Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 927 kayıt bulundu.

Parazitolojiye Giriş

Öğrencilerin Öğrenmesi Beklenilen Noktalar 1.Parazitler anlatılırken, parazitizmin özünü anlamak. 2.Parazitolojide kullanılan terimler (terminoloji) ile aşina olmak 3.Taxanomic şemaları kullanarak parazitleri sınıflandırmak 4.Hedeflenen paraziti bilimsel (genus-cins, species- tür) ve halk arasındaki adı ile tanımak, patalojisini, ekonomik etkisini ve kullanılan ilaçlara cevabını öğrenmek. 5.Her parazit için asıl konakçıyı yada konakçı gurubunu bilmek. Hedeflenen parazitin hangi konakçı yada konakçıları etkilediğini öğrenmek. 6.Aksidental (kaza ile oluşan parazitlik) yada rezervuar (kaynak) parazitliğin anlamlarını ve bunların önemini öğrenmek. 7.Her parazitin, tür veya aile olarak asıl konakçı ve hedef konakçılarını öğrenmek 8.Parazitlerin konakçı spektrumunu (konak olarak seçtikleri hayvan türlerinin neler olduğunu) öğrenmek 9.Aksidental (kaza sonu) konakçı ve rezervuar (kaynak) konakçı anlamlarını ve bunların etkilerinin neler olduğunu öğrenmek. 10.Parazit yayılmasındaki rotaları (bulaşma yolları) anlamak ve tanımlayabilmek. oDirek bulaşma, başka bir konakçı kullanmadan oluşan yayılma (bulaşma) oBiolojik (gelişme olan developmental) arakonakçı (intermediate hosts), yada vektörler kullanarak, biolojik yada mekanik oParatenic konakçı (gelişme olmayan - nondevelopmental) yada taşımacı konakçı (transport hosts). 11.Parazit türlerinin dağılımını (ülke ve dünyada) anlamak: oParazitler cosmopolitan (birden fazla kaynaktan köken alan) yada universal (tüm dünyaya yayılan) oCoğrafik yapı yada vektör dağılımına bağlı olarak belli bölgelerle sınırlanmış oMevsimsel değişilerden etkilenme durumları 12.Görülen paraziti tanımak ve teşhis etmek.: oTeşhis için uygun morfolojik karakterlerini kullanarak oParazitin hayat siklusundaki evreleri, yumurtası, kisti , larvası gibi tanıyarak. oLaboratuvar tekniklerini kullanarak örnekte paraziti bularak oParazitin yerleştiği konakçıyı, konakçının hangi organ veya doku kısmına yerleştiğini bilerek tahmini teşhis yapabilmek. 13.Parazitlerin hedef konakçılardaki asıl enfeksiyon bölgelerini, bu bölgelere hangi göç yolları ile ulaştıklarını öğrenip açıklayabilmek. 14.Klinikpatoloji semptomlarına (belirtilere) gözlemleyerek patofizyolojik ve immunolojik cevapları açıklayabilmek. Bu sayede konakçının asıl konakçımı yoksa aksidental konakçı mı olduğunu açıklamak. 15.Anti paraziter ilaçları bilmek: oKimyasal (chemical) sınıfı oEtki genişliği (spectrum) hangi parazitleri etkilediği oHedef parazitin hangisi olduğu oİlacın paraziti nasıl (hangi yolla) etkilediği oİlacın etkili, yeterli dozları oHangi yolla kullanılması gerektiği (IM, SC, IV, oral, vb ) oGüvenliği (Terapötik endeksi) oİlacın kullanılmaması gereken (kontraendike- contraindication) durumlar oTavsiye edilen özel uygulama proğramı 16.Konakçı hayvanların ve çevrelerinin parazitlerden nasıl arındırılacağı konusunda tavsiye edilen kontrol ölçülerini detayları ile bilmek. 17.Paraziter zoonozların halk sağlığındaki önemini anlamak.  

http://www.biyologlar.com/parazitolojiye-giris

Viral Hepatit

Bütün dünyada oldukça yaygın bir hastalık grubu olan viral hepatitler, halk arasında "sarılık" olarak tanımlanıyor. Ancak sarılık, viral hepatitlerin yalnızca bir bulgusu. Karaciğer iltihabına yol açıyor Hastaların çoğu sarılık olmadan bu hastalığı geçiriyor. Viral Hepatit ;virüslerin yol açtığı karaciğer iltihabı. Virüsler vücuda kan yada ağız yolu ile girerek karaciğere yerleşip çoğalarak karaciğer hücrelerini hasara uğratıyor ve karaciğerin işlevlerini bozuyor. Bugüne kadar hastalık yapan beş tane hepatit virüsü saptandı. Bunlar A, B, C, D ve E tipi hepatit virüsleri. Viral Hepatit hastalığının belirtileri arasında aşırı halsizlik, çabuk yorulma, bulantı, kusma, çay rengi idrar, belirsiz eklem ve kas ağrıları, sarılık yeralıyor. Halk arasında bulaşıcı olarak biliniyor A ve E tipi viral hepatitler halk arasında "Bulaşışıcı Sarılık" olarak bilinen bir hastalık. Bulaşıcı sarılıkta ani başlayan ,belirgin işaretler veren hastalık tablosu oluşuyor ve kendiliğinden iyileşiyor. Koşulların kötülüğü tetikliyor Bulaşıcı sarılığa, koşulları kötü olan toplumlarda sık rastlanıyor. Bulaşıcı sarılığa neden olan A ve E tipi hepatit virüsleri hastaların dışkılarında bulunuyor. Dışkıların bulaştığı su ve yiyeceklerle yada yakın temas yolu ile geçiyor. Kan yolu temas sonucu bulaşma yok denecek kadar az. Bulaşıcı sarılığın en iyi tedavisi istirahat ,dengeli ve yeterli beslenme. Bulaşıcı sarılık, büyük oranda dışkı ve ağız yolu ile bulaşıyor. Bu yol ile bulaşmanın önlenmesi bir alt yapı sorunu. Kişisel korunmada ise,temizlik kurallarına dikkat etmek gerekiyor. En etkili kişisel korunma, hasta kişilerin sağlıklı kişilerle temasının denetlenmesi. Hastaya ait eşyaların kullanılmaması gerekiyor. Hasta kişilerin başkalarına kesinlikle yiyecek hazırlamaması gerekiyor. Kullanılan mutfak eşyası ,elbise ,çarşaf gibi eşyaların sabun ve sıcak suyla yıkanması gerekiyor. `Gizli sarılık` B,C,D tipi viral hepatitler, halk arasında "Gizli Sarılık" ya da "Kara Sarılık" olarak biliniyor. Gizli sarılık mikrobunu alan kişilerin bir kısmı bu mikrobu vücutlarında taşıyor ve başkalarına bulaştırıyor. Bu kişilere "taşıyıcı" deniliyor. Taşıyıcı olmak dahi ilerde siroz ve karaciğer kanseri gelişmesi için yeterli oluyor. Üstelik taşıyıcı kişilerin virüsü başka kişilere de bulaştırması toplumun geleceği açısından büyük bir sorun oluşturuyor. Gizli sarılık mikrobu, kan nakli,ortak enjektör kullanımı yada herhangi bir yolla kan teması, cinsel ilişki ve anneden bebeğe şeklinde yayılıyor. Gizli sarılıkta ani başlayan hastalıkta en iyi tedavi, istirahat, dengeli ve yeterli beslenme. Günümüzde eski yanlış inançların aksine ,bir çok değişik ilaçlarla sarılığın tedavisi yapılıyor. Gizli sarılıkta başlıca bulaşma , kan yoluyla olduğundan; kan yolu ile bulaşmaya yönelik önlemler alınmalı. Bunun için kan bankalarında ,hastane ve Kızılay`da virüs taramaları yapılıyor. Ortak iğne ya da enjektör kullanımından kaçınılmalı. Ayrıca her şüpheli cinsel ilişkide prezervatif kullanılmalı. Ailede sarılık geçiren kimse varsa ya da risk altındaki kişiler hekime başvurarak korunma sağlamalı.

http://www.biyologlar.com/viral-hepatit

Biyolojik Silahlar ve Biyosensörler

Bakterilerin bir kısmı görünmeyen dostlarımızdır; bazıları sindirim sistemimize yardım ederken, bazıları vücudumuzdaki zehirleri yok ederler. Kimi bakteriler ise bizleri hasta eder. Vücudumuzun içinde veya dışında yaşayan bu ilginç mahlukçuklar hayatımızın ayrılmaz parçalarıdır her hâlükârda. Ancak bir de ‘katil’ bakteriler var ki, zalim insanların ellerine geçtiklerinde biyolojik silah olarak kullanılabilirler. Biyolojik silahlar; insanları, hayvanları veya tarımsal ürünleri öldürücü veya ağır derecede hasta edici olan mikroorganizmalar ile, bunlardan üretilen zehirli maddelerdir. Hatta sadece hastalık ve ölüme yol açan mikropların kendileri değil; bunların taşıyıcıları da meselâ böcekler bu sınıfa dahildir. Biyolojik silahlar kitle imha silahları içindeki en problemli ve tehlikeli silahlardır. Nükleer veya kimyasal silahlardan çok daha fazla insanı hedef alırlar. Diğer silahlara göre maliyetlerinin düşük olması, rutin güvenlik sistemleriyle tesbit edilemiyor olmaları gibi değişik nedenlerle insanlık için ciddi tehdit unsurudurlar. Kimyasal silahların aksine hemen tesir etmezler. Yaklaşık 24-48 saatlik bir kerahet devresinden sonra tesirleri ciddi olarak görünür ve o zamana kadar da eğer mikrop kullanıldı ise çoğalarak etrafa yayılmaya devam ederler. Biyolojik silahlar kimyasal olanlara göre çok daha fazla öldürücüdür. Meselâ 10 gr. şarbon sporu, 1 ton sinir gazı Sarin’in öldürebileceği kadar insan öldürebilir. Biyolojik silah tehlikesine karşı yapılması gerekenler ise şöyle özetlenebilir: • Biyosensörler ile tehlikenin tesbiti ve tanımlanması. • Mikrobiyal zehirlere karşı antidotların hazırlanması. • Antibiyotik ve aşı geliştirilmesi. Bakteriler, virüsler ve toksinler biyolojik silah olarak kullanılabilirler ve hepsinin birbirinden farklı özellikleri vardır. Son yıllarda biyoteknolojik metodların hızla ilerlemesi bu bilgi ve teknolojilerin kötü amaçlara âlet edilme tehlikesini de beraberinde getirdi. Genetik mühendisliği çalışmalarındaki ilerlemeye paralel olarak biyolojik silahların etkisini artırıcı ve tesbit edilmelerini zorlaştırıcı gelişmeler ise, bu silahlara karşı yapılan savunmayı daha da güçleştirecektir. Genetik olarak dizayn edilmiş organizmalar, biyo-silah üretiminde kullanılabilir durumdalar ne yazık ki. Örneğin: • Mikroskobik toksin veya biyoregülator fabrikasına dönüştürülmüş mikroorganizmalar, • Antibiyotik, aşı gibi rutin kullanılan ilaçlara bağışıklık kazandırılmış organizmalar. • İmmunolojik profilleri değiştirilerek bilinen tesbit metodları ile tesbit edilemeyen organizmalar. • Antikor bazlı sensör sistemlerinin tesbitinden kaçabilecek organizmalar. Bilimi kötü ve vahşi amaçlarına alet etmeye çalışanlar biyolojik silahların etkisini artırıp tesbitini zorlaştırmaya çalışırken, bizlere de, biyolojik silahların zararlı tesirlerini gidermeye çalışmak ve onların üretiminde kullanılan maddelerin tesbitini kolaylaştıracak metodları bulmak düşüyor. Biyolojik silahlara karşı erken tesbit, uyarı ve tedavi metodlarının geliştirilmesi insanlık için bir zorunluluk haline gelmiş bulunuyor. Tehlikeli biyolojik maddelerin varlığının tesbitinde en önemli unsur biyosensörlerdir. Biyosensörler (biyo-alıcılar, biyolojik dedektörler) biyolojik materyallerin alıcılar ile tesbit edilip ölçülebilir sinyallere dönüştürüldüğü aletlerdir. Alıcılar tarafından tesbit edilen tanımanın sinyale dönüştürülmesinde kullanılan metodlara göre, bu biyosensörleri kabaca (1) optik sensörler ve (2) elektrokimyasal sensörler olarak iki gruba ayırabiliriz. Şu anda ticarî olarak piyasada olan kimyasal ve biyolojik analiz âletleri gözden geçirildiğinde, kimyasal dedektörlerin biyolojik olanlardan daha fazla gelişmiş oldukları görülecektir. Kimyasal dedektörler neredeyse saniyeler ve dakikalar içinde kimyasal maddeler hakkında bilgi verirlerken, biyolojik dedektörler için bu süre genellikle daha uzundur; çünkü daha kompleks ve yavaş çalışan mekanizmaları vardır. Problemlerden biri de, büyük ve ağır olmalarıdır. Bu sorunların çözülmesi gerekmektedir; çünkü artık, kimyasal silahların tesbitinde olduğu gibi, biyo-silahların tesbiti için de küçük boyuttaki robotlar ya da uçaklar kullanılmak istenmektedir. Son yıllarda optik sensörler biraz daha geliştirildi ve biyokimyacılar için çok önemli araçlar haline geldi. Sensörlerde kullanılan biyolojik materyalleri tanıma elementlerini genel olarak şöyle sıralayabiliriz: enzimler, mikroorganizmalar, bitkisel ve hayvansal dokular, antikorlar, reseptörler, nükleik asitler. Tesbit edilmesi gereken materyale ilgisi olan, bağlanabilecek olan alıcı element (veya elementler) biyosensör yüzeyine kimyasal metodlar ile sabitlenir, yani immobilize edilir. Daha sonra ortam içerisinde istenen molekül veya mikroorganizma olan çözelti ilave edildiğinde, alıcı ile bu biyolojik materyal birbirlerine bağlanırlar. Bu bağlanma ise kullanılan sensör cinsine göre elektrik veya optik metodlarla sinyale dönüştürülerek algılanır. Eğer ortamda istenen biyokimyasal yok ise, sinyal gönderilmez. Biyosensörlerin çalışma mekanizması biyolojik elementler arasındaki ilgiye dayanır. Meselâ, hücre içindeki pek çok hayatî faaliyette yer alan proteinler arasında anahtar-kilit ilişkisine benzer ilişkiler vardır. Hücre içindeki faaliyetler hep birbirine bağlanan veya bağlanamayan proteinlerin oluşturdukları biyokimyasal sinyaller ile devam eder. Meselâ, protein ailesinin üyelerinden olan antikorların vazifesi organizmaya giren yabancı molekülleri tesbit edip bunlara bağlanmaktır. Antikorlar vücudun savunma sisteminin en önemli elemanlarıdırlar. Aslında her birimiz mükemmel biyosensörler sahibi olarak yaratılmışız. Meselâ beş duyumuz—görme, işitme, dokunma, koklama, ve tat almamız—yine alıcılar tarafından hissedilen verilerin kimyasal ve elektriksel sinyallere dönüştürülüp, beynin değerlendirilmesine sunulmasıdır. Modern teknoloji biyosensörler ile bir ya da birkaç molekülü tanımaya, algılamaya çalışırken, sizlerin şu anda bir yandan gözleriniz dergiye bakıp her an sinyalleri beyne gönderiyor; diğer yandan kulağınız radyodan gelen hafif müziğin sinyallerini göndermekle meşgul; derginin sayfalarını hisseden parmaklarınız sinirlere uyarılar veriyorlar; burnunuz bardaktaki meyve çayını koklamak ve yine uyarıları beyne göndermekle meşgul; öteki yanda antikorlarınız yabancı madde avında ve buldukları anda gereken bilgileri beyne gönderip savunma mekanizmasını harekete geçirmeye çalışıyorlar. Ama bütün bunlar olurken siz “Ayy, şimdi benim beynim bu verilerin hangisini anlamaya yetişsin?” diye sızlanmak yerine, yazıda okuduklarınızı düşünmekle meşgulsünüz. Biyosensör çalışmalarında yaşanan zorluklar ve eksiklikler bize küçücük hücrelerden büyük organizmalara kadar canlıların muhteşem biyosensörler olarak yaratıldıklarını ve insanoğlunun teknoloji adına yaptığı herşeyin bu muhteşem mekanizmaları taklide çalışmaktan başka birşey olmadığını gösteriyor. Sadece biyo-silahların tesbitinde değil, aynı zamanda biyolojik mekanizmaların, proteinler arası ilişkilerin anlaşılmasında ve insan genom projesinin devamı olan proteomik çalışmalarında da biyosensörlerin büyük önemi vardır. İnsan genom projesi ve patojenik bakteri ve mikroorganizmaların genetik kodlarının ilaç geliştirme çabalari için belirlenmesi, bazı kötü niyetli insanların ilaç yerine zehir yapmasına da yardım etmektedir. Almanya, Fransa, Japonya, İngiltere, ABD, Rusya ve Irak’ın bu silahları üretmek için çalışma yaptıkları söylenmektedir. Birinci ve İkinci Dünya Savaşlarında biyo-silahlar kullanılmıştır. Hatta çok daha önceleri 1763’te İngilizler Kızılderililere çiçek hastalarının kullandıkları battaniyeleri vermiş ve bu hastalığa karşı bağışıklığı olmayan yerlilerin hasta olup ölmelerine sebep olmuşlardır. Görünen o ki, yıkma, yok etme ve zarar verme açısından insana kimse yetişemiyor. Eğer insan olma erdemleri ve Allah korkusu yok ise, insanoğlu en vahşi silahları bile kullanmaktan, insanları yok etmekten geri kalmayan, esfel-i sâfilîne lâyık varlıklara dönüşüyor. Bu tür insanların neden olabileceği biyolojik savaş/terör tehlikesine karşı uyanık olunması ve gereken erken uyarı, tesbit ve savunma sistemlerinin geliştirilmesine ülkemizde de çalışılması gerekmektedir.

http://www.biyologlar.com/biyolojik-silahlar-ve-biyosensorler

Kök Hücre Çalışmaları Kanseri Ortadan Kaldırabilecek mi?

Kök Hücre Çalışmaları Kanseri Ortadan Kaldırabilecek mi?

Kanseri tedavi etmenin yolunun kanser kök hücrelerini yok etmekten geçtiğini belirten Anadolu Sağlık Merkezi İç hastalıkları ve Hematoloji Uzmanı Prof. Dr. Zafer Gülbaş, kanser hastalarında kök hücre uygulamalarıyla ilgili Medical Tribune’ün sorularını yanıtladı. MT: Kök hücre tedavisi ile ilgili yeni gelişmelerden bahsedebilir misiniz? Önceki yıllarda, kanseri dokudaki olgun hücrelerin yaptığını düşünüyorduk ama bugün kansere neden olan bir kök hücrenin var olduğunu biliyoruz. Kök hücre, kanserli hücreleri oluşturuyor ve bunlar çoğaldıkça hastalık ortaya çıkıyor. Kanseri tedavi etmek için birçok kemoterapi çeşidi, immünoterapi, radyoterapi ve cerrahi tedavi uygulandı.  Ancak kanserin birçok hastada tekrarlamasını önleyemiyoruz. Şu anki bilgilerimize göre kanseri tedavi etmenin yolu ise kanser kök hücresini yok etmekten geçiyor. Kanser kök hücresinin varlığını nasıl tanıyabileceğimiz ve nasıl ortadan kaldırabileceğimizle ilgili sorunun yanıtı aranıyor.  Bugün için en önemli konu bu. Dünyada birçok merkezde bu konu üzerinde çalışmalar yürütülüyor. Bütün kanser türlerinde kanser kök hücresinin olduğuna inanılıyor.  Johns Hopkins Üniversitesi Kemik İliği Programı Direktörü Prof. Dr. Richard Jones ve ekibi bu hipotezi miyeloma denilen hematolojik kanserde açıkladı. Richard Jones’un kanser kök hücre teorisinde  şöyle bir kuram kullanıyor. Yabani bir otu ne kadar çok temizlerseniz temizleyin eğer kökünü çıkarmıyorsanız bir süre sonra tekrar çıkacaktır. Kanser için de aynı durum sözkonusu olup, kök orada olduğu sürece kanser tekrar oluşuyor. Kanser kök hücresi önümüzdeki 5-10  yılın en çok çalışılacak konularından biri olup,  kanseri ortadan kaldırmanın belki de anahtarının yattığı konudur. MT: Kök hücrelerin kanser tedavisinde kullanıldığı alanlar hangileri? Hematopoetik kök hücre nakli dışında, kanser tedavisinde kanser kök hücresine karşı aşı üretme çalışmaları yeni bir alan. Oldukça ilgi çekici ve önümüzdeki süreçte yararlı olup olmadığını öğreneceğiz. Ayrıca kanser hücresine özgü T lenfositleri ve NK lenfositleri üretmek ve tedavide kullanmak ilgi çekici ümit verici gelişmeler. MT: Hematolojik kanserlerde kanser kök hücresini yok etmek mümkün mü? Hematolojik kanserlerde kemik iliği nakli yapmak için yüksek doz tedavi uygulandığında, hastanın kemik iliği bir daha üretim yapamaz hale geliyor. Bu da yüksek doz tedavilerin kök hücreyi ortadan kaldırabildiğini gösteriyor. Ancak yüksek doz tedavi her kanserde aynı sonucu vermiyor. Bu konuda yapılan çalışmalarda allojenik kök hücre nakliyle kanserli kök hücrenin ortadan kaldırılabileceğini gösteriyor. Yöntem, her kanser türünde aynı sonucu vermese de; özellikle lenfoma, lösemi gibi hematolojik kanserlerde kanser kök hücresinin ortadan kaldırılmasında etkili oluyor. MT: Şu an Türkiye’de kök hücre tedavisi hematolojik hastalıklarda yaygın kullanılıyor mu? Ülkemizde kök hücre nakli yapan birçok merkez var. Sağlık bakanlığı kök hücre naklinin yaygınlaşması ve hastaların bu tedaviden yararlanmasını sağlamak için önemli destek veriyor. Ancak her hastaya kök hücre nakli için uygun donör bulamıyoruz. Normalde biz kök hücre naklini HLA doku grubu uygun kişilerden yapıyoruz. HLA doku grubu uygun kişi bulma şansı kardeş sayısına göre değişmekle birlikte yüzde 25-50 civarında değişiyor. HLA doku grubu uygun donör bulunmadığında, donör bankalarına baş vuruyoruz ve %25 hastaya da bu şekilde çözüm buluyoruz. Bankada da bulmazsak hasta donörsüz kalıyor. Bu durumda yüzde 50 antijen uyumlu aile içindeki donörlerden haploidentik nakil yapabiliyoruz ve hastaların hemen hepsi allojenik nakil olma şansını yakalıyor. Böylece bu tedavi ile hastalıklarının ortadan kaldırılma şansı doğuyor. Johns Hopkins grubu ve İtalyan bilim adamları bu konuda çok çalışıyorlar. Ve elde ettikleri sonuçlara göre; doku uyumlu akraba dışı donörden yapılacak nakilde elde edilecek sonuç ile haplodentik  aile içi nakilin sonuçları benzer. Haplodentik nakil dediğimiz nakil bugün için donör bulunamayan hastalarda kemik iliği nakli yapılmasına imkan veriyor.    MT:Haploidentik nakilde başarıyı etkileyen faktörler nelerdir? Enfeksiyon ve graft versus horst hastalığı (GVHD) dediğimiz graftın alıcının organlarına karşı reaksiyon vermesidir. GVHD, donör hücrelerinin alıcının organlarını tanıyıp tahrip etmesidir. Donörün bağışıklık sistemi alıcıya yerleştikten sonra alıcının karaciğerine, cildine, barsaklarına, kemik iliğine zarar vermektedir. Bu zararı verdiğinde enfeksiyonlara  hastalar daha sık yakalanmaktadır. Hastaların ölümü, graft versus host hastalığından olduğu gibi  bazen hastalık tekrarından da  oluyor. Ama akraba dışı nakillerle bu tip nakilleri kıyasladığımızda ikisinin de başarı oranı benzerdir. Biz Anadolu Sağlık Merkezinde akrabadışı donör bulunamayan hastalara haploidentik nakil yapıyoruz. Sağlık Bakanlığı tüm organ nakillerini olduğu gibi kemik iliği nakline de önemli destek vermektedir. Bunlar zor nakiller. Bu nakli olanlara aile desteği de çok önemli. Anadolu Sağlık Merkezi’nde hastalarımıza bu olanağı sağlıyoruz. Anadolu Sağlık Merkezi Kemik İliği Ünitesi’nde son bir yıl içinde 166 nakil gerçekleştirdik, 21’i haploidentik nakildir. MT: Kemoterapi öncesi kök hücre saklama yönteminden bahsedebilir misiniz? Kemoterapi öncesi kök hücreler hastanın kendinden toplanacaksa, G-CSF dediğimiz ilacı tek başına 4-6 gün yada 1-3 günlük kemoterapi verip kemoterapi sonrası 7-10 gün cilt altı vererek kol kanından topluyor, sonra belirli solüsyonlarla karıştırarak otomatize alette adım adım dondurup saklıyoruz. Bu şekilde kök hücreleri güvenli olarak en az 5 yıl saklayabiliyoruz. Hastanın sağlıklı donoründen ise 4-6 gün G-CSF dediğimiz ilacı tek başına 4-6 gün cilt altı vererek kol kanından toplayarak donduruyoruz. Kol kanından toplama işlemini hücre ayırıcı denen cihazlarla yapıyoruz. Bu işleme kök hücre aferezi diyoruz. MT: Türkiye’nin kök hücre konusunda geldiği noktayı nasıl değerlendiriyorsunuz? Türkiye’de yeterli sayıda merkez var mı? Türkiye kemik iliği nakli konusunda uluslararası standartlarda başarılı işlemler gerçekleştiriliyor. Son 2-3 yılda nakil yapılan yıllık hasta sayısı, 800’lü değerlerden 2000’lerin üzerine  çıktı. Ancak halihazırda ülkemizde 1000-1500 hasta halen bu tedaviden yararlanamıyor. Merkezlerin aktivitesinin artması gerekiyor. Sağlık Bakanlığı bu konuda hastalarımızın yanında. Yeni yönerge  değişiklikleri  yapılarak kemik iliği nakli merkezlerinin kalite standartları da yükseltilmeye çalışılıyor. Kemik iliği naklinde,  nakil sonrası süreçte enfeksiyon riskinin olmaması başarıyı etkileyen en önemli unsurların başında geliyor. Bu nedenle yeni açılacak merkezlerde aranan kalite standartları daha da ağırlaştırılıyor.  http://www.medical-tribune.com.tr

http://www.biyologlar.com/kok-hucre-calismalari-kanseri-ortadan-kaldirabilecek-mi

Flores'in Küçük İnsanları

Flores'in Küçük İnsanları

Flores Adası’nın ismini hiç duydunuz mu? İlk bakışta Endonezya’da şirin bir tatil yeri gibi görünen bu ada aslında tarih öncesi çağlarda barındırdığı, küçük insanları yani “Homo Floresiensisleri” sebebiyle arkeoloji ve antropoloji dünyasında önemli bir yere sahip. Homo Floresiensis'lere ev sahipliği apan Flores Adası Kayıp medeniyetler üzerinde araştırma yaptığınızda karşılaşacağınız muhtemel isimlerden biri; Flores Adası. Burada yüzyıllar önce yaşadığı tespit edilen, fiziksel özellikleri açısından “küçük” olarak tabir edebileceğimiz Homo Floresiensisler ve onların bu alanda nasıl yaşam sürdükleri konusu oldukça ilgi çekici. Antrolopoloji ve arkeoloji alanları için ilk medeniyetler, ilk insanlar, kullandıkları aletler..vs. hakkında bilgi sahibi olmak oldukça önemlidir. Bulunan kalıntılar insanlık tarihine ışık tutar. Mısır, Mezopotamya uygarlıklarını çoğumuz biliriz, bu alanlar hala gözde alanlardır. Fakat dünyanın bilinmeyen noktalarında kazara keşifler yapmak ve aslında oldukça şaşırtıcı sonuçlara ulaşmak da mümkün. Bu durum Flores Adası için de geçerli bir durum. Flores Adası’ndaki insanlık tarihi için önemli bir adım sayılan keşif; New England Armidale Üni­versitesi’nden Michael Morwood, Endonezya Arkeoloji Mer­kezinden R. P. Soejono ve ekibi tarafından gerçekleştirilmiştir. Ekip 2003 yılında “Liang Bua” adı verilen bir mağarada kazı çalışması yaparken 800 bin yıl öncesine ait olduğu belirtilen taş aletler ve sonrasında “Homo Floresiensis” olarak adlandırılacak olan insan kalıntılarına ulaşmışlardır. Bu önemli bir buluştur çünkü bulunan insan kalıntıları normal olarak tabir edebileceğimiz fiziksel özelliklerden oldukça küçük niteliklere sahiptir. Şöyle ki; radyometrik tespitlere göre bulunan insan kalıntılarının yaklaşık 1 metre boyunda, 25 kilo ağırlığında bir kadına ait olduğu tespit edilmiştir. Kafatasının oldukça küçük olması ilgi çeken diğer bir husustur. Kalıntıların en eskisinin 94.000 yıl en yenisinin ise 12.000 yıllık olduğu belirlenmiştir. Tüm bu bilgiler 2004 yılında Nature isimli dergide büyük bir heyecanla paylaşılmış ve yeni bir türün ortaya çıktığı belirtilmiştir. Bu durum da insanın evrimi üzerine yeni tartışmaları gündeme getirmiştir. Bu tartışmaları ve öne sürülen savları kısaca ele alacağız fakat öncesinde homo florensis’in insanın evrimi tablosunda aldığı konumdan kısaca bahsetmenin faydalı olacağı inancındayız. Homo Floresiensis’in aile içindeki yeri Soldan sağa: Homo Floresiensis, Lucy (Australopithecus Afarensis), Homo Erectus ve Homo Sapiens. Flores Adası’nda bulunan insan buluntularının yeni bir tür olduğu savı bir dönemin ses getiren konusu olmuştur. “Homo Floresiensis” olarak adlandırılan bu yeni türün Avrupalı Neandertalların doğu ayağını temsil eden; “Homo Erectus” ve modern insan olarak tabir edilen “Homo Sapiens”den önce yaşadığı “Australopithecus Afarensis” ile yakın özelliklere sahip olduğu savunulmuştur. Homo Floresiensis’in küçük ama oldukça zeki bir tür olduğunu savunan araştırmacılar bu savlarını onların kullandıkları karışık yapıda taş aletler ile güçlendirmeye çalışmışlardır. Homo Floresiensis’in beyin büyüklüğünün Homo Saphiens’in sahip olduğu beyin büyüklüğünün 1/3’ü olmasına rağmen zeki oldukları düşünülmektedir. Bu küçük insanların yaşadıkları çağın tehlikelerine karşı kendilerini korudukları, kullandıkları aletlere bakıldığında avcılıkla ilgilendikleri belirlenmiştir, bunların tümüne bakıldığında yüksek bir zekâyı temsil ettikleri savı güçlenmektedir. Homo Floresiensis’e yazın ve sinema tarihinde önemli yere sahip, J. R. R. Tolkien’in Yüzüklerin Efendisi isimli eserinden esinlenerek “Hobbit” adı da verilmiştir. Dünya çapında bilinen önemli eserlerden biri olan bu eserde önemli karakterlerden birini temsil eden hobbitler, küçük cüsseleri ve zekâlarıyla dikkat çekmektedir. Gerçekte de hobbitlerin var olabileceğinin savunulması heyecan uyandırmıştır. Homo Floresiensis’e dair tartışmalar Flores Adası’nda bulunan kalıntıların daha önce keşfedilmeyen yeni bir tür mü yoksa Homo Saphiens’in farklılık geçirmiş bir türü mü olduğu sorusu keşiften günümüze kadar devam eden bir tartışmaya neden olmuştur. Yazılan bilimsel makalelerde yıllara bağlı olarak gözlemlenen farklı yorumlar ilgi çekicidir. Keşfin yapıldığı 2003 yılında kesin bir şekilde dile getirilen yeni tür bulunduğuna dair sav, yapılan araştırmalar sonucu eski etkisini yitirmiştir. 1 metre boyunda, 25 kilo ağırlığında bir kadına ait olduğu tespit edilen kafatasının oldukça küçük olması dikkat çekicidir. Bulunan kalıntıların sadece dokuz tane olması, bu alanda kapsamlı bir fikir yürütmeyi engelleyici bir unsur olarak karşımıza çıkmaktadır. İlk bulunan kadın iskeletinin Homo Saphiens’in uzak bir türünü temsil ettiği, LB1 adı verilen iskeletteki anormallik nedeninin “Mikrosefali” isimli bir hastalık olduğu savı güçlenmeye başlamıştır. Mikrosefali; beyinde ortaya çıkan küçük bir urun sebep olduğu bir rahatsızlıktır ve zihinsel engele yol açmaktadır. Bu kuramı destekleyen anatomist Maciej Henneberg mikrosefalik kafatasıyla LB1 arasında muhtemel benzerlikleri vurgulamıştır. Ama az sayıda bulunan iskeletlerden yola çıkarak bir medeniyetin tamamında mikrosefali rahatsızlığının var olduğunu söylemek mümkün değildir. 2005 yılında Homo Floresiensis için en kapsamlı araştırma yapılmıştır. Florida Eyalet Üniversite­si’nden Dr. Dean Falk’un liderliğini yaptığı uluslar ara­sı bir uzman grubu LB1 kafatasının üç boyutlu bir maketini yapıp, bunu şempanze, modern insan(modern cüce), mirosefalik bir beyin ve Homo Eractus ile karşılaştırmıştır. Bu incelemeye göre LB1; modern cüce beyninden ve mikrosefalik beyinden daha farklı bir özellik taşımakta ve yeni bir türü temsil etmektedir. Bu araştırmanın doğruluğu halen tartışılan bir konudur. Kimi bilim adamlarına göre bu çalışmada mikrosefalik beyin örneği kullanılmamıştır. 2010 yılında gelindiğinde ise; bu türün Homo Saphiens’in bir türü olduğu, “Kretenizm” adı verilen hastalığın ve yaşanılan ortamın da getirisi olarak küçük bir yapıya sahip olduğu savı ortaya çıkar. Günümüzde o bölgede yaşayan halkın da minyon bir tipe sahip olması bu savı güçlendiren bir unsur olmaktadır. Bu sav belki doğru olabilir çünkü antopolojik çalışmalara göre yaşam alanının sahip olduğu coğrafi koşullar canlılarda fizyolojik farklılıklara neden olabilmektedir. Kazılarda Homo Floresiensis ile birlikte ortaya çıkan balık, kurbağa, yılan, kaplumbağa, dev sıçan, kuş, yarasa ve Stegodon (soyu tükenmiş bir tür cüce fil), Komodo ejderi ve dev kertenkele gibi diğer iri hayvanlara ait iskeletler Flores Adası’nın doğal ortamını gözler önüne sermiştir. Homo Floresiensis bu doğal ortamda varlığını devam ettirmeye çalışmıştır. Fiziksel yapının da zaman içersinde Flores’in kaynakları doğrultusunda şekillendiği inancı dikkat çekicidir. Aynı bölgede özellikle Stegodon(cüce fil)’in görülmesi bu inancı güçlendirmektedir. Homo Floresiensis’in yok oluşu Homo Floresiensis’in nasıl yok olduğu sorusunun cevabını aradığımızda kesin bir bilgiye ulaşmamız mümkün değil fakat bu konudaki en baskın görüş; Flores Adası’nda gerçekleşmiş olan bir volkanik patlama sonucu Homo Floresiensis’in yok olmasıdır. Bu görüşün kesin bir veriyi sunması imkânsızdır çünkü böyle bir doğal felaketten kurtulanların olup olmadığı ve başka bir yerde yaşamlarını devam ettirip ettirmediklerine dair bir iz yoktur. Homo Floresiensis keşfin yapıldığı 2003 yılından günümüze yaklaşık 9 yıldır tartışılan bir konu olma özelliğine sahiptir. Paleoantropologlar, anotomi uzmanları gibi farklı branşlardan bilim adamlarının ilgisini çeken bu konu her geçen sene farklı savları ortaya çıkarmaktadır. Bu konudaki son görüş; yeni bir tür olmadığı yönündedir. Fakat ilerleyen senelerde bu konuda belki de bulanacak başka veriler ışında çok farklı savlar ortaya çıkacaktır. İnsanın evrim süreci her daim merak uyandıran bir konu olduğundan bu açıdan dikkat çekici olan Homo Floresiensis’in yeni bir tür olup olmadığı sorunsalının daha pek çok yıllar tartışılması muhtemeldir. Kaynakça: Pennsylvannia State University Press Release, “No Hobbits in this Shire: Researchers say skeletal remains are pygmy ancestors”, 23 Ağustos 2006. http://insanveevren.wordpress.com/2012/04/15/tarih-oncesi-flores-adalilar-bilmecesi/ http://www.kesfetmekicinbak.com/ http://en.wikipedia.org/wiki/Homo_floresiensis http://www.sciencedaily.com/releases/2010/09/100928025514.htm http://www.sciencedaily.com/releases/2008/12/081217124418.htm Yazar hakkında: Sinem Doğan Açık Bilim Haziran 2012 http://www.acikbilim.com/2012/06/dosyalar/floresin-kucuk-insanlari.html

http://www.biyologlar.com/floresin-kucuk-insanlari

Nematodaların Tayin Anahtarı

1.Özefagus uzunluğunun büyük bir kısmında tek sıralı hücreler arasından dar bir boru olarak devam eder; dudak yoktur; balıkların bağırsaklarında bulunurlar (Avrupa formları karaciğerde bulunur)................................................Dizi: Trichuridae 51. Yukarıdaki gibi değildir.......................................................................................2 2. Özefagus posteriörde ampul şeklinde genişlemiştir...................Dizi:Oxyuridea2. Yukarıdaki gibi değildir.......................................................................................33. Başta üç büyük lob veya dudak vardır ;genellikle özefagus ve / veya intestinal ceca vardır; nispeten küt kurtlardır...............................................Dizi; Ascaridea 63. Yukarıdaki gibi değildir ; intestinal ceca yoktur................................................ 44. Genellikle iki lateral dudak vardır; kitinize bukkal boşluk veya vestibül vardır ; vulva genellikle vücudun ortasında veya posteriöründe ;intestinal ceca yoktur......................................................................................... Dizi : Spiruridea 84.Dudak yoktur; vestibül yoktur veya rudimenterdir; vulva hemen daima özefagal bölgede ; larvalar uterus, karın boşluğu veya yüzgeçlerde bulunurlar....................................................................................Dizi: Filariidea 195.Özefagus bölünmemiştir; erkeklerde spikül vardır; bağırsaklarda bulunurlar; Avrupa formları karaciğerde bulunur............................................. Soy; Capillaria5. Özefagus bölünmemiştir; erkeklerde spikül yoktur; fakat kopulasyon kını vardır; bağırsakta bulunur...............................................................Soy :Hepaticola5.Özefagus anteriör muskular ve posteriör cellular bölümlere ayrılmıştır; dişinin arka kısmı yuvarlaktır; deri kabarcıklarında bulunur ......................Soy : Cytoopsis 6. Alimenter kanal basit; postözefagal ventrikulus, özefagal veya intestinal divertikül yoktur....................................................................................Soy: Ascaris6. Alimenter kanalda postözefagal ventrikulus veya /ve özefagal intestinal divertikül vardır.......................................................................................................77. Anteriöre doğru çıkan intestinal cecum , posteriöre doğru çıkan özefagal apendiks vardır; mide ve bağırsaklarda bulunurlar.................. Soy: Contracaecum7. İntestinal cecum yoktur, fakat özefagal apendisk vardır.......Soy: Raphidascaris8. Dört adet özelleşmiş olup dudak ; dişinin posteriör ucunda emici benzeri çöküntü şeklindedir. Buradan kitinize çengel çıkar ; mide bulunur........................ ............................................................................................................Soy: Hedruris8. Dört adet özelleşmiş dudak v.s. yoktur................................................................99. Büyük kitinize bukkal kapsül vardır ; kırmızı kurtlar olup bağırsaklarda bulunurlar ; bazen anüsten çıktıkları görülür.................................Soy: Camallanus 9. Büyük kitinize bukkal kapsül yoktur; kırmızı değildir......................................1010. Kafada iki lateral lob vardır ; özefagus muskular olup anteriörde genişleyerek pseudobukkal kapsül yapar, posteriörde büyür.........................Aile : Cucullanidae10. Öyle değildir....................................................................................................1111. Dorsocephalic tüberkül vardır ; bağırsakta bulunur............Soy: Bulbodacnitis11. Dorsocephalic tüberkül yoktur ; bağırsakta bulunur.......................................1212. İntestinal cecum yoktur, iki ovaryum vardır............................Soy: Cucullanus12. İntestinal cecum vardır ,bir yada iki ovaryum vardır.......................................1313.Pre-anal emici vardır ; bir ovaryum .........................................Soy: Dacnitoidea13. Pre-anal emici yoktur ; iki ovaryum vardır................................Soy: Dichelyne14. Bütün vücutta veya anteriörde kütikil üzerinde çengel benzeri dikenler bulunan transversal halkalarla kaplı ; bağırsakta bulunur..............Soy: Spinitectus14. Kütikül yukarıdaki gibi değildir.......................................................................1515. Genellikle dört çift (seyrek olarak daha fazla ) büyük pre-anal papilla vardır....................................................................................................................................1615. Pre-anal papillalar bir çizgi şeklinde , çok sayıda ve sapsızdırlar...................1716. Dudaklar büyük ve belirgin olarak üç lobludurlar ; iç yüzün kütikülü kalınlaşmış olup karşı dudakla birleşecek gibidir; olgunları kaplumbağalarda , larvaları birçok balıklarda görülür.......................................................Soy: Spiroxys16. Dudakların iç yüzündeki kütikül kalınlaşmamıştır; spiküller eşit değildirler ; dört çift papilla saplı ; yumurtalarda bipolar filamentler ; gubernaculum vardır.............................................................................Soy: Metabronema (Cyatidicoloides)17. Spiküller eşittirler.....................................................................Soy: Haplonema17. Spiküller eşit değildirler ..................................................................................1818. Erkekde kavdal alae vardır ; kalp ve bağırsakta bulunur..........Soy: Cyatidicola18. Erkekde kavdal alae yoktur; dişide basit ağız uzun özefagus vardır; vücudun arka kısmı nispeten sivridir ; bağırsakta bulunur......................Soy: Rhabdochana19. Posteriör ekstremite sivri ve kıvrıktır; dişi 35cm. kadar uzun olabilir............................................................................................................... ..........Soy: Philonema19. Posteriör ekstremite küt ; 70cm. kadar uzun olabilir.............Soy: Philometra( Ekingen,G.,1983 )

http://www.biyologlar.com/nematodalarin-tayin-anahtari-1

UW team stores digital images in DNA -- and retrieves them perfectly

UW team stores digital images in DNA -- and retrieves them perfectly

Technology companies routinely build sprawling data centers to store all the baby pictures, financial transactions, funny cat videos and email messages its users hoard. But a new technique developed by University of Washington and Microsoft researchers could shrink the space needed to store digital data that today would fill a Walmart supercenter down to the size of a sugar cube. The team of computer scientists and electrical engineers has detailed one of the first complete systems to encode, store and retrieve digital data using DNA molecules, which can store information millions of times more compactly than current archival technologies. In one experiment outlined in a paper presented in April at the ACM International Conference on Architectural Support for Programming Languages and Operating Systems, the team successfully encoded digital data from four image files into the nucleotide sequences of synthetic DNA snippets. More significantly, they were also able to reverse that process -- retrieving the correct sequences from a larger pool of DNA and reconstructing the images without losing a single byte of information. The team has also encoded and retrieved data that authenticates archival video files from the UW's Voices from the Rwanda Tribunal project that contain interviews with judges, lawyers and other personnel from the Rwandan war crime tribunal. "Life has produced this fantastic molecule called DNA that efficiently stores all kinds of information about your genes and how a living system works -- it's very, very compact and very durable," said co-author Luis Ceze, UW associate professor of computer science and engineering. "We're essentially repurposing it to store digital data -- pictures, videos, documents -- in a manageable way for hundreds or thousands of years." The digital universe -- all the data contained in our computer files, historic archives, movies, photo collections and the exploding volume of digital information collected by businesses and devices worldwide -- is expected to hit 44 trillion gigabytes by 2020. That's a tenfold increase compared to 2013, and will represent enough data to fill more than six stacks of computer tablets stretching to the moon. While not all of that information needs to be saved, the world is producing data faster than the capacity to store it. DNA molecules can store information many millions of times more densely than existing technologies for digital storage -- flash drives, hard drives, magnetic and optical media. Those systems also degrade after a few years or decades, while DNA can reliably preserve information for centuries. DNA is best suited for archival applications, rather than instances where files need to be accessed immediately. The team from the Molecular Information Systems Lab housed in the UW Electrical Engineering Building, in close collaboration with Microsoft Research, is developing a DNA-based storage system that it expects could address the world's needs for archival storage. First, the researchers developed a novel approach to convert the long strings of ones and zeroes in digital data into the four basic building blocks of DNA sequences -- adenine, guanine, cytosine and thymine. "How you go from ones and zeroes to As, Gs, Cs and Ts really matters because if you use a smart approach, you can make it very dense and you don't get a lot of errors," said co-author Georg Seelig, a UW associate professor of electrical engineering and of computer science and engineering. "If you do it wrong, you get a lot of mistakes." The digital data is chopped into pieces and stored by synthesizing a massive number of tiny DNA molecules, which can be dehydrated or otherwise preserved for long-term storage. The UW and Microsoft researchers are one of two teams nationwide that have also demonstrated the ability to perform "random access" -- to identify and retrieve the correct sequences from this large pool of random DNA molecules, which is a task similar to reassembling one chapter of a story from a library of torn books. To access the stored data later, the researchers also encode the equivalent of zip codes and street addresses into the DNA sequences. Using Polymerase Chain Reaction (PCR) techniques -- commonly used in molecular biology -- helps them more easily identify the zip codes they are looking for. Using DNA sequencing techniques, the researchers can then "read" the data and convert them back to a video, image or document file by using the street addresses to reorder the data. Currently, the largest barrier to viable DNA storage is the cost and efficiency with which DNA can be synthesized (or manufactured) and sequenced (or read) on a large scale. But researchers say there's no technical barrier to achieving those gains if the right incentives are in place. Advances in DNA storage rely on techniques pioneered by the biotechnology industry, but also incorporate new expertise. The team's encoding approach, for instance, borrows from error correction schemes commonly used in computer memory -- which hadn't been applied to DNA. "This is an example where we're borrowing something from nature -- DNA -- to store information. But we're using something we know from computers -- how to correct memory errors -- and applying that back to nature," said Ceze. "This multidisciplinary approach is what makes this project exciting. We are drawing from a diverse set of disciplines to push the boundaries of what can be done with DNA. And, as a result, creating a storage system with unprecedented density and durability," said Karin Strauss, a researcher at Microsoft and UW affiliate associate professor of computer science and engineering. Source: University of Washington http://www.biologynews.net

http://www.biyologlar.com/uw-team-stores-digital-images-in-dna-and-retrieves-them-perfectly-haber-8723

