Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 1053 kayıt bulundu.

Vitamin türleri

Herkes tarafından bilinen 13 vitamin vardır. Bunlar temelde, yağda çözünenler ve suda çözünenler olarak iki gruba ayrılır ama gerçekte 20 vitamin vardır. En küçük vitamin A, C, D ve K vitaminleriyken, en büyük vitamin türü E vitaminidir. Orta boy moleküllü B vitaminleri ise pek kullanılmaz. Dört vitamin türü, yağda çözünebilir ve bu sayede vücudun yağ dokusunda depolanırlar. Bunlar: A vitamini, D vitamini, E vitamini ve K vitamini. A Vitamini Göz sağlığı için çok önemlidir. E vitaminiyle alınırsa daha iyi gözlere sahip olunur. Yumurta, avokado, karaciğer, süt, havuç, sebze, ceviz, balık yağı gibi besinlerde vardır. Oluşumu sırasında böbreklerin rolü vardır. Zaten A vitamini böbreklerde bulunan tek vitamindir. Yeşil sebzelerde bulunur. Kalorisi yüksektir. A vitamininin (diğer yağda eriyen vitaminler olan D, E, K vitaminleri gibi) fazlası zararlıdır. Özellikle gebe kalmayı planlayanlarla gebelerin A vitamini içeren ilaçlardan ve yiyeceklerden (karaciğer) uzak durması önerilmektedir. Gebelikte düşük ve anormallik yapma riski vardır. Çoklu vitamin içeren ve gebelerce çok tüketilen ilaçlarda da ne yazık ki A vitamini bulunmaktadır. Yağda eriyen, vücutta depolanan bu tarz ilaçların gebelere verilen dozun toksik (zehirleyici) dozda olmaması özgürce alınabileceği anlamına gelmemektedir. İlaç olarak alınan A vitaminin doğal yollarla alınan A vitaminine göre daha riskli olduğu kabul edilmektedir. Nitekim İngiltere Royal Kolej yayınladığı "Gebe Takip Kılavuzu"nda A vitamini içeren ilaçların ve yiyeceklerden karaciğerin gebelere verilmemesini önermektedir. A vitamini fazlalığı aşağıdakilere neden olabilir: Doğum anormallikleri, Karaciğer problemleri, Kemik mineral yoğunluğunda azalma ve osteoporoz, Uygunsuz kemik büyümesi, Deride uygunsuz renk değişimi, Saç dökülmesi, Yoğun cilt kuruluğu ve pullanmalar A vitamini eksikliğinde görülen hastalıklar: Gece körlüğü, Bağışıklık sistemi zayıflığı, Büyüme-gelişme yavaşlaması D Vitamini Provitamin şeklinde alınan D vitamini deri altında uv. ışınları ile aktifleşir. D vitamini Ca ve P'un emilmesini ve kemiklerde depo edilmesini sağlar. D vitamini eksikliğinde çocuklarda raşitizm,yetişkinlerde osteomalazi hastalıklarının oluşmasını sağlar. Fazlası kireçlenmeye neden olur. En önemli kaynak güneş ışınıdır. Ayrıca karaciğer, balık, yumurta, tereyağı, peynir ve mantarda bulunur. E Vitamini Çocukların büyümesi için E vitamini gereklidir. Yaralarının iyileşmesi için E vitamini gerekir (protein yarayı kötüleştirir). Karaciğer, yağ dokusu, ince bağırsak ve mide E vitamini sentezler. Kimyasal yapı itibarı ile bir tokoferol olup antisterilite vitamin olarak da bilinir. Tokol ve tokotrienoltürevlerinin farklı bileşikleri E vitamini aktivitesi gösterir. En aktifi alfa-tokoferoldür. Provitamin olarak kullanılır. D vitamininden daha güçlüdür. E vitamini sinir sisteminin, kasların, hipofiz ve sürrenaller gibi endokrin bezlerin ve üreme organlarının fonksiyonları için öneme sahiptir. E vitamini, biyolojik bir antidoksidan olup, atardamar hastalıklarının ve kanserin önlenmesi için gerekli olan bir antioksidandır. Bitkisel ve sıvı yağlarda, kırmızı et, karaciğer, tahıl, tahıl ürünleri vb. lerde bulunan E vitamini eksikliğinde kaslar gelişemez ve E vitamini yapıcı-onarıcı özelliğe sahip her şeyi yaptığı için, bazı kozmetik ürünleri de E vitamini içermektedir. Kozmetik ürünlerinde sadece B5 ve E vitaminleri bulunur. Tokoferol (E1) vitamininin tokoferolleri: Alfa tokoferol - E1A (Diğer adı: Provitamin E) Beta tokoferol - E1B (Diğer adı: Pro-E1B) Gama tokoferol - E1G (Diğer adı: EProteinToko1) Delta tokoferol - E1D (Diğer adı: DeltE1) Mega tokoferol - E1M (Diğer adı: Megadel) K Vitamini K vitamini, yeşil sebze, çay ve ciğerde bulunan ve kan pıhtılaşmasında önemli bir yeri olan vitamindir. Karaciğerde protrombin yapılmasında kullanılır. Yokluğunda kan ile ilgili belirtiler ortaya çıkar. Normal olarak bağırsaklarda bulunan bakteriler tarafından sentezlenir. Yetersizliğinde pıhtılaşmada sorunlar ve aşırı kanama ortaya çıkar. Vücudumuzdaki bakteriler tarafından da üretilir. Vücudumuzu hastalıklardan korur. yaraların iyileşmesi için K vitamini gereklidir. Suda çözünenler Diğer dokuz vitamin türü ise suda çözünür ve pek çoğu vücutta depolanmaz. Bunlar: C vitamini, tiyamin (B1), riboflavin (B2), niyasin (B3), pantotenik asit (B5), piridoksin (B6), siyanokobalamin (B12), biyotin, folik asit (folacin). C Vitamini (askorbik asit) C vitamini veya askorbik asit, turunçgiller, koyu yeşil sebzeler ve patateslerde bulunan ve kollajen sentezinde yer alan, antioksidan bir vitamindir. Ayrıca demir emilimini de olumlu etkiler. Yetersizliğinde eklem ağrıları, yaraların geç iyileşmesi, skorbüt gibi sorunlara neden olabileceği gibi enfeksiyonlara karşı kişiyi daha zayıf kılar. Küçük yaşlarda diş eti kanaması ve grip C vitamini eksikliğinde, fazlalığında da ishal görülür. B1 Vitamini (tiyamin) Hemen hemen tüm canlı dokularda bulunur ve pirofosforik ester şeklinde görülür. Pentozfosfat çeviriminde alfa-keto asit dekarboksilazların ve transketolazın koenzimidir. Eksikliği başta sinir ve kalp hücreleri olmak üzere beslenmeleri için özellikle glikoza gereksinim duyan hücrelerde metabolizma bozukluğuyla sonuçlanır ve beriberiye neden olur. B2 Vitamini (riboflavin) Tahıllar, et ve ciğerde bulunan bir vitamindir. FAD'ın içeriklerindendir. Yetersizliğinde ariboflavinoz görülebilir. B3 Vitamini (niyasin) Et, balık ve kuru yemişlerde bulunan ve NAD ile NADP koenzimlerinin içeriklerinden olan, solunum için önemli bir vitamindir. Yetersizliğinde pellagra görülebilir. B5 Vitamini (pantotenik asit) Birçok gıdada, özellikle de ciğer ve baklagillerde bulunan önemli bir vitamindir. E vitamininin içeriği olan pantotenik asit, karbonhidrat ve yağ metabolizmasında yer alır. Yetersizliğinde yorgunluk ve uyuşukluk hissedilebilir. B12 Vitamini (siyanokobalamin) Siyanokobalamin veya B12 ciğer, balık ve süt ürünlerinde bulunan ve DNA metabolizmasında koenzim olarak yer alan bir vitamindir. Alyuvarların olgunlaşmasında da gereklidir. Yetersizliğinde anemi ve kilo kaybı görülebilir.

http://www.biyologlar.com/vitamin-turleri

Viral Hepatit

Bütün dünyada oldukça yaygın bir hastalık grubu olan viral hepatitler, halk arasında "sarılık" olarak tanımlanıyor. Ancak sarılık, viral hepatitlerin yalnızca bir bulgusu. Karaciğer iltihabına yol açıyor Hastaların çoğu sarılık olmadan bu hastalığı geçiriyor. Viral Hepatit ;virüslerin yol açtığı karaciğer iltihabı. Virüsler vücuda kan yada ağız yolu ile girerek karaciğere yerleşip çoğalarak karaciğer hücrelerini hasara uğratıyor ve karaciğerin işlevlerini bozuyor. Bugüne kadar hastalık yapan beş tane hepatit virüsü saptandı. Bunlar A, B, C, D ve E tipi hepatit virüsleri. Viral Hepatit hastalığının belirtileri arasında aşırı halsizlik, çabuk yorulma, bulantı, kusma, çay rengi idrar, belirsiz eklem ve kas ağrıları, sarılık yeralıyor. Halk arasında bulaşıcı olarak biliniyor A ve E tipi viral hepatitler halk arasında "Bulaşışıcı Sarılık" olarak bilinen bir hastalık. Bulaşıcı sarılıkta ani başlayan ,belirgin işaretler veren hastalık tablosu oluşuyor ve kendiliğinden iyileşiyor. Koşulların kötülüğü tetikliyor Bulaşıcı sarılığa, koşulları kötü olan toplumlarda sık rastlanıyor. Bulaşıcı sarılığa neden olan A ve E tipi hepatit virüsleri hastaların dışkılarında bulunuyor. Dışkıların bulaştığı su ve yiyeceklerle yada yakın temas yolu ile geçiyor. Kan yolu temas sonucu bulaşma yok denecek kadar az. Bulaşıcı sarılığın en iyi tedavisi istirahat ,dengeli ve yeterli beslenme. Bulaşıcı sarılık, büyük oranda dışkı ve ağız yolu ile bulaşıyor. Bu yol ile bulaşmanın önlenmesi bir alt yapı sorunu. Kişisel korunmada ise,temizlik kurallarına dikkat etmek gerekiyor. En etkili kişisel korunma, hasta kişilerin sağlıklı kişilerle temasının denetlenmesi. Hastaya ait eşyaların kullanılmaması gerekiyor. Hasta kişilerin başkalarına kesinlikle yiyecek hazırlamaması gerekiyor. Kullanılan mutfak eşyası ,elbise ,çarşaf gibi eşyaların sabun ve sıcak suyla yıkanması gerekiyor. `Gizli sarılık` B,C,D tipi viral hepatitler, halk arasında "Gizli Sarılık" ya da "Kara Sarılık" olarak biliniyor. Gizli sarılık mikrobunu alan kişilerin bir kısmı bu mikrobu vücutlarında taşıyor ve başkalarına bulaştırıyor. Bu kişilere "taşıyıcı" deniliyor. Taşıyıcı olmak dahi ilerde siroz ve karaciğer kanseri gelişmesi için yeterli oluyor. Üstelik taşıyıcı kişilerin virüsü başka kişilere de bulaştırması toplumun geleceği açısından büyük bir sorun oluşturuyor. Gizli sarılık mikrobu, kan nakli,ortak enjektör kullanımı yada herhangi bir yolla kan teması, cinsel ilişki ve anneden bebeğe şeklinde yayılıyor. Gizli sarılıkta ani başlayan hastalıkta en iyi tedavi, istirahat, dengeli ve yeterli beslenme. Günümüzde eski yanlış inançların aksine ,bir çok değişik ilaçlarla sarılığın tedavisi yapılıyor. Gizli sarılıkta başlıca bulaşma , kan yoluyla olduğundan; kan yolu ile bulaşmaya yönelik önlemler alınmalı. Bunun için kan bankalarında ,hastane ve Kızılay`da virüs taramaları yapılıyor. Ortak iğne ya da enjektör kullanımından kaçınılmalı. Ayrıca her şüpheli cinsel ilişkide prezervatif kullanılmalı. Ailede sarılık geçiren kimse varsa ya da risk altındaki kişiler hekime başvurarak korunma sağlamalı.

http://www.biyologlar.com/viral-hepatit

HÜCRE ZARINDAN MADDE GEÇİŞİ

Hücre zarının en önemli özelliği, canlı ve seçici – geçirgen olmasıdır PASİF TAŞIMA (ENERJİ HARCANMAZ) Difüzyon (Yayılma) Madde moleküllerinin çok yoğun olduğu ortamdan az yoğun olduğu ortama doğru yayılmalarıdır. Difüzyon sırasında enerji harcanmaz ve canlılık şart değildir. Bazı durumlarda difüzyona uğrayacak madde bir taşıyıcı proteinle hücreye alınabilir. Buna ise kolaylaştırılmış difüzyon denir. Hücre zarı korundan geçebilecek maddeler; glikoz, gliserol, yağ asitleri amino asitler, elementler,su ve bazı inorganik bileşiklerdir. Osmoz (Suyun Difüzyonu) Suyun seçici geçirgen bir zardan difüzyonuna denir. Osmozda da enerji harcanmaz ve canlılık şart değildir. Ancak seçici geçirgen zar bulunmak zorundadır. Emme Kuvveti: Yoğun ortamın yoğunluğundan dolayı diğer ortamdan Su emebilme kuvvetine denir. Osmotik Basınç: Yoğun ortama doğru hareket eden su molekülleri zardan geçebilmek için zara uyguladığı kuvvete denir. Turgor Basınç: Yoğun olan hücrelere aşırı su geçişi sonucu dolan hücre hacminin su tutamayacağından suyun dışarı çıkmak için zara yaptığı basınca denir. Plasmolis: Yoğun ortamlara koyulan hücrelerin zamanla su kaybederek büzülmesi olayına denir.Eğer hücre çok yoğun ortama konulursa ölebilir. Deplazmolis:Az yoğun ortama koyulan hücrelerin zamanla su alarak şişmesi olayına denir. Hücrenin konulduğu ortam çok sulu olduğundan şişerek patlayabilir. İzotonik Çözelti: Çözeni ve çözüneni eşit olan çözeltilerdir. Hipertonik Çözelti: Çözeni az çözüneni fazla olan yoğun çözeltilerdir. Hipotonik Çözelti: Çözeni fazla çözüneni az olan sulu çözeltidir. AKTİF TAŞIMA (ENERJİ HARCANIR) Aktif Taşıma Maddelerin az yoğun ortamdan çok yoğun ortama taşınmasına denir. Aktif taşıma ancak canlı hücrelerde gerçekleşir. Çünkü ATP harcanır ve enzimler iş görür. Bu olayda, taşınacak maddelerin porlardan sığabilecek kadar küçük olması gerekir. İyonların çoğu yoğun ortamdan az yoğun ortama aktif olarak geçer. Endositoz Bu olaylarda da enerji harcanır. Her iki olay hayvan hücrelerinde görülmesine karşılık, bitki hücrelerinde Endositoz görülmez. Endositoz, pordan geçemeyecek kadar büyük moleküllerin hücre içerisine alınmasıdır. Alınan madde sıvı ise pinositoz, katı ise fagositoz adını alır. Ekzositoz Ekzositoz, hücre içerisinde oluşturulan enzim, hormon, çeşitli proteinler, bitkilerde reçine ve eterik yağlar, hayvanlarda mukus ve diğer büyük moleküllü salgı maddelerinin golgi yardımıyla, küçük kesecikler halinde taşınarak dışarı atılmalarına denir.

http://www.biyologlar.com/hucre-zarindan-madde-gecisi-1

Göç nedir ?

Kuşlarda göç, tanımlanmış iki coğrafi bölge arasında düzenli tekrarlanan nüfus hareketi olarak tanımlanabilir. Pek çok kuş türünde görülen ve üreme sonrası genç bireylerin çevreye yayılmalarını tanımlayan “saçılma” ve besin kaynaklarının bazı yıllarda yetersizliği sonucu baykuşlarda ve çaprazgagalarda olduğu gibi güneye ani hareketlenme ile tanımlı “işgal” göç sayılmazlar. Neredeyse her göçmen tür için farklı olan göç rota ve yordamları, kuş topluluğunun tarihçesine, geniş engelleri aşabilme yeteneklerine, topoğrafik engellerin konumlarına ve kışlama ve üreme alanlarının birbirlerine göre konumlarına bağlı. Son elli yılda sürdürülen kapsamlı halkalama ve işaretleme programları sayesinde yüzlerce türün göç ayrıntıları bilinmekte. Örneğin, Kuzey Amerika kuşlarının başlıca göç rotası kıyı ve dağ sıralarının aynı yönde uzanması nedeniyle kuzey-güney doğrultusunda. Avrasya'da ise sonbaharda kuşlar önce doğu-batı doğrultusunda hareketlendikten sonra, ancak Akdeniz ve Büyük Sahra'yı geçerlerken kuzey-güney hattına dönerler. Genel olarak söylemek gerekirse, Güney Yarımküre'de üreyen kuşlar Kuzey Yarımküre'deki benzerleriyle karşılaştırıldıklarında pek göç hareketi göstermezler. Bazı kırlangıçlar ve sinekkapanlar kışları kuzeye, tropikal Amerika'ya yönlenseler de hep küçük bir azınlık olarak kalırlar. Bunun başlıca nedeni, Kuzey Yarımküre'deki kara parçalarının kutuplara daha yakın kesimlerde geniş yüzölçüme sahip olmaları. Göç rotaları, çoğu zaman kuş türlerinin uzak geçmişteki yayılma hareketlerini yansıtırlar. Örneğin Grönland'ın ve Alaska'nın tundra çayırlarını Avrasya'nın iki farklı ucundan gelerek kolonize eden Kuyrukkakanlar (Oenanthe oenanthe), kışlamak için çok daha yakın olmasına karşın Kuzey Amerika yerine okyanusu aşarak atalarının bir zamanlar geldiği Avrupa kıtası üzerinden Afrika'ya gitmeyi yeğlerler. Kuzeybatı yayılışının ucu İskandinavya'ya ulaşan Kutup Çıvgını (Phylloscopus borealis) ise Asya'yı boydan boya çapraz bir rotada katederek kışın Güneydoğu Asya'ya ulaşır. Günümüzde izlediğimiz göç hareketleri, son buzul çağı bitiminde buzulların geri çekilmesi ile şekillenmiş. Buzulların en güneye, Anadolu’ya ulaştığı dönemde bugünkü Sahra Çölü tundra ve tayga içeren büyük bir bataklıktı. Buzulların geri çekilmesi ile vejetasyon kuşakları da kuzeye doğru hareket etti ve kuzeye yaklaştıkça kış ve yaz arasında çevre koşulları giderek daha aşırı hale geldi. Kendi uygun habitatlarını, örneğin tundrayı izleyen kuş türlerinin dağılımları kuzeye doğru ilerlerken giderek kış ve yaz arasındaki farklar belirginleşti ve hep biraz daha güneyde “beklemek” durumunda kaldılar. Elbette bu uzun süreç boyunca “bekleme” ve üreme alanları arasında giderek artan mesafeyle baş edebilmek için pek çok adaptasyon evrimsel olarak gelişti.

http://www.biyologlar.com/goc-nedir-

Biyolojinin Önemi

Doğumdan ölüme kadar yasamin her evresinde bilinçli ve saglikli yasama , ekonomik gelismeyi sürekli kilma , çevreyi bozulmadan tutma , üretimin kalitesini ve miktarini artirmada biyoloji bilimi önemli yer tutar. Temel bilim olan biyoloji , canli ve doga ile ilgili her konuyu içine almaktadir , bu bakimdan arastiran düsünen insana sinirsiz sayida çalisma olanagi saglar. Burada basarili olmanin en önemli sirri, düsünerek dogayi izlemektir . Doganin bilinçsiz kullanilmasi , insan ve diger canlilarin yasami için tehlikeli sonuçlar ortaya çikarir . Çevre kirlenmesi , erozyon , madde kaybi , yesil alanlarin azalmasi , hizli nüfûs artisi , plânsiz kentlesme , biyolojik zenginliklerin ortadan kalkmasi bu sorunlarin basinda gelir. Örnegin orta Anadolu'nun çöllesme tehlikesi ile karsi karsiya kalmasi , nehirlerin kirlenmesi , kiyi güzelliklerimizin bozulmasi , dogal kaynaklarimizin iyi kullanilmamasi sonucunda ortaya çikan sorunlardir . Biyoteknoloji alanindaki çalismalarla , atik maddelerin temel yapilarina kadar parçalayabilen mikroorganizmalar kullanilarak daha temiz bir çevrenin yaratilmasi saglanacaktir . Biyoteknolojinin amaci , bir canlinin belirli özelliklerini sifreleyen genetik bilginin bir baska canliya nakledilmesidir . Böylece nakledilen bilginin geregi , ikinci canli tarafindan yerine getirilir . DNA molekülünün yapisi üzerinde yapilan bu degisiklikle amaca yönelik üretim yapilir . Biyoloji ; uygulama alanlarin olan tip , tarim , hayvancilik , ormancilik , endüstri ve diger alanlardaki çalismalar sayesinde , insanlarin gelecege daha umutla bakmalarini saglayan genis bir bilim dali olmustur . Biyoloji ile ilgili bilgilerin eksikligi , ne yazik ki basta çevrenin bozulmasi , önlenmesi mümkün olmayan saglik sorunlarinin ortaya çikmasi , dogal kaynaklarin sürekli ve verimli olarak kullanilmamasi , biyolojik zenginliklerden yeterince yararlanilamama gibi sorunlar dogmustur . Biyoloji ile bireyin kendisini ve çevresini tanimasi , çevresini koruma bilincini kazanmasi hedeflenmistir . Biyoloji bilgisine sahip olmanin bireyin yasamina getirecegi yararlar çevresini tanima , sagligini koruma biyolojik zenginlikleri tanima ve onlardan yararlanma , canlilarin temel yapisini ögrenme olabilir . Çevrenin bozulmasi ve kirlenmesine iliskin bilgi ve bilinci gelistirme , arastirma duygusunu ve kisiligini gelistirme , son gelismeleri tanima ve 21. yüzyila hazirlanma biyolojinin saglayacagi diger yararlarindandir . Biyoloji bilimine yeterli önemin verilmemesi sonucunda ortaya çikan sorunlar sunlardir : Çevrenin bozulmasi ile ilgili sorunlar : Erozyon , sulak alanlarin kurutulmasi , denizlerin ve göllerin kirlenmesi , ormanlarin ve meralarin tahrip edilmesi , Birçok canli türünün ortadan kalkmasiyla biyolojik çesitliligin azalmasi ve doga dengesinin bozulmasi , Canlilarin asiri ve yanlis tüketiminden dolayi , dogal kaynaklarin tahrip edilmesi , gibi sorunlar çevrenin bozulmasina sebep olurlar . Saglikla ilgili sorunlar : Yanlis beslenmeye bagli birçok hastalik , Akraba evliligine bagli anomalilerin artmasi , Kalitsal bozukluklarin zamaninda tanimlanamamasina bagli olarak sagliksiz soylarin ortaya çikmasi ve bunlar gibi birçok sorunlar . Ekonomiyle ilgili sorunlar Dünyanin en önemli kültür bitkilerini ve hayvanlarini barindiran ülkemizde , islah çalismalarinin yapilmamasi ve üretimin gereken sekilde artirilmamasi , ekonomik sorunlardandir . Sosyal yapiyla ilgili sorunlar : Çevre bozulmasina yada yaslanabilir bir çevre olusturulmamasina bagli olarak göçe sürüklenme , Saglikli ve güzel ortamlarda çocuklarin yetistirilmemesine bagli olarak , bedensel ve ruhsal yetersizlikler , sosyal yapiyla ilgili sorunlardir . Biyolojinin Gelecegi Dünyamizin kaynaklari , sürekli çogalan ve tüketimi gittikçe artan ,nsan topluluklarina yeterli olmayacak duruma gelmistir . Denizler , iç sular ve atmosfer kirlenmis , toprak yapisi yer yer yenilenemeyecek kadar bozulmustur . Tüm dünya yasam tehlikesine dogru sürüklenmektedir . Çözüm yolu , bazi yöntemlerle birlikte biyoloji bilimine dayanmaktadir. Önümüzdeki yüzyilin basinda su gelismelerin olmasi beklenmektedir . Insan topluluklarinda kalitsal hastaliklara neden olan genler , döllenme sirasinda saglamlariyla degistirilecek kanser , düsük ve yüksek tansiyon, seker hastaligi , cücelik v.b. hastaliklar önlenebilecekler . Canlilarin ömür uzunlugunu kalitsal olarak denetleyen genler kontrol altina alinarak yada degistirilerek , uzun bir yasam saglanabilecektir . 1996 yilindan bu yana ana karnindaki bir fetusun ne kadar yasayacagi artik tahmin edilebilmektedir . Bir canlida özelligi bir özelligi ortaya çikaran gen yada genler , diger canlilarin kalitsal yapisina eklenerek bazi eksikler bu yolla giderilebildigi gibi fazladan bazi özelliklerinde kazanilmasida saglanacaktir . Örnegin ; C vitamini karacigerde sentezlettirilecegi için vitamin olmaktan çikacaktir . Bitki ve hayvanlarin islahinda olaganüstü atilimlar gerçeklesecek , verim artirilacak bir çok maddenin sentezi özellikle büyük miktarda mikroorganizmalarda yaptirilabilecektir . Genlerdeki degisiklikler sonucu yeni hayvan ve bitki türlerinin ortaya çikmasi saglanacaktir . Yenilenme mekanizmasi aydinlatilacagindan kismi doku ve organ yitirilmeleri yerine konulabilecektir . Bugüne kadar doku ve organ nakli tekniginde , doku uyusmazligi nedeniyle basarisizliklar olmustur , ancak bu sorun doku ve organ nakli teknigindeki gelismelerle asilmaktadir . Bunun için simdiden organ bankalarinda çesitli organlar gerektiginde kullanilmak üzere korunmaktadir . Su anda genellikle sperm , kemik , deri ve bazi özel dokular saklanabilmektedir . Yakin gelecekte ise çesitli doku ve organlar , bir bütün olarak yapilari bozulmadan saklanabilceklerdir . Canlilardaki genlerin bütünü kataloglanabilecek , bunlarla ilgili bankalar kurulacak . Ilaç sanayii biyoteknolojik yöntemleri genis oranda kullanilacagi için birçok ilacin etkili ve ucuza üretilmesi saglanacaktir . Bütün bunlarin yaninda tehlikeli olabilecek mikroorganizmalari üretmek , dogal yasam görüntüsünü kismen de olsa bozma gibi biyolojik gelismelerin dogurabilecegi sakincalarida vardir.

http://www.biyologlar.com/biyolojinin-onemi

Popüler Bilim ve Gelecek "Ayna Nöronlar"

Popüler Bilim ve Gelecek "Ayna Nöronlar"

Ayna Nöronlar: Beyindeki bu hücreler, sadece bir hareket ortaya koyduğumuzda değil ayrıca aynı hareketin başkaları tarafından gerçekleşmesini gözlemlediğimizde de ateşlenmektedir.

http://www.biyologlar.com/populer-bilim-ve-gelecek-ayna-noronlar

Antibiyotik Kıyameti Ve Bilinmesi Gerekenler

Antibiyotik Kıyameti Ve Bilinmesi Gerekenler

Antibiyotiklerin direnci bizler antibiyotikleri sıklık ve hevesle kullanmadan çok önce başlamıştır. Modern bakterilerin antibiyotiklere karşı kendilerini korumak için kullandıkları genler, 30.000 yıldan uzun bir süredir Arctic permafrost'ta donmuş antik bakterilerde bulunmuştur. (Credit: Alamy)

http://www.biyologlar.com/antibiyotik-kiyameti-ve-bilinmesi-gerekenler

Bilim adamlari nesli tukenen bir virusu canlandirdi

Bilim adamlari nesli tukenen bir virusu canlandirdi

Temel bir organizmayı sentezlemek artık imkansız değil. Üstelik bir grup bilim insanı bu çalışmayı bir adım daha ileri taşımış. Decade3d via Getty Images

