEL İLE HIZLI TAKİP1-Tamponlanmış nötral formalin ile tespit 2- %50 ‘lik alkol 60 derecelik etüvde 30 dakika3-% 70’lik alkol 60 derecelik etüvde 30 dakika4-% 80’lik alkol 60 derecelik etüvde 30 dakika5-% 96’ lık alkol 60 derecelik etüvde 1 saat 6-% 96’ lık alkol 60 derecelik etüvde 1 saat 7- Absolu alkol I 60 derecelik etüvde 1 saat8- Absolu II 60 derecelik etüvde 1 saat9- Ksilol 60 derecelik etüvde 1 saat10-Ksilol 60 derecelik etüvde 1 saat11-Parafin 60 derecelik etüvde 1 saat12-Parafin 60 derecelik etüvde 1 saat13-Gömme

http://www.biyologlar.com/histoloji-boyama-yontemlerinin-bilimsel-kontrolu

ÇEVRE TAHRİBATININ NEDENLERİ

Çağımızda Çevre kelimesinin yepyeni bir anlamı doğmuş ve insanlığın hal ve özellikle geleceği üzerinde sonsuz etki yapabilir bir durum ortaya çıkmış bulunmaktadır. Hızlı gelişme ile beraber meydana gelen Çevre kirlenmesinden söz edildiği zaman bunun önemini dimağına yerleştirilmiş kimseler derin , derin düşünmektedirler, zira gelecekte çok önemli ekolojikdeğişikliklerin görülebileceğini tahmin edebilmektedirler. Çevre kirlenmesinin önemi sanayileştirme faaliyeti ile orantılı olarak insanlar, hayvanlar ve bitkiler için durmadan artmakta ve dünyamızdaki hayat zincirini ciddi bir şekilde tehdit etmektedir. Bugün dünyamızın her hangi bir bölgesinde canlı varlıklar dengesi bozuluyorsa, yani üreme miktarı tahrip olandan az ise ve oradaki canlı varlıklar zorlanıyor ise * Çevre sorunu * var demektir. O bölgedeki çevre kirlenmesi sürekli ve aynı zamanda etrafa durmadan yayılıyor ise, oradaki çevre sorunu vahimdir. Acil önlem almak gerekir. İnsanlar etkisi olmadan da canlı varlıklar arasında varolan dengeler az veya çok bozulabilirler, yani çevre sorunu meydana gelebilir. Bu olaylar genellikle o kadar yavaş meydana geliyor ki, çoğu zaman insan ömrü bunları görmeye yetmiyor. Nedeni insan olmayan pek çok çevre sorunu yani hayat zincirindeki bozulmalar, doğa tarafından kısa veya uzun sürede düzeltilebilir. Başka türlü ifade edelim : Doğa alışık olduğu olayların yaralarını rahatlıkla tedavi edebiliyor. Tahribat yaparak çevre sorunlarına neden olabilen tabii olaylar arasında, seller, yıldırımlar, yıldırımların sebep oldukları yangınlar, depremler, kasırgalar, kuraklıklar, büyük sıcaklık değişmeleri vs. sayılabilir. Bunlar ve bunlara benzeyen çevre sorunlarında çok fazla etkili önlem alamayız. Bu gibi değişiklikler insan iradesinin dışındadırlar. İnsanların sayısız etkinliklerinden dolayı dünyadaki sular toprak ve diğer katı maddeler ile bunları çevreleyen atmosfer hızla kirlenmektedirler. Dünyamızda mevcut olan hayat zinciri, çeşitli etkinlikler sonucunda meydana gelebilen pek çok madde daha önce mevcut olmadıklarından, doğa bunları ya hiç yok edemiyor veya uzun yıllar sonra yok edebilecektir. Bu gibi suni maddelerin çevreyi gittikçe daha fazla kirletmelerinin nedeni budur. Denebilir ki, güzel dünyamızın, insanların faaliyetlerinden dolayı şimdiye kadar maruz kaldığı bütün kirlenme veya bu kirlenmenin büyük bir kısmı çağımız dediğimiz son bir buçuk yüzyıl içinde meydana gelmiştir. Yani, dünyadaki çevre kirlenmesinin tek sorumlusu çağımızda yaşamış ve yaşamakta olan birkaç insan jenerasyonudur. Dünyamızda mevcut olan milyarlarca ton fosil madde (petrol,doğalgaz,çeşitli maden kömürü vs.) milyonlarca yıldan beri hemen, hemen hiç azalmadan oldukları gibi duruyorlardı. Parçalanınca bol miktarlarda enerji verebilen uranyum ve radyum gibi radyoaktif madenlere de çağımıza kadar iltifat eden kimse yoktu. Dünyamız da bunların kullanılmasından