Zika Virüs RNA 'sının Varlığı ve Kalıcılığı

Zika Virüs RNA 'sının Varlığı ve Kalıcılığı

Barry Atkinson, Fiona Thorburn, Christina Petridou, Daniel Bailey, Roger Hewson, Andrew J.H. Simpson, Timothy J.G. Brooks, Emma J. Aarons yapmış oldukları araştırmaya göre:

http://www.biyologlar.com/zika-virus-rna-sinin-varligi-ve-kaliciligi

İmparator mantarı (Amanita caesarea)

İmparator mantarı (Amanita caesarea)

Alem: Fungi Bölüm: Basidiomycota Sınıf: Hymenomycetes Takım: Agaricales Familya: Amanitaceae Cins: Amanita Tür: A. caesarea İmparator mantarı (Amanita caesarea), Amanitaceae familyasından yenilebilen bir mantar türü. Güney Avrupa kökenlidir, Roma imparatorlarının favori mantarı olduğu için caesarea yani Sezar mantarı olarak da isimlendirilmiştir. Tadı keskindir, balığı andırır. Turuncu şapkası ve sarı lamelleri vardır. Sporları beyazdır. Amanita umbonata olarak da sınıflandırılmıştır. Türkiye'de Göksu vadisi civarında Sarı göbelek olarak adlandırılmıştır. İstabul,Şile, Kandıra güzergahında ise "Gelin Mantarı" olarak bilinmektedir. Görünüşünün çok ayırdedici olması sayesinde Amanita türleri arasında nispeten en güvenli olarak yenebilecek olanıdır, ancak aynı aile mantarlar aleminin en tehlikeli mantarlarını da barındırdığından bu tür mantarlar kesinlikle sadece uzmanları tarafından toplanmalıdır. Amatör ve yeni başlayan mantar toplayıcılarına tavsiye edilmez.

http://www.biyologlar.com/imparator-mantari-amanita-caesarea

Biyoinformatik

"Biyoinformatik, biyolojik bilgilerin yaratılması ve saklanması için veritabanlarının oluşturulmasıdır. Bu konudaki çalışmaların çoğu biyolojik verilerin analizi ile ilgilidir. Artan sayıdaki projelerde biyolojik bilgilerin organizasyonu gerekmektedir. Bu alanda oluşturulan veritabanlarının büyük bir kısmını nükleik asitler oluşturmaktadır. Milyonlarca nükleotidin depolanması ve organizasyonu için veritabanlarının oluşturulması, araştırıcıların bu bilgilere ulaşabilmeleri ve yeni veriler girebilmeleri için ilk aşamadır. Biyoinformatik’te nükleotid dizi bilgilerinin organizasyonu ve depolanması görevini üstlenmiş üç kuruluş vardır. Genbankası (GenBank), Avrupa Moleküler Biyoloji Laboratuvarı (EMBL) ve DNA Japonya veritabanıdır (DDBJ). Bu üç kuruluş, araştırıcıların yararlanmasına açık, nükleotid dizi bilgilerinin toplanması ve yayılmasında işbirliği içinde çalışmaktadır. Gen Bankası ABD’de Maryland, Bethesda’da, Avrupa Moleküler Biyoloji Laboratuvarı, İngiltere’deki Hinxton’da ve DNA Japonya veritabanı ise Japonya’da Mishima’da yeni dizi bilgilerinin alışverişinde,İnternet üzerinde günlük olarak e-mail, ortak kullanılan ftp ve www üzerinden hizmet sunmaktadırlar. Protein dizi verileri ile ilgili başlıca hizmet sağlayıcılar ise GenBank, EMBL, PIR International ve Swiss-Prot’tur. NIH’in National Center for Biotechnology Information merkezi, biyoinformatik gereci sunan başlıca web sayfalarından biridir. BLAST program ailesi Veritabanlarında araştırma yapabilmek için tasarlanmış pek çok bilgisayar programı vardır. Bunlardan birisi de BLAST (Basic Local Aligment Search Tool) programıdır. Veritabanında homoloji araştırması için öncelikle uygun BLAST programının seçilmesi gerekir. BLASTN bir nükleotid dizisi ile komplementer diziyi ele alarak nükleotid dizisi veritabanlarıyla karşılaştırır. Hız amacıyla tasarlanmıştır. Yüksek duyarlılık aranan durumlar için uygun değildir. BLASTN ve BALSTX; EST verilerinin analizi, ekson yakalama yöntemi ve genomik dizi örneklemlerinin incelenmesinde kullanılır. NCBI’nın sunduğu diğer bir servis ENTREZ servisidir. ENTREZ servisinin en önemli özelliği veritabanları arasında çapraz gezinme olanağı sunmasıdır. Örneğin, bir dizi için BLAST araştırması yaptıktan sonra, ilgili gen ile ilgili literatür bilgileri MEDLINE’dan elde edilebilir. Daha sonra ilgili grafik programlarının yüklenmesi sonrasında protein yapısıyla ilgili veritabanları kullanılarak, proteinin iki veya üç boyutlu yapısı izlenebilir. Protein dizilerindeki işlevsel motifleri araştırmak amacıyla kullanılan bazı veritabanları ise PROSITE ve BLOCKS’tur. NCBI’nin bir başka alt hizmeti olan OMIM, genler ve genetik hastalıklarla ilgili ayrıntılı biyoteknolojik ve tıbbi bilgilerin bulunduğu servistir. Bu servis altında pek çok gende bugüne kadar tanımlanmış mutasyonlar ve ilgili klinik ilişkiler özetlendiğinden çok yararlıdır. Mikroarraylerle genomik yaklaşımlarda en kapsamlı proje ABD Ulusal İnsan Genom Araştırmaları Enstitüsünün Microarray projesidir (µAP). Microarray bulgularının yorumu da diğer yüksek çıktılı (highthroughput) genomik teknikler gibi biyoinformatik yöntemlerin kullanımına ihtiyaç yaratmıştır. Biyoinformatik Türkiye’de de yeni bir daldır. TUBITAK bünyesinde, Marmara Araştırma Merkezi (MAM) Gen Mühendisliği ve Biyoteknoloji Araştırma Enstitüsü diğer kuruluşlar ve uluslararası kuruluşlar arasında köprü görevi görerek ülkemizde biyoteknoloji alanında bir sanayi oluşmasına ve genişlemesine yardımcı olmaktadır. Veritabanlarındaki bazı sorunlar; vektöriyel dizilerle kirlilik, bir gene ait dizi parçaçıklarının veritabanına birden çok kez girilmesi ile ortaya çıkan kalabalık, aynı gene ait birden fazla EST (Ekspressed Sequence Tag) içeren EST veritabanlarının olması gibi durumlardır. Bu durumlar; genom projelerinin ileri aşamalarını oluşturan UNIGENE, VecScreen gibi projelerle ortadan kaldırılmaya çalışılmaktadır. Biyoinformatiğin ikinci özelliği; saklanan biyolojik bilgilerin analizidir. Analiz kapsamına giren konular; 1-Çeşitli organizmalardaki DNA dizilerinin hangi genlere ait olduğunun belirlenmesi 2-Yeni keşfedilen proteinlerin ve RNA dizilerinin yapı işlev ilişkilerinin belirlenebilmesi için yöntem geliştirilmesi 3-Protein dizilerinin ilgili gen ailelerine kümelernmesi ve protein modellerinin geliştirilmesi 4-Benzer proteinlerin sıralanarak evrimsel ortaya çıkaracak filogenetik ailelerin oluşturulmasıdır."

http://www.biyologlar.com/biyoinformatik-1

Dünyada Patolojinin Gelişimi

Patolojinin gelişimi insan bedenini ve işleyişini araştıran diğer bilim dallarındaki gelişmelerden etkilenmiştir. Önce insan anatomisi ayrıntılarıyla ortaya konulmuş, sonra histoloji, biyoloji, fizyoloji ve biyokimya hakkındaki bilgiler derinleşmiştir. Hastalıkların nedenlerinin anlaşılması için mikrobiyoloji, dahili ve cerrahi tıp dalları, son olarak da genetik ve moleküler biyoloji alanındaki atılımlar bilimin ve patolojinin yolunu aydınlatmıştır. Tıp dallarındaki bilginin günümüzdeki kadar yoğun olmadığı çağlarda bilim insanlarının birden çok bilim dalında çalışmalar yapmalarının nedeni, farklı dallar arasında işbirliği ve bilgi paylaşımının yarattığı avantajlardan yararlanmış olmalarıdır. Patolojide önde giden bilim insanı aynı zamanda anatomi, histoloji veya fizyoloji alanında da en ileri bilgilere sahip olmuştur. Yine de patolojinin 17. yüzyıldan itibaren sıçrama yapmasında Avrupa'da rönesans ("Yeniden doğuş") döneminin yarattığı bilimsel özgürlük ortamında otopsi incelemelerinin yaygınlaşması etkili olmuştur. Otopsi: Hastalıkların anlaşılmasında önemli aşama Hastalıkların nedenleri konusunda araştırmalar hasta bedenlerin ve beden sıvılarının incelenmesiyle giderek bilimsel zemine oturmuş, otopsi bu gelişmede önemli bir aşamayı oluşturmuştur. Otopside hastalıkların organ ve dokularda yol açtığı değişiklikler açığa çıkarılmıştır. Otopsi bulguları aynı zamanda hastalıkların tanısı ve ölümle sonuçlanan mekanizmaların anlaşılması için somut kanıtlar olarak değer kazanmıştır. İlk otopsinin 1286 yılında veba salgını sırasında İtalya'da Cremona şehrinde yapıldığı bilinmektedir. Şüpheli olgularda aileden ilk otopsi iznini isteyen hekim ise Antonio Benivieni (1440-1502)'dir. Giovanni Battista Morgagni (1682-1771) Patolojik anatominin babası kabul edilir. 700'den çok otopsi üzerinde elde ettiği bulguları kaydetmiş, 60 yıl sonra yayınladığı "De Sedibus et Causis Morborum" adlı 5 ciltlik bir eserde toplamıştır. Morgagni çalışmalarında Galen'in "Gerçeği arayanlar, nedeni kendisini doğrulamasa da gördükleri herşeyi dikkatle rapor etmelidir" öğüdüne uymuştur. Marcello Malpighi (1628-1694) Dokularda ilk mikroskopik incelemeleri gerçekleştirmiştir. 18. yüzyılın ilk yarısında histolojinin kurucusu Bichat da otopsi çalışmaları yaparak dokuları damar, kas, bağ dokusu ve kemik olarak dört ana kümede toplamıştır. 18. yüzyılın ikinci yarısında Fransız cerrah Guillaume de Puytren (1777-1823), klinikçi Mathew Baillie (1761-1823) otopsiyle uğraştı. İngiliz R. Bright otopsi serilerini inceleyerek böbrek hastalıklarının ilk sınıflandırmasını yaptı. Aynı dönemde Alman patolog ve anatomist Johann Friedrich Mecker (1781-1833) çok sayıda otopsi yaptı. Aynı zamanda fizyoloji, anatomi hocası ve arkeolog olan Johannes Müller (1801-1858), tümörleri makroskopik görünümlerine göre ilk sınıflandıran kişi oldu. Thomas Hodgkin (1798-1866) 7 Otopside lenf düğümünde tümör gelişimini değerlendirerek Hodgkin Lenfoma'yı tanımlamıştır. Karl F.Rokitansky (1804-1878) Viyana Üniversitesi'nde 30 yıl Patoloji hocalığı yapmış, bu süre içinde 70.000'den fazla otopside çeşitli hastalıkları gözlemlemiştir. Septal defektler ve diğer konjenital kalp anomalilerini tanımlamış, arter hastalıkları üzerine geniş makaleler yayınlamış, infektif endokarditlerde ilk kez bakterileri görmüştür. Eş zamanlı olarak Berlin'de Rudolf Ludwig Karl Virchow (1821-1902) "Hücresel patoloji" düşüncesinin fikir babasıdır. Otopsilerden elde ettiği 23.000 parçadan oluşan bir müze kurmuştur. Aynı zamanda arkeolog, antropolog, politikacı olan Virchow 1879'da Truva'yı görmek ve tarihi eser kaçırmak için 2 kez ülkemize gelmiştir. Milletvekilliği sırasında Berlin'in su ve kanalizasyon sistemlerinin kurulması için çalışmış, tifüs salgını hakkında daha 20 yaşında iken yazdığı bir rapor nedeniyle Berlin'den sürülmüştür. Virchow tıbbı bir sosyal bilim olarak nitelendirmiştir. Lösemi, tromboz, yangı ve tümörleri ilk kez ayrıntılı olarak tanımlamış, emboli, amiloid ve hemosiderin ile ilgili araştırmalar yapmıştır. Modern patoloji, hücresel patoloji İnsan anatomisi, fizyoloji, histoloji ve mikrobiyolojideki gelişmeler, normal ve hastalıklı sistem-organ-doku-hücre-inceyapının karşılaştırılmasına olanak tanımıştır. Modern patoloji, "Hücresel patoloji", "Fizyopatoloji", "Moleküler patoloji" bölümlerinden oluşmaktadır. 19. yüzyılda Virchow tarafından ortaya konulan "Hücresel patoloji" düşünce sistemi şöyle özetlenebilir: "Yaşamın temel birimi hücredir. Hastalıklar da hücre yapısı ve işlevlerinin bozulmasıyla başlar. Hasta hücrenin üremesiyle diğer hasta hücreler ortaya çıkar. Hastalığı anlamak için hücreyi incelemek gerekli ve yeterlidir. Yangı, dejenerasyon, tümör gelişimi bu şekilde açıklanabilir." Virchow, teorisini kendinden önce gelen bilim adamlarının bulgu ve düşüncelerine dayandırmıştır: Robert Hooke 1665'te bitki gözeneklerini gösterip bunlara "hücre" adını vermiştir. Lorenz Oken 19. yüzyılın başında "Bitkiler gibi insan ve hayvan bedenlerinde de bulunan hücrenin yaşamın en küçük birimini oluşturduğu" görüşünü öne sürmüştür. Histolojinin kurucusu Xavier Bichat "Hastalıkların dokuların bozulması sonucunda oluştuğunu" savunmuştur. Zamanının en büyük fizyologlarından biri olan Virchow'un Hocası Johannes Müller (1801-1858) ise yapı ile işlev arasındaki ayrılmaz bağı vurgulamıştır. Virchow'un hücresel patoloji kuramını ortaya koyarken hücrenin inceyapısından ve moleküler yapısından da söz ettiğini bu bilim adamının ileri görüşlülüğünü göstermesi bakımından eklemek gerekir. Alman bilimadamı Julius Cohnheim (1839-1884)Virchow'un öğrencisidir. İltihap patogenezi ve deneysel patoloji alanındaki çalışmalarla iz bırakmıştır. Cohnheim kurbağalardaki deneysel araştırmalarda iltihap bölgesine gelen elemanların kandan taşındığını, doku değişikliğinin, hücreye değil damara yönelik etkilerle oluştuğunu, hücre zedelenmesinin bunun sonucu olduğunu ortaya koymuştur. Dokuları dondurarak kesmeyi ilk deneyen bilim adamıdır. Virchow'un bir başka öğrencisi Elie Metchnikoff 1845-1916 fagositoz konusundaki çalışmalarıyla 1906 Nobel ödülü alıştır. İlk patoloji kürsüsü Jean Cruveilhier (1791-1873) tarafından Paris'te, 1836'da Hotel Dieu'da kurulmuştur. Dönemin eğitim merkezleri Almanya ve Avusturya, en tanınmış hocaları Müller, Rokitansky, Virchow ve Cohnheim olmuştur. Avrupa'da bu gelişmeler yaşanırken ABD izleyici durumundadır. Welch, Osler, Councilman, Delafield, Flexner gibi başlıca Amerikalı patologlar eğitimlerini Avrupa'da Rokitansky, Virchow ve Cohnheim'in yanında almıştır. Osler, 19. yüzyıl başında yaptığı otopsilerde birçok hastalığı ilk kez tanımlamıştır. Cohnheim'in öğrencisi Henry Welch (1850-1934), ABD'de ilk patoloji kürsüsünü John Hopkins'te kurmuştur.

http://www.biyologlar.com/dunyada-patolojinin-gelisimi

Biyoinformatik ve dna dizi analizi

DNA dizi analizi Dizi analizinde homoloji (benzerlik) araştırması; yeni bulunan bir dizinin bilinen tüm diğer dizilerle karşılaştırılması ve bunun sonucunda benzerlerdeki veritabanında ya da literatürde tanımlanmış bazı biyolojik işlevlerin yeni bulunan diziye yakıştırılması olarak tanımlanabilir. Bu yöntemi, genomik DNA içinden hızla ekson bulma çabasında olan pozisyonel klonlama yapan araştırma grupları tercih ederler. Bu yöntemle, dizi; benzerlikler ve protein kodlama potansiyeli yönünden araştırılarak genler belirlenir. Ve gendeki mutasyonlar ortaya konulur. İntrinsik dizi özelliklerinin araştırılması yaklaşımı ise en çok öncelikli hedefi genom dizilerini belirlemek ve üstüste çakışan dizileri (contig) birleştirmek olan dizi analizcileri tarafından kullanılır. Amaç çakışan dizilerin birleştirilmesiyle tüm gen yapısının modellenmesidir. Çoğu zaman her iki yaklaşım birlikte kullanılır. Benzerlik analizinde veritabanı araştırmaları ve dizi sıralamaları yapılırken, intrinsik analizde istatiksel özelliklerden yararlanarak eksonların belirlenmesinden protein yapısının ortaya konmasının ilk aşamalarına kadar geniş yelpazede bulgular elde edilir. Dizi bilgileri veritabanlarında iki formda bulunur Bunlardan birincisi; yazarlar/diziyi veritabanına ilk işleyenler, kaynak gösterimleri, biyolojik atıflar ve dizinin kendisiyle; intronlar, eksonlar, başlangıç ve bitiş kodonları vb bilgiyi içeren bir tablodan oluşan tam bilgi İkincisi ise; hızlı benzerlik araştırmaları için kullanılan ve sadece diziyi içeren FASTA formatıdır. Accession (ulaşma) numaraları, herbir diziyi belirleyen özgün kimliklerdir ve dizi veritabanına ilk kez girildiğinde verilir. Dizi bilgileri, patent ofisleri gibi çeşitli kaynaklardan veritabanına ulaştığından, örneğin, NCBI; non redundant (yinelenmeyen) nr (nükleotid/protein) verikümeleri oluşturmaktadır. BLAST program ailesi Veritabanlarında araştırma yapabilmek için tasarlanmış pekçok bilgisayar programı vardır. Bunlardan birisi de BLAST (Basic Local Aligment Search Tool) programıdır. Veritabanında homoloji araştırması için öncelikle uygun BLAST programının seçilmesi gerekir. BLASTN bir nükleotid dizisi ile komplementer diziyi ele alarak nükleotid dizisi veritabanlarıyla karşılaştırır. Hız amacıyla tasarlanmıştır. Yüksek duyarlılık aranan durumlar için uygun değildir. BLASTN ve BALSTX; EST verilerinin analizi, ekson yakalama yöntemi ve genomik dizi örneklemlerinin incelenmesinde kulanılır. NCBI’nın sunduğu diğer bir servis ENTREZ servisidir. ENTREZ servisinin en önemli özelliği veritabanları arasında çapraz gezinme olanağı sunmasıdır. Örneğin, bir dizi için BLAST araştırması yaptıktan sonra, ilgili gen ile ilgili literatür bilgileri MEDLINE’dan elde edilebilir. Daha sonra ilgili grafik programlarının yüklenmesi sonrasında protein yapısıyla ilgili veritabanları kullanılarak, proteinin iki veya üç boyutlu yapısı izlenebilir. Protein dizilerindeki işlevsel motifleri araştırmak amacıyla kullanılan bazı veritabanları ise PROSITE ve BLOCKS’tur. NCBI’nin bir başka alt hizmeti olan OMIM, genler ve genetik hastalıklarla ilgili ayrıntılı biyoteknolojik ve tıbbi bilgilerin bulunduğu servistir. Bu servis altında pekçok gende bugüne kadar tanımlanmış mutasyonlar ve ilgili klinik ilişkiler özetlendiğinden çok yararlıdır. Mikroarraylerle genomik yaklaşımlarda en kapsamlı proje ABD Ulusal İnsan Genom Araştırmaları Enstitüsünün Microarray projesidir (µAP). Microarray bulgularının yorumu da diğer yüksek çıktılı (highthroughput) genomik teknikler gibi biyoinformatik yöntemlerin kullanımına ihtiyaç yaratmıştır. Biyoinformatik Türkiye’de de yeni bir daldır. TUBITAK bünyesinde, Marmara Araştırma Merkezi (MAM) Gen Mühendisliği ve Biyoteknoloji Araştırma Enstitüsü diğer kuruluşlar ve uluslararası kuruluşlar arasında köprü görevi görerek ülkemizde biyoteknoloji alanında bir sanayi oluşmasına ve genişlemesine yardımcı olmaktadır.

http://www.biyologlar.com/biyoinformatik-ve-dna-dizi-analizi

Helmintlerin Sınıflandırılması

Sınıflaması PHYLUM (Anaç) PLATYHELMİNTHES Class (Sınıf) Trematoda (fluke) Order (Takım) Aspidogastreans (monogenetic trematodes) Genus (Tür) Gyrodactylus spp Genus Dactylogyrus spp Order Digenea (digenetic trematodes) Family (Aile) Fasciolidae Genus Fasciola spp (koyun karaciğer kelebeği) Fascioloides spp Family Paramphistomatidae Paramphistomum spp (rumen fluke) Family Troglotrematidae Paragonimus spp Nanophyetus spp Family Dicrocoeliidae Dicrocoelium spp Platynosomum spp (kedi karciğer) Eurytrema spp (pancreatic fluke) Family Diplostomatidae Alaria spp Family Schistomatidae Schistosoma spp (Kan) S. mansoni S. matthei Heterobilharzia spp (Kan) 2. Class Cestoda (Şeritler-tenyalar-tapeworms) Order Pseudophyllidea Diphyllobothrum spp (Balık tenyası) Spirometra spp Order Cyclophyllidea Family Taeniidae Taenia spp T. saginata T. solium T. pisiformis T. taeniaeformis T. ovis T. multiceps T. serialis Echinococcus spp (Hyatid -kisthydatid) E. granulosus E. multilocularis Family Anoplocephalidae Anoplocephala spp A. magna A. perfoliata Moniezia spp Thysanosoma spp Family Dilepididae Dipylidium spp Family Mesocestoididae Mesocestoides spp Family Hymenolepididae Hymenolepis spp Order Rhabitida Rhabditis(Pelodera) spp (serbest nematodlar) Halicephalobus (Micronema) spp Strongyloides spp Order Strongylida Family Trichostrongylidae Trichostrongylus spp Ostertagia spp Haemonchus spp Cooperia spp Nematodirus spp Hyostrongylus spp Dictyocaulus spp D. filaria D. viviparus D. arnfieldi Ollulanus spp Superfamily Strongyloidea Family Strongylidae Strongylus spp S. edentatus S. vulgaris Cyathostomum spp Oesophagostomum spp Family Syngamidae Stephanurus spp Syngamus spp Mammomonogamus spp Family Ancylostomatidae (Kancalı Kurtlar) Subfamily Ancylostominae Ancylostoma spp A. caninum A. tubaeforme A. braziliense A. duodenale Uncinaria spp Subfamily Bunostominae Necator spp Bunosomum spp Superfamily Metastrongylids (Akciğer kıl kurtları) Subfamily Dictyocaulinae Dictyocaulus spp (Akciğer kurtları) D. filaria D. viviparus D. arnfieldi Subfamily Metastrongylinae Metastrongylus spp (Akciğer kurtları) Subfamily Protostrongylinae Protostrongylus spp Muellerius spp Paralephostrongylus spp Subfamily Filaroididae Angiostrongylus spp Aleurostrongylus spp (Kedi akciğer kurtları) Filaroides spp (Trachea ve akciğer) F. hirthi F. osleri Order Ascaridida (Solucanlar) Family Ascarididae Ascaris spp Ascaridia spp. Family Parascaris Parascaris spp Family Toxocara Toxacara spp T. canis T. cati T. vitulorum Toxascaris spp Family Baylisascaris Baylisascaris spp Family Anisakidae Anisakis spp Order Oxyurata Family Oxyuridae Oxyuris spp (At) Passalurus spp (Tavşan) Enterobius spp (insan) Family Heterakidae Heterakis spp Superfamily Syphacioidea Syphacia spp Order Spirurida Suborder Spirurina Superfamily Gnathostomatoidea Gnathostoma spp Superfamily Physalopteroidea Physaloptera spp Superfamily Thelazioidea Thelazia spp (Göz kurtları) Gongylonema spp Ascarops spp Spirocerca spp (Oesophageus) Superfamily Spiruroidea Physocephalus spp Draschia spp (At mide kurtları) Habronema spp (At mide kurtları ) Superfamily Filaroidea (Filarya) Family Filariidae Dirofilaria spp (Kalp kurtları) Loa loa (Göz kurtları) Oncocerca spp (Ligamentum nuche kurdu) O. volvulis O. cervicalis Elaeophora spp (Arterial kurtlar) Wuchereria spp Brugia spp Family Setariidae Stephanofilaria spp Setaria spp (Abdominal kurtlar) Dipetalonema spp Suborder Camallanata Superfamily Dracunculidae Dracunculus spp Class Adenophorasida Order Dioctophymata Dioctophyma spp (Böbrek kurdu) Order Trichurata Trichinella spp Trichuris spp (Kamçılı kurtlar) Capillaria spp (Akciğer-idrar kesesi) C. bovis Capillaria spp. (Kedi, köpek, kanatlı) C. aerophila C. plica C. feliscati C. putorii PHYLUM ACANTHOCEPHALA Macracanthorhynchus hirudinaceus Onicola canis

http://www.biyologlar.com/helmintlerin-siniflandirilmasi

Turner Sendromu Nedir?

Hastalarda normal bir dişide bulunması gereken 46 XX kromozomu yerine, yalnızca 46 X kromozomu vardır. Dolayısıyla, bir X kromozomları eksiktir ve bu anormallik bir yumurtalık oluşum bozukluğuna yol açar. Turner sendromu ya da yumurtalık gelişim bozukluğu, cüceliğe eklenmiş çeşitli oluşum bozuklukları bütünüyle nitelenir. Kötü oluşmuş ve yumurta oluşumuna varacak olgun folikül yapma yeteneğinden yoksun bir yumurtalık varlığına bağlıdır. Bu oluşum bozukluğunun kökeni aydınlatılmıştır. Bir kromozom kusuruna bağlıdır. Hastanın kromozom yapısı (karyotip) incelendiğinde, taşıması gerektiği X kromozomlarından birinin eksik olduğu görülür. Normal bir dişinin kromozom formülünün 44 XX olduğu bilinmektedir. Turner sendromunda formül 46 X O'dır. Çocuk, doğduğunda belirgin olarak kızdır ve aile ancak ergenliğe doğru kaygılanmaya başlar. Gerçekten, yıllar geçmekte ve ergenlik olmamaktadır. 15-16 yaşlarında boy son derece kısadır (ortalama 1,40 m). Çocuksu görünümünü korur. Memeler gelişmemiş, kıllarıma belirmemiştir. Kadın dış üreme organı çocuksu kalır. Dölyolunun yukarısında dölyatağı fındık kadar küçüktür. Dikkatli muayeneyle az ya da çok belirgin bir oluşum bozuklukları bütünü saptanır. Çok belirgin olmaları, bazı hastaların görünümlerini oldukça biçimsizleştirir ve toplumsal yaşama uyumlarını güçleştirir.Bazı hastalardaysa bu oluşum bozuklukları daha gizlidir. En özel belirti, boynun tepesinde omuzlan birleştiren üçgen biçiminde, enine 2 etli kanatçık varlığıyla nitelenen, perdeli kısa boyundur. Göz ve alt-çene oluşum bozuklukları da vardır. Elde 4. tarak kemiğinin kısalığı, kaval kemik düzlüğünün örs biçiminde olması gibi bu sendroma özgü çeşitli kemik oluşum bozukluklarına da rastlanır. Ayrıca kalp, böbrek oluşum bozuklukları gibi çeşitli iç organ bozuklukları görülür. Dolayısıyla, bu gibi anormallikleri sistemli olarak aramak için tam bir bilanço gerekir. Biyolojik bilançoda, adet kanamaları kesilmiş kadınlarınkine benzer bir hipofiz salgılamasıyla birlikte toptan yumurtalık yetmezliği saptanır. Karın içine bakma muayenesinde, üstünde ne bir olgunlaşan folikül, ne de sarı cisim nedbesi bulunan, parlak sedefimsi iki şeride dönüşmüş, gelişmemiş yumurtalıklar gözlenir. Kromozom yapısının incelenmesi. 44 X O formülü biçiminde bir X cinsellik kromozomunun eksik olduğunu gösterir. Tedavi, bu oluşum bozukluklarını önleyebilmekten uzaktır. Ama ergenlik yaşı olan 12-13 yaşından başlanarak verilen östrojenlerin, etkinliği olmayan yumurtalıkların yerini doldurmasına ve belirli bir boy uzamasına, özellikle bir kız ergenliğine, yani memelerin, kadın tipinde kıllanmanın, kadın dış üreme organının, dölyolunun ve dölyatağınm gelişmesine, âdet kanamalarının başlamasına olanak sağlaması açısından, tedavi ilginçtir. Böylece, bu kadınlar evlenebilecekler ve normal bir cinsel yaşamları olabilecektir. Ama çok özel birkaç kuraldışı durum bir yana bırakılırsa, yumurtalıklarının yumurta üretmekten yoksun olması nedeniyle kısır kalacaklardır. 45,X/46,X,i(Xq) Karyotipe Sahip İki Mozaik Turner Sendromu Olgusu PDF sunum içim tıklayın http://tipdizini.turkiyeklinikleri.com/download_pdf.php?id=50369

http://www.biyologlar.com/turner-sendromu-nedir

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

Cantharellus cibarius

Alem: Fungi Sınıf: Homobasidiomycetes Familya: Cantharellaceae Cins: Cantharellus Cantharellus cibarius, "Yumurta mantarı" olarak ta bilinen Cantharellaceae ailesinden lezzetli bir mantar türüdür. Şapkası sarı veya turuncu renkli ve huni şeklindedir. Sonbahardan ilkbahara kadar genelde yaprak döken ağaçların yoğun olduğu ormanlarda bolca bulunur. Gerçek anlamda lamelleri yoktur, sapının alt bölümünden şapkanın ucuna kadar uzanan buruşuk yapı Chanterellus cibarusun ayırdedici bir özelliğidir. Spor baskısı pembemsi beyazdır. Genelde larva barındırmaz. Aroması kayısıyı andırır, piştiği zaman çok güzel kokar, o yüzden tatlılarda bile kullanılmıştır. Tereyağında sote olarak, tavuk etiyle beraber veya pizza üzerinde rahatça yenebilir. Kurutulmaya ve turşu yapımına da uygundur. Ancak zehirli Omphalotus olearius'e çok benzediği için dikkatli olunmalıdır. Türkiye'de yetiştiği bölgeler Orta ve Batı Karadeniz başta olmak üzere Karadeniz Bölgesi ve Marmara Bölgesi'nin Karadenize yakın ormanlarında yetişir. "Tavuk Mantarı" veya "Tavukbacağı Mantarı" olarak adlandırılır. Ünye'de ise "Tavuk Tirmidi" olarak bilinir.Kastamonu Azdavay'da Meşe Kızılı olarak adlandırılmaktadır

http://www.biyologlar.com/cantharellus-cibarius

Homeopati Okulu 31 Mayıs'ta Başlıyor

Bedeni, bir makine gibi parçalara ayırıp tamir edilmesi gereken organları, önce hastalık isimleriyle etiketleyen, daha sonra da değiştiren ya da ilaçlarla baskılayan modern batı tıbbının aksine, her hastaya hak ettiği özeni ve saygıyı gösteren, onu “hastalık yolculuğu”ndan yaşama dair daha bilgili, daha bütüncül çıkarmayı hedefleyen homeopati, bu gün Dünya Sağlık Örgütü’nce de tanınan, dünyada batı tıbbından sonra en fazla sayıda hastaya ulaşan en yaygın alternatif sağlık sistemi. Buğday Derneği tarafından 31 Mayıs - 3 Haziran 2012 tarihleri arasında Çamtepe Ekolojik Yaşam Merkezi’nde yapılacak Homeopati Okulu dersleri, Uzman Dr. Günnur Başar tarafından verilecek. Katılımcılar dört gün boyunca homeopatinin kısa tarihini, ilkelerini ve işleyiş mekanizmasını öğrenecek. Homeopati, 300 yıl önce kurucusu Dr. Hahnemann’ın da belirttiği gibi “hastaya tanı ya da tedavi için hiçbir şekilde zarar vermeden, yalnızca hastanın sözel hikâyesine başvurularak” uygulanan, tümüyle doğal yöntemleri kullanan holistik (bütüncül) bir tedavi sistemi. Genellikle daha ileri bir tetkik ya da inceleme gerektirmiyor.  Her türlü fiziksel rahatsızlıkta kullanılabildiği gibi, ciddi kronik hastalıklarda, ruhsal bozukluklarda ve modern tıbbın hastalık kabul etmediği ya da çaresiz kaldığı akla gelebilecek her türlü sorunda başarıyla uygulanıyor ve bu başarısı bilimsel yöntemlerle de kanıtlanmış durumda. Belirtileri bastıran değil tedavi eden bir yöntem olan homeopati, homeos (benzer) ve pathos (hastalık) kelimelerinin birleşmesinden oluşuyor. Bu yöntemde hastalık belirtisi olarak gördüğümüz şeyler aslında hastalıkla savaşan bedenin yarattığı değişiklikler olarak kabul ediliyor. Geleneksel tıp bir hastalık tablosundaki bu belirtilerin tümüne bir hastalık adı koyarken (teşhisten tedaviye giderken), homeopati bu belirtileri olduğu gibi, herkesin kendine özgü bedeninin savunma belirtileri olarak değerlendiriyor. Homeopatik ilaçlar, akut hastalıktan doğal iyileşme biçimine benzeyen bir etkiyle iyileştiriyor. Bütün hastalık belirtilerine “iyileşme krizi” adı veriliyor. Zamana yayılan iyileşme süreci içinde hastanın her türlü hastalığı iyileşiyor ve yeterli doz alınmışsa hasta ömür boyu aynı biçimde hastalanmıyor. Bu tedavi edici, kalıcı etki, homeopatide çoğu zaman tek doz ilaç kullanımı ile sağlanıyor. Uzm. Dr. Günnur Başar hakkında:1987’de Ege Tıp fakültesinden mezun oldu. 1992’de Aile Hekimliği İhtisası’nı tamamlayıp Almanya’nın Köln şehrinde Genetik alanında doktora yaptı. Türkiye’de ve yurt dışında çeşitli hastanelerde doktor olarak çalıştı. İlaç sanayinde araştırmacı ve yönetici olarak çalıştı. 1997’den beri Psikodrama, sanat terapisi, aile terapisi, Holotropik Nefes ve Klasik Homeopati eğitimleri alarak bu konularda çalıştı. Şu anda kronik tıbbi hastalığı olanlarla gönüllü psikolojik destek grupları yürütüyor ve homeopati ve sağlık danışmanlığı ile uğraşıyor. Homeopati Derneği bünyesinde kurslar ve Kültür Üniversitesi Psikoloji bölümünde Sanat Terapisi dersleri veriyor. Konaklama:Katılımcılar Seçkin Motel’de konaklayacaklar. Çalışmanın yapılacağı Çamtepe’ye transfer sağlanacak. 31 Mayıs’ta başlayacak çalışma için 30 Mayıs Çarşamba günü 12.00′den sonra istenen saatte Seçkin Motel’e giriş yapılabilecek. Farklı bir yerde konaklamayı tercih edenlerin bunu bildirmeleri gerekiyor. Ulaşım:Katılımcılar, Küçükkuyu’ya kendi imkânlarıyla geliyorlar. Truva, Kamil Koç, Ulusoy, Varan ve Metro Turizm’in İstanbul, Ankara ve İzmir’den otobüs seferleri mevcut. Ücret:Eğitim, öğle yemekleri ve Seçkin Motel’den Çamtepe’ye ulaşım dahil katılım ücreti 700 TL. Buğday Derneği üyeleri için indirimli ücret 625 TL. (üye olmak için http://www.bugday.org/portal/uyeform.php)Seçkin Motel’de 4 gece konaklama oda-kahvaltı 200 TL, yarım pansiyon 300 TL. (çift kişilik odada kişi başı ücret). Ödeme:Yalnızca katılım ücreti içindir. Konaklama ücreti ayrı ödenir.Buğday Derneği İktisadi İşletmesiGaranti Bankası Karaköy ŞubesiHesap No: 6295822 Şube Kodu: 400IBAN: TR67 0006 2000 4000 0006 2958 22 Detaylı bilgi, program ve katılım için: Berkay Atik 0542 252 97 85berkay@bugday.orgwww.camtepe.org

http://www.biyologlar.com/homeopati-okulu-31-mayista-basliyor

'Koca burunlu' yeni bir dinozor türü bulundu

'Koca burunlu' yeni bir dinozor türü bulundu

Bilim insanları, ABD’nin Utah eyaletinde yapılan kazılarda yeni bir dinozor türünün iskeletine ulaştı. ABD'de büyük burnu veboynuzlarıyla dikkat  çeken yeni bir dinozor çeşidine ait kemikler gün ışığına çıkarıldı.Boyu 4,5 metre, ağırlığı ise 1,8 tona ulaşan Nasutoceraptops titusi adı verilen yeni dinozor türü, Proceedings of the Royal Society B adlı bilimsel dergide bilim dünyasına tanıtıldı.Dinozoru tanıtan Utah Üniversitesi'ne bağlı Ulusal Utah Müzesi yetkilileri yeni türün özellikle çok büyük burnu ve gözlerinin üzerinde alışılmadık ölçülerde uzun ileriye doğru uzanan kavisli boynuzlarıyla benzersiz olduğuna işaret etti.Triceratops ailesine mensup yeni türe adı, mensup olduğu ailenin ismini ifade eden Nasutotceratops ile Grand Staircase-Escalante Ulusal Abide adıverilen keşif bölgesinde uzun yıllar çalışmalarda bulunan paleontolojist AlanTitus'un soyadı birleştirilerek konuldu. BOYNUZLARIYLA ‘MESAJLAŞIYORLARDI’ Proceedings of the Royal Society B yayımlanan araştırmada yer alan Denver Doğa ve Bilim Müzesi’nden paleontolog Scott Sampson, ‘Nasutoceratops türünün yavaş hareket eden, korunmak için gür çalılıkların arasında gezinen bir dinozor olduğunu’ söyledi.Erkeklerin, dişilerle beraber olmak için ‘kafalarıyla dövüştüklerini’ belirten Sampson, ‘kıvrık boynuzlarını kavgalarda üstün gelmek için kullandıklarını’ ifade etti.