http://www.biyologlar.com/bilim-adamlari-nesli-tukenen-bir-virusu-canlandirdi

Jeomorfoloji Nedir

Güneş Sistemi’nin Oluşumu Güneş Sistemi’nin oluşumu ile ilgili farklı teoriler ortaya atılmıştır. En geçerli teori sayılan Kant-Laplace teorisine Nebula teorisi de denir. Bu teoriye göre, Nebula adı verilen kızgın gaz kütlesi ekseni çevresinde sarmal bir hareketle dönerken, zamanla soğuyarak küçülmüştür. Bu dönüş etkisiyle oluşan çekim merkezinde Güneş oluşmuştur. Gazlardan hafif olanları Güneş tarafından çekilmiş, çekim etkisi dışındakiler uzay boşluğuna dağılmış ağır olanlar da Güneş’ten farklı uzaklıklarda soğuyarak gezegenleri oluşturmuşlardır. Dünya’nın Oluşumu Dünya, Güneş Sistemi oluştuğunda kızgın bir gaz kütlesi halindeydi. Zamanla ekseni çevresindeki dönüşünün etkisiyle, dıştan içe doğru soğumuş, böylece iç içe geçmiş farklı sıcaklıktaki katmanlar oluşmuştur. Günümüzde iç kısımlarda yüksek sıcaklık korunmaktadır. Dünya’nın oluşumundan bugüne kadar geçen zaman ve Dünya’nın yapısı jeolojik zamanlar yardımıyla belirlenir. Jeolojik Zamanlar Yaklaşık 4,5 milyar yaşında olan Dünya, günümüze kadar çeşitli evrelerden geçmiştir. Jeolojik zamanlar adı verilen bu evrelerin her birinde , değişik canlı türleri ve iklim koşulları görülmüştür. Dünya’nın yapısını inceleyen jeoloji bilimi, jeolojik zamanlar belirlenirken fosillerden ve tortul tabakaların özelliklerinden yararlanılır. Jeolojik zamanlar günümüze en yakın zaman en üstte olacak şekilde sıralanır. • Dördüncü Zaman • Üçüncü Zaman • İkinci Zaman • Birinci Zaman • İlkel Zaman İlkel Zaman Günümüzden yaklaşık 600 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İlkel zamanın yaklaşık 4 milyar yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Sularda tek hücreli canlıların ortaya çıkışı  En eski kıta çekirdeklerinin oluşumu İlkel zamanı karakterize eden canlılar alg ve radiolariadır. Birinci Zaman (Paleozoik) Günümüzden yaklaşık 225 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Birinci zamanın yaklaşık 375 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kaledonya ve Hersinya kıvrımlarının oluşumu  Özellikle karbon devrinde kömür yataklarının oluşumu  İlk kara bitkilerinin ortaya çıkışı  Balığa benzer ilk organizmaların ortaya çıkışı Birinci zamanı karakterize eden canlılar graptolith ve trilobittir. İkinci Zaman (Mezozoik) Günümüzden yaklaşık 65 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İkinci zamanın yaklaşık 160 milyon yıl sürdüğü tahmin edilmektedir. İkinci zamanı karakterize eden dinazor ve ammonitler bu zamanın sonunda yok olmuşlardır. Zamanın önemli olayları :  Ekvatoral ve soğuk iklimlerin belirmesi  Kimmeridge ve Avustrien kıvrımlarının oluşumu İkinci zamanı karakterize eden canlılar ammonit ve dinazordur. Üçüncü Zaman (Neozoik) Günümüzden yaklaşık 2 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Üçüncü zamanın yaklaşık 63 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kıtaların bugünkü görünümünü kazanmaya başlaması  Linyit havzalarının oluşumu  Bugünkü iklim bölgelerinin ve bitki topluluklarının belirmeye başlaması  Alp kıvrım sisteminin gelişmesi  Nümmilitler ve memelilerin ortaya çıkışı Üçüncü zamanı karakterize eden canlılar nummilit, hipparion, elephas ve mastadondur. Dördüncü Zaman (Kuaterner) Günümüzden 2 milyon yıl önce başladığı ve hala sürdüğü varsayılan jeolojik zamandır. Zamanın önemli olayları :  İklimde büyük değişikliklerin ve dört buzul döneminin (Günz, Mindel, Riss, Würm) yaşanması  İnsanın ortaya çıkışı Dördüncü zamanı karakterize eden canlılar mamut ve insandır. Dünya’nın İç Yapısı Dünya, kalınlık, yoğunluk ve sıcaklıkları farklı, iç içe geçmiş çeşitli katmanlardan oluşmuştur. Bu katmanların özellikleri hakkında bilgi edinilirken deprem dalgalarından yararlanılır.  Çekirdek  Manto  Taşküre (Litosfer) Deprem Dalgaları Deprem dalgaları farklı dalga boylarını göstermektedir. Deprem dalgaları yoğun tabakalardan geçerken dalga boyları küçülür, titreşim sayısı artar. Yoğunluğu az olan tabakalarda ise dalga boyu uzar, titreşim sayısı azalır. Çekirdek : Yoğunluk ve ağırlık bakımından en ağır elementlerin bulunduğu bölümdür. Dünya’nın en iç bölümünü oluşturan çekirdeğin, 5120-2890 km’ler arasındaki kısmına dış çekirdek, 6371-5150 km’ler arasındaki kısmına iç çekirdek denir. İç çekirdekte bulunan demir-nikel karışımı çok yüksek basınç ve sıcaklık etkisiyle kristal haldedir. Dış çekirdekte ise bu karışım ergimiş haldedir. Manto Litosfer ile çekirdek arasındaki katmandır. 100-2890 km’ler arasında bulunan mantonun yoğunluğu 3,3-5,5 g/cm3 sıcaklığı 1900-3700 °C arasında değişir. Manto, yer hacminin en büyük bölümünü oluşturur. Yapısında silisyum, magnezyum , nikel ve demir bulunmaktadır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastiki özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Mantodaki Alçalıcı-Yükselici Hareketler Mantonun alt ve üst kısımlarındaki yoğunluk farkı nedeniyle magma adı verilen kızgın akıcı madde yerkabuğuna doğru yükselir. Yoğunluğun arttığı bölümlerde ise magma yerin içine doğru sokulur. Taşküre (Litosfer) Mantonun üstünde yer alan ve yeryüzüne kadar uzanan katmandır. Kalınlığı ortalama 100 km’dir. Taşküre’nin ortalama 35 km’lik üst bölümüne yerkabuğu denir. Daha çok silisyum ve alüminyum bileşimindeki taşlardan oluşması nedeniyle sial de denir. Yerkabuğunun altındaki bölüme ise silisyum ve magnezyumdan oluştuğu için sima denir. Sial, okyanus tabanlarında incelir yer yer kaybolur. Örneğin Büyük Okyanus tabanının bazı bölümlerinde sial görülmez. Yeryüzünden yerin derinliklerine inildikçe 33 m’de bir sıcaklık 1 °C artar. Buna jeoterm basamağı denir. Kıtalar ve Okyanuslar Yeryüzünün üst bölümü kara parçalarından ve su kütlelerinden oluşmuştur. Denizlerin ortasında çok büyük birer ada gibi duran kara kütlelerine kıta denir. Kuzey Yarım Küre’de karalar, Güney Yarım Küre’den daha geniş yer kaplar. Asya, Avrupa, Kuzey Amerika’nın tamamı ve Afrika’nın büyük bir bölümü Kuzey Yarım Küre’de yer alır. Güney Amerika’nın ve Afrika’nın büyük bir bölümü, Avustralya ve çevresindeki adalarla Antartika kıtası Güney Yarım Küre’de bulunur. Yeryüzünün yaklaşık ¾’ü sularla kaplıdır. Kıtaların birbirinden ayıran büyük su kütlelerine okyanus denir. Kara ve Denizlerin Farklı Dağılışının Sonuçları Karaların Kuzey Yarım Küre’de daha fazla yer kaplaması nedeniyle, Kuzey Yarım Küre’de; • Yıllık sıcaklık ortalaması daha yüksektir. • Sıcaklık farkları daha belirgindir. • Eş sıcaklık eğrileri enlemlerden daha fazla sapma gösterir. • Kıtalar arası ulaşım daha kolaydır. • Nüfus daha kalabalıktır. • Kültürlerin gelişmesi ve yayılması daha kolaydır. • Ekonomi daha hızlı ve daha çok gelişmiştir. Hipsografik Eğri Yeryüzünün yükseklik ve derinlik basamaklarını gösteren eğridir. Kıta Platformu : Derin deniz platformundan sonra yüksek dağlar ile kıyı ovaları arasındaki en geniş bölümdür. Karaların Ortalama Yüksekliği : Karaların ortalama yüksekliği 1000 m dir. Dünya’nın en yüksek yeri deniz seviyesinden 8840 m yükseklikteki Everest Tepesi’dir. Kıta Sahanlığı : Deniz seviyesinin altında, kıyı çizgisinden -200 m derine kadar inen bölüme kıta sahanlığı (şelf) denir. Şelf kıtaların su altında kalmış bölümleri sayılır. Kıta Yamacı : Şelf ile derin deniz platformunu birbirine bağlayan bölümdür. Denizlerin Ortalama Derinliği : Denizlerin ortalama derinliği 4000 m dir. Dünya’nın en derin yeri olan Mariana Çukuru denzi seviyesinden 11.035 m derinliktedir. Derin Deniz Platformu : Kıta yamaçları ile çevrelenmiş, ortalama derinliği 6000 m olan yeryüzünün en geniş bölümüdür. Derin Deniz Çukurları : Sima üzerinde hareket eden kıtaların, birbirine çarptıkları yerlerde bulunur. Yeryüzünün en dar bölümüdür. Yerkabuğunu Oluşturan Taşlar Yerkabuğunun ana malzemesi taşlardır. Çeşitli minerallerden ve organik maddelerden oluşan katı, doğal maddelere taş ya da kayaç denir. Yer üstünde ve içinde bulunan tüm taşların kökeni magmadır. Ancak bu taşların bir kısmı bazı olaylar sonucu değişik özellikler kazanarak çeşitli adlar almıştır. Oluşumlarına göre taşlar üç grupta toplanır. • Püskürük (Volkanik) Taşlar • Tortul Taşlar • Başkalaşmış (Metamorfik) Taşlar UYARI : Tortul taşları, püskürük ve başkalaşmış taşlardan ayıran en önemli özellik fosil içermeleridir. Püskürük (Volkanik) Taşlar Magmanın yeryüzünde ya da yeryüzüne yakın yerlerde soğumasıyla oluşan taşlardır. Katılaşım taşları adı da verilen püskürük taşlar magmanın soğuduğu yere göre iki gruba ayrılır.  Dış Püskürük Taşlar  İç Püskürük Taşlar Dış Püskürük Taşlar Magmanın yeryüzüne çıkıp, yeryüzünde soğumasıyla oluşan taşlardır. Soğumaları kısa sürede gerçekleştiği için Küçük kristalli olurlar. Dış püskürük taşların en tanınmış örnekleri bazalt, andezit, obsidyen ve volkanik tüftür. Bazalt : Koyu gri ve siyah renklerde olan dış püskürük bir taştır. Mineralleri ince taneli olduğu için ancak mikroskopla görülebilir. Bazalt demir içerir. Bu nedenle ağır bir taştır. Andezit : Eflatun, mor, pembemsi renkli dış püskürük bir taştır. Ankara taşı da denir. Dağıldığında killi topraklar oluşur. Obsidyen (Volkan Camı) : Siyah, kahverengi, yeşil renkli ve parlak dış püskürük bir taştır. Magmanın yer yüzüne çıktığında aniden soğuması ile oluşur. Bu nedenle camsı görünüme sahiptir. Volkanik Tüf : Volkanlardan çıkan kül ve irili ufaklı parçaların üst üste yığılarak yapışması ile oluşan taşlara volkan tüfü denir. İç Püskürük Taşlar Magmanın yeryüzünün derinliklerinde soğuyup, katılaşmasıyla oluşan taşlardır. Soğuma yavaş olduğundan iç püskürükler iri kristalli olurlar. İç püskürük taşların en tanınmış örnekleri granit, siyenit ve diyorittir. Granit : İç püskürük bir taştır. Kuvars, mika ve feldspat mineralleri içerir. Taneli olması nedeniyle mineralleri kolayca görülür. Çatlağı çok olan granit kolayca dağılır, oluşan kuma arena denir. Siyenit : Yeşilimsi, pembemsi renkli iç püskürük bir taştır. Adını Mısır’daki Syene (Asuvan) kentinden almıştır. Siyenit dağılınca kil oluşur. Diyorit : Birbirinden gözle kolayca ayrılabilen açık ve koyu renkli minerallerden oluşan iç püskürük bir taştır. İri taneli olanları, ince tanelilere göre daha kolay dağılır. Tortul Taşlar Denizlerde, göllerde ve çukur yerlerde meydana gelen tortulanma ve çökelmelerle oluşan taşlardır. Tortul taşların yaşı içerdikleri fosillerle belirlenir. Tortul taşlar, tortullanmanın çeşidine göre 3 gruba ayrılır. • Kimyasal Tortul Taşlar • Organik Tortul Taşlar • Fiziksel Tortul Taşlar Fosil : Jeolojik devirler boyunca yaşamış canlıların taşlamış kalıntılarına fosil denir. Kimyasal Tortul Taşlar Suda erime özelliğine sahip taşların suda eriyerek başka alanlara taşınıp tortulanması ile oluşur. Kimyasal tortul taşların en tanınmış örnekleri jips, traverten, kireç taşı (kalker), çakmaktaşı (silex)’dır. Jips (Alçıtaşı) : Beyaz renkli, tırnakla çizilebilen kimyasal tortul bir taştır. Alçıtaşı olarak da isimlendirilir. Traverten : Kalsiyum biokarbonatlı yer altı sularının mağara boşluklarında veya yeryüzüne çıktıkları yerlerde içlerindeki kalsiyum karbonatın çökelmesi sonucu oluşan kimyasal tortul bir taştır. Kalker (Kireçtaşı) : Deniz ve okyanus havzalarında, erimiş halde bulunan kirecin çökelmesi ve taşlaşması sonucu oluşan taştır. Çakmaktaşı (Silex) : Denizlerde eriyik halde bulunan silisyum dioksitin (SİO2) çökelmesi ile oluşan taştır. Kahverengi, gri, beyaz, siyah renkleri bulunur. Çok sert olması ve düzgün yüzeyler halinde kırılması nedeniyle ilkel insanlar tarafından alet yapımında kullanılmıştır. Organik Tortul Taşlar Bitki ya da hayvan kalıntılarının belli ortamlarda birikmesi ve zamanla taşlaşması sonucu oluşur. Organik tortul taşların en tanınmış örnekleri mercan kalkeri, tebeşir ve kömürdür. Mercan Kalkeri : Mercan iskeletlerinden oluşan organik bir taştır. Temiz, sıcak ve derinliğin az olduğu denizlerde bulunur. Ada kenarlarında topluluk oluşturanlara atol denir. Kıyı yakınlarında olanlar ise, mercan resifleridir. Tebeşir : Derin deniz canlıları olan tek hücreli Globugerina (Globijerina)’ların birikimi sonucu oluşur. Saf, yumuşak, kolay dağılabilen bir kalkerdir. Gözenekli olduğu için suyu kolay geçirir. Kömür : Bitkiler öldükten sonra bakteriler etkisiyle değişime uğrar. Eğer su altında kalarak değişime uğrarsa, C (karbon) miktarı artarak kömürleşme başlar. C miktarı % 60 ise turba, C miktarı % 70 ise linyit, C miktarı % 80 – 90 ise taş kömürü, C miktarı % 94 ise antrasit adını alır. Fiziksel (Mekanik) Tortul Taşlar Akarsuların, rüzgarların ve buzulların, taşlardan kopardıkları parçacıkların çökelip, birikmesi ile oluşur. Fiziksel (mekanik) tortul taşların en tanınmış örnekleri kiltaşı (şist), kumtaşı (gre) ve çakıltaşı (konglomera)’dır. Kiltaşı (Şist) : Çapı 2 mikrondan daha küçük olan ve kil adı verilen tanelerin yapışması sonucu oluşan fiziksel tortul bir taştır. Kumtaşı (Gre) : Kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Çakıltaşı (Konglomera) : Genelde yuvarlak akarsu çakıllarının doğal bir çimento maddesi yardımıyla yapışması sonucu oluşur. Başkalaşmış (Metamorfik) Taşlar : Tortul ve püskürük taşların, yüksek sıcaklık ve basınç altında başkalaşıma uğraması sonucu oluşan taşlardır. Başkalaşmış taşların en tanınmış örnekleri mermer, gnays ve filattır. Mermer : Kalkerin yüksek sıcaklık ve basınç altında değişime uğraması, yani metamorfize olması sonucu oluşur. Gnays : Granitin yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Filat : Kiltaşının (şist) yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Yeraltı Zenginliklerinin Oluşumu Yerkabuğunun yapısı ve geçirmiş olduğu evrelerle yer altı zenginlikleri arasında sıkı bir ilişki vardır. Yer altı zenginliklerinin oluşumu 3 grupta toplanır: • Volkanik olaylara bağlı olanlar; Krom, kurşun, demir, nikel, pirit ve manganez gibi madenler magmada erimiş haldedir. • Organik tortulanmaya bağlı olanlar; Taş kömürü, linyit ve petrol oluşumu. • Kimyasal tortulanmaya bağlı olanlar; Kayatuzu, jips, kalker, borasit ve potas yataklarının oluşumu. İç Güçler ve Etkileri Faaliyetleri için gerekli enerjiyi yerin içinden alan güçlerdir. İç güçlerin oluşturduğu yerşekilleri dış güçler tarafından aşındırılır. İç güçlerin oluşturduğu hareketlerin bütününe tektonik hareket denir. Bunlar; 1. Orojenez 2. Epirojenez 3. Volkanizma 4. Depremler’dir. UYARI : İç kuvvetler gerekli olan enerjiyi mantodan alır. Deniz tabanı yayılmaları, kıta kaymaları, kıta yaylanmaları, dağ oluşumu ve tektonik depremler mantodaki hareketlerden kaynaklanır. Orojenez (Dağ Oluşumu) Jeosenklinallerde biriken tortul tabakaların kıvrılma ve kırılma hareketleriyle yükselmesi olayına dağ oluşumu ya da orojenez denir. Kıvrım hareketleri sırasında yükselen bölümlere antiklinal, çöken bölümlere ise senklinal adı verilir. Antiklinaller kıvrım dağlarını, senklinaller ise çöküntü alanlarını oluşturur. Jeosenklinal : Akarsular, rüzgarlar ve buzullar, aşındırıp, taşıdıkları maddeleri deniz ya da okyanus tabanlarında biriktirirler. Tortullanmanın görüldüğü bu geniş alanlara jeosenklinal denir. Fay Yerkabuğu hareketleri sırasında şiddetli yan basınç ve gerilme kuvvetleriyle blokların birbirine göre yer değiştirmesine fay denir. Fay elemanları şunlardır: Yükselen Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan yükselen kısma denir. Alçalan Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan alçalan kısma denir. Fay atımı : Yükselen ve alçalan blok arasında beliren yükseklik farkına fay atımı denir. Fay açısı : Dikey düzlem ile fay düzlemin yaptığı açıya fay açısı denir. Fay aynası : Fay oluşumu sırasında yükselen ve alçalan blok arasındaki yüzey kayma ve sürtünme nedeniyle çizilir., cilalanır. Parlak görünen bu yüzeye fay aynası denir. Faylar boyunca yüksekte kalan yerkabuğu parçalarına horst adı verilir. Buna karşılık faylar boyunca çöken kısımlara graben denir. Horstlar kırık dağlarını, grabenler ise çöküntü hendeklerini oluşturur. Türkiye’de Orojenez Türkiye’deki dağlar Avrupa ile Afrika kıtaları arasındaki Tetis jeosenklinalinde bulunan tortul tabakaların orojenik hareketi sonucunda oluşmuştur. Kuzey Anadolu ve Toros Dağları Alp Orojenezi’nin Türkiye’deki kuzey ve güney kanadını oluşturmaktadır. Ege bölgesi’ndeki horst ve grabenler de aynı sistemin içinde yer almaktadır. Epirojenez Karaların toptan alçalması ya da yükselmesi olayına epirojenez denir. Bu hareketler sırasında yeryüzünde geniş kubbeleşmeler ile yayvan büyük çukurlaşmalar olur. Orojenik hareketlerin tersine epirojenik hareketlerde tabakaların duruşunda bozulma söz konusu değildir. Dikey yönlü hareketler sırasındaki yükselmelerle jeoantiklinaller, çukurlaşmalar sırasında ise okyanus çanakları, yani jeosenklinaller oluşur. UYARI : III. Zaman sonları, IV. Zamanın başlarında Anadolu’nun epirojenik olarak yükselmesi ortalama yükseltiyi artırmıştır. Bu nedenle Anadolu’da yüksek düzlükler geniş yer kaplar. Transgresyon – Regrasyon Epirojenik hareketlere bağlı olarak her devirde kara ve deniz seviyeleri değişmiştir. İklim değişiklikleri ya da tektonik hareketler nedeniyle denizin karalara doğru ilerlemesine transgresyon (deniz ilerlemesi) , denizin çekilmesine regresyon (deniz gerilemesi) denir. Volkanizma Yerin derinliklerinde bulunan magmanın patlama ve püskürme biçiminde yeryüzüne çıkmasına volkanizma denir. Volkanik hareketler sırasında çıkan maddeler bir baca etrafında yığılarak yükselir ve volkanlar (yanardağlar) oluşur. Volkan Bacası : Mağmanın yeryüzüne ulaşıncaya kadar geçtiği yola volkan bacası denir. Volkan Konisi : Lav, kül, volkan bombası gibi volkanik maddelerin üst üste yığılması ile oluşan koni biçimli yükseltiye volkan konisi, koni üzerinde oluşan çukurluğa krater denir. Volkanlardan Çıkan Maddeler Volkanlardan çıkan maddeler değişik isimler alır : • Lav • Volkan Bombası • Volkan Külü • Volkanik Gazlar Lav Volkanlardan çıkarak yeryüzüne kadar ulaşan eriyik haldeki malzemeye lav denir. Lavın içerisindeki SİO2 (Silisyum dioksit) oranı lavın tipini ve volkanizmanın karakterini belirler. Asit Lav : SİO2 % 66 ise asit lavlar oluşur. Fazla akıcı değillerdir. Orta Tip Lav : SİO2 oranı % 33 - % 66 ise lav orta tiptir. Bu tip lavların çıktığı volkanlarda volkanik kül miktarı azdır. Bazik Lav : SİO2 oranı < % 33 ise lav bazik karakterli ve akıcıdır. Patlamasız, sakin bir püskürme oluşur. Volkan Bombası : Volkan bacasından atılan lav parçalarının havada dönerek soğuması ile oluşur. Volkan Külü : Gaz püskürmeleri sırasında oluşan, basınçlı volkan bacasından çıkan küçük taneli malzemeye kül denir. Volkanik küllerin bir alanda birikmesiyle volkanik tüfler oluşur. Volkanik Gazlar : Volkanizma sırasında subuharı, karbon dioksit, kükürt gibi gazlar magmadan hızla ayrışarak yeryüzüne çıkar. Büyük volkanik bulutların oluşmasını sağlar. Püskürme Şekilleri Volkanik hareketlerin en yoğun olduğu yerler, yerkabuğunun zayıf olduğu noktalar, çatlaklar ve yarıklardır. Magmanın yeryüzüne ulaştığı yere göre adlandırılan, merkezi çizgisel ve alansal olarak üç değişik püskürme şekli vardır : Merkezi Püskürme : Magma yeryüzüne bir noktadan çıkıyorsa, buna merkezi püskürme denir. Çizgisel Püskürme : Magma yeryüzüne bir yarık boyunca çıkıyorsa, buna çizgisel püskürme denir. Alansal Püskürme : Magma yeryüzüne yaygın bir alandan çıkıyorsa, buna alansal püskürme denir. Volkan (Yanardağ) Biçimleri Volkanların yapısı ve biçimleri yeryüzüne çıkan magmanın bileşimine, miktarına ve çıktığı yere göre değişir. Tabla Biçimindeki Volkanlar : Akıcı lavların geniş alanlara yayılmaları sonucunda oluşur. Örneğin Hindistan’daki Dekkan Platosu Kalkan Biçimindeki Volkanlar : Akıcı lavların bir bacadan çıkarak birikmesi sonucunda oluşan, geniş alanlı ve kubbemsi bir görünüşe sahip volkanlardır. Örneğin : Güneydoğu Anadolu’daki Karacadağ Volkanı Koni Biçimindeki Volkanlar : Magmadan değişik dönemlerde yükselen, farklı karakterdeki malzemenin birikmesi ile oluşur. Bu volkanların kesitinde, farklı karakterdeki malzeme katmanları ardarda görüldüğü için tabakalı volkanlar da denir. Örneğin ülkemizdeki Erciyes, Nemrut, Hasan ve Ağrı volkanları koni biçimli volkanlardır. Tüf Konileri : Volkanlardan çıkan küllerin ve diğer kırıntılı maddelerin birikmesi ile oluşan konilere denir. Örneğin ülkemizde Kula ve Karapınar çevresindeki koniler kül konileridir. Volkanik Kuşaklar Yeryüzünde bilinen volkanların sayısı binlere ulaşmasına karşın ancak 516 kadarı tarihi çağlarda faaliyet göstermiş, bu nedenle aktif volkanlar olarak kabul edilmişlerdir. Yerkabuğunu bloklar halinde bölen kırıklar üzerinde bulunan volkanlar, bir çizgi doğrultusunda sıralanmakta adeta kuşak oluşturmaktadır. Dünya’daki Volkanlar Dünya üzerindeki aktif volkanlar üç ana bölgede toplanmıştır. Volkanların en yoğun olduğu bölge Pasifik Okyanusu’nun kenarlarıdır. Volkanların aktif olduğu ikinci bölge Alp-Himalaya kıvrım kuşağı, üçüncü bölge ise okyanus ortalarıdır. Okyanus Ortaları Yerkabuğunun üst bölümünü oluşturan sial okyanus tabanlarında daha incedir. Bu ince kabuk mantodaki yükselici hareketler nedeniyle yırtılarak ayrılır. Ayrılma bölgesi adı verilen bu bölümden magma yükselir ve okyanus tabanına yayılır. Bu durum okyanus ortalarında aktif volkanların bulunmasının nedenidir. Türkiye’deki Volkanlar Alp-Himalaya kıvrım kuşağında yer alan Türkiye’de volkanlar, tektonik hatlara uygun olarak beş bölgede yoğunlaşmıştır. Ancak günümüzde Türkiye’de aktif volkan bulunmamaktadır. Depremler Yerkabuğunun derinliklerinde doğal nedenlerle oluşan salınım ve titreşim hareketleridir. Yerkabuğunun titreşimi sırasında değişik özellikteki dalgalar oluşmakta ve bunlar depremin merkezinden çevreye doğru farklı hız ve özellikle yayılmaktadır. Deprem dalgaları P, S, L dalgaları olarak 3 çeşittir. Depremlere neden olan olayların kaynaklandığı yerden uzaklaşıldıkça depremin etkisi azalır. Oluşum nedenlerine göre depremler, 3 gruba ayrılır : • Volkanik Depremler • Çökme Depremleri • Tektonik Depremler P, S, L Dalgaları P dalgaları (Primer dalgalar), titreşim hareketi ile yayılma doğrultusunun aynı yönde olduğu ve yayılma hızının en fazla olduğu dalgalardır. S dalgaları (Sekonder dalgalar), titreşim hareketlerinin yayılma doğrultusuna dik ve bir düzlem üzerinde aşağı yukarı olduğu dalgalardır. L dalgaları (Longitidunal dalgalar), yüzey dalgaları veya uzun dalgalar olarak da tanımlanır. Bu dalgaların hızları diğer dalgalara göre daha azdır. Volkanik Depremler Aktif volkanların bulunduğu yerlerde, patlama ve püskürmelere bağlı oluşan yer sarsıntılarıdır. Etki alanları dardır. Çökme Depremleri Bu tür depremler, eriyebilen taşların bulunduğu yerlerdeki yer altı mağaralarının tavanlarının çökmesiyle oluşur. Ayrıca kömür ocaklarının ve galerilerinin çökmesi de bu tür depremlere neden olur. Çok küçük ölçülü sarsıntılardır. Etki alanları dar ve zararları azdır. Tektonik Depremler Yerkabuğunun üst katlarındaki kırılmalar sırasında oluşan yer sarsıntılarıdır. Bu sarsıntılar çevreye deprem dalgaları olarak yayılır. Yeryüzünde oluşan depremlerin büyük bölümü tektonik depremlerdir. Etki alanları geniş, şiddetleri fazladır. En çok can ve mal kaybına neden olan depremlerdir. Örneğin ülkemizde 1995’te Afyon’un Dinar ilçesinde, 1998’de Adana’da oluşan depremler tektonik kökenlidir. UYARI : Tektonik depremlerin en etkili olduğu alanlar dış merkez ve yakın çevresidir. Depremin İç ve Dış Merkezi Depreme neden olan olayın kaynaklandığı noktaya odak, iç merkez ya da hiposantr denir. Yeryüzünde depremin iç merkezine en yakın olan noktaya ise, dış merkez ya da episantr denir. Depremin en şiddetli olduğu episantrdan uzaklaşıldıkça depremin etkisi azalır. Yer sarsıntıları sismograf ile kaydedilir. Deprem’in şiddeti günümüzde Richter ölçeğine göre değerlendirilir. Depremin Etkileri ve Korunma Yolları Depremler önceden tahmin edilmesi mümkün olmayan yer hareketleridir. Ancak alınacak bazı önlemlerle depremlerin zarar derecesi azaltılabilir. Depremin Etkileri : Depremin yıkıcı etkisi deprem şiddetine, dış merkeze (episantr) olan uzaklığa, zeminin yapısına, binaların özelliğine ve kütlenin eski ya da yeni oluşuna bağlı olarak değişir. Depremden Korunma Yolları Depremin yıkıcı etkisi birtakım önlemlerle azaltılabilir. Bunun için, • Yerleşim yerlerini deprem kuşakları dışında seçmek • Yerleşim birimlerini sağlam araziler üzerinde kurmak • İnşaatlarda depreme dayanıklı malzemeler kullanmak • Çok katlı yapılardan kaçınmak gerekir. Deprem Kuşakları Genç kıvrım – kırık kuşakları yerkabuğunun en zayıf yerleridir. Bu nedenle bu bölgeler volkanik hareketlerin sebep olduğu depremlerin sık görüldüğü yerlerdir. • Dünya’daki Deprem Kuşakları Depremlerin görüldüğü alanlar volkanik kuşaklarla ve fay hatlarıyla uyum içindedir. Aktif volkanların en etkili olduğu Pasifik okyanusu kenarları birinci derece deprem kuşağıdır. Anadolu’nun da içinde bulunduğu Alp-Himalaya kıvrım kuşağı ikinci derece, okyanus ortaları ise üçüncü derece deprem kuşağıdır. • Türkiye’de Deprem Kuşakları Alp-Himalaya kıvrım kuşağında bulunan Anadolu’nun büyük bir bölümü ikinci derece deprem kuşağında yer alır. Bu durum Anadolu’nun jeolojik gelişimini henüz tamamlamadığını gösterir. Türkiye’deki deprem kuşakları 5 grupta toplanır : I. Dereceden Deprem Kuşağı : Tektonik çukurluklar ve aktif kırık hatları yakınındaki alanlardır. Burada meydana gelen depremler büyük ölçüde can ve mal kaybına neden olur. II. Dereceden Deprem Kuşağı : Depremlerin birinci derece deprem kuşağındakine oranla daha az zarar verdiği alanlardır. III. Dereceden Deprem Kuşağı : Sarsıntıların az zararla geçtiği alanlardır. IV. Dereceden Deprem Kuşağı : Sarsıntıların çok az zararla ya da zararsız geçtiği alanlardır. V. Dereceden Deprem Kuşağı : Sarsıntıların çok az olduğu ya da hiç hissedilmediği alanlardır. Dış Güçler ve Etkileri Faaliyetleri için gerekli olan enerjiyi Güneş’ten alan güçlerdir. Dış güçler çeşitli yollarla yerkabuğunu şekillendirirler. Dış güçler, akarsular, rüzgarlar, buzullar ve deniz suyunun hareketleridir. Dış güçlerin etkisiyle yeryüzünde bir takım olaylar gerçekleşir. Bu olaylar aşağıda sırlanmıştır. • Taşların çözülmesi • Toprak oluşumu • Toprak kayması ve göçme (heyelan) • Erozyon Taşların Çözülmesi Yerkabuğunu oluşturan taşlar, iklimin ve canlıların etkisiyle parçalanıp, ufalanırlar. Taşların çözülmesinde taşın cinsi de etkili olmaktadır. Taşların çözülmesi fiziksel ve kimyasal yolla iki şekilde gerçekleşir: • Fiziksel (Mekanik) Çözülme • Kimyasal Çözülme UYARI : Kaya çatlaklarındaki bitkilerin, köklerini daha derinlere salması sonucunda kayalar parçalanır ve ufalanır. Bu tür çözülme, fiziksel çözülmeyi artırıcı etki yapar. Ayrıca bitki köklerinden salgılanan özsular taşlarda kimyasal çözülmeye neden olur. Fiziksel (Mekanik) Çözülme Taşların fiziksel etkiler sonucunda küçük parçalara ayrılmasına denir. Fiziksel çözülme, taşları oluşturan minerallerin kimyasal yapısında herhangi bir değişikliğe neden olmaz. UYARI : Fiziksel (mekanik) çözülme, kurak, yarı kurak ve soğuk bölgelerde belirgindir. Fiziksel (Mekanik) çözülme üç şekilde olur : • Güneşlenme yolu ile fiziksel çözülme : Gece ile gündüz, yaz ile kış arasındaki sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık düşünce minerallerin hacimleri yeniden küçülür. Bu hacim değişikliği taşların parçalanmasına neden olur. • Buz çatlaması yolu ile fiziksel çözülme : Sıcaklığın çok zaman donma noktasına yakın olduğu ve yağışın yeter derecede olduğu yüksek dağlar ve yüksek enlemlerde görülen çözülme şeklidir. Yağışlardan sonra taşların delik, çatlak ve ince yarıklarına sular dolar. Sıcaklık donma noktasına kadar düşünce, taşın içine sızmış olan sular donar. Donan suyun hacmi genişlediği için basınç etkisiyle taşlar parçalanır ve çözülür. • Tuz çatlaması yolu ile fiziksel çözülme : Taşların tuzlu suları emmiş bulunduğu ve buharlaşmanın çok fazla olduğu çöl bölgelerinde görülür. Kurak bölgelerde buharlaşma ile kılcal taş çatlaklarından yeryüzüne yükselen tuzlu sular, yüzeye yaklaştıkça suyunu yitirir. Çatlakların kenarında tuz billurlaşması olur. Gece nemli geçerse, suyunu yitiren tuz billurları yeniden su alır ve hacmi genişler. Basınç etkisiyle taşlar parçalanır ve çözülür. Kimyasal Çözülme Kimyasal reaksiyonlar suya ihtiyaç duyduğunda ve sıcaklık reaksiyonu hızlandırdığından, sıcak ve nemli bölgelerde yaygın olan çözülme şeklidir. Kaya tuzu, kalker gibi taşlar suda kolayca erirler. Taşlar, kimyasal yolla parçalanıp ufalanırken kimyasal bileşimleri de değişir. UYARI : Kimyasal çözülme, ekvatoral, okyanus ve muson iklim bölgelerinde belirgindir. Toprak Oluşumu Toprak, taşların ve organik maddelerin ayrışması ile oluşan, içinde belli oranda hava ve su bulunan, yerkabuğunun üstünü ince bir tabaka halinde saran örtüdür . Toprağın içinde bulunan çeşitli organizmalar toprağın oluşumuna yardım eder. Toprağın üstündeki organik maddece zengin bölüme humus adı verilir. Toprak oluşumunu etkileyen etmenler : • İklim koşulları • Ana kayanın özellikleri • Bitki örtüsü • Eğim koşulları • Oluşum Süresi’dir UYARI : Mekanik çözülmeyle toprak oluşumu zordur. Kimyasal çözülmede ise toprak oluşumu daha kolaydır. Örneğin çöllerde toprak oluşumunun yavaş olması kimyasal çözülmenin yetersiz olmasına bağlıdır. Toprak Horizonları Yerkabuğu üstünde ince bir örtü halinde bulunan toprak, çeşitli katmanlardan oluşur. Bu katmanlara horizon adı verilir. Toprağın dört temel horizonu vardır. A Horizonu : Dış etkilerle iyice ayrışmış, organik maddeler bakımından zengin, en üstteki katmandır. Tarımsal etkinlikler, bu katman üzerinde yapılmaktadır. B Horizonu : Suyun etkisiyle üst katmanda yıkanan minerallerin biriktirdiği katmandır. C Horizonu : İri parçalardan oluşan ve ana kayanın üzerinde bulunan katmandır. D Horizonu : Fiziksel ve kimyasal çözülmenin görülmediği, ana kayadan oluşan, en alt katmandır. Toprak Tipleri Topraklar yeryüzünün çeşitli bölgelerinde farklı özellikler gösterir. Bazıları mineraller bakımından, bazıları da humus bakımından zengindir. Topraklar oluştukları yerlere ve oluşumlarına göre iki ana bölümde toplanır : • Taşınmış Topraklar • Yerli Topraklar Taşınmış Topraklar Akarsuların, rüzgarların, buzulların etkisiyle yüksek yerlerden, kopartılıp, taşınan ve çukur alanlarda biriktirilen malzeme üzerinde oluşan topraklardır. Akarsuların taşıyıp biriktirdiği maddeler, alüvyon, rüzgarların biriktirdiği maddeler lös, buzulların biriktirdikleri moren (buzultaş) adını alır. Taşınmış topraklar çeşitli yerlerden getirilip, farklı özellikteki taşların ufalanmasından oluştukları için mineral bakımından zengindir. Bu nedenle çeşitli bitkilerin yetiştirilmesi için uygun, verimli topraklardır. Yerli Topraklar Dış güçlerin etkisiyle yerli kaya üzerinde sonucunda oluşan topraklardır. Özelliklerini belirleyen temel etkenler ana kayanın cinsi ve iklim koşullarıdır. Yerli topraklar iki ana bölümde toplanır: • Nemli Bölge Toprakları • Kurak Bölge Toprakları Nemli Bölge Toprakları Yağışın yeterli olduğu bölgelerde oluştukları için, mineral maddeler, tuz ve kireç toprağın alt katmanlarına taşınmıştır. Tundra Toprakları : Tundra ikliminin görüldüğü bölge topraklarıdır. Yılın büyük bir bölümünde donmuş haldedir. Yaz aylarında sadece yüzeyde ince bir tabaka halinde çözülme görülür. Geniş bataklıklar oluşur. Bitki örtüsü çok cılız olduğundan humus tabakası yoktur. Verimsiz topraklardır. Buralardaki kısa boylu ot, çalı ve yosunlara tundra adı verilir. Podzol Topraklar : Tayga adı verilen iğne yapraklı orman örtüsü altında oluşan, soğuk ve nemli bölge topraklarıdır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Bu nedenle renkleri açıktır. Bu tip topraklar Sibirya, Kuzey Avrupa ve Kanada’da yaygındır. Kahverengi Orman Toprakları : Yayvan yapraklı orman örtüsü altında oluşan, ılık ve nemli bölge topraklarıdır. Kalın bir humus tabakası bulunur. Kırmızı Topraklar : Akdeniz ikliminin egemen olduğu bölgelerde kızılçam ve maki örtüsü altında gelişen topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Lateritler : Sıcak ve nemli bölge topraklarıdır. Yağış ve sıcaklığın fazla olması nedeniyle çözülme ileri derecededir. Buna bağlı olarak toprak kalınlığı fazladır. Demiroksit ve alüminyum bakımından zengin olduğundan renkleri kızıla yakındır. Topraktaki organik maddeler, mikroorganizmalar tarafından parçalandığı için toprak yüzeyinde humus yoktur. Kurak Bölge Toprakları Yağışların az buna bağlı olarak bitki örtüsünün cılız olması nedeniyle bu topraklarda humus çok azdır. Ayrıca yağışların azlığı nedeniyle toprak katmanları tam oluşmamıştır. Kireç ve tuzlar bakımından zengin topraklardır. Kurak bölge toprakları oluşturdukları iklim bölgesinin kuraklık derecesine göre farklılaşırlar. Çernozyemler : Nemli iklimden kurak iklime geçişte ilk görülen topraklardır. Orta kuşağın yarı nemli alanlarında, uzun boylu çayır örtüsü altında oluşan bu topraklara kara topraklar da denir. Organik madde yönünden zengin olan bu topraklar üzerinde, yoğun olarak tarım yapılır. Kestane ve Kahverenkli Step Toprakları : Orta kuşak karaların iç kısımlarındaki step alanlarının topraklarıdır. Organik maddeler ince bir tabaka oluşturmaktadır. Tahıl tarımına elverişli topraklardır. Çöl Toprakları : Çöllerde görülen, organik madde yönünden son derece fakir topraklardır. Kireç ve tuzlar bakımından zengin topraklardır. Renkleri açıktır. Tarımsal değerleri bulunmaz. Türkiye’de Görülen Toprak Tipleri Ilıman kuşakta yer alan Türkiye’de, iklim tiplerine ve zeminin yapısına bağlı olarak toprak tipleri çeşitlilik gösterir. Podzollar : İğne yapraklı orman örtüsü altında oluşan topraklardır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Açık renkli topraklardır. Çay tarımına uygun topraklardır. Kahverengi Orman Toprakları : Orman örtüsü altında oluşan topraklardır. Humus yönünden zengindirler. Kırmızı Topraklar : Kızılçam ve maki örtüsü altında oluşan topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Bu topraklar turunçgil tarımına en uygun topraklardır. Kestane ve Kahverenkli Step Toprakları : Yarı kurak iklim koşulları ve step bitki örtüsü altında oluşan topraklardır. Yüksek sıcaklık nedeniyle kızılımsı renktedirler. Zayıf bitki örtüsü nedeniyle organik maddeler ince bir örtü oluşturur. Tahıl tarımına uygun topraklardır. Vertisoller : Genellikle kireç bakımından zengin, killi, marnlı tortullar üzerinde oluşan, toprak horizonlarının henüz gelişimini tamamlamadığı topraklardır. Aşırı miktarda kil içeren vertisoller yağışlı dönemde çok su çeker, kurak dönemde aşırı su kabedip, çatlar. Litosoller : Dağlık alanlarda, eğimli yamaçlarda veya volkanik (genç bazalt platolarının bulunduğu) düzlüklerde görülen ana kayanın ufalanmış örtüsüdür. Genelde derinliği 10 cm kadardır ve toprak horizonları gelişmemiştir. Alüvyal Topraklar : Akarsuların denize ulaştığı yerlerde görülür. Çeşitli yerlerden taşınan, farklı özellikteki taşların ufalanması ile oluşan bu topraklar mineral yönünden zengin ve çok verimlidir. Toprak Kayması ve Göçme (Heyelan) Toprağın, taşların ve tabakaların bulundukları yerlerden aşağılara doğru kayması ya da düşmesine toprak kayması ve göçmesi denir. Ülkemizde bu olayların tümüne birden heyelan adı verilir. Yerçekimi, yamaç zemin yapısı, eğim ve yağış koşulları heyelana neden olan etmenlerdir. UYARI : Heyelanın oluşumu yağışların fazla olduğu dönemlerde daha çok görülür. Yerçekimi : Heyelanı oluşturan en önemli etkendir. Yerçekimi gücü sürtünme gücünden fazla olduğu zaman yamaçtaki cisimler aşağıya doğru kayar. Yamaç Zeminin Yapısı: Suyu emerek içerisinde tutan taş ve topraklar kayganlaşır. Özellikle killi yapının yaygın olduğu yamaçlarda kil suyu içinde tuttuğu için heyelan daha sık görülür. Kalker gibi suyu alt tabakalara geçiren taşların oluşturduğu yamaçlarda ise heyelan ender görülür. Eğim : Yamaç eğimi yerçekiminin etkisini artırıcı bir rol oynar. Bu nedenle dik yamaçlarda heyelan olasılığı daha fazladır. Ayrıca tabakalar yamaç eğimine uyum sağlamışsa, yani paralelse yer kayması kolaylaşır. Yol, kanal, tünel ve baraj yapımları sırasında yamaç dengesinin bozulması, volkanizma, deprem gibi etkenler de heyelana neden olur. Yağış Koşulları : Yağmur, kar suları tabakalar arasına sızarak toprağı kayganlaştırır, toprağı doygun hale getirir. Böylece su ile doygun kütlelerin yamaç aşağı kayması kolaylaşır. Heyelan genellikle yağışlardan sonra oluşur. Heyelanın Etkileri ve Korunma Yolları Heyelan hemen her yıl can ve mal kaybına yol açmaktadır. Ancak alınacak bir takım önlemlerle heyelanın etkileri azaltılabilir. Heyelanın Etkileri İnsan ve hayvan ölümleri Tarımsal hasar ve toprak kaybı Bina hasarları Ulaşım ve taşımacılığın aksaması Heyelandan Korunma Öncelikle heyelan tehlikesi olan yerlerde setler yapılmalı, yamaçlar ağaçlandırılmalıdır. Ayrıca yol, kanal, tünel ve baraj yapımlarında yamacın bozulmamasına özen gösterilmelidir. Türkiye’de Heyalan Türkiye’de heyelan sık görülen, doğal bir felakettir. Türkiye’de arazinin çok engebeli olması toprak kaymalarını kolaylaştırmaktadır. Bölgeden bölgeye farklılık gösteren heyelanların en sık görüldüğü bölgemiz Karadeniz’dir. Bölgede arazi eğiminin fazla, yağışların bol ve killi yapının yaygın olması heyelanın sık görülmesine neden olur. Ülkemizde ilkbahar aylarında görülen kar erimeleri ve yağışlar heyelan olaylarını artırır. Erozyon Toprak örtüsünün, akarsuların, rüzgarların ve buzulların etkisiyle süpürülmesine erozyon denir. Yeryüzünde eğim, toprak, su ve bitki örtüsü arasında doğal bir denge bulunmaktadır. Bu dengenin bozulması erozyonu hızlandırıcı bir etki yapmaktadır. Dış etkenler ya da arazinin yanlış kullanılması erozyona neden olmaktadır. UYARI : Eğim fazlalığı ve cılız bitki örtüsü erozyonu artıran en önemli etkenlerdir. Bu nedenle kurak ve yarı kurak enlemlerde erozyon önemli bir sorundur. Dış Etkenler Akarsu, rüzgar gibi dış güçlerin yapmış olduğu aşındırma sonucunda toprak örtüsü süpürülür ve başka yerlere taşınır. Dış güçlerin etkisi bitki örtüsünün bulunmadığı ya da çok cılız olduğu yerlerde daha belirgindir. Ayrıca eğimin fazla olduğu yerlerde sular daha kolay akışa geçerek toprak örtüsünün süpürülmesini hızlandırır. Arazinin Yanlış Kullanılması Özellikle yamaçlardaki tarlaların yamaç eğimi yönünde sürülmesi, eğimli yerlerde tarla tarımının yaygın olması, arazinin teraslanmaması erozyon hızını artırmaktadır. Su Erozyonu Bitki örtüsünün cılız ya da hiç olmadığı yerlerde toprağın ve ana kayanın sularla yerinden kopartılarak taşınmasına su erozyonu denir. Kırgıbayır ve peribacası su erozyonu ile oluşan özel şekillerdir. Kırgıbayır : Yarı kurak iklim bölgelerinde sel yarıntılarıyla dolu yamaçlara kırgıbayır (badlans) denir. Peribacası : Özellikle volkan tüflerinin yaygın olarak bulunduğu vadi ve platoların yamaçlarında sel sularının aşındırması ile oluşan özel yeryüzü şekillerine peribacası denir. Bazı peribacalarının üzerinde şapkaya benzer, aşınmadan arta kalan sert volkanik taşlar bulunur. Bunlar volkanik faaliyet sırasında bölgeye yayılmış andezit ya da bazalt kütleridir. Peribacalarının en güzel örnekleri ülkemizde Nevşehir, Ürgüp ve Göreme çevresinde görülür. Rüzgar Erozyonu Bitki örtüsünün olmadığı ya da cılız olduğu yerlerde toprağın rüzgarlarla yerinden kopartılarak taşınmasına rüzgar erozyonu denir. Erozyonun Etkileri ve Erozyondan Korunma Yolları Oluşumu için milyonlarca yıl geçmesi gereken toprak örtüsünü yok eden ve her geçen gün etkilerini arttıran erozyon doğal bir felakettir. Alınacak bir takım önlemlerle etkileri azaltılabilir. Erozyonun Etkileri Tarım topraklarının azalması, sellerin artması, tarımsal üretimin ve verimin azalması, otlakların azalması, hayvancılığın gerilemesi, çölleşmenin başlaması. Erozyondan Korunma Yolları Var olan ormanlar ve meralar korunmalı, çıplak yerler ağaçlandırılmalı, ormanlık alanlarda keçi beslenmesi engellenmeli, yamaçlardaki tarlalar, yamaç eğimine dik sürülmeli, meyve tarımı ve nöbetleşe ekim yaygınlaştırılmalı, orman içi köylülerine yeni geçim kaynakları sağlanmalı. Türkiye’de Erozyon Türkiye’de arazi engebeli ve çok eğimli olduğu için toprak erozyonu önemli bir sorundur. Bazı bölgelerimiz dışında bitki örtüsünün cılız olması da erozyonu artırmaktadır. Ayrıca nüfusun hızla artması, tarım alanlarına olan gereksinimin artması, ormanların tahrip edilmesine yol açmaktadır. Bunlara bağlı olarak hemen hemen tüm bölgelerimizde toprak erozyon hızı yüksektir. Akarsular Yeryüzünün şekillenmesinde en büyük paya sahip dış güç akarsulardır. Yüzey sularının eğimli bir yatak içinde toplanıp akmasıyla akarsu oluşur. Akarsular küçükten büyüğe doğru dere, çay, öz, ırmak ve nehir şeklinde sıralanır. Bir akarsuyun doğduğu yere akarsu kaynağı, döküldüğü yere akarsu ağzı denir. Bir akarsu, birbirine bağlanan küçük, büyük, dar veya geniş birçok koldan oluşan bir sistemdir. Bu sistemin en uzun ve su bakımından en zengin olan kolu ana akarsudur. Akarsu Havzası (Su Toplama Alanı) Akarsuyun tüm kollarıyla birlikte sularını topladığı bölgeye akarsu havzası denir. Bir akarsu havzasının genişliği iklim koşullarına ve yüzey şekillerine bağlıdır. Akarsu havzaları iki bölümde incelenir : • Açık Havza : Sularını denize ulaştırabilen havzalara açık havza denir. Örnek : Yeşilırmak, Kızılırmak, Yenice, Sakarya, Susurluk, Gediz, Küçük Menderes, Büyük Menderes, Aksu, Göksu, Seyhan, Ceyhan, Fırat, Dicle Çoruh • Kapalı Havza : Sularını denize ulaştıramayan havzalara kapalı havza denir. Kapalı havzaların oluşmasındaki temel etken yer şekilleridir. Sıcaklık ve nem koşulları da kapalı havzaların oluşmasında etkilidir. Örnek : Van Gölü Kapalı Havzası, Tuz Gölü Kapalı Havzası, Konya Kapalı Havzası, Göller Yöresi Kapalı Havzası, Aras, Kura UYARI : Sularını Hazar Denizi’ne boşaltan Aras ve Kura ırmakları kapalı havza oluşturur. Su Bölümü Çizgisi Birbirine komşu iki akarsu havzasını birbirinden ayıran sınıra su bölümü çizgisi denir. Su bölümü çizgisi genellikle dağların doruklarından geçer. Su bölümü çizgisi; • Kurak bölgelerde, • Bataklık alanlarda, • Karistik alanlarda çoğunlukla belirsizdir. Akarsu Akış Hızı Akarsuyun akış hızı yatağın her iki kesitinde farklıdır. Suyun hızı yanlarda, dipte ve su yüzeyinde sürtünme nedeniyle azdır. Suyun en hızlı aktığı yer akarsuyun en derin yerinin üzerinde ve yüzeyin biraz altındadır. Akarsu yatağında suyun en hızlı aktığı noktaları birleştiren çizgiye hız çizgisi (talveg) denir. Akış hızı, yatağın eğimi ve genişliği ile taşınan su miktarına bağlı olarak değişir. Akarsu Akımı (Debisi) Akarsuyun herhangi bir kesitinden birim zamanda geçen su miktarına (m3) akım veya debi denir. Akarsuyun akımı yıl içerisinde değişir. Akım, akarsuyun çekik döneminde az, kabarık döneminde fazladır. Akarsu akımını; • Yağış miktarı rejimi • Yağış tipi • Zeminin özelliği • Kaynak suları • Sıcaklık ve buharlaşma koşulları etkiler. Akarsu Rejimi Akarsuyun akımının yıl içerisinde gösterdiği değişmelere rejim ya da akım düzeni denir. Akarsu rejimini belirleyen temel etken havzanın yağış rejimidir. Yağışların az, sıcaklık ve buharlaşmanın fazla olduğu dönemlerde akarsu akımı düşer. Yağışların fazla olduğu ve kar erimelerinin görüldüğü dönemlerde akım yükselir. Akarsu rejimleri 4 tiptir. Düzenli Rejim : Akımı yıl içerisinde fazla değişmeyen akarsuların rejim tipidir. Düzensiz Rejim : Akımı yıl içerisinde büyük değişmeler gösteren akarsuların rejim tipidir. Karma Rejim : Farklı iklim bölgelerinden geçen akarsuların rejim tipidir. Örneğin : Nil Nehri Sel Tipi Rejim : İlkbahar yağışları ve kar erimeleri ile bol su taşıyan, yaz aylarında ise suları yok denecek kadar azlan akarsuların rejim tipidir. Örneğin ülkemizdeki İç Anadolu Bölgesi akarsuları. İklim Bölgelerine Göre Akarsu Rejimleri Sıcaklık ve yağış koşulları ile akarsuların taşıdıkları su miktarı ve akım düzeni arasında sıkı bir ilişki vardır. Farklı iklim bölgelerindeki akarsuların rejimleri birbirinden farklı olabilir. Ancak iklim bölgelerinin yüksek ve karlı bölümlerindeki akarsuların rejimleri benzerdir. Kar erimelerinin olduğu dönemlerden akım yükselir. Kış aylarında kar yağışının fazla olması akımın düşük olmasına neden olur. Yağmurlu Ekvatoral İklimde Akarsu Rejimi : Bu iklim tipinde yağışlar bol ve yağış rejimi düzenli olduğu için Ekvatoral bölge akarsuları yıl boyunca bol su taşır. Örneğin Amazon ve Kongo nehirleri. Yağmurlu Okyanusal İklimde Akarsu Rejimi : Bu iklim tipinde yağışların bol ve düzenli olması nedeniyle akarsular yıl boyunca bol su taşır. Örneğin İngiltere’deki Thames Nehri Muson İkliminde Akarsu Rejimi : Bu iklim tipinde yaz yağışları nedeniyle akım yükselir. Kış kuraklığı akım düşer. Örneğin Ganj ve İndus nehirleri. Akdeniz İkliminde Akarsu Rejimi : Yaz kuraklığına, sıcaklık ve buharlaşmanın fazlalığına bağlı olarak yaz aylarında akım düşüktür. Kışın yağışlar, ilkbaharda kar erimeleri ile yükselir. Türkiye Akarsularının Özellikleri 1. Türkiye’nin dağlık ve engebeli bir ülke olması nedeniyle, akarsularımızın boyu genellikle kısadır. 2. Yağışlı ve kar erimelerinin olduğu dönemlerde taşan, kurak dönemlerde ise kuruyacak derecede suları azalan akarsularımızın rejimleri düzensizdir. 3. Karadeniz Bölgesi’ndeki akarsularımızın dışındakiler genellikle bol su taşımazlar. 4. Akarsularımız rejimlerinin düzensiz ve yatak eğimlerinin fazla olması nedeniyle ulaşıma uygun değildir. 5. Türkiye bugünkü görünümünü 3. ve 4. zamandaki orojenik ve epirojenik hareketlerle kazanmıştır. Bu nedenle akarsularımız henüz denge profiline ulaşamamıştır. UYARI : Türkiye’deki akarsuların yatak eğimleri ve akış hızları fazla olduğundan hidro-elektrik potansiyelleri yüksektir. Taban Seviyesi, Denge Profili Akarsuların döküldükleri deniz ya da göl yüzeyine taban seviyesi denir. Deniz yüzeyi ana taban seviyesini oluşturur. Göl yüzeyi ya da kapalı havza yüzeyi yerel taban seviyesi diye adlandırılır. Akarsular aşındırma ve biriktirmesini taban seviyesine göre yapar. Yatağını taban seviyesine indirmiş olan akarsular aşındırma ve biriktirme faaliyetini dengelemiştir. Aşınım ve birikimin eşitlendiği bu profile denge profili denir. Plato, Peneplen Akarsuların amacı bulundukları bölgeyi aşındırarak deniz seviyesine yaklaştırmak diğer bir deyişle denge profiline ulaşmaktır. Akarsuyun aşınım sürecinde görülen şekiller; plato ve peneplendir. Plato : Akarsu vadileriyle derince yarılmış düz ve geniş düzlüklerdir. Peneplen : Geniş arazi bölümlerinin, akarsu aşınım faaliyetlerinin son döneminde deniz seviyesine yakın hale indirilmesiyle oluşmuş, az engebeli şekle peneplen (yontukdüz) denir. UYARI : Bir akarsuyun denge profiline ulaşabilmesi ve arazinin peneplen haline gelebilmesi için tektonik hareketlerin görülmediği milyonlarca yıllık bir süre gerekmektedir. Denge Profilinin Bozulması İklim değişikliklerinde ve tektonik hareketlere bağlı olarak deniz seviyesinin alçalması ya da yükselmesi taban seviyesinin değişmesine neden olur. Taban seviyesinin alçalması ya da yükselmesi de akarsuyun denge profilinin bozulmasına neden olur. Taban Seviyesinin Alçalması Taban seviyesinin alçalması, akarsuyun denge profilini bozarak akarsuyun aşındırma ve taşıma gücünün artmasına neden olur. Bu nedenle akarsu yatağına gömülür. Taban Seviyesinin Yükselmesi Taban seviyesinin yükselmesi, akarsuyun denge profilini bozarak akarsuyun taşıma gücünün azalmasına neden olur. Bu nedenle akarsu menderesler çizerek birikim yapar. Menderes : Akarsuyun geni vadi tabanı içinde, eğimin azalması nedeniyle yaptığı bükümlere denir. Akarsuların Aşındırma Şekilleri : Dış güçler içerisinde en geniş alana yayılmış, nemli bölgelerde ve orta enlemlerde etkili olan en önemli dış güç akarsulardır. Akarsular aşındırma ve biriktirme yaparak yeryüzünü şekillendirir. Akarsu, hızının ve kütlesinin yaptığı etki le yatağı derine doğru kazar, yatağı boyunca kopardığı veya erittiği maddeleri taşır. Akarsu aşındırması ile oluşan şekiller vadi ve dev kazanıdır. UYARI : Akarsuların aşındırmasında yatak eğimi temel etkendir. Çünkü yatak eğimi akarsuyun akış hızını belirler. Yatak eğiminin fazla olduğu yukarı bölümlerinde derinlemesine aşındırma daha belirgindir. Vadi Akarsuyun içinde aktığı, kaynaktan ağıza doğru sürekli inişi bulunan, uzun çukurluklardır. Akarsuların aşındırma gücüne, zeminin yapısına ve aşınım süresine bağlı olarak çeşitli vadiler oluşur. UYARI : Vadi tabanları tarım, bahçecilik, ulaşım ve yerleşme bakımından elverişli alanlardır. Çentik (Kertik) Vadi : Akarsuların derine aşındırmasıyla oluşan V şekilli, tabansız, genç vadilere çentik vadi ya da kertik denir. Türkiye’nin bugünkü görünümünü 3. ve 4. zamanda kazanmış olması nedeniyle, Türkiye akarsuları henüz denge profiline ulaşmamış, geç akarsulardır. Bu nedenle ülkemizde çok sayıda çentik (kertik) vadi bulunmaktadır. Yarma Vadi (Boğaz) : Akarsuyun, iki düzlük arasında bulunan sert kütleyi derinlemesine aşındırması sonucunda oluşur. Vadi yamaçları dik, tabanı dardır. Akarsuyun yukarı bölümlerinde görülür. Türkiye’de çok sayıda yarma vadi (boğaz) bulunur. Karadeniz Bölgesi’nde, Yeşilırmak üzerinde, Şahinkaya yarma vadisi, Marmara Bölgesi’nde, Sakarya üzerinde Geyve Boğazı, Akdeniz Bölgesi’nde Atabey deresi üzerinde Atabey Boğazı başlıca örnekleridir. Kanyon Vadi : Klaker gibi dirençli ve çatlaklı taşlar içinde, akarsuyun derinlemesine aşındırmasıyla oluşur. Vadinin yamaç eğimleri çok dik olup, 90 dereceyi bulur. Kanyon vadiler Türkiye’de Toroslar’da yaygın olarak görülür. Antalya’daki Köprülü Kanyon, ülkemizdeki güzel bir örnektir. Tabanlı Vadi : Akarsu, yatağını taban seviyesine yaklaştırınca derine aşınım yavaşlar. Yatak eğiminin azalması akarsuyun menderesler çizerek yanal aşındırma yapmasına neden olur. Yanal aşındırmanın artması ile tabanlı vadiler oluşur. Menderes Akarsu yatak eğiminin azalması, akarsuyun akış hızının ve aşındırma gücünün azalmasına neden olur. Akarsu büklümler yaparak akar. Akarsuyun geniş vadi tabanı içinde, eğimin azalması nedeniyle yaptığı büklümlere menderes denir. Menderesler yapan akarsuyun, uzunluğu artar ancak akımı azalır. Taban seviyesinin alçalması nedeniyle menderesler yapan bir akarsuyun, yatağına gömülmesiyle oluşan şekle gömük menderes denir. Dev Kazanı Akarsuların şelale yaparak döküldükleri yerlerde, hızla düşen suların ve içindeki taş, çakıl gibi maddelerin çarptığı yeri aşındırmasıyla oluşan yeryüzü şeklidir. Akdeniz Bölgesi’ndeki Manavgat ve Düden şelalelerinin düküldükleri yerlerde güzel dev kazanı örnekleri bulunur. Akarsu Biriktirme Şekilleri Akarsular aşındırdıkları maddeleri beraberinde taşır. Yatak eğimleri azaldığında akarsuların aşındırma ve taşıma gücü de azalır. Bu nedenle taşıma güçlerinin azaldığı yerde taşıdıkları maddeleri biriktirirler. UYARI : Akarsuların yatak eğimi azaldığında hızları, aşındırma ve taşıma güçleri azalır. Biriktirmedeki, temel etken yatak eğimin azalmasıdır. Birikinti Konisi : Yamaçlardan inen akarsular, aşındırdıkları maddeleri eğimin azaldığı eteklerde biriktirir. Yarım koni şeklindeki bu birikimlere birikinti konisi adı verilir. Birikinti konileri zamanla gelişerek verimli tarım alanı durumuna gelebilir. Dağ Eteği Ovası : Bir dağın yamaçlarından inen akarsular taşıdıkları maddeleri eğimin azaldığı yerde birikinti konileri şeklinde biriktirirler. Zamanla birikinti konilerinin birleşmesiyle oluşan hafif dalgalı düzlüklere dağ eteği ovası adı verilir. Dağ İçi Ovası : Dağlık alanların iç kısımlarında, çevreden gelen akarsuların taşıdıkları maddeleri eğimin azaldığı yerlerde biriktirmesi ile oluşan ovalardır. Türkiye gibi engebeli ülkelerde dağ içi ovaları çok görülür. Taban Seviyesi Ovası : Akarsuların taban seviyesine ulaştığı yerlerde, eğimin azalması nedeniyle taşıdığı maddeleri biriktirmesi ile oluşturduğu ovalardır. Bu tür ovalarda akarsular menderesler yaparak akar. Gediz ve Menderes akarsularının aşağı bölümlerindeki ovalar bu türdendir. Seki (Taraça) : Yatağına alüvyonlarını yaymış olan akarsuyun yeniden canlanarak yatağını kazması ve derinleştirmesi sonucunda oluşan basamaklardır. Taban seviyesinin alçalması nedeniyle, tabanlı bir vadide akan akarsuyun aşındırma gücü artar. Yatağını derine doğru kazan akarsu vadi tabanına gömülür. Eski vadi tabanlarının yüksekte kalması ile oluşan basamaklara seki ya da taraça denir. Kum Adası (Irmak Adası) : Akarsuların yatak eğimlerinin azaldığı geniş vadi tabanlarından taşıdıkları maddeleri biriktirmesi ile oluşan şekillerdir. Kum adaları akarsuyun taşıdığı su miktarı ve akış hızına bağlı olarak yer değiştirirler. Kum adaları üzerinde yoğun bir bitki örtüsünün bulunması kum adalarının yer değiştirmediğini gösterir. Delta : Akarsuların denize ulaştıkları yerlerde taşıdıkları maddeleri biriktirmesiyle oluşan üçgen biçimli alüvyal ovalardır. Deltalar, taban seviyesi ovalarının bir çeşididir. Onlardan ayrılan yönü biriktirmenin deniz içinde olmasıdır. Bu nedenle deltanın oluşabilmesi için; • Gel-git olayının belirgin olmaması • Kıyının sığ olması • Kıyıda güçlü bir akıntının bulunmaması • Akarsu ağzında eğimin azalması gerekir. Yeraltı Suları ve Kaynaklar Yer altı Suyu (Taban Suyu) Yağış olarak yeryüzüne düşen ya da yeryüzünde bulunan suların, yerçekimi etkisiyle yerin altına sızıp, orada birikmesiyle oluşan sulardır. Yer altı suyunun oluşabilmesi için beslenme ve depolanma koşullarının uygun olması gerekir. Yer altı suyunun beslenmesini etkileyen en önemli etmen yağışlardır. Depolama koşulları ise yüzeyin eğimine, bitki örtüsüne ve yüzeyin geçirimlik özelliğine bağlıdır. Yer altı Sularının Bulunuş Biçimleri Bol yağışlı ve zemini geçirimli taşlardan oluşan alanlarda yer altı suyu fazladır. Az yağış alan, eğimi fazla ve geçirimsiz zeminlerde ise, yer altı suyunun oluşumu zordur. Kum, çakıl, kumtaşı konglomera, kalker, volkanik tüfler, alüvyonlar, geçirimli zeminleri oluşturur. Bu nedenle alüvyal ovalar ve karstik yöreler yer altı suyu bakımından zengin alanlardır. Kil, marn, şist, granit gibi taşlar ise geçirimsizdir. Yer altı suyu oluşumunu engeller. Yeraltında biriken sular Taban suyu Artezyen Karstik Yeraltı Suyu olarak bulunur. Taban Suyu Altta geçirimsiz bir tabaka ile sınırlandırılan, geçirimli tabaka içindeki sulardır. Bu sular genellikle yüzeye yakındır. Marmara Bölgesi’ndeki ovalar, Ege Bölgesi’ndeki çöküntü ovaları, Muş, Erzurum ve Pasinler ovalarındaki yer altı suları bu gruba girer. Artezyen Bu tür sular basınçlı yeraltı sularıdır. İki geçirimsiz tabaka arasındaki geçirimli tabaka içinde bulunan sulardır. Tekne biçimli ovalar ve vadi tabanlarında bu tür sular bulunmaktadır. İç Anadolu Bölgesi artezyen suları bakımından zengindir. Karstik Yer altı Suyu Karstik yörelerdeki kalın kalker tabakalar arasındaki çatlak ve boşluklarda biriken yer altı sularıdır. En önemli özelliği birbirinden bağımsız taban suları oluşturmasıdır. Karstik alanların geniş yer kapladığı Akdeniz Bölgesi karstik yeraltı suları bakımından zengindir. Kaynak Yeraltı sularının kendiliğinden yeryüzüne çıktığı yere kaynak denir. Türkiye’de kaynaklara pınar, eşme, bulak ve göze gibi adlar da verilir. Kaynaklar, yer altı suyunun bulunuş biçimine, yüzeye çıktığı yere ve suların sıcaklığına göre gruplandırılabilir. Sularının sıcaklığına göre kaynaklar, soğuk ve sıcak su kaynakları olarak iki gruba ayrılır : Soğuk Su Kaynakları Yağış sularının yeraltında birikerek yüzeye çıkması sonucunda oluşurlar. Genellikle yüzeye yakın oldukları için dış koşullardan daha çok etkilenirler. Bu nedenle suları soğuktur. Soğuk su kaynakları yeraltında bulunuş biçimine ve yüzeye çıktığı yere göre üç gruba ayrılır : Tabaka Kaynağı : Geçirimli tabakaların topoğrafya yüzeyi ile kesiştikleri yerden suların yüzeye çıkmasıyla oluşan kaynaklara tabaka kaynağı denir. Vadi Kaynağı : Yeraltına sızan suların bulunduğu tabakanın bir vadi tarafından kesilmesi ile oluşan kaynaktır. Genellikle vadi yamaçlarında görülür. Karstik Kaynak (Voklüz) : Kalın kalker tabakaları arasındaki boşlukları doldurmuş olan yer altı sularının yüzeye çıktığı kaynaktır. Bol miktarda kireç içeren bu kaynakların suları genellikle sürekli değildir. Yağışlarla beslendikleri için karstik kaynakların suları soğuktur. Toroslar üzerindeki Şekerpınarı en tanınmış karstik kaynak örneklerinden biridir. Sıcak Su Kaynakları Yerkabuğundaki fay hatları üzerinde bulunan kaynaklardır. Fay kaynakları da denir. Suları yerin derinliklerinden geldiği için sıcaktır ve dış koşullardan etkilenmez. Sular geçtikleri taş ve tabakalardaki çeşitli mineralleri eriterek bünyelerine aldıkları için mineral bakımından zengindir. Bu tür kaynaklara; kaplıca, ılıca, içme gibi adlar verilir. Sıcak su kaynaklarının özel bir türüne gayzer denir. Gayzer : Volkanik yörelerde yeraltındaki sıcak suyun belirli aralıklarla fışkırması ile oluşan kaynaklardır. UYARI : Yerin derinliklerinde bulunan suların sıcaklığı yıl içinde fazla bir değişme göstermez. Fay kaynakları volkanik ve kırıklı bölgelerde görülür. Türkiye’de Sıcak Su Kaynaklarının Dağılışı Türkiye kaplıca ve ılıca bakımından zengin bir ülkedir. Bursa, İnegöl, Yalova, Bolu, Haymana, Kızılcahamam, Sarıkaya, Erzurum, Sivas Balıklı Çermik, Afyon, Kütahya, Denizli çevresindeki kaplıca ve ılıcalar en ünlüleridir. Karstik Şekiller Yağışlar ve yer altı suları, kalker, jips, kayatuzu, dolomit gibi eriyebilen, kırık ve çatlakların çok olduğu taşların bulunduğu yerlerde, kimyasal aşınıma neden olurlar. Kimyasal aşınım sonunda oluşan şekillere karstik şekiller denir. Karstik Aşınım Şekilleri Yağışların ve yeraltı sularının oluşturduğu karstik aşınım şekillerinin aşınım şekillerinin büyüklükleri değişkendir. Karstik aşınım şekilleri şunlardır : Lapya : Kalkerli yamaçlarda yağmur ve kar sularının yüzeyi eriterek açtıkları küçük oluklardır. Oluşan çukurluklar keskin sırtlarda yan yana sıralandığından yüzey pür      

http://www.biyologlar.com/jeomorfoloji-nedir

Yağda Eriyen Vitaminler

A VİTAMİNİ: A Vitamini yağda eriyen vitaminlerdendir.Balıkyağında, karaciğerde, tereyağı ve kremada, peynirde, yumurta sarısında bulunur.Sonradan A vitamini (retinol) ne dönüşecek olan Beta Karoten ve diğer karotenoidler ise yeşil yapraklı ve sarı sebzelerde ve tahıllarda bulunur.A vitamini karaciğerde depolanır. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vitamin A miktarı Retinol Equivalant ile ölçülür. Vücuttaki Fonksiyonları Sağlıklı deri ve saçlar için gereklidir. Diş, dişeti, ve kemik gelişiminde önemli rol oynar Normal iyi görme de ve gece görme de etkilidir. Bağışıklık sistemini kuvvetlendirir. Akciğer, mide, üriner sistem ve diğer organların koruyucu epitelinin düzeninde rol oynar. Eksiklik Belirtileri 1)Gece körlüğü 2)Xerophthalmia ( korneanın anormal kuruması ve kalınlaşması = göz kuruluğu) 3)Bağışıklık sisteminin zayıflaması, enfeksiyonlara elverişli hale gelme 4)Akne (sivilce) oluşumunda artış 5)Yorgunluk 6)Diş, diseti ve kemiklerde deformiteler Aşırılık ve Zehirlenme Belirtileri 1)Karaciğer bozuklukları 2)Mide bulantısı ve kusma 3)Saç dökülmesi (saçlar çabuk kopar) 4)Başağrısı 5)Eklem ağrıları 6)Dudak çatlamaları 7)Saç kuruluğu 8)İştah kaybı D VİTAMİNİ: D Vitamini yağda eriyen vitaminlerdendir. Daha çok iki şekilde bulunur.Bunlardan aktif ergosterol, kalsiferol ve D2 vitamini gibi adlarla da bilinen ergokalsiferol ışınlanmış mayalarda bulunur.Aktif 7-dehidrokolesterol ve D3 vitamini gibi adlarla da anılan kolesalsiferol ise insan derisinde güneş ışığı ile temas sonucu meydana gelir ve daha çok balık yağında ve yumurta sarısında bulunur. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vücuttaki Fonksiyonları İnce barsaklardan kalsiyum ve fosforun emilimini düzenleyerek kemik büyümesi, sertleşmesi ve tamiri üzerinde etkili olur. Raşitizmi önler Böbrek hastalıklarında düşük kan kalsiyumu seviyesini düzenler. Postoperatif kas kasılmalarını önler. Kalsiyumla birlikte kemik gelişimini kontrol eder. Bebekler ve çocuklarda kemik ve dişlerin normal gelişme ve büyümesini sağlar. Henüz kanıtlanmamış olası etkileri: Artrit, yaşlanma belirtileri ,sivilce,alkolizm, kistik fibrozis uçuk ve herpes zoster tedavisi, kolon kanserinin önlenmesi. Vitamin D alınımına dikkat edilmesi gereken durumlar: Güneş ışığı bakımından yetersiz bölgelerde yaşayan çocuklar. Yetersiz gıda alan ve fazla kalori yakan kişiler 55 yaşın üzerindekiler, özellikle menapoz sonrası kadınlar. Emziren ve hamile kadınlar. Alkol veya uyuşturucu kullananlar. Kronik hastalığı olanlar, uzun süredir stress altında olanlar, yakın geçmişte ameliyat geçirmiş olanlar. Mide-barsak kanalının bir kısmı ameliyat ile alınmış olanlar. Ağır yaralanma ve yanığı olan kişiler. Eksiklik Belirtileri Raşitizm/(Çocuklarda D vitamini eksikliği ile oluşan hastalık)Çarpık bacaklar, kemik veya eklem yerlerinde deformasyonlar, diş gelişiminde gerilik, kaslarda zayıflık, yorgunluk, bitkinlik. Osteomalazi (yetişkinlerde D vitamini eksikliği ile oluşan hastalık) kaburga kemiklerinde,omurganın alt kısmında, leğen kemiğinde, bacaklarda ağrı, kas zayıflığı ve spazmları, çabuk kırılan kemikler. Aşırılık ve Zehirlenme Belirtileri 1)Yüksek kan basıncı 2)Mide bulantısı ve kusma 3)Düzensiz kalp atışı 4)Karın ağrısı 5)İştah kaybı 6)Zihinsel ve fiziksel gelişme geriliği 7)Damar sertliğine eğilim 8)Böbrek hasarları E VİTAMİNİ: E Vitamini yağda eriyen vitaminlerdendir.Alfa,beta,gama ve delta tokoferolleri içerir. Bitkisel yağlar ve buğday tanesi en iyi kaynağıdır. Isıya karşı sabit ve pişirilmeye dayanıklıdır. Vücuttaki Fonksiyonları En iyi Antioksidandır.Hücre zarı ve taşıyıcı moleküllerin lipid kısmını stabilize ederek hücreyi serbest radikaller, ağır met@ller, zehirli bileşikler, ilaç ve radyasyonun zararlı etkilerinden korur. İmmun sistemin aktivitesi için gereklidir.Timus bezini ve alyuvarları korur.Virütik hastalıklara karşı bağışıklık sistemini geliştirir. Göz sağlığı için hayati önem taşır.Retina gelişimi için gereklidir.Serbest radikallerin katarakt yapıcı etkilerini önler. Yaşlanmaya karşı koruyucudur.Serbest radikallerin dokular, deri ve kan damarlarında oluşturduğu dejenaratif etkiyi önler.Yaşlanmayla ortaya çıkan hafıza kayıplarını da önleyici etkisi vardır. Eksiklik Belirtileri Çocuklarda hemolitik anemi ve göz bozuklukları Yetişkinlerde Dengesiz yürüme, konsantrasyon bozukluğu, düşük tiroid hormonu seviyesi, sinir harabiyeti, uyuşukluk, anemi, bağışıklık sisteminde zayıflama. E vitamini eksikliğinde kalp hastalıkları ve kanser riski artmıştır. K VİTAMİNİ: K Vitamini yagda eriyen vitaminlerdendir.Kan pıhtılaşmasında önemli rol oynar. Lahana, karnıbahar, ıspanak ve diğer yeşil sebzelerde, soya fasülyesi ve tahıllarda bulunur.Genellikle vücutta bağırsak bakterileri tarafından sentez edilir. Vücuttaki Fonksiyonlari Kan pıhtılaşmasını sağlar. Bazi çalışmalar özellikle yaşlılarda kemikleri güçlendirdiğini göstermektedir. Pıhtılaşmada ve kemik yapımında kalsiyum'a yardımcıdır. Eksiklik Belirtileri Kontrolsuz kanamalara neden olan K vitamini eksikliği malabsorbsiyon hastaları hariç ender görülür.Doğumdan sonraki ilk 3-5 gün içerisinde bağırsak florası henüz tam gelişmemiş olduğundan K vitamini eksikliği vardır. Günlük Vitamin K ihtiyaci: Genellikle sebzelerle alınan günlük 60-85 mg. herhangi bir eklemeye gerek kalmadan yeterli olmaktadır.

http://www.biyologlar.com/yagda-eriyen-vitaminler

ÖRÜMCEĞİN HAYAT HİKAYESİ

Latince örümcek anlamına gelen arakne kelimesinin kökeni, Ovid'in Metamorfozlar adlı eserindeanlattığı mitolojik bir hikayedir. Buna göre, bilgelik tanrıçası Atene, çok güzel örgüler ören köylü kızı Arakne'yi kıskanır; onu bir örgü örme yarışmasına davet eder. Yarışma yapılır. Atene, güzel örgüsünde, olimpiyatlarda intikam tanrıçası Nmesis'in, tanrılara meydan okuyan ölümleri taşımasını tasvir etmiştir. Lakin, Arakne'nin örgüsü daha güzel olmuştur. Arekne örgüsünde ölümlere adaletsiz ve haksız davranışlarda bulunan tanrıları tasvir etmiştir. Yenilgiyi hazmedemeyen Atene, Arekne'nin örgüsünü yırtar ve Arekne'nin başına örgüde kullandığı mekikle vurur. Üzüntüyle oradan kaçan Arekne, bir ağacın dalına kendisini asar. Bunu gören Atene, Arekne'yi bir örümceğe çevirir; böylece tanrılara meydan okuyan Arekna hem cezalandırılmış olur, hem de örgü örmeye devam eder. Bu ilginç hikayeden sonra örümceklerin genel özelliklerini açıklayalım. Örümcekler böcek değildir. İkisinin en önemli farkı, böceklerin altı bacağı varken örümceklerin sekiz bacağı olmasıdır. Ayrıca böceklerin vücudu üç bölütlü, örümceklerinki ise iki bölütlüdür. Son olarak genelde böceklerin binlerce minik gözden oluşan bileşik gözleri vardır, örümceklerin ise genelde tane basit gözü vardır. Örümceklere duyulan aşırı tiksinti ve korkuya araknofobi denir. Aksine çoğu zararsızdır ve birçok zararlı böcekleri avlayarak tabiatı temizleyen bir yaratıktır. Antaktika dışında bütün kıtalarda, çok çeşitli iklim şartlarında ve çöllerde yaşayabilirler. Birçok örümcek türü, özellikle sonbaharın ılık günlerinde, ürettikleri iplikçikleri paraşüt gibi kullanarak, rüzgar yardımıyla kıtalardan çok uzak okyanus adalarına kadar yayılabilirler. 4500 metre yükseklikte bu şekilde uçmakta olan örümcekler görülmüş, en yakın karaya 1500 kilometre uzaklıktaki bir gemide bu tip örümcekler bulunmuştur. Örümcekler farklı kalitede ipekler üreten fabrikalar gibidirler. Karın bölgelerinin alt kısmında meme şeklindeki konik çıkıntılardan salgılanan ipeğimsi maddeyi çok çeşitli amaçlar için kullanırlar. Çoğu örümcekte salgısı ve yapısı farklı en az iki çeşit ipek bezi vardır. Bu bezlerin ürettiği ipliği kimyasal özelliklerine göre farklı işlerde kullanırlar. Her ipliğin esnekliği, dayanıklılığı, kalınlığı ve yapışkanlığı farklı olduğundan, hangi iplik hangi işe daha uygunsa orada kullanılır. Bazı ipleri av yakalamak için tuzak ağları kurmada, bazı ipleri yuvalarının içini döşemede, bazı ipleri de yumurta ve sperm topaklarını korumak için kullanırlar. Milimetrenin binde birinden daha ince olan bu iplik aynı kalınlıktaki çelik telden daha sağlamdır. Bu iplik kendi uzunluğunun dört katı kadar esneyebilir. Ayrıca çokta hafiftir; dünyanın çevresine sarılacak bu ipliğin ağırlığı sadece 320gr'dır. Örümceğin ipliği ve kurduğu yuva kendisi için çok uygundur. Fakat aynı yuva avları için bir tuzaktır. Örümceğin ağı büyüklüğüne göre çok geniş bir sahayı işgal eder ama bu görüntü aldatıcıdır. Asıl yuvası ortada küçük bir yerdir. Gerisi ise avlar için tuzaktır. Örümcek İpliğinin Yapısı Sentetik ve tabii liflerden daha güçlü olan örümcek ipeğinin üretimi, sentetik iplik üreten fabrikalardakine kısmen benziyor. İpek yapımında kullanılan keratin isimli protein; tırnak ve saçlarımızda, kuşların tüylerinde, memelilerin boynuzlarında, yılanların pullarında bulunan çok yaygın bir proteindir. İçinde birçok protein bulunan sıvı ipek maddesi, iplik haline gelmeden önce fışkırtılmak üzere bez kanalında ilerlerken, bu kanalın duvarını teşkil eden hücreler tarafından çok hızlı bir şekilde suyu çekilir; diğer kanaldaki hücrelerde hidrojen atomlarıyla bu suyu aside dönüştürürler. Yoğunlaşmış proteinler asit havuzuna girince, köprülerle birbirine bağlanarak iplik haline dönüşür. Bu sürecin alt birimlerinde, farklı iplik çeşitlerine göre farklı keselerde, farklı yollara sokularak daha değişik iplikler meydana getirilir. Farklı kimyevi maddeler, farklı oranlarda ihtiyaca göre karıştırılarak çok farklı çeşitte ip üretilmesine olanak sağlar. Böylece avlanmada kullanılan iplikler yapışkan, avlanma sonunda avla yuvaya dönerken örümceğin üzerinde yürüdüğü ipler daha sağlam ve esnektir. Ayrıca avın sarıldığı ipler şerit şeklinde ve hareket ettikçe sertleşen özellikte, yumurta keselerini koruyan ipler mikroplara karşı antibiyotikli, asansör olarak kullandığı ipler kaygan, yuvanın ilk kuruluşundaki temel ipler ayrı kalınlıkta, aralarındaki atkılar ise daha incedir. Bütün bu iplikleri örümcek, ayaklarının estetik hareketleriyle yönlendirir ve yerli yerine yapıştırır. Bazı iplikleri örümcek ayağındaki tarakla tarayarak düzeltir. İpliklerin gerilime maruz kaldığında üzerinde çatlaklar oluşmaması için her tarafı sıvı bir malzeme ile kaplanır. Estetik cerrahları bazı örümcek türlerine ait ipliği, hassas tendon ve eklem ameliyatlarında kullanmaya başlamışlardır. Örümcekler ağlarını kurmada iplerini yapıştırdığı noktaları aralarındaki açıları, dengeli ve gerginliğin hesaplarını da yapar. Örümcekler genelde böceklerle beslenirler. Aklımıza gelmeyecek taktiklerle birçok böceği yiyerek, ekolojik dengede önemli görevleri vardır. Böylece böceklerle baş etmemize yardımcı olurlar. Aksi halde böceklerin çokluğu ve mahsüllere verdiği zarar karşısında pes ederdik. Bunun yanında balık, hatta kuş ile beslenen örümcek türleride vardır. Alıntı Yapılarak hazırlanmıştır

http://www.biyologlar.com/orumcegin-hayat-hikayesi

AIDS'in Belirtileri

AIDS ve aynı virüs tarafından meydana getirilen diğer hastalıkların belirtileri hemen hemen aynıdır. Aynı soğuk ve gribin birbirleriyle özdeşleştirlmesi gibi.Fakat AIDS'e ya da ilgili hastalıklarından birine yakalanmış bir kişi için bu belirtiler çok ısrarcıdır ve nedeni yok gibi görünür. Kişi hiçbir zaman kendisini neyin hasta ettiğini bulamaz ve hastalığın üstesinden gelemez. Çünkü sadece doktorlar ve konu ile ilgili araştırma yapan bilim adamları bu belirtileri teşhis edebilirler. Bu belirtilerin doktor tarafından açıklanan bir kısmı şöyledir: Fiziksel ve zihinsel aktiviteleri etkileyen sebebi açıklanamayan aşırı bir yorgunluk Zayıflama yada diyet gibi herhangi bir aktivite söz konusu olmadan iki aydan kısa bir sürede 7-10 kilo kaybı Birkaç haftanın sonunda ateşin açıklanamayacak bir şekilde 39 derecenin üstüne çıkması Uyku sırasında kişinin üstünü sırılsıklam edecek derecede terleme Sebebi bilinmeyen bir şekilde vücuttaki salgı bezlerinin kabarması (Özellikle boğazda boyunda ve koltuk altında bulunan lenf bezlerinin kabarak en geniş halini alması) Dilin üzerinde ve ağız içinde beyaz noktalar yada lekelerin oluşması Israrla devam eden ishal Herhangi bir solunum enfeksiyonuyla meydana gelen ve çok uzun süren kuru öksürük Özellikle öksürükle birlikte oluşan nefes darlığı Deri üstünde ya da altında oluşan kat kat yada yükselen bir şekilde leke ve şişliklerin meydana gelmesi. Başlangıçta çürükmüş gibi algılanabilir fakat bunlar zamanla kaybolmazlar ve genellikle etraflarındaki derilerden çok daha serttirler. aidsnedir.comdan alıntı

http://www.biyologlar.com/aidsin-belirtileri

Kuşlar neden göç ederler?

Bu sorun, hala ornitolojide en zorlu sorulardan birisi. Genellikle kuş göçleri üreme ve üreme dışı dönemlerin aynı bölgede geçirilmesinin avantajlı ya da mümkün olmadığı durumlarda görülür. Ancak, bazen daha yakında elverişli kışlama alanları varken türün neden binlerce kilometre öteye göç ettiğini açıklamak her zaman kolay değil. Göç, olanca risklerine karşın hala vazgeçilmediğine göre kuşlara hatırı sayılır yararlar sağlıyor olmalı. Uzun göç yolculuğu, tamamlamak için harcanan enerjinin yanısıra yorgunluk, kaybolma, yırtıcılara yem olma gibi riskleri nedeniyle tehlikeli bir girişim. Kuzey Yarımküre'den güneye göçen küçük kuşların yarısından fazlası asla geri dönmüyor. Örneğin diğer akrabalarının aksine çok daha geç, Ağustos ayında yuva yapan Ada Doğanı (Falco eleonorae) bu gibi küçük göçmenlerle beslenerek yaşamak için evrilmiş bir yırtıcı. Buna, insanoğlunun ve olumsuz hava koşullarının etkilerini eklersek göç ve kışlama sırasında ölüm oranının yüksekliği bizi şaşırtmamalı. Kuşların, kış aylarının olumsuz çevre koşullarından güneye kaçmaları kolay anlaşılsa da belki de daha ilginç bir soru neden uygun koşullar tropikal bölgelerde yıl boyu hüküm sürdüğü halde tekrar kuzeye döndükleri. Burada önemli nokta, her ne kadar kış boyunca düşmanca koşullar hüküm sürse de, kuzey enlemlerinde ilkbahar ve yaz ayları boyunca üremek için tropikal bölgelere göre daha uygun özelliklerin bulunması. Tropikal enlemlerde gece-gündüz uzunluğu neredeyse sabit olduğu halde, ilkbahar ve yaz boyunca kuzey enlemlerinde gündüzler gecelerden belirgin derecede uzun. Diğer taraftan ılıman ve tropikal bölgelerde yerli kuş populasyonlarının yoğunluğu özellikle üreme sırasında yüksek rekabet oluştururken, daha az türe sahip sahip kuzey enlemlerinde bu rekabet daha düşük. Bu bakış açısına göre, kuzey enlemlerdeki çoğu göçmen kuş türleri (kuzeyin zorlu kışından kaçıp tropik bölgeye tahammül eden ılıman kökenli kuşlar değil) kuzeydeki geçici yaz bolluğundan faydalanan tropikal kökenli kuşlardır. Aynı türün farklı coğrafyalarda yaşayan toplulukları göç davranışını sonradan kazanabilir ya da kaybedebilirler. Örneğin Küçük İskete (Serinus serinus) son yüzyıl içinde Akdeniz havzasından kuzeye, Avrupa'ya yayıldı. Atasal Akdeniz toplulukları yerliyken, yeni kuzey populasyonları artık göçmen oldular. Tam tersi bir gelişme, Güney Afrika'da kışlayan Kara Leylek (Ciconia nigra) ve Arıkuşu (Merops apiaster) gibi bazı göçmen türlerin bir kısmının artık orada üreyen yerli türlere dönüşmeleri. Genel olarak, tropikal bölgeye göç eden kuşlar geride ılıman bölgede kalanlara göre kışı daha iyi atlatırken, geride kalan yerli türler üreme açısından göçmenlerden daha başarılı olurlar. Tropikal bölgedeki yerli türler ise uzun yaşamayı düşük üremeye feda ederler. Kurdukları yuvaların pek azı başarılıdır, yavru sayıları düşüktür ve her çift yılda birçok kere üremeyi dener, ama erginler uzun ömürlüdürler. Göç, yerel koşullar yakındaki yörelere fırsatçı hareketleri teşvik ettiği durumlarda evrilir. Populasyonun sadece bir kısmında başlayan bu davranış eğer avantajlı ise, bir süre sonra göç etmeyen toplulukların yeryüzünden silinmesi sonucunda o türün tüm bireyleri için bir kural haline gelir. Farklı göç şekilleri Farklı türlerin kışlama ve üreme alanları arasında izledikleri rota ya da kışlama alanlarında yerleşme şekilleri değişik göç şekilleri oluşturuyor. En belirgin farklılıklardan biri süzülen kuşlarla, kanat çırpan aktif uçucular arasında. Uçabilmek için termallere bağımlı süzülen kuşlar, geniş su kitlelerini aşamadıklarından kıyı kenarını izleyerek gündüzleri uçarlar ve denizleri karaların birbirlerine en çok yaklaştıkları bölgelerden geçerler. Diğer taraftan pek çok ötücü kuş, yağmurcun ve su kuşu yer şekillerine bağlı kalmaksızın geniş bir cephe şeklinde geceleri göç ederler. Bazı durumlarda ilkbahar ve sonbahardaki göç rotası aynı olmaz. Örneğin, Sibirya’da üreyen Kara Gerdanlı Dalgıç (Gavia arctica) toplulukları sonbaharda doğrudan bir uçuşla Karadeniz’e iner, ancak ilkbaharda aynı rotadan geri dönmek yerine önce batıya Baltık Denizi’ne, sonra doğuya uçar. Havalanabilmek için donmamış su yüzeyine gerek duyan dalgıçların, buzu geç çözülen gölleri ilkbaharda kullanamaması nedeniyle bu tip bir göçün ("halka göç") daha avantajlı olduğu sanılıyor. Pek çok ötücü kuş türünde erkek bireyler, dişilere göre daha kısa mesafe göç eder. Bu durumun, erkeklerin ilkbaharda en iyi üreme alanlarını ele geçirmek için giriştikleri yoğun rekabetin sonucu olduğu sanılıyor. Yine muhtemelen aynı nedenden dolayı sonbahar göçü neredeyse aylar süren bir sürede gerçekleştiği halde, ilkbahar göçü çok daha dar bir zaman aralığında gerçekleşir. Süper yakıt: İçyağı Göç eden kuşların büyük çoğunluğu bir seferde uzun mesafeleri aşabilmek için deri altında yağ depolar. Yağ parçalandığında, aynı miktarda karbonhidrat veya proteinle karşılaştırılırsa onların iki katı enerji ve su üretir. Biriktirilen yağ, bazen vücut ağırlığının iki katına çıkmasına neden olabilir. Bu denli çok yağın kısa sürede biriktirilebilmesi için uygun metabolik ve davranışsal değişiklikliklerin oluşması gerekiyor. Bu değişiklikler arasında aşırı yeme (hiperfagi), metabolizmalarının nitelik değiştirmesi, iç organların bazılarının küçülmesi sayılabilir. Yağ, normal zamanlarda küçük kuşların vücutlarının %3 ila %5'ine karşılık gelir. Oysa göç sırasında bu değer %25'e, bazı kıyı kuşlarında % 45'e ulaşabiliyor. Ötücü kuşlar tipik olarak bir seferinde birkaç yüz kilometre uçtuktan sonra 1 ila 3, bazı durumlarda daha da uzun süre dinlenip azalan rezervlerini yeniden tamamlarlar. Uzun mesafeler kateden kıyıkuşları da göçlerini üç veya dört ayakta gerçekleştirirler. Her yolculuk ayağı sırasında dinlendikleri bu mola noktaları birçok tür için yaşamsal önem taşır. Yapılan araştırmalar, küçük kuşların bir saatlik bir uçuş sırasında vücut ağırlıklarının yaklaşık %1'ini kaybettiklerini göstermiş. Ünlü göç araştırmacısı Peter Berthold, ağırlığının %40'ı yağ olan bir göçmen kuşun 100 saat boyunca durmadan uçabileceğini ve bu süre zarfında 2500 km. yol katedeceğini hesaplamış. Yakıtı tasarruflu kullanma açısından hiçbir insan yapısı motor kuşların metabolizmasıyla baş edemez!

http://www.biyologlar.com/kuslar-neden-goc-ederler

Lökositlerin işlevleri

Lökositler (akyuvarlar) vücudumuzu çeşitli mikroplara ve yabancı maddelere karşı savunan ve bağışıklığı sağlayan kan hücreleridir. İşlevlerine göre farklı alt gruplara ayrılırlar. Nötrofil parçalılar (granülositler). Vücudumuza giren  mikropları ve yabancı maddeleri yutarak yok ederler (fagositoz). Kemik iliğinden kana geçen nötrofiller dolaşımda  eritrositler gibi uzun süre kalmazlar, dokulara ya da iltihap bölgelerine geçerler. Dolaşımda kalma süreleri  kısadır (4-6 saat).  Dokularda yuttukları  mikropları sindirdikten sonra  dejenere olur  ve ölürler. Nötrofil sayısı çok azaldığında (nötropeni) , gelişen infeksiyonların bir belirtisi olarak hastalarda yüksek ateş görülür. Eozinofil parçalılar. Eozinofil hücrelerin de nötrofiller gibi bakterileri yutma ve öldürmeyetenekleri vardır. Buna ek olarak özellikle allerji ve bağışıklık olaylarında rol alırlar. Bazofil parçalılar. Bazofiller ve bunların doku şekilleri olan mast hücreleri (mastosit) bazı allerji  (aşırı duyarlık) reaksiyonlarının gelişiminde rol oynarlar. Monositler. Nötrofiller gibi fagositoz yeteneğine sahip hücrelerdir. Ancak çevre kanını nötrofillere göre daha yavaş terkederler (12-24 saat). Dokulara geçtikten sonra makrofaj adı verilen büyük hücrelere dönüşürler. Dokularda aylarca yaşayabilen makrofajlar vücuda yaygın bir şekilde dağılmışlardır (akciğerler, karaciğer, dalak, lenf düğümleri, kemik iliği, vd). Monosit  ve makrofajların çok sayıda önemli işlevleri vardır. Bunların başında   yaşlanmış ya da bozuk kan hücrelerini ortadan kaldırma,  bağışıklık olaylarının gelişmesinde  lenfositlerle sıkı iş birliği içinde bulunma gelir. Lenfositler. Bağışıklık sistemimizin en önemli hücreleri, bir anlamda baş aktörleridir. Dolaşan kandan daha çok lenf düğümleri ve lenf yollarında, dalakta, sindirim, solunum yollarının içini döşeyen zarların altında yoğunlaşmışlardır. Yıllarca ölçülecek denli uzun ömürlüdürler. Lenf, lenf yolları ve lenfositler, ilerde daha ayrıntılı olarak ele alınacaktır. Şimdilik çevre kanında, lenfositlerin yapı ve işlevlerine göre üç gruba ayrıldıklarını söylemekle yetinelim: B lenfositler, T lenfositler ve NK lenfositler (NK: ing. naturel killer: doğal katil hücreler).