ve parçalanmasından dolayı her hangi bir kirlenmeye maruz kalmıyordu. Bugün ise bir çok kıymetli yer altı hazinelerinin ne zaman bitebileceğinin hesabı yapılmakta ve insanları ciddi bir şekilde düşündürmektedir. Bu gibi maddelerin gerek enerji üretimine kullanılması ve gerekse diğer amaçlar için işlenilmesi, çevre kirlenmesinin en önemli kaynağını teşkil etmektedirler. Kuşkusuz çağımız, dünya tarihinde en hızlı gelişme ve ilerlemelere sahne olmaktadır. Beşeriyetin sanayileşme ve tekniğin her alanında gelişmesinin azami noktası yaşamakta olduğumuz zaman içindedir. Bu hızlı gelişme durmadan artmaktadır. Bu arada, insanların doğal zenginlik kaynaklarını hızla tüketmeleri ve çevreyi pek çok yer ve şekilde hızla kirletmelerine çağımızda rastlanmaktadır. Etkili ve geniş kapsamlı önlemler alınmaz ise dünyamızdaki tüm canlı varlıklar için yaşama şartları durmadan bozulmaya mahkumdur. Çevre kirlenmesinin önemi hızlı sanayileşme ile beraber (on dokuzuncu yüzyılın ikinci yarısından itibaren) anlaşılmış ve takdir edilmiş, dolayısı ile gerekli önlemler alınmış olsaydı, dünyamız bugün bu çapta büyük bir tehlike ile karşı karşıya bulunmazdı. Hızlı sanayileşme ile beraber çevrenin hızla kirlenmesi ve bu durumun doğurabileceği sınırsız tehlike, ancak son çeyrek yüzyılda yeterince anlaşılabildi. Gerekli etkili çalışmalara da bundan dolayı çok geç başlanıldı. Bir madde veya enerji üretirken çevrenin kirlenmemesine çaba göstermek, kirlenmiş çevreyi temizlemek insanların ve tüm canlı yaratıkların geleceği bakımından şarttır. Madde üretmek, yeni , yeni ürünleri bulup insanların hizmetine sunmak, bu ürünleri elde etmek için çeşitli yollardan değişik şekillerde enerji elde etmek, insanların refah ve saadetlerini ve konforlarını artırıcı girişimlerde bulunmak bütün insanların başlıca uğraşlarıdır. Bu etkinlikler insanlık tarihi ile başlar ve sonuna kadar da devam edecektir. Ama tabiatı bozacak, çevreyi kirletecek, dolayısı ile dünyadaki tüm canlı varlıkları tehlikeye sokabilecek faaliyette bulunmak hiç kimsenin, hiçbir toplumun hakkı değildir. Bu işler cinayet sayılmalıdır. Bu gibi faaliyetlerin doğurduğu kirlilik, önlemler alınmaz ise zamanla birikir ve mevcut hayatın tükenmesine neden olur ki, bunu hiç bir mantık ve sağduyu hoş görmez. Bu gün ilim ve teknik o kadar gelişmiştir ki, insanların her sıkıntıları ve arzularına olduğu gibi çevrenin kirlenmesine veya kirlenmiş çevrenin temizlenmesine de çare bulunabilir, yeter ki gerekli olan ek külfete katlanılsın ve mevcut olan imkanlar hoyratça harcanmasın. Bundan çeyrek yüzyıl kadar önce Çevre mefhumu o kadar yaygın değildi. Bugün bütün dünyada bu konunun üzerinde önemle durulması ve çevre temizliğini korumak için gittikçe artan miktarda çaba harcanması, aslında çok önemli ve olumlu bir gelişmedir. Bunun nedenlerini kısaca şu şekilde özetlemek mümkündür. Her alanda olduğu gibi çevre konusunda da sanayileşmiş ilkelerde bilgi ve tecrübe birikimi vardır. Bu gibi ülkelerde sanayi ve enerji üretme tesislerinin bol olmasından dolayı çevre kirlenmesi o oranda fazla olmaktadır. Kuşkusuz her türlü sanayi artığı, radyoaktif maddelerin radyasyonu ve gürültüyü meydana getiren ses titreşimleri de mevcut olan tesisler ile az çok orantılıdır. Gelişmiş ülkenin insanları sağlık bakımından hastalıklara karşı daha duyarlıdır, zira gelişmiş ülke insanı bolluk içimdedir, temiz çevreye alışkındır, fazla sıkıntıya pek dayanıklı değildir. Kirlenmiş çevre bu gibi insanları daha kolay ve çabuk etkileyebilir. Gelişmemiş ülke insanları içinde