http://www.biyologlar.com/koca-burunlu-yeni-bir-dinozor-turu-bulundu

Platyhelmintheslerin Tayin Anahtarı

1. Strobila monozoik (üreme organları bir takım) ; embriyo altı çengelli............ ..................... ........................................................Classis: Cestodaria (Amphilina)1. Strobila polyzoik (Spathobothriidea hariç herhangi bir takım üreme organı kapsayan birçok progllittidler) veya monozoik (Caryophyllidea) ; embiryo altı çengelli........................................................................................Classis: Cestoda. 22 . Segmentasyon yoktur.................................................................................32 . Segmentasyon genellikle belirgindir..............................................................193 Skolekste gerçek bothria yoktur; dış segmentasyon yoktur fakat ganotlar çoktur........Dizi : Spathebothriidea 44. Yapışma organı huni şeklindedir..............................Aile:Cyathocephalidae 64. Yapışma organı bir veya iki dorsal ve ventralde , apikale açılan yuvarlak boşluk mevcuttur........Aile : Diplocotylida. 5. Skolekste içten birbirinden tamamen ayrılan boşluklar: genital açıklık ventralde Soy : Diplocotyle5. Skoleksteki boşluklar birleşmiş ; genital açıklık dorsalden ventrale düzensiz olarak değişir..................................................Soy ; Bothriomonas6. Cirrus utero- vaginal kanala açılır........................76. Cirrus ayrı olarak utero- vaginal kanalın ön kısmına açılır......... .................127. Uterus kıvrımları cirrus kesesinin önüne uzanır..............................................87. Uterus kıvrımları cirrus kesesinin önüne uzanmaz........................................108. Ovaryum (U) veya (V) şeklindedir..........................................Soy; Spartoides8. Ovaryum (H) şeklinde............... ..............................99. Skoleks’te iki tane tabak şeklinde çöküntü ; boyun uzun ve dar..........Soy : Biacetabulum9. Skoleks’te üç çukurluk ; boyun kısa ve geniş.........................Soy: Archigetes10. Ovaryum (V) veya (U) şeklindedir.......................................Soy;Bialovarium10. Ovaryum (H) şeklinde...................................................................................1111. Skoleks yelpaze şeklinde , anteriör ucu saçaklı;çukurluk yoktur..................... ..............................................................................................................Soy; Khawia11.Skoleksin anteriör ucu yuvarlak ; iki çukurluk vardır....................... ....................................................................................................Soy ; Pliovitellaria12. Uterus kıvrımları cirrus kesesinin anteriörüne uzanır.....................................1312. Uterus kıvrımları cirrus kesesinin anteriörüne uzanmaz.................................1413. Skoleks büyük , anteriöre doğru genişlemiş olup iki büyük ve derin bothria vardır...............................................................................................Soy : Capingens13. Skoles küçük olup üç çift çok az belirgin çöküntü vardır................................... .........................................................................................Soy: Hypocaryophyllaeus 14. Skolekste çöküntü veya bothria vardır.............................................................1514. Skolekste çöküntü veya bothria yoktur............................................................16 15. Skoleks içe dönük ; çöküntü var veya yoktur; genellikle post – ovarian ; vitellaria yoktur.......................................................................Soy : Monobothrium15. Skoleks yelpaze veya kalkık yassı disk şeklinde ;üç çift çöküntü ; post-ovarianvitellaria vardır....................................................................Soy:Glaridacris16. Post-ovarian vitellaria yoktur..........................................Soy: Pseudolytocestus16. Post-ovarian vitellaria vardır............................................................................1717. Skoleks yassılaşmıştır.......................................................Soy: Caryophyllaeus17. Skoleks konik olup içe dönük yapıya sahip olabilir........................................1818. Skoleks büyük olup gövdeden geniştir; dar boyun yoktur; kısa, küt yapıda..............................................................................................................Soy: Huntarella18. Skoleks küçük; dar boyun vardır;ince ve uzun yapıda........................................................................................................................................Soy:Atractolytocestus 19. Skolekste iki botria .............................................Dizi: Pseudophyllidae 20(X)19. Skolekste dört botria ......................................................Dizi: Tetraphyllides 2319. Skolekste dört emici.................................................Dizi: Probeocephalidea 2420. Skolekste kitinli çengeller ..........................................................................................................................................Aile :Trisenophoridae (Soy: Triaenophorus) 20. Skolekste kitinli çengeller yoktur....................................................................2121. Genital atrium marginal; skoleks subspherial ve genellikle yüzeysel olmakla beraber belirgin......................................................................Aile: Amphicotylidae21. Genital atrium medialde ;skoleks uzunca .......................................................2222.Yüzeysel bothrialı pseudoskoleks vardır ; primer skoleks dört tentaküllü ; küçük kurtlardır........................................Aile:Haplobothridae (Haplobothrium) 22.Skoleks dört loblu , az çok köşeli olup uzun yüzeysel bothriası vardır; orta veya büyük kurtlardır..........................................................Aile Bothriocephalidae23. Skolekste apikal emici; her bothriumun anteriör sınırının önünde yardımcı emici vardır.........................................................................Soy : Pelichnibothrium 23. Skolekste apikal emici yoktur; her bothrium bir veya iki yardımcı emici vardır.......................................................................................Soy: Phyllobothrium 24. Skoleks anteriöre doğru genişlemiş olup emiciyi örten vücut kıvrımı vardır.....................................................................................Soy: Corralobothrium24. Skolekste emiciyi örten vücut kıvrımı yoktur....................................................25. Testisler bir tek alan içinde ................................................Soy: Proteocephalus25. Testisler iki ayrı lateral alanda ...............................................Soy: Ophiotaenia (Ekingen,G.,1983 )

http://www.biyologlar.com/platyhelmintheslerin-tayin-anahtari-1

Evrimin Kanıtları Var mı?

" Hayvan türlerinden biri olarak, biz insanlar, diğer türler gibi evrimin yasalarına uyarız. Bu savı, destekleyecek birçok kanıta da sahibiz. Öncelikle, diğer omurgalı hayvanlarda bulunan birçok benzer ve kökendeş (homolog) yapıya ve organa sahibiz. Diğer hayvanlarda işlev gören birçok yapıyı biz körelmiş olarak taşırız. Embriyomuz gelişirken, solungaç keselerini, basit kalbi; ilkel boşaltim tiplerini, diger omurgali hayvanlardakine benzeyen kuyrugu ve buna benzer birçok yapiyi göstermesi kökendeşligimizin tipik kanitlaridir. Kanimizin serumundaki proteinler ve kirmizi kan hücrelerindeki antijenler insansi maymunlarinkine dikkati çekecekk kadar benzerdir. Gerçekte, bu bakimdan, kuyruksuz maymunlara kuyruksuz maymunlardan daha çok benzeriz. Birçok genimiz, diger omurgali hayvanlarinkinin aynisidir. İnsan evriminin en önemli özelliği, beyin büyümesi, özellikle büyükbeyinin izlenimleri saklama ve öğrenme işlevini yüklenerek, beynindiğer kısımlarına göre oransal olarak çok daha fazla gelişmesidir. Buna bağlı olarak, üstün zekanın ortaya çıkaracağı hünerleri yerine getirebilmek için ilk olarak harektte kullanılan ön üyeler, el olarak kullanılmaya başlamıştır." ( Ali Demirsoy , Kalıtım ve Evrim, 5. Baskı, 1991 Ankara s:716-717) Atların fosilerini milyonlarca yıl geriye izleyebiliyoruz. Çünkü yeterince fosil bulunmuştur. " Halbuki insan fosilleri çok seyrek bulunur. Bunun nedeni, insanın atalarının çok yakın zamanda oluşması ve fosilleşmek için zamanın oransal olarak kısa olması; diğer hayvanlara göre yaygın ve fazla bireyli popülasyonlar oluşturmaması ve en önemlisi oransal olarak diğerlerine göre çok daha zeki olmaları nedeniyle tehlikeyi önceden sezinleyerek, bataklık, katran kuyuları ve fosilleşmenin uygun olacağı tuzaklardan uzak durmaları ve kaçmaları olarak düşünülebilir. Önsezimizle bu tuzaklardan uzaklaşmış ve tehlike sırasında da el hünerlerimizle çoğunluk kurtulmayı sağlamışızdır. Halbuki diğer hayvanlar bu olanaklardan yoksundular ve bu nedenle bol miktarda fosil bırakabilmişlerdir. Keza birçok hile ve araçla yırtıcı hayvanlardan kurtulmayı başarmış ve bu yolla kemiklerin fosilleşmesi de önlenmiştir. Bunun yanısıra, toplumsal ayaşama geçiş de bu tehlikeleri büyük ölçüde azaltmıştır. Bol miktarda fosilin bulunamaması insanın soy dizisinin açıklanmasında bazı karanlık noktalar bırakmıştır. Bütün bunlara karşın, elimizde birikmiş kanıtlar, insanın maymun benzeri bir atadan, bugünkü insana, Homo sapiens ' e geliştiğini göstermeye yeterlidir." (Demirsoy, s:717) Turkana Çocuğu Antropologlar, birbirinden ayrı düşmüş dişler, tek tek kemikler, kafatası parçaları; insana özzgü tarihöncesinin öyküsü çoğunlukla, bu ipuçlarından oluşturulur.”Umut kıracak kadar eksik olsalar da, bu ipuçlarının büyük önem taşıdığını inkar etmiyorum; onlar olmasa, insana özgü trihöncesinin öyküsünü anlatamazdık.Bu mütevazi kalıntılarla karşılaşmanın getirdiği benzersiz heyecanı da gözardı etmiyorum; bunlar, bizim geçmişimizin, et ve kandan oluşan sayısız kuyşakla bize sağlanan parçalarıdır. Ama nihai ödül yine de bütün haldeki bir iskeletin keşfedilmesidir.” (Richard Leakey, İnsanın Kökeni Varlık/Bilim s:7) " 1984 yazının sonlarında çalışma arkadaşlarımla birlikte, nefeslerimizi toplu olarak tutmuş ve sürekli artan umudumuz deneyimin katı gerçekliği karşısında sönmüş bir haldeyken, bu hayalin şekillenmeye başladığını gördük. .Eski bir kaftasına ait küçük bir parça bulduk. Dikkatle kafatasının diğer parçalarını aramaya başladık ve umduğumuzdan çok daha fazlasını bulduk. Bu keşfi izleyen ve açık sahada yedi aydan fazla bir zamana denk gelen beş kazı mevisimi boyunca ekimiz, bin beşyüz ton tortu çıkardı ve sonuçta 1.5 milyon yıldan fazla bir süre önce eski gölün kıyısında ölmüşü birinin eksiksiz iskeletini bulduk. Turkana çocuğu adını taktığımız bu birey öldüğünde yalnızca dokuz yaşındaymış; ölüm nedeni ise hala bilinmiyor.Arka arkaya fosil kemikleri çıkarmak gerçekten eşi bulunmaz bir deneyimdi:kollanr, bacaklar, omurga kemikleri, kaburgalar, leğen kemiği, çene, dişler ve yine kafatasları. Çocuğun iskeleti şekilleniyor ve 1.6 milyon yıl parçalar halinde yaşadıktan sonra birey olarak yeniden oluşturuluyordu.İnsan fosili kalıntılarında, yalnızca 100 bin yıl öncesindeki Neanderthal dönemine dek, bu iskelet kadar eksiksiz bir başka şey bulunamamıştır... Tarihöncesi insan ailesinin çeşitli türlerinin herbiri bilinmese bile bir etiket, yani tür adi, taşiyor ve bu adlari kulanmaktan kaçinmak olanaksiz. Inas türleri ailesinin de kendine özgü bir adi var: Insangiller (homonidler) Meslektaşlarimdan bazilari geçmişteki tüm insan türleri için “insangil” terimini kullanmayi yegliyorlar. “Insan” sözcügünü yalnizca bizim gibiler için kullanilmasi gerektigini savunuyorlar.Yani, yalnizca bizim düzeyimizde zekaya, ahlak duygusuna ve içedönük bilince sahip olanlari “insan” olarak tanimliyorlar. Ben farklı bir bakış açısına sahibim. Esik insangilleri dönemin diğer insansı (kuyruksuz) maymunlarından ayıran, dik durarak hareket etme evriminin, sonraki insan tarihinin temeli olduğunu düşünüyorum. Uzak atamızın iki ayaklı bir insansımaymun haline gelmesiyle birlikte pek çok diğer evrimsel yenilik de mümkün oldu ve sonuçta, Homo ortaya çıktı. Bu nedenle tüm insangil türlerine “insan” demekte haklı olacağımızı düşünüyorum. Tüm eski insan türlerinin bizim günümüzde bildiğimiz zihinsel dünyaları yaşadıklarını söylemek istemiyorum. “İnsan” tanımı en basit düzeyde, dik yürüyen- iki ayaklı- insansı maymuları içerir. .. Turkana çocuğu, insan evrimi tarihinin dönüm noktasını oluşturan bir tür olan Homo erectus ’un üyesiydi. Kimi genetik kimi de fosillerden olmak üzere farklı kanıt dizilerinden, ilk insan türünün yaklaşık 7 milyon yıl önce ortaya çıktığını biliyoruz. Yaklaşık 2 milyon yıl önce Homo erectus sahneye çıktığında, insanın tarihöncesi oldukça uzun bir yol almıştı. Homo erectus’un ortaya çıksamından önce kaç insan türünün yaşayıp öldüğünü henüz bilmiyoruz; en azzından altı, belki de bu rakamın iki katı sayıda tür olmalı. Ama Homo erectus’ tan önce yaşayan tüm insan türlerinin, iki ayaklı olkala birlikte, pek çok açıdan insansımaymun benzeri özellikler taşıdıklarını biliyoruz.Beyinler görece küçük, yüzleri sivri çeneli (yani, öne doğru çıkık) ve beden yapılarının kimi özellikleri- örneğin göğüs huni şeklinde, boyun kısa ve bel yok- insandan çok insansımaymun benzeriydi.Homo erectus ’ta beyin büyüdü, yüz düşleşti ve beden daha atletik yapili hale geldi. Homo erectus’la birlikte, kendimizde gördügümüz pek çok fiziksel özellik de ortaya çikti; anlaşilan insanin tarihöncesi, 2 milyon yil önce çok önemli bir dönem noktasindan geçmişti. Homo erectus ateş kullanan, avciligi beslenme düzeninin önemli bir parçasi haline getiren, modern insanlar gibi koşabilen, belli bir zihinsel kaliba göre taş aletler yapabilen ve harekat alanini Afrika’nin ötesine taşiyabilen ilk insan türüdür. Homo erectus’un konuşma diline sahip olup olmadigini kesin olarak bilemiyoruz; ama buna işaret eden çeşitli kanitlar var. Bu türde belli bir benlik bilinci, insansi bir bilinç olup olmadigini da bilmiyoruz ve büyük olasilikla asla bilemeyecegiz; ama ben oldugunu düşünüyorum. Homo sapiens’in en degerli özellikleri olan dil ve bilincin tarihöncesi kalintilarinda hiçbir kanit birakmadigini söylemeye herhalde gerek yok. Antropoloğun hedefi, insansımaymun benzeri bir yaratığı bizim gibi insanlara dönüştüren evrim olaylarını anlamaktır. Bu olaylar romantik bir açıdan, büyük bir tiyatro eseri gibi tanımlanmış ve gelişen insanlığa da öykünün kahramanı rolü verilmiştir. Oysa gerçek büyük olasılıkla çok daha basittir ve bu değişimi epimaceradan çok, iklimsel ve ekolojik değişimler yönlendirmiştir. Yine de bu, dönüşümün ilgimizi dahha az çekmesine neden olmuyor. Biz, doğal dünylyayı ve bu dünyadaki yerimizi merak eden türüz.Şu andaki halimeze nasıl ggeldiğimizi ve geleceğimizin nasıl olacağını bilmek istiyoruz; bilmek zorunluluğu duyuyoruz. Bulduğumuz fosiller bizi fiziksel açıdan geçkmişimize bağlıyor ve sundukları ipuçlarını, doğayı ve evrim tarihimizin izlediği yolu anlamala yolu olarak yorumlamaya yönlendiriyor. İnsanoğlunun tarihöncesine ait daha pek çok kalıntı gün ışığına çıkartılıp incelenene dek hiçbir antropolog kalkıp da, “Bu, tüm ayrıntılarıyla şöyle oldu” diyemez. Ama araştırmacılar, insan tarihöncesinin genel şekiline dair pek çok konuda aynı fikirdeler. İnsanın tarihöncesinde dört temel aşama kesinlikle saptanabiliyor. İlk aşama, 7 milyon yıl önceki, iki ayaklı ya da dik hareket eden insansımaymun benzeri bir türün geliştiği insan ailesinin kökenidir. İkinci aşama, iki ayaklı türlerin çoğalması yani biyologların uyarlayıcı ışınım adını verdikleri bir süreçtir. 7 milyon ile 2 milyon yıl öncesi arasında her biri birbirinden biraz farklı ekolojik şartlara uyarlanmış pek çok değişik iki ayaklı insansımaymun gelişti. Bu insan türleri arasından birisi, 3 milyon ile 2 milyon yıl önce arasında, önemli oranda büyük bir beyin geliştirdi. Beyin boyutundaki büyüme üçüncü aşamayi oluşturur ve insan soyagacinin, Homo erectus ’tan sonuçta Homo sapiens’e dek uzanan dali olan Homo cinsinin kökenine işaret eder. Dördüncü aşama , modern insanlarin kökenidir; bizim gibi, dogada başka hiçbir şekilde görülmeyen dile, bilince, sanatsal düş gücüne ve teknolojik yenilikçilige sahip insanlarin ortaya çikişidir. Bu dört temel olay, kitabımızdaki bilimsel anlatının yapısını oluşturuyor. İleride de görüleceği gibi, insanoğlunun tarihöncesini araştırıken yalnızca neyin, ne zaman olduğundan öte, neden olduğunu da sormaya başlıyoruz. Bizler ve atalarımız, artık tıpkı fillerin ya da atların evrimi incelenirken olduğu gibi, aşamalı bir evrim senaryosu bağlamında inceleniyoruz. Bu, Homo sapiens’in pek çok açıdan özel olduğunu yadsımak anlamına gelmiyor: en yakın evrimsel akrabamız olan şempanzeden bile bizi ayıran pek çok şey var; ama artık, doğayla bağlantımızı biyolojik anlamda anlamaya başladık. Son otuz yıl içinde bilim dalımızda, daha önce eşi görülmemiş fosil keşiflerinin ve bu fosilleri yorumlayıp sundukları ipuçlarını bütünleştirmekte kullandığımız yenilikçi yöntemlerin sayesinde, çok önemli ilerlemeler kaydedildi. tüm bilimlerde olduğu gibi antropolojide de uygulayıcı bilimler arasında dürüst ve kimi zaman da şiddetli fikir farklılıkları görülür. Bu fikir farklılıkları kimi zaman fosil ve taş aletler gibi verilerin kimi zaman da yorumlama yöntemlerinin yetersizliğinden kaynaklanır. Kısacası, insanın tarihöncesi hakkında pek zok soruya kesin yanıtlar verilemez. Örneğin: İnsan soyağacının tam şekli nedir? Gelişmiş konuşma dili ilk olarak ne zaman ortaya çıktı? İnsanın tarihöncesinde beynin çarpıcı oranda büyümsenie yol açan neydi? İlerideki bölümlerde bu fikir farklılıklarının hangi konularda ve neden oluştuğuna değinecek ve zaman zaman kendi tercihlerimi belirteceğim. Yirmi yılı aşkın antropoloji çalışmalarım sırasında pek çok eşsiz meslektaşımla birlikte çalışma şansına eriştim ve hepsine şükran duyuyorum. (Richard Leakey, İnsanın Kökeni Varlık/Bilim s: 9-14) Organik Evrimin Ana İlkeleri “Organik evrim onusunda ana ilkelerin açığa çıkarılması ve öğretilmesi toplumların düşünce sistemlerinde büyük yansımalara neden olduğu ve olacağı için, sadece doğanın temel yasalarını açıklamaya dönük olan böyle bir bilimsil alan, ne yazık ki, belirli çevrelerde tehlikeli bidr gelişim olarak değerlendirilmektedir. Çünkü evrim kavramı, zaman süreci içerisinde bir değişmeyi açıklar; sonsuzluk ve değişmemezlik evrimin ilkelerine aykırıdır. Dolaysıyla evrim kavramı. dogmatik düşünceye, yani herşeyin olduğu gibi benimsenmesine izin vermeyen bir bilim dalıdır. Bu ise, belirli koşullara ve düşüncelere, olduğu gibi, yüz yıllardır, düşünmeden uymuş toplumları; keza bunun yanısıra toplumların bu uyumundan çıkarları için yeterince yararlanan çevreleri rahatsız etmektedir. Evrim kavramının kendisi de sabit değildir, zaman süreci içerisinde yeni bilimsel çalışmaların ışığı altında değişmek zorundadır.Çünkü kendini zaman süreci içerisinde değiştiremeyen, yeni bilgilerin ve gelişimlerin etkisi altında yenileyemeyen her şey ve her kavram yok olmak zorundadır. Bu yasa, tüm canlılar ve kavramlar için geçerli görünmektedir. Evrim kavramı özünde üç alt kavramı içine alır: 1. Anorganik evrim: Cansızların değişimini inceler; özellikle evrenin oluşumundan, canlıların temel maddelerini oluşturan cansız maddelerin oluşumuna kadar ortaya çıkan olayları kapsar. 2. Organik evrim: Canlıların değişimini inceler. 3. Sosyal evrim: Toplumların değişimini inceler. Biyioloji bilimi, özellikle organik evrimi tapsar. Organik evrim buguünb de devam etmektedir.; hatta bugün tarihin birçok devrelerinden daha hızlı olmaktadır. Son binkaç yüzbbin senede yüzlerce yeni bitki ve hayvan türü meydana gelirken, yüzlercesi de yeni tür oluşumları için ayrılmaya başlamıştır.Fakat bu ayrılma ve türleşme o kadar yavaş yürümektedir ki, gözlemek yalnız tarihpsel belgelerin bir araya getirilmeleriyle ve karşılaştırılmalarıyla mümkün olacaktır. Biyilojik evrimin oluştuguna ilişkin kanitlayici tipik örnek,15. yüzyilin başlarinda Madeira yakininda, Porta Santo denen küçük bir adaya birakilan tavşanlarda gözlenmiştir. Tavşanlar, Avrupa’danh getiriymişti. Adada dger bir tavşan türü ve getirilen tavşanlarin düşmanlari olmadigi için getirilen tavşanlar anormal derecede çogaldilar ve sonuçta 400 yil sonra,Avrupa’daki anaçlarindan tamamen farkli yapilar kazandilar. Öyle ki, büyüklükleri, Avrupadakilerin yarisi kadar oldu; renklenmeleri tamamen degişti ve daha gececi hayvanlar oldular.En önemlisi, atalariyla biraraya geldiklerinde, artik çiftleşip yeni bir döl meydana getiremiyorlardi. Yani yeni bir tür özelligi kazanmiştilar. Canlılar arasında benzerliklerin ve farklılıkların nasıl ortaya çıktığı, bilimsel olarak ilk defa, Charles Darwin’in gözlemleriyle gün ışığına çıktığı ve açıklandığı için, evrim kavramı ile Darwin’in ismi ve kişiliği özdeşleştirilerek “Darwinizm” denir. Evrim Konusundaki Düşüncelerin Gelişimi Canılların birbirinden belirli derecelerde farklılıklar gösterdiğine ve aralarında belirli derecelerde akrabalıklar olduğuna ilişkin gözlemler, düşünce tarihi kadar eski olmalıdır. Yavruları atalarından, kardeşlerin birbirinden belirli ölçülerde farklı olduğu çok eskiden gözlenmişti. Bitkilerin ve hayvanların benzerlik derecelerine göre, türden başlayarak belirli gruhlar oluşturduları saptanmıştı. Fakat kalıtım konusunda bilgiler yeterli olmadığı ve özellikle bir türün binlerce yıllık gelişimi düşünür bir birey tarafından izlenemediği için, çeşitlenme ve akrabalık bağları tam olarak açıklanamamıştır. Bazı bireylerin yaşam savaşında üstün niütelikler taşıdığı, dolaysıyla ‘doğal seçme’ eskiden de bilinçsiz olarak gözlenmişti. Fakat evrim konusundaki bilimsel düşüncelerin tarihi, diğer bilim dallarına göre çok yenidir.

http://www.biyologlar.com/evrimin-kanitlari-var-mi

Pösteki mantarı, (Coprinus comatus)

Alem: Fungi Bölüm: Basidiomycota Sınıf: Homobasidiomycetes Takım: Agaricales Familya: Agaricaceae Cins: Coprinus Tür: C. comatus Pösteki mantarı, (Coprinus comatus) Coprinaceae ailesinden, olan yenebilen bir mantar türüdür. Adını, koyun postu gibi görüntüsüne dayanılarak Farsça kökenli pösteki (koyun ya da keçi postu) sözünden alır. Diğer ismi Mürekkep mantarı'dır. Şapkası 4-15 cm. uzunlukta silindirik şekildedir. Beyaz renkli ve yüzeyi pürüzlüdür, zamanla alttan başlayarak siyah mürekkepsi bir yapıya bozunur. Genelde çayırlık alanlarda küçük gruplar şeklinde görülür. Spor baskısı siyahtır, sporları 7-9 mikron büyüklükte, eliptiktir. Tadı oldukça iyidir, genç örnekler daha lezzetlidir, yaşlı örnekler çok fazla su içerir. Ender durumlarda alkolle beraber alındığı zaman rahatsızlık verebildiği rapor edilmiştir.

http://www.biyologlar.com/posteki-mantari-coprinus-comatus

Deniz Kaplumbağaları Hakkında Bilgi

Denizkaplumbağaları yaklaşık 95 milyon yıldan beri dünyamızda yaşamaktadırlar. Ataları, yıllar önce, dinazorların yaşadığı devirde deniz ortamına geçmiş dev kara kaplumbağalarıdır. İlk deniz kaplumbağaları bugünkülere pek benzemiyorlardı. Değişimleri milyonlarca yıl sürmüş ve ayakları yüzgeç şekline dönüşmüş, ağır ve kocaman gövdeleri yassılarak daha hafif ve su yaşamına elverişli bir biçim almıştır. Dinazorlar ve dev kara kaplumbağaları tamamen yok olmuşlardır; bugün ancak müzelerde fosillerini görebilmekteyiz. Fakat denizkaplumbağaları nasıl olduysa yaşamlarını sürdürebilmişlerdir. Bunların yedi değişik türü, dünyamızı çevreleyen sıcak ve ılıman okyanuslarda hâlâ yüzmektedirler. Dişilerin karaya çıkarak yuva yapıp yumurtladıkları kısa devreler dışında, bütün hayatlarını suda geçirirler. Denizkaplumbağaları denizi balıklarla, balinalarla, diğer deniz yaratıklarıyla ve bizlerle paylaşırlar. Ülkemiz sularında bu türlerden sadece iki tanesi yaşar: Sini Kaplumbağası (Caretta caretta) ve Yeşil Kaplumbağa (Chelonia mydas) Kristof Kolomb Yeni Dünya’yı keşfettiği zaman Karaib Denizi’nde milyonlarca denizkaplumbağası bulunuyordu. Kolomb ve onu onu takip eden diğer kâşifler, tüccarlar, sömürgeciler ve korsanlar özellikle bir tür denizkaplumbağasının etinin lezzetli olduğunun farkına vardılar. Bu kaplumbağa tamamen kahverengi olup, boyu 1 metreye, ağırlığı ise 136 kilograma kadar ulaşabiliyor ve kıyıya yakın sığ sularda yetişen deniz otlarıyla besleniyordu. Denizciler bu uysal hayvanı kolayca avlayabiliyorlardı. Onu, kabuğunun üzerine sırt üstü devirip savunmasız hale getirdikten sonra yüzgeçlerini bağlayıp taze ete ihtiyaçları olduğu zaman öldürmek üzere gemilerine götürüyorlardı. Bu kaplumbağa, vücudundaki yağın rengi yediği ottan dolayı yeşil olduğundan “yeşil kaplumbağa” diye isimlendirilmiştir. Otla beslenen tek denizkaplumbağası türüdür. Yüzyıllar sonra günümüzde de yeşil kaplumbağalar hâlâ avlanıp, öldürülmekte ve sayıları gün geçtikçe azalmaktadır. Sini Kaplumbağası (Caretta caretta) Sini kaplumbağası yeşilden biraz daha ufaktır. Ağırlığı 135-180 kilogram arasında değişer. Yengeç ve başka deniz hayvanlarıyla beslenir. Bu kaplumbağa mercan yuvaları ve kayaların yakınında avlanır. Büyük ve kalın kafası, geniş ve kısa boynuyla kolayca tanınabilir. Diğer denizkaplumbağaları gibi, bu da kara kaplumbağalarının tersine başını kabuğunun içine çekemez. Kabuğu bir zırh gibi olmakla beraber, başı ve yüzgeçleri korumasızdır. Bazı köpekbalıkları ve katil balinalar açıkta kalan bu kısımlara saldırabilirler. Fakat sini kaplumbağası iri ve hızlı olduğundan doğal düşmanı çok azdır. Yeşil Kaplumbağa Yumurtuyor Dişi yeşil kaplumbağa, her zaman yuvasını yaptığı kumsala tek başına çıktı. Bir süre önce yakın sularda bir erkek yeşil kaplumbağa ile çiftleşmişti. Artık yumurtlama zamanı gelmişti. Bir yumurtlama mevsiminde üç veya dört kere yumurtlayabilir. Suda ne kadar hızlı ve ortama uyumluysa, karada da tam tersine o kadar yavaş, hantal ve savunmasızdır. Dişi kendisini denizden dışarı zorlukla çekti ve kumsalda gelgit sularının erişemeyeceği kadar ilerledi. Yüzgeçleriyle vücuduna göre bir yuva kazdı. Yuvaya yerleşip arka yüzgeçlerini kürek gibi kullanarak şişe şeklinde bir delik kazdı. Sonra bu deliğe pingpong topuna benzer, beyaz ve kaplı görünümü veren yaklaşık yüz adet yumurta bıraktı. Kaplumbağa, yumurtlaması bittikten sonra yuvayı kumla örtecek ve arkasında traktör izine benzeyen bir iz bırakarak ağır ağır denize dönecektir. Ne yazık ki anne kaplumbağa yumurtalarını ne kadar çok tehlikenin beklediğinden habersiz. Çoğu kez insanlar, yumurtaları meraktan veya yemek için topluyor. Ayrıca köpek, tilki veya kum yengeci yumurtaları yemeye çok meraklı. Bu yüzden kaplumbağaların ürediği kumsallar mutlak koruma altına alınmalıdır. Yumurtadan Çıkan Yavrular Kumsala varan güneş ışınları kuma gömülü kaplumbağa yumurtalarını ısıtır. Yumurtalar yuvanın içinde gelişir ve iki ay sonra çatlamaya hazır hale gelirler. Yavrular burunlarının ucundaki sivri kısım ile yumurta kabuklarını delmeye başlarlar. Bu özel sivri kısım yumurtadan çıkınca kaybolur. Yavrular kabukları çatlatarak kırarlar. Hepsinin yumurtadan hemen hemen aynı zamanda çıkmaları gereklidir. Çünkü yuvadan kaçış işlemini elbirliğiyle yapmak zorundadırlar. Yavru kaplumbağalar başlarının üzerindeki kumu kazmaya başlarlar. Kum, boş kabuklarının üstüne düşerek çukurun içinde yükselmelerine olanak sağlayan basamaklar oluşturur. Birkaç gün içinde yuvanın tavanına varırlar. Derken bir gece veya bir sabah erken saatlerde kumsalda koyu renkli küçük kafalar ve yüzgeçler belirir. Beş santimetrelik yavrular sürünerek denize doğru yol alırlar. Denize Doğru Yarış Kaplumbağa yavruları deniz yönünü denizin pırıltısından hissederler. Suyun üzerindeki parlaklık onları çeker. Yuvadan çıkıp sel gibi akarak denize doğru yarışlarına başlarlar. Hayat dolu ama savunmasız yavrular, kumsal boyunca beceriksizce çabalayıp dururlar. Bunların da anneleri gibi denize varabilmeleri için etrafın tamamen karanlık olması gereklidir. Işık yanan bir ev, araba, sokak lambası varsa yavrular ışığa doğru ilerler ve sonunda hepsi ölürler. Yavruların gece çıkmalarının asıl sebebi ise kızgın güneşten korunmak içindir. Gündüz çıkacak olsalar güneşin kavurucu sıcaklığı onları derhal kurutup öldürecektir. Yumurtadan çıkan yavruların kabukları yumaşaktır ve kendilerini koruma nitelikleri çok az olduğundan pek çok doğal düşmana yem olur: Yengeç orduları onları yakalar veya deniz kuşları toplanıp, küçük kaplumbağaları keskin gagalarıyla yakalayıp kendilerine ziyafet çekerler. Yavrulardan çok azı denize varabilir ve bunların çoğu balıklara yem olur. Yavrulardan ancak bir, iki tanesi hayatta kalır. Yaşamlarının ilk yılını nerede geçirdikleri doğanın çok sayıdaki sırlarından biridir. Örneğin yeşil kaplumbağalar bir yaşına gelip kıyılardaki sığ sularda beslenmeye başlayana kadar hiç ortalıkta görünmezler. Bir yaşındaki yavrular bir yemek tabağı büyüklüğündedirler. Denizkaplumbağaları Nerelerde Yumurtlar? Denizkaplumbağaları dünya çevresindeki geniş, ılıman kuşak içinde yaşarlar. Akdeniz’de olduğu gibi Pasifik ve Atlantik okyanuslarında yaşayan kaplumbağa topluluklarının sayıları da her geçen gün azalmaktadır. Denizkaplumbağalarının başka bir özelliği büyüdükleri zaman yumurta bırakmak için doğdukları kumsallara geri dönmeleridir. Bu kaplumbağaların yumartlamak için binlerce kilometre yüzdükten sonra doğdukları yeri nasıl buldukları bilim adamlarınca halen tam anlaşılamamıştır. Akdeniz’deki denizkaplumbağalarının bir kısmının da sadece Akdeniz’de yaşadığı ve kışladığı sanılmaktadır. Kaplumbağaların bu göç hareketleri “markalama”, yani üzerlerine konan özel işaretler ile ancak izlenebilmektedir. Kaplumbağalar mı? Kaplumbağa Ürünleri mi? Denizkaplumbağaları dünyamızdan hızla yok olmakta. Oysa yok olan bir hayvan türü bir daha hiçbir zaman geri gelmeyecektir. Yok olma sebeplerinden biri de insanların kaplumbağaları çeşitli amaçlarla avlamasından ileri gelmekte. Bazı kaplumbağaların kabuğundan “bağ” denen taraklar, gözlük çerçeveleri, düğme vb. yapılmakta. Çok pahalı olan bu maddeleri artık insanların satması da alması da doğru değildir. Bazı kaplumbağaların derisinden çanta ve pabuç yapılmakta. Bazılarından ise çorba... Kimi yörelerde kaplumbağa kanının bazı hastalıklara iyi geldiği inancı yaygınsa da bunun doğru olmadığı artık anlaşılmıştır. Unutmayın, siz veya çevrenizdekiler yukarıda saydıklarımızı kullanıyorsanız, bu ender hayvanın yok olmasına sebep oluyorsunuz demektir. Kaplumbağa Avı Çok eskiden beri kıyılarda yaşayanlar, ailelerinin beslenmesine katkıda bulunmak için denizkaplumbağalarını avlamışlardr. Bazen tek bir balıkçı bir kaplumbağayı besin olarak kullanmak amacıyla zıpkınlamış; bazen de grup halindeki balıkçılar, soluk almak için su yüzüne çıkan kaplumbağları ağlarla yakalayıp yemek üzere köylerine götürmüştür. Yıllar boyunca denizkaplumbağalarının bol olduğu zamanlarda bu tip avlanmaların kaplumbağa sayısını çok az etkilediği zannediliyordu. Fakat denizkaplumbağasına istek giderek arttı. Ya kaplumbağa avlayıp satarak ya da kaplumbağadan yapılmış ürünler satılarak para kazanılıyordu. Denizkaplumbağası avlamak kazançlı bir iş haline gelmişti. Böylece avcılar kaplumbağaları kimi zaman denizde, kimi zaman da yumurtlamaya çıktıklarında daha yumurtalarını bırakamadan yüzlercesine yakalamaya başladılar. Kaplumbağalar giderek azaldılar ve hemen hemen yok oldular. Ülkemizde yasalar bütün denizkaplumbağalarını koruma altına almış ve kaplumbağa ürünlerinin ticaretini yasaklamıştır. Yine de bu yasaklara uymayan kişiler halen aramızda bulunmaktadır. Trolcüler ve Kaplumbağalar Dünyanın her yerinde ticari balıkçı tekneleri denizlerden yiyecek sağlar. Bu teknelerin bazıları kıyı sularında dolaşıp deniz dibini “Trol” denen büyük ağlarla tarayarak avlanırlar. Deniz dibini tarayarak yapılan bu tarz balıkçılık, balık, karides, mercan yuvalarına çok zarar verdiği gibi, ne yazık ki çoğu zaman Caretta Caretta cinsi kaplumbağalar da tesadüfen bu ağlara yakalanmaktadır. Örneğin, birçok kaplumbağa, karides trolcülerin büyük huni şeklinde ağlarına yakalanıp, karideslerle beraber ağın içinde sürükleniyorlar ve su yüzeyine çıkıp nefes alamadıkları için de boğulup ölüyor. Böylece az sayıda kalan denizkaplumbağaları daha da azalıyor. Bu soruna bir çözüm yolu bulunması gerekmekte. Amerika Birleşik Devletleri’nin güneydoğu kıyılarındaki karides balıkçıları bu konuda yardımcı olmakta ve sadece karidesi içine alıp, kaplumbağanın giremeyeceği şekilde yapılmış yeni ağlar yapmaktadırlar. Yumurtlayacak Yeri Yok Bir denizkaplumbağası Türkiye’nin güney sahillerinin cennet köşelerinden biri olan Side kıyılarında bir kumsala sürünerek çıkar, şaşırır. Bir de ne görür? Kumsalın büyük bir kısmını apartman ve oteller işgal etmiş. Geri kalan dar kumsal şeridinde ise insan kalabalığı vardır. Kaplumbağa tekrar denize açılıp gece geri döner. Bu sefer pencerelerdeki yüzlerce ışık ortalığı aydınlattığından kumsal pırıl pırıldır. Kumsalın bazı yerleri ise beton rıhtımlarla çevrelenmiş ve yükselmiş. Kaplumbağaya artık yumurtlayacak yer kalmamıştır. Kıyının başka bir yerinde başka bir kaplumbağa boş kalmış ufak ber kumsal şeridine çıkıp yumurtlar. Yavrular yumurtalardan çıkma günü gelince ışıklara doğru sürünürler. Fakat vardıkları yer deniz değil, yakındaki bir yolun sokak lambalarının ışığıdır. Ertesi gün yakıcı güneşin altında hepsi ölecektir. Bir zamanlar denizkaplumbağalarının güvence içinde yumurtlamalarına uygun yüzlerce kilometre uzunluğunda kıyılar vardı. Bugün artık her şey değişti. Bu bölüm hazırlanırken Doğal Hayatı Koruma Derneği'nin "Bütün Yönleriyle Denizkaplumbağaları" adlı yayınından faydalanılmıştır.

http://www.biyologlar.com/deniz-kaplumbagalari-hakkinda-bilgi

“İcat Çıkar, Sağlık Olsun!”