http://www.biyologlar.com/lokositlerin-islevleri

Ekosistemlerin Bozulma Nedenleri

Belli bir bölgede canlı ve cansız ögelerin oluşturduğu sisteme ekosistem denir. Örneğin; Akdeniz Bölgesi, Van Gölü birer ekosistemdir. En büyük ekosistem Dünya' dır. Ekosistemleri kara ve su ekosistemi olarak gruplandırabiliriz.Çöl, orman, çayır, mera, köy karasal ekosistem; dere, nehir, baraj, göl, deniz ise birer su ekosistemidir. Bir ekosistemin varlığını sürdürebilmesi için, ekosistemdeki canlı ve cansızlar arasında sağlıklı ilişkiler olması gerekir. Ayrıca gerekli olan enerji ve besin sürekli sağlanmalıdır. Ekosistemdeki üreticiler, tüketiciler ve ayrıştırıcılar arasında doğal bir denge vardır. Bu canlı gruplarından biri yok olursa veya aralarındaki denge bozulursa ekosistemdeki diğer canlılar da bundan etkilenir.Örneğin; bir ormandaki ağaçların büyük bir bölümü kesilirse ormanda yaşayan canlılar yok olur. Ekosistemdeki ayrıştırıcılar zarar görürse bitki ve hayvan kalıntıları parçalanamaz. Madde döngüleri aksar ve ekosistemdeki canlılar olumsuz etkilenir. Bir göl veya denizdeki balıklar aşırı avlanarak yok edilirse balıklarla beslenen diğer canlıların sayısı azalır. Ekosistemlerin kendine özgü fiziksel ve kimyasal özellikleri vardır. Bu duruma orman ve göl ekosistemlerini örnek verebiliriz. Ekosistemlerdeki Koşulların Mevsime Göre Değişmesi Kara ve su ekosistemlerindeki sıcaklık, ışık, nem, tuzluluk, iklim gibi koşullar değişebilir. Canlılar bu değişmelerden etkilenir. İklim,ortamın özellerini belirleyen ana öğelerden biridir. İklim, canlıların yeryüzündeki dağılışında önemli rol oynar. Uzun bir zaman aralığı içinde belirli bir bölgede etkin olan atmosfer koşullarına,iklim adı verilir. Kutup bölgelerinden ılıman iklimlere,hatta ekvatordan sıcak ve soğuk akıntılarının bulunduğu okyanuslara kadar bir çok canlı,kendilerine uygun kilim koşullarında dağılmıştır. Sıcaklık,yağış ve diğer iklimsel etmenler,bitki ve hayvan türlerinin gelişim ve,davranış ve dünya üzerindeki dağılışlarını belirler. İklim ve yeryüzü şekilleri karşılıklı etkileşimle yaşamın sürmesi için gereken çevrenin oluşmasını sağlar. Yeşil alanların azalması volkanik etkinlikler vb. nedenlerle atmosferde artan toz tabakası,ısının azalması ,dünyadaki hava olaylarını dolayısı ile iklimi belirler. Işık,yeryüzündeki enerjinin kaynağını oluşturur. Işığın dalga boyu,şiddeti ve süresi ekosistemler üzerinde önemli etkendir. Işık bitkilerin fotosentez,terleme,çiçeklenme, ve çimlenmeleri üzerinde etkilidir. Sıcaklık, türden türe değiştiği gibi aynı türün gelişim evrelerine bağlı olarak da değişmektedir. Normal metabolik etkinliklerini 0-500 C arasında sürdürebilen canlılar,00C'un çok altında (-2000C) veya 500C'un çok üzerinde (-1000C) de yaşayabilmektedir. Hayvanlar dünyası,sıcakkanlı hayvanlar ve soğukkanlı hayvanlar olarak iki gruba ayrılır. Kuş ve memelilerin içinde olduğu sıcakkanlı hayvanlarda vücut ısısı durağandır. Omurgasız hayvanlardan kurbağa ve sürüngenlerin içinde olduğu soğukkanlı hayvanlarda ise vücut ısısı durağan olmayıp çevre sıcaklığına bağlı olarak değişir. Su canlıların temel yapısını oluşturur. Organizmaların metabolik etkinliklerini sürdürebilmeleri için hücre ve dokularda belli oranda su bulunması gerekir. Ekin durumdaki canlıların sitoplazmasındaki su oranı genelde %70 ile %90 kadardır. Bu oran kimilerinde %50 ye düşmesine karşın kimilerinde %98 kadar yükselebilir. Toprak bitkilerin gelişmesi için gerekli olan su ve mineralleri içerdiği gibi aynı zamanda bitkilerin kökleriyle tutunabilecekleri sağlam bir temeldir. EKOSİSTEMLER NEDEN DEĞİŞİYOR VE BOZULUYOR Doğadaki her varlık sürekli bir değişim içindedir. Bu değişimin bir bölümü doğal yollar la bir bölümü de insanların etkisi ile ortaya çıkar. a.Doğal Kaynaklı Bozulmalar Doğal afetler çevrenin bozulmasında etkili olur. Doğal kuvvetlerden gücünü alan depremler, seller, arazi kaymaları, yanardağ ve kuraklık olayları çevrenin değişmesine neden olur. Bu saydığımız doğal afetler aynı zamanda can ve mal kaybına da sebep olur. Ülkemizin %90'nı deprem kuşağı üzerindedir. 1900 yılından günümüze kadar ülkemizde 16 büyük deprem olmuştur. Bu depremlere 100.000 yakın insan hayatını kaybetmiştir. Deprem sonrası meydana gelen yıkıntı ve moloz yığınları çevre kirliliğine yol açar. Ayrıca, depremin neden olduğu zararları karşılaya bilmek için çok fazla kaynak tüketilmiştir. Sel felaketinin neden olduğu su baskınları, yerleşim ve tarım alanlarına zarar vermektedir.

http://www.biyologlar.com/ekosistemlerin-bozulma-nedenleri

CARETTA CARETTA ( DENİZ KAPLUMBAĞALARININ ) ÜREME ALANLARI

CARETTA CARETTA ( DENİZ KAPLUMBAĞALARININ ) ÜREME ALANLARI

Akdeniz Bölgesindeki Üreme alanları: Günümüzde Akdeniz bölgesinde deniz kaplumbağalarının üremelerine elverişli uygun sahiller hızla yokolma sürecine girmiştir. Gelişen turizm faaliyetleri, aşırı yapılaşma ve denizin kirletilmesi sonucunda üreme sahilleri azalmaktadır. Caretta caretta türü deniz kaplumbağalarının önemli üreme alanları Yunanistan, Türkiye ve Kıbrıs etrafında yoğunluk göstermektedir. Akdenizdeki en önemli üreme alanı Yunanistan’daki Zakintos adasıdır. Aynı türün Akdenizdeki 5. önemli üreme alanı ise Girne’nin 14 Km. Doğusunda yer alan Alagadi Sahilleridir. Yeşil deniz kaplumbağası Chelonia mydas için durum daha da bir önem arzetmektedir. Akdeniz bölgesinde Chelonia mydas türü deniz kaplumbağasına Türkiye’nin güney kıyıları ve Kıbrıs etrafında rastlanmaktadır. En önemli ilk iki üreme alanı Türkiye’de, üçüncü önemli üreme alanı ise Kıbrıs’ta Karpaz yarımadası’nda yer alan Ronnas Körfezidir. Kıbrıs’taki üreme alanları: Deniz kaplumbağaları Kıbrıs’ta yaklaşık 85 - 90 sahile her yıl çıkış yaparak üreme faaliyetlerini sürdürmektedir. Özellikle Kıbrıs’ın kuzey sahillerinin halen el değmemiş, yapılaşmaya açılmamış olması deniz kaplumbağalarının yoğunlukla Kıbrıs’ın kuzey kıyılarına gelmelerine neden olmaktadır. Kıbrıs’ın güney kıyılarında yapılaşma ve turizim faaliyetlerinin çok yoğun olması nedeniyle az sayıda sahil deniz kaplumbağalarının üremelerine uygundur. Üremeleri için kullandıkları sahillerin tümü aynı öneme sahip değildir. Kıbrıs için önemli olan sahiller buraya alınmıştır. 1- Alagadi Sahilleri: Kıbrıs’ın kuzey kıyılarında yer almaktadır. Girne’nin 14 Km. Doğusunda yer alır. İki koydan oluşmaktadır. Toplam sahil uzunluğu yaklaşık olarak 2900 m. dir. Her yıl barındırdığı yuva sayısı bakımından Kıbrıs’ın en önemli üreme alanıdır. Her iki türde üremek için bu sahilleri kullanmaktadır. Ancak yoğunlukla Caretta caretta türü deniz kaplumbağaları tarafından kullanılmaktadır. Akdeniz bölgesinin 5. önemli Caretta caretta üreme alanıdır. 1997 yılında “Özel Çevre Koruma Bölgesi” ilan edilerek koruma altına alınmıştır. 2- Esentepe Sahili: Esentepe köyünün kuzeyinde yer almaktadır. İki kısımdan oluşmaktadır. Yaklaşık 500m uzunluğundadır. Her iki türde görülmektedir. 3- Bahçeli Sahili: Girne'nin yaklaşık 10 km doğusunda yer alır. Her iki tür de yuvalamak için bu sahili kullanır. 4- Tatlısu Sahili: Tatlısu Köyünün kuzey doğusunda yer almaktadır. Yaklaşık 800 m uzunluğundadır. Her iki türde görülmektedir. 5- Ronnas Sahilleri: Karpaz yarımadasının kuzeyinde, Erenköy’ün 12 Km. Doğusunda yer alır. Kayalık alanlarla birbirinden ayrılan 7 koydan oluşmaktadır. Toplam sahil uzunluğu yaklaşık 2000 m. dir. Her iki türünde görüldüğü bu sahiller yoğunlukla Chelonia mydas türü deniz kaplumbağaları tarafından kullanılmaktadır. Tüm Akdeniz bölgesinin 3. önemli Chelonia mydas üreme alanıdır. Mutlak surette koruma altına alınması gerekmektedir. 6- Ay. Philion Sahili: Karpaz Yarımadasında Dipkarpaz köyünün 5 Km kuzeyinde yer almaktadır. Antik Karpasia yerleşim alanının limanı bu sahildedir. Yaklaşık 800 m uzunluğundadır. Ronnas Körfezinden sonra Kıbrıs’taki ikinci önemli Chelonia mydas türü deniz kaplumbağası üreme alanıdır. Koruma altına alınması gerekmektedir. 7- Altınkum Sahilleri: Karpaz yarımadasının güneyinde Dipkarpaz köyünden yaklaşık 15 Km uzaklıkta yer almaktadır. İki sahilden oluşmaktadır. Sahillerin toplam uzunluğu yaklaşık olarak 3700 m dir. Kıbrıs’ın doğal güzellik ve kumulların bulunması bakımından en güzel sahillerinden biridir. Her iki tür tarafından kullanılmaktadır. İkinci sahil önemli bir Chelonia mydas türü deniz kaplumbağası üreme alanıdır. 8- Dolphin Sahili: Dipkarpaz köyünün güneyinde yeralır. Yaklaşık 800 m uzunluğundadır. Yoğunlukla C. mydas türü kaplumbağalar tarafından kullanılır. 9- İkidere Sahili: Dipkarpaz köyünün güneyinde yer alır. 1200 m uzunluğunda bir sahildir. Her iki tür tarafından da kullanılır. 10- Beyza Sahili: Karpaz Yarımadasında Dipkarpaz köyünün 8 Km güneyinde yer almaktadır. Yaklaşık 800 m uzunluğundadır. Yoğunlukla Caretta caretta türü kaplumbağa görülmekle birlikte Chelonia mydas türü kaplumbağada görülmektedir. 11- Laden Sahili: Karpaz Yarımadasında Dipkarpaz köyünün 10 Km güneyinde yer almaktadır. 900 m uzunluğundadır. Her iki türde görülür. 12- Toxeutra Sahili: Baf'ın 15 km kuzeyinde yer alır. Yaklaşık 800 m uzunluğundadır. Her iki tür de üremek için bu sahili kullanmaktadır. 13-Lara sahili: Baf Kasabasının kuzey kısmında Akama bölgesinde yer almaktadır. Her iki türde bu sahillere yuva yapmaktadır. 14- Akdeniz Sahili: Kıbrıs’ın batısında Akdeniz köyünün 2 Km. Batısında yer alır.Yaklaşık 4300 m. uzunluğundadır. Yoğunlukla Chelonia mydas türü kaplumbağa görülmektedir. 15- Kormacit Sahili: Kormacit köyünün 3 Km. Batısında Güzelyurt Körfezinde yer almaktadır. Yaklaşık olarak 1800 m uzunluğundadır. Yoğunlukla Chelonia mydas türü kaplumbağa görülmektedir.

http://www.biyologlar.com/caretta-caretta-deniz-kaplumbagalarinin-ureme-alanlari

Farklı Çeşitteki Patojenleri Tanıma Rehberi

Farklı Çeşitteki Patojenleri Tanıma Rehberi

Protozoa olan Giardia, giardiyaz adı verilen ishal hastalığına sebep olur. Giardia türleri serbest yaşayan (flamotin aracılığıyla) trofozitler ve yumurta şeklindeki kistler olarak bulunur.

http://www.biyologlar.com/farkli-cesitteki-patojenleri-tanima-rehberi

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

Kan Parazitleri

Laboratuvarda kan örnekleri ile çalışırken genel temizlik ve güvenlik kurallarına uyulması gerekir. Böylece çevrenizi, çevrenizdeki diğer kişileri ve kendi sağlığınızı korumuş olursunuz. Koruyucu eldiven ve laboratuvar önlüğü giyiniz.  Eğer ellerinizde yada üzerinizde açık yara veya ezikler varsa mutlaka yara bandı vb. ile kapatın. İğne, lanset gibi maddeleri sadece bir kez kullanın ve kullanılmış malzemeleri uygun çöp kutusuna atın.  Çalışma tamamlandıktan sonra eldivenlerinizi çıkartın ve ellerinizi mutlaka yıkayın. Laboratuvarı temizleyin ve dekontaminasyon işlemlerini uygulayın. Örnek Toplama: Zamanlama: Örnekler uygun ortamlarda ve sağaltım (tedavi) öncesinde toplanmalıdır. Eğer malarya veya babesiadan şüpheleniliyor ise örnekler zaman geçirmeden incelenmelidir. Kanda parazit görülmesi (parazitemi) oranı parazit türüne göre dalgalanma gösterir. Bu nedenle birden fazla froti yapılması (8-12 saat ara ile 2-3 gün) tavsiye edilir. Microflaria enfeksiyonu (türe bağlı olarak) belirgin bir dalgalanma sergiler. Bu yüzden örnekleme zamanı çok önemlidir. Eğer mikroflariadan şüphe ediliyor ise örneklemenin aşağıdaki saatlerde yapılması uygundur. Loa loa–Öğlen (saat 10 ile 14 arası) Brugia or Wuchereria–Akşam saat 8 civarı (20.00) Mansonella–Günün herhangi bir saatinde. Örnek Tipi: Venöz kan örnekleri (venalardan alınan kan), teşhis amaçlı bir çok çalışma için uygundur (flariasis ve trypanosomiasis dahil). Ancak bazı enfeksiyonlarda örneğin malariada kan tüplerindeki antikoagulant (pıhtılaşma önleyici) maddeler parazitin morfolojisine ve boyanma özelliklerine olumsuz etkilerde bulunabilir. Bu problem, frotilerin (yayma) kan alınmasından sonra en kısa sürede yapılması ile bir miktar azaltılabilir. Bu gibi durumlarda kapillar kan örnegi (kulak yada kuyruk ucu, insanda parmak ucu) alınması tavsiye edilir. Kılcal (Capillary) Kan İncelemesi: 1. Temiz bir lam alınır ve bir kenarına hasta adı veya numarası, örnek tarih ve saati kaydedilir. (Kayıt cam kalemi ile yapılmalıdır. Normal permanent kalemler işlemler sırasında silinebilir). 2. Kan alınacak bölge Kulak ucu (kuyruk ucu veya parmak, bebeklerde topuk veya ayak baş parmağı) alkol ile temizlenir ve kuruması beklenir. 3. Kulak ucu çok küçük kesilerek (lancet ile delinerek) kanatılır. İlk damla kan alınır ve yayma yapılır. (Yayma için iki thick blood-kalın yayma- ve iki thin blood-ince yayma- yapılması tavsiye edilir). 4. Uygun boyamalarla boyanan örnekler mikroskopla incelenir (immersiyon). Venöz (Venous) Kan İncelemesi: 1. Kan alınacak tüp ve lam üzerine hasta kaydı yapılır. Lam alkol ile temizlenip kurutulur. 2. Kan alınacak bölge temizlenir, alkol ile silinip kuruması beklenir. 3. Uygun bir venadan kan alınır ve EDTA’lı tüplere konur. Yavaş hareketler ile kan iyice karıştırılır. (Diğer antikoagulanlarda kullanılabilir ancak EDTA tercih edilmektedir). 4. En az iki kalın ve iki ince yayma preperat kan alınmasından sonraki mümkün olan en kısa sürede hazırlanılmalıdır. 5. Uygun boyamalar ile boyanan örnek incelenir. Örneklerin Hazırlanıp İncelenmesi: Yayma Örneklerinin (froti) Hazırlanması: Yukarda da belirtildiği gibi, eğer venöz kan kullanılıyorsa frotiler kan alınmasından sonra en kısa sürede yapılmalıdır. Aksi taktirde antikoagulanların parazit morfolojilerini ve boyanma karakterlerini değiştirebileceği unutulmamalıdır. Kalın Yayma (Thick smears) Hazırlanması: Kalın yayma bir damla kanın mümkün olduğunca homojen olarak yayılması işlemidir. Dehemoglobinize olmuş (parçalanmış) alyuvarları incelemek için hazırlanır. Bu yöntem ile kan elemanları ve varsa parazitler ince yaymaya oranla daha fazla yoğunlaştırılmış olur. Bu yüzden kalın yayma, ince yaymaya oranla daha iyi teşhis imkanı sağlar ancak parazit morfolojileri en iyi olarak görünmezler. Pozitif örneklerde (özellikle malaria) tür tayini yapabilmek için ince yayma yapılması tavsiye edilir. Her hasta için en az iki preperat hazırlanılmalıdır. 1. Önceden temizlenmiş ve üzerine hasta kaydı yapılmış lam alınır. 2. Lam’ım ortasına bir damla kan konulur. 3. Bir başka temiz lam köşesi kullanılarak, dairesel hareketler ile kan yayılır (yaklaşık 1.5 cm çapında). 4. Örneğin istenilen kalınlıkta yayılıp yayaılmamış olduğu, altına konulan bir gazetedeki yazıların kısmen okunaklı olması ile kontrol edilebilir. 5. Preperat düz bir yere konarak kuruması beklenir (toz ve böceklerden uzak tutulmalıdır). Yeteri kadar kurumamış yada çok kalın hazırlanmış örnekler işlemler esnasında lamelden ayrılırlar. Oda ısısında yapılan kurutmalar bir kaç saat sürebilir. Minimum 30 dakikalık kurutma gereklidir bu şekilde hazırlanmış örnekler çok dikkatli olarak işlemlere tabi tutulmalıdır. Kurutma işlemi orta ısılı bir etüv yada kurutma dolaplarında yapılabilir. Aşırı sıcak ortamlar istenmez çünkü bu işlem ısı ile örnek tespiti (fiksasyon) yapılmasına yol açar. İnce Yayma (Thin smears)Hazırlanması: İnce yaymada kan gittikçe incelen bir kan katmanı oluşturur. Son kısmında alyuvarlar tek bir katman oluşturmalıdır yada birbirlerinden uzak konumlarda olmalıdır. Her hasta için en az iki örnek hazırlanılmalıdır. 1. Bir damla kan alınıp, lamın hasta kaydı yapılmış kenarından yaklaşık 1.5 cm uzağına konur. 2. İkinci bir lam kan damlasının önüne yaklaşık 45° açı ile konulur. 3. Lam hafif geri çekilerek damla ile temas ettirilir ve kanın lam temas yüzeyine yayılması beklenir. 4. Üstteki lam hızla ileri doğru itilerek kan olabildiğince ince yayılır. Kanın son kısımlarda çok ince yayılmış olmasına dikkat ediniz. Bu işlem uygun miktarda kan ve iyi bir yayma tekniği ile sağlanır. Aksi taktirde yayma istenilen kalitede olmaz. 5. Preperatın kurumasını sağlayın. 6. Preperatı saf (absolute) metanol içerisinde tespit edin 7. Fix the smears by dipping them in absolute methanol. Microfilariae Teşhisi İçin Örnek Hazırlama: A. Kapillar kan örneği alınır. B. Mikroflarialar perifer kanda yoğun olarak bulunurlar. Bu nedenle venöz kan bu tür incelemelerde tercih edilmezler. C. Mikroflaria kontrolü için venöz kan kullanılması gerekirse bu örnek mutlaka konsantre edilmelidir.Bu amaca yönelik çeşitli yöntemler mevcuttur. 1. Örnek modifiye Knott metadu ile konsantre edilir. 2. Filtrasyon Metodu. Bu yöntemde 5 µm çaplı gözenekleri olan filtreler kullanılır. Fitrede kanın şekilli elemanları ve organizmalar takılıp kalırlar. Filtredeki kan şekilli elemanları uygun maddeler ile parçalanır ve filtre üzerindeki organizmalar geri toplanıp lam üzerine yayılır ve incelenir (Bu amaca yönelik çeşitli teşhis kitleri mevcuttur. Ticari markalar olduğu için isimler ve kullanılan malzemeler burada işlenmemiştir) Kan Örneklerinin Nakli: Kan Yayma Örneklerinin Mikroskobik İncelemeler İçin Taşınması: 1. Üzerleri etiketlenmiş ve kurutulmuş yayma preperatlar (boyanmış yada boyanmamış) uygun lam kutularına yerleştirilir. Bu kutularda lamların birbirine temasını engelleyecek ara bölmeler olmalıdır. 2. Bu lam kutusunu sağlam ve arsında şok emici destekleri olan bir başka kutuya yerleştir. Bu sayede nakil sırasında kırılmalar engellenmiş olur. 3. Örnek ile ilgili bilgiler ve gönderen ile ilgili bilgiler detaylı olarak yazılıp kutuya yerleştirilir. 4. Uygun taşıma yolu ile istenilen yere gönderilir. Tam Kan Örneğinin Nakli: 1. Sızdırmaz steril bir kap (deney tüpü vs) içerisine antikoagulanlı kan konur ve etiketlenir. Bu örnek bir kutuya yerleştirilir ve etrafına, sızdırma durumunda kanın emilmesi için emici maddeler konulur. 2. Bu kutu içerisi şok emiciler ile desteklenmiş ikinci bir kutuya yerleştirilir. Örnek (kimden, ne için ve ne zaman alındığı gibi) ve gönderen ile ilgili detaylı bilgiler yazılıp kutuya yerleştirilir. 3. Hazırlanmış kutu veya kutular en kısa sürede (8-12 saat) ilgili laboratuvara ulaştırılmalıdır. Soğuk sistem taşıma gerekebilir. Bu durum ilgili laboratuvar ile görüşülmelidir. İlaç Testleri veya Moleküler Biyoloji Testleri İçin Örnek Nakli: 1. Yukardaki paketleme işlemleri aynen uygulanır. 2. Paket oda sıcaklığında nakledilir. Antikor veya İlaç Testleri İçin Serum (yada Plazma) Örneği Nakli: 1. Paketleme ve etiketleme işlemleri yukarıdaki örneklerde olduğu gibi yapılır. 2. Ek bilgiler yazılıp kutuya konur. 3. Örnek oda ısısında ancak mümkün olduğunca kısa sürede hedefe ulaşması sağlanır. 4. Not: Parazit izolasyon (ayrımı) ve teşhislerinde süre kritik öneme sahişptir. Antikor kökenli taramalarda süre daha az önemlidir. Boyama: Kan Frotilerinin Boyaması: Hazırlanan ikili örneklerden sadece bir set boyanır. İkinci set yedekte bekletilir. Bu durum eğer boyamalarda bir hata olursa, örnek kaybını engellemiş olur. Ayrıca herhangi bir teşhis olayında daha sonraki incelemeler için kaynak oluşturur. Giemsa Boyama: -Kan parazitlerinin aranmasında ve teşhisinde kullanılır. Basit Giemsa Boyama: 1. Preperat hazırlanıp havada kurutulur. 2. Absolute metanolde bir dakika tespit edilir. 3. Kurutulmuş preperat giemsa ile boyanır (30 dakika-Giemsa boyası 1:20 oranında distile suda sulandırılır). 4. Boyama sonrası preperat distile su ile durulanır (Su akar vaziyette olmalıdır). 5. Preperat kurutulup 100X’lük objektif ile incelenir. Not: Preperatlar saklanmak istenirse üzerlerindeki mineral yağ yıkanmalıdır. Yıkama için Ksilol (XYLOL) kullanılır. Preperat üzerine ksilol dökülüp yağı ertmesi bekletilir ve ksilol akıtılıp (işlem mineral yağ tamamen kaybolana kadar bir kaç kez tekrarlanabilir) kurutulur. Geliştirilmiş Giemsa Boyama: 1.Giemsa boyamada kullanılan solüsyonların hazırlanması. A. Stok Giemsa Buffer (100X, 0.67 M) Na2HPO4 59.24 gr NaH2PO4H2O 36.38 gr Deionized water 1000.00 ml B. Otoklav yada 0.2 µm çapında delikleri olan filtre kullanarak sterlizasyon yapılır. Bu şekilde hazırlanmış stok solüsyon oda ısısında bir yıl kullanılabilir. C. Giemsa Buffer, 0.0067M, pH 7.2 (Stok giemsa buffer 100kat sulandırılır) Stok Giemsa Buffer 10.0 ml Dİstile (yada deiyonize) su 990.0 ml Solüsyon da pH7.2 olmalıdır. Kullanmadan önce kontrol edilip ayarlanır. Oda ısısında bir ay dayanır. D. Triton X-100 (% 5) Deiyonize Su (56°C’ ye kadar ısıtılır) 95.0 ml Triton X- 100 5.0 ml Ilık su içerisine Triton X-100 yavaşça ilave edilirken dairesel hareketler ile karıştırılır. Triton X-10 E. Stok Giemsa Boyası: Giemsa boyası hazır olarak satın alınabilir. Aşağıdaki formül daha iyi sonuç verdiği ileri sürülmektedir. Cam Boncuk (3 mm çapında) 30.0 ml Absolute methanol, (asetonsuz) 270.0 ml Giemsa Boya (saf-toz) 3.0 gr Glycerol (Gliserol) 140.0 ml a.Yukarda sayılan maddeleri temiz kahve renkli bir şişe içerisine yerleştirin. Ağzını sıkıca kapatın. b. Şişeyi bir çalkalayıcıda her gün 30-60 dakika ve en az 14 gün boyunca çalkalayın. c. Şişeyi ağzı kapalı olarak nemden uzak olarak oda ısısında saklayınız. Oda ısısında stok bozulmadan kalır (Stok gimza boyası eskidikçe boyama kalitesi artacaktır). d. Kullanmadan önce çalkalayıp bir numara Whatman filtre kağıdında süzün. Bu solüsyondan çalışmak üzere Giemsa boyası hazırlayın. F. Gimsa Boya Hazırlanması (% 2.5) G. Her boyama için taze olarak hazırlanması tavsiye edilir. Bir günden fazla süre geçmiş Giemsa boyası boyamalarda kullanılmamalıdır. Giemsa buffer 39 ml Stok Giemsa Boyası 1 ml Triton X-100 (%5) 2 damla 2. Boyama: A. Bir şahle (boyama küveti) içerisine yukarda açıklandığı şekilde taze olarak Giemsa boyası hazırlayın B. İkinci bir şahleyi Giemsa buffer ile doldurun ve içerisine her 40 ml için iki damla Triton X-100 ekleyin. C. Preperatı Giemsa (% 2.5) ile 45-60 dakika süresince boyayınız. D. Preperatı çıkartıp Giemsa buffer içerisine batırarak (3-5 kez) durulayın. Kalın yayma preperatlarda dikkatli olunmalıdır. E. Preperatı dik olarak bir yere yerleştirip kurutun. Not:Daha yoğun hazırlanan(% 10) Giemsa boyalar ile daha kısa süre bekletilerek (10 dakika) boyama yapılabilir. Ancak bu durum hem daha fazla madde kullanımını gerektirir. Hem de boyama kalitesi çok iyi olmaya bilir. İyi bir boyama yapılmış olup olmadığını pozitif örnekler kullanarak kontrol edilmesi tavsiye edilir. Boyanmamış Yayma Preperatların Uzun Süreli Saklamalar İçin Hazırlanması: Her hangi bir amaç için yayma preperatlar daha sonra incelemek için saklanabilirler. Bu saklamalar, boyama yapılmış preperatlar için sadece kuru ve temiz bir kutuda ve bir birlerine temas etmeden gerçekleştirilebilir. Anacak bazı durumlarda preperatlar hiç bir işlem yapılmadan daha sonraki uygulamalar için saklanmak istenebilir. Bu preperatlar daha sonra istenilen yöntemle işlenip incelenebilirler. 1. Yayma preperat hazırlanır ve çabucak kuruması ağlanır. 2. Örnek absolute (% 100) methanol içerisinde tespit edilir ve kurutulur. 3. Bir lam kutusuna yerleştirilir ve etiketlenir (örnek ile bilgiler kaydedilir) 4. Kutu derin dondurucularda; -70°C yada daha soğuk bir dolapta istenilen süre kadar depolanır. 5. Kullanılacak olan örnekler dolaptan çıkartılır ve boyama işlemleri öncesinde kısa bir süre kurutulur. Isı farklılığından dolayı oluşan su damlacıkları buharlaştırılıp lam kurutulur. Daha sonra boyama işlemlerine geçilir. Microskobik Muayene Kalın Yayma Preperatların İncelenmesi: Alyuvarlar (eritrosit, red blood cell-RBC) parçalanmış (eritilip yok olmuş) ve varsa paraziter organizmalar daha yoğunlaştırılmış olduğundan kontrol ve teşhis çalışmaları için daha uygundur. Karışık (mix) enfeksiyonların teşhisinde de daha yararlıdır. 1. Bütün preperatı küçük büyütme altında inceleyin (10X yada 20X objektif). Böylece büyük parazitleri (mikroflaria gibi) daha kolay teşhis edilir. 2. Daha sonra, mineral yağ ve büyük büyütme (100X objektif) ile örneği tekrar inceleyin. Bu incelemede de küçük parazitler (theileria, babesia gibi) araması yapılır. Preperatta bol miktarda akyuvar (leukosit. white blood cell-WBC) görülecektir. 3. Eğer herhangi bir paraziter yapı görülür ise, o zaman ince yayma preperat incelenerek, tür tayini yapılır. 4. Eğer hiç parazit göremediniz ise; bu durum gerçekten parazit yokluğundan mı kaynaklanıyor, yoksa inceleme devam ettirilmeli midir sorularına araştırmanın hassasiyetine göre yada klinik tabloya göre karar verilir. Hassas durumlarda preperattan en az 100 (200-300) mikroskop sahası (akyuvarların bol görüldüğü) incelenmelidir ve birden fazla preperat incelemesi yapılmalıdır. İnce Yayma Preperatların İncelenmesi: İnce yayma preperatlar farklı amaçlar için kullanılabilir. 1- Tespit edilmiş olan bir parazitin tür tayini amacı ile kullanılabilir. 2- Kalın yaymaların kuruması beklenirken hızlı bir kontrol için kullanılabilir. 3- Yeterli kalın yayma preperat olmadığında kullanılabilir. İnce yaymalarda; eğer aynı örneğin kalın yayma incelemesi yapılmamış ise önce küçük büyütmeler (10x yada 20x objektifler) ile preperat taranmalıdır. Bu sayede mikroflaria benzeri parazitler aranmış olur. Daha sonra büyük büyütme ile (100x objektif) örnek taranır. Parazitlik Yoğunluğunun Tespiti: Bazı durumlarda parazitlik (parazitemi) yoğunluğunun tespiti klinik açıdan önemli bilgiler sağlayabileceği için gerekli olabilir. Bu durumda yoğunluk tespiti ya alyuvarlara yada akyuvarlara oranlanarak hesaplanmaya çalışılır. Alyuvar(RBC) Sayısına Göre Oranlama: Örnekteki 500 ila 2000 arasında alyuvar sayılır ve incelenir, bunlardan kaçtanesinin parazitli olduğu tespit edilir. Sonuç oranlanarak yüzde (%) cinsinden ifade edilir. Eğer parazitlik oranı yüksek ( > 10%) ise 500 alyuvar (RBC) saymak yeterlidir. Düşük oranlarda (<1%) 2000 yada daha fazla alyuvarı incelemek gereklidir. Parazitlik (parasitemia- %) = (parazitli RBC / toplam RBC) X 100 Akyuvar (WBC) Sayısına Göre Oranlama: Kalın yayma preperatlarında parazitler akyuvarlara oranlanırlar. Akyuvarlar ve parazitler sayılır. Bu sayıma 500 parazit veya 1000 akyuvar sayana kadar devam edilir. Hesaplama eğer kullanılan kan hacmi biliniyorsa bilinen hacim üzerinden hesaplanır. Hacim bilinmiyor ise, bir milimetreküp kanda 8000 akyuvar olduğu ortalamasına göre yapılır. Parazitler/milimetre küp (kan) = (parazitler/ WBC) X WBC sayısı (bir milimetre küp kanda yada < 8,000 akyuvarda> Florasanlı Boyalar ile Boyanmış Kan Parazitlerinin Teşhisi: Kan yayma preperatları, acridine orange ile (Kawamoto tekniği) boyanıp ya floresan mikroskop yada özel fitrelere sahip ışık mikroskoplar altında incelenir. Bu boyamada nükleer DNA yeşile boyanırlarken, stoplazmik RNA kırmızıya boyanır. Böylece parazitleri tanımak kolaylaşır. Bu yöntem özellikler malaria (sıtma) etkenlerinin teşhisinde yaygın olarak kullanılmaktadır. Afrika trypanosoma’sında da kullanılmıştır Quantitative Buffy Coat (QBC®; Becton Dickinson) metodu, Bu yöntemde kan örnekleri direk olarak içerisinde akridine orange ve antikoagulan bulunan, cam boncuklu tüplere alınır. Örnekler hematokrit santrifüjde, santrifüj edilip floresans mikroskopla incelenir. Parazitler (malaria-sıtma) granülosit katmanın altında bulunurlar. Bu yöntem diğer kan parazitleri içinde adapte edilmiştir. Antikor (Antibody)Tespiti: Parazit enfeksiyonları konakçıların dokularında yada konakçı atıklarında (dışkı-idrar gibi) görülerek teşhis edilirler. Ancak bu teşhis yöntemleri, derin dokular içerisine yerleşen bazı hastalıklarda yetersiz kalmaktadır (toxoplasmosis yada toxocariasis). Ayrıca cysticercosis ve echinococcosis gibi hastalıklarda örnek alınması, konakçının hayatını tehlikeye sokacağından tavsiye edilmezler. Bu gibi durumlarda, belirgin bir parazit ile enfekte olmuş konakçıda, antikor testlerinin uygulanması büyük avantaj ve kolaylık sağlar. Antikor testlerinde pozitif olarak teşhis edilen konakçının enfektemi olduğu yoksa daha önce geçirdiği bir hastalığın antikorlarını mı taşıyor olduğu ayırt edilmelidir. Parazit hastalıklarında antikor tespiti hastada belirgin olmayan bir zaman da hastalığın varlığını işaret eder. Ancak hastalığın hangi safhada olduğunu kesin olarak belirlemez. Yani antikor tespit edilen hastada, hastalık başlama, gelişme safhalarında olabileceği gibi geçmiş de olabilir. Hastalık geçirmiş olan canlıda antikor düzeyi yavaşça düşer ancak tedaviden sonra dahi antikor düzeyi altı aydan bir kaç yıla kadar değişen sürelerde belirgin düzeylerde kalabilir. Bu durumda incelenen parazitin antikor yoğunluğunun (titrasyonunun), hastalık süresince ve hastalıktan sonra hangi seviyelerde olduğu bilinmesi yararlı olur. Toxoplasma gondii enfeksiyonlarında, spesifik immunoglobulin M (IgM) ve immunoglobulin A (IgA) tespiti hastalık zamanı hakkında bazı bilgiler verebilir. Ancak diğer hastalıklar için tavsiye edilmemektedir. Eğer dışkı, idrar ve kan örneklerinde şüphelenilen parazit görülmemiş ise veya negatif çıkmış ise, parazite spesifik immunoglobulin G (IgG) antikor testi istenilebilir. Parazite-spesifik IgM, IgA, yada IgE teşhis için uygun değildir. Bu nedenle bu antikorların tespiti istenmemelidir. Parazit spesifik IgG negatifken, pozitif çıkan IgM, IgA, yada IgE düzeyleri yalancı pozitif olarak değerlendirilmelidir. Uygulanan testlerin spesifitesi (özel oluşu) ve sensitivitesi (hassasiyeti) sonuçlar üzerinde çok etkilidir. Parazitler, hayat siklusları içerisinde değişik evreler geçirirler. Bu nedenle antijenler, evrelerden sadece birine spesifik olabileceği gibi genel olarak parazite (tüm evrelerinde) spesifik de olabilir. Bu nedenle kullanılacak antijen ve antikor testleri çok iyi bir incelemenin (kaynak bilgiler ve deneyler) sonunda seçilmiş olmalıdır. Testte kullanılacak olan spesifik antijenin yada antikorun spesifite dereceleri çok iyi bilinmelidir. Yayınlanmış olan kitap yada makalelerde aynı konuyu inceleyenlerin mutlak bir birinin aynı olduğunu düşünmek hatalıdır. Hatta bu tür çalışmalar farklı bölgelerde, farklı solüsyonlar yada farklı araştırmacılarca yapılmış çalışmalar olarak, sonuçları kıyaslama açısından daha önemlidir. Örnek İhtiyaçları: Bütün parazit antikor teşhis testlerinde serum yada plazma kullanılabilir. Toxoascaris veya toxoplasmosis için göz yaşı akıntıları da, serum ile beraber antikor testleri için kullanılabilmektedir. Yine, merkezi sinir sistemi enfeksiyonlarında da (cysticercosis yada toxoplasmosis) serebrospinal (beyin-omurilik) sıvıları, serum eşliğinde incelemeye alınabilir. Bütün örnekler oda ısında nakledilebilirler. Bu incelemeler için akut fazdaki enfeksiyonlardan örnek istenilmez. Geçerli sonuçlar genellikle bir test sonucunda elde edilebilmektedir. Parazit enfeksiyonları hasta üzerinde fark edildikleri dönemde, incelenmeye alınırlar ki bu zaman enfeksiyonun akut safhası genellikle geçmiş olur.

http://www.biyologlar.com/kan-parazitleri

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

Balıklarda solunum fizyolojisi

Solunum terimi, bir organizmanın hücresi ile çevresi arasındaki gaz (genellikle oksijen ve karbondioksit) alışverişini ifade eder. Tek hücreli canlılarda, gerekli gaz alışverişi pasif difüzyon ile sağlanabilir. Balık gibi komplex organizmalarda, dokulara yeteri miktarda O2 sağlamak ve CO2’i ortadan kaldırmak için, hem gaz alışverişi için gelişmiş bir yapı (solungaç), hem de bir gaz transfer sistemi (kan ve dolaşım sistemi) gerekir. Su ve dokular arasında osmoregülasyon ve asit-baz dengesini sağlamak gibi, balık solungacının başka fonksiyonları da vardır. Solunum sisteminin, elinde tuttuğu ve transferini gerçekleştirdiği su ve kan ve ayrıca O2 ve CO2 alışverişini sağladığı aşamalarının anlaşılması; balıkların fizyolojik ihtiyaçlarını giderecek ve yüksek derecede sağlık ortamı sağlayacak bir intensive kültür sisteminin mantıklı dizayn ve operasyonunu temin edecektir. Solunumun bütün işlevleri önemlidir, fakat intensive kültür sisteminin tipik özelliği olan yoğun balık stoklamalarında, gaz alışverişindeki etkilerin ani ölümlere neden olması bilinmelidir. Solungaç çevresindeki sudan transfer edilmesi ve dokulara gönderilmesi gereken O2 miktarı önemlidir. Salmonid gibi aktif soğuk su balıkları için O2 gereksinimi 100 mg.O/kg vucut ağırlığı şeklinde yüksek bir oranda veya daha fazlası olabilir. Aktif olarak yüzen balıklarda, solunum sistemi, 800 mg.O/kg/saat (20 ml.O/min civarında) kadar yüksek oranda O2 sağlayıp, karşılığında büyük oranda CO2 ortadan kaldırmalıdır. Bununla birlikte su, maximum çözünmüş O2’nin 10-12 mg/l’yi nadiren geçtiği O2 fakiri bir ortamdır. Deniz suyunda, mevcut çözünmüş yüksek tuz konsantrasyonu, mevcut DO’yu maximum 8-9 mg/l’ye kadar azaltabilir. Bunun için, balık yaşamının devamı için büyük miktarda suyun solungaçlardan geçmesi gereklidir. Salmonidler için solungaçlardan suyun geçmesi 5-20 l HO2/O2/vücut ağırlığı/saat oranındadır. Çoğu balık gerekli miktardaki suyu ağızlarıyla pompalayarak ve opercular hareketler yaparak sağlarlar. Ağız ve solungaçlar emme basma tulumbası olarak görev yaparlar ve böylece sabit bir su akışı sağlarlar. Haçerideki balıklar için, su alıp verme oranı 40-60 l/dk oranındadır. Suyun yüksek yoğunluk ve viskozitesinden dolayı solungaç ventilasyonunun enerji gideri, en az, tüketilen O2’nin %10’u kadardır. Salmonid, köpek balığı ve tuna gibi aktif balıklar, solungaçları üzerinden gerekli su akışını ram ventilasyonu (Yüzerken ağızını açarak) ile sağlarlar. Örneğin, pasifik salmon, ram ventilasyonunu 1 vücut uzunluğu/saniye’den daha yüksek hızda yüzerek kullanır. Bazı köpek balıkları, ram ventilasyonu ile sınırlandırılmıştır ve yaşamak için sürekli yüzmek zorundadır. Her iki solungaç ventilasyon metodunda da DO’nun %80’ine kadarki kısmımın (teorik olarak) kullanılması mümkündür. Çünkü solungaç anatomisi, ters yönde kan akışını sağlayacak şekilde dizayn edilmiştir (suyun solungaçlar üzerinden akışı, kanın solungaçlar içinden akışına terstir). Gerçek O2 tüketimi türlere göre farklıdır. Alabalıkta %30-40, tunada %70 ve sazanda %70-80’dir. Buna kıyasla, insan havadaki O2’nin sadece %25’ni alabilir. Su solungaçlardan geçerken, sudaki çözünmüş O2, sekonder solungaç lamelinin ince epitelyal hücrelerinin arasından geçer ve kana difüze olur. Asitlik arttıkça hemoglobinin O2’ye yakınlığı azalır (Bohr etkisi) ve bazı türlerde asitlik, hemoglobinin O2’yi tutmasındaki maksimum kapasiteyi azaltır (Root etkisi). Bu yüzden kan, dokuların kapillar yataklarından geçerken üretilen CO2’in neden olduğu asitlik Hb-O2 ağını zayıflatır ve O2 yoğunluğunun düşük olduğu hücrelere difüze olan O2’nin çıkışını kolaylaştırır. Aynı zamanda, CO2, dokulardan kana difüze olur. O2’in tersine, CO2’in çoğu plazmada erir ve bikarbonat formunda yeniden solungaçlara gönderilir. Kan solungaçlardan geçerken karbonikanhidraz enzimi, HCO3 iyonunu sonra yeniden suya difüze olan CO2 molekülüne hidroliz eder. Bir ünite kanın solungaçlar içinde kalma zamanı, sadece birkaç saniye olduğu için ve kan ve su arasındaki yüksek CO2 basıncından dolayı bu enzimatik reaksiyon son derece hızlı bir aşamadır. Bu yüzden kandaki O2 basıncı 100 mg Hg veya daha yüksek seviyeler arasında değişebilir, kandaki CO2 konsantrasyonu düşük kalır ve çok az değişir. Özellikle aktif soğuk su balıklarında Bohr etkisi büyük olur (kanın düşük CO2 düzeyinde başlar). Aquakültür sistemlerinde, örneğin eğer sudaki çözünmüş CO2 konsantrasyonu 20 mg/l’ye çıkarsa Bohr etkisi salmonidlerin O2 transferini engeller. Karışık kültürü yapılan sıcak su balıkları (Tilapya, sazan, kanal kedi balığı gibi) genellikle çözünmüş CO2 konsantrasyonuna daha az duyarlıdırlar ama, bu yetiştiricilik yöntemi, iyi bir yetiştiricilik işletmesi için, CO2 ’in havuz suyunda birikmesine engel olan durumları sağlamada iyi bir yöntemdir. CO2’in etkisiyle birlikte, laktik asit üretimi kan asitliğinin yükselmesine ve kanın O2 transferinin bozulmasını neden olur. En genel sebep; beyaz kaslarda O2 olmamasından dolayı kan ve dokularda laktik asit birikmesiyle sonuçlanan aşırı yüzme aktiviteleridir. Bu da heyecan ve stresten kaynaklanır. Örneğin, eğer kanın pH’sı 7,8-7,6’dan 6,0’a düşürülürse toplam hemoglobinin sadece çok az bir yüzdesi O2 ile doyurulabilir. Root etkisindeki Hb’in normal görevi choroid rete üzerinden O2’i göze ileten moleküler pompa görevi yapmak ve physoclistik türlerde rete mirabile üzerinden yüzme kesesini doldurmaktır. İkinci görevi, salmonidlerde (fizostomları bulunduğu için) önemsizdir ki; havayı emerek yüzme kesesini doldurmaktır. Bununla beraber, salmonid gözündeki normal O2 yoğunluğu, hem kanın, hem de suyunkinden fazladır. Bu da root etkisindeki Hb’in bu balıklarda önemli bir rol aldığını gösterir. Cadmium ve civa gibi ağır !!!!llerin öldürücü seviyelerinin altındaki dozlarına maruz kalma durumunda, root etkisindeki Hb’in normal fonksiyonunun tersi yönde etkilendiği bilinir. Bunun yoğun kültürdeki balığın sağlığı için önemi bilinmemektedir. Yoğun kültürdeki balıklar için, Bohr ve Root etkisi altında O2 transferinin azalması ile ilgili problemler, kanda yüksek laktik asit konsantrasyonu (Hyperlacticemia) veya kanda yüksek CO2 konsantrasyonu sonucu ortaya çıkar. Genel sebepleri; düşük DO durumları ve heyecandan kaynaklanan aşırı yüzme aktiviteleridir. Ayrıca yetiştirme ve transfer sırasında daha yüksek stoklama yoğunluğu sağlamak için saf O2 kullanarak havalandırma yapmak, aşırı doyurulmuş DO düzeyine ve hipercapnia’ya (yüksek DO’nun solungaç havalandırma oranını baskılaması nedeniyle oluşan bir yan etki) neden olur. Bu ise, CO2 birikmesine ve yüksek arterial PCO2 basıncına neden olur. Kana O2 transferi bundan etkilenmeyebilir. Çünkü daha yüksek arterial PO2, bohr etkisi kaynaklı azalmaları dengeler. Buna ek olarak hipercapnia, dokulara O2 naklini, sadece arta kalan asitliği normal kan dengesini aşarsa veya solunum asidosisi meydana gelirse tehlikeye sokabilir. Suyun kalitesinin iyi olduğu balık kültürlerinde Bohr etkisi kaynaklı O2 naklinin azalması ile ilgili problemler, aşırı yüzme sonunda üretilen laktik asitten dolayı ortaya çıkan !!!!bolik asidosis kökenlidir. Bohr etkisinin solunum baskısının CO2 ve DO konsantrasyonu ile olan ilişkisi ilk kez Basu (1959) tarafından belirlendi. Dokulara yeterli O2 sağlamak için vasat bir yüzme seviyesi oluşturmak için gereken DO seviyesi bunu ortaya çıkarmıştır. Bu minimum miktar, eğer çok az CO2 varsa veya hiç yoksa 6 mg/l’den, Eğer çözünmüş CO2 konsantrasyonu 30 mg/l’ civarına yükselirse, 11 mg/l’den daha yukarı çıkar. Sonuç olarak, salmonid gibi balıkların, DO seviyesinin %80 doygunluk oranının altına düşmemesi şartıyla, yeterli O2’ye sahip olmaları önerilir. Eğer çözünmüş CO2 seviyesi 30-40 mg/l’nin altında tutulmazsa, kanın O2 taşıma kapasitesi, yüksek DO konsantrasyonunun bile yetersiz olduğu, doku hipoksia’sına neden olabilecek seviyelere düşer. Bohr ve root etkisi kaynaklı solunum baskısı, heyecan ve yüzme aktivitesini azaltmak için dikkatli balık tutumu ile en aza indirilebilir. Yeterli miktarda çözünmüş O2 sağlamanın yanısıra çözülmüş CO2 ‘yi hızla ortadan kaldıran havalandırma sistemi ve su değişim oranı ile de bu sağlanabilir. Pratikte bunlar yoğun kültürdeki balığın ihtiyaçlarını sağlamada gerekli unsurlardır. Haçeri’deki çözünmüş O2’i balığın tüketme oranı yoğun kültür sistemlerinin sağlanmasında önemlidir. O2 tüketimi, balık naklinde gerekli olan havalandırma miktarı ve istenilen yükleme yoğunluğu için gerekli su alışveriş oranı gibi temel parametreleri belirler. Racewaylerdeki salmonidler en az 100 mg.O/kg/saat ile en fazla 800 mg/kg saat arasında tüketir. Bu seviye, yüzme seviyelerine, su sıcaklığına, zaman, son beslenme ve heyecan, stres derecesine göre değişir. Egzersiz, stres veya su sıcaklığının sonucu olan !!!!bolik ihtiyaçları karşılamak ve O2 tüketim oranını kontrol etmek için hormonal teknikler kullanılır. Hem soğuk su, hem de sıcak su balıklarının solunum oranı karasal omurgalılarda olduğu gibi kanda CO2 yükselmesi ile değil, DO konsantrasyonundaki düşüş ile stimüle edilir. Örneğin, balıklar elle tutularak stres olduğu zaman, adrenalin ve diğer cathekolomine hormonları (hem solungaç perfüzyon miktarını , hem de alyuvar hemoglobininin O2 taşıma kapasitesini artıran hormonlar) üretilir. Bronşal vasodilasyonun yan etkisi olarak suyun normal ozmatik akımı aşırı şekilde yükselir ve bundan sonra vücuttan atılmalıdır. Diüresis’in sonucu çok çarpıcı olabilir, kandaki elektrolitlerin bazıları üretilen çok fazla üre içinde kaçınılmaz bir şekilde kaybolur. Diüresis uzatılırsa, iyon regulasyonunda bozulmalar ortaya çıkabilir. Balık tutulduktan veya nakledildikten 1-2 gün sonra oluşan gecikmiş ölümler büyük ölçüde bu olayın bir sonucudur. Yoğun kültür sistemlerindeki balıkların O2 tüketimi, hem balığın kültürel prosedürü, hem de doğal gelişmeler nedeniyle arttırılabilir. Bunlardan, tutma nedenli stres, heyecan nedenli arttırılmış yüzme aktivitesi ve beslenmenin doğal aşamaları en önemli olanlarıdır. Örneğin Çelikbaş alabalığı juvenilleri tutulmaktan dolayı strese girerler, O2 tüketimleri 2 kat birden artabilir ve bir veya daha fazla saat yüksek oranda kalır. O2 tüketiminin artması (heyecan ve stres kaynaklı), balıklar nakil tanklarına yüklendikten sonra, birden meydana gelen DO’daki ani düşüşün sorumlusudur. O2 havalandırması varsa, balık bulunan tank suyu 14-16 mg/l’lik DO’ya kadar doyurulmalıdır ki, bu da balıkların O2 ihtiyacını karşılar. Sadece sıkıştırılmış hava varsa, havalandırma sistemini, balık yüklemeden 5-10 dakika önceden başlatmak, suyun doyurulmasını sağlayacağından bir dereceye kadar etkili olacaktır. Beslenme ve sindirimin doğal aşamaları, balığın O2 tüketimini büyük ölçüde artırır. Çünkü sindirimin, absorbsiyon ve asimilasyonun kalorik maliyeti, geri kalan !!!!bolik kalorinin %40’ı kadardır. Bu etkinin O2 tüketimindeki boyutu (Specific dynamic action of food (SDA) = .Yiyeceklerin spesifik dinamik hareketi) her zaman tam olarak değerlendirilmez. Çünkü beslenme rutin bir operasyondur. Salmonid, kanal kedi balığı ve tilapya için, her defasında balık birkaç saat beslendiği için O2 tüketim oranını %40-50 veya daha fazla arttırmak akıllıcadır. SDA’nın pratik sonucu olarak; balığın hemen tutulmaması veya nakil edilmemesi gerekir. Çünkü, beslenme ve sindirim olaylarına eklenen heyecan ve stres, onların O2 tüketimini, havalandırma sisteminin yeterli DO sağlayamayacak seviyede arttırır. Elle tutulmadan ve nakilden 24-48 saat önce balık beslemeyi durdurmak bu etkiyi önler ve O2 tüketim oranını büyük ölçüde azaltır. Yoğun kültür sisteminde O2 tüketimini etkileyen diğer önemli faktörler ise; su sıcaklığı ve yüzme aktiviteleridir. Daha yüksek su sıcaklığı, bütün !!!!bolik hızı artırarak O2 tüketimini yükseltir. Bununla beraber yüzme aktivitelerinde O2 tüketimi, kasların kasılması için, Hb doygunluğunu düşürerek kandaki O2‘yi tüketmesi ile yükselir. Gökkuşağı alabalığında, solungaç lamelleri’nin sadece %60’ı kanla perfüze olur. Hızlı yüzmeye dayanan kas kasılması, adrenalin ve diğer cathekolamine hormonlarının dolaşımını teşvik eder. Meydana gelen solungaç perfüzyonun yükselmesi ile birlikte, eritrosistlerin, hücre içi pH’sını artıran, Na / H değişiminin adrenal hormonu tarafından teşviki sağlanır. Bohr etkisi düşürülür ve hem kanda O2 oluşumu, hem de O2 ‘nin dokulara teslimi sağlanır. Isı ve yüzme aktivitelerinin O2 tüketimi üzerindeki etkisinin gerçek boyutu Brett (1973) tarafından, kontrol altında tutulan pasifik solmonu üzerinde belirlenmiştir. Daha sıcak su, O2 tüketimini bir dereceye kadar artırır. Bununla beraber, yüzmenin etkisi daha çarpıcıdır. İleri atılarak yüzme, özellikle enerji bakımından yoğundur. Çünkü sürtünme etkisi çok yüksektir. Yoğun kültür sistemindeki balığın yüzme aktivitesi genelde daha düşüktür. Salmon kültüründe racewaylerde su alışverişi öyle ayarlanmalıdır ki, o balığın O2 tüketim oranı, DO’yu son taşma sınırının yaklaşık 6 mg/l aşağısına indirmemelidir. Havalandırma sistemi ayrıca, taşıma kapasitesini artırmak için de kullanılır. Bazı durumlarda DO oranını 14-16 mg/l ‘ye çıkarmak için sıvı O2 kullanılır. Balık nakil sisteminde O2 tüketim oranı, genelde yüksek heyecan ve stres nedeniyle değişkendir. Yakaşık DO doygunluğunu sağlamak için saf O2 kullanılır. DO, balık tarafından tüketildikten sonra hemen yenilenmezse, O2 tükenmesi meydana gelir. Karasal hayvanların aksine, balığın nefes alma oranı, yükselen CO2 ile değil, düşen DO konsantrasyonu ile stimüle edilir. Alabalık, sazan, kedi balığı gibi türler düşen DO seviyesine, önce ağız ve solungaçlarını kullanıp solungaç havalandırma oranını yükselterek; kan basıncını ve kardial verimi yükseltip solungaçlardan kan akışını artırarak cevap verir. Salmonidlerde, normal DO tükenmesi bile, solungaç havalandırma oranında çarpıcı yükselmelere neden olur. Bu olaylar, ilk olarak O2 alımını yükseltir, fakat daha fazla su akışı da, solungaçlardan her geçişte çekilebilen DO oranını azaltabilir. DO düştükçe kana transfer edilen O2 miktarı da düşer (max %80’den min %15’e). Ayrıca, daha fazla suyun solungaçlar üzerinden hareket ettirilmesi, enerji maliyetini büyük oranda yükseltir (Absorbe edilen O2 ‘nin %10 ‘undan %70’e yükselmesi). Sonuç olarak; O2 elde etmek için harcanan güç, suda çözünmüş O2 miktarı düştükçe ve arterial kandaki O2 basıncı düştükçe yükselir. Arteial kan O2‘si, alyuvardaki Hb %60 doygunluktan daha az olduğu noktaya ulaşıncaya dek azaldığında; solungaç damarlarını genişleterek ve Na/H alışverişini alyuvar membranı ile sağlayıp, hücre içi PH’yı yükselten adrenalin ve diğer cathecolamine hormonları salgılanır. Bir dizi karışık olay sırasında Hb-O2 ilişkisinde değişiklikler ve Bohr ve Root effect kökenli kapasite değişiklikleri, hem solungaçlardaki O2 transferini, hem de O2 ‘nin dokulara yükselmesini kolaylaştırır. Eğer çözünmüş O2, 5 mg/l’nin altına düşerse, salmonidler, iştahsızlaşırlar. Bu, beslenme ve sindirim sırasında O2 tüketiminde meydana gelen normal yükselmeye engel olmak için geliştirilen bir davranışsal cevaptır. Salmonidlerde, O2‘nin elde edinimi ve kullanımının biyoenerjik maliyeti, DO’nun 2 mg/l civarına kadar tüketilmesinden dolayı ortaya çıkan aşırı enerji ihtiyacı ile başlar ve bilinç kaybı ve hatta ölümle sonuçlanabilir. Aquakültür için önemli olan çoğu sıcak su balığı DO seviyesi 1 mg/l’nin altına düşse bile birkaç saat hayata kalmayı başarır. Ama sonunda meydana gelen doku hipoksiası bilinçsizlik ve ölümle sonuçlanır. Aquakültür ortamında balığın tükettiği O2 oranını sürekli düşürmek en temel hedeftir. O2 tüketimini artırmak için varolan aynı biolojik ve çevresel faktörlerin çoğu onu düşürmek için de arttırılabilir. Su sıcaklığını azaltma (hipothermia) ve yüzme aktivitesini, heyecanı ve balık tutma sırasındaki stresi düşürmek için anastezik kullanımı en bilinenleridir.

http://www.biyologlar.com/baliklarda-solunum-fizyolojisi

Evrimin Kanıtları Var mı?