çevre kirlenmesinin önemi büyüktür. Nedenlerini kısaca özetleyelim. Gelişmemiş ülkelerde de az çok sanayi tesisleri bakımından zengin olan bölgeler vardır. Örneğin Türkiye, gelişmekte olan bir ülke olmakla beraber Kocaeli, İstanbul ve Bursa gibi sanayi tesisleri bakımından zengin m olan bölgelerimiz vardır. Gelişmiş ülkelerin nükleer enerji tesislerinin etkisi sınır tanımadan uzaklara kadar yayılabilmektedir. Dolayısı ile bu tesislerin etkisi uzakta bulunan pek çok gelişmemiş ülke halkını da rahatsız edebilir. Atmosfer gibi sular da (kapalı sular hariç) insanların ortak malıdır ve suların yardımı ile birçok ülke birbirine bağlanmaktadır. Akdeniz de sahili olan bir ülke diğer ülkelerin denizi kirletici etkinliklerinden zarar görebilir. Şirin İzmit Körfezimizin, özen gösterilmediğinden ne hale geldiği meydandadır. Bu körfezin hiç bir canlı varlığın barınamayacağı kadar kirlenmesine ve ‘ölü bir deniz parçası ‘ haline gelmesine çok az kaldı. Gerekli etkili önlemler alınırsa İzmit körfezi bu korkunç sonuçtan kurtarılabilir. Başkentimiz Ankara dahil olmak üzere bazı büyük şehirlerimiz, kalitesiz yakıttan dolayı kış mevsiminde öldürücü derecede kirli bir gaz tabakası ile kaplanmaktadır. Sanayileşmek, ilerlemek ve daha konforlu ve rahat bir hayat seviyesine ulaşabilmek her insan topluluğunun tabii hakkıdır. Ancak bu gibi faaliyetleri yaparken olumsuz etkilere sebep olmamak veya hiç değilse meydana gelebilecek çevre kirlenmesini en aza indirmek de insanların kaçınılmaz görevidir. Tabiatta yaşayan her türlü canlı varlıklar arasında beslenme kaynaklarında bir denge hüküm sürer. Her canlı varlık bu dengede yerini alır. Ezelden beri bu iş böyle süregelmiş. Bu sistemdeki değişiklikler, insanın müdahalesi olmazsa çok yavaş vuku buluyor. İnsanın ömrü, hatta bazen pek çok milletlerin ömrü dahi bu değişiklikleri yaşamaya, müdahale etmeye yetmiyor. Çağımıza değin (19.yüzyılın ikinci kısma ve 20.yüzyıl) insanların faaliyeti hayat zincirinin üzerinde hissedilir etki yapmamıştır denebilir. Fakat maden kömürü, petrol, tabii gaz bulununca, buhar kuvveti ile elektrik keşfedilince, maddenin mahiyeti ve onun yapı taşları ( atom, molekül, nötron, proton vs.) biraz açıklık kazanınca, hızlı devir başladı ve bu hıza paralel olarak dünyayı tüketme işi de devreye girdi. Şimdiden bilhassa gelişmiş ülkelerde her türlü canlı varlıklar için kullanılmaz hale gelen pek çok arazi ve su adacıkları vardır. Buralardaki bozuklukların sınırı gittikçe genişlemektedir. İnsanların girişimleri olmasa idi canlılar arasındaki alışveriş sessiz sedasız sürüp gidecekti. Şimdilik C rumuzu ile gösterdiğimiz kömürün hayat dengesindeki durumunu gözden geçirelim. Karbon ( C ), ister yakılsın ister gıda olarak kullanılsın oksijen alıp okside oluyor ve karbondioksit meydana geliyor. C + O2 = CO2 (kömür,petrol, (oksijen) (karbondioksit) odun,gaz vs.) Bu da tipik bir kimyasal reaksiyondur. Yakıt yakılınca bacadan, vs. karbon, karbondioksit (şayet iyi yanma olmamış ise kısmen de karbon monoksit ) olarak atmosfere karışır. Karbonu ihtiva eden çeşitli gıda maddeleri insanlar ve hayvanlar tarafından yenilince gene aynı şekilde karbon, karbondioksit haline gelir ve atmosfere karışır. C + O2 = CO2 gıda maddelerindeki oksijen yavaş yanma karbondioksit karbon Demek ki insanlar ve hayvanlar yaşamlarını sürdürdükçe havayı karbondioksit bakımından zenginleştirir.halbuki bitkiler bu reaksiyonun tam tersini yaparlar, kısacası : (güneş ışını) CO2 + H2O = CH2O + O2 (foto sentez) (foto aldehit) oksijen Form aldehit