Türk Kardiyoloji Derneği tarafından, 17 Mayıs Dünya Hipertansiyon Günü nedeniyle düzenlenen, Novartis desteğiyle hayata geçirilen “Hipertansiyon Avcıları Yarışması” tanıtıldı. TKD Genel Sekreteri Prof. Dr. M. Kemal Erol, kalp krizi, felç, böbrek yetersizliği gibi çoğu kez geri dönüşü olmayan sonuçlara yol açabilen ve tüm dünyada ölüm nedenleri arasında birinci sırada yer alan hipertansiyonun, ülkemizde her 4 ölümden birinin nedeni olduğunu belirterek şunları söyledi: “Hipertansiyonun erken teşhisine ve kontrol altında tutulmasına dikkat çekmek üzere TKD tarafından 2006’dan beri Dünya Hipertansiyon Günü’nde çeşitli projeler gerçekleştiriliyor. Bu yıl da Dünya Hipertansiyon Günü aktiviteleri, “Hipertansiyon Avcıları” Yarışması çerçevesinde yürütülecek. TKD’nin başlattığı bu yarışma, hem hipertansiyon hastalarının tedavisinin daha iyi sağlanması hem de hasta yakınlarında kan basıncı kontrol bilinci gelişitirilmesi amacıyla düzenlenmiş “bir fikir ve icat projesi”. Yarışma tüm yaşlardan herkesin katılımına açık olmakla birlikte, ağırlıklı olarak gençlere sesleniyor. Sosyal medya üzerinden genel tanıtımları yapılacak olan ‘Hipertansiyon Avcıları Yarışması’nın sloganı ise ‘’İcat Çıkar, Sağlık Olsun!" Yarışma katılımcılarından, ailelerinde ve çevrelerinde bulunan hipertansiyon hastası yakınları için, doktorlarının önerdikleri tedavilerini düzenli olarak uygulamalarını sağlayacak icatlar / fikirler geliştirmeleri isteniyor. Yarışmaya çizim, fotoğraf, fotokolaj vb. uygulamalarla katılmak mümkün.” “Hipertansiyon Avcıları Yarışması’nda başvurular www.hipertansiyonavcilari.com adresinden kabul ediliyor. Yarışma jürisinde, Türk Kardiyoloji Derneği Başkanı Prof. Dr. Ömer Kozan, Genel Sekreteri Prof. Dr. M. Kemal Erol, TKD Hipertansiyon Çalışma Grubu Başkanı Prof. Dr. Doğan Erdoğan, İrfan Sayar (Porof. Zihni Sinir), Endüstriyel Tasarımcı ve Eğitmen Hakan Gencol, Reklamcı/Kreatif Direktör Çağlar Gözüaçık ve Novartis Eğitim Müdürü Uzm. Dr. Çağlayan Aktaş yer alacak.” Jürinin değerlendirmesi sonucunda seçilecek olan ilk 20 eser www.hipertansiyonavcilari.com adresinde yayınlanarak halk oylamasına açılacak. Ödüller: • Birinciye Yeni iPad • İkinciye Playstation 3• Üçüncüye PSP Vita • Dördüncüye iPod Touch• Beşinciye iPod Classic Jüri değerlendirmesi için yarışmanın son katılım tarihi: 25 Kasım 2012” Hipertansiyonun bu kadar sık görülmesine, tanısının diğer hastalıklara göre daha kolay olmasına ve geniş tedavi seçeneklerine rağmen, hipertansif hastaların çoğunun kontrol altında tutulamadığını ifade eden TKD Genel Sekreteri Prof. Dr.  Erol, “Türkiye’de hipertansif tedavi alan 10 hastadan sadece 3’ünün kan basıncı kontrol altındadır. Oysa; kan basıncının kontrol altına alınmasının kalp ve damar hastalıklarının gelişme riskini önemli ölçüde azalttığı kanıtlanmıştır. Hipertansiyonun kontrol altına alınmasındaki en önemli engellerden biri, hastanın tedaviye uyumunun yetersiz olması, doktoru tarafından verilen tedaviyi düzenli uygulamamasıdır. Yapılan araştırmalarda, hipertansiyon tedavisi verilen 5 hastadan sadece birinin ilaçlarını tedaviden yarar sağlayacak şekilde düzenli olarak kullandığı belirlenmiştir. Ancak hipertansiyon ömür boyu tedavi gerektiren kronik bir hastalıktır. Hipertansiyon tedavisinin düzenli olmaması, kan basıncının kontrol altına alınamamasına neden olarak, kalp krizi ve felç geçirme riskini artırır. Türk Kardiyoloji Derneği olarak sürdürdüğümüz yoğun halk kampanyalarında özellikle hipertansiyona yakalanmamak için uygulanması gereken sağlıklı yaşam tarzı önerilerine dikkat çektik. Bunun sonucunda ülkemizde kan basıncı kontrol altında tutulan hasta sayısı son yıllarda yüzde 50 artmıştır” diye konuştu. http://www.medical-tribune.com.tr

http://www.biyologlar.com/icat-cikar-saglik-olsun

Kelebeklerde Komple Metamorfoz

Kelebeklerde Komple Metamorfoz

  A butterfly metamorphosis close up chronological view showing detailed transitions from egg, caterpillar growth, chrysalis formation, butterfly development within the chrysalis and butterfly emergence.

http://www.biyologlar.com/kelebeklerde-komple-metamorfoz

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

Kene İle Bulaşan Hastalıklar

ÖZET Parazitlerin neden olduğu hastalıklar önemli sağlık problemidir. Endoparazit ve ektoparaziter hastalıklar mevcuttur. Kenelerle bulaşan hastalıklar en sık görülen vektör kaynaklı hastalıklardır. Keneler bakteri, virüs spiroket, protozoa, nematod ve toksinler gibi patojenleri yayabilir ve böylece ektoparaziter kaynaklı hastalıklara sebep olurlar. Ülkemizde keneler için iklim koşulları, bitki örtüsü ve yüzey şekli bakımından uygun koşullar vardır. Bu makalemizde kenelerle bulaşan hastalıkları özetlemeye çalıştık. SUMMARY Paraziter diseases are important medical problems.There are endoparasitic and ectoparasitic diseases. Tick-borne diseases are the most common vector-borne illnesses. Ticks can spread bacteria, viruses, spiroketia, protozoa, nemadot and toxins and by so they made ectoparasitic diseases. Our country has suitable conditions to continue biologic activity of ticks acording to seasons, plants and surface forms. In this article we have tried to summary tick-borne diseases. İrfan Nuhoğlu1, Murat Aydın1, Süleyman Türedi2, Abdülkadir Gündüz2, Murat Topbaş3 1KTÜ Tıp Fakültesi İç Hastalıkları Anabilim Dalı, 2Acil Tıp Anabilim Dalı, 3Halk Sağlığı AD, Trabzon. Anahtar Kelimeler: Kene, Kırım- Kongo Kanamalı Ateşi, Lyme Hastalığı. Key words: Tick, Crimean-Congo Haemorhagic Fever, Lyme disease. Sorumlu yazar/ Corresponding author: İrfan Nuhoğlu, KTÜ Tıp Fakültesi İç Hastalıkları AD, Trabzon irfannuhoglu@hotmail.com GİRİŞ Parazitlere bağlı hastalıklar günümüzde önemli sağlık problemlerindendir. Bu durum endoparazitlerden kaynaklanabileceği gibi; kene gibi ektoparazitlerden de kaynaklanır (1). Keneler tüm dünya üzerindeki memeli, kuş ve sürüngenlerden kan emen eksternal parazitlerdir (2). Keneler Araknidea sınıfına ait artropodlardan olup balıklar dışındaki tüm omurgalıların kanlarıyla beslenebilirler. Dünya üzerinde omurgalıları etkileyen 899 adet kene türü mevcuttur. Bunların 185’i Argasidae, 713’ü İxodidae, 1 tanesi ise Nuttalliellidae soyuna bağlıdır (5,6). Bakteri, spiroket, rickettsia, protozoa, virüs, nematod ve toksinler gibi birçok farklı patojeni taşıyabilir ve yayabilirler (3). Tıbbi ve ekonomik önemleri insanlara ve hayvanlara hastalık bulaştırabilme kabiliyetlerinin olduğunun fark edilmesiyle anlaşılmıştır. İnsanlar üzerinde oluşturdukları önemli sağlık sorunları yanında çiftlik hayvanları üzerinde büyük ekonomik kayıplara neden olabilirler. Türkiye; iklimi, yüzey şekli ve bitki örtüsü bakımından, kenelerin biyolojik aktivitelerini sürdürmeleri için uygun koşullara sahip bir ülkedir (7-9). Günümüze kadar kullanılan hiçbir mücadele yöntemi, tam bir kene eradikasyonu sağlayamamıştır. Bugünkü bilgiler ışığında kene eradikasyonunun neredeyse imkânsız olduğu kabul edilmektedir. KIRIM KONGO KANAMALI ATEŞİ (KKKA) KKKA Afrika’nın bazı bölgelerinde, Asya, Doğu Avrupa ve Orta Doğu’da görülen ölümcül bir viral enfeksiyondur (10,11). Bildirilmiş mortalite oranı % 3-30 olan bu hastalığa neden olan virüs Bünyavirüs ailesinden Nairo virüs genusuna bağlı olup; insanda ciddi hastalığa neden olur (11-12). Tıbbi olarak önemi kene ile taşınan virüsler arasında en yaygın coğrafi dağılıma sahip olmasıdır(13). Hastalık ilk kez 12.yy’da bugünkü Tacikistan topraklarında hemorajik bir sendrom olarak tanımlanmıştır (10). KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden 200 Sovyet askerinde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda gösterildi (10,11). Virüsün yaşam çevrimi ‘kene-omurgalı-kene’ şeklinde olup; hayvanlarda hastalık yaptığına dair bir delil yoktur (11). Virüsler Hyalomma genusu keneleri ile taşınır. TAF Preventive Medicine Bulletin, 2008: 7(5) 462 Resim 1. Türkiye’de Kırım Kongo Kanamalı Ateşi Vakalarının Dağılımı Enfekte anneden yumurtaya transovarial; larvanymph- erişkin şeklinde transstadial olarak geçiş gösterirler. Virüsün Avrupa’daki ana taşıyıcısı Akdeniz hyalomması olarak bilinen H.marginatum marginatum’dur (10,11). Komşu bazı ülkelerde 1970’lerden beri epidemiler bildirilmesine rağmen Türkiye’de virüsle enfekte vakalar ilk kez 2002 yılında bildirilmiştir. 2002-2005 yılları arasında Sağlık Bakanlığı’na 500 vaka bildirilmiş ve bunların 26’sı (% 5,2) ölmüştür (Resim 1) (13-16). Türkiye’de ki salgında vakaların % 90’ı çiftçilerdi (13,14). İnsan vücudu; enfekte kenelerin ısırması ile veya hasta olan bir kişiyle enfeksiyonun akut fazı sırasında temas ettikten sonra enfekte olabilir. Ayrıca içinde virüs bulunan kan ve dokularla temastan sonra geçiş olabilir. Hastalığın ortaya çıktığı insan vücudu virüsün bilinen tek konağıdır (17). Hastalığın seyrinde 4 faz vardır: 1. İnkübasyon fazı kene ısırığını takiben 3-7 gündür (18). Bu dönemde herhangi bulgu vermez. Türkiye’de 5,5 gün olan bu fazın süresi viral doz ve bulaşma yoluna bağlıdır (12). 2. Prehemorajik faz; ani yükselen ve 39-41 derece arasında seyreden ateşle karakterizedir. Ateş 4-5 gün sebat eder(10). Baş ve kas ağrısı, baş dönmesi, ishal, burun akıntısı ve kusma olabilir (19).Yüz boyun ve göğüste hiperemi, skleral konjesyon, konjuktivit görülebilir. 1-7 gün sürebilen bu fazın ortalama süresi 3 gündür(10). 3. Hemorajik faz; genellikle 2-3 gün gibi kısa sürer. Genellikle hastalığın 3-5. günlerinde başlar ve hızlı bir seyir gösterir. Bu dönemin ateşle herhangi bir ilişkisi yoktur (10). Hemoraji peteşiden başlayarak, müköz membran ve derideki büyük hematomlara kadar ilerleyebilir. Diğer bölgelerden kanamalar vajen, diş eti ve serebral kanamaları içerir(20). En sık kanayan bölgeler ise burun, GİS (hematemez, melena ve intraabdominal), genital (menometroraji), idrar (hematüri) ve solunum yollarıdır. Türkiye’de vakaların % 20-40’ında hepatomegali; % 14-23’ünde ise splenomegali bulunur (15). 4. Konvalesan faz hastalık başlamasıyla beraber 10-20 gün içinde başlar. Bu dönemde değişken nabız, taşikardi, komplet saç kaybı, polinörit, solunum zorluğu, kserostomi, görme azlığı, işitme kaybı, hafıza kaybı olabilir(10). Tanıda trombositopeni, lökopeni, AST-ALT-LDHCKP düzeylerinde artış, PT ve aPTT sürelerinde uzama, fibrinojen düzeyinde azalma ve fibrin yıkım ürünlerinde artma görülebilir. CBC ve Biyokimyasal testler 5-9 günde normal seviyelerine inerler (21). Virüs izolasyonu 2-5 günde sağlanabilir ama hücre kültürleri sensitiviteden yoksundur ve genellikle hastalığın ilk 5 gününde karşılaşılan yüksek viremi ilişkisini gösterir (22). KKKA virüs enfeksiyonunun hızlı laboratuar teşhisi için seçilecek metot Revers Transkriptaz PCR’dir. Bu yöntem hızlı, yüksek sensitif ve yüksek spesifiktir (23). Hastalık ortaya çıktıktan sonra ilk 7 gün içinde İg M ve İg G TAF Preventive Medicine Bulletin, 2008: 7(5) antikorları serolojik olarak ELİSA ve İmmünfloresan yöntemi ile tespit edilebilir(24). Tedavinin temeli; trombosit, TDP ve eritrosit ile yapılan destekleyici tedaviye dayanır. Hastada potansiyel kanama alanları tespit edilmeli ve bulaştırma riski için koruyucu önlemler alınmalıdır. Sıvı elektrolit dengesine dikkat edilmelidir. Etki mekanizması açık olmamakla beraber Ribavirin tavsiye edilen antiviral ajandır. Bu ilacın akut respiratuar sendrom tedavisinde kullanımına bağlı hemolitik anemi, hipokalsemi ve hipomagnezemi yan etkileri bildirilmiştir (25,26). ROCKY DAĞLARI BENEKLİ ATEŞİ (RDBA) Amerikan Köpek Kenesi (Dermecentor variabilis) ile taşınan bakteriyel (Ricketsia ricketsii) bir enfeksiyondur (27). Kan damarlarının endoteliyal ve düz kas hücrelerini etkileyen küçük, pleomorfik,zorunlu hücre içi parazitidir. Hastalık Amerika’nın kuzeybatısında ilk kez 19.yy ın sonlarında tanımlanmıştır. Hastalık etkeni ajan ise 1900’lü yılların başlarında Howard Ricketts tarafından tanımlanmıştır (28). İnsandan insana geçiş tanımlanmamıştır (29). Hastalık kuzey, orta ve güney Amerika da endemiktir. İsmine rağmen yıllık vakaların sadece % 2’si Rocky dağları bölgesinde görülür (27). 5-9 yaşlarındaki çocuklar ve 60 yaşın üstündeki erişkinler olmak üzere iki tepesi olan bimodal yaş dağılımına sahiptir. 1998 yılında 365 vaka bildirilmiştir (29). Çoğu vaka 1 Mayıs-31 Temmuz arasında bildirilir ki bu dönem köpek kenesi populasyonunun en yüksek seviyede olduğu dönemdir. Hastalık çoğunlukla vahşi hayvan ve kenelerin birlikte bulundukları alanlarda ortaya çıkar. İmmatür evrelerde keneler tarla faresi gibi küçük kemirgenler üzerinde; erişkin olanlar ise insan ve köpek gibi daha büyük canlılar üzerinde yaşarlar (27). Ricketsia ile enfekte olan hastalar genellikle ısırık sonrasındaki 5-10 günlük bir inkübasyon periyodunu takiben hastalık ortaya çıktıktan sonraki ilk hafta içinde doktora başvururlar (30). Hastalık; ateş, bulantı, kusma, iştahsızlık, baş ve kas ağrısını içeren başlangıç belirtileri verir (27,31). Ateşin 2-5’ inci gününde önkol, el ve ayak bileği üzerinde küçük, düz, pembe ve kaşıntısız noktalar şeklinde benekli bir döküntü gelişir (30,31). Bu benekler üzerlerine basınç uygulandığında solarlar. Hastalığa ait bu karakteristik döküntü genellikle 6. güne kadar ortaya çıkmaz ve hastaların % 35-65 inde görülür (31,32). Döküntü genç hastalarda yaşlılara göre daha erken gelişir (30). Döküntü daha sonra avuç içi ve ayakaltı dâhil vücudun geri kalan bölümlerine yayılır (27). Bu durum ise hastaların % 50-80’ inde ve ancak geç evrelerde görülebilir. Hastaların % 10-15’ inde ise hiçbir zaman döküntü gelişmez (30,31). Temel laboratuar testlerinde normal veya hafifçe baskılanmış WBC, trombositopeni, yükselmiş karaciğer transaminazları ve hiponatremi bulunur. BOS incelendiğinde monosit hâkimiyeti olan bir beyaz küre artışı tespit edilir (31,32). Hastalığın ensefalit, non kardiyojenik pulmoner ödem, ARDS, kardiyak aritmiler, koagülopati, GİS kanaması ve deri nekrozunu da içeren major komplikasyonları vardır. Eğer tedavi edilmezse 8-15 gün içerisinde ölüm gerçekleşebilir. Mortalite oranı tedavi edilmemiş vakalarda % 25; tedavi edilmiş vakalarda % 5 olarak rapor edilmiştir (28). Tanı öykü ve fizik muayeneye dayanır. Eğer döküntü mevcut ise rickettsial organizma deriden yapılan biyopsideki vasküler endotel içinde direk immünofloresan veya immünoperoksidaz boyama yöntemiyle tespit edilebilir (31,33). Ama bu yöntem çok sık kullanılmamaktadır (34). Seroloji tanıyı destekleyebilir ancak bu da hastalığın ortaya çıkışından 7-10 gün sonra pozitifleşir (31). Mümkün olan en kısa sürede antibiyotik tedavine başlamak önemlidir (27,35). Tetrasiklin ve kloramfenikol tedavide etkindir. Bazı hastalarda doksisiklin birinci tercihtir. Tedavi en az 5-7 gün devam etmeli veya hasta en az iki gün afebril olana kadar sürmelidir (31,36). Ölümlerin çoğu medikal tedavideki gecikme nedeniyledir. Hastalık erken fark edilip tedavi edilirse hızlı bir düzelme gösterir (27). LYME HASTALIĞI Kalp, eklem ve sinir sistemini de içeren; ciddi problemler oluşturabilen Lyme hastalığı siyah bacaklı olarak adlandırılan geyik kenesi (İxodes scapularis) ile taşınan bir bakteriyel hastalıktır (27). Sıcaklık 35 Fahrenheit üzerinde olduğu sürece tüm yıl boyunca aktif kalabilirler. Zirve aktivite ayları nymphler için Mayıs-Haziran; erişkinler için ise Ekim-Kasım aylarıdır. Borelia burgdorferi adlı spiroketin neden olduğu Lyme hastalığı hem ABD de hem de dünyada kene ile taşınan en yaygın hastalıktır (28,35,36). Birleşik devletlerde ilk kez 1975 yılında Connecticut’ta bulunan Lyme bölgesinde çok fazla sayıda çocukta görülen artrit vakaları sonucunda bildirildi (26). Borelia hastalığa neden olan ajan olarak 1980’li yılların başlarında izole edilebilmiştir (33). Hastalığın 15 yaş gençlerde ve 29 yaşlarda olan iki tepeli bimodal bir yaş dağılımı vardır ve birçok vaka Mayıs-Eylül döneminde meydana gelir. ABD’de TAF Preventive Medicine Bulletin, 2008: 7(5) 464 1999 yılında hastalık kontrol ve korunma merkezine (CDC) 16273 vaka rapor edilmiştir (37). ABD’de ki araştırmalar kenelerin Lyme hastalığını nymph evresinde beslenmenin 2 ya da daha sonraki günlerinde naklettiklerini göstermiştir (26). Bu evrede 2 mm den küçük olduklarından sıklıkla fark edilmezler; beslenmek ve enfeksiyonu yaymak için fazla zamanları vardır. Erişkin keneler ise daha büyük olduklarından fark edilmeleri ve vücuttan uzaklaştırılmaları daha kolaydır. Kene uygun teknikle erken dönemde çıkarılırsa enfeksiyonu yayma şansı çok azdır (26). Lyme hastalığının 3 evresi bunlunur: 1. Erken lokalize evrede; kene ısırığını takiben günler içinde (7-14 gün) hastaların % 60-80 inde Eritema Cronicum Migrans adı verilen kırmızı, yavaşça genişleyen boğa gözü şeklinde döküntü meydana gelir (34,30). Isırık etrafında küçük, kırmızı bir papül olarak başlar; günler içerisinde merkezden dışa doğru genişler. Lezyonun merkezinde hiperemik, deriden kabarık bir beneklenme kalabilir ve ortalama çapı 16 cm olan lezyonun çapı bazı vakalarda 70cm’ye kadar ulaşabilir. Döküntü ile beraber yorgunluk, kas ağrısı, eklem ve baş ağrısı, ateş ve üşümeyi içeren sistemik semptomlar olabilir. Fizik muayenede boyun sertliği, bölgesel adenopati ve ısırık bölgesinden bağımsız bölgelerde, primer lezyondan daha küçük sekonder deri lezyonları görülebilir. Eğer tedavi edilmezse genellikle birkaç haftadan daha uzun bir sürede kendiliğinden iyileşir (34,35). 2. Hastalığın erken dissemine formu kene ısırığını takiben günler-aylar içinde birçok sistemi de içeren semptomlarla ortaya çıkar. Birçok hasta kene tarafından ısırılıp ısırılmadığını hatırlamaz. Hastalarda eritema kronikum migrans olmayabilir. Lenfositik menenjit, sıklıkla Bell palsi gibi kraniyel sinir palsileri, azalmış duyu, güçsüzlük ve refleks yokluğunu da içeren nörolojik semptomlar olabilir (5- 2). Kardiyak semptomlar çoğunlukla erkeklerde olur, bitkinlik ve çarpıntı şeklinde ortaya çıkar. Çeşitli derecede atriyoventriküler bloklar ve orta derecede peri/miyokardit olabilir. Artrit genelde geç ortaya çıkar ama bu evrede de görülebilir. Bölgesel veya jeneralize adenopati, konjonktivit, iritis, hepatit ve mikroskopik hematüri veya proteinüri görülebilir (32,34,35) 3. Hastalığın geç evresi sıklıkla kronik artritle karakterizedir. Bu durum tedavi edilmemiş eritema migransı olan hastaların yaklaşık % 10 unda meydana gelir. Büyük eklemleri özellikle de diz eklemini içeren mono veya asimetrik oligoartriküler artrit olarak tanımlanmıştır. Nörolojik sistem subakut ensefalopati, aksonal polinöropati ve lökoensefalopati şeklinde etkilenebilir. Geç bulgular genelde birkaç yıl içinde spontan olarak iyileşir (30,32). Teşhis edilmesi zor bir hastalıktır (38).Tanı, öykü ve fizik muayeneye dayanır. Rutin laboratuar testleri tanıda rolü azdır. Seroloji testleri tanıyı doğrular ancak hastalığın ortaya çıkmasından 4-6 hafta sonrasına kadar tanı değerleri yoktur (30). ELİSA testi % 89 sensitif, % 72 spesifiktir. Pozitif test sonuçları Western Blot ile desteklenmelidir. PCR özellikle etkilenmiş eklemlerden alınan eklem sıvılarında yararlıdır (40). Eğer nörolojik bulgular varsa BOS’tan çalışma yapılabilir. Sinoviyal sıvı artritin ayırıcı tanısını yapmak için alınır. Organizmanın doku ve vücut sıvılarından izolasyonu çok zordur (31). Hastalığın sahip olduğu ciddi sekel potansiyeli nedeniyle erken tanı ve tedavi önem taşır. Ciddi vakalarda parenteral antibiyotikler gerekir. Erken dönemde yakalanırsa oral antibiyotiklerle tedavi edilebilir(26). Amoksisilin ve doksisiklin 2-3 hafta süre ile tedavide tercih edilir. Komplike olmayan vakalarda tedavi en az 14-21 gün; ciddi veya komplike vakalarda 30 gündür (41). Hastalık nadir görülür ama oldukça fatal seyreder (30). 1998 yılında Amerikan Gıda ve İlaç Dairesi hastalıktan korunma da kullanılmak üzere ilk kez bir aşıya onay verdi. Rekombinant OspA (LYMErix) aşısı üzerindeki iki çalışma aşının semptomatik enfeksiyondan korunmada % 76-92 arasında etkili olduğunu göstermiştir. Aşı keneye maruziyet açısından yüksek veya orta riskli kişilere önerilmiş, düşük riskli veya risksiz olan kişilere, 15 yaşından gençlere, 70 yaşını geçmiş yaşlılara ve yeterli çalışma olmamasından dolayı hamilelere önerilmemektedir (42). ERLİKİYOZ Hastalık küçük, gram-negatif, pleomorfik, zorunlu hücre içi bir organizma olan Ehrlichia tarafından oluşturulur. ABD’ de Ehrlichia chaffeensis ve Ehrlichia ewingii’ nin neden olduğu İnsan Monositik Erlikiyozu (İME) ve henüz isimlendirilmemiş bir ehrlichia türünün, muhtemel Ehrlichia phagocytophila/Ehrlichia equi’nin neden olduğu İnsan Granülositik Erlikiyozu (İGE) olmak üzere iki farklı formu vardır (43). Ehrlichia chaffeensis yıldız kenesi olan Amblyomma americanum tarafından taşınır. Beyaz kuyruklu geyik bu kenenin tek major konağıdır ve tek doğal rezervuardır (35). Hastalık ilk kez 1935 yılında bir grup araştırma köpeğinde tespit edildi. 1986 yılında insanda tanımlandı. Dünya çapında yaygın bir hastalık TAF Preventive Medicine Bulletin, 2008: 7(5) olmasına rağmen vakaların çoğu ABD’ de bildirilmektedir. Her iki türün de çoğu vakası Nisan- Eylül döneminde görülür. Vakaların % 75’ten fazlası erkeklerde görülür ve yaşlılar daha sık etkilenir. Klinik her iki türde de birbirine benzer. Hastalar kene ısırığı sonrası 7-10 günlük bir inkübasyon periyodunu takiben hastalanmanın ilk haftası içinde sağlık kuruluşuna başvururlar. Belirtiler ateş, baş ağrısı, kırgınlık ve kas ağrısıdır. Buna ek olarak bulantı, kusma, ishal, öksürük, eklem ağrısı, konfüzyon ve vucutta döküntü olabilir (35). Döküntü; İME olan erişkin hastaların yarısından biraz azında; İGE olan erişkin hastaların ise % 10’ undan biraz azında görülür. Bununla beraber enfekte çocuk hastaların % 60’ında döküntü görülmeyebilir. Döküntü gövdeyi içerir ama elleri ve ayakları tutmaz ve ısırık bölgesiyle ilişkili değildir. Maküler, papüler, retiküler, makülopapüler veya peteşiyel şekillerde olabilir. İGE de respiratuar veya renal yetersizlik, fırsatçı enfeksiyonlar veya hemoraji(DİC) gibi komplikasyonlar çok sık görülür (29). Laboratuar bulguları ise lökopeni, trombositopeni ve artmış karaciğer transaminazlarından oluşur. İGE de orta derecede bir anemi; hem İGE hem de İME de artmış ESR, BUN, kreatinin; İME de ise yükselmiş protein düzeyi ve lenfositik pleositozu olan BOS bulunabilir (44). Tanı öykü, fizik muayene ve laboratuar bulgularına dayanır. Seroloji tanıyı destekler ancak 1-2 haftada pozitifleşir. PCR da tanıyı destekler ancak akut safhada yapılmalıdır. Kültürler yararlı değildir. Tanıdaki temel metot konvelasan evredeki serokonversiyonun tespitidir. Tedavide tercih edilecek ilaç Doksisiklin’dir. Alternatif olarak kloramfenikol ve rifampin kullanılabilir. Tedavi süresi en az iki hafta olmalıdır. Tedavi edilmediği zaman tüm hasta grubunun % 50 sine varan bir oranda hospitalizasyon gerektiren ciddi bir hastalık oluşabilir. Uzamış ateş, böbrek yetersizliği, DİC, ARDS, meningoensefalit, nöbet veya koma şeklinde ciddi manifestasyonlar olabilir. Öngörülen mortalite oranı % 2-3 dür ve E.chaffeensis tarafından oluşturulan enfeksiyon diğer erlikiyoz türlerinden daha ciddidir (35). TULAREMİ Tularemi; küçük, gram negatif, hareketsiz bir kokobasil olan Francisella tularensis tarafından oluşturulan enfeksiyöz bir hastalıktır. Hastalık aynı zaman da Tavşan ateşi olarakta bilinir. İnsanlara sindirim, inokülasyon, inhalasyon ve kontaminasyon yollarıyla bulaşabilir. Amerika ‘da vakaların yarısından fazlasında kene ısırığı sorumludur (31). Her yıl bu ülkede 150-300 arasında vaka rapor edilir. Hastalık erkeklerde sık görülür. Özellikle kış aylarında avcılıkla uğraşanların derilerideki küçük lezyonların avlanan enfekte tavşanla teması ile bulaşır. Yaz ve sonbahar mevsimlerinde zirve yapar (45). İyi pişmemiş enfekte etler ve kontamine sular da bulaşma nedenidir. İnkübasyon periyodu ortalama 3-5 gündür. Birçok hastada ateş, üşüme, baş ağrısı, kırgınlık, anoreksi, yorgunluk, öksürük, kas ağrısı, göğüste rahatsızlık hissi, kusma, karın ağrısı ve ishali de içeren generalize semptomlar bulunur. Bunlara ek olarak hasta 6 farklı klasik modelden biriyle gelebilir: 1. Ülseroglandüler model: en sık görülen ve en kolay fark edilendir. Hastalar içerdiği lenf bezlerine drene olan bölgedeki ağrılı deri ülseriyle beraber olan, lokalize, hassas lenfadenopatilerden sikayetçidirler. En sık tutulan lenf bezleri çocuklarda servikal ve oksipital; erişkinlerde inguinal bölgede olanlardır. 2. Glandüler tip ise ülseroglandüler tip ile benzerdir ama bunda deri ülseri yoktur. 3. Oküloglandüler tipte organizmalar konjonktivaya yerleşmişlerdir. Vakaların % 90’ında tek taraflı tutulum olur. Fotofobi ve artmış lakrimasyonu içeren erken belirtiler vardır. Geç dönemde hastalarda göz kapağı ödemi, skleral enjeksiyonu olan ağrılı konjonktivit, kemozis ve küçük yeşil konjonktival ülser veya papül gelişir. Priaurikülar, submandibular ve servikal bezler sıklıkla tutulur. 4. Faringeal tipte ise organizmalar orofarinkse yerleşmişlerdir. Ciddi boğaz ağrısı bulunur. Fizik muayenede eksudatif farenjit veya tonsilit; servikal, preparotit veya retrofarengeal lanfadenopati bulunabilir. 5. Tifoid model ise herhangi bir lenfadenopati ile ilişkili değildir. Diğer tiplerde belirtilen genel semptomlara ek olarak burada sulu ishal vardır. 6. Pnömonik tip ise akut respiratuar bir hastalık olarak ortaya çıkar. Belirtiler ateş, minimal balgamlı veya balgamsız öksürük, substernal göğüs hassasiyeti ve plörotik göğüs ağrısından oluşur. Radyografilerde lobar, apikal veya miliyer infiltrasyonlar, hiler adenopati ve plevral efüzyon bulunabilir (45). Tanı; hikâye ve fizik muayeneye dayanır. Laboratuar testleri genellikle spesifik değildir. WBC ve ESR düzeyleri normal yâda hafif yüksektir. Organizma kültürde üretilebilir ama bu yöntem laboratuar çalışanlarına bulaşma riskinden dolayı sıklıkla kullanılan bir yöntem değildir. Göğüs radyografilerinde oval opasite, hiler adenopati ve plevral efüzyon triadından oluşan bulgular olabilir. Seroloji yaklaşık iki haftalık bir süre içinde tanıyı destekler (31). TAF Preventive Medicine Bulletin, 2008: 7(5) 466 www.korhek.org Hastada menenjit düşünülmüyorsa streptomisin ilk seçilecek ilaçtır. Alternatif olarak gentamisin, tetrasiklin, kloramfenikol ve florokinolonlar düşünülebilir. Tedavi 7-14 gün sürmelidir. Korunmada canlı aşı mevcuttur ve laboratuar çalışanları ve patojene tekrarlayan maruziyeti olan kişilere uygulanabilir. BABESİYOZ Hastalık etkeni eritrositleri enfekte eden ve hemolizlerine neden olan Babesia genusuna ait protozoal bir parazit olan Babesia divergens veya Babesia microti’ dir. Hastalık geçişi İxodes kenelerinin farklı türleri ile olur. Etken geyik kenesi ile taşınır (46). Hastaların % 5 kadarında fulminan seyrederek hospitalizasyon veya ölümle sonuçlanan bir tablo oluşturur. Özellikle splenektomi yapılmış hastalarda ciddi hastalık tablosu oluşturur. Tripanozoma’dan sonra memelilere kan yoluyla bulaşan en sık ikinci parazittir (47). Semptomlar diğer kene ile geçen hastalıklara benzer ve inokülasyondan bir hafta sonra başlayan influenza benzeri belirtiler verir. Ateş, terleme, kas ağrısı ve baş ağrısı görülür. Hemolitik anemi, hemoglobinüri, böbrek yetersizliği yapabilir. Enfeksiyon genç erişkinlerde yıllarca asemptomatik olarak kalabilir (46). Nadir de olsa oftalmik tutulum olabilir. Hastada ateş, hemolitik anemi ve uygun temas öyküsü varsa babesiyoz düşünülebilir. Tanı kan yaymalarda protozoanın tespitine dayanır. Karakteristik olarak Malta Haçı görünümü vardır. Serolojik testler ve PCR yardımcı yöntemleridir. Orta derecedeki vakalar semptomatik tedavi gerektirir. Persistan yüksek ateş, progresif anemi, yükselen parasitemi olan ciddi vakalarda Kinin+Klindamisin veya Atovaquon+Azitromisin en az 7-10 gün boyunca kullanılmalıdır. Yüksek parasitemisi olan ciddi hastalarda exchange transfüzyon yapılabilir (46). KOLORADO KENE ATEŞİ Hastalık bir ağaç kenesi olan D.andersoni tarafından nakledilen RNA orbivirus tarafından oluşturulur. Çoğunlukla Amrikadaki Rocky dağları bölgesinde her yıl 200-300 arasında vaka tespit edilir. İmmün yetmezliği olan ve splenektomi geçirmiş olan hastalar ciddi komplikasyonlar açısından risk altındadır (46). İnokülasyondan sonra bir hafta içinde influenza benzeri semptomlar başlar. Hastaların üçte birinde boğaz ağrısı bulunur. En önemli özelliği; menenjit, döküntü ve konjuktivit ile ilişkili olan bifazik ateştir. Hastalık genellikle 7-10 gün arasında sonlanır. Tanı genellikle immünfloresan boyama ile konur. Bununla beraber lökopeni ve trombositopeni bulunabilir. Spesifik bir tedavi yoktur. Destek tedavisi verilir. Belirtiler ortaya çıkmışsa diğer kene geçişli hastalıkları kapsayan ampirik olarak tetrasiklin, doksisiklin veya kloramfenikol kullanılabilir. DÖNEK ATEŞ Hastalığa Borrelia genusundan bir spiroket neden olur. Ornithodoros genus keneler esas vektördür. Tipik olarak hastalık sporadiktir (48). Ortalama inokülasyon periyodu bir haftadır. İnfluenza benzeri semptomlar, artralji, bulantı ve kusma olur. Genellikle 40 derecenin üzerinde, düzensiz ve bazen deliryumla ilişkili ateş olabilir. Hastaların çoğunda splenomegali bulunur. Meningeal bulgular olabilir. Epistaksis hemoptizi, iridosiklit, koma, kraniyel sinir palsi, pnomonit, miyokardit ve dalak rüptürünü içeren komplikasyonlar olabilir. Tanı; kan, kemik iliğinde ve ateş epizotu sırasında BOS’da spiroketin tespitiyle konulabilir. Lökosit sayısı normal veya orta derecede artmıştır. Trombositopeni tespit edilebilir. Tedavide 5-10 gün boyunca doksisiklin tercih edilir. Alternatif olarak eritromisin kullanılabilir. Eğer ilaçlar geç febril evrede verilirse Jarisch- Herxheimer reaksiyonu meydana gelebilir. Antibiyotik tedavisinin öncesi ve sonrasındaki 2 saatlik periyotlarda asetaminofen uygulanması reaksiyonun ciddiyetini azaltabilir. KOMBİNE ENFEKSİYONLAR Aynı kene birden fazla enfeksiyöz patojende taşıyabilir. Bundan dolayı bir ısırıkla birden fazla hastalığı bulaştırabilir. Örneğin İ.scapularis; erlikiyoz, lyme hastalığı ve babesiyozu bulaştırabilir. Lyme hastalığı bulunanların % 23’ünde babesiyoz; % 10-30 unda erlikiyoz bulunur. Kombine enfeksiyonların daha ciddi semptomlar oluşturacağı akılda bulundurulmalıdır. KAYNAKLAR 1. Rajput ZI, Hu S, Chen W, Arıjo AG, Xiao C. Importance of ticks and their chemical and immunological control livestock. Journal of Zhejiang University. 2006; 7(11): 912-921. TAF Preventive Medicine Bulletin, 2008: 7(5) www.korhek.org 467 2 Furman DP, Loomis EC. The ticks of California (Ascari: Ixodida). University of California Publications. Bulletin of the California Insect Survey. 1984; 25: 1-239. 3. Edlow JA, Danzl D, Halamka J, Pollack VC. Tick- Borne Diseases. www.eMedicine.com. 4. Snelson JT. Animal ectoparasites and disease vector causing major reduction in world food supplies. FAO Plant Prodection Bulleton. 1975; 13: 103-114. 5. Barker SC, Murrell A. Systematics and evolution of ticks with alist of valid genus and species names. Parasitology. 2004; 129(7):15-36. 6. Klompen JSH, Black WC, Keirans JE, Oliver JH. Evolition of tiks. Annu Rev Entomol. 1996; 41(1): 141-161. 7. Güler S, 198. Ankara ve civarındaki koyun ve keçilerde kış ixodidaeleri üzerine araştırmalar. U. Ü. Vet. Fak. Derg. 1 :54-55. 8. Güler S, Özer E, Erdoğmş SZ, Köroğlu E, Bektaş İ. Malatya ve bazı Güneydoğu Anadolu illerinde sığır, koyun ve keçilerde bulunan kene türleri. Doğa-Tr. J. Of Veterinary and animal Science. 1993; 17: 229-231. 9. Karaer Z, Yukarı BA, Aydın L. Türkiye keneleri ve vektörlükleri. Parazitolojide Andropod Hastalıkları ve Vektörler. İzmir, Türkiye. Parazitoloji Derneği Yayın No: 13, 1997, p. 363-434. 10. Hoogstraal H. The epidemiologymof tick borne Crimean-Congo hemorrhagic fever in Asia, europe and Africa. J Med Entomol 1979; 15: 307- 417. 11. Watts DM, Ksiazek TG, Linthicum KJ, Hoogstraal H. Crimean-Congo hemorrhagic fever. In:Monath TP, ed. The arboviruses: epidemiology and ecology, volume 2. Boca Raton, FL, USA:CRC Pres, 1988, p. 177-260. 12. Ergönül O, Celikbaş A, Dokuzoğuz B, Eren S, Baykam N, Esener H. The characteristicks of Crimean-Congo hemorhagic fever in a recent outbreak in Turkey and the impact of oral ribavirin therapy. Clin Infect Dis. 2004; 39: 285-89. 13. Ergönül Ö. Crimean-Congo haemorrhagic fever. The Lancet. 2006; 6: 203-214. 14. Kartı SS, Odabaşı S, Korten V, et al. Crimean- Congo hemorrhagic fever in Turkey. Emerg Infect Dis. 2004; 19: 1379-84. 15. Ozkurt Z, Kiki I, Erol S, et al. Crimean-Congo hemorrhagic fever in Eastern Turkey: clinical features, risk factors and efficacy of ribavirin therapy. J Infect. 2006; 52: 207-15. 16. Türkiye’de KKKA yayılım haritası. www.tvhb.org.tr 17. Whitehause CA. Crimean-Congo hemorrhagic fever. Antivir Res 2004; 64: 145-60. 18. Swanepoel R, Gill DE, Shepherd AJ, et al. The clinical pathology of Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 794-800. 19. Smego RA, Sarwari AR, Siddiqui AR. Crimean- Congo hemorrhagic fever: Prevention and control limitations in a resource poor country. Clin Infect Dis. 2004; 38: 1731-35. 20. Swanepoel R, Shepherd AJ, Leman PA, et al. Epidemiologic and clinical features of Crimean- Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg. 1987;36: 120-32. 21. Ergönül O, Celikbaş A, Baykam N, Eren S, Esener H, Dokuzoğuz B. Analysis of the mortality among the patients with Crimean-Congo hemorrhagic fever virus infection. Clin Microbiol Infect (in press). 22. Burt FJ, Leman PA, Abott JC, Swanepoel R. Serodiagnosis of Crimean-Congo haemorhagic fever. Epidemiol Infect. 1994;113: 551-62. 23. Schwarz TF, Nsanze H, Longson M, et al. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean- Congo hemorrhagic fever virus in the United Arab Emirates. Am J Trop Med Hyg. 1996; 55: 190-96. 24. Ahephered AJ, Swanepoel R, Leman PA. Antibody response in Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 801- 806. 25. Knowles SR, Phillips EJ, Dresser I, Matukas I. Common adverse events associated with the use of ribavirin for severe acte respiratory syndrome in Canada. Clin Infect Dis. 2003; 37: 1139-42. 26. Chiou HE, LiuCI, Buttrey MJ, et al. Advere effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers. Chest. 2005; 128: 263-72. 27. Ticks. www.co.franklin.oh 28. Walker DH, Raoult D. Rickettsia rickettsii and other spotted fever group rickettsiae (Rocky Mountain spotted fever and other spotted fevers). In: Mandel GL, Douglas RG, Bennett JE Dolin R, eds. Mandell, Douglas and Bennett’s Principles and practice of infectious diseases. 5th ed. Philadelphia. Churchill Livingstone, 2000, p. 2393-402. 29. Walker DH. Tick-transmitted infectious diseases in the United States. Annu Rev public Health 1998; 19: 237-69. 30. Tick information. www.cdc.gov. 31. Spach DH, Liles WC, Campbell GL, Quick RE, Anderson DE Jr, Fritsche TR: Tick-borne diseases in the United States. N Engl J Med. 1993; 329: 936-47. 32. Thorner AR, Walker DH, Petri WA Jr. Rocky mountain spotted fever. Clin Ifect Dis. 1998; 27: 1353-60. TAF Preventive Medicine Bulletin, 2008: 7(5) 468 www.korhek.org 33. Steeve AC. Lyme borreliosis. In: Kasper DL, Harrison TR: Harrison’s Manual of medicine.16th ed. New York: McGraw-Hill, 2005, p. 995-9. 34. Tick-borne diseases. www.aafp.org. 35. Centers for Disease Control and Prevention. Rocky Mountain spotted fever. Accessed online April 11 2005. at: www.cdc.gov. 36. Taege AJ. Tick trouble: overview of tick-borne diseases. Cleve Clin J Med. 2000; 67: 245-9. 37. Ticks. www.health.nsw.gov.au. 38. Centers for disease control and prevention. Lyme disease-United States, 1999. MMWR morb Mortal Wkly Rep. 2001; 50: 181-85. 39. Steere AC, Bartenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, et al. The early clinical manifestation of Lyme disease. Ann Intern Med. 1983; 99: 76-82. 40. Beers MH, Berkow R. The Merck manual of diagnosis and therapy. 17th ed. Merck Research Laboratories. Whitehause Station, n.J, 1999. 41. Treatment of Lyme disease. Med Lett Drugs Ther. 2000; 42: 37-9. 42. Deborah SF. Prevent Tick bites: Prevent Lyme Disease. Rutgers Coperative extensions. 1992, FS637. 43. Belman AL. Tick-borne diseases. Semin Pediatr Neurol. 1999; 6: 249-66. 44. Fritz CL, Glaser CA. Erlichsis. Infect Dis Clin North Am. 1998; 12: 123-36. 45. Cox SK, Everett ED. Tularemia, an analysis of 25 cases. Mo Med 1981; 78: 70-4. 46. Bratton RL; Corey GR. Tick-Borne Diseases. www.aafp.org. 47. Kjemtrup AM, Conrad PA. Human babesiosis: an emerging tick-borne disease. Int J Parasitology. 2000; 30: 1323-1337. Kaynak:TAF Preventive Medicine Bulletin, 2008: 7(5) Konu İle İlgili PDF formatını buradan indire bilirsiniz http://www.korhek.org/khb/khb_007_05-461.pdf

http://www.biyologlar.com/kene-ile-bulasan-hastaliklar

Biyolojik Savaşmı Sinir Savaşımı ?