" Hayvan türlerinden biri olarak, biz insanlar, diğer türler gibi evrimin yasalarına uyarız. Bu savı, destekleyecek birçok kanıta da sahibiz. Öncelikle, diğer omurgalı hayvanlarda bulunan birçok benzer ve kökendeş (homolog) yapıya ve organa sahibiz. Diğer hayvanlarda işlev gören birçok yapıyı biz körelmiş olarak taşırız. Embriyomuz gelişirken, solungaç keselerini, basit kalbi; ilkel boşaltim tiplerini, diger omurgali hayvanlardakine benzeyen kuyrugu ve buna benzer birçok yapiyi göstermesi kökendeşligimizin tipik kanitlaridir. Kanimizin serumundaki proteinler ve kirmizi kan hücrelerindeki antijenler insansi maymunlarinkine dikkati çekecekk kadar benzerdir. Gerçekte, bu bakimdan, kuyruksuz maymunlara kuyruksuz maymunlardan daha çok benzeriz. Birçok genimiz, diger omurgali hayvanlarinkinin aynisidir. İnsan evriminin en önemli özelliği, beyin büyümesi, özellikle büyükbeyinin izlenimleri saklama ve öğrenme işlevini yüklenerek, beynindiğer kısımlarına göre oransal olarak çok daha fazla gelişmesidir. Buna bağlı olarak, üstün zekanın ortaya çıkaracağı hünerleri yerine getirebilmek için ilk olarak harektte kullanılan ön üyeler, el olarak kullanılmaya başlamıştır." ( Ali Demirsoy , Kalıtım ve Evrim, 5. Baskı, 1991 Ankara s:716-717) Atların fosilerini milyonlarca yıl geriye izleyebiliyoruz. Çünkü yeterince fosil bulunmuştur. " Halbuki insan fosilleri çok seyrek bulunur. Bunun nedeni, insanın atalarının çok yakın zamanda oluşması ve fosilleşmek için zamanın oransal olarak kısa olması; diğer hayvanlara göre yaygın ve fazla bireyli popülasyonlar oluşturmaması ve en önemlisi oransal olarak diğerlerine göre çok daha zeki olmaları nedeniyle tehlikeyi önceden sezinleyerek, bataklık, katran kuyuları ve fosilleşmenin uygun olacağı tuzaklardan uzak durmaları ve kaçmaları olarak düşünülebilir. Önsezimizle bu tuzaklardan uzaklaşmış ve tehlike sırasında da el hünerlerimizle çoğunluk kurtulmayı sağlamışızdır. Halbuki diğer hayvanlar bu olanaklardan yoksundular ve bu nedenle bol miktarda fosil bırakabilmişlerdir. Keza birçok hile ve araçla yırtıcı hayvanlardan kurtulmayı başarmış ve bu yolla kemiklerin fosilleşmesi de önlenmiştir. Bunun yanısıra, toplumsal ayaşama geçiş de bu tehlikeleri büyük ölçüde azaltmıştır. Bol miktarda fosilin bulunamaması insanın soy dizisinin açıklanmasında bazı karanlık noktalar bırakmıştır. Bütün bunlara karşın, elimizde birikmiş kanıtlar, insanın maymun benzeri bir atadan, bugünkü insana, Homo sapiens ' e geliştiğini göstermeye yeterlidir." (Demirsoy, s:717) Turkana Çocuğu Antropologlar, birbirinden ayrı düşmüş dişler, tek tek kemikler, kafatası parçaları; insana özzgü tarihöncesinin öyküsü çoğunlukla, bu ipuçlarından oluşturulur.”Umut kıracak kadar eksik olsalar da, bu ipuçlarının büyük önem taşıdığını inkar etmiyorum; onlar olmasa, insana özgü trihöncesinin öyküsünü anlatamazdık.Bu mütevazi kalıntılarla karşılaşmanın getirdiği benzersiz heyecanı da gözardı etmiyorum; bunlar, bizim geçmişimizin, et ve kandan oluşan sayısız kuyşakla bize sağlanan parçalarıdır. Ama nihai ödül yine de bütün haldeki bir iskeletin keşfedilmesidir.” (Richard Leakey, İnsanın Kökeni Varlık/Bilim s:7) " 1984 yazının sonlarında çalışma arkadaşlarımla birlikte, nefeslerimizi toplu olarak tutmuş ve sürekli artan umudumuz deneyimin katı gerçekliği karşısında sönmüş bir haldeyken, bu hayalin şekillenmeye başladığını gördük. .Eski bir kaftasına ait küçük bir parça bulduk. Dikkatle kafatasının diğer parçalarını aramaya başladık ve umduğumuzdan çok daha fazlasını bulduk. Bu keşfi izleyen ve açık sahada yedi aydan fazla bir zamana denk gelen beş kazı mevisimi boyunca ekimiz, bin beşyüz ton tortu çıkardı ve sonuçta 1.5 milyon yıldan fazla bir süre önce eski gölün kıyısında ölmüşü birinin eksiksiz iskeletini bulduk. Turkana çocuğu adını taktığımız bu birey öldüğünde yalnızca dokuz yaşındaymış; ölüm nedeni ise hala bilinmiyor.Arka arkaya fosil kemikleri çıkarmak gerçekten eşi bulunmaz bir deneyimdi:kollanr, bacaklar, omurga kemikleri, kaburgalar, leğen kemiği, çene, dişler ve yine kafatasları. Çocuğun iskeleti şekilleniyor ve 1.6 milyon yıl parçalar halinde yaşadıktan sonra birey olarak yeniden oluşturuluyordu.İnsan fosili kalıntılarında, yalnızca 100 bin yıl öncesindeki Neanderthal dönemine dek, bu iskelet kadar eksiksiz bir başka şey bulunamamıştır... Tarihöncesi insan ailesinin çeşitli türlerinin herbiri bilinmese bile bir etiket, yani tür adi, taşiyor ve bu adlari kulanmaktan kaçinmak olanaksiz. Inas türleri ailesinin de kendine özgü bir adi var: Insangiller (homonidler) Meslektaşlarimdan bazilari geçmişteki tüm insan türleri için “insangil” terimini kullanmayi yegliyorlar. “Insan” sözcügünü yalnizca bizim gibiler için kullanilmasi gerektigini savunuyorlar.Yani, yalnizca bizim düzeyimizde zekaya, ahlak duygusuna ve içedönük bilince sahip olanlari “insan” olarak tanimliyorlar. Ben farklı bir bakış açısına sahibim. Esik insangilleri dönemin diğer insansı (kuyruksuz) maymunlarından ayıran, dik durarak hareket etme evriminin, sonraki insan tarihinin temeli olduğunu düşünüyorum. Uzak atamızın iki ayaklı bir insansımaymun haline gelmesiyle birlikte pek çok diğer evrimsel yenilik de mümkün oldu ve sonuçta, Homo ortaya çıktı. Bu nedenle tüm insangil türlerine “insan” demekte haklı olacağımızı düşünüyorum. Tüm eski insan türlerinin bizim günümüzde bildiğimiz zihinsel dünyaları yaşadıklarını söylemek istemiyorum. “İnsan” tanımı en basit düzeyde, dik yürüyen- iki ayaklı- insansı maymuları içerir. .. Turkana çocuğu, insan evrimi tarihinin dönüm noktasını oluşturan bir tür olan Homo erectus ’un üyesiydi. Kimi genetik kimi de fosillerden olmak üzere farklı kanıt dizilerinden, ilk insan türünün yaklaşık 7 milyon yıl önce ortaya çıktığını biliyoruz. Yaklaşık 2 milyon yıl önce Homo erectus sahneye çıktığında, insanın tarihöncesi oldukça uzun bir yol almıştı. Homo erectus’un ortaya çıksamından önce kaç insan türünün yaşayıp öldüğünü henüz bilmiyoruz; en azzından altı, belki de bu rakamın iki katı sayıda tür olmalı. Ama Homo erectus’ tan önce yaşayan tüm insan türlerinin, iki ayaklı olkala birlikte, pek çok açıdan insansımaymun benzeri özellikler taşıdıklarını biliyoruz.Beyinler görece küçük, yüzleri sivri çeneli (yani, öne doğru çıkık) ve beden yapılarının kimi özellikleri- örneğin göğüs huni şeklinde, boyun kısa ve bel yok- insandan çok insansımaymun benzeriydi.Homo erectus ’ta beyin büyüdü, yüz düşleşti ve beden daha atletik yapili hale geldi. Homo erectus’la birlikte, kendimizde gördügümüz pek çok fiziksel özellik de ortaya çikti; anlaşilan insanin tarihöncesi, 2 milyon yil önce çok önemli bir dönem noktasindan geçmişti. Homo erectus ateş kullanan, avciligi beslenme düzeninin önemli bir parçasi haline getiren, modern insanlar gibi koşabilen, belli bir zihinsel kaliba göre taş aletler yapabilen ve harekat alanini Afrika’nin ötesine taşiyabilen ilk insan türüdür. Homo erectus’un konuşma diline sahip olup olmadigini kesin olarak bilemiyoruz; ama buna işaret eden çeşitli kanitlar var. Bu türde belli bir benlik bilinci, insansi bir bilinç olup olmadigini da bilmiyoruz ve büyük olasilikla asla bilemeyecegiz; ama ben oldugunu düşünüyorum. Homo sapiens’in en degerli özellikleri olan dil ve bilincin tarihöncesi kalintilarinda hiçbir kanit birakmadigini söylemeye herhalde gerek yok. Antropoloğun hedefi, insansımaymun benzeri bir yaratığı bizim gibi insanlara dönüştüren evrim olaylarını anlamaktır. Bu olaylar romantik bir açıdan, büyük bir tiyatro eseri gibi tanımlanmış ve gelişen insanlığa da öykünün kahramanı rolü verilmiştir. Oysa gerçek büyük olasılıkla çok daha basittir ve bu değişimi epimaceradan çok, iklimsel ve ekolojik değişimler yönlendirmiştir. Yine de bu, dönüşümün ilgimizi dahha az çekmesine neden olmuyor. Biz, doğal dünylyayı ve bu dünyadaki yerimizi merak eden türüz.Şu andaki halimeze nasıl ggeldiğimizi ve geleceğimizin nasıl olacağını bilmek istiyoruz; bilmek zorunluluğu duyuyoruz. Bulduğumuz fosiller bizi fiziksel açıdan geçkmişimize bağlıyor ve sundukları ipuçlarını, doğayı ve evrim tarihimizin izlediği yolu anlamala yolu olarak yorumlamaya yönlendiriyor. İnsanoğlunun tarihöncesine ait daha pek çok kalıntı gün ışığına çıkartılıp incelenene dek hiçbir antropolog kalkıp da, “Bu, tüm ayrıntılarıyla şöyle oldu” diyemez. Ama araştırmacılar, insan tarihöncesinin genel şekiline dair pek çok konuda aynı fikirdeler. İnsanın tarihöncesinde dört temel aşama kesinlikle saptanabiliyor. İlk aşama, 7 milyon yıl önceki, iki ayaklı ya da dik hareket eden insansımaymun benzeri bir türün geliştiği insan ailesinin kökenidir. İkinci aşama, iki ayaklı türlerin çoğalması yani biyologların uyarlayıcı ışınım adını verdikleri bir süreçtir. 7 milyon ile 2 milyon yıl öncesi arasında her biri birbirinden biraz farklı ekolojik şartlara uyarlanmış pek çok değişik iki ayaklı insansımaymun gelişti. Bu insan türleri arasından birisi, 3 milyon ile 2 milyon yıl önce arasında, önemli oranda büyük bir beyin geliştirdi. Beyin boyutundaki büyüme üçüncü aşamayi oluşturur ve insan soyagacinin, Homo erectus ’tan sonuçta Homo sapiens’e dek uzanan dali olan Homo cinsinin kökenine işaret eder. Dördüncü aşama , modern insanlarin kökenidir; bizim gibi, dogada başka hiçbir şekilde görülmeyen dile, bilince, sanatsal düş gücüne ve teknolojik yenilikçilige sahip insanlarin ortaya çikişidir. Bu dört temel olay, kitabımızdaki bilimsel anlatının yapısını oluşturuyor. İleride de görüleceği gibi, insanoğlunun tarihöncesini araştırıken yalnızca neyin, ne zaman olduğundan öte, neden olduğunu da sormaya başlıyoruz. Bizler ve atalarımız, artık tıpkı fillerin ya da atların evrimi incelenirken olduğu gibi, aşamalı bir evrim senaryosu bağlamında inceleniyoruz. Bu, Homo sapiens’in pek çok açıdan özel olduğunu yadsımak anlamına gelmiyor: en yakın evrimsel akrabamız olan şempanzeden bile bizi ayıran pek çok şey var; ama artık, doğayla bağlantımızı biyolojik anlamda anlamaya başladık. Son otuz yıl içinde bilim dalımızda, daha önce eşi görülmemiş fosil keşiflerinin ve bu fosilleri yorumlayıp sundukları ipuçlarını bütünleştirmekte kullandığımız yenilikçi yöntemlerin sayesinde, çok önemli ilerlemeler kaydedildi. tüm bilimlerde olduğu gibi antropolojide de uygulayıcı bilimler arasında dürüst ve kimi zaman da şiddetli fikir farklılıkları görülür. Bu fikir farklılıkları kimi zaman fosil ve taş aletler gibi verilerin kimi zaman da yorumlama yöntemlerinin yetersizliğinden kaynaklanır. Kısacası, insanın tarihöncesi hakkında pek zok soruya kesin yanıtlar verilemez. Örneğin: İnsan soyağacının tam şekli nedir? Gelişmiş konuşma dili ilk olarak ne zaman ortaya çıktı? İnsanın tarihöncesinde beynin çarpıcı oranda büyümsenie yol açan neydi? İlerideki bölümlerde bu fikir farklılıklarının hangi konularda ve neden oluştuğuna değinecek ve zaman zaman kendi tercihlerimi belirteceğim. Yirmi yılı aşkın antropoloji çalışmalarım sırasında pek çok eşsiz meslektaşımla birlikte çalışma şansına eriştim ve hepsine şükran duyuyorum. (Richard Leakey, İnsanın Kökeni Varlık/Bilim s: 9-14) Organik Evrimin Ana İlkeleri “Organik evrim onusunda ana ilkelerin açığa çıkarılması ve öğretilmesi toplumların düşünce sistemlerinde büyük yansımalara neden olduğu ve olacağı için, sadece doğanın temel yasalarını açıklamaya dönük olan böyle bir bilimsil alan, ne yazık ki, belirli çevrelerde tehlikeli bidr gelişim olarak değerlendirilmektedir. Çünkü evrim kavramı, zaman süreci içerisinde bir değişmeyi açıklar; sonsuzluk ve değişmemezlik evrimin ilkelerine aykırıdır. Dolaysıyla evrim kavramı. dogmatik düşünceye, yani herşeyin olduğu gibi benimsenmesine izin vermeyen bir bilim dalıdır. Bu ise, belirli koşullara ve düşüncelere, olduğu gibi, yüz yıllardır, düşünmeden uymuş toplumları; keza bunun yanısıra toplumların bu uyumundan çıkarları için yeterince yararlanan çevreleri rahatsız etmektedir. Evrim kavramının kendisi de sabit değildir, zaman süreci içerisinde yeni bilimsel çalışmaların ışığı altında değişmek zorundadır.Çünkü kendini zaman süreci içerisinde değiştiremeyen, yeni bilgilerin ve gelişimlerin etkisi altında yenileyemeyen her şey ve her kavram yok olmak zorundadır. Bu yasa, tüm canlılar ve kavramlar için geçerli görünmektedir. Evrim kavramı özünde üç alt kavramı içine alır: 1. Anorganik evrim: Cansızların değişimini inceler; özellikle evrenin oluşumundan, canlıların temel maddelerini oluşturan cansız maddelerin oluşumuna kadar ortaya çıkan olayları kapsar. 2. Organik evrim: Canlıların değişimini inceler. 3. Sosyal evrim: Toplumların değişimini inceler. Biyioloji bilimi, özellikle organik evrimi tapsar. Organik evrim buguünb de devam etmektedir.; hatta bugün tarihin birçok devrelerinden daha hızlı olmaktadır. Son binkaç yüzbbin senede yüzlerce yeni bitki ve hayvan türü meydana gelirken, yüzlercesi de yeni tür oluşumları için ayrılmaya başlamıştır.Fakat bu ayrılma ve türleşme o kadar yavaş yürümektedir ki, gözlemek yalnız tarihpsel belgelerin bir araya getirilmeleriyle ve karşılaştırılmalarıyla mümkün olacaktır. Biyilojik evrimin oluştuguna ilişkin kanitlayici tipik örnek,15. yüzyilin başlarinda Madeira yakininda, Porta Santo denen küçük bir adaya birakilan tavşanlarda gözlenmiştir. Tavşanlar, Avrupa’danh getiriymişti. Adada dger bir tavşan türü ve getirilen tavşanlarin düşmanlari olmadigi için getirilen tavşanlar anormal derecede çogaldilar ve sonuçta 400 yil sonra,Avrupa’daki anaçlarindan tamamen farkli yapilar kazandilar. Öyle ki, büyüklükleri, Avrupadakilerin yarisi kadar oldu; renklenmeleri tamamen degişti ve daha gececi hayvanlar oldular.En önemlisi, atalariyla biraraya geldiklerinde, artik çiftleşip yeni bir döl meydana getiremiyorlardi. Yani yeni bir tür özelligi kazanmiştilar. Canlılar arasında benzerliklerin ve farklılıkların nasıl ortaya çıktığı, bilimsel olarak ilk defa, Charles Darwin’in gözlemleriyle gün ışığına çıktığı ve açıklandığı için, evrim kavramı ile Darwin’in ismi ve kişiliği özdeşleştirilerek “Darwinizm” denir. Evrim Konusundaki Düşüncelerin Gelişimi Canılların birbirinden belirli derecelerde farklılıklar gösterdiğine ve aralarında belirli derecelerde akrabalıklar olduğuna ilişkin gözlemler, düşünce tarihi kadar eski olmalıdır. Yavruları atalarından, kardeşlerin birbirinden belirli ölçülerde farklı olduğu çok eskiden gözlenmişti. Bitkilerin ve hayvanların benzerlik derecelerine göre, türden başlayarak belirli gruhlar oluşturduları saptanmıştı. Fakat kalıtım konusunda bilgiler yeterli olmadığı ve özellikle bir türün binlerce yıllık gelişimi düşünür bir birey tarafından izlenemediği için, çeşitlenme ve akrabalık bağları tam olarak açıklanamamıştır. Bazı bireylerin yaşam savaşında üstün niütelikler taşıdığı, dolaysıyla ‘doğal seçme’ eskiden de bilinçsiz olarak gözlenmişti. Fakat evrim konusundaki bilimsel düşüncelerin tarihi, diğer bilim dallarına göre çok yenidir.

http://www.biyologlar.com/evrimin-kanitlari-var-mi

Helmintlerde Tespit, Boyama ve Kalıcı Preparat Yapımı

Ahmet GÖKÇEN Harran Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Şanlıurfa, Türkiye ÖZET: Helmintlerin toplanma, gevşetilme, tespit, boyanma ve kalıcı preparat halinde saklama teknikleri parazitologlar için büyük önem arz eder. Parazitlerin, canlı olarak toplanmaları ve direkt tespit edilmeleri gerekir. Bu süreç, parazitlerin iç ve dış yapılarının uygun şekilde korunmalarını sağlar. Helmintlerin gevşetilmesi ve normal şekillerinin korunması için çeşitli metodlar kullanılabilir. Bu metotlar örneklerin uzun süre korunmasını sağlar. Boyama ve montaj teknikleri; örneğin türüne, büyüklüğüne ve gelişme dönemine göre değişir. Bu derlemede helmintlerin gevşetilmesi, tespiti, boyama ve kalıcı preparat haline getirilmeleri tartışılmıştır. Anahtar Sözcükler: Helmint, gevşetme, tespit, boyama, kalıcı preparat. Fixation, Staining and Preparation of Permanent Mounts of Helminths SUMMARY: The techniques for the collection, relaxation, preservation and staining of helminths are very important for parasitologists. Parasites should be collected alive and fixed directly in the living condition. These procedures insure proper preservation of internal and external details of parasites. There are various methods for relaxing and preserving the normal morphology of helminths. These methods are absolutely essential for permanent preservation of the specimens. Staining and mounting techniques vary depending upon size of specimens, species, and stage of development of the organisms. In this review, the preparation of permanent mounts, relaxation, fixation and staining methods of helminths has been discussed. Key Words: Helminth, relaxation, fixation, staining, permanent mounts GİRİŞ Helmintlerin teşhisi değişik gelişme formlarından birinin veya yumurtalarının görülmesi ile yapılmaktadır. Büyük çoğunluğu sindirim sisteminde yerleştikleri için dışkı muayenesinin teşhiste ayrı bir önemi vardır. Dışkı muayeneleri, eğitim amacıyla öğrenci laboratuarlarında yapılabildiği gibi, hastalıkların teşhisi için hastanelerin parazitoloji laboratuarlarında da sık sık yapılmaktadır (5, 8, 9, 10). Helmintlerden kalıcı preparat hazırlanması, referans laboratuvarlarında rutin olarak yapılmaktadır. Özellikle helmint enfeksiyonlarının yaygın olduğu bölgelerde gerek doğru teşhis gerekse bu alanda yeni çalışmaya başlayan teknik personel ve akademisyenlerin eğitimi amacıyla koleksiyonlar oluşturulmaktadır. Çünkü incelenecek örneği her zaman ve her yerde bulmak mümkün değildir. Ayrıca öğrenci laboratuvarlarında müfredat programına göre uygun örnekleri seçerek uygulamalı eğitim birimlerinde kullanılma kolaylığı sağlar (1). Kalıcı preparat yapmanın ön koşulu, kullanılacak helmintlerin canlı, morfolojik yapısının tam, sağlam ve konaktan elde edilmiş olmasını zorunlu kılar. Yapılan koleksiyonun da kolaylıkla ulaşılabilir, teşhis ve eğitim amacıyla kullanılabilir olmasıgerekir (1, 12). Gerekli laboratuar malzemeleri : 1. Laboratuvar önlüğü: Çalışanların üzerlerinin kirlenmemesi, çeşitli boya ve kimyasal maddelerin elbiselere zarar vermemesi için, 2. Doğal kıl ve tüylerden yapılmış değişik boyda yumuşak tüylü muhtelif fırçalar: Örneklerin temizlenmesi için kullanılır. Sentetik ve plastik fırçalar kullanılan bazı solüsyonlardan etkilenip bozulabilir. 3. Diseksiyon seti: Sindirim sistemlerinin açılması ve büyük helmintlerin kesilip bölümlere ayrılması için kullanılır. 4. Eldiven: Tek kullanımlık olanlar tercih edilir. 5. Permanent kalemler: Preparatları ve saklama şişelerini işaretlemek için kullanılır. 6. Boyama kapları: Kullanım amacına göre çeşitli büyüklüklerde olmalıdır. 7. Plastik poşet ve torbalar: Atık malzemelerin toplanması için kullanılır. 8. Kullanılacak tüm cam ve benzeri malzemelerin temiz ve kuru olması, kimyasal solüsyonların taze hazırlanmış olması, boya solüsyonlarının filtre edilmiş Makale türü/Article type: Derleme/Review Geliş tarihi/Submission date: 02 Kasım/02 November 2007 Düzeltme tarihi/Revision date: 14 Şubat/14 February 2008 Kabul tarihi/Accepted date: 06 Mart/06 March 2008 Yazışma /Correspoding Author: Ahmet Gökçen Tel: (+90) (414) 312 84 56 Fax: (+90) (414) 314 41 58 E-mail: agokcen@harran.edu.tr Gökçen A. 178 olması ve içlerinde çökelti ve tortulaşma olmaması gerekir. 9. Kaliteli ve uzun süre dayanıklı olan yapıştırıcı kullanılmalıdır. Tavsiye edilen en iyi yapıştırıcı Kanada balsamı ve Gum-damardır. Diğer yapıştırı-cılar kuruyunca veya belli süre sonra opaklaşır ya da kristalleşerek preparatın bozulmasına yol açabilir. Ayrıca hava kabarcıkları oluşturarak helmint örneğinin net görülmesine engel olabilirler (12). Örnek toplama ve preparat yapımında dikkat edilecek genel hususlar : Her hayvanda çeşitli parazit türleri bulunabilir. Ancak bir hayvanda her türden yeterli sayıda helmint olmayabilir. O zaman birkaç hayvandan toplanan türlerden preparatlar yapılabilir. Bazı helmintler (Ascaridae’lerin çoğu, Anoplocephalidae’lerin bazıları gibi) tek bir preparata sığmayacak kadar büyük olabilir. Böyle durumlarda morfolojik özelliklerine göre teşhise yardımcı olan bölümleri dikkate alınan helmintler, parçalar halinde ayrılarak kalıcı preparatlara monte edilebilir. Kayıt ve işaretleme işlemleri düzenli tutulmalı ve özellikle bölümlere ayrılan örneklerde karışmaya fırsat verilmemelidir. Buna karşın nematodların çoğu ince bir kutikülaya sahip olduklarından boyama ve montaj yapılamayabilir. Bunların tespiti, suyunun giderilmesi ve montajı çok zor olduğu için genellikle içine birkaç damla gliserin ilave edilmiş %70’lik etil alkollü şişelerde saklanabilirler. Eğitim amacıyla kullanılacakları zaman bu şişelerden alınıp ya doğrudan ya da laktofenolde şeffaflandırıldıktan sonra morfolojik özellikleri mikroskopta incelenebilir (12). Örnek toplama, gevşetme, tespit ve boyama işlemleri esnasında aceleci olunmamalı, işlem aşamaları sırası atlanılmadan ve belirtilen zaman süreçleri içerisinde tam olarak uygulanmalıdır. Örneğin alkol serilerinden tam geçirilmeyen ve bunun sonucu tam dehidrasyonu sağlanmayan örnekler preparatlarda bulanıklaşır ve boyanan materyalin tüm ayrıntıları net olarak görülemeyebilir. Bazı helmint örnekleri çok küçük olduğu için gerek temizlerken, gerekse mikroskop altında çalışırken veya örnekleri tespit ve boyama kaplarına naklederken örnekler zarar görüp teşhise yardımcı olan morfolojik özellikleri tahrip olabilir. Bu gibi olumsuzluklara yol açmamak için nazik ve kibar olunmalıdır (1, 11). Kalıcı preparat yapılacak helmintler, iç ve dış detaylarının bozulmaması için canlı olarak toplanmalı ve derhal tespit edilmelidir. Parazit öldükten sonra vücudunda otolitik reaksiyonlar başlayacağından teşhis kriterleri olan bazı detaylar da dejenere olabilir. Konak hayvan ölünce ektopara-zitler konağı terk ederken endoparazitler belli bir süre sonra ölürler ve kısa süre içinde dejenere olmaya başlarlar. En iyi örnek, konak hayvan ölür ölmez ya da otopsi veya tüketim amacıyla kesilir kesilmez elde edilen canlı helmintlerdir. Cestod ve trematodlarda dejenerasyon ölümden birkaç dakika sonra başlarken nematodlarda bu süre birkaç saate kadar uzayabilir (10, 12). Helmintlerin boyanarak kalıcı preparat haline getirilme aşamaları : a. Helmintlerin konaklardan elde edilmesi, b. Helmintlerin temizlenmesi, c. Helmintlerin relaksatiyonu-gevşetilmesi d. Helmintlerin fikzasyonu-tespiti e. Helmintlerin boyanması ve kalıcı preparatlara monte edilmesi. a. Helmintlerin konaklardan elde edilmesi: İyi bir preparat yapımı için, örneklerin bütün ve canlı olarak elde edilmesi gerekir. Örnekler yeni ölen veya otopsi için kesilen konaklardan kısa sürede toplanmalıdır. Küçük hayvan-larda tüm sindirim sistemi özafagustan rectuma kadar bütün olarak açılır. Büyük hayvanlarda ise sindirim sistemi aralarına çift ligatür konulmuş bölümlere ayrılarak bir diseksiyon makası ile açılmalıdır. Mukozaya yapışmış helmintleri çıkarmak için zorlamamalı, kendiliğinden ayrılması için içerisine fizyolojik tuzlu su ilave edilmiş bir küvete konularak, birkaç saat buzdolabında masere edilmek suretiyle serbest kalmaları sağlanmalıdır. Cestodların skoleksleri bağırsak lumanine yapışık olduğundan kıl fırça veya diseksiyon iğnesi ile çok dikkatli bir şekilde lumenden ayrılıp toplanmaları gerekir. Çok küçük helmintleri toplamak için diseksiyonun mikroskobu kullanılabilir. Canlı helmintlerin parçalanması, distorsiyonu ve iç organlarının açığa çıkarak zarar görmesini önlemek için; toplama, temizleme ve transfer esnasında küt makas, dişsiz pens, yumuşak tüylü fırça, puar ve pipet gibi malzemeler ile izotonik sıvılar kullanılmalıdır. Organın dokusu içerisinde bulunan helmintleri toplamak için bu organları küçük parçalara ayırarak incelemek gerekir. Uzun süre önce ölmüş veya dondurulmuş halde olan örnekler kalıcı preparat yapımı için uygun değildir (9, 12). b. Helmintlerin temizlenmesi: Konak hayvanlardan dikkatlice alınıp petri kutularına nakledilen helmintler; dış yüzeyine yapışmış dışkı artıkları ve benzeri yabancı partiküllerden serum fizyolojik içinde yumuşak bir fırça yardımıyla yıkanarak temizlenir. Çok küçük örnekler stereomikroskop altında temizlenebilir. Temizlik esnasında bir kaba aşırı miktarda örnek konulmamalı ve kaplar çalkalanmamalıdır (12). c. Canlı helmintlerin relaksatiyonu-gevşetilmesi: Relaksatiyon veya gevşetme, helmintlerin doğal görünümde kalmalarının yapay olarak sağlanmasını içeren bir süreçtir. Tam gevşetilmeyen helmintlerin, büzüşüp kıvrılarak bir yumak halinde toplanmaları nedeniyle montaj esnasında teşhise yarayan morfolojik özellikleri tahrip olabilir. Monogenea’lar narin yapılı trematodlar olup genellikle soğukkanlı hayvanların (Balık, kurbağa vb.) deri, solungaç ve burun boşluklarına çekmenleriyle tutunmuş olarak yaşarlar. Bunlar balıkların 1/4000’lik formalin solüsyonunda 30 dakika kadar bekletilmeleri ile gevşemiş halde toplanırlar. Küçük Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 179 trematodlar preparata yerleştirilir. Üzerine birkaç damla serum fizyolojik damlatılıp lamel kapatılır ve buzdolabında bir saat kadar bekletilerek gevşetilebilir. Çok küçük olanları diseksiyon mikroskobu kullanılarak puar veya ince bir pipet yardımıyla alınıp AFA (Alkol-Formalin-Asetik asit) (*) solüsyonunda saklanırlar (3, 4, 13). Digenea’lar halk arasında kelebek olarak adlandırılan, genellikle ince bağırsak, safra kesesi, safra kanalları, idrar kesesi gibi iç organ boşluklarında bulunan trematodlardır. Bunlar yerleştiği organların diseksiyonu ve içeriğin çeşme suyu altında yıkanması ile toplanırlar. Tespit edilmeden su içinde uzun süre kalırlarsa osmotik şok sonucu yırtılmalara ve dejenerasyonlara maruz kalabilirler. Daha büyük trematodlar, ise serum fizyolojik içerisinde birkaç saat veya bir gece buzdolabında bekletilerek gevşetilebilirler. Bir lam boyutundan daha uzun olan örnekler birkaç kez katlanarak lam boyutuna getirilebildiği gibi deney tüpleri veya cam kavanozlar içinde ya da uzun cestodlarda olduğu gibi uygun yerlerinden kesilerek müstakil bölümler halinde gevşetilebilirler (1, 3, 4, 11, 13). Cestodlar, segmentli yapıda olup genellikle konakların sindirim sistemi lumeninde yapışma organelleri ile tutunmuş halde bulunurlar. Dış yüzeyine yapışan dışkı artıklarından bir fırça yardımıyla temizlendikten sonra, soğuk distile su, serum fizyolojik veya % 5-10’luk etil alkolden herhangi birisinde 5–15 dakika bekletilerek gevşetilirler (4, 6, 9, 11). Nematodlar dışkı artıklarından temizlendikten sonra doğrudan glasiyal asetik asit içine atılıp 5–10 dakika bekletilir, daha sonra kıvrılanları uzatılarak düzeltilir ve hızlı bir şekilde % 70’lik etil alkole alınırlar. Bazı nematodlar bu esnada rupture olup parçalanabilir. Buna engel olmak için temizlenen nematodlar direkt kaynama derecesindeki sıcak % 70’lik etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, nematodların hem yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (6, 12). Acanthocephala’ların gevşetme ve tespiti nematodlarda olduğu gibi yapılır. Ancak başlarında morfolojik teşhis kriterlerine esas olan dikencikler bulunduğu için daha fazla itina ister. Lumene yapışmış halde bulunan proboscis kısmı çok dikkatli bir şekilde kopartılmadan çıkarılmalı ve daha sonra doğrudan distile su içine alınıp 30–120 dakika kadar tutularak temizlenmelidir (1, 11). Sülükler, içerisine birkaç mentol kristali atılmış çeşme suyuna alınıp 15–60 dakika bekletilerek gevşetilirken bazen saatlerce beklemek gerekebilir. Diğer bir yöntem ise sodyum karbonatlı suda bekletme yöntemidir (1). d. Helmintlerin fikzasyonu-tespiti: Fikzasyon veya tespit dokuların canlı iken sahip olduğu özelliklerinin muhafaza edilmesini sağlayan bir süreçtir. Örneklerin uzun süre dayanıklı kalması için iyi bir şekilde tespit edilmesi gerekir. Tespitin amacı gevşetilmiş örneklerin gerçek boyutunda kalmalarını sağlamak ve bünyelerinde olabilecek metabolik ve dokusal değişiklikleri durdurmaktır (12). Tespit için kullanılan çeşitli metotlar vardır. En basit, kolay ve ucuz olanı % 5’lik sıcak formol ile tespittir. Bunun yanında AFA fiksatifi, Gilson’un fisatifi (**) veya Shaudin’in fikzatifi (***) de kullanılabilir (1). Küçük Digenea’lar dışkı ve benzeri artıklardan temizlendikten sonra doğrudan AFA solüsyonu ile tespit edilirken, büyük olanları iki lam arasına konularak 48 saat süreyle tespit edilip % 70’lik etil alkolde uzun süre saklanabilirler (12). Cestodlar canlılık belirtileri tamamen kaybolmadan ilk 5–30 dakika içinde tespit edilmelidirler. Küçük cestodlar doğrudan AFA solüsyonuna alınırken, büyük olanları morfolojik yapılarına göre 3–4 cm uzunluğunda kesilerek, ezilip parçalanmayacak şekilde iki lam arasına sıkıştırılmalıdır. Daha sonra lamların yanlarına bir pipet yardımıyla tespit solüsyonu ilave edilerek cestod yüzeyleriyle teması sağlanır. Bundan sonra Digenea’larda olduğu gibi 24–72 saat tespit solüsyonunda bekletildikten sonra % 70’lik etil alkole alınarak uzun süre saklanabilirler (12). Nematodlar glasiyal asetik asitte hem tespit edilip hem de saklanabilirler. Bunun yanında direkt kaynama derecesindeki %70’lik sıcak etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, hem nematodların yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (1, 6, 12). Acanthocephala’lar temizlendikten sonra direkt AFA solüsyonuna alınarak tespit edilir. AFA solüsyonunda 3–7 gün tespit edildikten sonra %70’lik etil alkole alınıp uzun süre saklanabilir. İşlemler esnasında ve bu helmintleri naklederken çok dikkatli olunmalıdır. Aksi halde pens ile baş kısmından tutulursa teşhiste yararlanılan baş kısmındaki dikencikler dejenere olabilir (12). Sülükler iki lam arasına sandviç gibi bağlanıp dış yüzeyinden AFA solüsyonu ile teması sağlanarak 15–30 dakikada tespit edilirler. Ya da bağlı şekilde AFA solüsyonunda 7 gün tespit edildikten sonra % 70’lik etil alkolde uzun süre saklanabilirler (1). e. Helmintlerin boyanması ve kalıcı preparata monte edilmesi: Monogenea’lar çift lamel arası gliserin jeli (****) ile preparat yapılıp lama yapıştırılmak suretiyle kalıcı preparat haline getirilirler. Şeffaf oldukları için iç organelleri kolaylıkla görülebilir ve boyanmadan kalıcı preparat yapılabilirler (12). Bunun için: 1. Gevşetme ve tespiti yapılmış Monogenea’ya ait helmint bir pipet veya puar yardımıyla 22 x 22 mm veya daha büyük ölçekli bir lamel üzerine yerleştirilir. 2. Hava kabarcığı oluşturmadan üzerine bir damla gliserin jeli damlatılır. Gökçen A. 180 3. Üzerine yavaşça daha küçük bir lamel kapatılıp serin bir yerde bir süre bekletilir, kenarlardan çıkan gliserin jelin fazla kısmı tıraşlanarak temizlenir. 4. Bu şekilde hazırlanan örnek daha sonra bir lam üzerine monte edilerek Kanada balsamı ile yapıştırılır. Lama montaj esnasında küçük lamelli olan taraf alta yani lama temas eden yüze gelmeli ve kenar boşlukları büyük lamel tarafından korunmuş olmalıdır. Montaj işlemi biten preparat, 37 ºC’lik etüvde bir süre kurutularak kullanıma hazır hale getirilebilir (1, 12). Digenea’ların boyanmasında Mayer’s hematoksilen, Semichon’s acetocarmine, Van Cleave’s acetocarmine veya Malzacher’s boyaması gibi çeşitli boyama metotları kullanılabilir. Aşamaları-nın karmaşık olmaması ve kolayca yapılabilmesi nedeniyle en çok tercih edilen Semichon’s acetocarmine (*****) boyama metodudur (10, 12). Bunun için: 1. Etil alkolde saklanan örnekler direkt Semichon’s asetocarmin boya solüsyonuna alınarak 2–4 saat boyanır. 2. Boyanan örnekler %70’lik etil alkolde 15–30 dakika bekletilir. 3. Boyanın sabitlenmesi için %70’lik asit alkolde trematodun büyüklüğüne göre 15 saniye – 10 dakika arasında tutulur. 4. Örnekler 15 saniye – 10 dakika arasında %70’lik bazik alkol ile muamele edilir. 5. Önce %70’lik etil alkolde 5 dakika, sonra %95’lik etil alkolde 15–30 dakika ve daha sonra %96’lık absolüte etil alkolde her biri 15–30 dakika olmak üzere üç kez alkolden geçirilir. 6. Ksilen veya toluende her biri 10–20 dakika olmak üzere iki kez tutulur. Daha sonra iki lam arasına monte edilerek Kanada balsamı veya Gum-damar ile yapıştırılır. Cestodların boyanması Digenea’lardaki gibi Semichon’s acetocarmine metoduyla yapılabilir. Bunun yanında Borax Carmine (******) ile de boyanmaktadır. Büyük cestodlarda teşhis kriterlerine esas olmak üzere morfolojik farklılık gösteren skoleks-baş bölgesi 2–3 cm aşağısındaki boyun bölümünden kesilir, 2–3 cm uzunluğunda birkaç genç halka ile birkaç olgun halka alınarak boyanıp ayrı ayrı preparatlara monte edilir. Metrelerce uzunluğundaki cestodun tamamını boyamaya gerek yoktur. Tespit ve boyama esnasında çok dikkatli olmalı, birden fazla tür varsa farklı türlerin skoleks ve halkaları birbirine karıştırılmamalıdır (12). Borax Carmin ile boyama prosedürünün aşamaları şunlardır. 1. Örnekler alkol serilerinden (%70, %80, %90 ve %96’lık) geçirilir. 2. Hazırlanan Borax – Carmin solüsyonunda 15 dakika boyanır. 3. Beşer dakikalık sürelerle üç kez distile sudan geçirilir ve %70’lik etil alkol şişelerine alınır. 4. Preparata monte edilerek kanada balsamı ile yapıştırılıp, 37 °C’lik etüvde kurutulur. Nematodların bir kısmı toprakta serbest yaşarken, önemli bir bölümü de insan ve hayvanların sindirim, kan ve lenf sistemlerinde parazit olarak yaşamaktadır (2, 3, 4, 11). Nematodların 2 cm’den küçük olanları bütün halde bir preparata monte etmek için uygundur. Buna karşın daha büyük nematodlar morfolojik yapılarına göre teşhise yardımcı olacak bölümleri kasilerek ayrı ayrı bölümler halinde monte edilmelidir. Ya da parafinli bloklarda histolojik kesitler alınarak preparatlara monte dilip hematoksilen eosin ile boyanarak teşhis edilirler (12). Tespitten sonra değişik yoğunluktaki alkol serilerinden geçirilen nematodlar ksilen veya toluende bekletildikten sonra boyanmadan direkt preparata monte edilebilirler. Eğer %70’lik etil alkolde saklanacaklarsa içerisine %5’lik gliserol ilave edilmesi gerekir (10, 12). Kalıcı preparat yapımında prosedür şu aşamalardan oluşur: 1. Nematodlar eğer tespit edilmemişse, %70’lik etil alkolde 30 dakika tespit edilir. 2. Alkol serilerinden geçirilişi. %95’lik etil alkolde 30 dakika, %96’lık absolüte etil alkolde iki kez 30’ar dakika, Ksilen veya toluende önce 15, sonra 30 dakika bekletilmeli. 3. Preparata montajı yapılıp üzerine lamel kapatılarak Kanada balsamı ile yapıştırılır. Daha sonra 37 ºC’lik etüvde birkaç hafta kurutularak kalıcı preparat haline getirilebilir. Acanthocephala’lar genellikle balık, kaplumbağa, su kuşları nadiren insan ve evcil hayvanların ince bağırsaklarında lokalize olurlar (4, 11, 13). Acanthocephala’lar boyalı veya nematodlarda olduğu gibi boyasız olarak mikroskopta incelenebilir. Boyama yapılacaksa; Van Cleave’s hematoxylin veya Mayer’s hematoxylin metodlarıyla ya da cestodlarda olduğu gibi en çok önerilen Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Sülükler genellikle göl, havuz, bataklık gibi durgun sularda veya yavaş akan dere, ırmak ve nehirlerde; ya balık, kaplumbağa gibi konaklara yapışmış halde ya da serbest halde bulunurlar (4). Büyük sülükler boyanmadan direkt incelenip % 70’lik etil alkol konulmuş şişelerde boyanmadan saklanırken, küçük sülükler Digenea’larda olduğu gibi gibi Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Parazitlerin iç ve dış yapılarını uygun şekilde korumak için laboratuarlarda değişik metotlar uygulanmaktadır. Teşhis ve eğitim amacıyla kullanılan ve söz konusu metotlarla elde edilen koleksiyonlardan her zaman yararlanılabilir. Sonuç olarak, bu derlemede farklı kaynaklarda dağınık şekilde bulunan Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 181 helmintlerdeki gevşetme, tespit, boyama ve kalıcı preparata montaj metotlarının toplu olarak sunulması gereği vardır. Bunun zaman ve emek kaybını önlemek için helmintoloji alanında yeni çalışmaya başlayanlara kolaylık sağlayacağı düşünülmektedir. Metinde geçen kimyasal bileşikler ve formülasyonları (*) AFA (Alkol-Formalin-Asetik asit) fikzatifi 1. Ticari Formalin (HCHO) : 100 ml 2. Etil alkol (C2H5OH, % 95’lik) : 250 ml 3. Glasiyal asetik asit (CH3COOH) : 50 ml 4. Gliserin (C3H5(OH)3) : 100 ml 5. Distile su : 500 ml (**) Gilson’un fikzatifi 1. Nitrik asit (HNO3, % 80’lik) : 15 ml 2. Glasiyel asetik asit (CH3COOH) : 4 ml 3. Civa klörür (HgCl2) : 20 gr 4. Etil alkol (C2H5OH, % 60’lık) : 100 ml 5. Distile su : 800 ml (***)Shaudin’in fikzatifi 1. Civa klorür (HgCl2, Distile su ile doymuş halde) : 200 ml 2. Etil alkol (C2H5OH, % 95’lik) : 100 ml 3. Glasiyel asetik asit (CH3COOH) : 15 ml (****) Gliserin jeli bileşimi 1. Jelatin : 10 gr 2. Distile su : 60 ml 3. Gliserin : 70 ml 4. Fenol : 1gr Hazırlanışı: Kristal fenol suda çözülür ve jelâtin ilave edilir. Çözünüp homojen hale gelinceye kadar ısıtılır. Daha sonra geniş ağızlı bir cam şişeye katılıp soğutulur ve kullanılır. (*****) Semichon’s Acetocarmine (Stok solüsyonu) 1. Glasiyal asetik asit (CH3COOH) : 250 ml 2. Distile su : 250 ml 3. Carmin : 5 gr 4. Etil alkol (C2H5OH, % 70’lik) : 500 ml (******) Borax Carmine bileşimi 1. Carmine : 3 gr 2. Borax (Na2B4O7. 10H2O) : 4 gr 3. Distile su : 100 ml 4. Etil alkol (C2H5OH, % 70’lik): 100 ml Hazırlanışı: Carmin ve borax distile su ile çözünene kadar kaynatılır, soğutulur ve etil alkol ilave edilerek 1–2 gün bekletildikten sonra süzgeç kâğıdından süzülerek kullanılır. KAYNAKLAR 1. Anonim, 1961. Laboratory Procedures in Parasitology, TM 8– 227–2. Headquarters, Washington, USA. 2. Anderson RC, 1992. Nematode Parasites of Vertebrates, Their Development and Transmission, CAB Int, UK. p. 1–12. 3. Dunn AM, 1978. Veterinary Helmintology, 2nd. ed., William Heinemann, London. p. 295–304. 4. Güralp N, 1981. Helmintoloji, Ank Ünv Vet Fak Yay No: 368 Ders Kitabı: 266, İkinci baskı, Ank Ünv Basımevi, Ankara. 5. Hendrix CM, 1997. Laboratory Procedures for Veterinary Technicians, 3rd. Ed., Mosby, Inc., USA. 6. Kassai T, 1999. Veterinary Helminthology. 1st ed., Butterworth- Heinemann, Oxford. p. 181–204. 7. Merdivenci A, 1967. Türkiye’nin Marmara Bölgesinde Evcil Tavuk, Hindi, Ördek ve Kazlarda Görülen Trematod, Cestod ve Nematodlara Dair Araştırmalar, Kutulmuş Matbaası, İstanbul. 8. Ministry of Agriculture, Fisheries and Food (MAFF), 1971. Manuel of Veterinary Parasitological Laboratory Techniques, HMSO, Technical Bulletin No:18, London. 9. Pratt PW, 1997. Laboratory Precedures for Veterinary Technicians, 3rd. ed., Mosby Inc., Missouri. 10. Sloss MW, Kemp RL, Zajak AM, 1994. Veterinary Clinical Parasitology 6th. ed., Iowa State University, Ames, Iowa. 11. Soulsby EJL, 1986. Helminths, Arthropods and Protozoa of Domesticated Animals, 7th. ed., Bailliere Tindall, London. p.763–777. 12. Upton SJ, 2005. Animal Parasitology, Biology 625 Laboratory Manual, Kansas Satate University, USA. 13. Urquhart GM, Armour J, Duncan JL, Dunn AM and Jennings FW, 1988. Veterinary Parasitology. ELBS, Longman UK. p. 269–279. Kaynak: Türkiye Parazitoloji Dergisi, 32 (2): 177 - 181, 2008 PDF formatını buradan indirebilirsiniz.: www.tparazitolderg.org/pdf.php3?id=341Ahmet GÖKÇEN Harran Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Şanlıurfa, Türkiye ÖZET: Helmintlerin toplanma, gevşetilme, tespit, boyanma ve kalıcı preparat halinde saklama teknikleri parazitologlar için büyük önem arz eder. Parazitlerin, canlı olarak toplanmaları ve direkt tespit edilmeleri gerekir. Bu süreç, parazitlerin iç ve dış yapılarının uygun şekilde korunmalarını sağlar. Helmintlerin gevşetilmesi ve normal şekillerinin korunması için çeşitli metodlar kullanılabilir. Bu metotlar örneklerin uzun süre korunmasını sağlar. Boyama ve montaj teknikleri; örneğin türüne, büyüklüğüne ve gelişme dönemine göre değişir. Bu derlemede helmintlerin gevşetilmesi, tespiti, boyama ve kalıcı preparat haline getirilmeleri tartışılmıştır. Anahtar Sözcükler: Helmint, gevşetme, tespit, boyama, kalıcı preparat. Fixation, Staining and Preparation of Permanent Mounts of Helminths SUMMARY: The techniques for the collection, relaxation, preservation and staining of helminths are very important for parasitologists. Parasites should be collected alive and fixed directly in the living condition. These procedures insure proper preservation of internal and external details of parasites. There are various methods for relaxing and preserving the normal morphology of helminths. These methods are absolutely essential for permanent preservation of the specimens. Staining and mounting techniques vary depending upon size of specimens, species, and stage of development of the organisms. In this review, the preparation of permanent mounts, relaxation, fixation and staining methods of helminths has been discussed. Key Words: Helminth, relaxation, fixation, staining, permanent mounts GİRİŞ Helmintlerin teşhisi değişik gelişme formlarından birinin veya yumurtalarının görülmesi ile yapılmaktadır. Büyük çoğunluğu sindirim sisteminde yerleştikleri için dışkı muayenesinin teşhiste ayrı bir önemi vardır. Dışkı muayeneleri, eğitim amacıyla öğrenci laboratuarlarında yapılabildiği gibi, hastalıkların teşhisi için hastanelerin parazitoloji laboratuarlarında da sık sık yapılmaktadır (5, 8, 9, 10). Helmintlerden kalıcı preparat hazırlanması, referans laboratuvarlarında rutin olarak yapılmaktadır. Özellikle helmint enfeksiyonlarının yaygın olduğu bölgelerde gerek doğru teşhis gerekse bu alanda yeni çalışmaya başlayan teknik personel ve akademisyenlerin eğitimi amacıyla koleksiyonlar oluşturulmaktadır. Çünkü incelenecek örneği her zaman ve her yerde bulmak mümkün değildir. Ayrıca öğrenci laboratuvarlarında müfredat programına göre uygun örnekleri seçerek uygulamalı eğitim birimlerinde kullanılma kolaylığı sağlar (1). Kalıcı preparat yapmanın ön koşulu, kullanılacak helmintlerin canlı, morfolojik yapısının tam, sağlam ve konaktan elde edilmiş olmasını zorunlu kılar. Yapılan koleksiyonun da kolaylıkla ulaşılabilir, teşhis ve eğitim amacıyla kullanılabilir olması gerekir (1, 12). Gerekli laboratuar malzemeleri : 1. Laboratuvar önlüğü: Çalışanların üzerlerinin kirlenmemesi, çeşitli boya ve kimyasal maddelerin elbiselere zarar vermemesi için, 2. Doğal kıl ve tüylerden yapılmış değişik boyda yumuşak tüylü muhtelif fırçalar: Örneklerin temizlenmesi için kullanılır. Sentetik ve plastik fırçalar kullanılan bazı solüsyonlardan etkilenip bozulabilir. 3. Diseksiyon seti: Sindirim sistemlerinin açılması ve büyük helmintlerin kesilip bölümlere ayrılması için kullanılır. 4. Eldiven: Tek kullanımlık olanlar tercih edilir. 5. Permanent kalemler: Preparatları ve saklama şişelerini işaretlemek için kullanılır. 6. Boyama kapları: Kullanım amacına göre çeşitli büyüklüklerde olmalıdır. 7. Plastik poşet ve torbalar: Atık malzemelerin toplanması için kullanılır. 8. Kullanılacak tüm cam ve benzeri malzemelerin temiz ve kuru olması, kimyasal solüsyonların taze hazırlanmış olması, boya solüsyonlarının filtre edilmiş Makale türü/Article type: Derleme/Review Geliş tarihi/Submission date: 02 Kasım/02 November 2007 Düzeltme tarihi/Revision date: 14 Şubat/14 February 2008 Kabul tarihi/Accepted date: 06 Mart/06 March 2008 Yazışma /Correspoding Author: Ahmet Gökçen Tel: (+90) (414) 312 84 56 Fax: (+90) (414) 314 41 58 E-mail: agokcen@harran.edu.tr Gökçen A. 178 olması ve içlerinde çökelti ve tortulaşma olmaması gerekir. 9. Kaliteli ve uzun süre dayanıklı olan yapıştırıcı kullanılmalıdır. Tavsiye edilen en iyi yapıştırıcı Kanada balsamı ve Gum-damardır. Diğer yapıştırı-cılar kuruyunca veya belli süre sonra opaklaşır ya da kristalleşerek preparatın bozulmasına yol açabilir. Ayrıca hava kabarcıkları oluşturarak helmint örneğinin net görülmesine engel olabilirler (12). Örnek toplama ve preparat yapımında dikkat edilecek genel hususlar : Her hayvanda çeşitli parazit türleri bulunabilir. Ancak bir hayvanda her türden yeterli sayıda helmint olmayabilir. O zaman birkaç hayvandan toplanan türlerden preparatlar yapılabilir. Bazı helmintler (Ascaridae’lerin çoğu, Anoplocephalidae’lerin bazıları gibi) tek bir preparata sığmayacak kadar büyük olabilir. Böyle durumlarda morfolojik özelliklerine göre teşhise yardımcı olan bölümleri dikkate alınan helmintler, parçalar halinde ayrılarak kalıcı preparatlara monte edilebilir. Kayıt ve işaretleme işlemleri düzenli tutulmalı ve özellikle bölümlere ayrılan örneklerde karışmaya fırsat verilmemelidir. Buna karşın nematodların çoğu ince bir kutikülaya sahip olduklarından boyama ve montaj yapılamayabilir. Bunların tespiti, suyunun giderilmesi ve montajı çok zor olduğu için genellikle içine birkaç damla gliserin ilave edilmiş %70’lik etil alkollü şişelerde saklanabilirler. Eğitim amacıyla kullanılacakları zaman bu şişelerden alınıp ya doğrudan ya da laktofenolde şeffaflandırıldıktan sonra morfolojik özellikleri mikroskopta incelenebilir (12). Örnek toplama, gevşetme, tespit ve boyama işlemleri esnasında aceleci olunmamalı, işlem aşamaları sırası atlanılmadan ve belirtilen zaman süreçleri içerisinde tam olarak uygulanmalıdır. Örneğin alkol serilerinden tam geçirilmeyen ve bunun sonucu tam dehidrasyonu sağlanmayan örnekler preparatlarda bulanıklaşır ve boyanan materyalin tüm ayrıntıları net olarak görülemeyebilir. Bazı helmint örnekleri çok küçük olduğu için gerek temizlerken, gerekse mikroskop altında çalışırken veya örnekleri tespit ve boyama kaplarına naklederken örnekler zarar görüp teşhise yardımcı olan morfolojik özellikleri tahrip olabilir. Bu gibi olumsuzluklara yol açmamak için nazik ve kibar olunmalıdır (1, 11). Kalıcı preparat yapılacak helmintler, iç ve dış detaylarının bozulmaması için canlı olarak toplanmalı ve derhal tespit edilmelidir. Parazit öldükten sonra vücudunda otolitik reaksiyonlar başlayacağından teşhis kriterleri olan bazı detaylar da dejenere olabilir. Konak hayvan ölünce ektopara-zitler konağı terk ederken endoparazitler belli bir süre sonra ölürler ve kısa süre içinde dejenere olmaya başlarlar. En iyi örnek, konak hayvan ölür ölmez ya da otopsi veya tüketim amacıyla kesilir kesilmez elde edilen canlı helmintlerdir. Cestod ve trematodlarda dejenerasyon ölümden birkaç dakika sonra başlarken nematodlarda bu süre birkaç saate kadar uzayabilir (10, 12). Helmintlerin boyanarak kalıcı preparat haline getirilme aşamaları : a. Helmintlerin konaklardan elde edilmesi, b. Helmintlerin temizlenmesi, c. Helmintlerin relaksatiyonu-gevşetilmesi d. Helmintlerin fikzasyonu-tespiti e. Helmintlerin boyanması ve kalıcı preparatlara monte edilmesi. a. Helmintlerin konaklardan elde edilmesi: İyi bir preparat yapımı için, örneklerin bütün ve canlı olarak elde edilmesi gerekir. Örnekler yeni ölen veya otopsi için kesilen konaklardan kısa sürede toplanmalıdır. Küçük hayvan-larda tüm sindirim sistemi özafagustan rectuma kadar bütün olarak açılır. Büyük hayvanlarda ise sindirim sistemi aralarına çift ligatür konulmuş bölümlere ayrılarak bir diseksiyon makası ile açılmalıdır. Mukozaya yapışmış helmintleri çıkarmak için zorlamamalı, kendiliğinden ayrılması için içerisine fizyolojik tuzlu su ilave edilmiş bir küvete konularak, birkaç saat buzdolabında masere edilmek suretiyle serbest kalmaları sağlanmalıdır. Cestodların skoleksleri bağırsak lumanine yapışık olduğundan kıl fırça veya diseksiyon iğnesi ile çok dikkatli bir şekilde lumenden ayrılıp toplanmaları gerekir. Çok küçük helmintleri toplamak için diseksiyonun mikroskobu kullanılabilir. Canlı helmintlerin parçalanması, distorsiyonu ve iç organlarının açığa çıkarak zarar görmesini önlemek için; toplama, temizleme ve transfer esnasında küt makas, dişsiz pens, yumuşak tüylü fırça, puar ve pipet gibi malzemeler ile izotonik sıvılar kullanılmalıdır. Organın dokusu içerisinde bulunan helmintleri toplamak için bu organları küçük parçalara ayırarak incelemek gerekir. Uzun süre önce ölmüş veya dondurulmuş halde olan örnekler kalıcı preparat yapımı için uygun değildir (9, 12). b. Helmintlerin temizlenmesi: Konak hayvanlardan dikkatlice alınıp petri kutularına nakledilen helmintler; dış yüzeyine yapışmış dışkı artıkları ve benzeri yabancı partiküllerden serum fizyolojik içinde yumuşak bir fırça yardımıyla yıkanarak temizlenir. Çok küçük örnekler stereomikroskop altında temizlenebilir. Temizlik esnasında bir kaba aşırı miktarda örnek konulmamalı ve kaplar çalkalanmamalıdır (12). c. Canlı helmintlerin relaksatiyonu-gevşetilmesi: Relaksatiyon veya gevşetme, helmintlerin doğal görünümde kalmalarının yapay olarak sağlanmasını içeren bir süreçtir. Tam gevşetilmeyen helmintlerin, büzüşüp kıvrılarak bir yumak halinde toplanmaları nedeniyle montaj esnasında teşhise yarayan morfolojik özellikleri tahrip olabilir. Monogenea’lar narin yapılı trematodlar olup genellikle soğukkanlı hayvanların (Balık, kurbağa vb.) deri, solungaç ve burun boşluklarına çekmenleriyle tutunmuş olarak yaşarlar. Bunlar balıkların 1/4000’lik formalin solüsyonunda 30 dakika kadar bekletilmeleri ile gevşemiş halde toplanırlar. Küçük Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 179 trematodlar preparata yerleştirilir. Üzerine birkaç damla serum fizyolojik damlatılıp lamel kapatılır ve buzdolabında bir saat kadar bekletilerek gevşetilebilir. Çok küçük olanları diseksiyon mikroskobu kullanılarak puar veya ince bir pipet yardımıyla alınıp AFA (Alkol-Formalin-Asetik asit) (*) solüsyonunda saklanırlar (3, 4, 13). Digenea’lar halk arasında kelebek olarak adlandırılan, genellikle ince bağırsak, safra kesesi, safra kanalları, idrar kesesi gibi iç organ boşluklarında bulunan trematodlardır. Bunlar yerleştiği organların diseksiyonu ve içeriğin çeşme suyu altında yıkanması ile toplanırlar. Tespit edilmeden su içinde uzun süre kalırlarsa osmotik şok sonucu yırtılmalara ve dejenerasyonlara maruz kalabilirler. Daha büyük trematodlar, ise serum fizyolojik içerisinde birkaç saat veya bir gece buzdolabında bekletilerek gevşetilebilirler. Bir lam boyutundan daha uzun olan örnekler birkaç kez katlanarak lam boyutuna getirilebildiği gibi deney tüpleri veya cam kavanozlar içinde ya da uzun cestodlarda olduğu gibi uygun yerlerinden kesilerek müstakil bölümler halinde gevşetilebilirler (1, 3, 4, 11, 13). Cestodlar, segmentli yapıda olup genellikle konakların sindirim sistemi lumeninde yapışma organelleri ile tutunmuş halde bulunurlar. Dış yüzeyine yapışan dışkı artıklarından bir fırça yardımıyla temizlendikten sonra, soğuk distile su, serum fizyolojik veya % 5-10’luk etil alkolden herhangi birisinde 5–15 dakika bekletilerek gevşetilirler (4, 6, 9, 11). Nematodlar dışkı artıklarından temizlendikten sonra doğrudan glasiyal asetik asit içine atılıp 5–10 dakika bekletilir, daha sonra kıvrılanları uzatılarak düzeltilir ve hızlı bir şekilde % 70’lik etil alkole alınırlar. Bazı nematodlar bu esnada rupture olup parçalanabilir. Buna engel olmak için temizlenen nematodlar direkt kaynama derecesindeki sıcak % 70’lik etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, nematodların hem yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (6, 12). Acanthocephala’ların gevşetme ve tespiti nematodlarda olduğu gibi yapılır. Ancak başlarında morfolojik teşhis kriterlerine esas olan dikencikler bulunduğu için daha fazla itina ister. Lumene yapışmış halde bulunan proboscis kısmı çok dikkatli bir şekilde kopartılmadan çıkarılmalı ve daha sonra doğrudan distile su içine alınıp 30–120 dakika kadar tutularak temizlenmelidir (1, 11). Sülükler, içerisine birkaç mentol kristali atılmış çeşme suyuna alınıp 15–60 dakika bekletilerek gevşetilirken bazen saatlerce beklemek gerekebilir. Diğer bir yöntem ise sodyum karbonatlı suda bekletme yöntemidir (1). d. Helmintlerin fikzasyonu-tespiti: Fikzasyon veya tespit dokuların canlı iken sahip olduğu özelliklerinin muhafaza edilmesini sağlayan bir süreçtir. Örneklerin uzun süre dayanıklı kalması için iyi bir şekilde tespit edilmesi gerekir. Tespitin amacı gevşetilmiş örneklerin gerçek boyutunda kalmalarını sağlamak ve bünyelerinde olabilecek metabolik ve dokusal değişiklikleri durdurmaktır (12). Tespit için kullanılan çeşitli metotlar vardır. En basit, kolay ve ucuz olanı % 5’lik sıcak formol ile tespittir. Bunun yanında AFA fiksatifi, Gilson’un fisatifi (**) veya Shaudin’in fikzatifi (***) de kullanılabilir (1). Küçük Digenea’lar dışkı ve benzeri artıklardan temizlendikten sonra doğrudan AFA solüsyonu ile tespit edilirken, büyük olanları iki lam arasına konularak 48 saat süreyle tespit edilip % 70’lik etil alkolde uzun süre saklanabilirler (12). Cestodlar canlılık belirtileri tamamen kaybolmadan ilk 5–30 dakika içinde tespit edilmelidirler. Küçük cestodlar doğrudan AFA solüsyonuna alınırken, büyük olanları morfolojik yapılarına göre 3–4 cm uzunluğunda kesilerek, ezilip parçalanmayacak şekilde iki lam arasına sıkıştırılmalıdır. Daha sonra lamların yanlarına bir pipet yardımıyla tespit solüsyonu ilave edilerek cestod yüzeyleriyle teması sağlanır. Bundan sonra Digenea’larda olduğu gibi 24–72 saat tespit solüsyonunda bekletildikten sonra % 70’lik etil alkole alınarak uzun süre saklanabilirler (12). Nematodlar glasiyal asetik asitte hem tespit edilip hem de saklanabilirler. Bunun yanında direkt kaynama derecesindeki %70’lik sıcak etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, hem nematodların yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (1, 6, 12). Acanthocephala’lar temizlendikten sonra direkt AFA solüsyonuna alınarak tespit edilir. AFA solüsyonunda 3–7 gün tespit edildikten sonra %70’lik etil alkole alınıp uzun süre saklanabilir. İşlemler esnasında ve bu helmintleri naklederken çok dikkatli olunmalıdır. Aksi halde pens ile baş kısmından tutulursa teşhiste yararlanılan baş kısmındaki dikencikler dejenere olabilir (12). Sülükler iki lam arasına sandviç gibi bağlanıp dış yüzeyinden AFA solüsyonu ile teması sağlanarak 15–30 dakikada tespit edilirler. Ya da bağlı şekilde AFA solüsyonunda 7 gün tespit edildikten sonra % 70’lik etil alkolde uzun süre saklanabilirler (1). e. Helmintlerin boyanması ve kalıcı preparata monte edilmesi: Monogenea’lar çift lamel arası gliserin jeli (****) ile preparat yapılıp lama yapıştırılmak suretiyle kalıcı preparat haline getirilirler. Şeffaf oldukları için iç organelleri kolaylıkla görülebilir ve boyanmadan kalıcı preparat yapılabilirler (12). Bunun için: 1. Gevşetme ve tespiti yapılmış Monogenea’ya ait helmint bir pipet veya puar yardımıyla 22 x 22 mm veya daha büyük ölçekli bir lamel üzerine yerleştirilir. 2. Hava kabarcığı oluşturmadan üzerine bir damla gliserin jeli damlatılır. Gökçen A. 180 3. Üzerine yavaşça daha küçük bir lamel kapatılıp serin bir yerde bir süre bekletilir, kenarlardan çıkan gliserin jelin fazla kısmı tıraşlanarak temizlenir. 4. Bu şekilde hazırlanan örnek daha sonra bir lam üzerine monte edilerek Kanada balsamı ile yapıştırılır. Lama montaj esnasında küçük lamelli olan taraf alta yani lama temas eden yüze gelmeli ve kenar boşlukları büyük lamel tarafından korunmuş olmalıdır. Montaj işlemi biten preparat, 37 ºC’lik etüvde bir süre kurutularak kullanıma hazır hale getirilebilir (1, 12). Digenea’ların boyanmasında Mayer’s hematoksilen, Semichon’s acetocarmine, Van Cleave’s acetocarmine veya Malzacher’s boyaması gibi çeşitli boyama metotları kullanılabilir. Aşamaları-nın karmaşık olmaması ve kolayca yapılabilmesi nedeniyle en çok tercih edilen Semichon’s acetocarmine (*****) boyama metodudur (10, 12). Bunun için: 1. Etil alkolde saklanan örnekler direkt Semichon’s asetocarmin boya solüsyonuna alınarak 2–4 saat boyanır. 2. Boyanan örnekler %70’lik etil alkolde 15–30 dakika bekletilir. 3. Boyanın sabitlenmesi için %70’lik asit alkolde trematodun büyüklüğüne göre 15 saniye – 10 dakika arasında tutulur. 4. Örnekler 15 saniye – 10 dakika arasında %70’lik bazik alkol ile muamele edilir. 5. Önce %70’lik etil alkolde 5 dakika, sonra %95’lik etil alkolde 15–30 dakika ve daha sonra %96’lık absolüte etil alkolde her biri 15–30 dakika olmak üzere üç kez alkolden geçirilir. 6. Ksilen veya toluende her biri 10–20 dakika olmak üzere iki kez tutulur. Daha sonra iki lam arasına monte edilerek Kanada balsamı veya Gum-damar ile yapıştırılır. Cestodların boyanması Digenea’lardaki gibi Semichon’s acetocarmine metoduyla yapılabilir. Bunun yanında Borax Carmine (******) ile de boyanmaktadır. Büyük cestodlarda teşhis kriterlerine esas olmak üzere morfolojik farklılık gösteren skoleks-baş bölgesi 2–3 cm aşağısındaki boyun bölümünden kesilir, 2–3 cm uzunluğunda birkaç genç halka ile birkaç olgun halka alınarak boyanıp ayrı ayrı preparatlara monte edilir. Metrelerce uzunluğundaki cestodun tamamını boyamaya gerek yoktur. Tespit ve boyama esnasında çok dikkatli olmalı, birden fazla tür varsa farklı türlerin skoleks ve halkaları birbirine karıştırılmamalıdır (12). Borax Carmin ile boyama prosedürünün aşamaları şunlardır. 1. Örnekler alkol serilerinden (%70, %80, %90 ve %96’lık) geçirilir. 2. Hazırlanan Borax – Carmin solüsyonunda 15 dakika boyanır. 3. Beşer dakikalık sürelerle üç kez distile sudan geçirilir ve %70’lik etil alkol şişelerine alınır. 4. Preparata monte edilerek kanada balsamı ile yapıştırılıp, 37 °C’lik etüvde kurutulur. Nematodların bir kısmı toprakta serbest yaşarken, önemli bir bölümü de insan ve hayvanların sindirim, kan ve lenf sistemlerinde parazit olarak yaşamaktadır (2, 3, 4, 11). Nematodların 2 cm’den küçük olanları bütün halde bir preparata monte etmek için uygundur. Buna karşın daha büyük nematodlar morfolojik yapılarına göre teşhise yardımcı olacak bölümleri kasilerek ayrı ayrı bölümler halinde monte edilmelidir. Ya da parafinli bloklarda histolojik kesitler alınarak preparatlara monte dilip hematoksilen eosin ile boyanarak teşhis edilirler (12). Tespitten sonra değişik yoğunluktaki alkol serilerinden geçirilen nematodlar ksilen veya toluende bekletildikten sonra boyanmadan direkt preparata monte edilebilirler. Eğer %70’lik etil alkolde saklanacaklarsa içerisine %5’lik gliserol ilave edilmesi gerekir (10, 12). Kalıcı preparat yapımında prosedür şu aşamalardan oluşur: 1. Nematodlar eğer tespit edilmemişse, %70’lik etil alkolde 30 dakika tespit edilir. 2. Alkol serilerinden geçirilişi. %95’lik etil alkolde 30 dakika, %96’lık absolüte etil alkolde iki kez 30’ar dakika, Ksilen veya toluende önce 15, sonra 30 dakika bekletilmeli. 3. Preparata montajı yapılıp üzerine lamel kapatılarak Kanada balsamı ile yapıştırılır. Daha sonra 37 ºC’lik etüvde birkaç hafta kurutularak kalıcı preparat haline getirilebilir. Acanthocephala’lar genellikle balık, kaplumbağa, su kuşları nadiren insan ve evcil hayvanların ince bağırsaklarında lokalize olurlar (4, 11, 13). Acanthocephala’lar boyalı veya nematodlarda olduğu gibi boyasız olarak mikroskopta incelenebilir. Boyama yapılacaksa; Van Cleave’s hematoxylin veya Mayer’s hematoxylin metodlarıyla ya da cestodlarda olduğu gibi en çok önerilen Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Sülükler genellikle göl, havuz, bataklık gibi durgun sularda veya yavaş akan dere, ırmak ve nehirlerde; ya balık, kaplumbağa gibi konaklara yapışmış halde ya da serbest halde bulunurlar (4). Büyük sülükler boyanmadan direkt incelenip % 70’lik etil alkol konulmuş şişelerde boyanmadan saklanırken, küçük sülükler Digenea’larda olduğu gibi gibi Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Parazitlerin iç ve dış yapılarını uygun şekilde korumak için laboratuarlarda değişik metotlar uygulanmaktadır. Teşhis ve eğitim amacıyla kullanılan ve söz konusu metotlarla elde edilen koleksiyonlardan her zaman yararlanılabilir. Sonuç olarak, bu derlemede farklı kaynaklarda dağınık şekilde bulunan Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 181 helmintlerdeki gevşetme, tespit, boyama ve kalıcı preparata montaj metotlarının toplu olarak sunulması gereği vardır. Bunun zaman ve emek kaybını önlemek için helmintoloji alanında yeni çalışmaya başlayanlara kolaylık sağlayacağı düşünülmektedir. Metinde geçen kimyasal bileşikler ve formülasyonları (*) AFA (Alkol-Formalin-Asetik asit) fikzatifi 1. Ticari Formalin (HCHO) : 100 ml 2. Etil alkol (C2H5OH, % 95’lik) : 250 ml 3. Glasiyal asetik asit (CH3COOH) : 50 ml 4. Gliserin (C3H5(OH)3) : 100 ml 5. Distile su : 500 ml (**) Gilson’un fikzatifi 1. Nitrik asit (HNO3, % 80’lik) : 15 ml 2. Glasiyel asetik asit (CH3COOH) : 4 ml 3. Civa klörür (HgCl2) : 20 gr 4. Etil alkol (C2H5OH, % 60’lık) : 100 ml 5. Distile su : 800 ml (***)Shaudin’in fikzatifi 1. Civa klorür (HgCl2, Distile su ile doymuş halde) : 200 ml 2. Etil alkol (C2H5OH, % 95’lik) : 100 ml 3. Glasiyel asetik asit (CH3COOH) : 15 ml (****) Gliserin jeli bileşimi 1. Jelatin : 10 gr 2. Distile su : 60 ml 3. Gliserin : 70 ml 4. Fenol : 1gr Hazırlanışı: Kristal fenol suda çözülür ve jelâtin ilave edilir. Çözünüp homojen hale gelinceye kadar ısıtılır. Daha sonra geniş ağızlı bir cam şişeye katılıp soğutulur ve kullanılır. (*****) Semichon’s Acetocarmine (Stok solüsyonu) 1. Glasiyal asetik asit (CH3COOH) : 250 ml 2. Distile su : 250 ml 3. Carmin : 5 gr 4. Etil alkol (C2H5OH, % 70’lik) : 500 ml (******) Borax Carmine bileşimi 1. Carmine : 3 gr 2. Borax (Na2B4O7. 10H2O) : 4 gr 3. Distile su : 100 ml 4. Etil alkol (C2H5OH, % 70’lik): 100 ml Hazırlanışı: Carmin ve borax distile su ile çözünene kadar kaynatılır, soğutulur ve etil alkol ilave edilerek 1–2 gün bekletildikten sonra süzgeç kâğıdından süzülerek kullanılır. KAYNAKLAR 1. Anonim, 1961. Laboratory Procedures in Parasitology, TM 8– 227–2. Headquarters, Washington, USA. 2. Anderson RC, 1992. Nematode Parasites of Vertebrates, Their Development and Transmission, CAB Int, UK. p. 1–12. 3. Dunn AM, 1978. Veterinary Helmintology, 2nd. ed., William Heinemann, London. p. 295–304. 4. Güralp N, 1981. Helmintoloji, Ank Ünv Vet Fak Yay No: 368 Ders Kitabı: 266, İkinci baskı, Ank Ünv Basımevi, Ankara. 5. Hendrix CM, 1997. Laboratory Procedures for Veterinary Technicians, 3rd. Ed., Mosby, Inc., USA. 6. Kassai T, 1999. Veterinary Helminthology. 1st ed., Butterworth- Heinemann, Oxford. p. 181–204. 7. Merdivenci A, 1967. Türkiye’nin Marmara Bölgesinde Evcil Tavuk, Hindi, Ördek ve Kazlarda Görülen Trematod, Cestod ve Nematodlara Dair Araştırmalar, Kutulmuş Matbaası, İstanbul. 8. Ministry of Agriculture, Fisheries and Food (MAFF), 1971. Manuel of Veterinary Parasitological Laboratory Techniques, HMSO, Technical Bulletin No:18, London. 9. Pratt PW, 1997. Laboratory Precedures for Veterinary Technicians, 3rd. ed., Mosby Inc., Missouri. 10. Sloss MW, Kemp RL, Zajak AM, 1994. Veterinary Clinical Parasitology 6th. ed., Iowa State University, Ames, Iowa. 11. Soulsby EJL, 1986. Helminths, Arthropods and Protozoa of Domesticated Animals, 7th. ed., Bailliere Tindall, London. p. 763–777. 12. Upton SJ, 2005. Animal Parasitology, Biology 625 Laboratory Manual, Kansas Satate University, USA. 13. Urquhart GM, Armour J, Duncan JL, Dunn AM and Jennings FW, 1988. Veterinary Parasitology. ELBS, Longman UK. p. 269–279. Kaynak: Türkiye Parazitoloji Dergisi, 32 (2): 177 - 181, 2008 PDF formatını buradan indirebilirsiniz.: www.tparazitolderg.org/pdf.php3?id=341

http://www.biyologlar.com/helmintlerde-tespit-boyama-ve-kalici-preparat-yapimi

Hücre bölünme kontrolü bozulursa ne olur?