klorofil < k a t a l i z a t ör l ü ğ ü n de > meydana gelen en basit organik madde ve karbonhidratların en basit yapı taşıdı ve daha sonra pek çok önemli organik gıda maddelerini meydana getirir. Şematik olarak kısaca : Form aldehit = glikoz = sakaroz = nişasta = selüloz Karbon, güneş enerjisi yardımı ile redüksiyona uğrayıp organik maddelerin bünyelerine girmek sureti ile adeta tekrar değerli ve kullanışlı hale gelir. Karbon yanınca veya gıda maddesinde iken sindirilince kullanışsız olan CO2 haline gelir. Fotosentez ile organik madde haline gelince kaybetmiş olduğu enerjiyi güneşten tekrar tamamlamış olur. Hayvanların en geniş gıda maddesi kaynağı hiç şüphesiz bitkilerdir. Fakat istisnasız her hayvan dışarıya attığı çeşitli maddelerle ve öldükten sonra çürüyecek olan maddeleri ile bitkilere bir bakıma gıda olur, çünkü ; bu bakiyeler bitki yetiştiren topraklar için değerli birer gübredirler. Kimya sanayiinin çevreye yapabileceği kötü etkilere birkaç örnek verelim : İnsanların çeşitli faaliyetleri neticesinde bu düzenli devir ciddi bir şekilde bozulmaktadır. Örneğin zirai mücadelede bir zamanlar çok yaygın halde kullanılan DDT’ yi ele alalım DDT değerli bitkiler için zararlı olan birçok haşereyi kısa zamanda yok eder. (zamanla bazı haşere türünün DDT’ ye karşı bağışıklık kazandığı da malumdur.) ölen haşere leşlerindeki DDT kalıntıları kolayca çürümediğinden bunları yiyen kümes hayvanları dahil pek çok kuş türü bir müddet sonra insanlara zehirli gıda olarak ulaşabilirler. DDT kullanılmasının bu mahsuru 15-20 yıl sonra anlaşılmış ve üretimi ile kullanılışı düşmeye başlamıştır. Bu gibi tarım mücadele ilaçlarının en kötü tarafı tabii koşullarda çok uzun ömürlü olmalarıdır. Bu maddeler daha önce dünyamızda mevcut değillerdi. Onun için tabiat bunları sindiremiyor, kusuyor. Hülasa: Kimyasal faaliyetlerin çevreye olumsuz etkilerinin hepsini saymak mümkün değildir. Kimyasal proses, maddenin derin bir şekilde değişmesi, yepyeni maddelerin meydana gelmesidir. Kısaca madde mahiyet değiştirir. Yeni meydana gelen madde tabiatta daha önce mevcut ise etkili ve sürekli çevre sorunu pek meydana gelmez. Mesela tuz ruhunun kireç taşına etkisi gibi. Genel bir ifade ile, çevre ya maddi olarak kirlenir, yani gaz, sıvı veya katı haldeki maddeler etrafa sıçrar, veya maddi olmayan hava titreşimi (gürültü) ve yene maddi olmayan çeşitli ışın yayılması ile kirlenir. İnsan faaliyeti veya tabii olaylar sonucunda kıymetli arazinin bozulmasına da çevre kirlenmesi denilebilir. Çevreyi en fazla etkileyen, dolayısı ile kirleten maddeler daha önce mevcut olmayıp insanlar tarafından imal edilenlerdir. Tabiat kendi ürünü olan maddeleri, artıkları sindirip zararsız hale getirmesini bilir. Ama ekolojik dengeyi bozmaya neden olan maddeler yani insanların imal ettikleri yapay maddeler tabiat tarafından kolaylıkla sindirilemiyorlar. Bundan dolayı suni madde artıklarının kirleticiliği uzun, belki de çok uzun zaman sürecektir. Örneğin tabiatta yetişmekte olan herhangi bir bitkisel veya hatta hayvansal madde arttığı etrafa saçılınca kuşkusuz çevreyi kirletiyor, lakin bu madde fermantasyon vs. olaylarından veya herhangi bir canlı mahluk yem veyahut gübre olarak kullanılmasından dolayı bir müddet sonra parçalanıp çevreyi kirletme niteliğini kaybedecektir. Fakat sonradan insanlar tarafından imal edilip etrafa saçılarak çevreyi kirleten maddelerin bir kısmı oksit tas yon ve fermantasyona mukavim oldukları gibi canlı varlıklara yem ve gübre olma görevini de kolay, kolay yerine