Biyolojik savaş eskiden sadece Andromeda Strain (1971), Outbreak (1995), Twelve Monkeys (1996), Mission Impossible (2000) gibi filmlere ve The Coming Plague (1995), The Hot Zone (1995), The Cobra Event (1998), Rainbow Six (1999) gibi kitaplara konu olurken, Körfez Savaşı sırasında Amerika'nın Iraklı bilim adamları tarafından üretilen Anthrax temelli biolojik silahlara karşı askerlerine aşı yapma konusundaki titizliğiyle daha da önemli ve gerçek bir savaş haline geldi. Başkalarına zarar vermeye yönelik bulaşıcı bakteriyel veya viral (virüslerle ilgili) maddeler olarak bilinen biyolojik silahların çok uzun bir tarihi var. İlk çağ insanları insan ve bitkilerden elde edilen biyolojik toksinlere bulaştırılmış oklar kullanır ve düşmanlarını dışkılardan elde ettikleri zararlı toksik maddeleri su kaynaklarına bulaştırarak öldürürlerdi. Bir Rus şehri olan Kaffa'yı kuşatan ortaçağ savaşçıları veba hastalığı bulaştırılmış cesetleri mancınıklarla şehrin duvarlarından fırlatmışlardı.Avrupalılar bu hastalıklara direnci olmayan Yerli Amerikalılara çiçek hastalığı veya kızamık bulaştırılmış battaniyeler vermişlerdir.Biyolojik silahlar ilk olarak 2. Dünya savaşında kullanılmıştır. Zaman geçtikçe biyolojik silahlar biyolojik olarak çıkarılmış toksinler ve zehirler içermeye başladı.Bu zehirli maddelerden en tehlikelileri arasında çiçek hastalığı, Botalinyum toksini, Anthrax ve ricin gelir. Bazıları ölümcül iken diğerleri yerleşim yerlerini etkisiz hale getirir veya öncelikle hayvan ve bitkilere zarar verir. Bugün çoğu ülkenin bu konuya aşırı yatırım yaptığı biliniyor. Biyolojik silahlar modern bir konu oluyor Japonya 1918'de biyolojik silahlar üretimi ve araştırmalarına kendini adamış özel bir askeri ünite olan Ünite 731 ile ilk saldırgan biyolojik silah programını başlatmıştır. 1931'de bu ünite Çinli insanlar üzerinde deneyler yapılanbir yer olan Çin'deki Mançurya'ya taşındı ve aslında 1942'ye kadar bu ünite değişik şehirlere saldırılarda bulundu. En az 10,000 Çinli bu deneyler sırasında ölmüştür. 1942'de Amerika bu programı öğrendi ve böylece o da kendi programını başlattı. 1969'da Amerika artık anthrax, botulism, tularemia, brucellosis, Venezuela ve Q humması gibi hastalıklara sebeb olan maddelerle silahlanmasını tamamlamıştır. 1969'da başkan Nixon Amerika'nın tek yanlı ölümcül veya etkisiz hale getirici kimyasal maddeler ve silahların kullanımından vazgeçtiğini duyurdu ve şartsız olarak tüm biyolojik savaş metodlarını kullanmaktan vazgeçti. Bununla beraber Amerika biyolojik programı sadece katı bir şekilde tanımlanmış bağışıklık gibi savunma önlemleriyle ilgili araştırma yapacaktı. Stoklanmış bütün materyalin yok edilmesi istendi. ABD ve diğer 165 ülke biyolojik ve toksik silah antlaşmasını imzaladı ve 144 ülke bu antlaşmayı onayladı. Ama biyolojik sailahlar antlaşması uygulamaya geçmediği müddetçe etkili olamazdı. Örneğin, Rusya antlaşmayı imzaladı ama programlarına devam etti. 1979'da Sverdlovsk yakınlarındaki bir merkezde kazara Anthrax sızması en az 66 kişinin ölümüyle sonuçlandı. Sovyet otoriteleri biyolojik silah üretimini inkar etseler de yıllar sonra Yeltsin o zamanlar Anthrax'ın üzerinde çalışmalar yapıldığını söyledi. Yeltsin sonra tüm programların durdurulduğunu ve stokların yok edildiğini dile getirdi. Ama kanıtlar saldırı programlarının bir kısmının hala devam ettiğini gösteriyor. Sovyetler'in 1991'de çöküşüyle biyolojik silah üretimi konusunda bilgiler yayılmaya başladı. Margolis'e göre eskiden biyolojik savaş kurumlarında çalışan 60 bin bilim adamı ve teknisyenin şu anda Irak, Suriye, İsrail, İran ve Sırbistan gibi geniş biyolojik savaş silahlarıyla dolu cephaneliklere sahip ülkelerde çalışıyorlar. Hindistan bile Rusya'dan bu konuda yeterli yardım alabilir. Irak biyolojik silah programını 1995'da bildirdi. İyi olan şu ki, bu gibi silahlar misilleme olur korkusuyla Körfez savaşı sırasında kullanılmadı. Birleşmiş Milletler 1996'da Irak'ın biyolojik silah programında ne bulduysa yok etti. Çin, İran, Tayvan, Suriye, Küba, Kuzey Kore, Mısır, İsrail ve Libya'nın aynı tür programlara sahip olduğundan şüphe ediliyor. Biyolojik Silahlar Niçin Kullanılıyor İdeolojileri ve ilgileri insan hayatı ve gelecek nesiller dahil olmak üzere herşeyin üzerinde tutan milletler ve gruplar için bu tür silahlar çok çekici görünüyor. İşte bazı nedenler: 1. Biyolojik silah sayı bazında ele alındığında konvansiyonel silahlardan daha etkili. Sadece 8 gr "A" tipi olarak bilinen botalinyum toksin -bilinen en ölümcül madde- dünya üzerinde hiç canlı bırakmayacak kadar bir etkiye sahip olabilir.1 gr Anthrax 100 milyon ölümcül doz içerir ve birkaç kilosu Hiroşima'da ölen insan sayısı kadar ölümlere sebep olabilir. Genel düşündüğümüzde, birkaç kilo biyolojik etmen bir kaç ton nükleer gazın yapabileceği etkiyi yapabilir. Biyolojik silahlar çok etkilidirler çünkü aşırı toksik olmakla beraber hızlı çoğalan ve hedef noktalara ulaşan yaşayan organizmalardan oluşur. 2. Kimyasal ve nükleer silah üretmek çok sofistike ekipmanlar ve çok iyi yetişmiş eleman gerektirirken, bi-yolojik silah çok mütevazi bir eğitim ve yatırım gerektiriyor. ABD silah kontrol ve silahsızlanma acentası eski asistanlarından Kathleen C.Bailey, 10000 dolarlık ekipman ve 15x15 alanın muazzam biyolojik silah cephaneliği üretmek için yeterli olduğunu dile getiriyor. Örneğin; 1 km'lik alan bulaştırmak için 2000 $'lık konvansiyonel silah, 800$'lık nükleer silah, 600$ kimyasal silah gerektirirken, sadece 1 $'lık biyolojik silah bu alanı yerle bir etmeye yeter. Program, Phd'sini tamamlamış bir süpervisor kontrolünde bir düzineden az bilim dallarından mezun teknisyenle devam ettirilebilir. En biyolojik silah mikropları ile ilgili temel bilgi her yerde mevcut olup, ekipman ve kimyasallar bir çok yerden temin edilebilir. Seri ve yoğun üretim için canlı silahın sadece küçük bir örneğe ihtiyacı var. Bazı maddeler doğal olarak toprakta mevcut veya bir biotek şirketinde kolayca bulunabilir. Bir çok araştırmacı Saddam Hüseyin'in kendi orijinal Anthrax kültürünü edinmek için bu ikinci metodu kullandığı konusunda hemfikirler. 3. Birçok biyolojik silah taşınabilen ve/veya saklı şartlarda üretilebildiği için onları üretim aşamasında ortaya çıkarmak çok zor. Ortaya çıkarıldığında alan hızlıca te-mizlenebilir ve farmakolojik araştırmalar yapılan ve biyoloji laboratuvarına dönüştürülebilir. Ayrıca X-ışın makineleri, metal detektörler, eğitimli köpekler ve nötron bombardımanı gibi antiterörist sistemler biyolojik silahları ortaya çıkaramaz. 4. Zarar sadece insanlara ve diğer canlılara verilir. Böylece kızılötesi yapılar zarar görmez. Böyle bir tehditten çıkacak tek korku hükümetin paniğe kapılması ve silahın bırakılması ve ortaya çıkarılması. Arasında geçen uzun zamanın tanımlama ve teşhisi çok zor hale getirilmesi olarak göz önüne çıkıyor. Biyolojik silahların belli dezavantajları vardır: 1) Etkili bırakılmaya olan ihtiyaç. Birçok biyolojik silah nefes verip alırken etkisini gösterir. Çok büyük partiküller solunum sisteminde tutulurken küçük partiküller dışarıya nefesle atılır. Partiküllerin ciğerlerde kalması için, 1-5 Angstroms arasında olmalı. Japonya'daki bir biyolojik silah teşebbüsü hüsranla sonuçlandı, çünkü dissemination aracı (önceden haber veren cihaz) etkisizdi. 2) Dissemination olsa bile istenen sonuç kesin olmaktan çok uzak. Sporlar dahil çoğu biyolojik silah materyali ultraviyole ışınlar ve kurutma yöntemleriyle yok edilebiliyor. Havaya bırakılan maddeler hava değişiklikleri nedeniyle beklenmeyen bir şekilde yayılma gösterebilir.Yağmur bu maddeleri hedeflerine ulaşmadan yok edebilir. Ayrıca biolojik silahlar dönebilir ve onu bırakanları da etkileyebilir. Saldırının zayıflığı Biyolojik silahların iki kullanım sahası var: savaş alanı ve sivil hedefler. Savaş Alanı: Biyolojik silahları burda dış şartlara aşırı bağlılık, geçikmiş etkileri kendine bulaştırma, etkileri bulaştırılmış bir alanın ne zaman dönülecek kadar güvenli olacağı konusundaki güvensizlik ve aşılama veya koruyucu giysi konusunda nötralleştirme gibi dezavantajları var. Sivil Hedeflere yönelik kullanım: Bu alandaki Biyolojik silah kullanımı gerçek dehşeti doğuracak güce ulaşır. Çünkü, siviller böyle bir saldırıya hazır olmayacaklardır ve sonuçtaki salgın kontrol edilemeyecek kadar büyük olacaktır. Saldırı gizli ise otoriteler kaynağı tesbit edemeyeceklerdir ve etkilenen insanlar hastaneleri doldurana kadar saldırının farkına varamayacaklardır. Sonuçta madde tanımlansa bile, bulaşıcı geniş sahaya yayılmış olacaktır. Aşı mevcut değilse, sağlık personelleri çok fazla yardım edemeyeceklerdir. ABD bu tip saldırılara karşı etkileneceğe benziyor ve kendini korumak için çok titiz çalışmalar yapıyor. Peki, madem Biyolojik silahların temin edilmesi çok kolay niçin şimdiye kadar sivil hedefler üzerinde kullanılmadı? Bunun nedenleri arasında karşı saldırı korkusu ve toplumda uyanabilecek düşmanlık hisleri görünüyor. Biyolojik silahların potansiyel kullanıcıları dezavantajların avantajlardan daha ağır bastığını düşünürler ama bu düşüncenin her zaman devam etmeme ihtimaline karşılık ABD ve diğer ülkeler milli sağlık bakım ünitelerini ve personellerini böyle bir duruma karşı nasıl hazırlayacağı konusunda çalışmalar yürütüyorlar . Son Gelişme: 26 Temmuz 2001 Washington Post gazetesi ABD'nin biyolojik silahlardan vazgeçecegini, çünkü yeni oluşturulacak protokolün "kopyalamayı durdurmayacağı ve ABD'nin farmakolojik ve kimyasal endüstrisi noktasında casusluk yapıp bilgi sızdıracağı"nı düşünüyor. Sonuç: Tüm dinler yaşamın doğuştan kutsal ve saygı duyulmaya değer olduğu için bu tür silahları lanetlemişlerdir. Bununla beraber reel-politik, kâr için duyulan açgözlülük, ideolojik çatışmalar ile doğal ve diğer kaynaklar üzerinde kontrol etme gibi sebeplerden dolayı birçok hükümetin ve insanın dini çağrılara kulak tıkadığını görmekteyiz. Maalesef, bir devletin ve dahası bir grubun bu yolda ilerleme için verdiği kararlar, diğerlerinin kendi korunma içgüdülerinden dolayı aynı yolu takip etmemelerine sebep olmuştur. Bu yolda çok büyük ilerleme kaydettik ve kimse ne zaman biteceğini kestirememektedir. *Kaynak: The Fountain, Biological Warfare, October-December 2001, ISSUE 36. Yazar: By Joseph CLAY* - İng. Çev. Mustafa TOPRAK

http://www.biyologlar.com/biyolojik-savasmi-sinir-savasimi-

Keneler Hakkında Bilgi

Keneler Keneler zorunlu kan emici artropodlar olup, Dünya’nın her bölgesinde gözlenmektedirler. Ülkemizde halk arasında kene, sakırga, yavsı, kerni gibi isimlerle bilinmektedirler. Kenelerin sistematikteki yeri ve önemli türlerin isimleri aşağıda verilmiştir. Anaç: ARTHROPODA Anaç bölümü : CHELICERATA Sınıf altı: Acarina (Acari) Dizi: Metastigmata Aile: İxodidae Soy: İxodes Tür: İxodes ricinus Soy:Hyalomma Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Soy: Amblyomma (Türkiye’de yok) Tür: Amblyomma variegatum Soy: Haemaphysalis Tür: Haemaphysalis parva Tür: Haemaphysalis sulcata Tür: Haemaphysalis punctata Tür: Haemaphysalis inermis Soy: Dermacentor Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Tür: Rhipicephalus appendiculatus (Türkiye’de yok) Aile:Argasidae Soy: Ornithodorus Tür: Ornithodorus lahorensis Soy: Argas Tür: Argas reflexus Tür: Argas persicus Soy: Otobius Tür: Otobius megnini Günümüzde Argasidae ve Ixodidae ailelerine bağlı 850 türü bilinmektedir. Amblyomma soyu dışındaki soylara bağlı birçok kene türü, Türkiye’de yaygın olarak bulunmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Genel Morfolojik ve Biyolojik Özellikler Keneler morfolojik olarak diğer artropodlardan farklı olup, vücütları tek bir parçadan oluşmuştur. Vücudun ön tarafında ağız organelleri yer almktadır. 1.Aile: İxodidae (şekil 1) İxodidae ailesindeki türlere sert kene, mera kenesi veya yaz kenesi denir. Bu ailede bulunan türlerde caput, thorax ve abdomen tamamen birbirleriyle birleşmiştir. Olgunlarında ve nimflerinde 4 çift ayak , larvalarında ise 3 çift ayak vardır. Nimflerinde genital organlar henüz oluşmamıştır. Dorsalden bakılınca ağız organelleri görülebilir. Ağız organellerinin oturduğu kısıma basis caputili denir. Ağız organellerinin arkasında dişilerde vücudun önünde ve üst kısmında okul önlüğü yakası şeklinde kitini bir organ teşekkül ederki buna scutun denir. Erkeklerde bu oluşum dorsalde tüm vücudu kaplar, buna conscutum denir. Bu bakımdan erkekler kan emdiği zaman vücutlarında değişiklik olmaz. Buna karşılık dişiler kan emip doyunca normal büyüklüğünün 10 katı kadar genişleyebilir. Ağız organelleri 1 çift chelicer, chelicer kılıfı ve hipostom denilen delmeye ve kan emmeye yarayan organelden oluşur. Bu organellere rostellum denir. Rostellumun iki yanında bir çift palp bulunur. Ayrıca kenelerin dorsal kısmında, tür tayininde önemi olan, çukurluklar, feston, cervical oluklar ve noktalamalar bulunur. Ventralde ise anüs ile ikinci çift coxalar hizasında genital delik bulunur. Bu yüzde dişilerde anal oluk, erkeklerde ise kitini plaklar yer alır. Yine ventralde 4’üncü coxanın arkasında bir çift stigma bulunur. Ayaklarının sonunda bir çift tırnak ve tırnakların ventral yüzeyinde ise tutunmaya yarayan zar şeklinde pulvillum adı verilen organel vardır. (Argasidae’lerde bu organel yoktur). Önde birinci çift ayakta tarsuslar üzerinde Haller organeli denen bir çukurluk yer almıştır. Bu yapı duyu organelidir. Dişi kenelerde ovaryum ile barsak irtibat halindedir. Bu yüzden bazı keneler kan emerken parazitleri sindirim sisteminden ovaryumlarına geçirirler. Bu parazitler ovaryumdan yumurtaya geçerek, yumurtadan çıkan larvaları enfekte ederler. Bu larvalar kan emerken parazitleri de hayvanlara taşırlar (transovaryal nakil). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Biyoloji Keneler kan emerek beslenir, ancak bu diğer kan emen artropodlardan farklıdır. Keneler konakların tutunup ağız organellerini deri içine sokarlar ve burada sabitlenip doyana kadar aynı yerden kan emerler. Argasidaeler çok kısa sürelerde çok miktarda kan emip doydukları halde, Ixodidae ailesindeki kenelerin doyması için birkaç gün ile birkaç hafta arasında süre gerekmekte, hata bu süre içinde bazı Ixodidae türleri gömlek değiştirip diğer gelişme dönemlerine geçmektedirler. İxodidae türleri, genellikle ilkbahar ve sonbahar mevsimleri arasında aktiftirler. Bunlar evcil hayvanların kulak kepçesi içinde ve dışında, boyun altında, karın, anal ve perianal bölgeler ile sırt ve kuyruk üzerinde bulunurlar. Dişi keneler, erkeklerden daha fazla kan emerler. Hayatları boyunca geçirdikleri her dönemde (larva-nimf-olgun ) mutlaka kan emmek zorundadırlar. Erkek ve dişiler kan emme esnasında çiftleşirler. Ovipardırlar. Dişi keneler yumurtalarını taş, toprak ve merada yaprakların altına, toplu ve birbirine yapışık şekilde bırakırlar.Yumurtlama süresi ve miktarı, dişi kenenin az veya çok kan emmesine ve diğer dış faktörlere bağlı olarak değişir. Ayrıca türlere göre de yumurta sayısı değişiklik gösterir. Ortalama 3.000-15.000 arasında yumurta yumurtlarlar. Dişiler yumurtladıktan sonra ölürler. (Argasidae türleri ölmez). Yumurtadan çıkan larvalar 3 çift bacaklıdır. Birinci çift ayak tarsuslarında bulunan Haller organı konak bulmaya yarar. Türlere göre farklı sürelerde konaklardan kan emerler ve kan emdikten sonra yine değişen sürede gömlek değiştirirerek. 4 çift ayaklı nimf olurlar. Nimflerde larvalar gibi henüz genital organlar gelişmemiştir. Aç olan nimfler kan emer doyar ve gömlek değiştirdikten sonra aç olgun hale gelir. Erkek ve dişi olgun keneler kan emerken çiftleşir ve doyduktan sonra dişi toprağa düşer ve yumurtlar. Bu siklus böyle devam eder. Biyolojik gelişmeye göre konak değiştirmeleri esas alınarak İxodidae ailesine bağlı türler 3 grupta toplanır. a-Bir konaklı kene: Merada yumurtadan çıkan larvalar konak hayvana hücum eder, ondan kan emip doyduktan sonra konak üzerinde gömlek değiştirip nimf olur. Aç nimf kan emip doydukyan sonra konak üzerinde gömlek değiştirir. Ortaya çıkan aç olgun kenenin erkek ve dişisi kan emdikten sonra çiftleşir, dişiler konak hayvanı terkedip toprağa düşer yumurtlar ve ölür. Yani larva-nimf ve olgun safhalar bir hayvanda geçer. Örneğin, Boophilus annulatus. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com b-İki konaklı kene: İki konaklı kenelerde, larva ve nimf dönemini bir konakda geçirir, nimfler kan emip doyduktan sonra konak hayvanı terkederler. Meskende veya merada gömlek değiştirip aç olgun hale gelirler. Aç olgun keneler ikinci bir hayvana hücum ederek ondan kan emer, çiftleşir ve doyar. Daha sonra dişi kene toprağa düşer, yumurtlar ve ölür. Yani larva-nimf bir hayvanda, olgunu ise başka bir hayvanda geçer. Örneğin, Hyalomma türleri ve Rhipicephalus bursa. c-Üç konaklı kene: Üç konaklı kenede larva bir hayvandan kan emip doyar ve toprağa düşer.Toprakta gömlek değiştirip aç nimf olur.Aç nimf’ler ikinci bir hayvana hücum ederler. Ondan kan emip doyduktan sonra toprağa düşerler ve gömlek değiştirip aç olgun kene haline gelirler. Aç olgun keneler üçüncü bir hayvana hücum eder, kan emer ve çiftleşirler. Doyduktan sonra dişiler konak hayvanı terkedip toprakta yumurtlar ve ölürler. Yani bu kene türleri, larva, nimf ve olgun dönemlerinde ayrı ayrı veya aynı hayvana 3 kez gelmek suretiyle kan emer, gömlek değiştirme dönemlerini ise toprakta geçirirler. Dişiler yine yumurtalarını tprağa bırakırlar. Örneğin, İxodes ricinus, Dermacentor marginatus ve Haemophysalis punctata. İxodidae ailesine bağlı soylar, kenelerin ağız organellerinin uzun yada kısa olmasına göre birbirinden ayırtedilebilir. Ayrıca anal oluğun anüsü önden ve arkadan çevirmesi de soy ayrımında kullanılır. Buna göre İxodidae ailelerinde 7 soy vardır (Şekil 2). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 2. Ixodidae ailesinde bulunan soyların ayırım anahtarı. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şelil 2. Ixodidae ailesindeki soyların ayırım anahtarı Anal oluk anusun önünde Soy: BOOPHILUS Soy: RHIPICEPHALUS Soy: DERMACENTOR Soy: ANOCENTOR 7 feston 11 feston Feston var, anal oluk belirgin, Coxa I’de derin yarık var Feston yok, anal oluk belirsiz, Coxa I bütün Basis capituli altıgen şeklinde Basis capituli dikdörtgen şeklinde Soy: HAEMAPHYSALIS II. Palp eklemi laterale çıkıntı yapar II. Palp eklemi düz Soy: AMBLYOMMA Soy: HYALOMMA Ağız organelleri Basis capituliden çok daha uzun, II. Palp ekleminin boyu eninden daha fazla Ağız organelleri Basis capituli ile yakın uzunlukta, II. Palp ekleminin eni ile boyu birbirine yakın Soy: IXODES Anal oluk anusun arkasında Capitulum terminalde yerleşmiş, üstten bakıldığında görülür, Scutum var Capitulum ventralde yerleşmiş, üstten görülmez, Scutum yok Argasidae Ixodidae Basis capituli II. Palp segmenti Basis capituli II. Palp segmenti Anal oluk Anus Ağız organelleri uzun olanlar Soy: İxodes Sadece bu soyda anal oluk anüsü önden çevirir. Ayak çiftleri öne yakındır. Göz yoktur. Türkiye’de tek türü bulunur. Tür: İxodes ricinus Soy:Hyalomma Palplerin ikinci ekleminin boyu eninin 2 katıdır.Bacakları uzun yapılıdır (Şekil 3). Göz vardır. Bu soya bağlı 5 tür Türkiye’de bulunmaktadır. Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Şekil 3. Hyalomma sp. (erkek) Soy: Amblyomma Bu soya bağlı türler Afrika keneleridir. Ağız organelleri çok uzundur. Scutum üzerinde renkli alanlar mevcuttur.Göz vardır. Bir tür Türkiye’de Suriye sınırında bir vakada bildirilmişse de, ülkemizde olmadığı kabul edilmekltedir. Ağız organelleri kısa olanlar Soy: Haemophysalis Palplerin ikinci eklemi bazis caputuliyi yanlardan aşar. Göz yoktur. Daha çok Sonbahar ve Kış aylarında görülür. Bu soya bağlı 4 tür Türkiye’de bulumaktadır Tür: Haemophysalis parva Tür: Haemophysalis sulcata Tür: Haemophysalis punctata Tür: Haemophysalis inermis Soy: Dermacentor Bazis caputuli ağız organellerini yanlardan aşmıştır. Göz vardır. Scutum üzeri gri, açık kahverengi ve beyaz renklerde nakışlıdır. Daha çok Sonbahar aylarında aktiftirler ve konak hayvanların koyruk uçların bulunurlar. Türkiye’de 2 türü yaygındır. Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Ağız organelleri çok kısa olup, coxa 1’de yarık yoktur. Göz vardır. Türkiye’de bir türü bulunur. Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Coxa 1’de derin bir yarık olmasıyla Boophilus türlerinden ayrılır.Göz vardır. Bu soya bağlı 3 tür Türkiye’de yaygındır. Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Keneler, insan ve hayvan hastalıklarının naklinde rol oynayan en önemli vektörlerdendir ve diğer artropod gruplarının aksine bir çok çok farklı yapıdaki enfeksiyöz etkenleri (bakteri, virus, parazit, mantar) taşıyabilme yeteneğine sahiptirler. Kırım-Kongo Kanamalı Ateşi ve Keneler KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden askerlerde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda önem kazanmıştır. Ixodidae ve Argasidae ailesine bağlı 31 kene türünün virusun vektörü olabileceği bildirilmesine rağmen, bunların tümünün vektör potansiyeli gösterilememiştir. Kenenin tam anlamı ile vektör kabul edilebilmesi için, etken izolasyonu dışında, kenenin virusu duyarlı hayvanlara aktarabilme ve viremik hayvanlardan alabilme yeteneğinin de olması gerekmektedir. Bu kriterler yukarıda bildirilen 29 türden sadece bazılarında gözlenebilmiştir. Bunun yanında bazı türler virusu hem transovarial hem de transtadial olarak taşırken bazıları sadece transtadial olarak taşıyabilmektedir. Günümüzde hastalığın başlıca vektörlerinin Hyalomma marginatum marginatum, H.m.rufipes ve H.anatolicum anatolicum olduğu kabul edilmektedir. Ancak, Hyalomma türlerinin olmadığı bazı ülkelerde etkenin Ixodes ricinus, Dermacentor spp., Rhipicephalus spp. ve Boophilus annulatus gibi kenelerden izole edilmiş olması, diğer kenelerin de vektörlük potansiyelinin düşünülmesi gerektiğini göstermektedir. H.a.anatolicum ve H.m.marginatum genellikle iki konutlu gelişim gösterirler. H.a.anatolicum’un, gerek larva ve nimfleri, gerekse erişkinleri genellikle evcil ruminantları (özellikle sığırları) tercih etmesine karşı, H.m.marginatumun’un genç gelişme dönemleri (larva ve nimf) çoğunlukla küçük hayvanları (tavşan, kirpi, kanatlılar, fare, yabani memeliler) ve az olarak da büyük memeliler ve insanı tercih etmekte, erişkinleri ise ağırlıklı olarak evcil memeliler (sığır, at, koun, keçi, köpek) ve az olarak da küçük memeliler (tavşan, kirpi) ile insanı tercih etmektedir (Şekil 4). Göç eden kuşlar bu kenenin bölgeler arasında yayılışından büyük ölçüde sorumludur. H.marginatum, Güney Avrupa, Kuzey Afrika, Anadolu, Kafkaslar ve Eski Sovyet Cumhuriyet’lerini içine alan geniş bir yayılış alanına sahiptir. Bu keneler Şubat ile Aralık ayları arasında hayvanlar üzerinde görülebilse de, erişkinler Mart-Ağustos, larva ve nimfler ise Haziran-Kasım dönemlerinde aktif olarak kan emerler. Kışı, genellikle doymuş nimf veya aç erişkin şeklinde, ahırlardaki duvar çatlaklarında veya meralardaki (yarı-ormanlık alanlarda) kemirici yuvaları, toprak içinde veya ağaç kovuklarında geçirirler. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 4. Hyalomma m.marginatum’un yaşam döngüsü. (Konak hayvanların büyüklükleri kenenin tercih sırasına göre orantılanmıştır). Kenelerle Mücadele Günümüze kadar kullanılan hiç bir mücadele yöntemi (bir kaç sınırlı alan hariç), tam bir kene eradikasyonu sağlayamamıştır. Hali hazırda kene eradikasyonunun neredeyse olanaksız olduğu kabul edilmektedir. Yapılan çalışmalar 2 temele dayanmaktadır: I. Kenelerle nakledilen hastalıkların ortadan kaldırılması veya azaltılması (aşı çalışmaları vs) II. İnsan ve hayvanlardan kan emen kenelerin sayısını düşük maliyetlerle kabul edilebilir sınırlara indirilmesi a. Akarisid kullanımı Kenelerle mücadele genellikle konak hayvanların ve çevrenin düzenli aralıklarla akarisid ilaçlarla ilaçlanması esasına dayanmaktadır. Bu konu üzerinde çok uzun yıllar boyunca durulmuş olmasına rağmen, bir türlü istenen düzeyde başarı sağlanamamıştır. Her ne kadar akarisid kullanımı gerekli olsa da, bu oldukça zahmetli ve masraflıdır. Kaldı ki, büyük çapta programlı uygulamaların yapılması oldukça zordur. Akarisid ile kene konrolünün başlıca 7 zorluğu vardır 1. Kenelerin yoğun biçimde tarım ve orman alanları içinde yayılmış olması, çevreye zarar verecek düzeyde akarisid kullanımını gerektirmektedir. 2. Akarisilerin kenelerin konakları üzerinde tutundukları bölgelere ulaşabilmesi ancak konağın tüm vüudunun yıkanmasını gerektirmektedir 3. Konak üzerinde bulunmadıkları süre içinde keneler akarisid ilaçların ulaşamayacağı yerlerde saklanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com 4. Kenelerin yüksek orandaki üreme yeteneği (3000-7000 yumurta) ilaçlamaların düzenli bir sıklıkta yapılmasını gerektirmktedir. 5. Kenelerin uygun olmayan çevre koşullarında çok uzun süreler boyunca canlı kalabilmeleri. 6. Kenelerin konak seçiminde çok alternatifinin olması 7. Akarisid direncinin oluşması b- Kenelerin yaşam alanlarının değişrtirilmesi 1- Herbisidal ilaç kullanımı 2- Arazi yakma 3- Arazinin sürülmesi 4- Kuru yaprak tabakasının hatta orman taban örtüsünün kaldırılması Ancak, bu gibi önlemlerin uygulanması sonucunda kene populasyonunda sağlanan azalma, kenelerin yok edilmesinden çok, konak hayvanların bu gibi elverişsiz hale gelmiş ortamlardan uzaklanmasına bağlanmaktadır c- Konak hayvanların ortadan kaldırılması Bu yöntem özellikle dar bölgelerde kısıtlı konak kullanan keneler için kullanılsa da (Amblyomma americanum’un eradikasyonu için belli bölgelerde geyik populasyonunu ortadan kaldırmak), bu yöntem çok miktarda konak alternatifi olan keneler için uygun değildir. d- Biyolojik kontrol Kenelerin doğal düşmanlarının ortama salınması üzerinde çalışmalar olsa da, çok pratik değeri yoktur e-Kendi kendini ilaçlama Bu yöntem özellikle yaban hayvanları üzerindeki keneleri de etkilediğinden oldukça umut vericidir. Hayvanların ilgisini çekecek çeşitli obejelerin (yemlik, içinde yem bulunan plastik boru, ilaçlı pamuk) üzerine uzun etkili akarisid salınımını sağlayan düzenekler kurularak hayvanların kendi kendilerini ilaçlaması sağlanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com

http://www.biyologlar.com/keneler-hakkinda-bilgi

Stem cell breakthrough could set up future transplant therapies

Stem cell breakthrough could set up future transplant therapies

A new method for creating stem cells for the human liver and pancreas, which could enable both cell types to be grown in sufficient quantities for clinical use, has been developed by scientists. Using the technique, researchers have for the first time been able to grow a pure, self-renewing population of stem cells specific to the human foregut, the upper section of the human digestive system. These so-called "Foregut stem cells" could then be developed further to produce liver or pancreatic cells. The method significantly improves on existing techniques for cultivating this type of stem cell, and raises the possibility that, with further work, they could be grown in large numbers in bioreactors. That would make it possible to use them for regenerative therapies, repairing damaged organs or tissues in the body, and treating conditions such as type I diabetes or liver disease. "We have developed a cell culture system which allows us to specifically isolate foregut stem cells in the lab," Dr Nicholas Hannan, from the University of Cambridge Wellcome Trust MRC Stem Cell Institute, Department of Surgery, explained. Hannan led the study, which was carried out in the lab of Dr Ludovic Vallier. "These cells have huge implications for regenerative medicine, because they are the precursors to the thyroid upper airways, lungs, liver, pancreas, stomach and biliary systems. We now have a system where we may be able to create all these cell types from the same starting population." As reported in the journal Stem Cell Reports, the method also means that researchers will be able to analyse the embryonic development of foregut cells in greater depth. "We now have a platform from which we can study the early patterning events that occur during human development to produce the intestines, liver, lungs and pancreas," Hannan added. The approach marks a breakthrough because it overcomes some of the problems which currently limit scientists' abilities to grow cells associated with the liver, pancreas, and other parts of the foregut in sufficiently large numbers for clinical use. Stem cell growth starts with human pluripotent stem cells (hPSCs). These are non-specialised biological cells with the potential to transform - or "differentiate" - into any of the three primary layers of cells from which all tissues and organs develop. Because these cells also self-renew, creating copies of themselves, they offer the potential to provide an infinite source of clinically usable cells for regenerative medicine. Achieving this, however, relies on scientists developing effective methods through which they can influence the differentiation of hPSCs. To grow pancreatic or liver cells, hPSCs are differentiated into the endoderm - the primary tissue layer associated with the digestive and respiratory systems. This provides a base population of progenitors which researchers can then try to develop as more specialised cells. Unfortunately, the approach is far from perfect. In particular, it is difficult to produce a pure population of the required progenitors, and "contaminating" cells of the wrong type are typically found within the cell culture. This makes it difficult to identify the target cells for further differentiation in the lab and can complicate the application of these cells in transplant therapies. In some cases, hPSCs also produce such a large number of contaminating cells that the precursor population becomes unusable. To address these limitations, the research team carried out a detailed study of the conditions in which stem cells differentiate specifically into the human foregut - the section of the digestive system extending from the mouth to the duodenum, and including the liver and pancreas. By manipulating the signal pathways of the cells, and varying the environment in which the cells were developed and the substrate on which they were grown, they were able to isolate the precise culture needed for the differentiation of cells associated with the foregut itself. When heavily contaminated stem cell populations were developed under these conditions, the contaminating, non-endodermal cells eventually stopped proliferating and gradually disappeared. The universal nature of this culture system takes a step towards a universal system that could be used to treat any patient requiring cells for transplantation purposes. The result was a much purer, self-renewing population of human foregut stem cells (hFSCs). The cells generated are true stem cells because they are able to self renew and can differentiate towards any part of the foregut. Because they are also still at the stage where they self-renew, they could be grown in large enough numbers to be used in clinical therapies. The team was also able to show that these human foregut stem cells do not form tumours, which means that they can be safely injected for therapeutic purposes, without having adverse side effects. Although the procedure does not improve scientists' ability to produce pancreatic or liver cells specifically, it does provide a much purer source population for doing so. "What we have now is a better starting point - a sustainable platform for producing liver and pancreatic cells," Dr Ludovic Vallier said, senior author of the study. "It will improve the quality of the cells that we produce and it will allow us to produce the large number of uncontaminated cells we need for the clinical application of stem cell therapy." The team is now building on the research by studying the fundamental mechanisms which control the differentiation of hFSCs specifically as liver cells or pancreatic cells, to further improve the production of these cell types for regenerative medicine. Source : thomas.kirk@admin.cam.ac.uk http://www.biologynews.net/

http://www.biyologlar.com/stem-cell-breakthrough-could-set-up-future-transplant-therapies

Kanlıca mantarı Lactarius deliciosus

Alem: Fungi Bölüm: Basidiomycota Sınıf: Homobasidiomycetae Alt takım: Russulales Familya: Russulaceae Cins: Lactarius Lactarius deliciosus, Kanlıca mantarı olarak da bilinir, Russulaceae ailesinden yenebilen bir mantar türü. Görünüş olarak Lactarius salmonicolor 'a benzer, ancak erişkin formda şapkasının rengi turuncu, gri ve hafif yeşilimsi tonlardadır. Lamelleri turuncu renktedir. Kesildiği veya berelendiği zaman havaya temas edince yeşilimsi bir renk alır, sıkıldığı zaman süt benzeri bir sıvı çıkar. Tadı hafif acı-ekşimsi ama lezzetlidir.