Hücre bölünme kontrolünün ortadan kalkması sonucunda ya kanserlerde olduğu gibi aşırı hücre çoğalması ve buna bağlı hızlı hücre ölümleri, ya da hücre bölünmesinin yavaşlamasına bağlı doku kayıpları görülecektir.Yetişkin bir insanda, kan hücreleri dışında yaklaşık 1013-14 kadar hücre bulunmaktadır. Sayıları oldukça fazla olan bu yapı birimlerinde büyüklük açısından farklar da gözlenir. Örnek olarak, insanın en büyük hücresi dişi yumurta hücresi (=ovum) olup 200 μ büyüklüğündedir. Beyincikte 4 μ büyüklüğünde hücrelere rastlanırken beyinde piramidal hücreler 150 μ'a varan büyüklüktedir. Bu örnekleri genişletebiliriz. Hücre büyüklüklerinin canlıların büyüklüğü ile ilgisi yoktur. Vücut büyüklüğü hücre sayısına bağlıdır. Örnek olarak; farenin karaciğer hücresi ile filin karaciğer hücresi hemen hemen aynı büyüklüktedir. Dış görünümleri incelendiğinde her hücrenin belirli bir biçimi, büyüklüğü ve ağırlığı tanımlanır. Hücrenin kimyasal birleşimi %75-80 su, %15 protein (yapı proteinleri, enzimlen, aminoasitler) %3 yağ ve %1 elektrolitlerden oluşmuştur. Hücrenin şekli sitoplazma akıcılığı, yüzey gerilimleri ve komşu hücrelerden gelen basınç etkisi ile değişmektedir. Hücrelerin erken gelişim dönemlerindeki şekli yuvarlaktır. Organizmada Şekil 2.2'de örneklerini gördüğünüz şekilde, yuvarlak şeklini koruyan hücreler olmakla beraber, yassı, prizmatik, armutsu, piramidal ve kübik şekilli hücreler de bulunmaktadır. İnsan vücudunda 200 çeşidin üzerinde hücre tipi vardır. Bunlar epitel dokusu, bağ dokusu, kas dokusu, kemik dokusu ve sinir dokusu gibi dokularda yer alırlar. Dokularda çeşitli hücre tiplerini birarada görmek de mümkündür.

http://www.biyologlar.com/hucre-bolunme-kontrolu-bozulursa-ne-olur

Deniz Kaplumbağaları Hakkında Bilgi

Denizkaplumbağaları yaklaşık 95 milyon yıldan beri dünyamızda yaşamaktadırlar. Ataları, yıllar önce, dinazorların yaşadığı devirde deniz ortamına geçmiş dev kara kaplumbağalarıdır. İlk deniz kaplumbağaları bugünkülere pek benzemiyorlardı. Değişimleri milyonlarca yıl sürmüş ve ayakları yüzgeç şekline dönüşmüş, ağır ve kocaman gövdeleri yassılarak daha hafif ve su yaşamına elverişli bir biçim almıştır. Dinazorlar ve dev kara kaplumbağaları tamamen yok olmuşlardır; bugün ancak müzelerde fosillerini görebilmekteyiz. Fakat denizkaplumbağaları nasıl olduysa yaşamlarını sürdürebilmişlerdir. Bunların yedi değişik türü, dünyamızı çevreleyen sıcak ve ılıman okyanuslarda hâlâ yüzmektedirler. Dişilerin karaya çıkarak yuva yapıp yumurtladıkları kısa devreler dışında, bütün hayatlarını suda geçirirler. Denizkaplumbağaları denizi balıklarla, balinalarla, diğer deniz yaratıklarıyla ve bizlerle paylaşırlar. Ülkemiz sularında bu türlerden sadece iki tanesi yaşar: Sini Kaplumbağası (Caretta caretta) ve Yeşil Kaplumbağa (Chelonia mydas) Kristof Kolomb Yeni Dünya’yı keşfettiği zaman Karaib Denizi’nde milyonlarca denizkaplumbağası bulunuyordu. Kolomb ve onu onu takip eden diğer kâşifler, tüccarlar, sömürgeciler ve korsanlar özellikle bir tür denizkaplumbağasının etinin lezzetli olduğunun farkına vardılar. Bu kaplumbağa tamamen kahverengi olup, boyu 1 metreye, ağırlığı ise 136 kilograma kadar ulaşabiliyor ve kıyıya yakın sığ sularda yetişen deniz otlarıyla besleniyordu. Denizciler bu uysal hayvanı kolayca avlayabiliyorlardı. Onu, kabuğunun üzerine sırt üstü devirip savunmasız hale getirdikten sonra yüzgeçlerini bağlayıp taze ete ihtiyaçları olduğu zaman öldürmek üzere gemilerine götürüyorlardı. Bu kaplumbağa, vücudundaki yağın rengi yediği ottan dolayı yeşil olduğundan “yeşil kaplumbağa” diye isimlendirilmiştir. Otla beslenen tek denizkaplumbağası türüdür. Yüzyıllar sonra günümüzde de yeşil kaplumbağalar hâlâ avlanıp, öldürülmekte ve sayıları gün geçtikçe azalmaktadır. Sini Kaplumbağası (Caretta caretta) Sini kaplumbağası yeşilden biraz daha ufaktır. Ağırlığı 135-180 kilogram arasında değişer. Yengeç ve başka deniz hayvanlarıyla beslenir. Bu kaplumbağa mercan yuvaları ve kayaların yakınında avlanır. Büyük ve kalın kafası, geniş ve kısa boynuyla kolayca tanınabilir. Diğer denizkaplumbağaları gibi, bu da kara kaplumbağalarının tersine başını kabuğunun içine çekemez. Kabuğu bir zırh gibi olmakla beraber, başı ve yüzgeçleri korumasızdır. Bazı köpekbalıkları ve katil balinalar açıkta kalan bu kısımlara saldırabilirler. Fakat sini kaplumbağası iri ve hızlı olduğundan doğal düşmanı çok azdır. Yeşil Kaplumbağa Yumurtuyor Dişi yeşil kaplumbağa, her zaman yuvasını yaptığı kumsala tek başına çıktı. Bir süre önce yakın sularda bir erkek yeşil kaplumbağa ile çiftleşmişti. Artık yumurtlama zamanı gelmişti. Bir yumurtlama mevsiminde üç veya dört kere yumurtlayabilir. Suda ne kadar hızlı ve ortama uyumluysa, karada da tam tersine o kadar yavaş, hantal ve savunmasızdır. Dişi kendisini denizden dışarı zorlukla çekti ve kumsalda gelgit sularının erişemeyeceği kadar ilerledi. Yüzgeçleriyle vücuduna göre bir yuva kazdı. Yuvaya yerleşip arka yüzgeçlerini kürek gibi kullanarak şişe şeklinde bir delik kazdı. Sonra bu deliğe pingpong topuna benzer, beyaz ve kaplı görünümü veren yaklaşık yüz adet yumurta bıraktı. Kaplumbağa, yumurtlaması bittikten sonra yuvayı kumla örtecek ve arkasında traktör izine benzeyen bir iz bırakarak ağır ağır denize dönecektir. Ne yazık ki anne kaplumbağa yumurtalarını ne kadar çok tehlikenin beklediğinden habersiz. Çoğu kez insanlar, yumurtaları meraktan veya yemek için topluyor. Ayrıca köpek, tilki veya kum yengeci yumurtaları yemeye çok meraklı. Bu yüzden kaplumbağaların ürediği kumsallar mutlak koruma altına alınmalıdır. Yumurtadan Çıkan Yavrular Kumsala varan güneş ışınları kuma gömülü kaplumbağa yumurtalarını ısıtır. Yumurtalar yuvanın içinde gelişir ve iki ay sonra çatlamaya hazır hale gelirler. Yavrular burunlarının ucundaki sivri kısım ile yumurta kabuklarını delmeye başlarlar. Bu özel sivri kısım yumurtadan çıkınca kaybolur. Yavrular kabukları çatlatarak kırarlar. Hepsinin yumurtadan hemen hemen aynı zamanda çıkmaları gereklidir. Çünkü yuvadan kaçış işlemini elbirliğiyle yapmak zorundadırlar. Yavru kaplumbağalar başlarının üzerindeki kumu kazmaya başlarlar. Kum, boş kabuklarının üstüne düşerek çukurun içinde yükselmelerine olanak sağlayan basamaklar oluşturur. Birkaç gün içinde yuvanın tavanına varırlar. Derken bir gece veya bir sabah erken saatlerde kumsalda koyu renkli küçük kafalar ve yüzgeçler belirir. Beş santimetrelik yavrular sürünerek denize doğru yol alırlar. Denize Doğru Yarış Kaplumbağa yavruları deniz yönünü denizin pırıltısından hissederler. Suyun üzerindeki parlaklık onları çeker. Yuvadan çıkıp sel gibi akarak denize doğru yarışlarına başlarlar. Hayat dolu ama savunmasız yavrular, kumsal boyunca beceriksizce çabalayıp dururlar. Bunların da anneleri gibi denize varabilmeleri için etrafın tamamen karanlık olması gereklidir. Işık yanan bir ev, araba, sokak lambası varsa yavrular ışığa doğru ilerler ve sonunda hepsi ölürler. Yavruların gece çıkmalarının asıl sebebi ise kızgın güneşten korunmak içindir. Gündüz çıkacak olsalar güneşin kavurucu sıcaklığı onları derhal kurutup öldürecektir. Yumurtadan çıkan yavruların kabukları yumaşaktır ve kendilerini koruma nitelikleri çok az olduğundan pek çok doğal düşmana yem olur: Yengeç orduları onları yakalar veya deniz kuşları toplanıp, küçük kaplumbağaları keskin gagalarıyla yakalayıp kendilerine ziyafet çekerler. Yavrulardan çok azı denize varabilir ve bunların çoğu balıklara yem olur. Yavrulardan ancak bir, iki tanesi hayatta kalır. Yaşamlarının ilk yılını nerede geçirdikleri doğanın çok sayıdaki sırlarından biridir. Örneğin yeşil kaplumbağalar bir yaşına gelip kıyılardaki sığ sularda beslenmeye başlayana kadar hiç ortalıkta görünmezler. Bir yaşındaki yavrular bir yemek tabağı büyüklüğündedirler. Denizkaplumbağaları Nerelerde Yumurtlar? Denizkaplumbağaları dünya çevresindeki geniş, ılıman kuşak içinde yaşarlar. Akdeniz’de olduğu gibi Pasifik ve Atlantik okyanuslarında yaşayan kaplumbağa topluluklarının sayıları da her geçen gün azalmaktadır. Denizkaplumbağalarının başka bir özelliği büyüdükleri zaman yumurta bırakmak için doğdukları kumsallara geri dönmeleridir. Bu kaplumbağaların yumartlamak için binlerce kilometre yüzdükten sonra doğdukları yeri nasıl buldukları bilim adamlarınca halen tam anlaşılamamıştır. Akdeniz’deki denizkaplumbağalarının bir kısmının da sadece Akdeniz’de yaşadığı ve kışladığı sanılmaktadır. Kaplumbağaların bu göç hareketleri “markalama”, yani üzerlerine konan özel işaretler ile ancak izlenebilmektedir. Kaplumbağalar mı? Kaplumbağa Ürünleri mi? Denizkaplumbağaları dünyamızdan hızla yok olmakta. Oysa yok olan bir hayvan türü bir daha hiçbir zaman geri gelmeyecektir. Yok olma sebeplerinden biri de insanların kaplumbağaları çeşitli amaçlarla avlamasından ileri gelmekte. Bazı kaplumbağaların kabuğundan “bağ” denen taraklar, gözlük çerçeveleri, düğme vb. yapılmakta. Çok pahalı olan bu maddeleri artık insanların satması da alması da doğru değildir. Bazı kaplumbağaların derisinden çanta ve pabuç yapılmakta. Bazılarından ise çorba... Kimi yörelerde kaplumbağa kanının bazı hastalıklara iyi geldiği inancı yaygınsa da bunun doğru olmadığı artık anlaşılmıştır. Unutmayın, siz veya çevrenizdekiler yukarıda saydıklarımızı kullanıyorsanız, bu ender hayvanın yok olmasına sebep oluyorsunuz demektir. Kaplumbağa Avı Çok eskiden beri kıyılarda yaşayanlar, ailelerinin beslenmesine katkıda bulunmak için denizkaplumbağalarını avlamışlardr. Bazen tek bir balıkçı bir kaplumbağayı besin olarak kullanmak amacıyla zıpkınlamış; bazen de grup halindeki balıkçılar, soluk almak için su yüzüne çıkan kaplumbağları ağlarla yakalayıp yemek üzere köylerine götürmüştür. Yıllar boyunca denizkaplumbağalarının bol olduğu zamanlarda bu tip avlanmaların kaplumbağa sayısını çok az etkilediği zannediliyordu. Fakat denizkaplumbağasına istek giderek arttı. Ya kaplumbağa avlayıp satarak ya da kaplumbağadan yapılmış ürünler satılarak para kazanılıyordu. Denizkaplumbağası avlamak kazançlı bir iş haline gelmişti. Böylece avcılar kaplumbağaları kimi zaman denizde, kimi zaman da yumurtlamaya çıktıklarında daha yumurtalarını bırakamadan yüzlercesine yakalamaya başladılar. Kaplumbağalar giderek azaldılar ve hemen hemen yok oldular. Ülkemizde yasalar bütün denizkaplumbağalarını koruma altına almış ve kaplumbağa ürünlerinin ticaretini yasaklamıştır. Yine de bu yasaklara uymayan kişiler halen aramızda bulunmaktadır. Trolcüler ve Kaplumbağalar Dünyanın her yerinde ticari balıkçı tekneleri denizlerden yiyecek sağlar. Bu teknelerin bazıları kıyı sularında dolaşıp deniz dibini “Trol” denen büyük ağlarla tarayarak avlanırlar. Deniz dibini tarayarak yapılan bu tarz balıkçılık, balık, karides, mercan yuvalarına çok zarar verdiği gibi, ne yazık ki çoğu zaman Caretta Caretta cinsi kaplumbağalar da tesadüfen bu ağlara yakalanmaktadır. Örneğin, birçok kaplumbağa, karides trolcülerin büyük huni şeklinde ağlarına yakalanıp, karideslerle beraber ağın içinde sürükleniyorlar ve su yüzeyine çıkıp nefes alamadıkları için de boğulup ölüyor. Böylece az sayıda kalan denizkaplumbağaları daha da azalıyor. Bu soruna bir çözüm yolu bulunması gerekmekte. Amerika Birleşik Devletleri’nin güneydoğu kıyılarındaki karides balıkçıları bu konuda yardımcı olmakta ve sadece karidesi içine alıp, kaplumbağanın giremeyeceği şekilde yapılmış yeni ağlar yapmaktadırlar. Yumurtlayacak Yeri Yok Bir denizkaplumbağası Türkiye’nin güney sahillerinin cennet köşelerinden biri olan Side kıyılarında bir kumsala sürünerek çıkar, şaşırır. Bir de ne görür? Kumsalın büyük bir kısmını apartman ve oteller işgal etmiş. Geri kalan dar kumsal şeridinde ise insan kalabalığı vardır. Kaplumbağa tekrar denize açılıp gece geri döner. Bu sefer pencerelerdeki yüzlerce ışık ortalığı aydınlattığından kumsal pırıl pırıldır. Kumsalın bazı yerleri ise beton rıhtımlarla çevrelenmiş ve yükselmiş. Kaplumbağaya artık yumurtlayacak yer kalmamıştır. Kıyının başka bir yerinde başka bir kaplumbağa boş kalmış ufak ber kumsal şeridine çıkıp yumurtlar. Yavrular yumurtalardan çıkma günü gelince ışıklara doğru sürünürler. Fakat vardıkları yer deniz değil, yakındaki bir yolun sokak lambalarının ışığıdır. Ertesi gün yakıcı güneşin altında hepsi ölecektir. Bir zamanlar denizkaplumbağalarının güvence içinde yumurtlamalarına uygun yüzlerce kilometre uzunluğunda kıyılar vardı. Bugün artık her şey değişti. Bu bölüm hazırlanırken Doğal Hayatı Koruma Derneği'nin "Bütün Yönleriyle Denizkaplumbağaları" adlı yayınından faydalanılmıştır.

http://www.biyologlar.com/deniz-kaplumbagalari-hakkinda-bilgi

Kan Parazitleri

Laboratuvarda kan örnekleri ile çalışırken genel temizlik ve güvenlik kurallarına uyulması gerekir. Böylece çevrenizi, çevrenizdeki diğer kişileri ve kendi sağlığınızı korumuş olursunuz.  Koruyucu eldiven ve laboratuvar önlüğü giyiniz.  Eğer ellerinizde yada üzerinizde açık yara veya ezikler varsa mutlaka yara bandı vb. ile kapatın.  İğne, lanset gibi maddeleri sadece bir kez kullanın ve kullanılmış malzemeleri uygun çöp kutusuna atın.  Çalışma tamamlandıktan sonra eldivenlerinizi çıkartın ve ellerinizi mutlaka yıkayın.  Laboratuvarı temizleyin ve dekontaminasyon işlemlerini uygulayın. Örnek Toplama: Zamanlama: Örnekler uygun ortamlarda ve sağaltım (tedavi) öncesinde toplanmalıdır. Eğer malarya veya babesiadan şüpheleniliyor ise örnekler zaman geçirmeden incelenmelidir. Kanda parazit görülmesi (parazitemi) oranı parazit türüne göre dalgalanma gösterir. Bu nedenle birden fazla froti yapılması (8-12 saat ara ile 2-3 gün) tavsiye edilir. Microflaria enfeksiyonu (türe bağlı olarak) belirgin bir dalgalanma sergiler. Bu yüzden örnekleme zamanı çok önemlidir. Eğer mikroflariadan şüphe ediliyor ise örneklemenin aşağıdaki saatlerde yapılması uygundur. Loa loa–Öğlen (saat 10 ile 14 arası) Brugia or Wuchereria–Akşam saat 8 civarı (20.00) Mansonella–Günün herhangi bir saatinde. Örnek Tipi: Venöz kan örnekleri (venalardan alınan kan), teşhis amaçlı bir çok çalışma için uygundur (flariasis ve trypanosomiasis dahil). Ancak bazı enfeksiyonlarda örneğin malariada kan tüplerindeki antikoagulant (pıhtılaşma önleyici) maddeler parazitin morfolojisine ve boyanma özelliklerine olumsuz etkilerde bulunabilir. Bu problem, frotilerin (yayma) kan alınmasından sonra en kısa sürede yapılması ile bir miktar azaltılabilir. Bu gibi durumlarda kapillar kan örnegi (kulak yada kuyruk ucu, insanda parmak ucu) alınması tavsiye edilir. Kılcal (Capillary) Kan İncelemesi: 1. Temiz bir lam alınır ve bir kenarına hasta adı veya numarası, örnek tarih ve saati kaydedilir. (Kayıt cam kalemi ile yapılmalıdır. Normal permanent kalemler işlemler sırasında silinebilir). 2. Kan alınacak bölge Kulak ucu (kuyruk ucu veya parmak, bebeklerde topuk veya ayak baş parmağı) alkol ile temizlenir ve kuruması beklenir. 3. Kulak ucu çok küçük kesilerek (lancet ile delinerek) kanatılır. İlk damla kan alınır ve yayma yapılır. (Yayma için iki thick blood-kalın yayma- ve iki thin blood-ince yayma- yapılması tavsiye edilir). 4. Uygun boyamalarla boyanan örnekler mikroskopla incelenir (immersiyon). Venöz (Venous) Kan İncelemesi: 1. Kan alınacak tüp ve lam üzerine hasta kaydı yapılır. Lam alkol ile temizlenip kurutulur. 2. Kan alınacak bölge temizlenir, alkol ile silinip kuruması beklenir. 3. Uygun bir venadan kan alınır ve EDTA’lı tüplere konur. Yavaş hareketler ile kan iyice karıştırılır. (Diğer antikoagulanlarda kullanılabilir ancak EDTA tercih edilmektedir). 4. En az iki kalın ve iki ince yayma preperat kan alınmasından sonraki mümkün olan en kısa sürede hazırlanılmalıdır. 5. Uygun boyamalar ile boyanan örnek incelenir. Örneklerin Hazırlanıp İncelenmesi: Yayma Örneklerinin (froti) Hazırlanması: Yukarda da belirtildiği gibi, eğer venöz kan kullanılıyorsa frotiler kan alınmasından sonra en kısa sürede yapılmalıdır. Aksi taktirde antikoagulanların parazit morfolojilerini ve boyanma karakterlerini değiştirebileceği unutulmamalıdır. Kalın Yayma (Thick smears) Hazırlanması: Kalın yayma bir damla kanın mümkün olduğunca homojen olarak yayılması işlemidir. Dehemoglobinize olmuş (parçalanmış) alyuvarları incelemek için hazırlanır. Bu yöntem ile kan elemanları ve varsa parazitler ince yaymaya oranla daha fazla yoğunlaştırılmış olur. Bu yüzden kalın yayma, ince yaymaya oranla daha iyi teşhis imkanı sağlar ancak parazit morfolojileri en iyi olarak görünmezler. Pozitif örneklerde (özellikle malaria) tür tayini yapabilmek için ince yayma yapılması tavsiye edilir. Her hasta için en az iki preperat hazırlanılmalıdır. 1. Önceden temizlenmiş ve üzerine hasta kaydı yapılmış lam alınır. 2. Lam’ım ortasına bir damla kan konulur. 3. Bir başka temiz lam köşesi kullanılarak, dairesel hareketler ile kan yayılır (yaklaşık 1.5 cm çapında). 4. Örneğin istenilen kalınlıkta yayılıp yayaılmamış olduğu, altına konulan bir gazetedeki yazıların kısmen okunaklı olması ile kontrol edilebilir. 5. Preperat düz bir yere konarak kuruması beklenir (toz ve böceklerden uzak tutulmalıdır). Yeteri kadar kurumamış yada çok kalın hazırlanmış örnekler işlemler esnasında lamelden ayrılırlar. Oda ısısında yapılan kurutmalar bir kaç saat sürebilir. Minimum 30 dakikalık kurutma gereklidir bu şekilde hazırlanmış örnekler çok dikkatli olarak işlemlere tabi tutulmalıdır. Kurutma işlemi orta ısılı bir etüv yada kurutma dolaplarında yapılabilir. Aşırı sıcak ortamlar istenmez çünkü bu işlem ısı ile örnek tespiti (fiksasyon) yapılmasına yol açar. İnce Yayma (Thin smears)Hazırlanması: İnce yaymada kan gittikçe incelen bir kan katmanı oluşturur. Son kısmında alyuvarlar tek bir katman oluşturmalıdır yada birbirlerinden uzak konumlarda olmalıdır. Her hasta için en az iki örnek hazırlanılmalıdır. 1. Bir damla kan alınıp, lamın hasta kaydı yapılmış kenarından yaklaşık 1.5 cm uzağına konur. 2. İkinci bir lam kan damlasının önüne yaklaşık 45° açı ile konulur. 3. Lam hafif geri çekilerek damla ile temas ettirilir ve kanın lam temas yüzeyine yayılması beklenir. 4. Üstteki lam hızla ileri doğru itilerek kan olabildiğince ince yayılır. Kanın son kısımlarda çok ince yayılmış olmasına dikkat ediniz. Bu işlem uygun miktarda kan ve iyi bir yayma tekniği ile sağlanır. Aksi taktirde yayma istenilen kalitede olmaz. 5. Preperatın kurumasını sağlayın. 6. Preperatı saf (absolute) metanol içerisinde tespit edin 7. Fix the smears by dipping them in absolute methanol. Microfilariae Teşhisi İçin Örnek Hazırlama: A. Kapillar kan örneği alınır. B. Mikroflarialar perifer kanda yoğun olarak bulunurlar. Bu nedenle venöz kan bu tür incelemelerde tercih edilmezler. C. Mikroflaria kontrolü için venöz kan kullanılması gerekirse bu örnek mutlaka konsantre edilmelidir. Bu amaca yönelik çeşitli yöntemler mevcuttur. 1. Örnek modifiye Knott metadu ile konsantre edilir. 2. Filtrasyon Metodu. Bu yöntemde 5 µm çaplı gözenekleri olan filtreler kullanılır. Fitrede kanın şekilli elemanları ve organizmalar takılıp kalırlar. Filtredeki kan şekilli elemanları uygun maddeler ile parçalanır ve filtre üzerindeki organizmalar geri toplanıp lam üzerine yayılır ve incelenir (Bu amaca yönelik çeşitli teşhis kitleri mevcuttur. Ticari markalar olduğu için isimler ve kullanılan malzemeler burada işlenmemiştir) Kan Örneklerinin Nakli: Kan Yayma Örneklerinin Mikroskobik İncelemeler İçin Taşınması: 1. Üzerleri etiketlenmiş ve kurutulmuş yayma preperatlar (boyanmış yada boyanmamış) uygun lam kutularına yerleştirilir. Bu kutularda lamların birbirine temasını engelleyecek ara bölmeler olmalıdır. 2. Bu lam kutusunu sağlam ve arsında şok emici destekleri olan bir başka kutuya yerleştir. Bu sayede nakil sırasında kırılmalar engellenmiş olur. 3. Örnek ile ilgili bilgiler ve gönderen ile ilgili bilgiler detaylı olarak yazılıp kutuya yerleştirilir. 4. Uygun taşıma yolu ile istenilen yere gönderilir. Tam Kan Örneğinin Nakli: 1. Sızdırmaz steril bir kap (deney tüpü vs) içerisine antikoagulanlı kan konur ve etiketlenir. Bu örnek bir kutuya yerleştirilir ve etrafına, sızdırma durumunda kanın emilmesi için emici maddeler konulur. 2. Bu kutu içerisi şok emiciler ile desteklenmiş ikinci bir kutuya yerleştirilir. Örnek (kimden, ne için ve ne zaman alındığı gibi) ve gönderen ile ilgili detaylı bilgiler yazılıp kutuya yerleştirilir. 3. Hazırlanmış kutu veya kutular en kısa sürede (8-12 saat) ilgili laboratuvara ulaştırılmalıdır. Soğuk sistem taşıma gerekebilir. Bu durum ilgili laboratuvar ile görüşülmelidir. İlaç Testleri veya Moleküler Biyoloji Testleri İçin Örnek Nakli: 1. Yukardaki paketleme işlemleri aynen uygulanır. 2. Paket oda sıcaklığında nakledilir. Antikor veya İlaç Testleri İçin Serum (yada Plazma) Örneği Nakli: 1. Paketleme ve etiketleme işlemleri yukarıdaki örneklerde olduğu gibi yapılır. 2. Ek bilgiler yazılıp kutuya konur. 3. Örnek oda ısısında ancak mümkün olduğunca kısa sürede hedefe ulaşması sağlanır. 4. Not: Parazit izolasyon (ayrımı) ve teşhislerinde süre kritik öneme sahişptir. Antikor kökenli taramalarda süre daha az önemlidir. Boyama: Kan Frotilerinin Boyaması: Hazırlanan ikili örneklerden sadece bir set boyanır. İkinci set yedekte bekletilir. Bu durum eğer boyamalarda bir hata olursa, örnek kaybını engellemiş olur. Ayrıca herhangi bir teşhis olayında daha sonraki incelemeler için kaynak oluşturur. Giemsa Boyama: -Kan parazitlerinin aranmasında ve teşhisinde kullanılır. Basit Giemsa Boyama: 1. Preperat hazırlanıp havada kurutulur. 2. Absolute metanolde bir dakika tespit edilir. 3. Kurutulmuş preperat giemsa ile boyanır (30 dakika-Giemsa boyası 1:20 oranında distile suda sulandırılır). 4. Boyama sonrası preperat distile su ile durulanır (Su akar vaziyette olmalıdır). 5. Preperat kurutulup 100X’lük objektif ile incelenir. Not: Preperatlar saklanmak istenirse üzerlerindeki mineral yağ yıkanmalıdır. Yıkama için Ksilol (XYLOL) kullanılır. Preperat üzerine ksilol dökülüp yağı ertmesi bekletilir ve ksilol akıtılıp (işlem mineral yağ tamamen kaybolana kadar bir kaç kez tekrarlanabilir) kurutulur. Geliştirilmiş Giemsa Boyama: 1.Giemsa boyamada kullanılan solüsyonların hazırlanması. A. Stok Giemsa Buffer (100X, 0.67 M) Na2HPO4 59.24 gr NaH2PO4H2O 36.38 gr Deionized water 1000.00 ml B. Otoklav yada 0.2 µm çapında delikleri olan filtre kullanarak sterlizasyon yapılır. Bu şekilde hazırlanmış stok solüsyon oda ısısında bir yıl kullanılabilir. C. Giemsa Buffer, 0.0067M, pH 7.2 (Stok giemsa buffer 100kat sulandırılır) Stok Giemsa Buffer 10.0 ml Dİstile (yada deiyonize) su 990.0 ml Solüsyon da pH7.2 olmalıdır. Kullanmadan önce kontrol edilip ayarlanır. Oda ısısında bir ay dayanır. D. Triton X-100 (% 5) Deiyonize Su (56°C’ ye kadar ısıtılır) 95.0 ml Triton X- 100 5.0 ml Ilık su içerisine Triton X-100 yavaşça ilave edilirken dairesel hareketler ile karıştırılır. Triton X-10 E. Stok Giemsa Boyası: Giemsa boyası hazır olarak satın alınabilir. Aşağıdaki formül daha iyi sonuç verdiği ileri sürülmektedir. Cam Boncuk (3 mm çapında) 30.0 ml Absolute methanol, (asetonsuz) 270.0 ml Giemsa Boya (saf-toz) 3.0 gr Glycerol (Gliserol) 140.0 ml a. Yukarda sayılan maddeleri temiz kahve renkli bir şişe içerisine yerleştirin. Ağzını sıkıca kapatın. b. Şişeyi bir çalkalayıcıda her gün 30-60 dakika ve en az 14 gün boyunca çalkalayın. c. Şişeyi ağzı kapalı olarak nemden uzak olarak oda ısısında saklayınız. Oda ısısında stok bozulmadan kalır (Stok gimza boyası eskidikçe boyama kalitesi artacaktır). d. Kullanmadan önce çalkalayıp bir numara Whatman filtre kağıdında süzün. Bu solüsyondan çalışmak üzere Giemsa boyası hazırlayın. F. Gimsa Boya Hazırlanması (% 2.5) G. Her boyama için taze olarak hazırlanması tavsiye edilir. Bir günden fazla süre geçmiş Giemsa boyası boyamalarda kullanılmamalıdır. Giemsa buffer 39 ml Stok Giemsa Boyası 1 ml Triton X-100 (%5) 2 damla 2. Boyama: A. Bir şahle (boyama küveti) içerisine yukarda açıklandığı şekilde taze olarak Giemsa boyası hazırlayın B. İkinci bir şahleyi Giemsa buffer ile doldurun ve içerisine her 40 ml için iki damla Triton X-100 ekleyin. C. Preperatı Giemsa (% 2.5) ile 45-60 dakika süresince boyayınız. D. Preperatı çıkartıp Giemsa buffer içerisine batırarak (3-5 kez) durulayın. Kalın yayma preperatlarda dikkatli olunmalıdır. E. Preperatı dik olarak bir yere yerleştirip kurutun. Notaha yoğun hazırlanan (% 10) Giemsa boyalar ile daha kısa süre bekletilerek (10 dakika) boyama yapılabilir. Ancak bu durum hem daha fazla madde kullanımını gerektirir. Hem de boyama kalitesi çok iyi olmaya bilir. İyi bir boyama yapılmış olup olmadığını pozitif örnekler kullanarak kontrol edilmesi tavsiye edilir. Boyanmamış Yayma Preperatların Uzun Süreli Saklamalar İçin Hazırlanması: Her hangi bir amaç için yayma preperatlar daha sonra incelemek için saklanabilirler. Bu saklamalar, boyama yapılmış preperatlar için sadece kuru ve temiz bir kutuda ve bir birlerine temas etmeden gerçekleştirilebilir. Anacak bazı durumlarda preperatlar hiç bir işlem yapılmadan daha sonraki uygulamalar için saklanmak istenebilir. Bu preperatlar daha sonra istenilen yöntemle işlenip incelenebilirler. 1. Yayma preperat hazırlanır ve çabucak kuruması ağlanır. 2. Örnek absolute (% 100) methanol içerisinde tespit edilir ve kurutulur. 3. Bir lam kutusuna yerleştirilir ve etiketlenir (örnek ile bilgiler kaydedilir) 4. Kutu derin dondurucularda; -70°C yada daha soğuk bir dolapta istenilen süre kadar depolanır. 5. Kullanılacak olan örnekler dolaptan çıkartılır ve boyama işlemleri öncesinde kısa bir süre kurutulur. Isı farklılığından dolayı oluşan su damlacıkları buharlaştırılıp lam kurutulur.Daha sonra boyama işlemlerine geçilir. Microskobik Muayene Kalın Yayma Preperatların İncelenmesi: Alyuvarlar (eritrosit, red blood cell-RBC) parçalanmış (eritilip yok olmuş) ve varsa paraziter organizmalar daha yoğunlaştırılmış olduğundan kontrol ve teşhis çalışmaları için daha uygundur. Karışık (mix) enfeksiyonların teşhisinde de daha yararlıdır. 1. Bütün preperatı küçük büyütme altında inceleyin (10X yada 20X objektif). Böylece büyük parazitleri (mikroflaria gibi) daha kolay teşhis edilir. 2. Daha sonra, mineral yağ ve büyük büyütme (100X objektif) ile örneği tekrar inceleyin. Bu incelemede de küçük parazitler (theileria, babesia gibi) araması yapılır. Preperatta bol miktarda akyuvar (leukosit. white blood cell-WBC) görülecektir. 3. Eğer herhangi bir paraziter yapı görülür ise, o zaman ince yayma preperat incelenerek, tür tayini yapılır. 4. Eğer hiç parazit göremediniz ise; bu durum gerçekten parazit yokluğundan mı kaynaklanıyor, yoksa inceleme devam ettirilmeli midir sorularına araştırmanın hassasiyetine göre yada klinik tabloya göre karar verilir. Hassas durumlarda preperattan en az 100 (200-300) mikroskop sahası (akyuvarların bol görüldüğü) incelenmelidir ve birden fazla preperat incelemesi yapılmalıdır. İnce Yayma Preperatların İncelenmesi: İnce yayma preperatlar farklı amaçlar için kullanılabilir. 1- Tespit edilmiş olan bir parazitin tür tayini amacı ile kullanılabilir. 2- Kalın yaymaların kuruması beklenirken hızlı bir kontrol için kullanılabilir. 3- Yeterli kalın yayma preperat olmadığında kullanılabilir. İnce yaymalarda; eğer aynı örneğin kalın yayma incelemesi yapılmamış ise önce küçük büyütmeler (10x yada 20x objektifler) ile preperat taranmalıdır. Bu sayede mikroflaria benzeri parazitler aranmış olur. Daha sonra büyük büyütme ile (100x objektif) örnek taranır. Parazitlik Yoğunluğunun Tespiti: Bazı durumlarda parazitlik (parazitemi) yoğunluğunun tespiti klinik açıdan önemli bilgiler sağlayabileceği için gerekli olabilir. Bu durumda yoğunluk tespiti ya alyuvarlara yada akyuvarlara oranlanarak hesaplanmaya çalışılır. Alyuvar(RBC) Sayısına Göre Oranlama: Örnekteki 500 ila 2000 arasında alyuvar sayılır ve incelenir, bunlardan kaçtanesinin parazitli olduğu tespit edilir. Sonuç oranlanarak yüzde (%) cinsinden ifade edilir. Eğer parazitlik oranı yüksek ( > 10%) ise 500 alyuvar (RBC) saymak yeterlidir. Düşük oranlarda (<1%) 2000 yada daha fazla alyuvarı incelemek gereklidir. Parazitlik (parasitemia- %) = (parazitli RBC / toplam RBC) X 100 Akyuvar (WBC) Sayısına Göre Oranlama: Kalın yayma preperatlarında parazitler akyuvarlara oranlanırlar. Akyuvarlar ve parazitler sayılır. Bu sayıma 500 parazit veya 1000 akyuvar sayana kadar devam edilir. Hesaplama eğer kullanılan kan hacmi biliniyorsa bilinen hacim üzerinden hesaplanır. Hacim bilinmiyor ise, bir milimetreküp kanda 8000 akyuvar olduğu ortalamasına göre yapılır. Parazitler/milimetre küp (kan) = (parazitler/ WBC) X WBC sayısı (bir milimetre küp kanda yada < 8,000 akyuvarda> Florasanlı Boyalar ile Boyanmış Kan Parazitlerinin Teşhisi: Kan yayma preperatları, acridine orange ile (Kawamoto tekniği) boyanıp ya floresan mikroskop yada özel fitrelere sahip ışık mikroskoplar altında incelenir. Bu boyamada nükleer DNA yeşile boyanırlarken, stoplazmik RNA kırmızıya boyanır. Böylece parazitleri tanımak kolaylaşır. Bu yöntem özellikler malaria (sıtma) etkenlerinin teşhisinde yaygın olarak kullanılmaktadır. Afrika trypanosoma’sında da kullanılmıştır Quantitative Buffy Coat (QBC®; Becton Dickinson) metodu, Bu yöntemde kan örnekleri direk olarak içerisinde akridine orange ve antikoagulan bulunan, cam boncuklu tüplere alınır. Örnekler hematokrit santrifüjde, santrifüj edilip floresans mikroskopla incelenir. Parazitler (malaria-sıtma) granülosit katmanın altında bulunurlar. Bu yöntem diğer kan parazitleri içinde adapte edilmiştir. Antikor (Antibody)Tespiti: Parazit enfeksiyonları konakçıların dokularında yada konakçı atıklarında (dışkı-idrar gibi) görülerek teşhis edilirler. Ancak bu teşhis yöntemleri, derin dokular içerisine yerleşen bazı hastalıklarda yetersiz kalmaktadır (toxoplasmosis yada toxocariasis). Ayrıca cysticercosis ve echinococcosis gibi hastalıklarda örnek alınması, konakçının hayatını tehlikeye sokacağından tavsiye edilmezler. Bu gibi durumlarda, belirgin bir parazit ile enfekte olmuş konakçıda, antikor testlerinin uygulanması büyük avantaj ve kolaylık sağlar. Antikor testlerinde pozitif olarak teşhis edilen konakçının enfektemi olduğu yoksa daha önce geçirdiği bir hastalığın antikorlarını mı taşıyor olduğu ayırt edilmelidir. Parazit hastalıklarında antikor tespiti hastada belirgin olmayan bir zaman da hastalığın varlığını işaret eder. Ancak hastalığın hangi safhada olduğunu kesin olarak belirlemez. Yani antikor tespit edilen hastada, hastalık başlama, gelişme safhalarında olabileceği gibi geçmiş de olabilir. Hastalık geçirmiş olan canlıda antikor düzeyi yavaşça düşer ancak tedaviden sonra dahi antikor düzeyi altı aydan bir kaç yıla kadar değişen sürelerde belirgin düzeylerde kalabilir. Bu durumda incelenen parazitin antikor yoğunluğunun (titrasyonunun), hastalık süresince ve hastalıktan sonra hangi seviyelerde olduğu bilinmesi yararlı olur. Toxoplasma gondii enfeksiyonlarında, spesifik immunoglobulin M (IgM) ve immunoglobulin A (IgA) tespiti hastalık zamanı hakkında bazı bilgiler verebilir. Ancak diğer hastalıklar için tavsiye edilmemektedir. Eğer dışkı, idrar ve kan örneklerinde şüphelenilen parazit görülmemiş ise veya negatif çıkmış ise, parazite spesifik immunoglobulin G (IgG) antikor testi istenilebilir. Parazite-spesifik IgM, IgA, yada IgE teşhis için uygun değildir. Bu nedenle bu antikorların tespiti istenmemelidir. Parazit spesifik IgG negatifken, pozitif çıkan IgM, IgA, yada IgE düzeyleri yalancı pozitif olarak değerlendirilmelidir. Uygulanan testlerin spesifitesi (özel oluşu) ve sensitivitesi (hassasiyeti) sonuçlar üzerinde çok etkilidir. Parazitler, hayat siklusları içerisinde değişik evreler geçirirler. Bu nedenle antijenler, evrelerden sadece birine spesifik olabileceği gibi genel olarak parazite (tüm evrelerinde) spesifik de olabilir. Bu nedenle kullanılacak antijen ve antikor testleri çok iyi bir incelemenin (kaynak bilgiler ve deneyler) sonunda seçilmiş olmalıdır. Testte kullanılacak olan spesifik antijenin yada antikorun spesifite dereceleri çok iyi bilinmelidir. Yayınlanmış olan kitap yada makalelerde aynı konuyu inceleyenlerin mutlak bir birinin aynı olduğunu düşünmek hatalıdır. Hatta bu tür çalışmalar farklı bölgelerde, farklı solüsyonlar yada farklı araştırmacılarca yapılmış çalışmalar olarak, sonuçları kıyaslama açısından daha önemlidir. Örnek İhtiyaçları: Bütün parazit antikor teşhis testlerinde serum yada plazma kullanılabilir. Toxoascaris veya toxoplasmosis için göz yaşı akıntıları da, serum ile beraber antikor testleri için kullanılabilmektedir. Yine, merkezi sinir sistemi enfeksiyonlarında da (cysticercosis yada toxoplasmosis) serebrospinal (beyin-omurilik) sıvıları, serum eşliğinde incelemeye alınabilir. Bütün örnekler oda ısında nakledilebilirler. Bu incelemeler için akut fazdaki enfeksiyonlardan örnek istenilmez. Geçerli sonuçlar genellikle bir test sonucunda elde edilebilmektedir. Parazit enfeksiyonları hasta üzerinde fark edildikleri dönemde, incelenmeye alınırlar ki bu zaman enfeksiyonun akut safhası genellikle geçmiş olur.