getiremiyorlar. KISACASI Tabiatta mevcut her türlü madde bu arada bitki ve hayvan artıkları genellikle uzun vadeli çevre sorunlarına sebep olmadan canlı varlıklar arasındaki dengelerde yerlerini bulup şekil değiştirerek yok olmakta ve zararsız şekil e girmektedirler. Bu durumu şöyle ifade edebiliriz : Her canlı varlık, tabiat tarafından parçalanıp tekrar değerlendirilir. Ama mesela insan yapısı olan pek çok kimyasal madde ve bu arada plastik türleri bozulmadan uzun zaman dayanabilmektedirler. Bu suni maddeler her türlü etkenlere karşı çok dirençli olduklarından, çevre için olumsuz etkileri de uzun ömürlüdür. ÇEVRE TAHRİBADINA KARŞI ALINACAK ÖNLEMLER İnsanlar daha rahat, daha konforlu, daha hızlı velhasıl daha uygar ve daha yüksek bir hayat düzeyine kavuşabilmeleri için hammadde kullanarak mamul madde üretirler. Şüphesiz burada istenilen sonuç, madde ve malzeme yerine enerji çeşitleri de olabilir. İşte bu işlemlerde % 100 dönüme olamıyor. Çoğu zaman madde veya enerji olarak artıklar meydana gelmektedir. Bu artıkların çıkmasını mümkün mertebe azaltmak, etrafa saçılmalarını önlemek, bu artıkları yararlı hale getirmek üzere başka şekildeki madde ve enerjiye çevirmek, her ne suretle olursa olsun yayılmayı ve saçılmayı önlemek, bu artıkların insan, hayvan ve bitki üzerindeki olumsuz etkilerini yok etmek ve azaltmak, çevreyi koruma faaliyetinin önemli kısmını teşkil eder. Ayrıca hava titreşiminden (gürültü) etrafın rahatsız olmaması için her türlü önlemi almak da, bu ana amaçlar arasında yer alır. Doğada bütün canlı varlıklar da mevcut denge ve düzeni korumaya yardım etmek, bozulmuş olanı tekrar onarmak, insan faaliyetinden ve tabii olaylardan ötürü kıymetli kültür arazisini bozulmaya karşı korumak ve bozulmuş olan bölgeleri onarmak ve eski ekolojik şartları tekrar geri getirmek de çevre faaliyetlerinde önemli bir yer işgal eder. Sıralanan bütün bu amaçlara varmak için her ülke için gerekli organizasyon ve teşkilatı kurmak, tedbir almak, mevzuat hazırlamak, gerekli ölçümleri yapmak, kirlilik standartları ve koruyucu önlemler tespit etmek ve icabında müeyyide uygulamak çevreyi koruma faaliyetinin çerçevesi içinde yer almaktadır. Şu hale göre nerede ve ne isimde kurulmuş olursa olsun çevre organizasyon ve kuruluşları, burada anlatılan esaslara uygun ve paralel olarak hareket etmelidirler. Çevre korunması için harcanan çabalar netice itibariyle işletmelerin randımanının da artmasını sağlayabilirler. Yani başlangıçta yük gibi görünen işler sonuçta ürünlerin maliyetinde indirici etkiler de yapabilirler. Bu hususu kısaca şöyle izah etmek de mümkündür : Etrafı ve dolayısı ile çevreyi kirleten her şey aslında kontrolden kaçmış bir şeydir. Bu kayıp hem ara ve son madde veya enerji olabilir. Çoğu zaman etrafa yayılması ile rahatsız etme vasfını taşır hale gelen bu gibi artık madde ve enerjiyi toplamak sureti ile kullanmak veya bir veya birkaç işlemden geçirdikten sonra kullanılır hale getirmek çoğu zaman mümkündür. Şu hale göre çevreyi kurtarmaya hizmet etmek iki yönden yarar sağlar. Birincisi, çevrenin temiz tutulmasının sağlanmasıdır. İkinci yarar ise artıkların işe yarar hale getirilmesinin temin edilmesidir. Çevre faaliyetini teşkil eden işlerin en önemli adımı, ülkelerin bu işin önemini vakit geçirmeden takdir etmeleri ve gerekli mevzuatı bir an önce hazırlayıp yürürlüğe koymalarıdır. Çevrenin önemini anayasalarında belirleyen ülkeler mevcuttur ve bunların adedi artmaktadır.

http://www.biyologlar.com/cevre-tahribatinin-nedenleri

 
3WTURK CMS v6.03WTURK CMS v6.0