http://www.biyologlar.com/kanlica-mantari-lactarius-deliciosus

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

İntiharda Risk Altındakileri Tanımak Önemli

İntiharda Risk Altındakileri Tanımak Önemli

İntihar, dünya genelinde önde gelen ölüm nedenlerinden biri iken, ABD'de ergenlerde üçüncü sıralamada karşımıza çıkıyor. New York State Psikiyatri Enstitüsü intihar araştırmacılarından Dr. Victoria Arango, intihar edenlerde, özellikle beynin gözün üst kısmında yer alan ve kendine zarar verme davranışını engelleyebilen orbital prefrontal kortekste tahribat olduğunu bulduklarını belirtiyor. Araştırmacılara göre, intiharla ölen insanların çocukları da intihar etmeye yatkınlar. Peki neden biri yaşama karşı ölümü seçmek gibi korkunç kararı verir? Bu, bilim adamlarının yıllardır cevabını bulmak için çabaladıkları bir soru. Ulusal Sağlık Enstitüsü İntihar Araştırma Konsorsiyumu Başkanı  Dr. Jane Pearson; “Suisidal bir halde iseniz, seçeneklerinizi daraltıyor gibisiniz. Bunu tek çözüm olarak görürsünüz. Gerçekten de diğer fikirleri değerlendirecek durumda değilsinizdir.” diye konuştu. Sadece 20 yıl önce intiharın biyolojisi ile ilgili az şey biliniyordu. Fakat Ulusal Sağlık Enstitüsü tarafından desteklenen araştırmalar intiharın altta yatan nedenlerini ortaya çıkarmaya yardım etti. Biyolojik ayrıntıları çalışılmaya devam etse de, suisidal düşünce ve eylemler açısından en çok risk taşıyan kişileri tanımlamak için bir çok ipucu ortaya çıktı. Her cinsiyetten, yaştan ve etnik gruptan kişi intihar açısından risk taşıyabiliyor. Kadınlar daha fazla intihar girişiminde bulunduğu halde erkeklerin intihar nedeniyle ölme oranı daha yüksek. Çünkü erkekler daha öldürücü yöntemler seçiyor. Pearson “En yüksek risk grubu yaşlı erkeklerdir” diyor ve ekliyor “Aslında 85 yaş ve üstü erkeklerin ölüm oranı ulusal ortalamanın 4 katı”. İntihar riski şizofreni ve bipolar bozukluk gibi bazı ruhsal bozuklukları olan kişilerde daha yüksek. İntihar edenlerin yarısında depresyon olduğu düşünülüyor. Daha önceki intihar girişimleri, madde kullanımı veya ailede intihar öyküsü olması gibi faktörler de riski arttırıyor. Geçmişte intiharın sadece bazı ruhsal bozuklukların bir sonucu olduğu düşünülürken şimdi intiharın biyolojisinin kendine özgü yönleri olduğu keşfediliyor. New York State Psikiyatri Enstitüsü intihar araştırmacılarından Dr. Victoria Arango’ya göre, özellikle beynin, gözün üst kısmında yer alan ve kendine zarar verme davranışını inhibe etmede rol oynayan orbital prefrontal kortekste tahribat olduğunda intihara eğilim artıyor. Arango ve arkadaşları yüzlerce intihar kurbanında çalışmalar gerçekleştirerek  beyinde bazı bölgelerdeki sinir hücrelerinin ve nörotransmiterlerin ulaştığı reseptörlerin değiştiğini gösterdiler. Çalışmalarda, başta serotonin olmak üzere diğer nörotransmiterlerin de içinde olduğu kimyasal yolakta farklılıklar olduğu belirtildi. Ulusal Sağlık Enstitüsü’nde ruhsal bozuklukların moleküler ayrıntılarıyla ilgili çalışan Dr. Douglas Meinecke ise, erken çocukluk dönemlerindeki olayların epigenetik markerler oluşturarak intihar davranışı ile ilişkilendirilen bazı genleri etkilediğini, erken müdahale için bu genlerin tanımlanmasının gerekli olduğunu belitiyor. İntiharı tedavi etmeye ve önlemeye yönelik tedaviler, ilaç tedavileri ve psikoterapi gibi yöntemler. Dr. Douglas Meinecke’e göre, intiharı önlemede en etkili bir başka yöntem ise uyarı işaretlerini görmek ve kişiyi derhal tedaviye almak. İntiharda en önemli işaretin kişinin ölüm ve intihar hakkında konuşması olduğunu belirten Meinecke, bunun çok önemsenmesi gerektiğine dikkat çekti. http://www.medical-tribune.com.tr

http://www.biyologlar.com/intiharda-risk-altindakileri-tanimak-onemli

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

DİPHYLLOBOTHRİUM LATUM

Erişkini insan, kedi, köpek, domuz gibi balık yiyen hayvanların ince bağırsağında yaşayan, balıkta larva dönemini geçiren en büyük cestodtur. Cestodların vücudu yassı, halkalara ayrılmış, uzun ve şerit şeklindeki helmintlerdir. Vücutları fonksiyon bakımından üç kısım içerir. 1)Baş (skoleks) 2)Boyun 3)Halkalar Baş üzerindeki vantuz ve çengelleri parazitin bağırsak duvarına tutunmasını sağlar. Boyun bölgesi ince ve segmentsizdir. Halkalar boyundan tomurcuklanma ile oluşur. Boyuna yakın olanları en genç olanları olmakla birlikte boyundan uzaklaştıkça genital organlar ve olgun halkalar meydana gelir ETİYOLOJİSİ: Parazit 3-10m ulaşabilmektedir. İnsan bağırsağındaki sayısı genellikle birdir. Badem şeklindeki skoleksin bütünü boyunca uzanan yarık şeklinde iki adet vantuzu vardır.Genital delikler halkaların ventralinde bulunur.Bir dişi parazit günde bir milyondan fazla yumurta bırakabilmekle birlikte yumurtalar 25-70 x 32-45 µm boyutunda sarımsı kahverenktedirler. EPİZOOTİYOLOJİSİ: Parazit yaşam süresi olan 10yıl boyunca 7 km’lik halka oluşturabilmektedir. Diphyllobothrium latum’ un, Turna, Levrek, Alabalık gibi tatlı su balıklarında su sıcaklığının 15 – 25 Cºolduğu dönemlerde 1 -2 cm’lik larvaları balığın iç organları arasında ve kaslarda kistleşmeye, organların birbirine yapışmasına neden olur. Etkene bağlı vakalar Türkiye’ de bildirilmiştir fakat ülkemizde çiğ ya da az pişmiş balık tüketilmediğimden bu vakalarda kesin değildir KLİNİK VE OTOPSİ BULGULARI: Klinik olarak asemptomatik olabilir. Semptomatik hastalarda karın ağrısı, kramplar, kilo kaybı ve daha çok B12 vitamini eksikliğine bağlı şiddetli anemi görülmektedir.B12 vitamini eksikliğinin nedeni parazitin bu vitamini emilmeden tüketmesidir.Dışkıda yumurta görülmesiyle tanı konulabilmektedir. Balığın iç organlarına yerleşen pleocercoid larvaların meydana getirdiği kistler hastalığın tanınmasını sağlamaktadır KORUNMA: Etlerin yeterli miktarda pişirilmesi tenya larvalarını parçalamaktadır. Tuvaletten sonra yeterli el yıkama ve daima uygun hijyen hastalığın yayılmasını önlemektedir. TEDAVİ: Tek doz Niklosamid oldukça etkilidir. Ayrıca Praziquantel ve Paramomisin kullanılmaktadır. KAYNAKLAR: www. ailem.com / templates / library http:// bilimsel konular. com/ index2 www. gata. edu. edv. tr/ dahibilimler/ infeksiyon www. hekimce. com Timur, G. , Timur, M. , 2003. Balık Hastalıkları, İ. Ü. Su Ürünleri Fakültesi Yayınları No. 5 www. vaxa. com/ human tapeworms – diphyllobothrium – latum. cfm

http://www.biyologlar.com/diphyllobothrium-latum

Biyolojik Silahlar

Kimyasal ajanlar gibi, biyolojik silahlar da neyse ki popüler kültürdeki şöhretlerine yakışır şekilde kullanılmış değiller henüz. 1971′de Kazakistan’daki bir iaboratuvardan kaçan ve silah olarak kullanılmak üzere hazırlanan çiçek hastalığı mikrobu yüzünden ölenlerin sayısı yalnızca 3. Üstelik hastalık salgın halinde ilerleme de göstermemiş. 1979′da şimdiki adı Ekaterinburg oian Sverdiovsk’taki bir fabrikadan sızan şarbon mikrobu içeren bir biyolojik silah yüzünden 68 kişi yaşamını yitirdi ve yine hastalık yayılmadı. İnsanların bu yüzden yaşamlarını yitirmeleri çok acı ama, yine de yaşam kaybı tek bir bombanın neden olacağından daha fazla değil. 1989′da Washington’da birkaç kamu işçisi kaza sonucu Ebola virüsüne maruz kaldı. Durum fark edilene kadar, birkaç gün boyunca bu işçiler sosyal yaşamlarını sürdürmüş, aile ve arkadaşlarıyla birlikte olmuşlardı. Buna karşın, bu olayda kimse yaşamını yitirmeden gerekli önlemler alınabildi. Gerçek şu ki, evrim milyonlarca yıl boyunca memeiilere, mikroplara karşı direnç gösterme özettiği kazandırdı. Örneğin kara veba, tarihte bilinen en kötü hastalıklardan biriydi; yetersiz sağlık hizmetleri ve kötü yaşam koşullarının hakim olduğu Orta Çağ Avrupası’nda at koşturdu. Ama salgın, insanlığı yok edemedi: birçok kişi hastalığı yendi. Bu senaryoların korku saçtığı günümüz batı toplumlarındaysa, hangi mikrop ya da virüs ortaya çıkarsa çıksın, daha sağlıklı insanlarla, gelişmiş sağlık hizmetleriyle ve biyoajanları yok etmek üzere geliştirilmiş ilaçlarla karşılaşacağı kesin. Belki günün birinde, bağışıklık sistemimizi ek-tisiz hale getirecek bir virüs üretebilen bir deli ortaya çıkar. Aslında mümkün olduğundan bir “süper hastalık” yaratılabilir ya da çiçek gibi, zaten var olan bir hastalık, mikrobun genleriyle oynanarak daha zararlı hale getirilebilir. Üstelik, zamanla biyoîeknolojinin gelişip, denetiminin daha güç olacağı düşünülürse, birtakım kişi ya da grupların, zararlı mikrop ya da virüsleri kolaylıkla üretebileceklerini de kabul edebiliriz. Ancak, yine de bilim adamları daha önce hiçbir korkunç hastalığın insanlığı ortadan kaldırmayı başaramadığı gibi, gelecekte de bunun pek olası olamayacağını söylüyorlar. Biyolojik silahlar diğer canlılar üzerinde zararlı etkiler yaratmak maksadıyla kullanılan bakteri, virüs, mikrobiyal toksinler, vb. ajanlardır. Bu tanım genellikle biyolojik olarak elde edilen toksinleri ve zehirleri de kapsayacak şekilde genişletilir. Biyolojik savaş araçları, yaşayan mikroorganizmaları (bakteri, protozoa, riketsia, virüs ve mantar) içerdiği gibi mikroorganizmalar, bitkiler ve hayvanlar tarafından üretilen toksinleri (kimyasallar) de kapsar. Yaşayan biyolojik maddeler kokusuz, tatsız ve havaya bulutu halinde atıldığı zaman 1 ila 5 mikron boyutunda son derece küçük parçacıklardan oluştuğundan insan gözüyle görülemez. Silah olarak kullanılabilecek biyolojik ajanlar şu şekilde sıralanabilir; Bakteriler: Küçük-serbest yaşayan organizmalar olup çoğunluğu katı veya sıvı kültür ortamında üretilebilirler. Bu organizmalar sitoplazma, hücre zarı ve nükleer materyaller içeren bir yapıya sahiptir. Basit bölünme ile ürerler. Oluşturdukları hastalıklar genellikle spesifik antibiyotik tedavilerine cevap verirler. Virüsler: İçlerinde çoğalabilecekleri canlı organizmalara ihtiyaç duyan organizmalardır. Bundan dolayı da enfeksiyoz etkileri büyük oranda konak hücrelere bağımlıdır. Virüsler genellikle antibiyotik tedavilere cevap vermeyen fakat antiviral bileşimlerin bir kısmına ve sınırlı kullanıma uygun preparatlara cevap veren hastalıklara neden olurlar. Riketsialar: Hem bakterilerin hem de virüslerin genel karakterlerini taşıyan mikroorganizmalardır. Bakteriler gibi metabolik enzimler ve hücre zarından oluşurlar ve oksijen kullanırlar ve geniş çaplı antibiyotiklere karşı duyarlıdırlar. Yaşayan hücreler içinde üremelerinden dolayı da virüsleri andırırlar. Klamidya: Kendi enerji kaynaklarını üretemediklerinden zorunlu hücre içi parazitlerdir. Bakteriler gibi geniş spekturumlu antibiyotiklere cevap verirler. Çoğalmak için virüsler gibi yaşayan hücrelere ihtiyaç duyarlar. Mantarlar: Fotosentez yapamayan, çürüyen bitkisel olgulardan besin ihtiyaçlarını sağlarlar. Toksinler: Yaşayan bitkiler, hayvanlar veya mikroorganizmalardan elde edilen zehirli maddelerdir. Bazı toksinler kimyasallara da dönüştürülebilirler. Toksinlere özel antiserum ve seçilmiş farmakolojik ajanlarla karşı konulabilir Literatürde çok sayıda biyolojik savaş ajanı belirtilmektedirler. Bunların arasında; Bacillus anthraksis (Şarbon Etkeni) Botulinum Toksinleri (Konserve Zehiri) Brucelloz (“Malta Humması” Etkeni) Vibrio Cholera ( Kolera Etkeni) Clostridium perfirenges (Gazlı Gangren Etkeni ) Salmonella typhi (Tifo Etkeni) Psoudomanas psoudomallei (Melioidozis hastalığı Etkeni) Psoudomanas mallei (Ruam hastalığı Etkeni) Yersinia pestis (Veba Etkeni) Francisella tularensis (Tularemi Etkeni) Coxiella burnetti ( Q Ateşi Etkeni) Smallpox virüs (Çiçek Hastalığı Etkeni) Congo-Crimean Hemorajik Ateşi Virüsü Ebola Virüsü Stafilokoksik Enterotoksin B Rift Valley Ateşi Virüsü Trichothecene mycotoxins Venezüella At Ensefaliti Plazmodium vivax (Sıtma Etkeni) Saxitoksin (predominant olarak doğada deniz dinoflajellileri tarafından üretilir) Kaynak:www.genbilim.com

http://www.biyologlar.com/biyolojik-silahlar

Örümcek Türleri

Örümcek, eklembacaklıların örümceğimsiler (Arachnida) sınıfının örümcekler (Araneida) takımından türlerine verilen genel ad. Hemen hemen dünyanın her tarafında yaşarlar. 63.000 kadar türü vardır. Baş ve göğüs kaynaşmıştır. Karın, göğüse ince bir bel (pedisel) ile bağlanmıştır. Aynı büyüklükte başka bir canlının beli bu kadar ince değildir. İçinden sindirim borusu, kan damarları nefes boruları ve sinir sistemi geçer. Örümceklerin boyları, birkaç cm'den 35 cm'ye kadar değişir. Ağızlarının önünde iki zehir çengeli (keliser) ve iki his ayağı (pedipalp) yer alır. Göğüslerinde ise, gelişmiş dört çift yürüme bacağı vardır. Uçları, tarak gibi dişli iki çengelle sonlanır. Örümcek bunların sayesinde ağ üzerinde rahatça dolaşır. Bir kısmı ileriye, geriye ve yanlara doğru yürüyebilirler. Çoğunun başında 3 veya 4 çift osel (basit) göz bulunur. Gözlerin dizilişi, sınıflandırmada önemli bir özelliktir. Yuvarlak olan karın kısmı yumuşak ve esnek olup, alt kısmında solunum delikleri, ipek bezleri, anüs ve cinsiyet organları yer alır. GENEL ÖZELLİKLER Örümcekler, yırtıcı hayvanlardır. Birbirlerine saldırmaktan çekinmezler. Avları çok çeşitlidir. Çoğu, böceklerle beslendiklerinden faydalı sayılırlar. Bazı tropikal türler amfibyum, sürüngen, küçük kuş ve memeli gibi omurgalıları avlarlar. Örümceklerin hepsi avlarını yakalamak için tuzak ağları kurmaz. Bir kısmı avlarını kovalayarak veya üzerlerine sıçrayarak yakalar. Suda böcek, kurbağa ve balık avlayanlar da vardır. Yakaladığı avını, kıskaçlarına açılan zehir salgısı ile felce uğratır. Sonra ısırarak avının iç organlarına, eritici enzimler ihtiva eden tükrük salgısını akıtır. Kısa bir zaman zarfında, avın iç organları eriyerek sıvı haline gelir. Örümcek, emici midesini bir pompa gibi kullanarak bu sıvıyı emer. Av, kısa bir sürede içi boş kabuğa döner. Örümcek, bu boş kabuğu ya olduğu yere bırakır veya başka bir yere atar. Böcekler, küçük kuşlar bu avlar arasındadırlar. Güney Amerika'da yaşayan, bacakları hariç 10 cm boyunda olan, toprakaltı inlerinde barınan bazı türler, tavşan ve tavukların içini boşaltabilecek güçtedir. Örümceklerin özofagusları (yemek borusu) çok dar olduğundan böyle beslenmek zorundadırlar. Ayrıca, ağız parçaları da bir sineği bile parçalayacak güçte değildir. Zehir çengelleri, avı delmeye ve zehir akıtmaya yarar. Uçtaki iğneli kısımları, bir şırınga gibi birer yan delikle biter. Deliğin böyle enjektörvari oluşu, tıkanma tehlikesini önler. İğne ava girince, zehir bu delikten sızar. Örümcekler, iki keliseri de kullanırlar. Isırdıkları zaman yanyana iki delik olması bu yüzdendir. Keliser, aynı zamanda, delik açma ve küçük cisimleri taşıma işlerine de yarar. Örümceklerin böceklerden ayrılan birçok özelliği vardır. Böceklerin çoğu kanatlı olduğu halde, örümcekler kanatsızdır. Böceklerde 6 bacak olmasına karşılık örümceklerde 8 bacak vardır. Antenleri olmadığından, ağız önündeki pedipalpler bu görevi üstlenirler. Dış görünüşleri bacağa benzediğinden bunlara duyu bacakları da denir. Üzerleri duyu algılayıcı tüylerle kaplı olup, dokunma, tad alma ve çevreyi koklayıp araştırma gibi görevler yaparlar. Üreme dönemlerinde erkeklerde spermaları biriktirip dişiye aktaran bir kopulasyon (çiftleşme) organı olarak da iş görürler. ve her tehlikeye karşı sperleri vardır. Örümceklerde trakealar (solunum boruları), akreplerde olduğu gibi karın altında kitap akciğerleri tipindedir. Kitap yaprakları şeklindeki deri kıvrımlarından dolayı solunum organları bu adı alır. İki veya dört tane kitap akciğerleri vardır. Eğer örümcekte bunlar iki ise, eksikliği ek solunum boruları ile tamamlanır ÖRÜMCEK AĞI NASIL OLUŞUR Örümceklerde, diğer eklembacaklılar gibi açık bir dolaşım sistemi bulunur. Kılcal damarları yoktur. Hemen hemen her yerde rastlanan örümcek ağı, aslında bir sanat şaheseridir. Yapılış maksadı avlanmak olan ağ, bir nevi tuzaktır. Fakat her örümcek türü ağ yapmaz. Ancak bütün örümcekler ağ tellerinden yumurtalarının etrafını saran kozalar yaparlar. Bazıları da ağ bezlerini, yaprakları yapıştırmakta, yuvalarının içini döşemede, açtıkları çukurun çevresini kapatmakta vs. işlerde kullanırlar. Ağ kurmayan bu tür avcı örümcekler de, arkalarında ağdan bir iz bırakarak, rüzgarla sürüklenmekten korunurlar. Erkekler, dişileri bulmakta da bu izlerden faydalanırlar. Karın altlarının arka taraflarında üç çift ağ organları bulunur. Her birinin dışarıya ayrı bir çıkışı vardır. Bezlerden meydana gelen yapışkan ve sıvı iplik maddesi, havayla temas edince sertleşir. Her ağ memeciğinde 100 kadar ince ve küçük kanalcıklar bulunur. Bu ince kanalcıklardan sızan iplikçikler bir araya gelerek büküldükleri zaman tek iplik durumuna gelirler. Esnek ve yapışkandırlar. Bir sinek ne kadar sert çarpsa da kopmazlar. Ağ yapmak isteyen örümcek, ağ organlarını bacaklarının bir kısmı ile bastırarak ağ maddesinin akışını başlatır. Örümcekler, iplik deliklerinden çıkan tellerin hepsini toplayıp bir tek tel halinde kullandıkları gibi bunlardan ayrı ayrı incecik tel de yaparlar. Düşme esnasında bir yere taktığı ağ telini, kendisi yere varıncaya kadar uzatabilir. Genç örümcekler, ağ tellerinin sayesinde uzun mesafelere uçabilirler. Bunun için telin bir ucunu bir yere bağlayarak kendilerini hava akımlarına bırakırlar. Böylece yerlerinden havalanan örümcekler, karada 5 km, denizde ise yüzlerce km uzaklara savrulabilirler. Okyanuslardaki ıssız adalarda yaşayan örümcekler, hep böyle havadan gelmişlerdir. Sonbaharda bol bol rastlanan ağ telleri de uçan genç örümceklerden kalmıştır. Ağ yapacak olan bir örümcek, önce yüksekçe bir yere tırmanarak, ağın ucunu bulunduğu kısma yapıştırarak ipek iplik yardımıyla aşağı süzülür. Gözüne kestirdiği bir dala ulaşarak bağlantı kurar. Sonra o iplik üzerinde gidip gelerek ağı kalınlaştırır. Daha sonra vücudundan çıkmakta olan ipliğin bir ucunu ilk ipliğe tutturarak kendisini boşluğa bırakır. Ağa bağlı halde bir yere varınca, o ucu vardığı yere yapıştırır. Bu yolla birkaç gidiş gelişte ağın kaba iskeleti meydana gelir. Bundan sonra iskeletin merkezi çevresinde dairevi halkalar yaparak ağı tamamlar. Ağ örümü çoğunlukla gece olur. Örülmesi en fazla 60 dakika alır. Ağın ortasında spiral ve yapışkan bir yer vardır. Diğer iplikçikler kurudur. Bir sinek ağa konsa hemen yapışır. Kurtulmak için çırpındıkça daha da yapışır. İkaz iplikçiği ile avın yakalandığını anlayan örümcek gelerek avını zehirler. İkaz iplikçiğinin bir ucu ağa bağlı, diğer ucu ise daima kendisindedir. Ağlar, genellikle yere dik vaziyettedir. Maksat, uçan arı ve sinekleri yakalamaktır. Her örümcek türünün, kendisine has ağ örme stili vardır. Ancak dikkati çeken nokta, ağlarda geometrik inceliklerin her zaman varlığıdır. Ağ örme işi örümceklerin, doğuştan kazandıkları bir sanattır. Küçük bir örümcek, daha önce hiç ağı görmemiş ve örmemiş olmasına rağmen büyüklere benzer ağlar örer. ÖRÜMCEKLER NASIL KORUNUR ? Bazı örümcekler düşmanlarından korunmak için çeşitli hilelere başvururlar. Güneydoğu Asya'da bir örümcek türü yaptığı büyük ve dairevi ağının ortasında durur. Bu duruş örümcek yiyen kuşlar için kolay bir hedef teşkil eder. Örümcek, düşmanlarını yanıltmak için birkaç adet sahte ağ merkezi tesis eder. Yediği avlarının kalıntılarını da ağ merkezlerine takarak manken örümcekler kullanır. Başka bir örümcek çeşidi de diken ve ağaç kabuklarından manken örümcekler yapar. Örümcek ağlarının ipleri ipektir. Bu iplikler, aynı çaptaki çelik telden daha sağlamdır. Örümceğin ipeği, ipekböceğinin ipeğinden daha ince ve daha dayanıklıdır. Üstelik bildiğimiz ipekten daha güzeldir. Ancak yapılan araştırmalar göstermiştir ki, örümcek ipeği tellerinden ince ipek elde etmeye imkân yoktur. Daha doğrusu çok pahalıya mal olmaktadır. Bunun başlıca sebebi, örümcekleri bir arada tutmanın zorluğudur. Zira bir arada bulunan örümcekler birbirini yerler. ÖRÜMCEKLERDE ÜREME Örümcekler ayrı eşeyli canlılardır. Dişileri erkeklerden daha iridir. Bazı türlerde erkekler de ağ yapar. Örümceklerde bir arada yaşamak, toplum ve aile hayatı yoktur dense de bazı türlerin birkaç birey olarak yasadıkları litaratüre geçmiştir. Erkekten daha iri olan dişiler, çiftleşme sonrası diğer örümceği yiyebilirler. Örümceklerde en ilgi çekici hususlardan biri de erkeklerde duyu bacaklarının eşleşme organı vazifesi görmesidir. Erkek önce bir sperma ağı örerek üzerine bir damla spermatozoon sıvısı bırakır. Sonra ters dönerek bu sıvıyı şırıngaya çeker gibi pedipalplerin şişkin kısmına doldurur. Bundan sonra dişiyi aramaya çıkar. Örümceklerin çiftleşmesinde erkek örümcek, daima ölümle karşı karşıyadır. Çiftleşme zamanında erkek örümcekler dişilerin karşısında çeşitli hareketlerle, dişilere açlığını unutturmaya çalışırlar. Sıçramalarla yaptığı bu hareketlere örümceğin sevgi dansı denir. Dişi örümceğe açlığını unutturmak için dans yaparken ondan uzak durmaya da dikkat eder. Zira bir anda yakalanmak tehlikesi vardır. Bazıları, çiftleşme öncesi dişi örümceğe bir böcek ikram ederek açlığını giderir. Bir tehlike kalmadığını anlayınca dişiye yaklaşır. Açlığını hatırlayan dişi, erkeği yemeyi düşündüğü için, erkekler çiftleşmeden sonra hemen kaçarlar.Genelde erkek, dişi aramaktan, sevgi dansından ve çiftleşmekten yorulduğu için dişi için çiftleşme sonrası en yakın protein kaynağı olarak görülür ve birçok örümcek kaçmaya fırsat bulamadan dişi örümceğe yem olur. Fakat her çiftleşmeden sonra dişinin mutlaka erkek örümceği yediği söylenemez. Dişi örümcekler yumurtalarını, ağ ipiyle yaptıkları kokon adı verilen kozalara (torbalara) bırakırlar. Bir kozada bazan yüzlerce yumurta olabilir. Genellikle yazın sonlarında döllenen yumurtalar, ilkbaharda yavru verir. Yaz başlarında döllenen yumurtalardan 20-60 gün içinde yavru çıkar. Örümcek, sonbaharda sarımsı beyaz renkli kokon adı verilen ipek bir koza içine bıraktığı yumurtalarına karşı çok şefkatli olmasına rağmen dişilerin yumurtaları veya yavruları yediği de olur.Bu durum yumurtaların döllenmemiş olduğunu gösterebilir.Yumuşak ve çok küçük olan bu yumurtalarla dolu kozayı bir dala, taş altına duvar yarığına, ağaç kovuğuna veya çalılıklar arasına emin bir yere yapıştırır.Kokon anne örümcek tarafından çevrilerek alttaki yavrularında hava alması sağlanır. İlkbaharda doğan yavrular ana-babalarına benzerler. Doğduktan birkaç gün sonra iyi bir ağ kurup kendi kendilerine beslenirler. Çoğu türlerde, yavrular erişkinliğe erdiği zaman babaları çoktan ölmüş olacaktır. Zira erkek örümcekler erişkinlikten sonra birkaç yıl yaşarlar. SINIFLANDIRMA Trigonotarbida - tükenmiş Amblypygi Araneida - örümcekler Mesothelae Opisthothelae Araneomorphae Mygalomorphae - tarantula ve tarantula benzeri örümcekler Phalangiotarbida - tükenmiş Opiliones - phalangidler, uzun bacaklı örümcekler (6,300 tür) Palpigradi Pseudoscorpionida - yalancıakrepler Ricinulei Schizomida Scorpiones - akrepler (2,000 tür) Solifugae - böğler (900 tür) Haptopoda - tükenmiş Uropygi - (100 tür) Acarina - maytlar ve keneler (30,000 tür) Acariformes Sarcoptiformes Trombidiformes Opilioacariformes Parasitiformes

http://www.biyologlar.com/orumcek-turleri

Yatay gen transferi

Yatay gen transferi, bir organizmanın, ikinci bir organizmadan türemeden, o ikinci organizmaya ait genetik malzeme edinmesini sağlayan herhangi bir süreçtir. Buna karşın, dikey transfer bir organizmanın kendi atalarından (yani ebeveynlerinden) genetik malzeme edinmesidir. Genetik bilmi bu iki transfer biçiminden daha yaygını olan dikey transfere odaklanmış olmakla beraber, yakın zamanda yatay transferin de anlamlı bir olgu olduğu bilincine varılmıştır. Yatay gen transferinin yapay biçimi bir genetik mühendislik şeklidir. Yatay gene transferi ilk defa 1959'da, farklı bakteri türleri arasında antibiyotik direncinin aktarılabildiğinin gösterilmesi ile keşfedilmiştir. Japon araştırmacılar tarafından yapılan bu buluşunun ne anlama geldiği Batı bilimcileri tarafından anlaşılması için bir 10 yıl geçti. Michael Syvanen bu konuda çalışmış ilk batılı araştırmacılardandır. Syvanen, 1984'ten itibaren yatay gen transferi üzerine bir dizi makale yayınlamış, yatay gen trasnferinin olduğunu öngörmüş, yeryüzünde yaşamın başlangıcından itibaren evrim tarihini etkilemiş olan bir süreç olduğunu belirtmiştir. Gen ve genom çalışmaları prokaryotlar arasında önemli miktarda yatay gen transferi olduğunu göstermekteler. Bu olgunun tek hücreli ökaryotlar için de anlamlı olduğu görülmektedir. Bulgular, protistaların evriminde de yatay gen transferinin önemli bir rol oynadığını göstermektedir. Bitki ve hayvanların da bu olgudan etkilendiğine dair belirtiler vardır, ama bunun ne derece önemli olduğu açık değildir Virüsler Mimivirüs adı verilen virüs, sputnik adlı uydu virüs tarafından enfekte edilebilir. Sputnik virüsünün genlerinde 13'ü herhangi başka hiçbir gene benzemekle beraber, 3 tanesi mimivirüs ve mamavirüs genleriyle yakın ilişkilidir. Bu genlerin mimivirüsün kendini paketlemesi sırasında edinilmiş olduğu tahmin edilmektedir. Bu bulgular, bazı uydu virüslerin, virüsler arasında yatay gen transferi yapabileceğini göstermektedir. Bakteriyofajların bakteriler arasında gen taşıması da buna benzetilebilir. Prokaryotlar Yatay gen transferi birbirine uzak akraba olan bakteriler arasında dahi yaygındır. Bu süreç, antibiyotik direncinin baçlıca nedeni olarak sayılmaktadır; bir bakteri direnç edinince, direnç genini kısa sürede başka türlere de aktarabilmektedir. Enterik bakteriler, içinde bulundukları bağırsaktaki diğer bakterilerle genetik alışverişte bulunurlar. Yatay gen transferi için başlıca üç mekanizma vardır: Transformasyon, hücre içine yabancı genetik malzeme (DNA veya RNA) girmesi sonucu hücrenin kalıtsal değişime uğramasıdır. Bu süreç bakterilerden göreceli olarak yaygındır, ama ökaryotlarda daha enderdir. Transformasyon, deneysel, endüstriyel amaçlar için bakterilere yeni genlerin sokulması için sıkça kullanılır. Bakınız moleküler biyoloji ve biyoteknoloji maddeleri. Transdüksiyon (genetik), bakteri DNA'sının bir virüs (bakteriyofaj, veya kısaca faj) aracılığıyla bir bakteriden diğerine taşınması. Bakteriyel konjugasyon, bir bakterinin hücresel temas yoluyla DNA'sını bir diğer bakteriye aktarması. Ökaryotlar DNA dizilerinin analizi ökaryotların içinde, mitokondri ve kloroplast genomlarından çekirdek genomuna, yatay gen transferinin olmuş olduğuna işaret etmektedir. Endosimbiyoz teorisinde belirtildiği gibi, kloroplast ve mitokondrilerin kaynağı, ökaryotik hücrelerin atası bir hücrenin içindeki bakteriyel endosimbiyontlardı. DNA dizi karşılaştırmaları farklı türler arasında pek çok genin yatay transferini göstermiştir, bu transferlerin bazıları farklı üst-alemler arasında dahi gerçekleşmiştir. Bakterilerden bazı mantarlara, özellikle Saccharomyces cerevisiae mayasına yatay gen transferi iyi belgelenmiştir. Aduki fasulya kınkanatlısının kendi endosimbiyontu Wolbachia 'dan genetik malzeme edindiğine dair de kanıtlar vardır. Wolbachia bakterilerini artropod ve filaria nematodlarında önemli bir genetik malzeme kaynağı olduğu gösterilmiştir Rafflesiaceae bitki ailesinin parazitlerinin, konak bitkiden bazı mitokondri genlerini yatay transfer yapmış olduğu da gösterilmiştir. Ayrıca, henüz kimliği bilinmeyen bir bitkinin kloroplastından Phaseolus fasulyasının mitokondrisine transfer olduğu gösterilmiştir.  

http://www.biyologlar.com/yatay-gen-transferi

BİYOTEKNOLOJİK GELİŞMELER

BİYOTEKNOLOJİK GELİŞMELER

Bu makale iki bölümden oluşmuştur. Birinci bölümünde, biyoteknoloji ile değişen dünya düzeninde olası devrimsel gelişmeler ve söz konusu gelişmelerin eğitim bilimleri açısından öngörülen doğurgusu ele alınmıştır.

http://www.biyologlar.com/biyoteknolojik-gelismeler

Toplu Sözleşme Sağlık Personeline Neler Getiriyor

2012-2013 dönemini kapsayan kamu görevlileri toplu sözleşme görüşmeleri neticesinde sağlık personelinin de önemli kazanımları olmuştur.  Bu çerçevede konu ile ilgili Sağlık Bakanlığı Strateji Geliştirme Başkanlığımız tarafından bir çalışma gerçekleştirilmiştir. Bu çalışma ile sağlık çalışanlarımızın ek ödeme ve mali haklarına yönelik getirilen önemli düzenlemeler aşağıda başlıklar halinde özetlenmiştir: 1- Yemek yardımı; 01/07/2012 tarihinden geçerli olmak üzere sözleşmeli personel de diğer memurlar gibi Devlet Memurları Yiyecek Yardımı Yönetmeliğinden yaralanacaktır. Buna göre sözleşmeli personel de yataklı tedavi kurumlarında ücretsiz yemek yiyebilecektir. Bu düzenleme ile sözleşmeli personele aylık yaklaşık 80 TL katkı sağlanmaktadır. 2- 112 acilde şoförlük de yapan acil teknisyenlerine ilave performans puanı; 01/07/2012 tarihinden geçerli olmak üzere, Sağlık Bakanlığı 112 acil sağlık hizmetleri kapsamında sağlık teknikeri (acil tıp teknikeri) ve sağlık memuru (acil tıp teknisyeni, toplum sağlığı teknisyeni) olarak görev yapan ve asli görevlerinin yanında süreklilik arz edecek şekilde ambulans şoförlüğü görevini de yürüten personelin performans puanlarına 10 puan daha ilave edilecektir. Budüzenlemenin personele aylık getirisi yaklaşık 50 TL olacaktır. 3- Mesleki üst öğrenimi tamamlayan sözleşmeli personelin ücretlerinin artırılması; 01/07/2012 tarihinden geçerli olmak üzere, sözleşmeli personel pozisyonlarında görev yapan sağlık personeli sağlık hizmetleri sınıfına atanılabilecek mesleki bir üst öğrenimi bitirirse sözleşme ücretleri, hizmet yılları dikkate alınarak aynı pozisyon unvanındaki üst öğrenimliler için öngörülen sözleşme ücreti esas alınarak ödenir. Bu düzenleme ile lise mezunu iken 4 yıllık yükseköğrenim tamamlayan sözleşmeli personelin ücretinde 180 TL civarında artış sağlanacaktır. 4- Tabip dışı personelin ek ödemelerinin aylıklarla birlikte ödenmesi; 01/06/2012 tarihinden geçerli olmak üzere tabip dışı personelin ek ödemesi her hangi bir katkıya bağlı olmaksızın aylıklara ilişkin hükümler uygulanmak suretiyle her ay aylıklarıyla birlikte ödenecektir.  Uygulama ile her ay maaş ödemesi ile birlikte denge tazminatı tutarı peşin olarak ve herhangi bir şarta bağlı olmaksızın yapılacaktır. Yıllık izin, rapor gibi nedenlerle döner sermaye gelirine herhangi bir katkıda bulunmasa bile, anılan personele bu tutar peşin olarak verilmeye devam edilecektir. Böylece anılan personelin eline her ayın 15’inde maaş ile denge tazminatı tutar garanti olarak geçecektir. Ödenen bu tutar takip eden ayda ödenecek performans ek ödemesi tutarından düşülecek ve kalan kısım personele performans ek ödemesi olarak ödenecektir. Mayıs ayı ek ödemesi ile birlikte hekim dışı personel Haziran ayında en az 2,5 aylık sabit ek ödeme alacaktır.  Örneğin 10. derece hemşire, ebe veya sağlık memurunun Haziran ayı içerisinde çalışmış olduğu dönem olan 1-31 Mayıs için en az 584 TL, 1 Haziran-14 Haziran dönemi için 272 TL, 15-Haziran-14 Temmuz dönemi için ise 584 TL olmak üzere asgari 1.440 TL ek ödeme yapılacaktır. Bunun dışında Mayıs ayına ait varsa performans ödemesi ayrıca ödenecektir. Bu uygulama üniversiteler ve adli tıp kurumu için de geçerlidir. 5- 112 acil sağlık hizmeti personelinin ek ödeme tavanının artırılması; 01/07/2012 tarihinden geçerli olmak üzere 209 sayılı kanuna göre daha önce ek ödeme tavanı % 150 olan 112 acil sağlık hizmeti personeli için bu oran % 200’e çıkarılmıştır.  Bu tavan artışı ile bir hemşirenin veya sağlık memurunun ortalama net ek ödemesi 250 TL civarında artacaktır. 6-        Dini bayramlarda nöbet ücretinin artırılması; Nöbet ücretleri dini bayram günleri için % 20 artırımlı ödenecektir. Örneğin normal günlerde lise ve dengi mesleki öğrenim görmüş hemşirenin saatlik nöbet ücreti 3,31 TL iken  %20 (0,68 TL) oranında arttırılarak dini bayram günlerinde 3,97 TL ye yükseltilmiştir. Normal günlerde saat başına 6,20 TL nöbet ücreti alan bir pratisyen hekim dini bayramlarda 7,44 TL nöbet ücreti alacaktır. 7-Pratisyen hekim ve diş hekimlerinin garanti ek ödeme miktarının yükseltilmesi; 01/07/2012 tarihinden geçerli olmak üzere, pratisyen hekim ve diş hekimlerinin ek ödemesi 375 sayılı Kanun Hükmünde Kararnamenin ek 9 uncu maddesi uyarınca kadro ve görev unvanı veya pozisyon unvanı itibarıyla belirlenmiş olan ek ödeme net tutarından az olamaz. Buna göre örneğin 4. derece pratisyen tabiplerin garanti ek ödemesi 400 TL civarında diş hekimlerinin garanti ek ödemesi 370 TL civarında artacaktır. 8- Vekalet eden personelin ek ödeme matrahının artırılması; 15/07/2012 tarihinden geçerli olmak üzer uygulama ile artık sağlık müdür yardımcısı, şube müdürü, hastane müdürü veya hastane müdür yardımcılığına vekalet edenlere yapılacak ek ödemeler vekalet edilen kadronun matrahı üzerinden hesaplanacaktır. Uygulama ile örneğin bir sağlık memurunun şube müdürlüğüne vekâlet etmesi durumunda ortalama net 350 TL civarında, il sağlık müdür yardımcılığına vekalet etmesi halinde 400 TL civarında ek ödemesi artacaktır. 9- Vergi yükünden dolayı yıllık geliri emsali personelden düşük gerçekleşen personele fark ödemesi yapılması; Uygulama ile sağlık personeline bir mali yıl süresince mali hakların tutarı olarak ödenen toplam meblağın; 375 sayılı KHK’dan yararlanan emsali personele bir mali yıl süresince mali hakların tutarı olarak ödenen toplam meblağdan az olması durumunda aradaki fark mali yılın sonunda döner sermaye bütçesinden ödenir. Bu durumda olan personelin yıllık 200-250 TL civarındaki mali kayıpları telafi edilmiş olacaktır. 10- Taşınır kayıt kontrol yetkilisine mali sorumluluk tazminatı; Mali sorumluluk zammı almayan aynı zamanda taşınır kayıt kontrol yetkilisi olarak görevlendirilenlere kadro veya görevleri itibarıyla öngörülen mali sorumluluk zammı ödenecektir. Uygulama ile memur, hemşire, ebe, sağlık memuru vb. kadrolarda bulunan personelden taşınır kayıt kontrol yetkilisi olarak görev yapanlar mali sorumluluk zammı almazken bu uygulama ile aylık net 12 TL civarında tazminat alacaklardır. 11- Sosyologların zam ve tazminatlarının yükseltilmesi; Uygulama ile Sağlık Bakanlığında sosyolog olarak görev yapanların maaşları 300 TL civarında artırılmaktadır. 12-Burs alan veya Devletçe okutulan çocuklar için aile yardımı ödeneği verilmesi; 15/07/2012 tarihinden geçerli olmak üzere devletçe okutulan veya burs verilen çocuklar için aile yardımı ödeneği verilecektir. 13- Maaş farkı (5,5 aylık ) ve geç ödeme farkının ödenmesi; Uygulama ile yeni belirlenen katsayı, artış oranı ve ücret tavanları uyarınca kamu görevlileri ve emeklilerine 01/01/2012-14/06/2012 dönemi için yapılması gereken fark ödemeleri, hesaplanmaları müteakiben ödenecektir. Söz konusu artışların geç ödenmiş olması nedeniyle fark ödemesi yapılacak kamu görevlileri ve emeklilerine, söz konusu döneme ilişkin toplam fark ödemesinin % 2,25'i oranında geç ödeme farkı ayrıca ödenir. Buna göre 4. derecedeki bir uzman hekim gecikme zammı dahil 420 TL, 4. derece bir pratisyen hekim 370 TL ve 8. derece bir hemşire, ebe veya sağlık memuru 240 TL civarında fark alacaktır. Aile hekimleri ve aile sağlığı elamanlarına da fark ödemesi yapılacaktır.  Ayrıca varsa nöbet ücret farkları da ödenecektir. 14-Emekli olanlara ödenen tazminatın artırılması; 01/07/2012 tarihinden geçerli olmak üzere emeklilik tazminatı 100 TL artırılacaktır. Kamuoyunun bilgisine saygıyla duyurulur. http://www.saglik.gov.tr

http://www.biyologlar.com/toplu-sozlesme-saglik-personeline-neler-getiriyor

Lactarius Kanlıca mantarı

Alem: Fungi Bölüm: Basidiomycota Sınıf: Homobasidiomycetae Alt takım: Russulales Familya: Russulaceae Cins: Lactarius Tür: Lactarius salmonicolor Lactarius salmonicolor, Kanlıca mantarı olarak da bilinir, Russulaceae ailesinden yenebilir bir mantar türü. Şapka büyüklüğü 5-15 cm kadardır. Mantar gençken ortası hafifçe çukurdur, kenarı içeri kıvrıktır, büyüdükçe ortası daha da çukurlaşarak hemen hemen huni şekline döner, rengi turuncudur, açık sarıdan erik sarısına kadar değişir. Genel görünüşle turuncu ve sarıdan ibaret halkalıdır. Çizildiği zaman havayla temas edince yeşil renkleme yoktur. Lameller başlangıçta kırmızımtırak sarı beyaz, daha sonra açık portakal rengi tonundadır. Sapa doğru kıvrımlı şekil alır, sap üzerinde birazcık devam eder. Sapı 3-6,5 cm boyunda 0,8-2,5 cm kalınlığında, silindir şeklindedir. Renk bakımından portakal sarısı, dip kısmında kırmızımtırak sarı beyaz, yukarı kısmında şarap kırmızısı turuncudur. Sapın etli kısmı kırmızı-pembedir ve koparıldığında turuncu renkte bir sıvı çıkarır, sıvı hava ile temas edince kırmızılaşır. Gençken içi dolguludur, daha sonra şapkaya kadar olan alt kısımda boşlukludur. Etli kısmı kırmızımtırak sarı beyaz renkli, meyve kokulu ve yumuşak, sünger gibidir. Spor izi parlak kırmızımtırak sarı, tunç rengindedir. Çam meşçerelerinde ve çam ormanı açıklıklarında, çayırlıklarda, Avrupa'da yapraklı ağaç ormanlarında, ilkbahar ve sonbaharda yağmurlardan sonra görülür. Mantarın tadı acımsı fakat lezzetlidir.