http://www.biyologlar.com/kan-parazitleri-1

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

Evrim Konusunda ilk Düşünceler

Dini Düşünceler: Düşünebilen insanin, dogadaki çeşitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düşünceler başlamiş demektir. İlk yaygın düşünceler, Asur ve Babil yazıtlarında; daha sonra bunlardan köken alan Ortadoğu kökenli dinlerde görülmüştür. Hemen hepsinde insanın özel olarak yaratıldığı ve evrende özel bir yere sahip olduğu vurgulanmış; türlerin değişmezliğine ve sabitliğine inanılmış ve diğer canlılar konusunda herhangi bir yoruma yer verilmemiştir. Bununla beraber Kuran’da yaratılışın kademeli olduğu vurgulanmıştır. Yalnız bir Türk din adamı, astronomu ve filozofu olan Hasankale’li İbrahim Hakkı(1703-1780), insanların değişik bitkilerden ve hayvanlardan köken aldığını belirtmiştir. 17. yüzyıla kadar, piskopos Ussher’in ve diğerlerinin savunduğu ‘türlerin olduğu gibi yaratıldığı ve değişmeden kaldığı fikri’ yani ‘Genesis’ geniş halk kitleleri tarafından benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya İÖ 4040 yılında, Ekim ayının 4'ünde sabah saat 9.00'da yaratılmıştı. Bu düşünce Ussher tarafından İncil’e eklenmiştir. Daha sonra yine Hıristiyan din adamları olan Augustin (İS 354-430) ve Aquinas (İS 1225-1274) tarafından canlıların basit olarak tanrı tarafından yaratıldığı ve daha sonra değişerek çeşitlendiği savunulmuştu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlaşilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden oluştugu ileri sürülerek, yaratilişin ilk olark inorganik kökenli oldugu ve daha sonra eşeylerin ortaya çiktigi savunulmuştur. Yunanlılardaki ve Ortaçağdaki Düşünceler: Yunan filozoflarından Empedocles, İÖ 500 yıllarında bitkilerin tomurcuklanma ile çeşitli hayvan kısımlarını, bu kısımların da birleşmesiyle hayvanların oluştuğunu savunmuştu. Thales(İÖ 624-548), Ege Denizindeki canlıları çalışmış ve denizlerin canlılığın anası olduğunu ileri sürmüştür. Aristo (İÖ 384-322) bitkiler ve hayvanlar konusunda oldukça geniş bilgiye sahipti. Onların doğruya yakın tanımlarını vermiş ve gelişmişliklerine göre sınıflandırmıştır. Canlıların metabiyolojik olarak değişerek birbirlerinden oluştuklarına ve her birinin tanrıların yeryüzündeki ilahi taslakları olduklarına inanmıştır. Daha sonra, canlıların kökenini Der Rerum Natura adlı şiirinde veren Lucretius (İÖ 99-55) u anmadan ortaçağa geçemeyeceğiz. Yeni Çağdaki ve Yakın Çağdaki düşünceler: Rönesans ile canlılar konusundaki bilgilerin, en önemlisi evrim konusundaki düşürnürlerin sayısı artmıştır. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarının, dişlerinin, kemiklerinin ve diğer parçalarının bugünkü canlıların benzer tarafları ve farkları saptanmıştır.Ayrıca yüksek dağların başında bulunan fosillerin, yaşayanlarla olan akrabaliklyarı gözlenmiştir. Bu gözlemlerin ışığı altında, her konuda çalışmış, düşünür ve sanatçı olan Leonardo da Vinci, canlıların tümünün bir defada yaratıldığını ve zamanla bazılarının ortadan kalktığını savunmuştur. Buna karşılık birçok doğa ibilimcisi, canlıların zaman zaman oluştuklarını doğal afetlerle tamamen ortadan kalktıklarını ve yeniden başka şekillerde yaratıldıklarını ileri sürmüştür. Bu şekilde farklı devirlerde 2arklı canlıların yaşaması kolaylıkla açıklanabiliyordu. Her doğal yıkımdan sonra, oluşan canlıların, organizasyon bakımından biraz daha gelişmiş olduklarına inanılıyordu. Bu kurama “Tufan Kuramı” denir. Bu yıkımın yedi defa olduğu varayılmıştır. Cuvier, 1812 yılında, fosiller üzerinde ünlü kitabını yanılayarak fosillerin, kesik, kesik değil, birbirlerinin devamı olacak şekilde olduklarını bilimsel olarak açıklamıştır. 18. yüzyılın sonu ile 19. yüzyılın başlangıcında, üç İngiliz jeoloğun çalışmalarıyla katstrofizm kuramı yerine ‘Uniformizmi’ kuramı getirildi. Hutton 1785'te geçmişte de bugünkü gibi jeolojik kuvvetlerin rol oynadığını, yükselmelerin ve alçalmaların, keza erozyonlaların belki de daha kuvvetli olurak meydene galdiğini ve yüksek dağlarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yaılabileceğini buldu. John Playfair’in yapıtı 1802'de yayınlandı. Üçüncü araştırıcı, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanısıra, canlıların büyük afetlerle değil, çevre koşullarının uzun sürede etki etmesiyle değiştiğini savundu. Kitabının bir yerinde ‘geçmişteki güçler bugünkünden hiç de çok farklı değildi’ diye yazmıştır. Bu yaklaşım, Nuh Tufanı’nın gerçeküstü olduğunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemiştir. Lamarck’ın Düşünceleri Organik evrimi konusunda ilk kapsamlı kuram 1809 yılında ‘Philosophie Zoologique’ adlı yapıtıyla, Fransız zooloğu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamanının meslektaşları gibi, tüm canlıların, gelişimlerini ve işlevlerini denetleyen bir canlılık gücüyle donatıldığına ve değişen çevre koşullarına karşı bir savaşım gücünün olmadığına inanıyordu. Kitabında, hayvanları, karmıaşıkyıklarına göre düzenlemeye çalışırken, yanlışlığı daha sonra kesin olarak saptanan bir varsayımı ileri sürdü: “ Eğer bir onrgan fazla kullanılıyorsa, o organ gelişmesini sürdürerek, daha etkin bir yapı kazanır”. Bu varsayıma ‘lamarkizm’ denir. Ayrıca canlının yaşamı boyunca kazanmış olduğu herhangi bir özelliğin, gelecek döllere geçtiğine de inanmıştı. Örneğin demircinin oğlunun kol kasları diğerlerine göre daha iyi gelişir. Zürafalırın atası kısa boyunlu olmalıran karşın, yaşadıkları ortamın bir zaman sonra kuraklaşarak, dibi çıplak ve çayırsız ağaçların bulunduğu ortama dönüşmesi sonucu, zürafalar ağaçların yapraklarıyla beslenmek zorunda kaylmışlar ve böylece boyunları dölden döle uzamıştır. Körfarelerin gözlerini, karıncaayısının dişlerini yitirmesini; su kuşlarının perde ayakları kazanmasını bu şekilrde açıklamıştır. Bu üaçıklamalar,kalıtımın yasaları ortaya çıkarılmadan önce, çok iyi bir açıklama şekli olarak benimsendi. Fakat kalıtım konusunda bilgiler gelişince, özellikle Weismann tarafından somatoplazma ile germplazma arasındaki kuramsal farklar bulununca, evrimsel değişmenin, vücut hücrelerinde olmadığı, sadece eşeysel hücrelerdeki kalıtsal materyalin etkisi ile yürütüldüğü anlaşıldı. Böylece Lamarck’ın varsayımı tümüyle geçerliliğini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre koşullarına uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, doğduğu zaman taşıdığı kalıtım materyalinin izin verdiği ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüşler, fakat inandırıcı olamamışlardır. Charles Darwin ve Alfred Wallace’ın Görüşleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkıda bulundu. Birincisi, organik evrim düşüncesini destekleyen zengin bir kanıtlar dizisini toplayarak ve derleyerek bilim dünyasına sundu. İkincisi, evrim mekanizmasının esasını oluşturan ‘Doğal Seçilim’ ya da diğer bir deyimle ‘Doğal Seçim’ kuramının ilkelerini ortaya çıkardı.Evrim Kuramı, bilimsel anlamda 19. yy kuramıdır; ama bu kuram 20. yy’da büyük bir kuram niteliğini aldı. Bu nedenle Darwin’ i biraz daha yakından tanımalıyız: Darwin, 1809'da İngitere’de doğdu. Babas, onun hekim olmasını istiyordu; 16 yaşında Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak başladığı hekimlik eğitimini ve daha sonra başladığı hukuk eğitimini sıkıcı bularak her ikisini de bıraktı. Sonunda Cambridge Üniversitesi’ne bağlı Christ Kolejinde teoloji (= dinibilimler) öğrenimi yaptı. Fakat Edinburg’daki arkadaşlarının çoğu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kırkanatlıları toplayan bir grupla ilişki kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanıdı ve onun önerileri ile dünya çevresinde beş sene sürecek bir geziye katılmaya karar verdi. Beagle, 1831 yılında Devonport limanından denize açıldı. Lyell’in kitabını gezisi sırasında okudu ve dünya yüzünün devamlı değiştiğini savunan düşüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanları inceliyor; sayısız gözlem yapıyor ve dikkatlice notlar alıyordu. Gemi, ilk olarak Güney Amerika’nın doğu sahilleri boyunca güneye inip, daha sonra batı kıyılarından kuzeye doğru yol aldı. Bu arada Arjantin’in Pampas’larında soyu tükenmiş birçok hayvanın fosilini buldu ve yine jelojik aktmanlardaki fosillerin değişimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratıldığına ilişkin düşüncelere olan inancını yitirmeye başladı. Yine insan da dahil, çeşitli bitki ve hayvan türlerinin değişik ortamylara yaptıkları uyumları, bu arada yaşadığı bir deprem olayı ile yeryüzünün nasıl değişebileceğini gözledi. Beagle, 1835 yılında, Güney Amerika kıtasının batı kıyısına yaklaşık 1000 km kadar uzak olar Galapagos adalarına ulaştı. Bu adalarda yaptığı gözlemlerde, büyük bir olasılıkla aynı kökenden gelmiş birçok canlının coğrafik yalıtım nedeniyle, birbirlerinden nasıl farklılaştıklarını ve her canlının bulunduğu ortamdaki koşullara nasıl uyum yaptığını bizzat gözledi. Örneğin ispinoz kuşlarının, dev kaplumbağaların, dev kertenkelelerin, adalara ve her adanın değişik koşulları taşıyan bölgeliren göre çeşitlenmelerini, yapısal uyumlarını, varyasyonlarını ve sonuç olarak uyumsal açılımlarını gördü. Buradaki bitkilerin ve hayvanların hemen hepsi, Amerika kıtasının güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzaklığı oranında farklılaşmalar gösteriyordu. Daha sonra araştirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu araştirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulaşti. Darwin, ileri süreceği fikrin yankı uyandıracağını, dolaysıyla yeterince kanıt toplaması gerekeceğini biliyordu. Kanıtlar evrimsel dallanmayı göstermekle birlikte, bunun nasıl olduğunu açıklamaya yetmiyordu. İngiltere’ye varışından itibaren 20 yıl boyunca biyolojinin çeşitli kollarındaki gelişmeleri de dikkatlice inceleyerek, gözlemlerini ve notlarını biraraya getirip doğal seçilim konusundaki düşüncesini ana hatlarıyla hazırladı. 1857 yılında düşüncelerini kabataslak arkadaşlarının görüşüne sundu. Bu sırada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yıl Malaya’da ve Doğu Hindistan’da dört yıl Amazon ormanlarında bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanların dallanmalarındaki ve yayılışlarındaki özelikleri görmüş ve doğal seçilim ilkesine ulaşmış, bir doğa bilimcisi olan Alfred Russel Wallace’ın hazırlamış olduğu bilimsel kitabın taslağını aldı. Wallace, Darwin’e yazdığı mektupta eğer çalışmasını ilginç bulursa, onu, Linnean Society kurumuna sunmasını diliyordu. Çalışmasının adı “ Orjinal Tipten Belirsiz Olarak Ayrılan Varyetelerin Eğilimi ” idi. Darwin’in yıllarını vererek bulduğu sonuç, yani canlıların yavaş yavaş değişmesine ilişkin görüş, Wallace’ın çalışmalarında yer almaktaydı. Durum, Darwin için üzücüydü. Fakat arkadaşlarının büyük baskısıyla, kendi çalışmasını, Wallace’ınkiyle birlikte basılmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basılmadan duyulan bu düşünceler 24 Kasım 1859'da “Doğal Seçilim ya da Yaşam Savaşında Başarılı Irkların Korunmasıyla Türlerin Kökeni” kısaltılmış adıyla Türlerin Kökeni yayınlandı. İlk gün kitapların hepsi satıldı. Herkes, organik evrim konusunda yeni düşünceler getiren bu kitabı okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazırladı. Çünkü jeolojide, paleontolojide, embriyolojide, karşılaştırmalı anatomide birçok aşama yapılmış ve birden yaratılmanın olanaksızlığı ortaya konmuştu. Darwin, uysal bir adam olduğundan, bir tepki yaratmamak için, eserinin son kısmını tanrısal bir yaratılış fikrini benimsediğini yazarak bitirmişti. Buna rağmen, başta din adamları ve bazı bilim adamları dini inançlara karşı geliniyor diye bu çalışmaya karşı büyük bir tepki başlattılar. Hatta eseriyle Darwin’e çok büyük yardımlarda bulunan Lyell ve gezisi sırasında geminin kaptanlığını yapan Fitzroy , bu karşı akımın öncüleri oldular. Bu arada Huxley, çok etkin bir şekilde Darwin’e destek oldu. Darwin, çalışmalarına devam etti, birinci eserinde değinmediği insanın evrimiyle ilgili düşüncelerini İnsanın Oluşumu ve Eşeye Bağlı Seçilim adlı eseriyle yayımladı. Bu eserde insanın daha önceki inançlarda benimsenen özel yaratılışı ve yeri reddeliyor, diğer memelilerin yapısal ve fizyolojik özelliklerine sahip olduğu ve iyne diğer çcanlılar gibi aynı evrimsel yasalara bağlıolduğu savunuluyordu. Ayrıca eşeyseyl seçmenin, türlerin oluşumundaki önemi belirtiliyordu. Darwin’in “İnsanın Oluşumu ” adlı eseri, başlangıçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelişmeler ve bulgular, özellikle kalıtım konusundaki bilgilerin birdikmesi, Darwin’in görüşünün ana hatlarıyla doğru olduğunu kanıtlamıştır. Doğal Seçilim Kuramının Ana Hatları (Darwin- Wallace Temellerini atmıştı) Bu kuram, ana hatlarıyla iki gerçeği, üç varsayımı ortaya çıkarmıştır. Gerçekler şunlar: 1. Tüm canlılar, ortamdaki sayılarını koruyacak matematiksel oranların üzerinde çoğalma eğilimindedir. Elemine edilen bireylerle bu fazlalık azaltılır ve popülasyonların dengede kalması sağlanır. Doğal koşullar sabit kaldıkça bu denge korunur. 2. Bir türe ait popülasyondaki bireylerin kalıtsal özelliği birbirinden farklıdır. Yani canlı popülasyonlarınnın hepsi varyasyon gösterir. Darwin ve Wallace, bunun nedenini tam anlayamadılar ve varyasyonların canlıların iç özelliği olduğunu varsaydılar. Bugün bu varyasyonların mutasyonlarla oluştuğu bilinmektedir. Varsayımlar: 1. Ayakta kalan bireylerin sayısı, başlangıçta meydana gelenlerden çok daha az olduğuna göre, ayakta kalabilmek için canlılar arasında karşılıklı, besin, yer vs için, saöaşım, ayrıca sıcaklık, soğukluk, nem vs. gibi doğal koşullara karşı bir mücadele vardır. Bu savaşım ve mücadele bir ölüm kalım kavgasıdır. Gerek besin ve yer gereksinmesi aynı olan canlı türleri arasında ve gerekse normalden daha fazla sayıda bireyle temsil edilen popülasyonlardaki aynı türe bağlı bireyler arasında, yani doymuş popülasyonlarda bir yaşam kavgası vardır. Bu görüş ilk defa Malthus tarafından ortaya atılmıştır’Yaşamak İçin Savaş”. 2. İyi uyum yapacak özellikleri (= varyasyonları) taşıyan bireyler, yaşam kavgasında, bu özellikleri taşıayan bireylere karşı daha etkili bir savaşım gücü göstereceğinden, ayakta kalır, gösteremeylenler ise yok olur. Böylece bulunduğu bireye o koşullara en iyi uyum yapabilecek yeteneği veren özellikler, gelecek döllere kalıtılmış olur. Bu varsayımın anahtar cümleciği “Biyolojik olarak En İyi Uyum Yapan Ayakta Kalır”dır. 3. Bir bölgedeki koşullar digerlerinden farkli oldugundan, özelliklerin seçimi de her bölgede, koşullara göre farkli olur. Çevrede meydana gelecek yeni degişiklikler, tekar yeni uyumlarin meydana gelmesini saglar. Birçok döl boyunca meydana gelecek bu tipp uyumlar, daha dogrusu dogal seçilim, bir zaman sonra, atasindan tamamen degişik yeni bireyler toplulugunun ortaya çikmasini saglar’Uyumsal Açilim’. Farklilaşmanin derecesi, eskiyle yeni popülasyondaki bireyler bir araya getirildiginde çiftleşmeyecek, çiftleşse dahi verimli döller meydana getiremeyecek düzeye ulaşmişsa, artik bu iki popülasyon iki farkli tür olarak degerlendirilir. Bir ata popülsayondaki bir kisim bireyler, taşidiklari varyasyon yetenekleriyle herhangi yeni bir ortama uyum yaparken, diger bir kismi da taşidigi farkli varyasyonlar nedeniyle daha degişik bir ortama uyum yapabilir. Böylece uyumsal açilim ortaya çikar. Bununla beraber, bitkiler ve hayvanlar, yaşam kavgasinda, bulundugu koşullarda, yarari ya da zarari olmayan diger birçok varyasyonu da meydana getirebilir ve onlari daha sonraki döllere aktarabilir. Darwin’in kuramı o karar akla yatkın ve o kadar kuvvetli kanıtlarla desteklendi ki, birçok biyolog onu hemen kabul etti. Daha önceki varsayımlar, yararsız organların ve yapıların neden meydana geldiğini bir türlü açıklığa kavuşturamamıştı.Bugün, türler arasında görülen birçok farkın, yaşam savaşında hiç de önemli olmadığı bilinmektedir.Fakat bu küçük farkları oluşturan genlerdeki herhangibir değişiklik, yaşam savaşında büyük değerleri taşıyan fizyolojik ve yapısal değişikliklerin oluşmasına neden olabilir. Uyumsal etkinliği olmayan birçok özelliği oluşturan genler, kromozomlar içinde yaşamsal öneme sahip özellikleri oluşturan genlerle bağlantı halinde olabilir. Bu durumda bu varyasyonlar elenmeden gelecek döllere aktarılabilir. Bu uyumsal etkinliği olmayan genler, bir popülasyon içerisinde gelecekteki değişikliklerde kullanılmak üzere ya da genetiksel sürüklenmelerde kullanılmak üzere fikse edilmiş olarak bulunur. Evrim Kuramına Bilimsel İtirazlar Belki insanlık tarihinin ilk dönemlerinden beri uygulanmakta olan öğretim ve eğitim yöntemleri, belki dini inançların etkisi, belki de insanın doğal yapısı, insanın yeniliklere karşı itirazcı olmasına neden olmuştur. Bu direniş, en fazla da eksik kanıtlarla desteklenmekte olan Evrim Kuramı’na yapılmıştı ve yapılmaktadır. Özellikle dogmatik düşünceye yatkın olanlar, bu karşı koymada en önemli tarafı oluşturur. Bununla birlikte son zamanlarda, birçok aydın din bilimcisi de olmak üzere, iyi eğitim görmüş toplumların büyük bir kısmı Evrim Kuramı’na sahip çıkmaktadır. Evrim Kuramı’na, Darwin’den beri bilimsel karşı koymalar da olmuştur. Özellikle varyasyonların zamanla popülasyonlardan kaybolacağı inancı yaygındı. Çünkü bir varyasyona sahip bir birey, aynı özellikli bireyle çifleşmediği takdirde, bu varyasyonun o popülasyondan yitirileceği düşünülmüştü. Popülasyon genetiğinde, çekinik özelliklerin, yitirilmeden kalıtıldığı bulununca, itirazların geçerliliği de tümüyle kaybolmuş oldu. Darwin, Pangeneze, yani anadan ve babadan gelen özelliklerin, bir çeşit karışmak suretiyle yavrulara geçtiğine inanarak hataya düşmüşü. Eğer kalıtsal işleyiş böyle olsaydı, iyi özelliklerin yoğunluğu gittikçe azalacaktı ve zamanla kaybolacaktı. Halbuki, bugün, özelliklerin sıvı gibi değil, gen denen kalıtsal birimlerle kalıtıldığı bilinmektedir. İkinci önemli karşıkoyma, bu kadar karmaşık yapıya sahip canlıların, doğal seçimle oluşamayacağıydı. Çünkü bir canlının, hatta bir organın oluşması, çok küçük olasılıkların biraraya gelmesiyle mümkündü. Fakat cınlıların oluşmasından bugünekadar geçen uzun süre ve her bireyde muhtemelen ortaya çıkan küçük değişikliklerin, yani nokta mutasyonların, zamanla gen havuzunda birikmesi, sonuçta büyük değişikliklere neden olabileceği hesaplanınca, bu karşı koymalar da kısmen zayıflamıştır. Üçüncü bir karşikoymaya yanit vermek oldukça zordur. Karmaşik bir organ yarar saglasa da birden bire nasil oluşabilir? Örnegin omurglilarda, gözün bir çok kisimdan meydana geldigi bilinmektedir. Yalniz başina bir kismin, hehangi bir işlevi olamaz. Tümü bir araya geldigi zaman görme olayi saglanabilir. O zaman degişik kisimlarin ya ayni zamanda birden meydana geldigini varsaymak gerekiyor- bu popülasyon genetegi açisindan olanaksizdir- ya da yavaş gelşitigini herhangi bir şekilde açiklamak gerekiyor. Bir parçanin gelişmesinden sonra digerin gelişebilecegini savunmak anlamsizdir; çünkü hepsi birlikte gelişmezse, ilk gelişen kisim, işlevsiz olacagi için körelir ya da artik organ olarak ortadan zamanla kalkar. Bununla birlikte, bu teip organlarin da nokta mutasyonlarin birikmesiyle, ilkelden gelişmişe dogru evrimleştigine ilişkin bazi kanitlar vardir. Evrim Kuram’nda dördünrcü karanlık nokta, fosillerdeki eksikliktir. Örneğin balıklardan amfibilere, amfibilerden sürüngenlere, sürüngenlerden memelilere geçişi gösteren bazı fosiller bulunmakla birlikte(bazıları canlı olarak günümüzde hala yaşamaktadır), tüm ayrıntıyı verebilecek ya da akrabalık ilişkilerini kuşkusuz şekilde aydınlatabilecek, seri halindeki fosil dizileri ne yazık ki bazı gruplarda bulunanamımıştır. Bununla birlikte zamanla bulunan yeni fosiller, Evrim Kuramı’ndaki açıklıkları kapatmaktadır. Anorganik Evrim Bulutsuz bir yaz gecesi gökyüzüne bakan her insan, içinde yaşadigi evrenin nasil oluştugunu, onun sonsuzlugunu, içinde başka canlilarin, belki de düşünebilir canlilarin bulunabilecegini ya da sinirli oldugunu, özellikle o sinirin ötesinde neler olabelecegini, dünyadakilerden başka canli olmadigini, kapatilmiş oldugu evrensel yalnizligi ve karantinayi düşününce irkilir.Bu duygu coşkularimizin kaynagi, inançlarimizin temeli ve çok defa teslimiyetimizin nedeni olmuştur. Ilkçaglardan beri evrenin yapisi üzerinde varsayimlar ileriye sürülmüş ve çok defa da bu görüşler, belirli çevrelerce politik basiki araci olarak kullanilmiştir. Yüzyilimizin oyldukça güvenilir ölçümlerinin ve gözlemlerinin ışığı altında ortaya atılan Anorganik Evrim Kuramı’nı incelemeden, evrenin oluşumu konusundaki düşüncelerin tarihsel gelişimine kısaca bir göz atalım. Gerek ilkçağlarda, gerekse ortaçağda, evrenin merkezinin dünya olduğu ve dünyanın da sabit durduğu savunulmuş, diğer tüm gök cisimlerinin Dünya’nın ektrafını saran evrensel kürenin kabuğu üzerinde çakılı olduğu varsayılmıştır. Bu zarfın ötesi, Tanrısal gök olarak tanımlanmıştır. Bruno’ya kadar hemen tüm görüşler, evrenin sınırlı boyutlar içerisinde olduğu şeklindeydi. İlk -ve ortaçağın değişik bir çok toplumunda tanrı kavramının gök cisimler ile özdeşleştirildiği görülmektedir. Gökyüzünün mekaniği konusunda ilk ciddi gözlemler, Asurd, Babil, Mısır kültürlerinde yapılmış, bazı evrensel ölçümler ve ilkeler bulunmuştur.Fakat yaratılışı konusundaki düşünceler çoğunlukla din adamlarının tekeline bırakılmıştır. İlk defa Giordano Bruno, yıldızların da bizim Güneş sistemimiz gibi, gökte asılı olarak durduğunu ve evrenin sonsuz olduğunu zamanın din adamlarına ve filozoflarına karşı savundu. Çünkü Bruno’ya göre, evren, tanrının kendisiydi ve onu sınırlı düşühmek Tanrı kavramına aykırı düşmekteydi. Düşünüclerinden dolayı 17 Şubat 1600 yılında, Roma’da, halkın gözü önünde yakıldı. Immanuel Kant, Bruno’dan 150 yıl sonra, evreni Tanrının yarattığını savunarak, onun sonsuz büyük olması gerekeceğini, pozitif bir kanıta dayanmadan ileri sürdü. Daha sonra Olbers, gökyüzünün, geceleri neden karanlık olduğunu merak etti. Çünkü ışık veren gökkcisimlerinin, ana hatlarıyla evrende homojen bir dağılım gösterdiği bilinmekteydi. Fiziki yasalarından bilindiği kadarıyla, bir kaynaktan gelen ışık şiddeti uzaklığın karisi ile aazalmaktaydı.Fakat buna karşın küresel bir şekilde, hacim, yanrıçapın, yani uzaklığın küpüyle artmaktaydı. Dolaysıyla dühnyaya ışık gönderen kaynakların ışık şiddeti, uzamklıklarının karesi oranında çoğalmaktaydı. Bu durumda, evrenin çapının büyüklüğü oranında, dünyaya gelen ışık miktarı fazla olmalıydı.Halbuki geceleri karanlıktır, yani dünyanın gökyüzünü aydınlatacak kadar ışık gelmemektedir. Öyleyse evrenin boyutları sınırlı olmalıydı. Olbers’in bizzat kendisi, bu inanılmazı sınırlı evren tanımını ortadan kalrdırmak için, ışık kaynaklarının gittikçe azaldığını varsaymıştır. Yüzyılımızda, ünlü fizikçi Einstein, evren konusunda hesaplarını yaparken, onun sabit boyutlar içerisinde çıktığını gördü. Sonuç kendisine dahi inanılmız geldi. Bu nedenle sonucu değiştirmek için, denklemlerine, yanlışlığı sonradan saptanan, doğal kuvvetler dediği, bir takım kozmik terimler ekledi. Hubble, 1926 yılında, çıplak gözle görülmeyen; ama fotoğraf camında iz bırakan, bizden çok uzak birtakım spiral nebulalar saptadı. Spiral nebulaların, uzun dalgalı ışık (kırmızı ışık) çıkardıkları 1912 yılından beri bilinmekteydi. Hubble, 1929 yılında, bu nebulalaların ışığının kırmızıya kaymasını, Doppler etkisi ile açıklayarak, ünlü kuramını ortaya attı. Yani tüm nebulalar bizden ve muhtemelen birbirlerinden büyük hızlarla uzaklaşmaktaydı, yani evren her saniye yapısını değiştirmekte, genişlemekydi. Böylece dünyaya gönderdikleri ışığın frekansında, kaynağın hızla uzaklaşmasından domlayı, azalma, yani ışığın döküldüğü yerde, ışığın kırmızıya kaydığı gözlenmekteydi Işık kaynakları gözlenen yere doğru hızla yaklaşsaydı, ışıklarının maviye kaydığı, yani gözlem yerine ulaşan ışığın frekansında artma görülecekti. Bu cisimlerin hızı bizden uzaklaştıkça artmaktaydı.Gözlenebilen en uzaktaki gök cisimleri (dünyadan 8 milyar ışıkı yılı uzakta ve 240. 000 km/s hıza sahip) birkaç yıml içerisinde tamamen kayboluyor, yerlerini kuvvetli radyo dalgaları veren kuasarlara bırakıyorlardı Kuasarların nasıl birg ök cismi oldukları tam olarak bilinmemektedir. Birçok astrofizikçi, cisimlerin kuasarlara dönüştüğü bu bölgeleri, evrenin kıyıları olarak tanımlamada fikir birliği etmektedir. Hubble’ın bu bulgularını duyan Einstein, daha önce denklemlerine eklediği kozmik terimleri ve ilave sayıları sessizce geri çekti. Çünkü, onlarsız yaptığı tüm işlemler hemen henmen doğruydu. Böylece evrenin büyüklüğünün sonlu, yapısının değişken olduğu kesin olarak kanıtlanmaktaydı. Evren patlarcasına genişliyor, buna bağlı olarak birim hacimdeki madde miktarı, yani yoğunluk azalıyordu. Bu genişlemenin bir başlangıcı olmalıydı. (Demirsoy, Ali, Yaşamin Temel Kurallari Cilt-1, Kisim-1, Onbirinci Baski, Ankara 1998, s:543-555) Evrim Kuramında Bir Paradoks İngliz bilim adamı Charles Darwin (1809-1882) ve Alfred Russel Wallace (1823-1913) gerek yaptıkları seyahatler sonucunda elde etmiş oldukları coğrafik deller gerekse mevcut karşılaştırmalı anatomi çalışmalarıyla emriyoloji bilgilerini kullanmak suretiyle ve de Malthus’un da etkisiyle, şekkillendirdikleri evrim kuramında canlıların yaşamlaranı sürdürebilmelerinde iki gücün etkin olduğunu belirlemişlerdir. Bunlardan birisi doğal eleme gücüdür; canlı bu güç sayesinde çevre şartlarına uyum göstererek yaşamını devam ettirebilme şansına sahip olabilir; kendine nisbetle şartlara uyum göstermeyenler yaşamlarını sürdüremezler, yok olurlar. Uyum gösterenler ise çevre şartlarına uygun olarak değişim gösterirler. Böylece, meydana gelen değişimler sonucunda yeni türler ortaya çıkar. Ancak, canlılarda bir ikinci güç daha vardır; o da ataya dönüş gücüdür (atavizm). Canlı ne kadar asıl tipinden uzaklaşmış olursa olsun, atalarına dönüş meyli taşır ve dolaysıyla söz konusu dönüşü yapabilir. Bunun tipik örneğini Darwin, güvercinlerde göstermiştir. Evcilleştirilmiş güvercinlerin yabanıl kaya güvercinlerine dönüş göstermesi gibi. Evrim kuramını desteklemek üzere, bu iki güce ek olarak, Darwin ve Wallace ‘koruyucu benzerlik’ ten söz ederler. Buna göre canlılar yaşamlarını sürdürebilmek için doğal çevre şartlarına uyarlar; örneğin çölde yaşayan canlıların renkleri sarı tonlarındadır; ormanda yaşayan hayvanların renkleri çok parlaktır; kutuplardaki hayvanlar için ise aynı şekilde, çevreye uyum göstermiştir; genellikle beyaz renktedir. Buna paralel olmak üzere, hayvanların kendilerini korumak için bazı başka korunma yollarını da denedikleri görülmüştür. Bazı hayvanlar, sansarlar gibi, kötü koku salar ya da seslerini daha güçlü hayvanlara benzeterek düşmanlarına karşı kendilerini korur. Koruyucu benzerlik, aslında evrim kuramıyla garip bir şekilde zıt düşmektedir. Çünkü eğer canlı, mimikri, yani daha güçlüyü taklit etme şeklinde bir kuruyucu benzerlik gücüne sahipse, o takdirde, nisbeten kuvvetli olan canlılara karşı koruyucu bir silah geliştirmiş olur ve her ne kadar evrim kuramına göre, yaşamını sürdürebilmek için güçlü olması gerekiyorsa da, taklit kaabiliyeti sayesinde, zayıf olsa da, yaşamını sürdürebilme şansına sahip olur. Doğabilimler yapmış oldukları araştırmalarla, doğada birçok mimikri belirlemeyi başarmışlardır. (Esin Kahya, AÜ DTCF Felsefe Bölümü, Bilim ve Teknik, Mayıs 1995, 330. sayı) Bilgi Çocuklarımızın yüzüne aynaya bakar gibi bakıyoruz. Onlar bizim yeniden dirilişimizdir. Kendileri tıpkı bize benzer yapabilmeleri çin hücrelerinde bulunan, bizim fiziksel yapımızı belirleyen bilgiyi, onlara sperm ve yumurta olarak veriyoruz. Bu bilgi bizim geleceğe armağanımızdır. Hücre yapımı için gerekli bilgi; harita, plan veya taslak niteliğindedir. Bir rehber, bir kitap, bir broşür gibi de denebilir. Bu rehber çok özel bir yaratmayı gerçekleştirecek olan aracının veya makinenin, canlı üretme makinesinin “anlayacağı” eksiksiz bir bilgi anahtarı olmalıdır. Genler Genetek bilimi, her canlının özelliklerinin (örneğin göz rengi) kalıtımla geçtiğini, yani yavruda hassas bir şekilde yeniden ortaya çıktığını göstermişttir. Kişisel özelliklerini düzenleyen bilgi, “genler” denilen özel varlıklarla nesilden nesile geçer. Her belirgin kalıtımsal özelliğin ayrı bir geni daha vardır. Genetik biliminin kurucusu Gregor Mendel 1860'larda, genlerin kalıtımla gerçek şeyler gibi; sulandırılmadan, bölünmeden, karışmadan aktarıldığını açığa çıkardı. Öyleyse genler, her biri (s:19) organizmanın belirli bir özelliğini içeren, kalıtımla yavruya aktarılabilen küçük bilgi paketleridir diyebiliriz. 1920'lerde büyük genetikçi Thomas Hunt Morgan, genlerin hücrei içindeki yerlerini buldu. Bütün hücrelerde, çekirdek dedğimiz kapalı bir kap vardır. Hücre bölünüp iki hücre haline gelirken, ilk önce bu çekirdeğin bölündüğü, dolaysıyla hücre içinde önemli bir rolü olduğu daha önce de biliniyordu. Yani, tek hücrenin servetini yeni hücrelere eşit bölüştürme işlemi, çekirdekte başlıyordu. Dahası; mikroskop, çekirdeğin içinde kromozom denilen iplik gibi yapıları açığa çıkardı. Bu yapılar, çekirdeki bölünmeden kendilerini bir kat artırıyorlar ve her kromozom dizini, bir yeni “yavru” hücrenin içine yerleşiyordu. Bu düzenleme yüzünden, koromozomların genlerin yuvaları olmalarından kuşkulanıyorlardı. Morgan, adi meyve sineklerini deney hayvanı olarak kullanarak bunun gerçekten de doğru olduğunu, bir dizi ince deneyle kanıtladı. Bu işi tamamlandığında, genlerin kromozom ipliklerinin etrafında top top sarılmış oldukları artık biliniyordu. Genler Neden Yapılmışlardır? Kromozomlar (genler) neden yapılmışlardı? Biyolojide kuşkusuz çok önemli bir yeri olan Oswald Avery’nin deneyleri bu soruya çok açik ve parlak bir yanit getirdi. Çalişmalari, şimdi “moleküler biyoloji” dedigimiz modern çagi açti. 1940'larin başinda Avery, iki tarafli zatürreye (akciger iltihasbi) neden olan bakteriyle ugraşiyordu (penisilin bulunmadan önce, en büyük ölüm nedenlerinden biriyldi bu hastalik). Yaptigi deneylerde açiklayamadigi şaşirtici sonuçlar buldu. (s:20) Ölü zatürre bakterileri, kötü niteliklerini, zatürre yapmayan türden canli bakterilere geçirebiliyorlardi. Bu, tehlikeli ölü bakterilerin, canli ve zararsiz bakterileri tehlikeli hale getirebilmeleri demekti.Bu nitlik bir defa geçirilince artik kalici oluyor ve bir zamanlar iyi huylu olan bakterilerin gelecek kuşaklarina kalitimla geçiyordu. Hastaliga neden olabilme kapasitesi bir veya bir grup özellekten kaynaklanir. Bu özellikler, genler tarafindan kontrol edilir ve kalitimla geçirilirler. Avery, ölü baterilerin parçalandiklarini, vücutlarinin bilgi taşiyan kimyasal maddeler çikardigini, canli baketirelirn de bulari besin olarak kullandiklarini düşündü. Yani genler, canli bakterilere girip onlarin kalitimlarini belirtiyorlardi. Avery ve arkadaşlari, bu gene benzer maddeyi kesin olarak belirlemek üzere çalişmaya başladilar. İnsan, Tıp bilimi için, genlerin kimyasal özelliklerinin bulunmasından daha önemli bir problem olabileceğini düşünüemez. Ancak bu kesinlikle insanlar, hatta hayvanlar üzerinde de incelenebilecek bir problem değildi. Neyse ki zatürre yapan bakteriler, Avery’e uygun bir sistem getirdiler. Bu iyi ve değerli bir model-deney sistemi örneği oluşturuyordu. Aslında, bütün genetik bilgi birikimi, 100 yıl önce Gregor Mendel’le başlangıcından bugünkü araştırmalara kadar, büyük ölçüde basit deney modellerine dayanır. Bezelyeler, meyve sinektleri, ekmek küfü ve bakteriler... Avery’nin üzerinde çalıştığı bakteriler geretik olarak birbirinin tıpkısıydı. Başka cinslerle karışmamış, safkan bakterilerdi bunlar. Hızla üreyebiliyorlardı öyle ki kalıtım özelliklerini birçok kuşağın üzerinde izlemek olanaklıydı. Zatürreye neden olma yetenekleri, farelere verilerek kolayca ölçülebiliyordu. Avery’nin yaptığı önemli deneyleden biri, probleme açık bir yanıt getirdi. Ölü bakterilerden dağılan bir molekül karışımını aldı ve içine DNA’yı “bozan” bir enzim ekledi. DNA’nın bozulması, karışımın zararsız bakterileri zararlı bakteriye çevirebilme yeteneğine bir son verdi. Buna ek bir deneyle Avery ve arkadaşlari, zararsiz bakterileri hastalik yapan bakteriye çeviren maddenin “deoksiribonükleik asit” veya DNA oldugunu kanitladilar. DNA: Deoksiribonükleik Asit Aslında, DNA’yı Avery bulmadı. Bu işi, Avery’den altmış yıl önce Friedrich Miescher adında bir araştırmacı yapmıştı. O ve onu izleyen bilim adamları bu konuda bir sürü kimyasal bilgi toplamışlardı. DNA’nın zinci şeklinde birbirine bağlı, büyük miktarlarda fosforik asit içeren “nükleotid” denilen moleküllerden oluştuğu biliniyordu. Bunlar, o zamana kadar hücrede bilinen en büyük moleküllerdi. Avery, DNA’nın kalıtımın temel maddesi olduğunu gösterdi. Başka ir deyişle “bir şeyi kalıtımla geçirmek demek, bir parça DNA aktarmak demektir”. Genler DNA’dır. Bilgi DNA’dır ve DNA bilgidir. Avery’nin ispatından beri, DNA konusunda bilinenler öyle şaşırtıcı bir hızla arttı ki, 1960'larda (s: 22) artık bilginin DNA’da nasıl kodlandığını bu bilginin nasıl hücre maddesine dönüştüğü ve DNA’nın gelecek kuşakla paylaşılmak üzere nasıl kopya edildiğini biliyorduk. Bu zorlu yarışa bir çok bilim adamı katıldı; ama James Watson ve Francis Crick ’in DNA’nın doğru yapısının ikili sarmal, yani içiçe dönen iki zincir olduğunu düşünüp bulmaları en büyük aşamalardan biridir. Öyleyse işte DNA’nin temel özelliklerine bakalim: 1.Molekül zincir şeklindedir( Degişik basit molekül çeşitlerinin birbirine eklenmesinden oluşmuş zincir şeklindeki madde) 2.Olağanüstü uzun ve son derece incedir.Hücrenin çekirdeği 100 kere büyütülseyydi aşağı yukarı iğne ucu büyüklüğünde olacaktı, yani gözün ancak seçebileceği kadar. İte bu küçücük çekirdek içinde katlanmış durumda bulunan DNA açılırsa, boyu, bir futbol sahasının boyu kadar olur. 3. Zincirde dört çeşit halka vardir (nükleotid denilen moleküller). Isimleri adenilik asit, guanilik asit, sitidilik asit ve timidilik asit; kisaltmalari A. G, C ve T. 4. Bu dört tür halkanın bağlanma biçimi, adi bir zincirin halkaları gibi birbirinin aynıdır. 5. Halkaların şaşmaz bir düzeni vardır, bu kitaptaki harflerin düzeni gibi. Bundan sonra, zincirler üzerine söyleyecek çok şeyimiz olacak. Bir zinciri her resimleyişimizde, buradaki beş biçimden hangisi en uygun, en açiklayicisiysa onu kullanacagiz. Kuşkusuz, gerçek zincirlr bizim resimlerde gösterdiklerimizden çok daha uzundur. DNA = Dil = Bilgi Şimdi dört çeşit halkasi olan bir zincirimiz olsa ve bunun yeni bir bireyin oluşmasi için gerekli bütün bilgiyi içerdigini bilsek, bu sirrin halkalarin siralanmasinda veya düzenininde yattigi sonucunu çikarmamiz gerekir. Zincirin bu kadar çok anlam taşimasinin başka bir açiklamasi olamaz. Bilgi, böylece harita veya plan olmak yerine, düz bir yüzey üzerinde iki boyutlu bir şeye, daha dogrusu tek boyutlu “yazili” talimat dizinine dönüşür. Burada dille-benzetme (analoji) yapilabilir.DNA alfabesinin dört harfi var, ama bunlarla yazilabelecek mesajlarin sayisi sonsuzdur. Tipki iki harfli Mors alfabesiyle (nokta-çizgi) söylenebileceklerin sinir olmadigi gibi. Kitaplardaki harfler kağıt üzerindeki yerlerine göre diziler halinde bağlanmışlardır. DNA içindeki dört nükleotid halkası ise gerçek kimyasal bağlarla dizi halinde bağlanmıştır. Belli bir organizma içindeki toplam DNA’da bir kitap gibi düşünülebilir.(s:24) Bu kitapta, bütün harfler, deyimler, cümleler ve paragfraflar bir zincir oluşturacak biçimde birbirine eklidir. Organizmanın bütün bölümleri ve bütün işlevleri böylece tanımlanır. Bu organizmanın özdeş bir ikizi varsa, o da aynı DNA’ları içerir, aynı kitaptan bir tane daha diye düşünülebilir; ne bir harf, ne bir sözcük farklıdır ikisi arasında. Aynı türün başka bir organizması da, gramerda sık sık ve göze çarpıcı farklar olduğu halde, benzer bir kitabı oluşturur. Değişik türlerin kitapları, içlerinde bir sürü benzer cümleler de olsa oldukça değişik öyküler anlatırlar. Yukarıdaki benzetmede zincirin parçaları olan genler, aşağı yukarı cümlelerin krşılığıdırlar. Bir gen, organizmanın belirli bir yapısını oluşturan veya işlevini gören bir harf (nükleotid) dizidir. Genler, çok uzun bir DNA molekülünde arka arkaya eklenmiş cümleler gibidirler. Bir İnsan Oluşması İçin Ne kadar Bilgi Gerekli? Bilginin ne olduğunu gördükten sonra isterseniz, canlıları oluşturmak için ne kadar bilgi gerektiği üzerine kabaca bir fikir edinelim: 1. Bir bakteri, canlı yaratıkların en basitlerindendir, 2 000 civarında geni vardır. Her gen 100 civarında harf (halka) içerir. Buna göre, bir bakterinin DNA’sı en azından iki milyon harf uzunluğunda olmalıdır. 2. İnsanın, bakteriden 500 kat fazla geni vardır.Öyleyse DNA en azından bir milyar harf uzunluğundadır. 3. Bir bakterinin DNA’sı bu hebsaba göre, her biri 100.000 kelimelik 20 ortaama uzunlukta romana, insanın ki ise bu romanlardan 10.000 tanesine eşittir! Dilden Maddeye DNA dilinin anlamı, belirli bir canlı organizmayı tanımlamasındadır. Başka bir deyişle genler, maddenin, yaşamın gerçek özünün, gerçek canlı unsurun yaratılması için gerekli bilgiyi verirler. DNA dili fizik olarak yaşamaya, nefes almaya, hareket etmeye, et üretmeye nasıl çevrilebiliyor? Bu soruyu yanıtlamadan önce, nelerden yapılmış olduğumuzu bilmemiz gerekir. Proteinler Bu konu zor görünebilir ama aslında öyle değil. Bizi oluşturan en önemli malzeme proteindir denilebilir. Diğer yapı maddelerimiz (su, tuzlar, vitaminler, metaller, karbohidratlar, yağlar vb.) proteinlere destek olmak üzere bulunurlar. Proteinler yalnızca kütlemizin (suyu saymazsak) çoğnu oluşturmakla kalmayıp, aynı zamanda vücut ısımızı, hareketlerimizi ayarlarlar, düşüncelerimizin ve duygularımızın da temelini oluştururlar. Kısacası bizi oluşturan ve yaptığımız her şey proteinlere dayanır. Örneğin, kendimi gözlüyorum: bütün kütlesi proteindir; ne görüyorsam (kürkü, gözleri, hareket etmesi bile) proteindir. İçindeki her şyey de proteindir. Ayrıca kendime çok özel bir kişilik veren herşey de özel proteinlerle belirlenmiştir. DNA’nın yönlendirilmesiyle yapılan proteinler birey olmanın, tek olmanın, bütün türlerin fiziksel temelidir. Metal, otomobil için neyse, protein bizim için odur. Otomobilde başka malzemeler de vardır; ama yapıyı ve işlevi sağlayan en önemli eleman metaldir. Hem görünüşü, hem de işleme yeteneğini belirler. Bir arabanın diğerinden farkını; biçimini, niteliği ve metal kısımların durumu belirler.(s:26) Şimdi, yeni bir soru ve başka bir ayrintili inceleme için haziriz. Proteinler neden yapilmişlardir? İşte özelliklerinin listesi: 1. Zincir moleküldürler. 2. Uzundurlar ama DNA kadar değil. 3. Yirmi çeşit protein halkasi vardir. Bunalara amino asitler denir. 4. Yirmi birimin de bağlantı biçimi tamamen aynıdır. 5.Yirmi birimin veya halkanın düzeni veya diziliş sırası hassas ve kesindir. Bu düzen, hangi protein olduğunu ve sonuçta işlevinin ne olduğunu belirler. Amino asitler, isimlerinin ilk üç harfi eklenmiş zincir halkalariyla gösterilirler. Yirmi amino asit şunlardir: fenilalanin, leusin, izoleusin, metyonin, valin, serine, prolin, treoinin, alanin, tirosin,histidin, glutamin, asparajin, lisin, aspartik asit,glutamik asit, sistein, triptofan,arjinin,glisin. Çeviri Bu beş özelligin DNA zincirininkine ne kadar benzedigini gördünüz. Halkalari özel bir düzende olan zincirler, protein alfabesinde yirmi çeşit harften oluşuyor;DNA alfabesinde ise dört harf var. DNA bilgisinin protein maddesine dönüşmesinin aslinda dildeki gibi bir çeviri işlemi oldugu hemen (s: 27) görülebilir. Dört harfli bir alfabedeki harf dizisinden, yirmi harfli bir alfabenin harf dizisine geçilmektedir. Mors dilinden (iki harfli nokta-çizgi alfabesinden) Ingilizce gibi yirmisekiz harfli alfabesi olan bir dile çeviri yapmaya da benzetilebilir bu. Bütün olan biten aslında bu kadar.Hücerelerin protein zincirleri içinde binlerce çok ufak, son derece basit çeviri makinesi var. Bunlara “ribosomlar” deniyor. Şu şekilde çalışırlar: Önce DNA bilgisinin bir bölümü, bir gen, bir enzim (bu işlemin hızlanmasına yardım eden bir protein) tarafından kopye ediliyor. Mesajcı RNA (mesajcıribonükleik asit) dernilen bu gen kopyası da bir zincirdir. RNA molekülleri,DNA moleküllerinin hemen hemen aynı zincir moleküllerdir; ama onlar kadar uzun değildirler. Bir DNA molekülü bir çok geni içerir, bir mesajcı RNA molekülü ise yalnızca bir tek genin kopyasıdır. Bu RNA moleküllerine “mesajcı” denir, çünkü genin mesajının, ribosomlar yolu ile DNA’nın hücredeki yeri olan çekirdekten proteinlerin yapıldıkları hücrenin çekirdek dışındaki kısmına (stoplazma) taşırlar.(s:28) Gen kopyası mesajcı RNA bir ucunu ribosoma bağlar, Ribosom okuyucudur;mesajcı RNA’nın içindeki nükleotidlerin (harflerin) dizilişini okur; ama bildiğimiz anlamlı bir sözcük çıkarmak yerine protein çıkarır. Bu şu şekilde gerçekleşir: Özel enzimler amino asitleri “transfer” RNA (tRNA) denilen küçük bir RNA molekülüne bağlarlar. Yirmi amino asitin her biri özel RNA molekülüne bağlanır. Amino asite bağlanmış tRNA’lar kendilerini ribosoma yöneltirler. Ribosom, gerekli tRNA’yı (bağlı amino asitlerle birlikte) o anda mesajcı RNA’dan okuduğu deyimlere uygun olarak seçer. Yani eğere ribosom mesajcıdan ala amino asitini (alanin) belirleyen bir grup nükleotid mesajını okumuşsa, bu amino asitin (Hayatın Kökleri, s:29) bağlı olduğu gruba uygun nükleotidleri olan bir tRNA seçer. Mesajcı nükleotidin, belli bir amino asite uygunluğu, nükleotidlerin doğal uygunluk ilişkisine dayanır.Mesajcı üzerindeki her nükleotid dizisi, transfer RNA üzerindeki uygun nükleotid dizisiyle mükemmel bir şekilde eşleşir. Her yeni aminoasit ve onun tRNA’sı ribosoma gelip uygun biçimde yerleştikçe, amino asit kendisenden önce ribosoma gelmiş olan amino asitle kimyasay olarak birleşir. Böylece, halkalar sırayla birer birer bağlanır. Ribosom mesajı okudukça protein zincirinin boyu durmadan inin okunma ıbitince, bütühn protein halkası serbest bırakılır. Böylece yeni bir protein doğmuş olur. Bir genboyu DNA’nın içindeki nükleotid dizilişi, bir protein içindeki amino asit dizisini tam olarak belirler. Bir gen, bir protein. Bir gen; bir protein kavramı bizim proteinlerin nasıl oluştuğunu öğrenmemizden çok uzun zaman önce bulunmuştu.1930'larda ekmek küfü üzerine bir dizi parlak deney yapan biyokimyacı George Beadle, bir teks gen içindeki değişikyiklerin, bir tek proteinde bozulmaya yol açtığını göstermişti.Buna dayanılarak yapılan çcalışmalar bakteri kullanılarak ilerletildi ve genişletildi. Bu büyük çalışma ve burada anlatacağımız niceleri, herman Müller’in 1920'lerdeki DNA’daki değişmelerin (mutasyon), istenildiğinde canlı sistemleri x-ışınlarına tutarak sağlanabaleceğini gösteren önemli buluşu olmasaydı başarılamazdı. DNA, bir hücrdede bulunan değişik p;roteinler kadar gen içerir (bakteride 2000; insanda 200.000). Protein yapan makinenin bu çeviri işlemindeki şaşmayan hatasizligi,kuşkusuz dikkate deger. bir hücrenin yaşamasi için gerekli binlerce proteinin üretilmesinde ancak bir-iki yanlişligüa yer olabilir. Insanlarin yahptigi hiçbir makine, bunun gibi 200 romana eşdeger bir yaziyi bu kadar az yanlişla yazamaz. t-RNA’nın Bulunması Hocam Paul Zamecnik ve ben, 1956'da transfer RNA’yı birlikte bulduk ve neye yaradığını açıkladık. Zamecnik daha önce ribosomların, üzerinde proteinlerin biraraya getirildiği strüktürler olduğunu göstermişti.Ben de bu tarihten bir yıl önce amino asitlerin özel bir dizi enzimle aktif hale getireilebildiğini (yani diğer amino asitlerle reaksiyona hazırlandığını) kanıtlamıştım (bu dördüncü bölümde anlatılıyor). Ama arada eksik bir şey vardı: amino asitlerin bağlanabileceği ve onlara (Hayatın kökleri, s: 31), mesajcı RNA’ların gösterdiği yerlere yerleştirilmelerini sağlayan kimliği kazandıracak bir şey. Paul Zamecnikle birlikte, hücreler içinde amino asitlere önemli bir yatkılnığı olan, yani onlarla olağandışı bir sıklıkla bağlanabilen küçük RNA molekülleri olduğunu gördük. Proteinin yapılışnıda ki eksik olan halkayı bulduğumuzu hemen anladık. Bir sürü yoğun ve zevkli deneyden sonra, ondan sonraki yılın sonlarına doğru,tRNA’nın protein yapımına katılım yönteminin size daha önce açıkladığım oldukça tam bir resimini elde ettik. Zincirlerden Üç Boyutlu Varlıklara Buraya kadar öykü yeterince doyurucu; canlı mekanizmalar, zincirleri dil olarak kullanırlar. Plandan bitmiş üretime geçmek, basit bir çeviri işidir. Ama hala aşmamız gereken bir engelimiz var. Çeviri bir simgeyi başka bir simgeye, tek boyutu tek boyuta, bir zinciri başka bir zincire, nükleotitleri amino asitlere dönüştürülüyor. Zincirden “maddeye” nasıl varabiliriz? Protein moleküllerinin görevlerini yerine getirmelerine, dokunabildiğimiz, kavrayabildiğimiz şeylere, tohumlara, çiceklere, kurbağalara, size, bana bir boyuttan üç boyuta sıçramak zorundayız demek ki. Yanıt, protein zincirleri içindeki halkaların yani aminoasitlerin özelliğinde yatıyor. Protein molekülleri, zincir oldukları halde asılnrad (fiziki olarak) gerçek zincirlerde olduğu gibi üç boyutlu yapılardır. Proteinin yirmi değişik amino asiti, etkisiz simgeler değildirler. Herbirinin kendine özgü kimyasal özellikleri vardır. Bazıları zincirdeki ikiz eşleriyle kimyasal bağlar yapmayı yeğlerken, bazıları daha çok asit, bazıları da alkali özelliğini gösterir. Kimi suyu aramak eğilimindeyken, kimi de sudan kaçar. bazıları öyle biçimlendirilmişlerdir ki zinciri bükebilirler. (s: 32). Birkaç tanesinin de bir proteinin yalnızca bir tek işe yaramasına katkıda bulunacak özel marfetleri vardır.Bu amino asitler zincirdeki yerlerine göre zincirin son biçimini belirler. Zincirler tamamlandıkları zaman, bir çeşit ip yumağı oluşturmak için kendi kendilerine içiçe dolanıp katlanırlar. çözülmüş zincirdeki amino asitlerin “sırası”, molekülün katlanmak için hazır olduğu zaman nasıl davranacağını, ne yapacağını “şaşmaz” bir şekilde belirler. katlanma biçimi de protein molekülünün şeklini, özelliklerini, işlevini belirler. Kas proteinler için, bir gen, protein yapar makinelere son bitmiş biçiminde katlanabeilecek ve komşu liflerin üzerinedn kayabilecek çok uzun bir protein zinciri yapmasini emreder. Böylece kisalabilen uzun lifler oluşur. kan hücrelerindeki oksijen taşiyan protein zinciri hemoglobin, özel bir üç boyutlu katlahnma biçimine sahiptir. Böylece yalnizca kendisine özgü bir yolla oksijeni tutma ve serbest birakma işlevini yerine getirebilir. Sonuç olarak herbirini siralanişi, genler içindeki nükleotidlerin siralanişiyla belirlenmiş binlerce protein zinciri, özel biçimlerde katlanip, özel işlevler elde ederler. Düzen Yaratmak, Çoğu Kez Zincir Yapmaktır Birinci bölümde düzen konusunda söylediklerimizi hatırlayın: Yaşam, sürekli düzensizliğe giden bir evrende düzene yönelik çalışır.Şimdi bunun ne demek olduğunu çok daha açıkça görebiliriz. Canlı olmak, daha önceden şaşmaz bir kesinlikle tanımlanmış bir düzenle, halkaları zincire eklemektir. Düzen bir defa kurulunca, son biçimin ve işlevin elde edilmesi hemen hemen kendiliğinden gelir diye düşünülebilir. İsterseniz, bir parçayı bir başka parçanın önüne koymak (Hayatın Kökleri, s: 33) kendiliğinden sonuca götürüyor diye düşünebilirz bu düzeni. Zayıf Kimyasal Bağlantıların Önemi Hücrelerin önemli molekülleri yani DNA,RNA ve proteinler üzerine yapılan bir çalışmadan çok ilginç bir genelleme ortaya çıkmıştır. Aslında “zayıf” kimyasal bağlantılar, yaşam için son derece önemil işlevler taşırlar.Güçlü bağlantılar (sağlam kovalent bağlar), amino asitleri protein içinde birbirine bağlayanlar cinsinden veya RNA ve DNA içinde nükleotidleri bağlayanlar cinsinden olanlardır.Bunlar zincirin her halkasında komşuyu sıkıca tutarlar. Zayıf bağlantılar ise bütün büyük zincirlerde katlanma noktalarını belirleyen ve molekülün biçimini sağlayanlardır. DNA’da iki zinciri,çift sarmalı oluşturmak iççin birarada tutan nükleotidler arasında zayıf halkalar vardır. Bunlar ileride göreceğimiz gibi RNA üretiminde çok greklidirler. Proteinin içinde,onu işlevine uygun katlanmış biçimlerde tutan amini asitler arasındaki bağalantılar da zayıftır. Ribosomlar üzerinde yeni protein yapımında,transfer RNA üzerinde tamamlayıcı biçimdeki nükleotidlere uydurarak,tam yerlerini “bulurlar”. Bu önemli bağlantıların özelliği,zayı oluşları yüzünden çok kısa sürmeleridir. Görevlerini yaparlar ve sonra kolayca çözülüp yeniden kullanılabilirler. Hayatla İçli Dışlı Cansız Varlıklar: Virüsler Virüsler ya da DNA’lı ya da RNA’lı proteinden yapılmışlardır. Yani ya DNA ya da RNA biçiminde bilgiyi içerirler ve protein biçiminde birşyelerin yerine geçebilen bir kimlikleri vardır. Ama yardımcısız kendi kendilerine üreyemezler. Yardım (s:34) canlı hücereler tarafından sağlanır. Virüsün proteinleri,onun bir hücre bulup içine girmesine yol açar. Virüs, orada kandini üretecek makinaları;hücrenin makinalarının bulur. Üreme işini tamamladıktan sonra kendisi ve yeni virüsler,aynı tatsız işi başka hücrelerde yinelemek üzere o hücreden çıkarlar.Bu olaylar sırasında virüs,”ev sahibi” hücreyi öldürebilir,ona zarar verebilir,değiştirebilir veya hiçbir şey yapmaz;bu virüsün ve hücrenin cinsinei bağlıdır. Bir virüsün hücrede neden olabileceği önemli bir değişiklik de onu kansere dönüştürmesidir. Bu esrarlı olay, 8. Bölümde göreceğimiz gibi en son kanser araştırmalarındaki yoğun çabaların temelinde yatlmaktadır. Hücrelerden daha basit oldukları halde,virüslerin daha ilkel olmadıklarını sanıyoruz. çok uzak geçmişte bir zaman, normal hücerelerine parçalarıyken kopup kendi asalak “yaşama” biçimlerini kurmuş olmaları mümkün görünüyor. Virüslerin bağımsız olarak üreme yetenekleri olmadığı için kendi başlarına canlı olduklarını düşünemiyoruz. Ölümlülük ve Ölümsüzlük Şimdi,bir bireyin yaratilmasinin bir dizi yazili talimat gerektirdigini biliyoruz. Bunlar milyonlarca yildir dikkate deger bir baglilikla tekrar tekrar kopye edilmişlerdir; ama her birey yalnizca birkaç on yil içinde yaşar ve ölür. O zaman bu talimatlarin ölümsüz olup olmadiklarini sorabiliriz. En azindan bir biyolog için her hangi bir şey ne kadar ölümsüz olabilirse,genetik bilgi de o kadar ölümsüzdür diyebiliriz. Aslinda ölümlü her birey,gelecek kuşaklara geçirilecek tarifnamenin geçici koruyucusudur;sopanin DNA oldugu bir bayrak yarişinda koşucu... Bir birey yaşaminin,ancak atalarindan çocuklarina geçirdigi bilgi kadar önemi (Hayatin Kökleri, s:35) vardir. Bazi güveler agizsiz dogarlar ve dogduklari andan başlayarak açiliktan ölüme mahkimdurlar. Tek işlevleri,çiftleşip daha çabuk yumurtlayarak güve bilgisini gelecek kuşaga geçirmektedir. Eğer DNA ölümlünün ölümsüzlüğü ise,insanları inatçı merakı,daha ötesini de sormadan edemez;Bütün bunlar nasıl başladı?(Hayatın Kökleri, s:19-36). Başlangiç Hangisi önce geldi, tavuk mu yumurta mı? Bu çok duyulmuş bir sorudur ama yanıtlanamaz. Yanıtlanamamasının sebebi “tavuk yumurtadan, yumurta tavuktan vs.” diye zaman içinde bitmez tükenmez bir geriye doğru sayış gerektrmesi değil, bu şekilde geriye giderken biriken küçük değişikliklerle tavuğun tavukluktan,yumurtanın da yumurta olmaktan çıkmasıdır.Tavuğun bir milyar yıl gerilere giden soy ağacını incelersek;tüylü arkadaşımızı,hayal gücümüzü ne ölçüde zorlarsak zorlayalım adına “tavuk” diyemeyeceğimiz atalara bağlayan bir değişimle karşılaşırız. Benim tahminim, bir milyar yıl önceki tavuk atasının her halde,toplu iğne başından küçük ve okyanusta yaşayan bir yaratık olduğu. Kendi soyumuzu gerilere doğru izlersek,yine buna benzer bir sonuçlar karşılaşırız. Ne kadar geriye gidebiliriz? Bir başlangiç oldugunu düşünmemiz gerek. Bundan önçeki bölümde sözü edilen,DNA’nin ölümsüzlügünü benzetmesine şimdi daha iyi bir perspektiften bakmaliyiz.Dünyamizin şimdiki canli biçimlerini dogracak tüm bilgiyi taşiyan bu kocaman moleküllerin,çok uzak bir geçmiş zamanda, alçakgönüllü bir başlangiçlari olmasi gerek. (s: 37) En iyi tahminlere göre yaşam; bundan üç milyar yil önceki Dünya'da başladi.Üç milyar yil önce Dünya'miz iki milyar yaşindaydive canlilari barindiracak kadar sogumay başlamişti.Son derece küçük ve oldukça basit deniz yaratiklarinin iki milyar yildan daha eski fosilleri var. Bu fosilleşmiş yaratiklarin atalari herhalde daha da küçüktü.. En ilkel canli biçimi, belki de bugün bolca bulunan basit tek hücreli canlilara hiç benzemeyen bir tek-hücreydi. Öyleyse bizim yoğunlaşacağmız soru şu: bir hücre,yaşamaya ilk olarak nasıl başlamış olabilir, bu aşama nasıl mümkün olabilir? Soru”hücre nasıl yaşamaya başladı?” değil;bu hiçbir zaman yanıtlanayacak bir sorudur. Çünkü bu olaya tanıklık edecek kimse yoktu o zaman; ama yaşamın nasıl oluşabileceğini sormak hakkımızdır. Akıllıca tahminler ve olasilıkıları gösteren deneyler yapabiliriz. Gerekli Maddeler Jeologların, paleontologların, fizikçilerin,biyologların çalışmalarına dayanarak,dünyanın üç milyar yıl öncesi nasıl bir yer olabileceği konusunda oldukça iyi bir fikrimiz var. Bilim kurgu kitapları ve filmelri olayı çok canlı ve belki de doğru resimliyorlar;lav ve kayalardan oluşmuş,gri, tümüyle kısır,hiç yeşili olmayan manzaralar,patlayan yanardağlar,sivri dağ tepeleri,buharlaşan denizler,alçak bulutlar,arada çakan şimşeklerle gürültüyyle parçalanan ve sürekli yağan yağmurlar. Herhangi bir canlı tarafından görülmemiş ve duyulmamış olaylar. Kuşkusuz bu, sizin ve benim için çok sefil bir ortam olurdu. ÜAma yaşamın başlangıcı için iyi bir düzendi. Herşeyi harekete geçirmek için gerekenler şunlardı: 1. Ilık bir ortam 2. Çok miktarda su(s:38) 3. Gerekli atomların kaynakları/karbon,hidrojen,oksijen,nitrojen ve fosfor) 4. Enerji kaynağı. Su ve ısı, sorun değildi. Dünya soğurken, milyonlarca yıllık yağmur okyanusları doldurmuş hala sıcak olan Dünya bu okyanusyarı ısıtmıştı. Şimşekler bol bol enerji sağlıyorlardı. Bulutlar aralandığı sıralarda da Güneş’ten ulraviyole ışınları geliyordu(Bu ışınlar o zaman şimdi olduklarından çok daha güçlüydüler, çünkü atmosferimizi sarran ozon tabakası henüz oluşmamıştı. Ozon, yeryüzünde bitki yaşamının sonucu olarak yavaş yavaş birikmiş bir oksjijen tabakasıdır. Bu tabaka ultraviyole ışınlarını geçirmez). Bu koşullar;kuşkusuz başlangiçta,en basit birimlerin,bilgi zincirlerinin (DNA) ve hücre maddesi zincirlerinin (protein) oluşmasi için yeterince basitti. Ama zincirlerimiz olmadan önce halkalarimizin olmasi gerekir. Önce DNA nükleotidleri ve proteinlerin amino asitleri oluşmalidir. Bildigimiz gibi, bu halkalar ufak moleküllerdir. Bunlar, karbon, hidrojen,oksijen,nitrojen ve fosfor elementlerinin kimyasal olarak baglanip düzenlenmeleriyle oluşurlar. Basit Moleküllerin Doğuşu Öyleyse işte senaryomuz: Deniz suyunda erimiş karbon,hidrojen,oksijen,nitrojen ve fosfor içeren basit bileşikler, ultraviyole işinlari ve şimşeklerle sürekli bombardiman edilmiyorlar. Bu arada bir kismi kalici ve dengede olan,degişik kombinasyonlara da zorlaniyorlar. İşlem yüz milyonlarca yıl boyunca sürerken,denz, elemanlarının değişik kombinasyonları yönünden giderek zenginleşiyor. Yeni moleküller,bu arada nükleotidler ve amino asitler birikiyor. Sonunda denizin son derece bol ve bütün yeni molekül(s:39) çeşitlerini içeren koyu bir çorbaya dönüştüğüü bir zaman geliyor. Zamanın Önemi Sözkonusu süreçte zamanın önemini kavramak için biraz duralım. Zaman ne kadar uzun olursa bir şeylerin olması da o kadar olasıdır. Kimyasal tepkimeler için de bu doğrudur. Zaman sınırlaması olmazsa,yeterince uzun süre beklenirse en olanaksız tepkimeler gerçekleşebilir. Eğer bu tepkimelerin ürettikleri bileşikler kalıcı (dengeli) iseler, deniz suyunun nisbeten değişmez maddeleri haline geleceklerdir. İçinde canlı Olmadığı için Çorba Varlığını sürdürebilir Şimdidenizin çorba gibi olma düşüncesi size aşiri görünebilir. Bunun bugünkü deneylerimizle karşilaştiralabilecek hiçbir yani yoktur. Böyle zengin bir oluşumun birikmesi,canlilar onu hemen yiyip biterecegi çin bugün belik de olanaksizdir. Bakteriler ve diger açgözlü yaratiklar şimdi çok kalabaliklar ve ne zaman iyi bir besin kaynagi belirse,hemen onu tüketiyorlar. Kaynak kuruyana kadar üreyip sayilarini arttiriyorlar. Görüyorsunuz ki eskiden yaşam olmadiggi için okyanuslar çorba gibi olabilirdi. Eski Olayların Laboratuvardaki Benzerleri Aslında,anlattıklarımız hiçbir zaman kanıtlanamayacak bir hipotez. Yine de biz,laboratuvarda bunların olabileceğini gösterebiliriz,Eskiden olduğu öne sürülen koşulların laboratuvarda istenen tepkiyi sağlaması kuşkusuz olanaklıdır. Üç milyar yıl önce denizde bulunduğu (s: 40) düşünülen basit bileşikler bir cam kapta suda eritilebilirler. Kap, şimşekylerin enerji katkısını sağlamak üzere bir elektrik kaynağına bağlanır. Ssitemin bütün parçaları hiçbir canlı hücre olmadığından emin olabilmemiz için önceden sterilize edilir. sonra kaptakilerin bir süre pişmesi için elektrik verilmeye başlanabilir. sonunda kap açılıp içindekiler incelenir. Bu deneyin yapılmış olduğunu ve sonucun tümüyle inandırıcı olduğunu sevinerek söyleyebilirim. Hem nükleotidler hem amino asitler beş elementten bu şekilde oluşturulabildiler. yani yaşam zincirlerinin halkaları, deniz benzeri bir ortamda şimşikleri enerji kaynağı olarak kullanılmasıyla üretildi. Zincir Moleküllerinin Doğuşu Bundan sonraki adım,açıkça görülüyor ki halkaları,DNA gibi ve protein gibi zincirler oluşturmak için birleştirmektir.İlkel koşulların laboratuvarda yapılmış benzerlerinin,halkaların oluşumu aşamasını sağlamasına bakarak,çalışma ilerletilirse halkaların zincir biçiminde eklenebileceğini de düşünmek akla yakındır. Nitekim kısa zincirlerin oluştuğunu gröüyoruz. Basit kimyalarıyla bugünün DNA’larına ve proteinlerine benziyorlar. Yined hatırlayalım, bu deneyler yalnızca oylabileceğini gösterir, ne olduğunu değil. Durum, Thor Heyerdahl’ın Polinezya Adaları halkının Güney amerika’dan batıya yelken açarak, şimdiki yurtlarını buldukları savını kanıtlamaya çalışırken kaşılaştığından farklı değil. sal üzerinde aynı yolculuğu başarıyla yaparak,yalnızca polinezyalıların gerçekten bu yolculuğu yaptığını kanıtlamış olmadı, benzer taşıt kullanan herhangi birinin de aynı işi yapabileceğini gösterdi(s:41) Bir Hücreye Doğru Bu noktadan sonra,hücdreyi daha çok tanımak için beş önemli adıma daha göz atabiliriz. Hücrenin ikiye bölünmesi DNA’nın ikiye bölünmesi Zarlar Çift zincirli DNA Yapısal proteinler Enzimler tek zinciril DNA Proteinler Yağlar Nükleotidler Aminoasitler karbon, hidrojen,oksijen, azot(nitrojen) ve fosfor 1. Enzimlerin ortaya çıkması Enziler, hücre içindeki bütün kimyasal tepkimeleri hızlandıracak özel protein molekülleridir. Bugün canlı hücre;herbiri kenid özel işini yapan, besin maddelerini parçalayan,besinden enerji üreten, basit moleküllerden zincir yapımını kolaylaştıran ve sayısız başka işler yapan binlece enzim içerir. Olayların denizdeki başlangıt çağlarında yavaş gelişimleri, ancak enzimlerle hızlandırılabilirdi, İlk enzimler, raslatısal olaramk birbiren eklenmiş kısa aminoasit zincirleri olsa gerek. Tekrar tekrar “deneme-yanılma”yla bu kombinasyonların bazıları; birtakım reaksiyonları hızlandırabilecek,yalnız kenidlerine özgü bir yeteneği elde etmiş olmalılar.(s: 42) 2. DNA’nın çift Kat oluşu. Okyanuslar boyunca DNA zincirinin rasgele eklenen nükleotidlerle yavaş yavaş uzamasini gözünüzün önüne getirmeye çaliştiginzda baszi anlamli diziler oluşcaktir.Burada “anlamli”, birkaç yeni ilkel proteini yapmak için gereken bilgiyi içermek olarak kullanilmiştir. Bunladan bazilari, yararli enzimler veya önemli yapilarin parçalari olacktir. Basit bir çift kat halinde birleşme bunu sagladi. birbiren sarilmiş ipliklerin zarar görmesi,ayri ayri tek başlarini olduklari zamandan daha az olasiydi.Dahasi, çift kat olmak,DNA’nin üremesi için gereklidir. 3. DNA’nın Çoğalması Bu, çift sarmal DNA zincirindeki her ipliğin,kendisini tıpatıp bir kopyasını yapması,sonuçta ikinçci bir çift sarmalın(s:43) oluşması demektir. son erece basit ve zarif olan bubişlem,bir halatın çözülüp ayrılışı gibi iki zincirin birbirinden ayrılmasıyla baş

http://www.biyologlar.com/evrim-konusunda-ilk-dusunceler

Çocuklarda D Vitamini Eksikliği

Bebek ve çocukların vücut ve kemik gelişimi için D vitamini önemlidir. Çocuklarda D vitamini eksikliği için neler yapmalıyız. Yazın özellikle güneşten aldığımız D vitaminini mümkün olduğunca desteklemeliyiz. Aksi takdirde bebeklerimizde büyük sorunlara neden olabilir. Bebek için önemli olduğu kadar anne adayları içinde önemli olan D Vitaminin eksikliğini uzmanlar şu şekilde anlatıyor. Doğal yollardan D Vitamini alımı ülkemizde her gün en az 30 dakika, saat 10.00-15.00 arasında güneşlenme yapılması ile olur. Çıplak tenin direkt olarak güneşi görmesi gerekir. UV B ışınları camdan veya giysilerden geçemezler. Vücudun yüz ve el ayalarını içeren en az % 8’lik bölümünün güneş alması yeterli olabilir. Cilt koruyucu kremler sürülmesi UV B’nin alınmasını engellediğinden D vitamini sentezlenemez. 37 derece kuzey enlem üstünde olan yerlerde özellikle Kasım-Şubat ayları arasında D vitamini yoktur veya yetersizdir. Bu dönemlerde; Kapalı ortamlarda yaşayanlarda, Güneş görmeyenlerde, Böbrek-karaciğer yetersizliği olanlarda, Yaşlılarda, Şişmanlarda, İlk 1 yıl anne sütü almayan ve güneşlenme yapılmayan bebeklerde D vitamini eksikliği görülür. D Vitamini eksikliği bir çok hastalığı tetikler; Çocuklarda görülen diyabet-şeker hastalığı riskini arttırır. Bazı tümörlerin büyümesini, kolon kanseri olma olasılığını azalttığı, kanser tedavi ajanının etkisini arttırdığı çalışmalarda tespit edilmiştir. Multipl skleroz olma olasılığını arttığı gösterilmiştir. Multipl Skleroz, Sjögren Sendromu, Romatoid Artrit, Tiroidit, Crohn Hastalığı gibi hastalıklarda bağışıklık sistemi ile ilişkisi ileri sürülmektedir. Enfeksiyon hastalıklarında artmaya neden olabilir. Tüberküloz riskinde azalma görüldüğü belirtilmiştir. Yaşlılarda demansı ve inme-felç gelişimini azaltabilir Kas gücünü artırır. D vitamini eksikliğinde; Vücut kalsiyum dengesi bozulacağından kemiklerdeki kalsiyum kana geçer ve kemikler zayıflar. Kırık oluşma riski artar. Kas gücü azalır. Yürüme, merdiven inip-çıkma zorlaşır. Dengede bozulma olup, düşme riski artar. Yorgunluk olur. Yaygın vücut ağrıları oluşur. Depresyona eğilim artar. Unutkanlık olabilir. Kemik erimesi ve kemiklerde kırılmaya yol açarak sakatlığa neden olabilir. Süt çocuklarında D vitamini eksikliğinin bulguları çocuk 2 aylık iken ortaya çıkar. Gece huzursuzlukları, aşırı terleme, renk solukluğu, iştahsızlık, isteksizlik ilk belirtilerdir. Bronşit, zatürre ve kas kramplarına eğilim vardır. İskelette ilk önce kafatasında yumuşama, kaburgaların kemik, kıkırdak birleşim yerlerinde şişlikler görülür. Zamanla göğüs alt bölümü çan şeklinde genişler. Kaburgalar kolayca kırılır. Süt dişleri ufalanır. Kafatasında biçim bozuklukları, sırtta kamburluk, 0 veya X şeklinde bacaklar oluşur. Kaslarda genel bir güçsüzlük vardır. Yürümede gecikme ve ördekvari yürüme görülür. Tedavi edilmeyen çocuklarda boyu uzaması olmaz.

http://www.biyologlar.com/cocuklarda-d-vitamini-eksikligi

Biyolojik Savaşmı Sinir Savaşımı ?