http://www.biyologlar.com/lactarius-kanlica-mantari

Beslenme Şekliniz Kanser Riskini Belirliyor

Beslenme Şekliniz Kanser Riskini Belirliyor

Kanser hastalığında nedenlerinin de, korunma yollarının da başında beslenme geliyor. Yeterli ve dengeli beslenen kişiler kanserden kalp hastalıklarına, bağırsak problemlerinden sindirim sistemi sorunlarına kadar birçok hastalıktan korunuyor. Neolife Tıp Merkezi Uzman Diyetisyeni Lale Özbek, günümüzde en sık yapılan hatanın çocukları erken yaşta şeker ve türevlerine alıştırmak olduğunu belirtiyor. Sağlıklı beslenmede kilit nokta ise doğal gıdalar tüketmek… SEBZE&MEYVE Günde en az 5 porsiyon tüketmek gerekiyor. Mümkün olduğunca soymadan ve pişirmeden tüketilirse alınan vitamin ve mineral oranı artıyor. Çocuklara sebze yeme alışkanlığının küçük yaşta başlatılması ve ailenin çocuklara örnek olması öneriliyor. YAĞLAR Aşırı yağ tüketimi kanser oluşumuna etki ediyor. Aşırı tereyağı tüketimine bağlı olarak; lösemi, ağız, özofagus, tiroid, mide, pankreas, endometrium, prostat, kolorektal, testis gibi kanser türlerinin riskinin arttığı biliniyor. Aşırı mısıryağı tüketimine bağlı olarak; kolon, mide, prostat, pankreas, karaciğer, akciğer gibi kanser türlerinin riskinin arttığı biliniyor. Soya yağı; içeriğine soya girmiş tüm ürünler meme kanseri riskini artırıyor. Aşırıya kaçmamak kaydıyla hakiki sızma zeytinyağı kullanılması öneriliyor. ETLER Sağlıklı bir yaşam için et tüketiminde aşırıya kaçılmasını önermediklerini belirten Uzman Diyetisyen Lale Özbek, “Özellikle mangal, döner usulü ateşe direkt maruz kalan etler; kolon, rektum, endometrium, safrakesesi, karaciğer, mide, akciğer, özofagus, lösemi, prostat gibi kanser türlerinin riskini artırıyor. Günde yaklaşık 100 gr et tüketilmesini, bir öğünde et tüketiliyorsa diğer öğünde sebze tüketilmesini öneriyoruz. Şarküteri ürünleri ise içeriğindeki sodyum nitrat nedeniyle mide kanserini tetikliyor. Nadiren yenilse dahi yanında portakal suyu ya da gerçek limon sıkılmış bir salata yemek bu gıdalardaki zararlı maddelerin emilimini azaltıyor” diyor. KURU BAKLAGİLLER Bitkisel protein kaynağı olduğu için kolesterolü yükseltmeyen kuru baklagiller, bağırsakları çalıştırıyor, kan şekerini dengeliyor. MUCİZE BESİNLER BALIK ve SEBZE&MEYVE Birçok kişi zayıflamak, sağlıklı olmak ya da kanserden korunmak için mucize besinler arıyor. Uzman Diyetisyen Lale Özbek, mucize olarak nitelendirilebilecek gıdaların balık, sebze ve meyveler olduğunu vurguluyor. Omega 3 ihtiyacının karşılanması için herkesin haftada 400 gr ızgara ya da buğulama derin su balığı yemesini; günde en az 5 porsiyon meyve ve sebze tüketmesini öneriyor. http://tahlil.com

http://www.biyologlar.com/beslenme-sekliniz-kanser-riskini-belirliyor

Halüsinojen mantarlar

Halüsinojen mantarlar, anormal bilinç durumları meydana getiren psilocybin ve psilocin maddelerini içeren bütün mantarlara verilen addır. "Sihirli mantarlar" olarak da bilinirler.

http://www.biyologlar.com/halusinojen-mantarlar

Philadelphia Kromozomunu Duymuş muydunuz?

Philadelphia Kromozomunu Duymuş muydunuz?

KML nadir görülen bir hastalık. Her yıl bu tür kan kanseri, yani lösemi tanısı konulan insan sayısı aynı kalmaktadır. Ancak, hastalıkla mücadelede geliştirilen tedavilerle giderek artan sayıda insan artık KML ile yaşamlarını sürdürmeye devam edebilmektedir. 22 Eylül Kronik Miyeloid Lösemili (KML’li) hastalar için çok özel bir tarih. İlk defa 22 Eylül 2011’de dünyanın her yanından hasta dernekleri bir araya gelerek “Uluslararası KML Farkındalık Gününü”nde  Max Vakfı, Alianza Latina ve Uluslararası KML Vakfı’nın desteği ile sağlık mesleği mensuplarına, hükümetlere ve sektöre hastalığın bilinirliğinin artırılması için işbirliği çağrısında bulundu. İşte bu sebeple, KML’ye neden olan 9 ve 22 numaralı kromozomlardaki genetik değişikliği sembolize eden 22/9 tarihinde dünyanın her yerinde farkındalığı sağlayıcı etkinlikler düzenlenmektedir ve bu tarih Uluslararası KML Günü olarak takvimlerde yerini almıştır. KML hastalarının kromozomlarında bulunan kusurlu gen Philadelphia’da keşfedildiği için Philadelphia kromozomu olarak anılmaktadır. Ulusalararası KML Günü nedeni ile Türk Hematoloji Derneği adına açıklama yapan Dernek Başkanı Prof. Dr. Teoman Soysal, “daha 13 yıl öncesine kadar KML’nin çoğu hasta için ölümcül bir hastalık olduğunu, ancak hedefe yönelik tedavilerin tıbbın hizmetine sunulmasıyla KML’nin günümüzde artık yönetilebilen kronik bir hastalık düzeyine geriletildiğini” belirtti. Prof. Dr. Soysal “KML erken tespit edildiği ve iyi tedavi edildiği takdirde, hastalar kaliteli ve uzun bir yaşam sürebilir. KML birçok kanser türü için hedefe yönelik tedaviler için model haline gelmiş bulunuyor” dedi. Dünyaca ünlü basketbol oyuncusu Kareem Abdul Jabbar da Aralık 2008 yılından beri bu hastalıkla mücadele ediyor. Hastalık kendisini olduğu kadar ailesini de etkilemiş. Bu nedenle ünlü basketbolcu KML bilinçlendirme kampanyalarında gönüllü yer alıyor, sosyal medyada, gazetelerde, radyo ve dergilerde bu hastalığın bilinirliğine yönelik röportajlar veriyor. Röportajlarında “düzenli kan kontrolleri yaptırdığını, tedavisini aksatmadığını, eğer bırakırsa hayatını tehlikeye atmış olacağını” belirten Kareem Abdul Jabbar, KML’nin bilinirliğini artırmak amacı ile dünya ülkelerini ziyaret ediyor ve çeşitli etkinliklere katılıyor. http://www.medical-tribune.com.tr

http://www.biyologlar.com/philadelphia-kromozomunu-duymus-muydunuz

Psilocybe cubensis

Psilocybe cubensis

Alem: Fungi Bölüm: Basidiomycota Sınıf: Homobasidiomycetae Takım: Agaricales Familya: Strophariaceae Cins: Psilocybe Tür: P. cubensis Psilocybe cubensis, Strophariaceae familyasından psilocybin ve psilocin maddelerini içeren halüsinojen bir mantar türü. Genelde tropik ve sub-tropik bölgelerde çayırlık yerlerde yetişir. Psilocybe cubensis, Maya'lar tarafından iyileştirme ve ruhani ayinlerde kullanılmıştır. Mantar ilk olarak 1904 yılında F.S. Earle tarafından Küba'da isimlendirilmiştir, o yüzden cubensis adı verilmiştir. İçerdiği psikoaktif maddeler şunlardır: Psilocybin (4-Phosphoryloxy-N,N-dimethyltryptamine) Psilocin (4-hydroxy-N,N-dimethyltryptamine) Baeocystin (4-Phosphoryloxy-N-methyltryptamine) Norbaeocystin (4-Phosphoryloxytryptamine) Tüketilmesi durumunda 4-6 saatlik etkisi vardır. Alınan doza ve kişinin özelliklerine bağlı olarak, genelde renklerin daha canlı ve farklı görülmesi, farklı bir bilinç ve algılama durumuna geçiş ve halüsinasyonlar gibi etkileri vardır. Çok ender durumlarda kişinin yoğun psikiyatrik tedavi görmesini gerektirecek tehlikeli problemlere yol açabilir. Genel olarak çok fazla yan etkisi olmasa da Psilocybe ailesindeki mantarlara çok benzeyen ölümcül derecede zehirli mantarlar (Galerina autumnalis gibi) olduğundan kesinlikle bilinçsizce toplanmamalı ve yenmemelidir. Çoğu ülkede Psilocybe cubensis ve diğer halüsinojen mantarların üretimi, bulundurulması ve tüketimi yasaktır.

http://www.biyologlar.com/psilocybe-cubensis

Platyhelmintheslerin Tayin Anahtarı

1. Strobila monozoik (üreme organları bir takım) ; embriyo altı çengelli............ ..................... ........................................................Classis: Cestodaria (Amphilina) 1. Strobila polyzoik (Spathobothriidea hariç herhangi bir takım üreme organı kapsayan birçok progllittidler) veya monozoik (Caryophyllidea) ; embiryo altı çengelli........................................................................................Classis: Cestoda. 2 2 . Segmentasyon yoktur.................................................................................3 2 . Segmentasyon genellikle belirgindir..............................................................19 3 Skolekste gerçek bothria yoktur; dış segmentasyon yoktur fakat ganotlar çoktur........Dizi : Spathebothriidea 4 4. Yapışma organı huni şeklindedir..............................Aile:Cyathocephalidae 6 4. Yapışma organı bir veya iki dorsal ve ventralde , apikale açılan yuvarlak boşluk mevcuttur........Aile : Diplocotylida. 5. Skolekste içten birbirinden tamamen ayrılan boşluklar: genital açıklık ventralde Soy : Diplocotyle 5. Skoleksteki boşluklar birleşmiş ; genital açıklık dorsalden ventrale düzensiz olarak değişir..................................................Soy ; Bothriomonas 6. Cirrus utero- vaginal kanala açılır........................7 6. Cirrus ayrı olarak utero- vaginal kanalın ön kısmına açılır......... .................12 7. Uterus kıvrımları cirrus kesesinin önüne uzanır..............................................8 7. Uterus kıvrımları cirrus kesesinin önüne uzanmaz........................................10 8. Ovaryum (U) veya (V) şeklindedir..........................................Soy; Spartoides 8. Ovaryum (H) şeklinde............... ..............................9 9. Skoleks’te iki tane tabak şeklinde çöküntü ; boyun uzun ve dar.......... Soy : Biacetabulum 9. Skoleks’te üç çukurluk ; boyun kısa ve geniş.........................Soy: Archigetes 10. Ovaryum (V) veya (U) şeklindedir.......................................Soy;Bialovarium 10. Ovaryum (H) şeklinde...................................................................................11 11. Skoleks yelpaze şeklinde , anteriör ucu saçaklı;çukurluk yoktur..................... ..............................................................................................................Soy; Khawia 11.Skoleksin anteriör ucu yuvarlak ; iki çukurluk vardır....................... ....................................................................................................Soy ; Pliovitellaria 12. Uterus kıvrımları cirrus kesesinin anteriörüne uzanır.....................................13 12. Uterus kıvrımları cirrus kesesinin anteriörüne uzanmaz.................................14 13. Skoleks büyük , anteriöre doğru genişlemiş olup iki büyük ve derin bothria vardır...............................................................................................Soy : Capingens 13. Skoles küçük olup üç çift çok az belirgin çöküntü vardır................................... .........................................................................................Soy: Hypocaryophyllaeus 14. Skolekste çöküntü veya bothria vardır.............................................................15 14. Skolekste çöküntü veya bothria yoktur............................................................16 15. Skoleks içe dönük ; çöküntü var veya yoktur; genellikle post – ovarian ; vitellaria yoktur.......................................................................Soy : Monobothrium 15. Skoleks yelpaze veya kalkık yassı disk şeklinde ;üç çift çöküntü ; post-ovarianvitellaria vardır....................................................................Soy:Glaridacris 16. Post-ovarian vitellaria yoktur..........................................Soy: Pseudolytocestus 16. Post-ovarian vitellaria vardır............................................................................17 17. Skoleks yassılaşmıştır.......................................................Soy: Caryophyllaeus 17. Skoleks konik olup içe dönük yapıya sahip olabilir........................................18 18. Skoleks büyük olup gövdeden geniştir; dar boyun yoktur; kısa, küt yapıda...... ........................................................................................................Soy: Huntarella 18. Skoleks küçük; dar boyun vardır;ince ve uzun yapıda........................................ ................................................................................................Soy:Atractolytocestus 19. Skolekste iki botria .............................................Dizi: Pseudophyllidae 20(X) 19. Skolekste dört botria ......................................................Dizi: Tetraphyllides 23 19. Skolekste dört emici.................................................Dizi: Probeocephalidea 24 20. Skolekste kitinli çengeller ................................................................................. .........................................................Aile :Trisenophoridae (Soy: Triaenophorus) 20. Skolekste kitinli çengeller yoktur....................................................................21 21. Genital atrium marginal; skoleks subspherial ve genellikle yüzeysel olmakla beraber belirgin......................................................................Aile: Amphicotylidae 21. Genital atrium medialde ;skoleks uzunca .......................................................22 22.Yüzeysel bothrialı pseudoskoleks vardır ; primer skoleks dört tentaküllü ; küçük kurtlardır........................................Aile:Haplobothridae (Haplobothrium) 22.Skoleks dört loblu , az çok köşeli olup uzun yüzeysel bothriası vardır; orta veya büyük kurtlardır..........................................................Aile Bothriocephalidae 23. Skolekste apikal emici; her bothriumun anteriör sınırının önünde yardımcı emici vardır.........................................................................Soy : Pelichnibothrium 23. Skolekste apikal emici yoktur; her bothrium bir veya iki yardımcı emici vardır.......................................................................................Soy: Phyllobothrium 24. Skoleks anteriöre doğru genişlemiş olup emiciyi örten vücut kıvrımı vardır.....................................................................................Soy: Corralobothrium 24. Skolekste emiciyi örten vücut kıvrımı yoktur.................................................... 25. Testisler bir tek alan içinde ................................................Soy: Proteocephalus 25. Testisler iki ayrı lateral alanda ...............................................Soy: Ophiotaenia (Ekingen,G.,1983 )

http://www.biyologlar.com/platyhelmintheslerin-tayin-anahtari

Jacques-Yves Cousteau - Kaptan Cousteau Kimdir

Jacques-Yves Cousteau - Kaptan Cousteau Kimdir

Çocukluğundan beri denize ilgi duyan Jacques-Yves, denizaltının eşsiz güzelliklerinin farkına, 26 yaşında genç bir deniz subayı iken varır. İlgisi giderek büyür ve ölünceye dek süren bir sevdaya dönüşür. Jacques-Yves, dünyanın bütün denizlerini dolaşır. Kimsenin dillerini bilmediği binlerce dost edinir ve bize de bu "Su Gezegeni" ni başkalarıyla paylaşıyor olduğumuzu anımsatır. Onların efendisi değil, dostu olmamızı ister. Bunun için de sonuna kadar çaba gösterir. Subay ve Dalgıç Jacques-Yves Cousteau, 11 Haziran 1910'da Bordeaux yakınlarında, zengin bir pazar şehri olan St. Andre-de-Cubzac'de doğar. 4 yaşında yüzmeyi öğrenir. Çocukluğunda suya olduğu kadar, makinalara da ilgisi vardır. Daha 11 yaşındayken bir model vinç ve 13 yaşındayken de pille çalışan bir araba yapar. Babası Amerikalı bir milyonerin yanında çalışmaktadır. Ailesini iki yıllığına Amerika'ya götürür. Ağabeyi Pierre ile Manhattan sokaklarında oyun oynayan Jacques-Yves, nefesini tutarak dalmayı da Velmont'da, göl kıyısındaki bir yaz kampında öğrenir. Fransa'ya döndüklerinde, biriktirmiş olduğu parayla küçük bir film kamerası alır. İlk filmini 13 yaşında çeker. Ancak filmi çekmeden önce kamerayı söker ve parçalarına ayırır. Nasıl çalıştığını anlamaya çalışır. Tekrar toplar. Evde, arkadaşlarıyla filmler çeken Jacques-Yves, hem yönetmen hem kameraman hem de yapımcıdır. Mekanik aletlere büyük bir merakı olmasının yanında okula karşı ilgisizdir. Sorunlu bir öğrencidir. Sonunda ailesi onu, Alsace'da, katı kuralları olan yatılı bir okula gönderir. Bu yeni çevrede Cousteau, çok başarılı olur. Yatılı okuldan sonra 1930'da, Brest'teki deniz akademisine girer. Eğitim için düzenlenen dünya turuna katılırken, yanına kamerasını da alır. Egzotik yerlere ait yüzlerce makara film çeker. Bir keresinde de Güney Denizi'nde midye ararken garip bir gözlük kullanan inci avcılarını görüntüler. Fransa'ya döndüğünde, genç bir deniz subayı için zamanın en heyecan verici kurslarından birine katılır ve Fransız Donanması Havacılık Okulu'nda uçmayı öğrenir. Ancak pilotluk sınavına girmeden birkaç hafta önce babasının spor arabasıyla, sisli dağ yollarında giderken kaza yapar. Hastane yatağında gözlerini açtığında, iki kolu da kırıktır. Böylelikle pilotluk kariyeri daha başlamadan biter. Aslında bu kaza, Cousteau'nun hayatını kurtarmıştır. Havacılık Okulu'ndaki tüm arkadaşları yakında çıkacak olan 2. Dünya Savaşı'nda ölecektir. 1933'de Fransız Donanması'nın bir topçu subayıdır ve 1935'e kadar Primauguet Kruvazörü'nde görevli olarak, Uzak Doğu'da bulunur. Döndüğünde, Toulon'daki deniz üssünde topçuluk eğitmenliği yapar. Bu arada, arkadaşı Philippe Taillez'in önerisi üzerine, kollarını güçlendirmek için düzenli olarak hergün Akdeniz'de yüzmeye başlar. İki arkadaş, sonra aralarına katılan Friedric Dumas ile birlikte, yüzücü gözlükleriyle dalış denemeleri yaparlar. Cousteau, 1936 yılında gözlükleri takarak yaptığı ilk denemesinde denizaltındaki manzaradan çok etkilenir. Aynı yıl, öğrenci olan Simone Melchoir ile tanışır ve ertesi yıl evlenirler. Cousteau ve iki arkadaşı, daha derine dalma ve daha uzun süreler su altında kalma konusunda kararlıdırlar. Kendi yaptıkları şnorkelleri, vücudu kaplayan, yalıtılmış dalış giysileri ve en son buluşlardan biri olan (içinde sıkıştırılmış hava bulunan) tüplerle yaptıkları taşınabilir soluma cihazlarıyla, kendi dalış takımlarını oluştururlar. Deneme dalışlarını kaydetmek için Cousteau, kamerası için su geçirmez bir kılıf geliştirir. 2. Dünya Savaşı'nın başlaması, hatta Almanların çok kısa bir sürede Fransa'yı işgal etmeleri bile, bu sualtı araştırmalarını durduramaz. Savaşta, direniş hareketine katılır ve İtalyan işgal kuvvetleri arasında casusluk yapar. Hizmetlerinden dolayı savaştan sonra, Legion d'Honneur nişanıyla onurlandırılır. Bu sırada dalgıçları, rahatça yüzebilen balıkadamlar haline dönüştürme çabaları sürer. Mevcut dalış elbiseleri çok ağır ve pahalı olmalarının yanısıra dalgıcın hareketlerini de oldukça kısıtlamaktadır. İlk scuba araştırmaları sonucunda Paris'te mühendis Emile Gagnan ile tanışır. Gagnan, savaş döneminde, arabalarda benzin yerine gaz kullanılmasını sağlayan bir araç geliştirmiştir. Cousteau ile birlikte, denizaltının basınçlı ortamında, dalgıçtan gelen talep üzerine, tüpteki sıkıştırılmış havayı otomatik olarak ayarlanan bir regülatör yaparlar. Aqua-lung (aqua:su, lung:ciğer) adıyla patent alırlar. Bu aygıt, ilerde daha çok "scuba" (Self-Contained Underwater Breathing Apparatus- su altında kendi kendine soluma aygıtı) olarak tanınacaktır. Haziran 1943'te, Fransız Rivyerası'nda Cousteau, 23 kg'lık aygıtı dener. İki hava tankı, hortum, regülatör, ağızlık ve gözlükten oluşan ilk scuba ile 18 m derinliğe dalar. Her türlü manevrayı dener. Hareketlerini rahatlıkla yapar. Tüpteki havanın gelişi de hiçbir şekilde engellenmemektedir. Takibeden birkaç ay içinde Cousteau, Tailliez ve Dumas, birçoğu filme kaydedilmiş 500'den fazla dalış yaparlar. Ekim ayında Dumas, 65 m derinliğe dalarak rekor kırar. En derin dalışlarını bile kısa tutarak "vurgun yememeye" çalışırlar. Çünkü derinde uzun süre basınç altında kalınca, solunan havadaki azot, dalgıcın kanında erir. Eğer dalgıç su yüzeyine doğru hızla çıkarsa, kandaki azot tekrar, kabarcıklar şeklinde gaz hale döner. Bu kabarcıklar, damarları tıkayıp kalbi durdurabilir. Scuba dalgıçları, bir yandan vurgunlardan kaçınmayı öğrenirken bir yandan da Cousteau'nun "derinlik sarhoşluğu", doktorların ise "nitrojen narkozu" diye adlandırdığı yeni ve ilginç bir duygu ile tanışırlar. 30 m'nin altındaki derinliklerde, beyin dokularındaki soğurulmuş azot, bir takım anormal davranışları uyarmaya başlar. Bu davranışlar, bazı dalgıçlarda panik şeklinde ortaya çıkarken, bazılarında da sarhoşluğun verdiği güven ve mutluluktan dolayı, sırtındaki tüpü çıkarıp geçen bir balığa vermek şeklinde olabilir. Cousteau ve arkadaşları, yavaş yavaş, güvenli dalmanın yöntemlerini geliştirirler. Savaş sonunda eşi Simone da çok iyi bir dalgıç olmuştur. Hatta Cousteau, 1938 ve 1940'da doğan oğulları Jean-Michel ve Philippe için bile küçük scubalar yapar. İlk ticari scuba takımı ise 1946'da piyasaya sürülür. Fransız Donanması'ndaki görevini sürdüren Cousteau, 1948'de kaptan olur. Üstlerini, bir sualtı araştırma ekibi kurmaya ikna eder. Bu ekibin görevi, sualtı dalış tekniklerini ve sualtı fotoğrafçılığını geliştirmektir. Ekip, savaştan sonra, Fransız Limanlarındaki Alman mayınlarını temizlemekte gösterdiği büyük başarının yanında, Tunus Kıyılarında 2000 yıllık bir Roma batığını da ortaya çıkartır. Bu çalışmaların, sualtı arkeolojisine de önemli katkıları olacağı anlaşılır. İki yıl sonra Fransız Okyanus Kurumu Başkanlığı'na getirilen kaptan Cousteau, Akdeniz'deki dalışlarına devam ederken bir yandan da diğer denizlere dalmayı ve okyanuslar hakkında bilgi toplamayı düşlemektedir. Calypso Kısa bir süre sonra Amerikan yapımı eski bir mayın tarama gemisi olan Calypso'yu görür. 600 HP dizel motorlarıyla saatte 23 km hız yapabilen, 8 yaşındaki Calypso, eski görünüşüne rağmen sağlam bir gemidir. 1950'de, ilerdeki araştırmaları için onu satın alır. Bir yıl kadar süren dönüştürme çalışmaları sonunda Calypso, okyanus araştırmaları için hazır hale getirilir. Cousteau, yolculuklar için gereken parayı sağlamak, aynı zamanda kamuoyunda sualtı araştırmalarına olan ilgiyi arttırmak amacıyla, birçok film yapar ve kitaplar yazar. 1953'te yayınlanan Sessiz Dünya (The Silent World) adlı ilk kitabında, scubanın ortaya çıkış sürecini ve gelecek için vaadettiklerini ayrıntılı olarak anlatır. Bu kitabı, 22 dilde 5 milyondan fazla satılır. 1955 yılının Mart ayında Calypso, Marsilya Limanı'ndan ayrılarak, Kızıl Deniz ve Hint Okyanusu'nun mercan resiflerine doğru ilk seferine çıkar. Bu yolculukta çektiği filmleri kullanarak, Sessiz Dünya'yı belgesel haline getirir. Filmin yapımında, 24 yaşındaki ünlü yönetmen Louis Malle, Cousteau'ya yardımcı olur. Film, 1956 yılında, belgesel film dalında Oscar ve Altın Palmiye Ödüllerini alır. Projelerini gerçekleştirebilmek amacıyla Kaptan Cousteau, emekli olarak donanmadan ayrılır. 1957'de Monaco Okyanus Müzesi'nin yöneticisi olur ve 1988'de ayrılana kadar, 31 yıl bu görevde kalır. Toulon'da, Denizaltı Araştırma Grubu'nu kurar. Sualtında çok daha uzun süreler kalabilmek için yeni araştırma çalışmalarına başlar. 1959'da mühendis Jean Mollard ile "Dalan Daire" yi (UFO'lardan esinlenerek bu adı verir) tasarlar. İki kişi alabilen bu aygıt, küre şeklindedir ve yüksek manevra kabiliyetinin yanısıra, 350 m derinliğe dalış yapabilmektedir. Cousteau, 1962'de, Marsilya'da "Conshelf 1"adlı bir deney yapar. Bu, insanların sualtında yaşamalarına yönelik bir deneydir. Benzer bir deney, 1963'te "Conshelf 2" adıyla Kızıldeniz'de gerçekleştirilir. Cousteau'nun "okyanot" adını verdiği 5 adamı, 10 m derindeki "Denizyıldızı Evi" adlı kapalı bir ortamda bir ay yaşar. Proje masraflarının büyük kısmını, Fransız Petrol Sanayii karşılasa da geri kalan kısmını karşılamak için Cousteau, deneyi belgesel filme dönüştüreceğine dair bir anlaşma imzalar. Kameralar, okyanotların her anını görüntüler. Sonunda 93 dakikalık film; "Güneşsiz Dünya" (World Without Sun) ortaya çıkar. Cousteau bu film ile ikinci Oscar'ını alır. Conshelf 3, 1965'te Nice yakınlarında gerçekleştirilir. Cousteau'nun 24 yaşındaki oğlu Philippe'in de aralarında bulunduğu 6 okyanot, 100 m derinlikte üç hafta kalır. Deney esnasında çekilen filmlerden, Orson Welles'in seslendirdiği bir TV filmi yapılır. Filmin gördüğü büyük ilgi üzerine, her yıl 4 saatlik TV programı hazırlamak için ABC televizyon kanalıyla anlaşma imzalanır. "Cousteau'nun Denizaltı Dünyası" adlı TV dizisi böyle doğar. Sonra anlaşma 9 yıllığına uzatılır. Bu sürenin sonunda Ted Turner'in CNN'i ile anlaşılır. Cousteau, yaptığı TV filmleri ve dizileri için 10 Emmy Ödülü almıştır. Altın Balık (The Golden Fish) adlı bir filmi de, kısa film dalında Oscar alır. Calypso'nun, yıllar boyunca Alaska'dan Afrika'ya, Afrika'dan Antarktika'ya yaptığı gezilerle, milyonlarca TV izleyicisi köpekbalıklarının, balinaların, penguenlerin, dev ahtapotların, katil balinaların, deniz kaplumbağalarının ve yunusların yaşantılarını öğrenir. Karadan kilometrelerce uzakta, insanların okyanusları nasıl kirlettiğini görür. Cousteau, tek başına ya da değişik yazarlarla birlikte yazdığı 50'nin üzerinde kitap ve çektiği 70'in üzerinde TV filmi ile okyanus yaşamının ve dünyanın yaşamsal dengelerinin korunması düşüncesini milyonlarca kişiye anlatır. Kirlenmenin, aşırı avlanmanın ve sahil kentlerinin düzensiz ve aşırı gelişmesinin, engin okyanuslardaki yaşam için bir tehlike olduğunu vurgular. Cousteau'nun okyanuslardaki yaşamın korunmasına ilişkin düşüncelerinin, zaman içinde bir evrim geçirdiği görülür. 1960'larda denizleri, kullanılabilecek bir kaynak olarak görürken, 1970'lerde, 20 yıl içinde okyanuslardaki yaşamın %40'ının yokolduğunu söyleyerek, okyanusların ölmek üzere olduğunu vurgular. 1974'te ise okyanuslardaki yaşamı korumak için Cousteau Topluluğu'nu kurar. Bugün topluluğun, dünya çapında 300 000 üyesi bulunmaktadır. Çevreci hareketin diğer liderlerinden farklıdır Cousteau. Kirlenme sorunlarına verilen teknolojik yanıtlara açıktır. Hayvanlara gösterilen ilginin, insanlara gösterilen ilginin önüne geçmesini de kabul etmez. Ancak, aşırı nüfus artışını da "esas kirlenme" olarak görür. 1977 yılında, Sir Peter Scott ile Birleşmiş Milletler (BM) tarafından verilen Uluslararası Çevre Ödülü'nü paylaşır. Halefi olarak gördüğü küçük oğlu Philippe'in 1979'da bir deniz kazasında ölmesi, Cousteau'yu sarsar. Bir süre sonra da topluluğun yönetimi ve politikaları üzerine anlaşamadığı, oğlu Jean-Michelle ile arası açılır. 1985'te Amerika Başkanı, kendisine Özgürlük Madalyası verir. 1989'da ulusal kültüre yaşam boyu katkılarından dolayı Academie Française Üyesi seçilir. Amerikan Bilimler Akademisi'nin de birkaç yabancı üyesinden biridir. 1990'da yüzlerce araştırmada kendisine eşlik eden 53 yıllık eşi Simone'u yitirir. 1992'de Jean-Michelle, kurucularından olduğu Cousteau Topluluğu'ndan istifa ederek kendi araştırma kuruluşunu kurar. Üç yıl sonra Cousteau, Cousteau adının kullanım hakkı üzerine oğluna dava açar. 1993'te, BM Kalıcı Gelişme İçin Yüksek Düzey Danışma Kurulu'na seçilir ve Dünya Bankası'na çevresel gelişme konusunda danışman olarak hizmet eder. Aynı yıl Fransa Cumhurbaşkanı, Cousteau'yu yeni kurulan "Gelecek Kuşakların Hakları Divanı" na sekreter olarak atar. Ancak Cousteau, Fransa'nın, Pasifik'te nükleer denemelere yeniden başlaması üzerine 1995'te bu görevinden istifa eder. Ocak 1996'da Singapur Limanı'nda demirlemiş olan Calypso'ya, manevra yapan bir mavna çarpar ve efsanevi Calypso, kısa sürede sulara gömülür. Milyonlarca kişiyi deniz altının büyüleyici güzellikleriyle tanıştıran ve çevreci hareketin kurucularından olan Kaptan Jacques-Yves Cousteau, Calypso 2'nin denize indirilişini göremeden, 25 Haziran 1997'de aramızdan ayrılır.