Biyolojik savaş eskiden sadece Andromeda Strain (1971), Outbreak (1995), Twelve Monkeys (1996), Mission Impossible (2000) gibi filmlere ve The Coming Plague (1995), The Hot Zone (1995), The Cobra Event (1998), Rainbow Six (1999) gibi kitaplara konu olurken, Körfez Savaşı sırasında Amerika'nın Iraklı bilim adamları tarafından üretilen Anthrax temelli biolojik silahlara karşı askerlerine aşı yapma konusundaki titizliğiyle daha da önemli ve gerçek bir savaş haline geldi. Başkalarına zarar vermeye yönelik bulaşıcı bakteriyel veya viral (virüslerle ilgili) maddeler olarak bilinen biyolojik silahların çok uzun bir tarihi var. İlk çağ insanları insan ve bitkilerden elde edilen biyolojik toksinlere bulaştırılmış oklar kullanır ve düşmanlarını dışkılardan elde ettikleri zararlı toksik maddeleri su kaynaklarına bulaştırarak öldürürlerdi. Bir Rus şehri olan Kaffa'yı kuşatan ortaçağ savaşçıları veba hastalığı bulaştırılmış cesetleri mancınıklarla şehrin duvarlarından fırlatmışlardı.Avrupalılar bu hastalıklara direnci olmayan Yerli Amerikalılara çiçek hastalığı veya kızamık bulaştırılmış battaniyeler vermişlerdir.Biyolojik silahlar ilk olarak 2. Dünya savaşında kullanılmıştır. Zaman geçtikçe biyolojik silahlar biyolojik olarak çıkarılmış toksinler ve zehirler içermeye başladı.Bu zehirli maddelerden en tehlikelileri arasında çiçek hastalığı, Botalinyum toksini, Anthrax ve ricin gelir. Bazıları ölümcül iken diğerleri yerleşim yerlerini etkisiz hale getirir veya öncelikle hayvan ve bitkilere zarar verir. Bugün çoğu ülkenin bu konuya aşırı yatırım yaptığı biliniyor. Biyolojik silahlar modern bir konu oluyor Japonya 1918'de biyolojik silahlar üretimi ve araştırmalarına kendini adamış özel bir askeri ünite olan Ünite 731 ile ilk saldırgan biyolojik silah programını başlatmıştır. 1931'de bu ünite Çinli insanlar üzerinde deneyler yapılanbir yer olan Çin'deki Mançurya'ya taşındı ve aslında 1942'ye kadar bu ünite değişik şehirlere saldırılarda bulundu. En az 10,000 Çinli bu deneyler sırasında ölmüştür. 1942'de Amerika bu programı öğrendi ve böylece o da kendi programını başlattı. 1969'da Amerika artık anthrax, botulism, tularemia, brucellosis, Venezuela ve Q humması gibi hastalıklara sebeb olan maddelerle silahlanmasını tamamlamıştır. 1969'da başkan Nixon Amerika'nın tek yanlı ölümcül veya etkisiz hale getirici kimyasal maddeler ve silahların kullanımından vazgeçtiğini duyurdu ve şartsız olarak tüm biyolojik savaş metodlarını kullanmaktan vazgeçti. Bununla beraber Amerika biyolojik programı sadece katı bir şekilde tanımlanmış bağışıklık gibi savunma önlemleriyle ilgili araştırma yapacaktı. Stoklanmış bütün materyalin yok edilmesi istendi. ABD ve diğer 165 ülke biyolojik ve toksik silah antlaşmasını imzaladı ve 144 ülke bu antlaşmayı onayladı. Ama biyolojik sailahlar antlaşması uygulamaya geçmediği müddetçe etkili olamazdı. Örneğin, Rusya antlaşmayı imzaladı ama programlarına devam etti. 1979'da Sverdlovsk yakınlarındaki bir merkezde kazara Anthrax sızması en az 66 kişinin ölümüyle sonuçlandı. Sovyet otoriteleri biyolojik silah üretimini inkar etseler de yıllar sonra Yeltsin o zamanlar Anthrax'ın üzerinde çalışmalar yapıldığını söyledi. Yeltsin sonra tüm programların durdurulduğunu ve stokların yok edildiğini dile getirdi. Ama kanıtlar saldırı programlarının bir kısmının hala devam ettiğini gösteriyor. Sovyetler'in 1991'de çöküşüyle biyolojik silah üretimi konusunda bilgiler yayılmaya başladı. Margolis'e göre eskiden biyolojik savaş kurumlarında çalışan 60 bin bilim adamı ve teknisyenin şu anda Irak, Suriye, İsrail, İran ve Sırbistan gibi geniş biyolojik savaş silahlarıyla dolu cephaneliklere sahip ülkelerde çalışıyorlar. Hindistan bile Rusya'dan bu konuda yeterli yardım alabilir. Irak biyolojik silah programını 1995'da bildirdi. İyi olan şu ki, bu gibi silahlar misilleme olur korkusuyla Körfez savaşı sırasında kullanılmadı. Birleşmiş Milletler 1996'da Irak'ın biyolojik silah programında ne bulduysa yok etti. Çin, İran, Tayvan, Suriye, Küba, Kuzey Kore, Mısır, İsrail ve Libya'nın aynı tür programlara sahip olduğundan şüphe ediliyor. Biyolojik Silahlar Niçin Kullanılıyor İdeolojileri ve ilgileri insan hayatı ve gelecek nesiller dahil olmak üzere herşeyin üzerinde tutan milletler ve gruplar için bu tür silahlar çok çekici görünüyor. İşte bazı nedenler: 1. Biyolojik silah sayı bazında ele alındığında konvansiyonel silahlardan daha etkili. Sadece 8 gr "A" tipi olarak bilinen botalinyum toksin -bilinen en ölümcül madde- dünya üzerinde hiç canlı bırakmayacak kadar bir etkiye sahip olabilir.1 gr Anthrax 100 milyon ölümcül doz içerir ve birkaç kilosu Hiroşima'da ölen insan sayısı kadar ölümlere sebep olabilir. Genel düşündüğümüzde, birkaç kilo biyolojik etmen bir kaç ton nükleer gazın yapabileceği etkiyi yapabilir. Biyolojik silahlar çok etkilidirler çünkü aşırı toksik olmakla beraber hızlı çoğalan ve hedef noktalara ulaşan yaşayan organizmalardan oluşur. 2. Kimyasal ve nükleer silah üretmek çok sofistike ekipmanlar ve çok iyi yetişmiş eleman gerektirirken, bi-yolojik silah çok mütevazi bir eğitim ve yatırım gerektiriyor. ABD silah kontrol ve silahsızlanma acentası eski asistanlarından Kathleen C.Bailey, 10000 dolarlık ekipman ve 15x15 alanın muazzam biyolojik silah cephaneliği üretmek için yeterli olduğunu dile getiriyor. Örneğin; 1 km'lik alan bulaştırmak için 2000 $'lık konvansiyonel silah, 800$'lık nükleer silah, 600$ kimyasal silah gerektirirken, sadece 1 $'lık biyolojik silah bu alanı yerle bir etmeye yeter. Program, Phd'sini tamamlamış bir süpervisor kontrolünde bir düzineden az bilim dallarından mezun teknisyenle devam ettirilebilir. En biyolojik silah mikropları ile ilgili temel bilgi her yerde mevcut olup, ekipman ve kimyasallar bir çok yerden temin edilebilir. Seri ve yoğun üretim için canlı silahın sadece küçük bir örneğe ihtiyacı var. Bazı maddeler doğal olarak toprakta mevcut veya bir biotek şirketinde kolayca bulunabilir. Bir çok araştırmacı Saddam Hüseyin'in kendi orijinal Anthrax kültürünü edinmek için bu ikinci metodu kullandığı konusunda hemfikirler. 3. Birçok biyolojik silah taşınabilen ve/veya saklı şartlarda üretilebildiği için onları üretim aşamasında ortaya çıkarmak çok zor. Ortaya çıkarıldığında alan hızlıca te-mizlenebilir ve farmakolojik araştırmalar yapılan ve biyoloji laboratuvarına dönüştürülebilir. Ayrıca X-ışın makineleri, metal detektörler, eğitimli köpekler ve nötron bombardımanı gibi antiterörist sistemler biyolojik silahları ortaya çıkaramaz. 4. Zarar sadece insanlara ve diğer canlılara verilir. Böylece kızılötesi yapılar zarar görmez. Böyle bir tehditten çıkacak tek korku hükümetin paniğe kapılması ve silahın bırakılması ve ortaya çıkarılması. Arasında geçen uzun zamanın tanımlama ve teşhisi çok zor hale getirilmesi olarak göz önüne çıkıyor. Biyolojik silahların belli dezavantajları vardır: 1) Etkili bırakılmaya olan ihtiyaç. Birçok biyolojik silah nefes verip alırken etkisini gösterir. Çok büyük partiküller solunum sisteminde tutulurken küçük partiküller dışarıya nefesle atılır. Partiküllerin ciğerlerde kalması için, 1-5 Angstroms arasında olmalı. Japonya'daki bir biyolojik silah teşebbüsü hüsranla sonuçlandı, çünkü dissemination aracı (önceden haber veren cihaz) etkisizdi. 2) Dissemination olsa bile istenen sonuç kesin olmaktan çok uzak. Sporlar dahil çoğu biyolojik silah materyali ultraviyole ışınlar ve kurutma yöntemleriyle yok edilebiliyor. Havaya bırakılan maddeler hava değişiklikleri nedeniyle beklenmeyen bir şekilde yayılma gösterebilir.Yağmur bu maddeleri hedeflerine ulaşmadan yok edebilir. Ayrıca biolojik silahlar dönebilir ve onu bırakanları da etkileyebilir. Saldırının zayıflığı Biyolojik silahların iki kullanım sahası var: savaş alanı ve sivil hedefler. Savaş Alanı: Biyolojik silahları burda dış şartlara aşırı bağlılık, geçikmiş etkileri kendine bulaştırma, etkileri bulaştırılmış bir alanın ne zaman dönülecek kadar güvenli olacağı konusundaki güvensizlik ve aşılama veya koruyucu giysi konusunda nötralleştirme gibi dezavantajları var. Sivil Hedeflere yönelik kullanım: Bu alandaki Biyolojik silah kullanımı gerçek dehşeti doğuracak güce ulaşır. Çünkü, siviller böyle bir saldırıya hazır olmayacaklardır ve sonuçtaki salgın kontrol edilemeyecek kadar büyük olacaktır. Saldırı gizli ise otoriteler kaynağı tesbit edemeyeceklerdir ve etkilenen insanlar hastaneleri doldurana kadar saldırının farkına varamayacaklardır. Sonuçta madde tanımlansa bile, bulaşıcı geniş sahaya yayılmış olacaktır. Aşı mevcut değilse, sağlık personelleri çok fazla yardım edemeyeceklerdir. ABD bu tip saldırılara karşı etkileneceğe benziyor ve kendini korumak için çok titiz çalışmalar yapıyor. Peki, madem Biyolojik silahların temin edilmesi çok kolay niçin şimdiye kadar sivil hedefler üzerinde kullanılmadı? Bunun nedenleri arasında karşı saldırı korkusu ve toplumda uyanabilecek düşmanlık hisleri görünüyor. Biyolojik silahların potansiyel kullanıcıları dezavantajların avantajlardan daha ağır bastığını düşünürler ama bu düşüncenin her zaman devam etmeme ihtimaline karşılık ABD ve diğer ülkeler milli sağlık bakım ünitelerini ve personellerini böyle bir duruma karşı nasıl hazırlayacağı konusunda çalışmalar yürütüyorlar . Son Gelişme: 26 Temmuz 2001 Washington Post gazetesi ABD'nin biyolojik silahlardan vazgeçecegini, çünkü yeni oluşturulacak protokolün "kopyalamayı durdurmayacağı ve ABD'nin farmakolojik ve kimyasal endüstrisi noktasında casusluk yapıp bilgi sızdıracağı"nı düşünüyor. Sonuç: Tüm dinler yaşamın doğuştan kutsal ve saygı duyulmaya değer olduğu için bu tür silahları lanetlemişlerdir. Bununla beraber reel-politik, kâr için duyulan açgözlülük, ideolojik çatışmalar ile doğal ve diğer kaynaklar üzerinde kontrol etme gibi sebeplerden dolayı birçok hükümetin ve insanın dini çağrılara kulak tıkadığını görmekteyiz. Maalesef, bir devletin ve dahası bir grubun bu yolda ilerleme için verdiği kararlar, diğerlerinin kendi korunma içgüdülerinden dolayı aynı yolu takip etmemelerine sebep olmuştur. Bu yolda çok büyük ilerleme kaydettik ve kimse ne zaman biteceğini kestirememektedir. *Kaynak: The Fountain, Biological Warfare, October-December 2001, ISSUE 36. Yazar: By Joseph CLAY* - İng. Çev. Mustafa TOPRAK

http://www.biyologlar.com/biyolojik-savasmi-sinir-savasimi-

YAPRAKLARIN GENEL YAPISI

Bitkiler besinlerini üretirken sadece topraktan faydalanmazlar. Topraktaki minerallerin yanında, suyu ve havadaki CO2'i de kullanırlar. Bu hammaddeleri alıp yapraklarındaki mikroskobik fabrikalardan geçirerek fotosentez yaparlar. Fotosentez işleminin aşamalarını incelemeden önce fotosentezde son derece önemli bir role sahip olan yaprakların incelenmesinde fayda vardır. YAPRAKLARIN GENEL YAPISI Hem genel yapı olarak, hem de mikrobiyolojik açıdan incelendiğinde yaprakların her yönüyle en fazla enerji üretimini sağlamak üzere planlanmış, çok detaylı ve kompleks sistemlere sahip oldukları görülecektir. Yaprağın enerji üretebilmesi için ısı ve karbondioksidi dış ortamdan alması gerekir. Yapraklardaki tüm yapılar da bu iki maddeyi kolaylıkla alacak şekilde düzenlenmiştir. Öncelikle yaprakların dış yapılarını inceleyelim. Yaprakların dış yüzeyleri geniştir. Bu da fotosentez için gerekli olan gaz alış-verişlerinin (karbondioksidin emilmesi ve oksijenin atılması gibi işlemlerin) kolay gerçekleşmesini sağlar. Yaprağın yassı biçimiyse tüm hücrelerin dış ortama yakın olmasını sağlar. Bu sayede de gaz alış-verişi kolaylaşır ve güneş ışınları, fotosentez yapan hücrelerin hepsine ulaşabilir. Bunun aksi bir durumu gözümüzün önüne getirelim. Yapraklar eğer yassı ve ince bir yapıya değil de herhangi bir geometrik şekle ya da anlamsız rasgele bir şekle sahip olsalardı yaprak fotosentez işlevini sadece güneş ile doğrudan temas eden bölgelerinde gerçekleştirebilecekti. Bu da bitkilerin yeterli enerji ve oksijen üretememesi anlamına gelecekti. Bunun canlılar için en önemli sonuçlarından biri de hiç kuşkusuz ki yeryüzünde bir enerji açığının ortaya çıkması olurdu. Yapraklardaki özel olarak "tasarlanmış" olan sistemler sadece bunlarla sınırlı değildir. Yaprak dokusunun önemli bir özelliği daha vardır. Bu özellik ışığa karşı duyarlı olmasıdır. Bu sayede ışık kaynağına yönelme, yani fototropizm adı verilen olay gerçekleşir. Bu, saksı bitkilerinde de rahatça gözlemlenen, bitkilerin yapraklarını güneşin geldiği yöne doğru çevirmesine neden olan olaydır. Bitki böylelikle güneş ışığından daha fazla faydalanabilir. Yapraklar bitkilerin hem nükleer enerji üreten santralleri, hem besin üreten fabrikaları, hem de önemli reaksiyonları gerçekleştirdikleri laboratuvarlarıdır. Yapraklarda hayati önem taşıyan bu işlemlerin nasıl gerçekleştirildiğini anlamak için yaprakların fizyolojik yapısını da kısaca incelemek gerekir. Yaprağın iç yapısının enine kesiti alınarak bakılacak olursa dört tabakalı bir yapı olduğu görülecektir. Bu yapılardan ilki kloroplast içermeyen epidermis tabakasıdır. Yaprağı alttan ve üstten örten epidermis tabakasının özelliği, yaprağı dış etkilerden korumasıdır. Epidermisin üstü koruyucu ve su geçirmez mumsu bir madde ile sarılıdır. Bu maddeye kütiküla adı verilir. Yaprağın iç dokusuna baktığımızda ise genelde iki hücre tabakasından oluştuğunu görürüz. Bunlardan iç dokuyu oluşturan Palizad dokuda kloroplastça zengin hücreler, aralarında hiç boşluk bırakmadan yan yana dizilirler. Bu doku fotosentezi yürüten dokudur. Bunun altında bulunan Sünger doku ise, solunumu sağlayan dokudur. Sünger dokudaki hücreler, diğer bölümlerdeki hücrelere göre daha gevşek bir şekilde birbirine kenetlenmiştir. Ayrıca bu dokunun hücreleri arasında hava ile dolu boşluklar vardır. Görüldüğü gibi bu dokuların hepsi yaprağın yapısında son derece önemli görevlere sahiptir. Bu tür düzenlemeler yaprakta ışığın daha iyi dağılıp yayılmasını sağlayarak fotosentez işleminin gerçekleşmesi açısından son derece büyük bir önem taşırlar. Bütün bunların yanı sıra yaprak yüzeyinin büyüklüğüne göre yaprağın işlem yapma (solunum, fotosentez gibi) yeteneği de artar. Örneğin birbirine geçmiş tropikal yağmur ormanlarında genellikle geniş yapraklı bitkiler yetişir. Bunun çok önemli sebepleri vardır. Sürekli ve çok miktarda yağmurun yağdığı, birbirine geçmiş ağaçlardan oluşan tropikal ormanlarda güneş ışığının bitkilerin her yerine eşit ulaşması oldukça zordur. Bu da ışığı yakalamak için gerekli olan yaprak yüzeyinin artırılmasını gerekli kılar. Güneş ışığının zor girdiği bu alanlarda bitkilerin besin üretebilmeleri için yaprak yüzeylerinin büyük olması hayati önem taşımaktadır. Çünkü bu özellikleri sayesinde tropik bitkiler değişik yerlerden, en fazla faydalanacak şekilde güneş ışığına ulaşmış olurlar. Tam aksine kuru ve sert iklimlerde ise küçük yapraklar bulunur. Çünkü bu iklim şartlarında bitkiler için dezavantaj olan asıl nokta ısı kaybıdır. Ve yaprak yüzeyi genişledikçe su buharlaşması, dolayısıyla ısı kaybı artar. Bu yüzden ışık yakalayan yaprak yüzeyi, bitkinin su tasarrufu yapabilmesi için iktisatlı davranacak şekilde tasarlanmıştır. Çöl ortamlarında yaprak kısıtlaması aşırı seviyelere ulaşır. Örneğin kaktüslerde yaprak yerine artık dikenler vardır. Bu bitkilerde fotosentez etli gövdenin kendisinde yapılır. Ayrıca gövde suyun depolandığı yerdir. Fakat su kaybının kontrol edilmesi için bu da tek başına yeterli değildir. Çünkü her ne kadar yaprak küçük olsa da gözeneklerin bulunması su kaybını devam ettirecektir. Bu yüzden buharlaşmayı dengeleyecek bir mekanizmanın varlığı zorunludur. Bitkiler de, fazla buharlaşmayı düzenleyen bir çıkış yoluna sahiptirler. Bünyelerindeki su kaybını, gözenek açıklığının kontrolü ile denetim altında tutarlar. Bunun için gözenek açıklıklarını genişletir veya daraltırlar(porları) Yaprakların tek görevi fotosentez için ışığı hapsetmeye çalışmak değildir. Havadaki karbondioksidi yakalayıp onu fotosentezin oluştuğu yere ulaştırmaları da aynı derecede önemlidir. Bitkiler bu işlemi de yaprakların üzerinde yer alan gözenekler vasıtasıyla gerçekleştirirler. KUSURSUZ BİR TASARIM: GÖZENEKLER Yaprakların üzerindeki bu mikroskobik delikler ısı ve su transferi sağlamak ve fotosentez için gerekli olan CO2'i atmosferden temin etmekle görevlidirler. Gözenek olarak adlandırılan bu delikler, gerektiğinde açılıp kapanabilecek bir yapıya sahiptirler. Gözenekler açıldığında yaprağın hücreleri arasında bulunan oksijen ve su buharı, fotosentez için gereken karbondioksit ile değiştirilir. Böylece üretim fazlalıkları dışarı atılırken, ihtiyaç duyulan maddeler değerlendirilmek üzere içeri alınmış olur. Gözeneklerin ilgi çekici yönlerinden biri, yaprakların çoğunlukla alt kısımlarında yer almalarıdır. Bu sayede, güneş ışığının olumsuz etkisinin en aza indirilmesi sağlanır. Bitkideki suyu dışarı atan gözenekler, eğer yaprakların üst kısımlarında yoğun olarak bulunsalardı, çok uzun süre güneş ışığına maruz kalmış olacaklardı. Bu durumda da bitkinin sıcaktan ölmemesi için gözenekler bünyelerindeki suyu sürekli olarak dışarı atacaklardı, böyle olunca da bitki aşırı su kaybından ölecekti. Gözeneklerin bu özel tasarımı sayesinde ise, bitkinin su kaybından zarar görmesi engellenmiş olur. Yaprakların üst deri dokusu üzerinde çifter çifter yerleşmiş bulunan gözeneklerin biçimleri fasulyeye benzer. Karşılıklı içbükey yapıları, yaprakla atmosfer arasındaki gaz alışverişini sağlayan gözeneklerin açıklığını ayarlar. Gözenek ağzı denilen bu açıklık, dış ortamın koşullarına (ışık, nem, sıcaklık, karbondioksit oranı) ve bitkinin özellikle su ile ilgili iç durumuna bağlı olarak değişir. Gözenek ağızlarının açıklığı ya da küçük oluşu ile bitkinin su ve gaz alışverişi düzenlenir. Dış ortamın tüm etkileri göz önüne alınarak düzenlenmiş olan gözeneklerin yapısında çok ince detaylar vardır. Bilindiği gibi dış ortam koşulları sürekli değişir. Nem oranı, sıcaklık derecesi, gazların oranı, havadaki kirlilik… Yapraklardaki gözenekler tüm bu değişken şartlara uyum gösterebilecek yapıdadırlar. Bunu bir örnekle şöyle açıklayabiliriz. Şeker kamışı ve mısır gibi uzun süre sıcağa ve kuru havaya maruz kalan bitkilerde, gözenekler suyu muhafaza edebilmek için gün boyunca tamamen ya da kısmen kapalı kalırlar. Bu bitkilerin de gündüz fotosentez yapabilmek için karbondioksit almaları gerekir. Normal şartlar altında bunu sağlayabilmek için de gözeneklerinin olabildiğince açık olması gerekir. Bu imkansızdır. Çünkü böyle bir durumda bitki, sıcaklığa rağmen sürekli açık olan gözenekleri yüzünden devamlı su kaybeder ve bir süre sonra da ölür. Bu nedenle bitkinin gözeneklerinin kapalı olması gereklidir.

http://www.biyologlar.com/yapraklarin-genel-yapisi

Sucul Bitkiler

SU BİTKİLERİ Sucul bitkiler karada yaşayanlar ile karşılaştırıldığında çeşitli stolojik, morfolojik ve anatomik farklılıklar göstermektedir.Ayrıca bu bitkilerin üreme şekilleri ve tiplerinin de değiştiği görülmektedir. Çeşitli su bitkileri türleri ile yaşadıkları susul ortam arasında doğrudan ilişki vardır.Örneğin Myriophyllaceae familyası üyeleri suya tamamen gömülmüş halde yaşadıkları halde su mercimekleri (lemna türleri )suyun üzerinde kalırlar.Nilüferler (Nymphea türleri) ise bir yandan rizom gövde ve kökleri ile çamura tutunurlar, geniş yaprakları ise su yüzeyinde yüzer. Su bitkileri yaşadıkları ortama uyabilmek için bazı morfolojik değişiklikler geçirmişlerdir.Kök , gövde veya yapraklar bazen ince lam veya iplik şekline dönüşebilir.Çiçekler ise çok küçük olup yalnızca bir tek üreme organı içeririler.İletim kanalları karadaki çiçekli bitkilere oranla azalmış ve daha az farklılaşma göstermiştir. Eğreltilerde yaprak ve kökler oldukça kısa bir gövdeye bağlanmışlardır.Çiçeklenmezler doğrudan yaprak veya gövde üzerinde gelişen sporlara sahiptirler.Sporlar gelişerek üzerinde mikroskopik üreme organı bulunan çok küçük boylu bitkiyi oluşturur.Döllenme olayından sonra tekrar yeni genç eğreltiler meydana gelir. Çiçekli bitkiler tipik olarak kök , gövde , yaprak ve çiçeklerden meydana gelmişlerdir.Çiçekler bitkinin eşeysel üreme merkezindedir.Erkek üreme organları ( etamin) polenleri oluşturur.Dişi üreme organları ise ovul içeren pistilden oluşmuştur.Bazı bitkiler biseksüel ( dişi ve erkek üreme organı taşıyan) çiçeklere sahiptirler.Bazıları ise yalnızca dişi ve erkek çiçekler taşırlar.Döllenen her ovul; tohumu, pistil ise meyveyi oluşturur.Tohumlar daha sonra yeni genç bitkiyi meydana getirir. Epidermis hücreleri klorofil taşırlar ve karbondioksit asimilasyonunda önemli rol oynar.Buna karşın hava organlarında epidermis hücrelerde klorofil bulunmaz ve bu organlarda stoma adı verilen delikler vardır.Böylece hava sirkilasyonu sağlanır. Su bitkilerinde hava dokuların (aerifer) bulunuşu önemli bir özelliktir.Boşluklu süngerimsi yapıdaki bu dokular şamandıra görevini görürler ve su altı organlarının yüzmesini temin ederler. Su altı organları bazen büyük ölçüde değişime uğrayarak özel şamandıra şeklini alırlar. Örneğin;Yaprak sapları ( petiol) veya nodüller arası kısımları şişkin şekilde olabilir ve köklerin zeminle irtibatı olmayabilir.Bazılarında farklı çeşit bir kaç kök bulunabilir. Yapraklar su içine gömülü, yüzücü veya su üstünde bulunabilirler.Aynı tür 2 veya 3 farklı çeşit yaprak tipini dalları üstünde taşıyabilir.Yaprakları su içinde veya dışında oluşlarına göre şekilleri , yapıları, dokuları farklılaşmalar gösterebilir.Su içindekiler çok ince yapılıdırlar.Dallanma gösterirler veya yassılaşmışlardır.Bazılarının membranları ince veya saydamdır.Yaprakların üst ve alt düzeyleri arasında farklılaşma olmayabilir klorofilli dokular her iki yüzeyde yer alırlar.Havada bulunan yapraklarda alt yüzeydeki epidermada stomalar bulunur.Böylece hava epidermis altındaki klorofilli dokulara ulaşır.Yüzücü yapraklarda ise iki yüzleri arasında farklılaşmalar olabilir.Örneğin;stomalar üst ve alt epidermada bulunan su ile temas etmesi nedeniyle alt yüzeyde havanın doku içine girmesi mümkün olmaz.Genellikle alt yüzeyler kırmızımtrak renktedir.Su bitkilerinde dahi çiçeklenme genellikle havada olur.Çiçekler su dışında açar ve döllenme kara bitkilerinde olduğu gibi gerçekleşir. Polenler rüzgar yoluyla veya böceklerle(Diptera) taşınır.Bazen ise su üstünde kayarak döllenmeyi sağlar.Bazılarında ise su içinde olur.Ancak döllenme çiçek açmadan gerçekleşir.( Kleistogami) SU BİTKİLERİNDE ÜREME Sucul bitkiler çiçeklenme ve döllenme yönünden gerçekten farklılaşmalar göstermişlerdir.Döllenme suda olur ve polenler bu ortamdaki yayılmaya uyum göstermişlerdir.Polen su içinde serbest hale geçer , dişi çiçeğin stigmasını bulana kadar su içinde gezinir. Döllenmeden sonra meyve oluşumu su içinde olur.Çiçekleri havada olan su bitkilerinde dahi genellikle meyve su içinde gelişir.Meyveyi taşıyan dalcıklar eğilerek genç meyveyi su içine yöneltir.Sucul meyveler etlidir, tohumları jelleşme oluşumu ile açılır.Tohumlar su içinde veya üstünde yüzerler. Eşeysel üreme her ne kadar bitkisel türlerin çeşitliliğinde (Diversite ) önemli ise de eşeysiz (Vejetatif) üreme su bitkilerinde önemli rol oynar.Bazı türlerin eşeysiz olarak üremesi ile aşırı çoğalması genellikle insan aktivitesi sonucu ortamda değişmeler olduğunu simgeler. Su bitkilerinde üç çeşit üreme tipine rastlanır.Tomurcuklanma veya çeliklenme (Vegatatif) , eşeysiz (sporla) ve eşeyli üreme.  

http://www.biyologlar.com/sucul-bitkiler

HAYVANLARI KORUMA KANUNU

Kanun No. 5199 Kabul Tarihi : 24.6.2004 BİRİNCİ KISIM Genel Hükümler BİRİNCİ BÖLÜM Amaç, Kapsam, Tanımlar ve İlkeler Amaç MADDE 1. - Bu Kanunun amacı; hayvanların rahat yaşamlarını ve hayvanlara iyi ve uygun muamele edilmesini temin etmek, hayvanların acı, ıstırap ve eziyet çekmelerine karşı en iyi şekilde korunmalarını, her türlü mağduriyetlerinin önlenmesini sağlamaktır. Kapsam MADDE 2. - Bu Kanun, amaç maddesi doğrultusunda yapılacak düzenlemeleri, alınacak önlemleri, sağlanacak eşgüdümü, denetim, sınırlama ve yükümlülükler ile tâbi olunacak cezaî hükümleri kapsar. Tanımlar MADDE 3. - Bu Kanunda geçen terimlerden; a)Yaşama ortamı: Bir hayvanın veya hayvan topluluğunun doğal olarak yaşadığı yeri, b) Etoloji: Bir hayvan türünün doğuştan gelen, kendine özgü davranışlarını inceleyen bilim dalını, c) Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, d) Tür: Birbirleriyle çiftleşebilen ve üreme yeteneğine sahip verimli döller verebilen populasyonları, e) Evcil hayvan: İnsan tarafından kültüre alınmış ve eğitilmiş hayvanları, f) Sahipsiz hayvan: Barınacak yeri olmayan veya sahibinin ya da koruyucusunun ev ve arazisinin sınırları dışında bulunan ve herhangi bir sahip veya koruyucunun kontrolü ya da doğrudan denetimi altında bulunmayan evcil hayvanları, g) Güçten düşmüş hayvan: Bulaşıcı ve salgın hayvan hastalıkları haricinde yaşlanma, sakatlanma, yaralanma ve hastalanma gibi çeşitli nedenlerle fizikî olarak iş yapabilme yeteneğini kaybetmiş binek ve yük hayvanlarını, h)Yabani hayvan: Doğada serbest yaşayan evcilleştirilmemiş ve kültüre alınmamış omurgalı ve omurgasız hayvanları, ı) Ev ve süs hayvanı: İnsan tarafından özellikle evde, işyerlerinde ya da arazisinde özel zevk ve refakat amacıyla muhafaza edilen veya edilmesi tasarlanan bakımı ve sorumluluğu sahiplerince üstlenilen her türlü hayvanı, j) Kontrollü hayvan: Bir kişi, kuruluş, kurum ya da tüzel kişilik tarafından sahiplenilen, bakımı, aşıları, periyodik sağlık kontrolleri yapılan işaretlenmiş kayıt altındaki ev ve süs hayvanlarını, k) Hayvan bakımevi: Hayvanların rehabilite edileceği bir tesisi, l) Deney: Herhangi bir hayvanın acı, eziyet, üzüntü veya uzun süreli hasara neden olacak deneysel ya da diğer bilimsel amaçlarla kullanılmasını, m) Deney hayvanı: Deneyde kullanılan ya da kullanılacak olan hayvanı, n) Kesim hayvanı: Gıda amaçlı kesimi yapılan hayvanları, o) Bakanlık: Çevre ve Orman Bakanlığını, İfade eder. İlkeler MADDE 4. - Hayvanların korunmasına ve rahat yaşamalarına ilişkin temel ilkeler şunlardır: a) Bütün hayvanlar eşit doğar ve bu Kanun hükümleri çerçevesinde yaşama hakkına sahiptir. b) Evcil hayvanlar, türüne özgü hayat şartları içinde yaşama özgürlüğüne sahiptir. Sahipsiz hayvanların da, sahipli hayvanlar gibi yaşamları desteklenmelidir. c) Hayvanların korunması, gözetilmesi, bakımı ve kötü muamelelerden uzak tutulması için gerekli önlemler alınmalıdır. d) Hiçbir maddî kazanç ve menfaat amacı gütmeksizin, sadece insanî ve vicdanî sorumluluklarla, sahipsiz ve güçten düşmüş hayvanlara bakan veya bakmak isteyen ve bu Kanunda öngörülen koşulları taşıyan gerçek ve tüzel kişilerin teşviki ve bu kapsamda eşgüdüm sağlanması esastır. e) Nesli yok olma tehlikesi altında bulunan tür ve bunların yaşama ortamlarının korunması esastır. f) Yabani hayvanların yaşama ortamlarından koparılmaması, doğada serbestçe yaşayan bir hayvanın yakalanıp özgürlükten yoksun bırakılmaması esastır. g) Hayvanların korunması ve rahat yaşamalarının sağlanmasında; insanlarla diğer hayvanların hijyen, sağlık ve güvenlikleri de dikkate alınmalıdır. h) Hayvanların türüne özgü şartlarda bakılması, beslenmesi, barındırılma ve taşınması esastır. ı) Hayvanları taşıyan ve taşıtanlar onları türüne ve özelliğine uygun ortam ve şartlarda taşımalı, taşıma sırasında beslemeli ve bakımını yapmalıdırlar. j) Yerel yönetimlerin, gönüllü kuruluşlarla işbirliği içerisinde, sahipsiz ve güçten düşmüş hayvanların korunması için hayvan bakımevleri ve hastaneler kurarak onların bakımlarını ve tedavilerini sağlamaları ve eğitim çalışmaları yapmaları esastır. k) Kontrolsüz üremeyi önlemek amacıyla, toplu yaşanan yerlerde beslenen ve barındırılan kedi ve köpeklerin sahiplerince kısırlaştırılması esastır. Bununla birlikte, söz konusu hayvanlarını yavrulatmak isteyenler, doğacak yavruları belediyece kayıt altına aldırarak bakmakla ve/veya dağıtımını yapmakla yükümlüdür. İKİNCİ KISIM Koruma Tedbirleri BİRİNCİ BÖLÜM Hayvanların Sahiplenilmesi, Bakımı ve Korunması Hayvanların sahiplenilmesi ve bakımı MADDE 5. - Bir hayvanı, bakımının gerektirdiği yaygın eğitim programına katılarak sahiplenen veya ona bakan kişi, hayvanı barındırmak, hayvanın türüne ve üreme yöntemine uygun olan etolojik ihtiyaçlarını temin etmek, sağlığına dikkat etmek, insan, hayvan ve çevre sağlığı açısından gerekli tüm önlemleri almakla yükümlüdür. Hayvan sahipleri, sahip oldukları hayvanlardan kaynaklanan çevre kirliliğini ve insanlara verilebilecek zarar ve rahatsızlıkları önleyici tedbirleri almakla yükümlü olup; zamanında ve yeterli seviyede tedbir alınmamasından kaynaklanan zararları tazmin etmek zorundadırlar. Ev ve süs hayvanı satan kişiler, bu hayvanların bakımı ve korunması ile ilgili olarak yerel yönetimler tarafından düzenlenen eğitim programlarına katılarak sertifika almakla yükümlüdürler. Ev ve süs hayvanı ve kontrollü hayvanları bulundurma ve sahiplenme şartları, hayvan bakımı konularında verilecek eğitim ile ilgili usul ve esaslar ile sahiplenilerek bakılan hayvanların çevreye verecekleri zarar ve rahatsızlıkları önleyici tedbirler, Tarım ve Köyişleri Bakanlığı ile eşgüdüm sağlanmak suretiyle, İçişleri Bakanlığı ve ilgili kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ticarî amaç güdülmeden bilhassa ev ve bahçesi içerisinde bakılan ev ve süs hayvanları sahiplerinin borcundan dolayı haczedilemezler. Ev ve süs hayvanlarının üretimini ve ticaretini yapanlar, hayvanları sahiplenen ve onu üretmek için seçenler annenin ve yavrularının sağlığını tehlikeye atmamak için gerekli anatomik, fizyolojik ve davranış karakteristikleri ile ilgili önlemleri almakla yükümlüdür. Ev ve süs hayvanları ile kontrollü hayvanlardan, doğal yaşama ortamlarına tekrar uyum sağlayamayacak durumda olanlar terk edilemez; beslenemeyeceği ve iklimine uyum sağlayamayacağı ortama bırakılamaz. Ancak, yeniden sahiplendirme yapılabilir ya da hayvan bakımevlerine teslim edilebilir. Sahipsiz ve güçten düşmüş hayvanların korunması MADDE 6. - Sahipsiz ya da güçten düşmüş hayvanların, 3285 sayılı Hayvan Sağlığı Zabıtası Kanununda öngörülen durumlar dışında öldürülmeleri yasaktır. Güçten düşmüş hayvanlar ticarî ve gösteri amaçlı veya herhangi bir şekilde binicilik ve taşımacılık amacıyla çalıştırılamaz. Sahipsiz hayvanların korunması, bakılması ve gözetimi için yürürlükteki mevzuat hükümleri çerçevesinde, yerel yönetimler yetki ve sorumluluklarına ilişkin düzenlemeler ile çevreye olabilecek olumsuz etkilerini gidermeye yönelik tedbirler, Tarım ve Köyişleri Bakanlığı ve İçişleri Bakanlığı ile eşgüdüm sağlanarak, diğer ilgili kuruluşların da görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. Sahipsiz veya güçten düşmüş hayvanların en hızlı şekilde yerel yönetimlerce kurulan veya izin verilen hayvan bakımevlerine götürülmesi zorunludur. Bu hayvanların öncelikle söz konusu merkezlerde oluşturulacak müşahede yerlerinde tutulması sağlanır. Müşahede yerlerinde kısırlaştırılan, aşılanan ve rehabilite edilen hayvanların kaydedildikten sonra öncelikle alındıkları ortama bırakılmaları esastır. Sahipsiz veya güçten düşmüş hayvanların toplatılması ve hayvan bakımevlerinin çalışma usul ve esasları, ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Hayvan bakımevleri ve hastanelerin kurulması amacıyla Hazineye ait araziler öncelikle tahsis edilir. Amacı dışında kullanıldığı tespit edilen arazilerin tahsisi iptal edilir. Hiçbir kazanç ve menfaat sağlamamak kaydıyla sadece insanî ve vicdanî amaçlarla sahipsiz ve güçten düşmüş hayvanlara bakan veya bakmak isteyen ve bu Kanunda öngörülen şartları taşıyan gerçek ve tüzel kişilere; belediyeler, orman idareleri, Maliye Bakanlığı, Özelleştirme İdaresi Başkanlığı tarafından, mülkiyeti idarelerde kalmak koşuluyla arazi ve buna ait binalar ve demirbaşlar tahsis edilebilir. Tahsis edilen arazilerin üzerinde amaca uygun tesisler ilgili Bakanlığın/İdarenin izni ile yapılır. İKİNCİ BÖLÜM Hayvanlara Müdahaleler Cerrahi müdahaleler MADDE 7. - Hayvanlara tıbbî ve cerrahi müdahaleler sadece veteriner hekimler tarafından yapılır. Kontrolsüz üremenin önlenmesi için, hayvanlara acı vermeden kısırlaştırma müdahaleleri yapılır. Yasak müdahaleler MADDE 8. - Bir hayvan neslini yok edecek her türlü müdahale yasaktır. Hayvanların, yaşadıkları sürece, tıbbî amaçlar dışında organ veya dokularının tümü ya da bir bölümü çıkarılıp alınamaz veya tahrip edilemez. Ev ve süs hayvanının dış görünüşünü değiştirmeye yönelik veya diğer tedavi edici olmayan kuyruk ve kulak kesilmesi, ses tellerinin alınması ve tırnak ve dişlerinin sökülmesine yönelik cerrahi müdahale yapılması yasaktır. Ancak bu yasaklamalara; bir veteriner hekimin, veteriner hekimliği uygulamaları ile ilgili tıbbî sebepler veya özel bir hayvanın yararı için gerektiğinde tedavi edici olmayan müdahaleyi gerekli görmesi veya üremenin önlenmesi durumlarında izin verilebilir. Bir hayvana tıbbî amaçlar dışında, onun türüne ve etolojik özelliklerine aykırı hale getirecek şekilde ve dozda hormon ve ilaç vermek, çeşitli maddelerle doping yapmak, hayvanların türlerine has davranış ve fizikî özelliklerini yapay yöntemlerle değiştirmek yasaktır. Hayvan deneyleri MADDE 9. - Hayvanlar, bilimsel olmayan teşhis, tedavi ve deneylerde kullanılamazlar. Tıbbî ve bilimsel deneylerin uygulanması ve deneylerin hayvanları koruyacak şekilde yapılması ve deneylerde kullanılacak hayvanların uygun biçimde bakılması ve barındırılması esastır. Başkaca bir seçenek olmaması halinde, hayvanlar bilimsel çalışmalarda deney hayvanı olarak kullanılabilir. Hayvan deneyi yapan kurum ve kuruluşlarda bu deneylerin yapılmasına kendi bünyelerinde kurulmuş ve kurulacak etik kurullar yoluyla izin verilir. Etik kurulların kuruluşu, çalışma usul ve esasları, Tarım ve Köyişleri Bakanlığı ile Sağlık Bakanlığının ve ilgili kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Deney hayvanlarının yetiştirilmesi, beslenmesi, barındırılması, bakılması, deney hayvanı besleyen, tedarik eden ve kullanıcı işletmelerin tescil edilmesi, çalışan personelin nitelikleri, tutulacak kayıtlar, ne tür hayvanların yetiştirileceği ve deney hayvanı besleyen, tedarik eden ve kullanıcı işletmelerin uyacağı esaslar Tarım ve Köyişleri Bakanlığınca çıkarılacak yönetmelikle belirlenir. ÜÇÜNCÜ BÖLÜM Hayvanların Ticareti ve Eğitilmesi Hayvanların ticareti MADDE 10. - Satılırken; hayvanların sağlıklarının iyi, barındırıldıkları yerin temiz ve sağlık şartlarına uygun olması zorunludur. Çiftlik hayvanlarının bakımı, beslenmesi, nakliyesi ve kesimi esnasında hayvanların refahı ve güvenliğinin sağlanması hususundaki düzenlemeler Tarım ve Köyişleri Bakanlığınca çıkarılacak yönetmelikle belirlenir. Yabani hayvanların ticaretine ilişkin düzenlemeler Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ev ve süs hayvanlarının üretimini ve ticaretini yapanlar, annenin ve yavrularının sağlığını tehlikeye atmamak için gerekli anatomik, fizyolojik ve davranış karakteristikleri ile ilgili önlemleri almakla yükümlüdür. Hayvanların ticarî amaçla film çekimi ve reklam için kullanılması ile ilgili hususlar izne tâbidir. Bu izne ait usul ve esaslar ilgili kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Bir hayvan; acı, ıstırap ya da zarar görecek şekilde, film çekimi, gösteri, reklam ve benzeri işler için kullanılamaz. Deney hayvanlarının ithalat ve ihracatı izne tâbidir. Bu izin, Bakanlığın görüşü alınarak Tarım ve Köyişleri Bakanlığınca verilir. Hasta, sakat ve yaşlı durumda bulunan veya iyileşemeyecek derecede ağrısı veya acısı olan bir hayvanı usulüne uygun kesmek ya da ağrısız öldürme amacından başka bir amaçla birine devretmek, satmak veya almak yasaktır. Eğitim MADDE 11. - Hayvanlar, doğal kapasitesini veya gücünü aşacak şekilde veya yaralanmasına, gereksiz acı çekmesine, kötü alışkanlıklara özendirilmesine neden olacak yöntemlerle eğitilemez. Hayvanları başka bir canlı hayvanla dövüştürmek yasaktır. Folklorik amaca yönelik, şiddet içermeyen geleneksel gösteriler, Bakanlığın uygun görüşü alınarak il hayvanları koruma kurullarından izin alınmak suretiyle düzenlenebilir. DÖRDÜNCÜ BÖLÜM Hayvanların Kesimi, Öldürülmesi ve Yasaklar Hayvanların kesimi MADDE 12. - Hayvanların kesilmesi; dini kuralların gerektirdiği özel koşullar dikkate alınarak hayvanı korkutmadan, ürkütmeden, en az acı verecek şekilde, hijyenik kurallara uyularak ve usulüne uygun olarak bir anda yapılır. Hayvanların kesiminin ehliyetli kişilerce yapılması sağlanır. Dini amaçla kurban kesmek isteyenlerin kurbanlarını dini hükümlere, sağlık şartlarına, çevre temizliğine uygun olarak, hayvana en az acı verecek şekilde bir anda kesimi, kesim yerleri, ehliyetli kesim yapacak kişiler ve ilgili diğer hususlar Bakanlık, kurum ve kuruluşların görüşü alınarak, Diyanet İşleri Başkanlığının bağlı olduğu Bakanlıkça çıkarılacak yönetmelikle belirlenir. Hayvanların öldürülmesi MADDE 13. - Kanunî istisnalar ile tıbbî ve bilimsel gerekçeler ve gıda amaçlı olmayan, insan ve çevre sağlığına yönelen önlenemez tehditler bulunan acil durumlar dışında yavrulama, gebelik ve süt anneliği dönemlerinde hayvanlar öldürülemez. Öldürme işleminden sorumlu kişi ve kuruluşlar, hayvanın kesin olarak öldüğünden emin olunduktan sonra, hayvanın ölüsünü usulüne uygun olarak bertaraf etmek veya ettirmekle yükümlüdürler. Öldürme esas ve usulleri Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yasaklar MADDE 14. - Hayvanlarla ilgili yasaklar şunlardır: a) Hayvanlara kasıtlı olarak kötü davranmak, acımasız ve zalimce işlem yapmak, dövmek, aç ve susuz bırakmak, aşırı soğuğa ve sıcağa maruz bırakmak, bakımlarını ihmal etmek, fiziksel ve psikolojik acı çektirmek. b) Hayvanları, gücünü aştığı açıkça görülen fiillere zorlamak. c) Hayvan bakımı eğitimi almamış kişilerce ev ve süs hayvanı satmak. d) Ev ve süs hayvanlarını onaltı yaşından küçüklere satmak. e) Hayvanların kesin olarak öldüğü anlaşılmadan, vücutlarına müdahalelerde bulunmak. f) Kesim hayvanları ve 4915 sayılı Kanun çerçevesinde avlanmasına ve özel üretim çiftliklerinde kesim hayvanı olarak üretimine izin verilen av hayvanları ile ticarete konu yabani hayvanlar dışındaki hayvanları, et ihtiyacı amacıyla kesip ya da öldürüp piyasaya sürmek. g) Kesim için yetiştirilmiş hayvanlar dışındaki hayvanları ödül, ikramiye ya da prim olarak dağıtmak. h) Tıbbî gerekçeler hariç hayvanlara ya da onların ana karnındaki yavrularına veya havyar üretimi hariç yumurtalarına zarar verebilecek sunî müdahaleler yapmak, yabancı maddeler vermek. ı) Hayvanları hasta, gebelik süresinin 2/3’ünü tamamlamış gebe ve yeni ana iken çalıştırmak, uygun olmayan koşullarda barındırmak. j) Hayvanlarla cinsel ilişkide bulunmak, işkence yapmak. k) Sağlık nedenleri ile gerekli olmadıkça bir hayvana zor kullanarak yem yedirmek, acı, ıstırap ya da zarar veren yiyecekler ile alkollü içki, sigara, uyuşturucu ve bunun gibi bağımlılık yapan yiyecek veya içecekler vermek. l) Pitbull Terrier, Japanese Tosa gibi tehlike arz eden hayvanları üretmek; sahiplendirilmesini, ülkemize girişini, satışını ve reklamını yapmak; takas etmek, sergilemek ve hediye etmek. ÜÇÜNCÜ KISIM Hayvan Koruma Yönetimi BİRİNCİ BÖLÜM Mahallî Hayvan Koruma Kurulları Teşkilât, Görev ve Sorumluluklar İl hayvanları koruma kurulu MADDE 15. - Her ilde il hayvanları koruma kurulu, valinin başkanlığında, sadece hayvanların korunması ve mevcut sorunlar ile çözümlerine yönelik olmak üzere toplanır. Bu toplantılara; a) Büyükşehir belediyesi olan illerde büyükşehir belediye başkanları, büyükşehire bağlı ilçe belediye başkanları, büyükşehir olmayan illerde belediye başkanları, b) İl çevre ve orman müdürü, c) İl tarım müdürü, d) İl sağlık müdürü, e) İl millî eğitim müdürü, f) İl müftüsü, g) Belediyelerin veteriner işleri müdürü, h) Veteriner fakülteleri olan yerlerde fakülte temsilcisi, ı) Münhasıran hayvanları koruma ile ilgili faaliyet gösteren gönüllü kuruluşlardan valilik takdiri ile seçilecek en çok iki temsilci, j) İl veya bölge veteriner hekimler odasından bir temsilci, Katılır. Kurul başkanı gerekli gördüğü durumlarda konuyla ilgili olarak diğer kurum ve kuruluşlardan yetkili isteyebilir. İl hayvan koruma kurulu sekretaryasını, il çevre ve orman müdürlüğü yürütür. Kurul, çalışmalarının sonucunu, önemli politika, strateji, uygulama, inceleme ve görüşleri Bakanlığa bildirir. İllerde temsilciliği bulunmayan kuruluş var ise il hayvan koruma kurulları diğer üyelerden oluşur. Kurul, kurul başkanı tarafından toplantıya çağrılır. İl hayvan koruma kurulunun çalışma esas ve usulleri Bakanlıkça çıkarılacak yönetmelikle belirlenir. İl hayvanları koruma kurulunun görevleri MADDE 16. - Hayvanları koruma kurulu münhasıran hayvanların korunması, sorunların tespiti ve çözümlerini karara bağlamak üzere; av ve yaban hayvanlarının ve yaşama alanlarının korunması ve avcılığın düzenlenmesi hususlarında alınmış olan Merkez Av Komisyonu kararlarını göz önünde bulundurarak; a) Hayvanların korunması ve kullanılmasında onların yasal temsilciliği niteliği ile bu Kanunda belirtilen görevleri yerine getirmek, b) İl sınırları içinde hayvanların korunmasına ilişkin sorunları belirleyip, koruma sorunlarının çözüm tekliflerini içeren yıllık, beş yıllık ve on yıllık plân ve projeler yapmak, yıllık hedef raporları hazırlayıp Bakanlığın uygun görüşüne sunmak, Bakanlığın olumlu görüşünü alarak hayvanların korunması amacıyla her türlü önlemi almak, c) Hazırlanan uygulama programlarının uygulanmasını sağlamak ve sonuçtan Bakanlığa bilgi vermek, d) Hayvanların korunması ile ilgili olarak çeşitli kişi, kurum ve kuruluşların il düzeyindeki faaliyetlerini izlemek, yönlendirmek ve bu konuda gerekli eşgüdümü sağlamak, e) İlde kurulacak olan hayvan bakımevleri ve hayvan hastanelerini desteklemek, geliştirmek ve gerekli önlemleri almak, f) Yerel hayvan koruma gönüllülerinin müracaatlarını değerlendirmek, g) Hayvan sevgisi, korunması ve yaşatılması ile ilgili eğitici faaliyetler düzenlemek, j) Bu Kanuna göre çıkarılacak mevzuatla verilecek görevleri yapmak, İle görevli ve yükümlüdür. İKİNCİ BÖLÜM Denetim ve Hayvan Koruma Gönüllüleri Denetim MADDE 17. - Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki Bakanlıkça mahallin en büyük mülkî amirine yetki devri suretiyle devredilebilir. Denetim elemanlarının nitelikleri ve denetime ilişkin usul ve esaslar ile kayıt ve izleme sistemi kurma, bildirim yükümlülüğü ile bunları verecekler hakkındaki usul ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yerel yönetimler, ev ve süs hayvanları ile sahipsiz hayvanların kayıt altına alınması ile ilgili işlemleri yapmakla yükümlüdürler. Yerel hayvan koruma görevlilerinin sorumlulukları MADDE 18. - Özellikle kedi ve köpekler gibi sahipsiz hayvanların kendi mekânlarında, bulundukları bölge ve mahallerde yaşamaları sorumluluğunu üstlenen gönüllü kişilere yerel hayvan koruma görevlisi adı verilir. Bu görevliler, hayvan koruma dernek ve vakıflarına üye ya da bu konuda faydalı hizmetler yapmış kişiler arasından il hayvan koruma kurulu tarafından her yıl için seçilir. Yerel hayvan koruma görevlileri görev anında belgelerini taşımak zorundadır ve bu belgelerin her yıl yenilenmesi gerekir. Olumsuz faaliyetleri tespit edilen kişilerin belgeleri iptal edilir. Yerel hayvan görevlilerinin görev ve sorumluluklarına, bu kişilere verilecek belgelere, bu belgelerin iptaline ve verilecek eğitime ilişkin usul ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yerel hayvan koruma görevlileri; bölge ve mahallerindeki, öncelikle köpekler ve kediler olmak üzere, sahipsiz hayvanların bakımları, aşılarının yapılması, aşılı hayvanların markalanması ve kayıtlarının tutulmasının sağlanması, kısırlaştırılması, saldırgan olanların eğitilmesi ve sahiplendirilmelerinin yapılması için yerel yönetimler tarafından kurulan hayvan bakımevlerine gönderilmesi gibi yapılan tüm faaliyetleri yerel yönetimler ile eşgüdümlü olarak yaparlar. ÜÇÜNCÜ BÖLÜM Hayvanların Korunmasının Desteklenmesi Mali destek MADDE 19. - Ev ve süs hayvanlarının korunması amacıyla bakımevleri ve hastaneler kurmak; buralarda bakım, rehabilitasyon, aşılama ve kısırlaştırma gibi faaliyetleri yürütmek için, başta yerel yönetimler olmak üzere diğer ilgili kurum ve kuruluşlara Bakanlıkça uygun görülen miktarlarda mali destek sağlanır. Bu amaçla Bakanlık bütçesine gerekli ödenek konulur. Bu ödeneğin kullanımına ilişkin esas ve usuller, Maliye Bakanlığının olumlu görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. DÖRDÜNCÜ BÖLÜM Diğer Hükümler Eğitici yayınlar MADDE 20. - Hayvanların korunması ve refahı amacıyla; yaygın ve örgün eğitime yönelik programların yapılması, radyo ve televizyon programlarında bu konuya yer verilmesi esastır. Türkiye Radyo ve Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20'sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. Trafik kazaları MADDE 21. - Bir hayvana çarpan ve ona zarar veren sürücü, onu en yakın veteriner hekim ya da tedavi ünitesine götürmek veya götürülmesini sağlamak zorundadır. Hayvanat bahçeleri MADDE 22. - İşletme sahipleri ve belediyeler hayvanat bahçelerini, doğal yaşama ortamına en uygun şekilde tanzim etmekle ve ettirmekle yükümlüdürler. Hayvanat bahçelerinin kuruluşu ile çalışma usul ve esasları Tarım ve Köyişleri Bakanlığının görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yasak ve izinler MADDE 23. - Bu Kanun kapsamında olan ev ve süs hayvanlarının ticaretinin yapılması, ithalatı ve ihracatı ile her ne şekilde olursa olsun, ülkeden çıkarılması ve sokulması ile ilgili her türlü izin ve işlemlerde Bakanlığın görüşü alınmak kaydıyla Tarım ve Köyişleri Bakanlığı yetkilidir. Tarım ve Köyişleri Bakanlığının ilgili birimlerince, yıl içinde yapılan ithalat ve ihracat ile ilgili bilgiler Bakanlığa bildirilir. Koruma altına alma MADDE 24. - Bu Kanunun hayvanları korumaya yönelik hükümlerine aykırı hareket eden ve bu suretle bulundurduğu hayvanların bakımını ciddi şekilde ihmal eden ya da onlara ağrı, acı veya zarar veren kişilerin denetimle yetkili merci tarafından hayvan bulundurması yasaklanır ve hayvanlarına el konulur. Söz konusu hayvan yeniden sahiplendirilir ya da koruma altına alınır. DÖRDÜNCÜ KISIM Cezai Hükümler BİRİNCİ BÖLÜM İdari Para Cezası Verme Yetkisi, Cezalar, Ödeme Süresi, Tahsil ve İtiraz İdarî para cezası verme yetkisi MADDE 25. - Bu Kanunda öngörülen idarî para cezaları bu Kanunun 17 nci maddesinde belirtilen denetime yetkili merci tarafından verilir. İdari para cezalarına itiraz MADDE 26. - İdarî para cezalarına karşı cezanın tebliği tarihinden itibaren onbeş gün içinde idare mahkemesine dava açılabilir. Davanın açılmış olması idarece verilen cezanın yerine getirilmesini durdurmaz. Bu konuda idare mahkemelerinin verdiği kararlar kesindir. İdarî para cezalarının ödenme süresi ve tahsili MADDE 27. - İdarî para cezalarının ödenme süresi cezanın tebliği tarihinden itibaren otuz gündür. Ceza vermeye yetkili merciler tarafından, Bakanlıkça bastırılan ve dağıtılan makbuz karşılığında verilen para cezaları, ilgilileri tarafından mahallin en büyük mal memurluğuna yatırılır. Yatırılan paranın % 80'i ilgili belediyeye takip eden ay içinde aktarılır. Bu para, tahsisi mahiyette olup amacı dışında kullanılamaz. Bu Kanuna göre verilecek idarî para cezalarında kullanılacak makbuzların şekli, dağıtımı ve kontrolü ile ilgili esas ve usuller yönetmelikle belirlenir. Öngörülen süre içinde ödenmeyen para cezaları, gecikme zammı ile birlikte 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Cezalar MADDE 28. - Bu Kanun hükümlerine aykırı davrananlara aşağıdaki cezalar verilir: a) 4 üncü maddenin (k) bendinin ikinci cümlesi hükmüne aykırı davrananlara, hayvan başına ikiyüzellimilyon lira idarî para cezası. b) 5 inci maddenin birinci, ikinci, üçüncü ve altıncı fıkralarında öngörülen hayvanların sahiplenilmesi ve bakımı ile ilgili yasaklara ve yükümlülüklere uymayan ve alınması gereken önlemleri almayanlara hayvan başına ellimilyon lira, yedinci fıkrasında öngörülen yükümlülük ve yasaklara uymayanlara hayvan başına yüzellimilyon lira idarî para cezası. c) 6 ncı maddenin birinci fıkrasına aykırı hareket edenlere hayvan başına beşyüzmilyon lira idarî para cezası. d) 7 nci maddede yazılan cerrahi amaçlı müdahaleler ile ilgili hükümlere aykırı davrananlara hayvan başına yüzellimilyon lira idarî para cezası. e) 8 inci maddenin birinci fıkrasında yazılı, bir hayvan neslini yok edecek müdahalede bulunanlara hayvan başına yedibuçukmilyar lira idarî para cezası; ikinci, üçüncü ve dördüncü fıkralarına uymayanlara hayvan başına birmilyar lira idarî para cezası. f) 9 uncu maddede ve çıkarılacak yönetmeliklerinde belirtilen hususlara uymayanlara hayvan başına ikiyüzellimilyon lira; yetkisi olmadığı halde hayvan deneyi yapanlara hayvan başına birmilyar lira idarî para cezası. g) 10 uncu maddede belirtilen hayvan ticareti izni almayanlara ve bu konudaki yasaklara ve yönetmelik hükümlerine aykırı davrananlara ikimilyarbeşyüzmilyon lira idarî para cezası. h) 11 inci maddenin birinci fıkrasındaki eğitim ile ilgili yasaklara aykırı davrananlara birmilyarikiyüzellimilyon lira, ikinci fıkrasına aykırı davrananlara hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. ı) 12 nci maddenin birinci fıkrasına aykırı hareket edenlere hayvan başına beşyüzmilyon lira; ikinci fıkrasına aykırı hareket edenlere hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. j) 13 üncü madde hükümlerine aykırı davrananlara, öldürülen hayvan başına beşyüzmilyon lira idarî para cezası, aykırı davranışların işletmelerce gösterilmesi halinde öldürülen hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. k) 14 üncü maddenin (a), (b), (c), (d), (e), (g), (h), (ı), (j) ve (k) bentlerine aykırı davrananlara ikiyüzellimilyon lira idarî para cezası; (f) ve (l) bentlerine aykırı davrananlara hayvan başına ikimilyarbeşyüzmilyon lira idarî para cezası verilir, kesilmiş ve canlı hayvanlara el konulur. l) RTÜK’ün takibi sonucunda 20 nci maddeye aykırı hareket ettiği tespit edilen ulusal radyo ve televizyon kurum ve kuruluşlarına maddenin ihlal edildiği her ay için beşmilyar lira idarî para cezası. m) 21 inci maddeye aykırı hareket edenlere hayvan başına ikiyüzellimilyon lira idarî para cezası. n) 22 nci maddeye uymayanlara, hayvanat bahçelerinde kötü şartlarda barındırdıkları hayvan başına altıyüzmilyon lira idarî para cezası. o) 23 üncü maddeye aykırı hareket edenlere hayvan başına ikimilyarbeşyüzmilyon lira idarî para cezası. Bu maddenin (b) bendinde atıfta bulunulan 5 inci maddenin birinci, ikinci ve beşinci fıkraları ile (o) bendi dışında kalan fiillerin, veteriner hekim, veteriner sağlık teknisyeni, hayvan koruma gönüllüsü, hayvan koruma derneği üyeleri, hayvan koruma vakfı üyeleri, hayvan toplama, gözetim altına alma, bakma, koruma ile görevlendirilmiş olan kişilerce işlenmesi halinde verilecek ceza iki kat artırılarak uygulanır. Bu maddede yazılı idarî para cezaları, her takvim yılı başından geçerli olmak üzere, o yıl için 4.1.1961 tarihli ve 213 sayılı Vergi Usul Kanununun mükerrer 298 inci maddesi hükümleri uyarınca tespit ve ilân edilen yeniden değerleme oranında artırılarak uygulanır. BEŞİNCİ KISIM Çeşitli, Son ve Geçici Hükümler BİRİNCİ BÖLÜM Çeşitli Hükümler Birden fazla hükmün ihlâli MADDE 29. - Bu Kanunda suç olarak öngörülen fiiller başka kanunlara göre de suç ise, en ağır cezayı gerektiren kanun hükümleri uygulanır. Fiili ile bu Kanunun birden fazla hükmünü ihlal edenlere daha ağır olan ceza verilir. Fiillerin tekrarı MADDE 30. - Bu Kanunda, ceza hükmü altına alınmış fiillerin tekrarı halinde para cezaları bir kat, daha fazla tekrarı halinde üç kat artırılarak verilir. İKİNCİ BÖLÜM Son ve Geçici Hükümler Saklı hükümler MADDE 31. - 4915 sayılı Kara Avcılığı Kanunu, 3285 sayılı Hayvan Sağlığı ve Zabıtası Kanunu, 4631 sayılı Hayvan Islahı Kanunu ile 1380 sayılı Su Ürünleri Kanunu hükümleri saklıdır. GEÇİCİ MADDE 1. - Bu Kanunun 14 üncü maddesinin (l) bendinde belirtilen hayvanlardan, yurda bu Kanunun yürürlüğe girdiği tarihten önce sokulmuş olanların sahipleri; üç ay içerisinde hayvan koruma kurullarına bildirimde bulunarak bunları kayıt altına aldırmak; altı ay içerisinde kısırlaştırarak kısırlaştırıldıklarına ilişkin belgeleri il hayvan koruma kurullarına teslim etmek zorundadırlar. GEÇİCİ MADDE 2. - Bu Kanun gereğince çıkarılması gerekli bulunan yönetmelikler, Kanunun yürürlüğe girdiği tarihten itibaren bir yıl içinde hazırlanır. Yürürlük MADDE 32. - Bu Kanun yayımı tarihinde yürürlüğe girer. Yürütme MADDE 33. - Bu Kanun hükümlerini Bakanlar Kurulu yürütür.