http://www.biyologlar.com/jacques-yves-cousteau-kaptan-cousteau-kimdir

TOHUMLU BİTKİLER SINAV SORULARI

1.Temel ilgi alanı taksonomi olan botanik dalı…………………………………..dir. 2.Bitki taksonomisibitkilerin………………..,………………………içeren bir bilim dalıdır 3.Bir kategoriye girecek şekilde diğerlerinden ayrılmış olan gruplar ………………..olarak tanımlanır. 4.Populasyon................................................................................................................. ...................................................................bireyler topluluğudur 5.Türün başlıca 3 özelliği bulunmaktadır 1)…. …………………………,2)…………… ………………………..3)………………………………….. 6.Cins isimleri, tekil bir ……………..veya……………… olarak kabul edilen kelimedir. 7.Bir tür 2 latince kelimeden oluşmuştur. İkince kelimeye……………… denir. Buda bir…………….veya………….. olabilir 8.Bitki türlerinin ……..latince kelime ile adlandılmasına…………………isimlendirme denir. 9.Latince ismin arkasına yazar isminin eklenmesi bitki isminde ……………. sağlamak içindir. 10. Hiçbir taksonun………….yoktur. Ancak isimlerin ………. vardır. Bu isimde bitkinin ………......örneğidir. 11. Tür epitetleri ………….,…………….,ve…………… takılar içerir. 12. Vicia caesarea Boiss et Ball altı çizili kısım a) Bitkiyi ilk bulanlar b) Bitkiyi ilk toplayanlar c) Bitkiyi ilk isimlendirenlerdir. 13. Taksonomik olarak farklı ve coğrafik olarak sınıflandırılmış populasyonların oluşturduğu kategori;…………………dür. 14. Sınıflandırma kuramları diye bilinen görüşler 5 ayrılır. Bunlar………………..,…………….,…………………,………………..ve ……………………………………dır 15- Tohumlu bitkilere……………………,……………………,………………..,………….. adları da verilir 16- Polen taneleri Gymnospermlerde………… Andiospermlerde……………… üzerine taşınırlar. 17- ……………dan zamanımıza değin Angiospermler in çağıdır 18- YurdumuzdakiPINACEAE familyasına ait cinsler a)................................b)...................... c)...................................... d)..................................................dir. 19- Türkiyedeki pinus türleri a-………………b…………….c……………..d……………e….. 20-Ülkemizde Abies in..................alt türü vardır. A.........................ssp.......................................... .köknarı endemik olup Kazdağında 1200-1300 m’ler de yayılış gösterir. 21-Angiosperm çiçeğinde …………….ve……………. büyük oranda güvence altındadır 22- Ülkemizde yaşayan ….. juniperus türü vardır. Bunlardan yaprakları iğnemsi olanlara 3 örnek J……………………, J………………..J…………………………dir 23- Kuzey Anadolu’nun en geniş yayılışlı çam türü………………………………………’dır 24- Aşağıda Türkçe isimleri verilmiş bitkilerin Latincelerini yazınız: Doğu Ladini:…………………………… Lübnan Sediri…………………… Uludağ Köknarı:……………………….. Karaçam………………………….. Adi Ardıç (Cüce Ardıç)………………… Mazı…………………………. 25- Angiosperm çiçeğinde …………………ve…………….. büyük oranda güvence altındadır 26- Yaprak sapının dibindeki yaprakçığa………………, çiçek sapının dibindekine……………… denir. 27- ………… taslağının…………. gelişmesi sonucu oluşan yapıya……………….denir. Döllenmeden sonra ………………. gelişimi sonucu oluşan yapıya……………..adı verilir 28- Tipik bir meyve başlıca 3 kısımdan oluşmuştur. Dışta………………,ortada……………….. .ve içte………… 29- Apokarp ovaryum dan meydana gelmiş meyveler…………………… meyvelardır. 30- Tohum başlıca 3 kısımdan meydana gelmişti.Dışta………………,içte………………… ve ………… 31- Ülkemizde park ve bahçelerde yetişen manolya …………………………………dır. 32-……………………. un meyveları …………………….. kurutulursa karabiber elde edilir. 33-……………………………..(haşhaş)’ın kültürü yapılır ve ……………….adı verilen çeşitli…………………………….oluşan bir drog içerir. 34- Hamamelidaceae familyasından…………………………………..türünde yapraklar derin loplu meyveleri…………adettir. 35- (Girit ladeni)………………………özellikle Batı ve Güney Anadolu’da maki ve friganada yaygındır. 36- Ficus …………….da meyve oluşumu…………………… arısı ile oluşur. 37- Bougainvillea spectabiliste mor, kırmızı, pembe renkte olan ……………çok gösterişlidir 38- Aşağıdaki familyaların hangisinde ovaryum apokarptır? Papaveraceae b-Cruciferae c- Caryophyllaceae d- Ranunculaceae e.Berberidaceae 39-Ülkemizde………Quercus türü vardır. Makinin baskın türünü oluşturan meşe türü;……………………………………..’dir. 40- Consalida da foliküller…….adet Delphinium da ise………. adettir. 41- …………………(kardikeni)dağların yükseklerinde yastıkçıklar oluştururlar. 42- Halk arasında…………………..(ıhlamurun)………...ve…………..kulanılmaktadır 43- ………………(kebere) in………………. ları turşu yapılarak yiyeceklere lezzet verir 44- ………… …………….(koca yemiş) in meyveleri etli bir……….. olup yenebilir. 45-……………………. ………………….(abtesbozan) alçak boylu dikenli çalılardır. 46- Çiçek enine kesiti çizin kısımlarını belirtiniz 47- 10 tane maki elementi yazınız 48- 5 tane sanayi de kullanılan bitki ismi (latince –türkçe) yazınız 49- 5 tane sebze bitkisi (Latince-türkçe) yazınız 50- 5 tane süs bitkisi (Latince-türkçe) yazınız 51- Sistematik botanik ………..kuralları içinde …… ……….. …….. …………kadar tüm bitkileri …………. ile ……………….sınıfları içinde gruplamaktır. 52- Ficus carica bir ……………dur. …………. ……….. ………. … grubunu ifade etmektedir. 53- Türün başlıca 3 özelliği bulunmaktadır 1)…. …………………………,2)…………… ………………………..3)………………………………….. 54- ......................................... ve…………………………..tür altı kategorileridir. 55- Aile adı,isim gibi kullanılan………………….tır ve sonuna………….ekinin eklenmesi ile yapılır. 56- Pinus nigra da pinus…………..ismidir nigra ise ……. ……………….dir 57- Medicago polymorpha L. Buradaki L. …………………........................................dir 58- Bir yazarın bir……… tanıtırken ..…. olarak seçtiği bitki örneğine……………….denir. 59- Bitkilerin isimlerini bilmek istemenin 3 tanesini yazınız a- b- c- 60- Tohumlu bitkilerdeki aşağıda belirtilenlerin tohumsuz bitkilerdeki karşılıkları stamen……………………….. anterler………………karpeller……………….. polen ana hücresi……………….. polen tanesi……………………. 61- Koniferler……………. bitkilere verilen isimdir. 62- Pinaceae nin yurdumuzda bulunan cinsleri a- b- c d- 63- Abies in 2 endemik taksonu a- b- 64- Boyları 100m. çapları 25 m olan k Amerika da yaşayan taxodiaceae türü… ……………………………………….dir 65- Epigin çiçekte ovaryum……. hipogin çiçekte…….perigin çiçekte……...durumludur 66- …………………………. döllenip gelişmesi sonucu oluşan yapıya…………….. adı verilir . ……kısımdan meydana gelmiştir. Bunlar: 66- Sarı nilüfer (……………………….) ve beyaz nilüfer(…………………………)ara sındaki ayırt edici fark …………………………….. 67- Ranunculus larda meyve ……………..dir. 68- …………………………….. dan afyon adı verilen drog elde edilir. 69- Doğu çınarı (……………………………..) de meyvelar…….. adet Sığlada (……………………………………..) meyvelar………adettir. 70- Binomial isimlendirme bir …………………….ve bir…………………..den ibarettir …………………………………, belirli bir yerde bulunan ve aralarında…………………… olan bireyler topluluğudur 71- Mezozoik’te ……………………………………..günümüze kadar gelen tek örnektir 72-Holotipin benzeri veya eşi olan etiketinde holotipin kayıtlarını taşıyan örneği………………..denir 73- Taksonomik olarak farklı ve coğrafik olarak sınıflandırılmış populasyonların oluşturduğu kategori;…………………………………………..dür. 74- Gymnospermlerde çiçekler .......................... ve ...................... dişi kozalaklarda toplanmasına karşın, Angiosperm’lerde çiçekler ................................ çeşitliliğe sahiptir. 75- Juniperus............................................nun yaprakları iğnemsi. J....................................................................... nun ise pulsudur 76- Bitki tek eşeyli çiçeklere sahip ise……………………………………’dir. 77- Embriyonun çeneklerine…………………………………ilk vejetasyon noktasına …………………………….kökçüke…………………………’de adı verilir 78- Siliqua tipi meyveda………………………………………………………..’dır. 79- Stoma bantları Abies’te…………………………., Picea’da ………………….adettir 80- Makinin baskın türünü oluşturan meşe türü;……………………………………..’dir. 81- Brakte …………………….yaprakcığıdır. 82- Aşağıda verilen latince bitki isimlerinin türkçelerini yazınız Laurus nobilis………………………… Nuphar lutea………………………. Anemone blanda……………………….Papaver roheas …………………. Cannabis sativa……………………….. 83- Aşağıda Türkçe isimleri verilen türlerin Latincelerini yazınız Kızıl ağaç………………. ……….. Demir ağacı…………………………… Gürgen…………………………….Kayın…………………………………. Kara ağaç …………………………………………………………………… 84- 2 şer tane yaprakları tüysüz ve tüylü meşeleri yazınız. 85- Angiospermlerde döllenmeyi anlatınız? 86- Bitki taksonomosibitkilerin ....................................................... ..........................................................................içeren bir bilimdir. Yunanca taxis............ ............................nomos............................................................................kelimelerinden oluşmuştur. 87- Herbaryum en kısa ve açık tanımı ile ............................................................................... ............................................bitki örnekleri............................................dur. Ancak belirli....... .....................................ve..........................................göre toplanmış olması gerekmektedir. 88- Pinus un ülkemizde ............türü bulunmaktadır. Bunlar P....................................................... ...................................................................................................................................................... 89- Angiosperm’lerde içinde.........................yanında çok sayıda................................... üyelerde bulunmaktadır. Gymnosperm’lerin yaşıyan tüm üyeleri ...................................bitkilerdir. 90- Yeni bir bitkiyi verecek olan embriyo 4 Farklı kısımdan meydana gelmiştir. a)........................................ b).............................................. c)................................................ ..............................d).................................................................................................................... 91- Meyvelar 3 grup halinde toplanır. 1.................................. 2............................................... ....................... meyvelar 92- Tozlaşma şekilleri diye bilinen taşınma şekilleri 1................................................................ 2.......................................................................... 3...................................................................... 93- Gymnosperm ....................................... tohumlar Angiospermler ise ................................... ................... tohumlular demektir. 94- Aşağıdakilerin latincelerini yazınız Manolya .............................................. Doğu ladini ........................................ Lübnan Sediri ...................................... Sekoya ................................................. Mazı ..................................................... Adi Servi .............................................. Karabiber .............................................. Defne .................................................... Dağ lalesi .............................................. Haşhaş ................................................... 95- Aşağıda verilen latince bitki isimlerinin türkçelerini yazınız Platanus orientalis ............................................... Liguidumbar orientalis ........................................ Morus alba ........................................................... Ficus carica .......................................................... Papaver rhoeas ..................................................... Nuphar lutea ......................................................... Araucaria excelsa .................................................. Taxus baccata ........................................................ Ulmus .................................................................... Ficus elastica .......................................................... 96- K ( 5 ) K5 A 4+2 C ( 2 ) formülü ne demektir diyagramını çiziniz. 97- Bir çiçeğin dış halkadan içe doğru isimlerini yazınız ve kısımlarını yazınız? 98- Pinus nigra Arn. Altı çizili kısım; a-Tür b-Tür epitepi c- Otör d-Angram 99- Aile adı, cins isminin sonuna……………………………..ekinin eklenmesi ile yapılır 100-Aile (Familya) adı nasıl oluşturulur? Binomial veriniz……………………………………… 101- Doğada sadece bireylerin varlığını, türün insanoğlunun buluşundan başka bir şey olmadığını savunan………………………………………………..tür kavramıdır. 102-…………………………………, belirli bir yerde bulunan ve aralarında……………………olan bireyler topluluğudur. 103-Bir yazarın türü tanıtırken………………….olarak seçtiği bitki örneğine…………………… 104- Binomial isimlendirme bir …………………….ve bir…………………..den ibarettir. 105- Binomial isimlendirme;…………………………………………………………………… …………………………………………………………………………………..denir. 106- Bir herbaryum etiketinde ……………………………………......................................... ………………………………………………………………………………………………. ………………………………………………………………………………………………………………………………………………………………………bilgileri bulunmalıdır 107-Abies cilicia’nın Batı Toroslarda yayılış gösteren alt türü (ssp.)……………………………………………..’dır. 108- ………………………..larda yapraklar uzun sürgünler üzerinde …………………… ………………………………….kısa sürgünler üzerinde ise………………….halinde bulunur 109-Yurdumuzda doğal yayılış gösteren tek Cupressaceae türü……………………………’dır. denir. 110- Herhangi bir basamaktaki taksonomik gruplara ve birimlere ………………………….adı verilmektedir. 111- Yurdumuzda yayılış gösteren Juniperus türlerinin ikisini yazınız:………………………, ………………………………. 112- Angiospermlerde tipik bir çiçek iç içe şu halkalardan meydana gelmiştir; ……………….., …………………, …………………, ………………….. 113- Bitki tek eşeyli çiçeklere sahip ise……………………………………’dir. Bir çiçek dıştan içe doğru…………………………………halkadan meydana gelmiştir 114- Angiospermlerde ……………….olayına karşılık Gynospermlerde …………… …………….olayı gerçekleşmektedir 115- Anter………tekadan ibarettir. Bunların her biri……………………içerir. 116- Perigin bir çiçekle ovaryum…………………………………………….’dır. 117- Park ve bahçelerde kullanılan menekşe…………………………………………’dır. …………………………………….ve………………………..dere içlerinde görülen türlerdir. 118- Yol kenarlarında meyvesi basınçla patlayan ve tohumlarını fırlatan tür……………………...............................dır. 119- Turnagagası (………………) ile dönbaba (………………) arasındaki fark a –çiçeklerinden b-meyveden c-gövdeden d- yapraklarındaki özelliklerinden ayırt edilir 120-Apiaceae familyasında ……………...,bazen rasemus,korimboz dur. 121-Nicotianum,Capsicum,Atropa ,………..……………… familyası üyeleridir. 122-Boya elde edilen 3 bitki……………………………………………………………….. 123-Tomurcukları yiyeceklere lezzet veren bitki………………………………(dikenli kebere)dir 124-Brassicaceae familyasından……………………….(çobançantası)da meyveler üç köşelidir. 125-……………………………….(ormangülü)de zehirli bir alkoloid olduğundan balda deli bal oluşur. 126- ………………………(dam koruğu) sukkulent otsudur. 127- Rosaceaden böğürtlen diye bilinen tür……………………………..dir. 128- Isparta ve Budur’da Rosaceae den………………………………….nın kültürü yapılır Oleum Rosal gül yağı elde edilir. 129- Aşağıda Türkçe isimleri verilen türlerin Latincelerini yazınız. Ayva……………………………………. Söğüt…………………………….. Çilek……………………………………..Kavak……………………………. Funda…………………………………….Kocayemiş………………………. Kebere……………………………………Çay………………………………. Binbirdelikotu…………………………….Pamuk 130- Aşağıda Latinceleri verilen türlerin Türkçe isimlerini yazınız. Hypericum………………………………… Vitis vinifera …………………. Juglands regia…………………………….Astragalus …………………………. Pimpinella ……………………….. Pistacia lentiscus …………………….. Prunus domestica…………………………Quercus cocifera………………….. Solanum melongena…………………Papaver roheas……………………………… 131- Genista,Spartium,Lupinus, Colutea ……………………….. familyası üyeleridir 132- ……………………………..nın hem liflerinden hem de uyuşturucu drogundan faydalanılır. 133-Cinnamomum zeylanicum,………………………………………………familyasına aittir. 134-Havuzlardasüs bitkileri olarak kullanılan sucul türler;…………………………………….. ………………………………………………………………’dır. 135- Ranunculaceae’nin ülkemizde…………………….cins………………….. türü yayılış gösterir. 136- Ranunculus kozmopolit olup, ülkemizde ……………..tür içerir. R…………………………R………………………………..R……………………örneklerdir. 137- Ginkoales ordosunu günümüzde yaşayan tek türü,………………………………….’dır. 138- Taxaceae familyasının ………………………cins ve yaklaşık………………..türü vardır. 139- Angiospermlerle Gymnospermler arasındaki farklar dan 3 ünü yazınız. 140- Aşağıdaki familyaların hangisinde ovaryum apokarptır? Papaveraceae b-Cruciferae c- caryophyllaceae d- Ranunculaceae e.Berberidaceae 141- Üyelerinin yumrularından salep elde edilen aile; …………………………………’dir. 142- Fabaceae üyelerinde meyve;……………………………………………………….’dir. 143- Türkiye’de yayılış gösteren ladinin Latince tür ismi,………………………………’dir. 144- Üyelerin çoğunu uçucu (eterik) yağ içermesi ile önemli familya hangisidir? Capparaceae b-Lamiaceae c-Cruciferae d-Boraginaceae e-Dipsacaceae 145- Tetradinamus durumlu stamenleri, bilateral simetrili ve 4 petalli çiçekleri, silikua veya silikula meyvesı ile kolayca ayrılan aile……………………………………………..’dir. 146- Citrullus lanatus, a-kabak b-kavun c-salatalık d-karpuz’dur. 147- Ovaryum içindeki tohum taslaklarının düzenlenişine………………………denir. 148-Rosaceaefamilyasına ait iki bitki türü yazınız……………………………………………... 149- Yaprakları vertisillat dairesel çıkışı ile tanınan …………………..familyasıdır. 150-Monodelfus ……………………diadelfus……………….andrekeum demektir 151- Euphorbiaceae’nin çiçekleri spika, panikula veya………………………..durumlarında toplanmıştır. 152- Boraginacea familyasında stilus çoğunlukla……………………tir. 153- Lamiaceae’de stilus……………………………………………..özelliktedir. 154-Liliaceae’de ekonomik olarak kullanılan iki bitki……………………………………….dır. 155- Gymnospermler…………………………………….embriyo taşımaktadır. 156- Poaceae’de yaprak ayasının kın ile birleştiği yerde çoğunlukla küçük, zarsı dik bir ………………………….bulunur. 157- Aşağıdaki bitkilerin Türkçe isimlerini yazınız: Brassica oleracea:………………………… Capsicum annuum:………………………. Fragaria vesca……………………… Helianthus annus:……………………….. Coffea arabica:…………………………… 158- Papaveraceae familyasının iki önemli özelliğini yazınız. a-…………………………………………………………………… b- …………………………………………………………………… 159- Yurdumuzda Cupressaceae familyasına ait…………………………………ve …………………………………….cinsleri yayılış gösterir. 160- Paris quadrifolia botanik isminde epitet, bitkinin; a- Paris’te bulunduğunu b-Dört yapraklı oluşunu c-Dört çiçekli oluşunu d- Hem Paris’te bulunduğunu hem de dört yapraklı oluşunu belirtmektedir. 170-Yurdumuzda en çok tür içeren Gymnosperm cinsi, 8 türü bulunan…………………………’dir. 171- Rosaceae familyasına ait bir çok ağaçsı türün a. Meyveları b. Tohumları c. Çiçekleri d. Tomurcukları gıda maddesi olarak çok önemlidir. 172- Aşağıdakilerden hangisi Pinaceae familyası üyesi değildir? A. Cedrus b.Picea c.Abies d. Sequoia 173- Abies nordmanniana subsp bormülleriana……………………..’de yayılış gösterir. 174- Aşağıdaki bitkilerin Latince isimlerini yazınız: Buğday:……………………… Çiğdem:………………………. Arpa:………………………… Hindistan Cevizi:……………. Papatya:……………………… 175- Cocos nucifera:………………………………………………..familyasının bir üyesidir. 176- Liquidambar orientalis……………………………..familyasına dahil olup, tıpta kullanılan…………………………yağı elde edilir. 177- Monokatil ve dikotil arasındaki farkları (3) yazınız. 178- ………………familya üyeleri uçucu ve aromatik yağ içermelerinden dolayı parfümeri sanayinde önemlidir. 179- Aktinomorf simetri………………………………..demektir. 180- Bilabiat, korollanın kaliksin ……………………………bölünmüş olması demektir. 181- Caryophyllaceae familyasının en belirgin özelliği……………………………..olmasıdır. 182- Ginobazik, stilusun ……………………………..çıkmasıdır. 183- Kapitulum çiçek durumunu………………….familyasınının ayırt edici özelliğidir. 184- Monoik bitki……………………………. ……………………demektir. 185- …………………………………..(hurma) da yapraklar……………….dir. 186- Irıdacea üyelerinde stamenler …. tane, Colchicumlar da ise………..tanedir. 187- Orchis …………………familyası üyesidir ve yumrularından…………elde edilir. 188- ………………… familyası çok tüylü ve korolalarındaki ……………….......dan ayırt edilir. 189- Lamiacea familyasında gövde……….. …,çiçek ……………….tır 190- Monocotyledon larda yaprak damarlanması………………. Kök………………….tır. 191 a-Luzula b-Schoenoplectus,c- Carex, d-Tradescantia Juncaceae familyasındandır. 192-Genellikle bataklık yerlerde yaşıyan a-Panicum b- Phragmites c- Cyperus d-Urginia 193- a- Crocus b-Pancartium c- Narcissus d-Cynodon Liliacea familyasındandırlar 194- a-Allium b- Fritillaria c- Muscari d-Scilla süs bitkisi olarak yetiştirilir. 195- Arecacea familyasından……………….. nun meyvesından Hindistan cevizi yağı elde edilen tür 196- Boya bitkisi olarak bildiğiniz 3 bitki ismi yazınız 197- Cichona,Asperula ……………………..familyasındandır 198- Aslan ağzı olarak bilinen…………………………., ve sığırkuyruğu Scrophulariaceae üyesidir. 199- Kalp kuvvetlendirici glikositler taşıyan bitki a- Scrophularia b- Veronica c- Digitalis d Euphasia dır 200- Oleaceae familyasının 3 üyesini yazınız. 201- Coridothymus, Stachys, Marrubium…………………… familyası üyeleridir. 202- Yapraklarını çay baharat olarak kullandığımız 3 tane bitki ismi yazınız 203- Alkollü içki yapımında kullanılan Apiaceae üyesi…………………….dir 204- Havuç……………………….. kültürü yapılan bir bitkidir. 205-İzmir Çeşmede gövdesi yaralanılarak sakız elde edilen bitki türü………………………..dır. 206-Fabalesin3 familyası 1-…………………..2……………………..3……………………..dır 207- Gövdeleri dikenli çalı olan böğürtlen (………………………………….) dir 208- Spata yı ……………….. familyasında görebiliriz. 209- Yucca ……………………..familyasındandır. 210- Taksonomik olarak farklı ve coğrafik olarak sınıflandırılmış populasyonların oluşturduğu kategori;…………………………………………..dür. 211- Aşağıda Türkçe isimleri verilmiş bitkilerin Latincelerini yazınız: Doğu Ladini:…………………………… Lübnan Sediri…………………….. Uludağ Köknarı:……………………….. Karaçam………………………….. Ardıç (Cüce ardıç)……………………… 212- Türkiye’de………meşe türü vardır bunlardan 3 ü aşağıdakilerdir …………………….. …………………… 212- Hypericum perforatum………………. …..familyasındandır 213- Ihlamur (……………….) nın………………. ve ………………. den çay yapılır. 214- Dere içlerinde yayılış gösteren 3 bitki yazınız 215- 5 tane maki 5 tane orman bitkilerimize örnek veriniz 216- Bir fabaceae çiçeğini çiziniz? 5 tane bu familyaya ait örnek veriniz 217- Boraginaceae familyası tanıtan 2 özelliğini yazınız a…………………………………………… b…………………………. 218- Lamiacea üyelerini tanıtıcı 2 özelliği belirtiniz a…………………. b…………………………………… 219- Aşağıdaki bitkilerin Latince isimlerini yazınız Buğday…………………….Papatya…………….Nohut………….. Portakal……………………Ebegümeci………………….Hardal…………….. Ihlamur…………………….Funda ……………Karabaş……………Karanfil 220- Aşağıda Latinceleri verilen türlerin Türkçe isimlerini yazınız. Hypericum…………………………………Verbascum …………………. Juglands regia…………………………….Astragalus …………………………. Pimpinella ……………………….. Pistacia lentiscus …………………….. Prunus domestica…………………………Quercus cocifera………………….. Solanum melongena………………… Papaver roheas 221- Salvialarda anterlerin özelliği nedir? (Şekil le de anlatabilirsiniz) 222- Yüksük otu (…………………….) familyasın dandır 223- Arum larda …………….. ….in altında dişi üst kısmında erkek çiçekler bulunur 224- ……………. lerin yumrularından sahlep elde edilir. 225- Bir gramineae çiçeği çiziniz ve kısımlarını belirtiniz? 226- Angiosperm lerle Gymnosperm ler arasındaki 3 farkı yazınız?

http://www.biyologlar.com/tohumlu-bitkiler-sinav-sorulari

Artropodların Zararlı Etkileri

Artropodların konaklarına (Konak: Artropodları üzerinde veya içinde taşıyan omurgalı canlılar yani insan ve hayvanlara verilen isimdir.) zararlı etkileri 2 grupta toplanmaktadır. Bunlar; A) Artropodların direkt olarak neden olduğu zararlı etkiler: a-1) Konaklarını rahatsız etmeleri: Ektoparazit artropodlar genellikle konak üzerinde gezerken ya da yakınında uçarken onu rahatsız eder ve normal fonksiyonlarını görmesini engeller. Örneğin Mallophaga takımındaki bitler kanatlıların üzerinde gezerken onları huzursuz eder, yeterli besin almasını engeller, stres ve verim düşüklüğüne sebep olur. Meradaki ineklerin çevresinde uçuşan Hypoderma ve Tabanus cinsi sinekler onları huzursuz eder ve hayvanların sağa sola kaçışmasına neden olur ve dolayısı ile özellikle sığırların meradan yararlanmasına engel olduğu için verim kaybına ve hatta bu kaçışmalar esnasında abortlara neden olabilirler. a-2) Soyucu sömürücü etkileri: Artropodun konakçısından kan, lenf ve doku sıvılarını emmesi veya kan emme sırasında böcek tarafından çıkarılan antikoagülant madde etkisiyle kanamanın uzun süre devam etmesiyle olur. Artropod az sayıda olduğunda bu etki önemsenmeyebilirse de çok sayıda olduğunda (Ör: Kene, Tabanus cinsi sinekler gibi) kan emme sonucu anemi meydana gelmekte ve hatta hayvanların ölümüne neden olabilmektedir. Bütün hayatları boyunca kan emmek zorunda olan kenelerin, yumurtlamak için kan emmek zorunda olan dişi sivrisineklerin konaklarından kan emmeleri sömürücü bir etkidir. a-3) Dermatozlara neden olmaları: Artropodların konakçısını ısırma ya da sokması sonucu veya konak derisini istila etmesi neticesinde değişik derecede deri irritasyonlarına ve dolayısıyla dermatozlara neden olurlar. İrritasyonlar artropodların allerjik ve toksik etkileri sonucunda meydana gelebilir. Deri irritasyonu ya sivrisinek, pire, kan emici bitler gibi sokucu artropodlardan ya da uyuz etkeni olan ve deri içinde oyuk ve tüneller açan artropodlardan meydana gelir. Tabanus’ların hayvanlardan kan emerken deride oluşturdukları yaralar ve Hypoderma sineklerinin larvalarının sığırların vücudunda göçleri sırasında sırt derisi altına yerleşip deriyi delmeleri sonucu oluşan bozukluklar bir traumatik etkidir. a-4) Myiasis ve bununla ilgili bozukluklar: İnsecta sınıfı Diptera takımındaki bazı sinek larvalarının insan veya hayvanların organ veya dokularını istila etmelerine myiasis adı verilir. Zorunlu, fakültatif ve rastlansal myiasis olarak ya da larvaların yerleştiği anatomik bölgeye göre cuticol, gastricol, cavicol myiasis olarak sınıflandırılır. Bu larvalar direkt olarak kendileri doku ve organlarda zararlı olduğu gibi larvalar konakta biyolojik gelişmeleri esnasında da yan etkiler oluşturabilirler. Hypodermosisde parapleji, meteorismus görülmesi, tek tırnaklılarda gastricol myiasisde vakalarında stomatitis ve peritonitis görülmesi bunlara örnek verilebilir. Yine Hypoderma larlavarının özellikle sığırların sırt derisi altında açmış olduğu deliklerden dolayı dericilik sektöründe meydana gelen ekonomik kayıplar sinek larvalarının neden olduğu diğer zararlı etkilerdir. Ayrıca özellikle koyunlarda yaygın olarak görülen görülen cavicol myiasisde ise Oestrus ovis larvalarının sinüsler ve burun konhalarına yerleşerek tahribat yapması, hatta ethmoid kemiği de delerek beyine gitmesi ve sinirsel bozukluklara sebep olması önemli zararlı etkilerdir. a-5) Artropodların zehirli etkileri: Parazit olan ve olmayan artropodların toksik etkileri olmak üzere iki grupta incelenir. 1) Parazit olan artropodun beslenmek için konakçısını soktuğunda bıraktığı sekretlerden oluşan toksikozlar. Örneğin; bazı kene türlerinin kan emme esnasında salgıladıkları tükrük hayvanlarda sinir sistemini etkileyerek felçlere ve hatta ölümlere bile neden olabilmektedir. Ayrıca insecta sınıfındaki sivrisinek ve tahta kurularının kan emmeleri esnasında deride oluşturdukları zayıflık ve şiddetli kaşıntı da toksik etkidir. 2) Parazit olmayan arı, çıyan, örümcek ve akrep gibi artropodların özel zehir bezlerinde bulunan zehirlerle meydana gelen toksik etkidir. Bu zehir artropodun saldırı veya savunma araçlarından olup, özelliği ani etki yapması ve şiddetli acı vermesidir. a-6) Artropodların allerjik etkileri: Bazı artropodlar, konakları üzerinde gezinme ve kan emmeleri esnasında allerjik bozukluklara yol açarlar. İnsanlarda tahta kurularının deride gezinmeleri sonucu bütün vücutta şiddetli kaşıntı ve deride kırmızı kabarcıklar (ürtikerlere) oluşması allerjik bir etkidir. Allerjik reaksiyonların şiddeti kişinin dispozisyonuna bağlıdır. Aynı tür artropoda maruz kalan değişik fertlerde değişik şiddette ortaya çıkar. Ayrıca allerjik reaksiyonlarda allergenle daha önceki temas süresi ve allergene maruz kalma şeklide önemlidir. Artropodal alerjik etkiler eksternal veya parenteral yola göre de değişir. Artropodlardan ileri gelen allerjik reaksiyonlar 2 şekilde görülür. a) Parazit olmayan artropodlardan ileri gelen allerjik reaksiyonlar. Bunlar artropodun vücutları veya sekretleriyle ilgilir. Hamam böcekleri ve Dermatophagoutes cinsine bağlı ev tozu akarları örnek verilebilir. b) Parazit olan artropodlardan iler gelen allerjik reaksiyonlar. Örneğin; sivrisinek ve pire gibi insektlerin kan emmek için konakları soktuklarında bıraktıkları tükrük salgısından ileri gelir. Ayrıca tırtılların oluşturduğu etkiler toksik, mekanik veya allerjik bir nedenle oluşmaktadır. B) Artropodların hastalık etkenlerini taşımaları (vektör veya arakonakçı) ile ilgili olarak yaptığı zararlı etkiler: Hastalık etkenlerini aynı veya farklı konaklar arasında aktif olarak nakledip bulaştıran omurgasız canlılara yani artropodlara vektör adı verilir. Burada dikkat edilmesi gereken husus bütün artropodların vektör olmadığı ancak vektör tanımlaması içinde geçen türlerin artropod olduğudur. Arakonak ise hastalık etkenlerinin daha çok genç şekillerini veya larva formlarını vücudunda taşıyan ve omurgalı konaklara pasif olarak bulaşmasını sağlayan artropodlardır. Theileria sp. etkenlerinin vektörü keneler, Dipylidium caninum adlı cestodun arakonağı pirelerdir. Artropodlar hastalık etkenlerini bulaştırmaları yönünden 4 gruba ayrılır. 1) Mekanik taşıyıcı: Bu gruptaki artropodlar hastalık etkenlerini yoğun olarak bulunduğu yerlerden vücutlarına bulaştırmak süratiyle çevreye ve hatta gıdalara mekanik olarak yayarlar. Nakil olayı az çok tesadüfe bağlıdır. Mekanik taşıyıcılar patojen etkenlerin bulaşmasında tali bir rol oynarlar. Örn : Dışkı ile temasta bulunan hamam böcekleri ve kara sinekler amipli dizanteri etkeni olan Entamoeba histolytica kistlerini gıdalara naklederler. Bu tip bulaşık gıdaların insanlar tarafından yenilmesi ile de kistler sindirim kanalına girerek hastalığın oluşmasına yol açarlar. 2) Biyolojik vektör: Bu tip vektörlerde, patojen etkenler artropod vücudunda biyolojik gelişme geçirdikten sonra başka bir konağa aktif olarak nakledilir. Örn : Sivrisineklerin sıtma etkeni olan Plasmodium 'ları, bulaştırması ile lxodidae ailesindeki mera kenelerinin Babesia ve Theileria türlerini bulaştırması örnek olarak verilebilir. Sivrisinekler malaryalı insanlardan kan emerken sıtma etkenlerinin erkek ve dişi gamontlarını alırlar. Bunlar sivrisineğin midesinde bir gelişim devresi geçirdikten sonra oluşan sporozoitler tükrük bezlerine yerleşir. Sivrisineğin başka bir insandan kan emmesi ileverilen sporozoitler ile enfeksiyon oluşur. Bu tip biyolojik vektör olarak hastalık etkenini taşıma olayı; artropodun vücudunun ön tarafından olan biyolojik nakildir (salivarial). Chagas hastalığı etkeni olan Trypanosoma cruzi ise konik burunlu tahta kuruları olan Triatoma ve Rhodnius cinsi artropodlar tarafından ve bunların arka tarafından (dışkının deriye bırakılması ile) biyolojik olarak bulaştırılır (sterkorariyal). 3) Mekanik vektör: Patojen etken vektör de bir biyolojik gelişme geçirmeden diğer konaklara bulaşabiliyorsa bu tip vektörlere mekanik vektör adı verilir. Yani vektör hastalık etkenini aldıktan kısa bir süre sonra başka bir konağa bulaştırılır. Örn : Kan emen sineklerden Tabanus veya Stomoxys'lar sığırlardan kan emmeleri esnasında Trypanosoma evansi'yi alırlar. Kısa bir süre içinde bu insectler diğer bir sığırdan kan emerken hortumlarına bulaşık bulunan trypanosomaları ona naklederler. Hastalık etkenlerinin bu tip taşınması olayı kan emme süratiyle olan mekaniksel nakildir. Yukarıda Anlatılan biyolojik ve mekanik vektörler hastalık etkenlerini bulaştırma yönleri dikkate alındığında zorunlu vektörler olarak da tanımlanırlar. 4) Arakonakçı (Arakonak): Bir parazitin bir gelişme dönemini taşıyan ve sonkonağa ulaşmasında pasif olarak görev yapan artropodlardır. Örn: Köpek piresi olan Ctenocephalides canis'in köpek şeritlerinden Dipylidium caninum'a arakonaklık yapması. Arthropodolojide erişkin form omurgalıdaysa omurgalı sonkonak, erişkin form omurgasızdaysa omurgasız sonkonak olarak tanımlanır. Ancak bu tip adlandırmaya karşı görüşlerde vardır. Erişkin form omurgasızda ise daha yüksek yapılı olan canlı yani omurgalı insan veya hayvan sonkonak olarak adlandırılır. Artropodların taşıyıp bulaştırdıkları enfeksiyon etkenleri: Artropodlar; protozoonlar, bakteriler, helmintler, riketsiyalar ve viruslar olmak üzere bakteriyel ve paraziter hastalık etkenlerini arakonak, vektör veya mekanik taşıyıcı olarak taşırlar. Artropodların enfeksiyon etkenlerini konakçıya veriş biçimleri: a) Mide içeriğinde bulunan patojen etkenleri ağız organelleri ile kusma şeklinde konağa verme şekliyle olur. Örn: Fare piresi (Xenopsylla cheopis) veba hastalığı etkeni olan Pasteurella (Yersinia) pestis'i ve Phlebotomus'ların (tatarcık sineği) Leishmania'ları konaklarına veriş biçimi gibi. b) Tükrük bezleri salgısındaki etkenleri ağız organelleri yardımı ile sokmak süratiyle konağa verme. Örn : Sivrisinekler Plasmodium 'ları, keneler Babesia ve Theileria 'ları bu şekilde verirler. c) Patojen etkenlerin vücut duvarından özellikle de ağız organelleri kenarından dışarı sızması ile konağa bulaştırılması. Örn : Sivrisineklerin filariyal nematodları bulaştırması. d) Artropodların bulaşık vücut kısımlarıyla etkenlerin konaklara bulaştırması. Örn : Sivrisineklerin kanatlı çiçeğini, Chrysops türlerinin tularemiyi bulaştırması. e) Patojen etkenlerin artropodun ekskresyon sıvılarıyla konaklara bulaşması. Örn : Argasidae ailesindeki mesken keneleri virus ve spiroketaları coxal bezleriyle dışarı atarak konaklara bulaştırırlar. f) Enfekte dışkının konakçı derisi üzerindeki sıyrıklara veya konjuktivalara bırakılmasıyla bulaştırma. Örn : Triatoma cinsi uçan tahta kurularının Trypanosoma cruzi'yi bulaştırması. g) Patojen etkenle enfekte artropodun konak tarafından yenmesi veya artropodun konakçı üzerinde ezilmesiyle etkenlerin konaklara bulaşması. Örn : Farelerin pireleri yiyerek Trypanosoma lewisi ile enfekte olması, köpeklerin pireleri yiyerek Dipylidium caninum 'la enfekte olmaları gibi. Artropodların hastalık etkenlerini nakletme şekilleri: a) Transstadiyal nakil: Artropodun gelişme dönemlerinin herhangi bir safhasında iken aldığı enfeksiyon etkenlerini daha sonraki gelişme dönemlerine geçirmesi ve bu gelişme döneminde iken başka bir konaktan beslenirken etkenleri nakletmesine transstadiyal nakil ya da trasstadiyal bulaşma adı verilir. Örn : Ixodidae ailesindeki kenelerin theileriosis etkenlerini bulaştırması. b) Transovariyal nakil: Artropodun, bir jenerasyonda konaktan beslenirken aldığı etkenleri daha sonraki jenerasyonlarına aktarması ve bu jenerasyonda başka bir konaktan kan emerken etkenleri bulaştırmasına transovariyal nakil ya da transovariyal bulaşma denir. Bu bulaşma şekli bazen 8-10 jenerasyon devam edebilir. Örn : Kenelerin (Boophilus sp) babesiosis etkenlerini bulaştırması. Kene bir konaktan kan emerken etkenleri alır. Bu etkenler kene vücudunda gelişme dönemi geçirerek kenenin ovaryumlarına geçer. Kene enfekte yumurtalar bırakır. Yumurtalardan çıkan larvalar da enfektedir. Bu durum nesil boyu devam eder ve kan emerken etkenleri başka konağa nakleder. c) Monohomostadiyal nakil: Artropodun aynı gelişme dönemi içinde konaktan aldığı etkenleri başka bir konağa bulaştırması. Örn : Sivrisineklerin Plasmodium 'ları bulaştırması. d) Transsexuel nakil: Dişi artropod kan emerken aldığı etkenleri transovariyal olarak larvalarına geçirir ve bu larvalardan erişkin hale gelen erkekler etkenleri başka bir dişi artropoda bulaştırır. Bu dişi böcekde başka bir konaktan beslenirken etkenleri bulaştırır

http://www.biyologlar.com/artropodlarin-zararli-etkileri

Sap Gözlü Sinek

Sap Gözlü Sinek

  9 Eylül 2001. Bazı karşılaşmalar vardır, her hatırlayışınızda tüm ayrıntısıyla gözünüzün önündedir. Sap gözlü sinek ile olan tanışmam tam da böyledir. Doktora projem doğrultusunda Kosta Rika’nın La Selva biyoloji istasyonunda arazi çalışmaları yürütmekteydim. Türlü terslikler sonucu araziye geç çıkmam nedeniyle orman içinde yosun tutmuş ince beton yolda alet edevat yüklü bir bisiklet üstünde son hız giderken, yolumun iri bir ağacın devrilmesiyle kapanmış olduğunu gördüm. Sonuna kadar asılmama karşın ıslak tekerleklerin kayarak binbir feryat ile frenlerin güç bela tutmasıyla ağaca toslamadan en nihayetinde durabildim. Ağaç, ebegümecigiller ailesinden Hampea appendiculata (Malvaceae) adı verilen bir türdendi. Ilıman iklim bölgesinde otsu bitkiler olarak tanıdığımız bu ailenin, tropikal kuşakta insana şapka çıkartacak büyüklükteki ağaçlar olması etkileyici bir durum. Yaprak kesici karıncalar, ağızlarına taze marul dayanmış aç bir keçi gibi gözü dönmüş biçimde yuvalarının hemen üstünde, kelimenin tam anlamıyla ayaklarına kadar gelen ağacın yapraklarına “düşene bir tekme de sen vuracaksın” dercesine sardırmışlardı. Ağacın neresinden dolaşsam diye etrafıma bakınırken 6-7 metre ötemde gördüm onu… Evrim biyolojisi ders kitaplarında eşeysel seçilimin baş kahramanı, sap gözlü sineğin ta kendisi karşımdaydı! Hemen davranmazsam kaçacağını ve bunun sonucunda ömrüm boyunca kendime kızacağımı biliyordum. Hipnotize halde gözlerim üzerine kilitlenmiş olarak sırt çantamdan kamerayı bin bir sakarlıkla çıkardım ve ağustos böceklerinin tiz sesleri eşliğinde görüntülemeye başladım. Sinek, saat yönünün tersine doğru dönüş yaparak bana neredeyse tüm beden ayrıntısını gösterdi. Kanatlarının hemen ardında oynattığı ters ışık altında parlayan halter denilen minik uzantılar çok belirgindi. Kınkanatlı böceklerin dört kanatlı atalarından evrimsel bir miras olan halterler, jiroskop görevi görerek uçuş sırasında olağanüstü bir kontrol sağlarlar. Arkada “Piip–püv–püv” (ve hatta bir kere fazladan heceli “Piip–püv–püv–püv”) diye şarkı söyleyen kara suratlı karınca ardıcı (Formicarius analis) eşliğindeki karşılaşmamız, sineğin olay yerini terk etmesiyle sona erdi. Bu deneyimi sizlerle paylaşabilmek güzel bir duygu.

http://www.biyologlar.com/sap-gozlu-sinek

Corona virüsü nedir

Coronaviridae ailesinden gelen ve hayvan familyasında görülen bir virüs ve hücre içindeki RNA'yı etkiliyor. Temelde üst solunum yollarını ve sindirim ve boşaltım sistemindeki organları etkliyor. Özellikle ilkbahar ve sonbahar aylarında bu virüs daha etken. Corona virüsü kedilerin sıkça yakalandığı bir virüs. Ama öldürücü olma olasılığı oldukça düşük. Kediler arasında yakın temasla geçiyor, virüsü kapan kedinin özellikle dışkısı ile yayılıyor. Kedilerin yaklaşık olarak %40'ı bu virüsü bir şekilde kapıyorlar. Kalabalık aileler şeklinde (barınaklarda, kedi üretim çiftliklerinde ya da 3'den fazla kedinin birarada yaşadığı evlerde) yaşayan kediler arasında ise corona virüsünü taşıyan kedi oranı % 80-90) Corona virüsü kapan bir kedinin bedenin de virüse karşı geliştirilen ve virüsü yoketmeye yönelmiş antibody'ler çoğalıyor. Testlerde antibody düzeyi (titer seviyesi) ölçülebiliyor. Genellikle ateş, ishal ya da halsizliğe sebep oluyor ve kedilerin bağışıklık sistemleri bir şekilde corona virüsünü yeniyorlar. Corona virüsü dışkıda asıl olarak bulunuyor ve sağlıklı bir kedi corona virüsü olan dışkıyla bir şekilde temas ederse “tüy yalama” sebebi ile virüs yutuluyor. Ama hava yoluyla da kedilerin bu virüsü kapmaları olası. Corona Virüsü, Feline Infectious Peritonitis’e Nasıl Dönüşüyor? Kedilerin % 40’ı, birarada yaşayan kedilerin ise neredeyse % 80-90’ı corona virüsü kapmış olsalar da bu kedilerden bir görüşe göre % 2’sinde bir görüşe göre ise % 10’unda corona virüsü mutasyona uğrayarak öldürücü kedi hastalığı FIP’e sebep olan feline infectious peritonitis’e sebep olacak bir virüse dönüşüyor. Bu mutasyonun nasıl olduğu halen bilim dünyasının üzerinde en çok durduğu konuların başında geliyor. Virüs bilimi henüz bu soruyu kesin kanıtlarla açıklayamıyor. Corona virüsünü kapan kedilerin % 90-98’i virüsü basit sağlık rahatsızlıkları ile atlatırken geri kalanlarda ise virüs öldürücü bir başka virüse dönüşüyor. Corona Virüsü Yok Edilemez Mi? Corona virüsü çok güçlü bir virüs, dış ortamda (dışkı ile ya da salya ile saçıldığında) 4 ila 6 hafta arasında canlı kalabiliyor. Ev kedileri sokağa çıkmadıkça ya da bu virüsü kapmış başka bir kedi ile temaz etmedikçe bu virüsü kapmaz diye de kesin bir şey yok. Zira bizler de evimize bu virüsü dışardan taşıyabiliriz. Ayrıca kedimiz bir şekilde corona virüsü kapmışsa bu virüsün FIP’e dönüşme olasılığı ne yazık ki var. “Bir gün dönüşecek” anlamında değil, % 1 ya da % 10 ihtimal dhilinde. Ama corona virüsü evde kullanılan temizlik maddeleri karşısında çok zayıf. Ev temizliğinde kullanılan deterjanlar, özellikle çamaşır suyu corona virüsünü öldürmeye yetiyor. Temizlikte 1 ölçü deterjana karşın 32 ölçü su karışımı corona virüsün temizliği için yeterli ölçü sayılıyor. Kedilerimizin yaşadığı yerlerin, özellikle tuvalet kumunun hep temzi olması corona virüsü ile mücadelede önemli. Zira virüsün çoğalması (özellikle kumda) kedilerin bağışıklık sistemi açısından tehlike arz ediyor. Ayrıca kedilerin virüs kapar endişesi ile sokağa salınmaması da başka bir ikilemi beraberinde getiriyor. Zira eğer kediniz corona virüsünü kapmış ve evde kalmaktan dolayı stres yaşıyorsa “sokağa çıkma yasağı” FIP’ye davetiye çıkarabiliyor. Zira stres altında olan ve corona virüsünü kapmış kedilerde virüsün FIP’ye sebep olan virüse dönüşme olasılığı bulunuyor. Ama kediniz sağlıklı ise bu durumda sokağa çıkmak da corona virüsü kapma riskini doğal olarak taşıyor.

http://www.biyologlar.com/corona-virusu-nedir

 
3WTURK CMS v6.03WTURK CMS v6.0