http://www.biyologlar.com/hayvanlari-koruma-kanunu

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

Tatlı Su Protozoonları ve Önemi

Protozoa tek hücreli, ökaryotik mikroorganizmalardır. Özellikle bakteri, tek hücreli alg ve diğer protistler üzerinden beslenirler. 80.000’in üzerinde protozoon türü tanımlanmıştır. Bunların yarıdan fazlası fosil, yaklaşık 10.000 kadarı da simbiyonttur [1]. Protozoon türleri uzun yıllar sadece insanlara verdikleri zarar düşünülerek, parazitolojik açıdan ele alınmış, serbest yaşayan protozoonlar ihmal edilmiştir. Gerçekte çok sayıda parazit protozoon olmasına rağmen, daha da fazla sayıda hem sucul hem de karasal habitatlarda yaşayan serbest protozoon türü bulunmaktadır. Serbest yaşayan protozoonların bulundukları ortamdaki önemlerinin anlaşılmasından sonra, araştırmacılar dikkatlerini tıbbi protozoolojiden, serbest yaşayan protozoonların ekolojisine çevirmişlerdir. Genel limnolojik çalışmalarda heterotrofik protozoa uzun bir süre dikkate alınmamıştır. Kesin olarak ortaya koymak güç olmakla birlikte, bu ihmalin sebebi, muhtemelen uzman eksikliği veya daha büyük olan metazoonlara göre preparasyon işlemlerinin zor ve zaman alıcı olması gösterilebilir [2]. Protozoonların mikrobiyal besin ağında ve organik kirlilik yükü yüksek suların arıtılmasında önemli rolleri bulunmaktadır. Bunların yanı sıra atık su arıtma sistemlerinin performans göstergesi ve doğal suların kirlilik ve ötrofikasyon indikatörü olarak da kullanılmaktadırlar [3-9]. Protozoon türlerinin planktonik besin ağının önemli bir parçası olduğu ve sucul habitatlarda toplam zooplankton biyoması içerisinde önemli bir yere sahip olduğunun anlaşılmasından sonra göl, gölet, akarsu, rezervuar, kaynak suları ve sulak alanlar gibi tatlı su ekosistemlerinde, protozoon biyomas ve tür çeşitliliğinde meydana gelen mevsimsel değişimler, komünite yapıları çeşitli çalışmalarda ele alınmıştır. Ülkemizde değişik ekosistemlerde bulunan farklı organizma gruplarına ait çalışmalarda büyük aşamalar kaydedilmiş olmasına karşın, protozoonlar ile ilgili çalışmalar yeterli ölçüde değildir. Türkiye tatlı su protozoonları ile ilgili bilgiler yeni, az ve eksiktir. Bu çalışmanın bu alanda yapılacak olan araştırmalara temel bilgi sağlaması beklenmektedir. Protısta Alemi ve Protozoonlar Önceleri tüm canlılar iki alemli sınıflandırma sistemi (Kingdom: Plantae, Kingdom: Animalia) içerisinde ya bitki ya da hayvan olarak kabul edilmişler ve protozoonlar hayvanlar alemine dahil edilmişlerdir. Uzun bir zamandır kullanılmakta olan Whittaker’in beş-alemli sınıflandırma sisteminde bitki, mantar ya da hayvan tanımına uymayan tüm ökaryotik hücre organizasyonu gösteren tek hücreli canlılar Protista alemini oluşturmaktadır. Moleküler tekniklerin gelişmesi sonucunda canlı türleri arasındaki filogenetik ilişkiler ortaya çıkarılmış ve üç domain (süperkingdom) sistemi (Bacteria-Archaea-Eukarya) bilim dünyasına girmiştir. Bu sınıflandırma sisteminde bütün ökaryotik canlılar üçüncü domain olan Eukarya’ya dahil edilmiş ve domain Eukarya dört aleme (Protista-Plantae-Fungi-Animalia) bölünmüştür. Son zamanlarda bilim adamları bugün yaşayan türler arasındaki filogenetik ilişkilere dayanan sekiz alemden (Archaebacteria-Eubacteria-Archaezoa-Protista-Chromista-Plantae-Fungi-Animalia) oluşan yeni bir sınıflandırma sistemini teklif etmişlerdir [10,11]. Archaezoa olarak sınıflandırılan bir hücreli organizmalar (Archaeamoebae-Metamonada-Microsporidia) gerçek bir çekirdeğe sahiptirler, ancak mitokondri, endoplazmik retikulum ve Golgi aygıtından yoksundurlar. Moleküler verilere göre, Archaezoa üyeleri en eski ökaryotik hücreler olup, anaerobik periyodda, Golgi ve endoplazmik retikulumun gelişimi ve mitokondriyal simbiyontların hücreye dahil olmasından önce, ökaryotik evrim hattından ayrılmışlardır. Kahverengi algler ile klorofil c içeren diğer tek hücreli ökaryotlar Chromista adı altında ayrı bir alem içerisinde toplanmış, geriye kalan bir hücreli ökaryotlar, Protista alemine dahil edilmişlerdir [10-13] . Protista üyeleri yapı ve işlev bakımından çok çeşitlidir ve sınıflandırılması güçlüklerle dolu bir geçmişe sahiptir. Bu alemin sınırı değişik sınıflandırmalar arasında büyük farklılıklar göstermektedir [12, 14-16]. Çoğunluğu tek hücreli ve mikroskobik ökaryot canlılar olmasına karşın, aynı zamanda daha basit çok hücrelileri ve hatta deniz yosunları gibi karmaşık yapılı iri organizmaları da kapsar. Bunları bir araya toplayan asıl faktör hayvan, mantar ya da gerçek bitki olmamalarıdır. Protista aleminin, geleneksel bir yaklaşımla hayvan benzeri (Mastigophora-Sarcodina-Ciliata), mantar benzeri (Sporozoa-Mycetozoa-Gymnomycota), bitki benzeri (Euglenoidea-Dinoflagellata) gruplar şeklinde düzenlenmesi kabul görmektedir. Hayvan benzeri bir hücreliler olarak “Protozoa”, evrimsel ya da sistematik bir anlam ifade etmediğinden, takson olarak kabul edilmez. Protozoa kavramı, fonksiyonel anlamda bir organizasyon düzeyini ifade etmek için kullanılır. Bu grubu oluşturan organizmalar, hayvanlarla aynı tip beslenme stratejisini kullanırlar. Hayvan benzeri bir hücreliler enerji ve besinlerini heterotrofi yoluyla (osmotrofi-fagotrofi) elde ederler. Çok sayıda flagellat miksotrofiktir ve her iki beslenme stratejisini de (heterotrofi-ototrofi) kullanırlar. Bir çok heterotrofik protozoa da sitoplazmalarında fotosentez yapabilen endosimbiyontlar içerirler. Protozoanın olağanüstü çeşitliliğini içeren bir sınıflandırma sistemi düzenlemek oldukça zordur. Finlay ve Esteban [17] belirleyici karakter olarak fagotrofinin önemini vurgulayarak, tatlı suda yaygın olarak bulunan serbest yaşayan protozoonları aşağıda belirtildiği gibi 16 şubeye ayırmışlardır. Bu sınıflandırmada protozoa kavramı, eski sınıflandırmalarda tanımlanan Kingdom Protozoa’yı ve geleneksel bir şekilde protozoon olarak kabul edilen ancak şimdi Archaezoa ve Chromista’ya (esas olarak fototrofik protistler ya da alglerdir) dahil edilen organizmaları içermektedir. ARCHAEAMOEBAE: Mitokondriden yoksun, tek-kamçılı ameboyit hücreler olup, “pelobiont”lar da denir (örneğin Mastigamoeba, Mastiginella, Pelomyxa). Kamçı Pelomyxa cinsinde güçlükle gözlenir, bu nedenle amip olarak da tanımlanmaktadır. Organik madde bakımından zengin, anoksik sedimentlerde yaygın olarak bulunurlar. Özel bir besin tercihleri yoktur; bakteri, alg, detritus vs. üzerinden beslenirler. METAMONADA: Mitokondriden yoksun anaerobik kamçılı protistlerdir. İki, dört, sekiz (ya da bazen daha fazla) kamçı taşırlar. Çoğunluğu endokommensal olmasına karşın, parazit türler ve serbest yaşayan diplomonad türleri de (örneğin Hexamita, Trepomonas) içerir. Organik olarak zengin, anoksik sedimentlerde yaygın olarak bulunurlar, bakteri üzerinden osmotrofik ve fagotrofik olarak beslenirler. PERCOLOZOA: Genellikle 1-4 (bazen daha fazla) arasında değişen kamçı taşıyan flagellatları (örneğin ameboyit olmayan dört kamçılı Percolomonas, çok kamçılı pseudosiliyatlar), geçici kamçılı safhaları bulunan ameboyit flagellatları (örneğin iki kamçılı Naeglaria, dört kamçılı Tetramitus), kamçılı safha bulunmayan ameboyit formları (örneğin Vahlkampfia) ve modifiye olmuş mitokondri (hidrogenozom) içeren anaerobik flagellatları (örneğin Psalteriomonas) içeren karışık bir gruptur. Bazıları fakültatif patojendirler. Tümü sedimentlerde yaşar ve esas olarak bakteri üzerinden beslenirler. PARABASALA: Çok sayıda kamçıya sahip hidrogenozom içeren anaerobik, heterotrofik flagellatlardır. Karakteristik olarak parabasal cisimcik (modifiye olmuş Golgi) içerirler. Muhtemelen Ditrichomonas, Pseudotrichomonas hariç, hemen hemen tümü endosimbiyotiktir. İyi bilinmemekle beraber, bakteri üzerinden beslendikleri tahmin edilmektedir. Bazı araştırıcılar Parabasala’yı Archaezoa alemine dahil ederler. EUGLENOZOA: Genellikle iki (nadiren daha fazla) kamçı taşıyan flagellatlardır. Kamçılardan biri ya da her ikisi de anteriyör bir çöküntüden çıkar. Çoğu fagotrofiktir (örneğin Rhyhchomonas, Bodo, Astasia, Paranema, Entosiphon, Anisonema). Fagotrofik türler esas olarak sedimentlerde yaşarlar ve buraya tutunmuş bakteriler ya da su sütununda asılı duran bakteriler üzerinden beslenirler. Entosiphon gibi daha büyük öglenoyitler büyük partiküllerle beslenirler. Kinetoplastid içeren biflagellat bodonidleri de içerir. Serbest yaşayanlara ilaveten simbiyotik olan üyeleri de vardır. Ichthyobodo necator tatlı su balıklarının solungaçlarında ektoparazit olarak yaşar. OPALOZOA: Çoğu biflagellat protistlerdir (Anisomonas, Apusomonas, Cercomonas, Heteromita). Esas olarak bakteri üzerinden beslenirler. Kathalepharis türleri planktonda küçük algler üzerinden, bazıları ise (örneğin Cercomonas) pseudopod oluşturarak bakteri üzerinden beslenirler. Cyathobodo kendini zemine tespit etmek için sap oluşturur. Bu takson endokommensal olarak yaşayan opalinidleri de kapsar. CHOANOZOA: Serbest yaşayan, tek kamçılı, renksiz flagellatlardır. Hücrelerin apikal yüzeyinde bulunan çok sayıda ince sitoplazmik uzantı, kamçının etrafında yaka benzeri bir yapı oluşturur. Çoğunlukla sesildirler. Soliter ya da koloniyal, çıplak ya da lorikalı olabilirler. Sadece fagotrofik formları içerir, tatlı sudaki süspanse bakteri ve diğer küçük partiküller üzerinden beslenirler (örneğin Codonosiga, Diploeca, Diplosigopsis, Monosiga, Sphaeroeca). DINOZOA: Ekolojik bakımdan önemli olan bir şubedir. Deniz ve tatlı sularda serbest, bir kısmı da diğer protistler veya metazoonlarda simbiyont olarak yaşayan, iki heterodinamik kamçı taşıyan flagellatlardır. Renksiz türler osmotrofiktirler, detritus ya da diğer protistler üzerinden beslenirler. Katadinium, Peridinium, Gymnodium ve Ceratium cinslerinde fagotrofik tatlı su türleri bulunur. CILIOPHORA: Protista içerisinde yer alan şubeler arasında en homojen gruplardan biridir. Nüklear dualizm (makro- ve mikronükleus) göstermeleri, hareket ve beslenme için sil veya bileşik sil yapıları (sir, membranel vs.) taşımaları, homothetogenik (enine) bölünmenin görülmesi (flagellatlarda symmetrogenik bölünme görülür) diagnostik özellikleridir. Bir çoğu kompleks ağız siliyatürüne sahiptir. Çoğu aerobiktir, anaerobik türlerde mitokondri yoktur ya da hidrogenozom bulunur. Siliyatlarda beslenme heterotrofiktir, fakat bazı türler fotosentetik algal protistler içerirler. Çoğunluğu serbest yaşar, çok sayıda türü kommensal veya nadiren de parazit olarak yaşayan simbiyontlardır. Ichthyopthyrius multifiliis balıklarda beyaz benek hastalığı etkenidir. Yumuşak zeminlerde geniş populasyonlar oluştururlar (örneğin Loxodes, Spirostomum, Caenomorpha, Aspidisca, Acineta, Nassula, Cyclidium, Vorticella, Frontonia, Paremecium, Prorodon, Lacrymaria, Actinobolina). Bir çok siliyat serbest, fakat bazı peritrich ve suktorlar sesil yaşarlar. Vorticella soliterdir, fakat Epistylis, Carchesium, Zoothamnium ve Operculaia koloniyaldir. Küçük türler bakteri üzerinden, büyük türler ise büyük tek hücreli algler, flamentöz siyanobakteri, diğer protozoonlar ve nadiren rotifer ve diğer mikrozooplankton üzerinden beslenirler. Halteria viridis gibi miksotrofik türlerin metalimniyonda aşırı çoğalması primer üretim bakımından önemli olabilir. RHIZOPODA: Beslenme ve hareket için pseudopod oluşturan, kamçısız amiplerdir. Yalancı ayaklar lobsu (lopopod), ipliksi (filopod) ya da ağsı (retikulopod) olabilir. Çıplak amipler lobsu (örneğin Amoeba, Acanthamoeba) ya da ipliksi (örneğin Vampyrella) yalancı ayaklara, kabuklu amipler ya lobsu (örneğin Arcella) ya da ipliksi (örneğin Euglypha) yalancı ayaklara sahiptirler. Foraminiferlerin (Granuloreticulosa) tümü hemen hemen denizeldir, kabuk yüzeyindeki deliklerden yalancı ayaklar ipliksi şekilde çıkarlar ve ağsı bir yapı şekillendirirler. Taksonun üyeleri esas olarak serbest yaşarlar, fakat endosimbiyont olarak yaşayanları da vardır (örneğin Entamoeba). Serbest yaşayanların tümü fagotrofik heterotroflardır. Alg, detritus, bakteri vs. üzerinden beslenirler. Vampyrella flamentöz yeşil algler üzerinde parazit yaşarlar. Bazı kabuklular planktoniktirler (örneğin Difflugia). HELIOZOA: Aksopodlu fagotrofik hücrelerdir. Sert, mikrotübüler aksonem içeren aksopodlar hücrenin etrafından ışınsal olarak çıkar. Güneş hayvancıkları da denir. Esas olarak tatlı sularda yaşarlar (örneğin Actinosphaerium, Actinophrys, Clathrulina). Bazıları denizeldir. Alg, protozoa ve rotiferler üzerinden beslenirler. Aksopodlar diffüzyonla beslenmede kullanılır. Esas olarak planktonik protistlerdir ve sap ya da aksopodlar aracılığı ile yüzeye tutunabilirler. BICOSOECA, DICTYOCHAE, PHAEOPHYTA, HAPTOMONADA ve CRYPTOMONADA : Kingdom Chromista’ya ait şubelerdir. Çoğunluğu fototrof olduğu halde, fagotrofik türler de içerirler. Tatlısu formlarında miksotrofi ve fagotrofi özellikle chrysomonadlarda yaygındır. Chrysomonadlar iki kamçılı, sesil ya da hareketli ve soliter ya da koloniyal olabilirler (örneğin Spumella, Uroglena, Dinobryon). Beslenme ile ilgili organelleri başta olmak üzere, protozoon morfolojisi ve fonksiyonel rolleri arasında yakın bir ilişki vardır. Bulundukları habitatlarda fonksiyonel rolleri dikkate alındığında, serbest protozoonlar siliyatlar, sarkodinler (kök bacaklılar) ve heterotrofik flagellatlar olmak üzere üç büyük gruba ayrılırlar. Fonksiyonel gruplar aynı yerde, bir arada yaşadıkları halde, besin yakalama mekanizmaları farklıdır. Flagellatlar genellikle 20μm’den, amipler 50 μm’den, siliyatlar 200 μm’den daha küçüktürler. Ancak bazı amip ve siliyatların büyüklükleri 2 mm’ye kadar ulaşabilir (örneğin Pelomyxa, Actinosphaerium, Stentor). Protozoonlar kendi büyüklüklerine uygun besini tercih ederek, mikrobiyal populasyonları kontrol altında tutarlar. Fonksiyonel özellikler dikkate alındığında, siliyatlar (besin yakalamada sil kullanırlar) yırtıcı beslenenler (örneğin Prorodon, Monodinium, Didinium, Dileptus, Chidonella, Nassula), süzerek beslenenler (Cyclidium, Colpidium, Vorticella, Aspidisca, Eupletes, Strombidium, Strobilidium) ve difüzyon ile beslenenler (Suctoria) olarak ayrılabilirler. Sarkodinler kendi içinde üç fonksiyonel gruba ayrılır: çıplak amipler, kabuklu amipler ve heliozoonlar. Bu protistler gruplara göre çeşitlilik gösteren pseudopodlarla, protistin büyüklüğüne uygun olarak alg yada bakteriler üzerinden, Pelomyxa türleri canlı olmayan organik partiküller üzerinden beslenirler. Heterotrofik flagellatlar diğer gruplara göre daha küçüktürler. Bu nedenle sucul ortamlarda, yüzey ve dipte önemli bakteri tüketicileridir. Yırtıcı beslenme (örneğin chrysomonadlar), süzerek beslenme (örneğin choanoflagellatlar) ve difüzyonla beslenme (örneğin Ciliophrys ve helioflagellatlar) bu grupta da görülür. Taksonomik gruplar ile fonksiyonel gruplar arasında yakın bir ilişki yoktur. Farklı türler, benzer ekolojik fonksiyonları olmasına karşın, farklı taksonomik gruplarda yer alabilirler. Heliozoonlar ve helioflagellatlar morfolojik olarak birbirlerine benzedikleri halde, farklı şubelerde yer alırlar. Bu iki şube benzer beslenme stratejisine sahiptirler. Benzer şekilde farklı beslenme stratejisi geliştiren bir hücrelilere çeşitli taksonomik gruplarda rastlanmaktadır. Örneğin değişik pek çok bir hücreli grubunda fotosentez yapan türler vardır. Bir grup fotosentez yapan türleri, heterotrofik türleri ve miksotrofik türleri içerebilir. Protist çeşitliliği ile ilgili iki farklı görüş bulunmaktadır. Mikrobiyal çeşitliliğin, makroskobik hayvan ve bitki çeşitliliği ile ayırt edici bazı özelliklere sahip olduğunu vurgulayan Finlay ve Esteban [17], tatlı su protozoon türlerinin az sayıda bireyle ya da kist olarak temsil edilse bile, tüm nemli habitatlarda her zaman bulunduklarını ve muhtemelen hiçbir zaman da yok olmadıklarını ifade etmişlerdir. Lokal olarak, birçok tür nadir ya da kriptiktir (gizli türler, kist halinde olanlar). Çevresel koşulların onların tercih ettikleri yönde gelişmesini beklerler. Uzun süre “aktif” durumdan çok “potansiyel” durumda kalırlar. Bundan dolayı aktif biyoçeşitlilikten çok, potansiyel biyoçeşitlilikten söz edilir. Boyutlarının küçük olması, dirençli kistler oluşturmaları ve bir yerden bir yere kolay bir şekilde taşınmalarından dolayı kozmopolit türler olarak kabul edilirler. Mikrobiyal ökaryot türlerin dağılışı nadir olarak coğrafik bariyerlerle sınırlanmıştır. Bu nedenle spesifik coğrafik dağılımları hakkında bilgi vermek oldukça zordur. Endemizm nadirdir,global tür çeşitliliği azdır ve en azından siliyatların çoğu halihazırda tanımlanmıştır [18-21]. Siliyat türlerinin çoğunun kozmopolit olduğu konusunda Finlay ve Fenchel’in görüşlerine katılan Foissner [22] önceki araştırıcıların aksine tür çeşitliliğinin çok fazla olduğunu, halen tanımlanmamış çok sayıda türün olduğunu, endemizmin yaygın olduğu ve spesifik coğrafik dağılış gösterdiklerini ileri sürmüştür. Yüksek yapılı hayvan ve bitkilerle karşılaştırıldığında, küçük oldukları ve yaşamlarının çoğunu kist safhasında geçirdikleri için protistleri tanımlamanın güç olduğunu ifade eden Foissner [23], sadece uygun koşullar oluştuğunda kistten çıktıklarını, birkaç tane her zaman mevcut ve sayısal olarak dominant tür tarafından gizlendiğini ve bu nedenle nadir türlerin gözden kaçırılabileceğini açıklamıştır.

http://www.biyologlar.com/tatli-su-protozoonlari-ve-onemi

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

ÇEVRE KİRLENMESİ

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)   Asit Yağmurlarının Toprağa Etkisi   Asit Yağmurlarının Sulara Etkisi   Asit Yağmurlarının Yapılara Etkisi   Asit Yağmurlarının Bitkilere Etkisi   Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi   İnsan Sağlığına   Hayvan ve Bitkilere   İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri   Fiziksel İşlevler   Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği   Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler. HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.   İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:   FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.   FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:   Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.   Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.   Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:   Hava taşıt araçlarının meydana getirdiği kirlenme   Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi   Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.   Limanlarda meydana gelen kirlilik.   Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.   Deniz ürünlerini elde etmede uygulanan yöntemler.   Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:   Yerleşim yerlerinden denize dökülen kirlilik.   Çöpler.   Kullanılmış sular, kanalizasyon artık ve suları.   Endüstri kuruluşlarından denize atılan kirlilik.   Tarımdan gelen kirlilik.   Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:   Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.   Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.   Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.   Erozyonun etkileri   Yaşlık ve çoraklığın etkileri   Taşlılık ve kayalığın etkileri   Gübre ve gübrelemenin etkileri   Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

SU BİTKİLERİNİN ÖNEMİ

Sucul ortamın asıl üreticileri olan su bitkileri bir hücreliden çok hücrelilere kadar çeşitli şekilleri olan ve klorofil içeren canlılardır. Ortamın dengesinin korunmasındaki önemleri büyüktür. Birincil üreticiler (Primer prodüktör) olarak tanımlanan yeşil bitkiler ve fitoplanktonik organizmalar klorofilleri sayesinde su ve suda eriyik halde bulunan karbondioksiti ışık enerjisi kullanarak fotosentezolayı sonucu organik madde üretimini sağlarlar.Böylece bitkisel protein kaynaklarını oluştururlar.Bu nedenle akvatik ortamdaki besin zincirinin ilk halkasıdır. Bitkisel protein kaynağı olan bu mikroskopik ve makroskopik yeşil bitkiler daha sonra gıda zincirinde hayvansal proteine dönüştükleri için çok önemlidirler. Klorofil taşıyan bitkisel organizmalar ayrıca fotosentez aktivitesiyle oksijen oluşturup suya oksıjen sağlarlar.Bu yolla sucul ortamda atmosferin yanı sıra solunum için gerekli olan oksijenın kaynağını da oluştururlar.Sulardaki alglerin karadaki bitkilere göre daha fazla oksijen sentezlemesi ise dikkat çekicidir. Sulardaki tek hücreli alg miktarı çok olduğu için her dalga boyundaki güneş ışığı algler tarafından değerlendirilerek daha fazla oksijen sentezlenebilmektedir.Sucul ekosistemde organik parçalanma biyolojik döngü açısından önem taşır.Organik parçalanma olayından aerob bakteri ve mantarlar için gerekli olan oksijen temini su bitkileri tarafından sağlanır. Dolaylı olarak ta organik atıkların parçalanması açısından akvatik ortam önemlidir. Su bitkileri aynı zamanda patojen bakterilerin ortamdan uzaklaştırılmalarında rol oynarlar.Patojen bakteriler bilindiği gibi asidik ortamı tercih ederler. Bitkisel organizmalar ise ortamı bazikleştirdiği için bakterilerin uzaklaşmasını sağlamaktadır. Su bitkileri ortamın kimyasal yapısını da etkilemektedir. Örneğin su bitkilerinin suyun sertliğinin azalmasına neden olması gibi elodea ve benzeri bazı su bitkileri sudaki kireci alarak suyu yumuşatırlar. Bu sayede sert sulara toleransı olmayan su canlıları için uygun ortam oluşur.Bu bitkiler suda eriyik halde olan karbonatın çökmesine neden olarak suyun sertliğini azaltırlar. Su bitkileri kirliliğin biyolojik yöntemlerle saptanmasında önemli belirleyici ( indikatör) organizmalardır.Özellikle algler sudaki oksitlenme düzeyine karşı çok hassastır.Oksijenin tamamen yok olduğu ortamlarda alglerin yerini mantarlar ve bakteriler alır. Örneğin sanayi ve lağım suları ..Su bitkileri suların arıtımında kullanılır. Ceratophyllum , elodea, najas, vallisneria,potamogeton türleri gibi.. Sucul ortamdaki bitkisel organizmalar güneş ışığının ulaşabildiği kıyılarda ve derinliğin az olduğu kısımlarda daha yoğundur. Makrofitler özellikle kıyı zonunda dağılım gösterirler.Bu yöreler balık ve diğer canlıların üreme alanlarını oluşturur. Sazan gibi çoğu balık yumurtalarını bitkilerin üzerine bırakmayı tercih eder. Yumurtadan çıkan lavralar için korunma ve beslenme alanıdır.Bitkiler herbivor balıkların gıdasını oluşturur.Bu balıklarda su bitkilerinin aşırı çoğalmasını kontrol ederler. Su ortamındaki organizmaların bazıları ışıktan kaçma eğilimi gösterirler.Su bitkilerinin ışığı absorblama özellikleri sayesinde fazla ışık girişi önlenmektedir. Bu canlılar su bitkilerinin olduğu yerlerde gelişirler. Su bitkilerinin akvatik tabana olan etkileri vardır.Büyüyen kök ve gövdelerin yardımıyla dalgaların su tabanına olan etkisini yok eder ve taban meteryalinin süreklenmesini önlerler. Ayrıca bircok bentik canlının yapışma alanını oluştururlar. Bazı sucul ekosistemlerde mangrov bitkiler çok önemlidirler.Tropikal ve pantropikal iklim kuşaklarında görülen mangrov bitkiler kıyı boyunca önemli bitki topluluğu oluştururlar. Yirmiden fazla familya oluşturan bu bitki grubunun otuz kadar cinsi ve seksen türü bulunmaktadır. Bu bitki topluluğu taşkın ve erozyon kontrolünde , rüzgarların etkisini kırmada, suların temizlenmesinde ve balıkçılıkta önemlidir. Ancak bu bitkilere ülkemiz kıyılarında rastlanmaz.. Su bitkilerinde aynı türde farklılaşmalar görülür.Örneğin bitkinin su içinde veya dışında kalan kısımlarında farklı tipte yaprak ve çiçek görülür.Su seviyesinin değişimleri bitkide öylesine morfolojik değişimlere neden olur ki bitkiyi tanımak zorlaşır.

http://www.biyologlar.com/su-bitkilerinin-onemi

Hematokrit Testi

Hematokrit testi tahlil sonuçlarında, kısaltılmış şekli olan hct olarak gözükür.Hematokrit,kandaki alyuvarların (eritrositler)(Rbc) işgal ettiği hacmin total hacime oranı olarak bilinir.Bu nedenle oransal bir değer olduğu için % (yüzde) olarak belirtilir.Normal hematokrit değeri kadında ve erkekte cinsiyete göre farklılık göstermektedir.Örnek vermek gerekirse erkeklerde normal hematokrit değeri yetişkinler için % 41-53 dür.Bunun anlamı ise yetişkin erkeklerde 100ml kanda 41-53 ml eritrosit (kırmızı küre) bulunması demektir.Hematokrit değeri ,en sık olarak anemi(kansızlık) şüphesinde tanı koymak amaçlı değerlendirilen bir testdir.Hematokrit testinin erkek ve kadınlarda,yaş gruplarına göre olması gereken normal değerleri ve hangi durumlarda düşüp yükseldiği aşağıda belirtilmiştir.Erkek Kadın13-15 yaş %37-49 %36-4616-50 yaş %40-53 %36-46>50 yaş %41-53 %36-46Hematokrit testi klinikte sıklıkla anemi, kan kaybı, polistemi gibi durumların değerlendirilmesinde kullanılır.Hematokrit Testinin Yüksek Çıktığı Durumlar:Polistemi(kan hücrelerinin fazlalığı), egzersiz, hemokonsantrasyon (dehidratasyon, yanık, aşırı kusma, intestinal obstrüksiyon ) ve yüksek rakımda yaşayan kişilerdeHematokrit Testinin Düşük Çıktığı Durumlar:Anemi ve yatar pozisyonda Hct değeri düşer. Ayrıca saat 17.00-07.00 arasında ve yemeklerden sonra da Hct düzeyinde %10’luk bir düşme olabilir. http://tahlil.com

http://www.biyologlar.com/hematokrit-testi

Bilirubin tayini ( testi)

Bilirubin eritrositlerin yıkım ürünlerinden biridir.Bu yüzden normalde kanda belirli bir düzeyde (yaklaşık 1mg/dl) bulunur ve karaciğer tarafından dolaşımdan alınarak safra yollarına dökülür.Bu düzeyin üstüne çıkmasına hiperbilirubinemi denir.Normalde idrarda bilirubin bulunmaz. Bilirubin karaciğere gelmeden önce serumda albumine bağlı olarak bulunur. Bu glukronatlaşmamış bilirubin (albümine bağlı bilirubin –indirekt bilirubin) böbreklerden atılmadığı gibi serum, alkol ve amonyum sülfatla işlem görmeden Van den Berg reaksiyonu vermez. Halbuki konjuge bilirubin (glukronik asite bağlı) yükseldiği zaman idrara geçer ve yukarıdaki işleme gerek kalmadan doğrudan Van den Berg reaksiyonu verir.(Direkt bilirubin) Normal değerler: a) İndirekt (nonkonjuge) bilirubin. 02-08 mg/dlb) Direkt (konjuge) bilirubin 0.0-0.24 mg/dlc)Total bilirubin (direkt + indirekt bilirubin )Arttığı Durumlar:a) a) Hemoglobin yıkılımının artışı (hemolitik ikter): Direkt bilirubin normaldir, indirekt bilirubin ise hafif derecede artar.İdrarda bilirubin yoktur.Urobilin ve urobilinojen ise çok artmıştır. Karaciğer fonksiyonları normaldir.b) b) Karaciğer parankim hastalığı : Kanda direkt bilirubin fazlalaşır.Total bilirubinde buna paralel olarak çoğalır ve idrarda bilirubin pozitif olur.Özet olarak:- Enfeksiyoz,toksik ve neoplazik hepatik harabiyet-İntra ve ekstrahepatik safra yolları tıkanıklığı-Hemolitik hastalıklar-Hemokromatoz-Wilson hastalığı-Alkolik karaciğer hastalıklarında bilirubin artar.Diazo ( Van Den Berg) Testi:Diazo reaktifi sulfonilik asit ve sodyum nitrit karışımıdır.Prensip: Diazo reaktifi ile bilirubin azobilirubin adı verilen bir madde meydana getirirler ve bu rengin yoğunluğu bilirubin miktarı ile orantılı olduğundan spektrofotometrik olarak bilirubin miktarı belirlenir.Reaktifler: 1) 1) Diazo A solusyonu: 1 g sülfanilik asit 500 ml distile su ve 15 ml konsantre HCl ilave edilir ve karıştırılır.Distile su ile 1000 ml ye tamamlanır.2) 2) Diazo B solusyonu: % 0,5 lik sodyum nitrit solusyonudur.3) 3) Absolu metanol4) 4) Diazo kör: 15 ml HCl distile su ile litreye tamamlanır.Deneyin Yapılışı:1- 1- 0.5 ml serum üzerine 9.5 ml distile su ilave ederek 1: 20 dilüsyon hazırlanır.2- 2- Bu dilüsyondan Numune ve Kör tüpüne 5 er ml konur.3- 3- Köre 1 ml diazo kör konur.4- 4- Numuneye ise 1 ml taze diazo reaktifi konur.5- 5- İyice karıştırıp 2 dakika bekledikten sonra 540 nm ye ayarlanmış spektrofotometre kör ile sıfıra ayarlanır. Daha sonra testin optik dansitesi okunur ve bu değer kalibrasyon eğrisinden bulunur.Bu direkt bilirubin değeridir.6- 6- Her iki tüpe 6 ml metanol ilave edilip karıştırılır. 30 dakika bekletildikten sonra yine aynı şekilde köre karşı okunur. Burada okunan rakam total bilirubin miktarını verir. Direkt diazo reaksiyonu:Serum ile diazo reaktifi karıştırılır karıştırılmaz kırmızı renk görülür. Bu rengin 1 dakika içinde görülmesi plazmada konjuge (direkt ) bilirubin varlığını gösterir. Hepatik ve posthepatik sarılıklarda direkt diazo testi pozitiftir.İndirekt diazo reaksiyonu:Albumine bağlı (indirekt ) bilirubin doğrudan diazo reaktifi ile reaksiyona girmez. Serum ilk önce alkolle karıştırılır, proteinler çöker ve bilirubin serbest kalır.Daha sonra diazo reaktifi ilave edilirse kırmızı renk ortaya çıkar. Bu reaksiyonda hem direkt hem de indirekt bilirubin diazo reaktifi ile reaksiyona girer.Bilirubin miktarının hesaplanması: Diazo reaktifi ile meydana gelen rengin optik dansitesinin spektrofotometrede ölçülmesi ile bilirubin miktarı bulunur. Plazmadaki bilirubin miktarı total (direkt + indirekt ) olarak bulunabileceği gibi her ikisi ayrı ayrı da bulunabilir.İdrarda bilirubin aranması:Prensip: Bu gruptaki deneylerin prensibi, bilirubinin oksitlenerek, yeşil renkli biliverdin veya mavi renkli bilisiyanine çevrilip gözle daha iyi görülür hale getirilmesinden ibarettir.1-Rosin MetoduReaktifler:Rosin ayıracı (Alkol içinde iyot ve potasyum iyodur içeren bir çözeltidir.Daha basitçe tentürdiyod’un alkolle on kere sulandırılması ile hazırlanabilir.)Deneyin Yapılışı: Bir deney tüpüne 4-5 ml idrar konup üzerine 1 ml Rosin ayıracı, tüp kenarından yavaşça akıtılıp üstte tabakalandırılacak şekilde konur.İdrar ve ayıraç tabakalarının birleşme yerinde yeşil renkli bir halkanın görülmesi idrarda bilirubinin var olduğunu gösterir.2-Fouchet MetoduReaktifler:1-Baryum klorür çözeltisi 2-Fouchet ayıracı (demir II klorür ve triklorasetik asit içerir.)Deneyin Yapılışı:Bir deney tüpüne 10 ml idrar, 3-4 ml baryum klorürü çözeltisi konur iyice karıştırılır, süzgeç kağıdından süzülür.Süzgeç kağıdı üzerindeki çökeltiyle birlikte alınarak kuru bir süzgeç kağıdı üzerine konur.Çökelti üzerine bir damla Fouchet ayıracı damlatılır.Mavi yeşil bir renk görülmesi idrarda bilirubin olduğunu gösterir.NOT: Bu deney Rosin deneyinden daha hasastır.Klinik değerlendirme:İdrarda bilirubin varlığı ancak kanda glukronatlaşmış (direkt) bilirubinin artması halinde görülür.Çünkü direkt bilirubin suda eriyebilir ve böylece böbreklerden atılabilir.Kanda direkt bilirubin artışına neden olabilecek hastalıklar başlıca tıkanma sarılığı ve hepatobiliyer sarılıktır.Eğer aynı zamanda böbrek yetersizliği de varsa, atılan bilirubin miktarı azalır.Bu yüzden ilerlemiş böbrek yetersizliğinde kuvvetli bir sarılığa rağmen idrarda bilirubin bulunmayabilir.İdrarda ürobilinojen aranmasıBilirubin barsağa geldiğinde barsak bakterileri tarafından ürobilinojen haline çevrilir.Normal değeri 24 saatlik idrarda 0.5-4 mg kadardır. Günlük incelemelerde kalitatif (negatif,normal, +, ++ veya +++) olarak değerlendirilir.İdrarda ürobilinojenin arttığı durumlar şunlardır1-Kabızlık2-Aşırı hemoliz3-Karaciğerin fonksiyonel yetersizliği-Hepatosellüler sarılık-Portal siroz4-Bazı infeksiyonlar(tifo,dizanteri,sıtma)5-İdrarın çok konsantre olmasıPrensip:Şiddetli asit ortamda ürobilinojenin Ehrlich ayıracıyla kırmızı bir renk reaksiyonu meydana getirmesinden ibarettir.Reaktifler: Erhlich ayıracı (p-dimetilaminobenzaldehit ve HCL içerir.)Deneyin Yapılışı:Bir deney tüpüne konan 5-6 ml idrar üzerine 2-3 damla ehrlich ayıracı konup karıştırılır.5 dakika içinde kırmızı bir rengin meydana gelmesi, idrarda ürobilinojen varlığını gösterir.Renk şiddetine göre 1(+), 2 (+), 3(+) denir.Klinik değerlendirmeİdrarda ürobilinojenin yokluğu, safra kesesi kanalının tam tıkanık olması ya da yoğun antibiotik tedavisi sonunda barsak florasının tahrip edildiği durumlarda meydana gelir.İdrarda ürobilin aranmasıBarsakta oluşan ürobilinojenin bir kısmı enterohepatik dolaşım yoluyla karaciğere geri gelir ve tekrar ekskresyona uğrar.Barsakta floranın etkisiyle ürobilinojen oksitlenerek ürobiline dönüşür ve feçesle atılır.Bir kısmı ise böbreklere ulaşır ve idrarla atılır.İdrardaki ürobilinojen havanın etkisiyle oksidasyona uğrar ve ürobilin haline döner.Normalde idrarda ürobilin yoktur.Eser miktarda bulunup çok floresans veren madde ürobilin değil sterkobilindir.Arttığı Durumlar:1-Karaciğer hastalıkları2-Barsak bozuklukları,3-Hemolitik ikter,kronik kanamalar,4-Bazı enfeksiyonlar (tifo,romatizma v.s) :... Prensip: alkollü ortamda ürobilinin çinko tuzlarıyla yeşil floresans vermesi temeline dayanır.Reaktifler:1-Çinko asetat2-Alkol %903-Lugol çözeltisi ( İyot ve potasyum iyodür içerir.) Bu çözelti yerine 0.1 N iyot çözeltisi de kullanılabilir.Deneyin Yapılışı:Bir deney tüpüne 5-6 ml idrar, 1-2 gr kadar toz halinde çinkoasetat, 2 damla lugol çözeltisi konur, şiddetle çalkalanır.Bir iki dakika sonra tüp içindeki sıvı hacmi kadar alkol konur,karıştırılır ve süzülür.Süzüntü bir tüp içine konarak ışık yandan gelmek üzere siyah bir zemin üzerinde bakılır.Yeşil bir floresans görülmesi; idrarda ürobilin varlığını gösterir.

http://www.biyologlar.com/bilirubin-tayini-testi

Botaniğin Tarihçesi

Bugünkü sistematik botanik adına yaşanan en büyük ilerlemeler, 20. yüzyılın ikinci yarısında meydana gelmiştir. O dönemlerin kötü koşulları ve maddi sıkıntılarına rağmen, dünyanın bir çok yerindeki çok sayıda flora yazarı, önemli çalışmalar başlatmış ve bu konuda büyük adımlar atmışlardır. Dünya tarihinde, bilinen ilk Flora yayınları, küçük bir alanda yetişen bitkilerin isim listesinden bile daha dar kapsamlıydı. Bugün ise, en iyi ve modern çalışmalar içerik olarak sub-monografiktir. 1950 ve 1960’lı yıllarda G.B. Asya’nın çeşitli bölgelerinde birkaç Flora projesi başlatılmış, bu çalışmaların durumu ve ilerleyişi devamlı olarak takip edilmiş ve bölgeler tekrar tekrar incelenmiştir. Bu araştırmalar, Floristik bir çalışmadan elde edilecek bilgilerin geliştirilmesi ve üzerine yeni bilgilerin eklenmesi için yerel botanikçilere ihtiyaç duyulduğunu göstermiştir. Çünkü bir bölgenin floristik açıdan tam olarak ortaya konması çalışmaların sürekliliğine bağlıdır. Bu çok uzun bir zaman alabilir. Devamlılığı olmayan ve kısa süreli çalışmalarla bir bölgeye ait sağlıklı bir floristik tanımlama yapılamaz, dolayısıyla tam olarak ortaya konmuş bir çalışma, o bölgede sürekli araştırmalarda bulunan yerel botanikçilerin varlığına bağlıdır. Botaniğin çok geniş bir bilim dalı olduğu ve bir bütün olarak değerlendirilmesi gerektiği düşünülürse, Floristik çalışmalar, botaniğin ne tamamı olarak ne de botanik bilimi içinde küçük bir ayrıntı olarak ele alınmalıdır. Aslında bu çalışmalar, botaniğin vazgeçilmez bir parçası şeklinde düşünülmelidir. İLK FLORALAR GüneybBatı Asya’nın bugünkü durumu hakkında konuşmaya başlamadan önce, konuşulması gereken diğer bir nokta ise, Flora terimi ile temsil edilmiş olsun yada olmasın, genel Flora yazımının kökeni ve bilinen en eski Flora çalışmalarının durumu olacaktır. En eski Floristik çalışmalar hakkında bilgi edinmek, bu çalışmaları bugün için ortaya koymak, oldukça zor bir iştir. Konuyla ilgili bilinen en eski kayıtlar, 16. yüzyılın ikinci yarısına aittir. O dönemde bilimsel bir Flora çalışması diye nitelendirilebilecek uğraşılar, sınırları belli bir bölgedeki bir veya birkaç çeşit bitki türü hakkında yazılmış bir botanik rehberi olmaktan daha ileri gidememiştir. Bu bilgilere ise, Deutchman Corolus Clusinius’un o tarihlerde yapmış olduğu çalışmalardan elde edilmiştir. Clusinus’un yazdığı iki eserden ilki, 1567 yılında İspanya ve Portekiz’e ilk Flora çalışmalarıdır ve bu ülkelere 1563, 1565 yıllarında yaptığı kısa seyahatleri sonucu ortaya çıkmıştır. Diğer eseri ise 1583 de yayınlanmış Avusturya ve Macaristan bölgelerinin çevrelerine ait olan Flora çalışmalarını içermektedir. Bu yayında sadece doğal olarak yetişen türlerden bahsedilmemiş, aynı zamanda Tulipa, Lilum, Fritillaria gibi ornomentallerden hatta Amerika kökenli Solanum ve Mirabilis gibi birkaç türden daha bahsedilmiştir. Yapılan çalışmalarda, tam ve kesin lokalite bildirimi ve diskripsiyon hatalarını önlemek amacıyla Clisinus, Floristik çalışmalara bir standart getirmeye çalışmış ve bunun için uzun yıllar uğraş vermiştir. Stafleu(1967) Clusinus’un bu çalışmalarının dikkate değer ve takdir edilir cinsten olduğunu aktarmıştır. Clusinus, bu iki eserinde de Flora terimini ne başlık ne de başka bir şekilde kullanmıştır. Ama bu çalışmalar, kökeni 500 yıl önceye dayanan Flora yazımının başlangıcı ve menşeidir. Aynı zamanda ise bilimsel birer Flora çalışması olduklarına kuşku yoktur. Daha önce dediğimiz gibi, bilinen en eski Botanik rehberinin ve Floristik çalışmaların tespit edilip ortaya konması çok zordur. Aynı şekilde eserlerinde Flora terimini ilk kimin kullandığı da bilinmesi zor olan bir diğer konudur. 1647 yılında Flora Dannica adlı eseri yayınlanan Simon Pauli’nin Flora terimini ilk kullanan botanikçi olduğu ileri sürülmektedir. Bundan sonra ise İsveçli ünlü tabiat bilgini olan Karl Von Linneaus zamanına kadar Flora terimi ile temsil edilen pek çok eser yayınlanmıştır. Almanya’nın Jena bölgesi için yayınlanmış olan, Ruppius’un yazdığı Flora Jenesis (1718), ayrıca Bryne’nin yazdığı Flora Capensis (1724-G. Afrika) bunlara örnek olarak verilebilir. Flora Capensis tam bir Floristik çalışmadan ziyade bitki koleksiyonu şeklinde hazırlanmıştır. Bunların dışında, gerçek Floristik çalışmaları içeren modern botaniğin bir çok bölümüne ait ilk çalışmaları başlatan kişinin Linneaus olduğu bilinmektedir ve O, dönemin botanik üzerine çalışanları arasında en mükemmel olanıdır. 1737’de Linneaus’un yazdığı Flora Lapponica adlı eser, Flora yazımında bir dönüm noktası olarak kabul edilmektedir. Species Plantarum adlı eserinde nomenklatür kullanılmış ve türler binomial olarak adlandırılmıştır. İçeriği ise nispeten moderndir. Synonimler ve habitat detayları verilmiş ayrıca Cryptogamlardan da bahsedilmiştir. Belli bir alanda yayılış gösteren bitki topluluklarını ifade eden flora terimi ile Floristik çalışmalar sonucu oluşturulan eserleri ve kitapları ifade eden Flora terimi arasında bir ayırım yapmak istenirse, durumu aydınlığa kavuşturmak açısından, yayınlanan kitaplar ve eserler için “F” harfi, bitki topluluklarını ifade içinde “f” kullanılmalıdır. Böyle bir düzenleme yapıldığında aradaki farkı ayırt etme bakımından bu durum günümüz botanikçilerine oldukça faydalı olacaktır. Flora kelimesi “Çiçeklerin Romalı Tanrıçası (Roman Goddes of Flowers)” adından türemiştir. İlk botanikçiler doğal ve kültür bitkileri arasında, bugün yapıldığı gibi bir ayırıma gitmemişler ve bitkilerin tamamını göz önüne almışlardır. Onlara göre bu iki bitki gurubu, birbirlerinin ayrılmaz birer parçasıydı. Thornton’un yazdığı Floranın Mabedi (The Temple of The Flora ) adlı eser çok sonra post-Linneaus’un en güzel örneklerinden biri olmuştur (Linneaus’a ait olan Sexual Sistem’in yeni örneklerinin resmedildiği levhalar). Linneaus hayatayken ve daha sonraki dönemlerde Floristik çalışma, eser yazımı ve yayınlanmasında önemli ölçüde artış olmuştur. Britanya’da gerçekleştirilen ilk Floristik çalışmalar ve yine Avrupa’da yapılan en eski ve temel bir çok çalışmanın kökeni de bu döneme dayanmaktadır. Britanya Florasının kökeni 200 yıl önceye yada daha eskilere dayanmaktadır. Bu 200 yıl boyunca daha önce yapılmış veya şuan yapılmakta olan bir çok çalışma vardır. Çalışmalar devam etmektedir ve bulunan her yeni bilgi eskilere eklenmektedir ve şu durumda son söz hala söylenmemiştir. Her ne kadar, geçmişten günümüze kadar yapılmış ve yayınlanmış olan Floristik çalışmaları düzenleyip sınıflamak ve bir sıraya sokmak taksonomik açıdan zor bir durum ortaya çıkarsa da (bu çalışmaların sırası ve düzeni yavaş yavaş birbirine karışmaktadır.) bu konuda 3 ana ve esas dönem kabul etmek gerekir. Bunlar Linneaus öncesi dönem, Linneaus’un yaşadığı dönem (Victorian dönemi 1850’lerden yüzyılın sonuna kadar olan dönemi içerir.) ve şuan ki Floristik dönem( içinde bulunduğumuz yüzyılın ortalarından bugüne kadar olan süreyi kapsamaktadır). Özellikle bu dönemde G. B. Asya’da oldukça modern düzeyde bir çok Floristik çalışma gerçekleştirilmiştir. VICTORIAN DÖNEMİ 19. yüzyıla ve Victorian dönemine baktığımızda o dönemde pek çok Floristik çalışma yapıldığını ve yayınlandığını görmekteyiz. Bu çalışmalar genel olarak, karşılaştırmalı morfoloji, bugün olduğu gibi bir nebze nomenklatür, tipifikaston, örneklerin sitasyonu, ekoloji ve sitoloji göz önüne alınarak oluşturulmuştur. George Bentham dönemin ünlü ve büyük bir botanikçisi ve matatikçisiydi. Bentham, (1861) Flora Honkongensis ve 7 ciltlik Flora Australiensis (1863-780) eserlerinin yazarıdır. Bentham bu iki eseriyle, daha sonra yapılan tüm Floristik çalışmaları özellikle de Kew’un yayınladıklarını bir standarda sokmuştur. Bentham (1874) Flora yazımı hakkında kendi dönemiyle ilgili olduğu kadar günümüzde de hala etkili olan çeşitli açıklama ve yorumlar yapmıştır. Ona göre Flora yazımının prensipleri; “belli bir alandan alınan herhangi bir bitkinin teşhisini kullanıcıya mümkün olduğunca kolaylaştırmaktır.” Ve yeni başlayan bir kimse örnekler hakkında uzun diskripsiyonlar düzenleyebilir, fakat bir tür hakkında kısa bir diskripsiyon hazırlarken, bitkinin ayırt edici ve tanımlayıcı özelliklerini ortaya koyarken karakter seçimini tam ve yerinde yapması gerekir. Bunun için de kişinin tam ve mükemmel bir metodolojik seviyeye, incelediği bitki gurubu hakkında geniş bir bilgi birikimine sahip olması gerekir.” Yani uzun bir diskripsiyon hazırlamak daha kolaydır. Diskiripsiyonlar basitleşebilir fakat eksiksiz ve doğru olmalıdır. Bentham günümüzün diskripsiyonları hakkında ne düşünürdü bilemiyorum ama (kesin olan şu ki; bizim diskripsiyonlarımız daha uzun.) onun yaptığı tüm çalışmalarda diskiripsiyonların yüksek standartlarda olduğundan kuşku yoktur. Bentham çalışmalarının çoğunu tek başına bazen de Hooker ile yapardı. Özellikle Genera Plantarum yazılırken (1862-83). Bu çalışmanın da yine büyük bir bölümünü Bentham hazırlamıştır. 80 yaşının üzerindeyken bile, işine gösterdiği hırsın günümüze dek gelen hikayesi, botaniğe yeni yaklaşımlar ve katkılar sağlamıştır. “Orchidae’ler üzerine bir yıldan fazla, yoğun ve aralıksız süren çalışmaların ardından (Genera Plantarum için) bir cumartesi öğleden sonra, sıkıntılı bir şekilde ve zorluklar içinde yaptığı revizyon çalışmalarında bir sonuca ulaşmıştı; Bu işler sırasında hiç durmaksızın otsu bitkileri tanımaya ve tanımlamaya çalışmış ve hala çok zor olan bu görevi uzun yıllar üstlenmiştir. Bu çalışma Bentham’ın en son ve neredeyse en büyük işi olmuş, aynı şekilde başlangıçta kendisine materyal sağlayan ve çalışma süresince yardımcı olan insanları çok rahat ve kolay bir şekilde idare etmiş ve zamanı çok iyi kullanmıştır.” Kew; Boissier zamanında da şimdi olduğu gibi dünyanın en büyük taksonomi araştırma merkezlerinden biriydi. Fakat Geneva’da Edmond Boissier, G. B. Asya’da ilerleyen botanik biliminin sonuçlarına bağlı olarak başlatılan bir çalışmaya (Flora orientalis) katılmıştı; Artık dev bir anıt haline gelmiş olan Flora Orientalis’e ait olan birinci cilt 1867’de 5. ve sonuncu cilt ise 1884’de yayınlanmıştır. Boissier’in ölümünden sonra, suplamenteri olan 6. cilt ise 1888’de yayınlanmıştır. Boissier yaşadığı süre içinde 6000 yeni tür tanımlamıştır (Burdet, 1985). Bu 6000 türün çoğunu yine Flora Orientalis çalışmaları sırasında ortaya koymuştur. Tanımladığı türlerin bugün bile geçerliliğini koruyor olması, onun bu büyük botanik zekasına yapılmış bir övgüdür. Bir konuda tüm insan aktivitelerinde olduğu gibi eğer bir gelişme kaydediliyor ise önemli olan onun öncesinin ve sonrasının biliniyor olmasıdır. Yani nereden gelip nereye gittiğinin biliniyor olması gerekir. Bu durumu politik ekonomi, motorlu arabalar, çamaşır makineleri ve futbolda da görebiliriz. Bu genellemeyi sistematik botanik içinde yapabiliriz. Linneaus, De Candolle, Bentham, Boissier ve Hooker’ın bıraktığı bu büyük ve sağlam mirası, varisleri devralacaklar ve geliştireceklerdir. Bugün bu düşünüldüğü gibi olmuştur. Çünkü günümüzde onların bıraktığı bu temeli geliştirmeye çalışan botanikçiler vardır. G. B. Asya ile ilgili olarak tüm flora (küçük “f” ile) çalışanları, boissier’in Flora Orietalis’i oluşturduğu böyle geniş ve kısmen doğal bir alanda çalıştıkları için şanslı sayılırlar. Yani bu çalışma tam doğru olan ve azımsanamaz bir çalışmadır. Flora Orintalis örnekleri Geneva’da bulunmakta ve çok iyi korunup saklanmaktadır. G. B. Asya’daki Floristik çalışmalarda da bir çok modern Flora çalışmasında olduğu gibi taksonomik kavramlara uygunluk oldukça üst düzeydedir. Bundan dolayı G. B. Asya Boissier’e çok şey borçludur. O bu konuda gerçekten büyük bir devdir. GÜNEY BATI ASYA FLORASININ BUGÜNKÜ DURUMU Eğer 3. Flora dönemi dediğimiz devreye bakacak olursak aslında bugün hakkında konuşuyor oluruz ve aynı zamanda bugün için belli bir çizgiye gelmiş olduğumuzu görürüz. Muhtemelen bu doğrudur çünkü, sözünü ettiğimiz bu 3 dönemin Floristik çalışmaları göz önüne alınırsa 20. yüzyılın 2. yarısına rastlayan periyotta çok büyük gelişmeler ve en azından çok sayıda yayın üretilmiştir. Dünyanın hemen her yerinde inanılmaz sayılarda Flora projesi uygulamaya konulmuştur (Avrupa’da, Afrika’da ve yeni dünyada). Eğer önümüzdeki birkaç yüzyıl içinde hala çevrede botanikçi var olursa, öyle sanıyorum ki 20. yüzyıldaki bitki sistematiği adına yaşanan tüm gelişmelerde göz önüne alınırsa, botanik tarihçilerinin dikkatini en çok günümüz Flora yazım aktiviteleri çekecektir. Bu projelerden birkaç tanesi çok büyük olarak tasarlanmıştı ve hala bu derecede büyük Flora projeleri tasarlanmaktadır. 30 veya daha uzun yılar alan Flora SSCB 1964’de tamamlanmış ve bu çalışmada 17000’den fazla bitki türünden bahsedilmiştir. Bu 17000 türün yaklaşık %10’u yani 1700 tanesi ise tamamen yeni tür olarak bilim dünyasına tanıtılmıştır( 19?7 Shetler). Büyük Çin Florası (Flora Republicae popularis Sinicae) çalışmalarında 28000 vasküler bitkinin incelendiği bilinmektedir. Bu çalışama için 200 Çinli botanikçiye ihtiyaç duyulmuştur. Bunun nedeni ise ilk cildin bir an önce 1959’da çıkartılmak istenmesidir. Bu çalışma yüzyılın sonlarına doğru 80 cilt olarak tamamlanmıştır. Bu iki devasal projenin de (Çin ve SSCB) komünist-sosyalist yönetimlerce desteklendiği gerçeği de oldukça ilginçtir. Aynı dönemlerde dünyanın diğer pek çok yerindeki benzer Flora projeleri ile karşılaştırılacak olursa, diğerleri sürekli finansal sıkıntılar çekmişler ve kaynak arayışı içine girmişlerdir. Çok ilginçtir ki o dönemde dünyanın çok zengin iki ülkesi olan Amerika ve Suudi Arabistan’da böyle bir Flora çalışması yapılmamıştır. Doğu ile Batı arasında ilginç bir karşılaştırma; “bir insanı aya göndermek” yada “yeni petrol kaynakları bulup milyarlar kazanmak” dururken neden bitkileri anlamak için para harcasınlar ki? Şimdi oldukça ilginç ve önemli olan G.B. Asya Florasının bugünkü durumuna yeniden dönüyoruz. Kısaca ele alacağımız üç çalışma var. Türkiye Florası, İran Florası, Pakistan Florası. Bence neresi olursa olsun, herhangi bir yerin florasının kökenin araştırmak oldukça ilginç bir konudur. Bu çok özel olan üç bölgenin tamamı, buralardaki Floristik çalışmaları başlatan ve ilerleten birkaç kişiye çok şey borçludur (ne bir hükümete, ne bir enstitüye, nede bir tavsiye komitesine). Peter Davis, Karl Heinz Rechinger ve Ralph Steward isimleri şu an Türkiye İran ve Pakistan Floralarıyla eş anlamlı ve özdeş hale gelmişlerdir. Aynı şekilde Komarov ismi de SSCB Florası ile (hatta bu çalışma onun ölümünden sonra tamamlanmış olsa bile) eş anlamlı tutlmaktadır; babası Mouterde ise Nouvelle Flore du Libani et de la Syrie Florası ile özdeşleşmiştir. Peter Davis bir zamanlar şöyle demişti, “Kişisel ve iyimser bir görüş olarak düşündüğüm Türkiye Florasının yazımı fikri tesadüfi bir şekilde, bende büyük bir ilgi uyandırmıştır.” Peter Davis 20 yaşındayken, yüzyılın başlarında daha önce Boissier’in gelip inceleme yaptığı Batı Türkiye Dağlarını, botaniksel anlamda incelemiş ve örnekler toplamıştır(1938). Daha sonraki ilk Türkiye seyahatinde, ülkenin bitki örtüsünden ve vejetasyonundan dolayı büyülenmiştir. Savaştan sonra Davis, Edinburg’da derece almış, bir çok madalya hak etmiş ve üniversiteye konuşmacı olarak atanmıştır(1950). Ardından yakın bir zamanda Türkiye’ye yapacağı 10 büyük bitki toplama seyahatlerinin ilkini gerçekleştirmiştir; yaklaşık 27.000 hatta bunun 3-5 katı kadar örnek toplamıştır(Davis & Hedge 1975). Bu keşif seyahatlerinin bir kısmı oldukça uzun sürmüştür. Hedge de onunla birlikte yaklaşık 7 ay süren bir geziye katılmıştır. 1950’lerden sonra uygun ve iyi durumda olan tüm herbaryum materyalleri gerçekçi bir Flora yazımı için bir araya getirilmiştir. Bunun dışında Dr. A. Huber Moarth ise Türkiye‘ye düzenlemiş olduğu çeşitli seyahatler sonucu Davis’in yaptığı çalışmalardan bağımsız olarak Edinburg ve Basal’da Türkiye Florası üzerine çalışmalarda bulunmaktaydı. 1961’de Davis, Endüstriyel ve Bilimsel Araştırma Departmanından aldığı personel yardımı ile küçük bir takım kurmuştur. Bu personeller Edinburg ve Royal Botanic Garden’de yetişmiş full-time çalışma asistanlarıydı. Davis bu çalışmaları sırasında Royal Botanic Garden ve hükümetin bu konu ile ilgili departmanları arasında kurulan koordinasyon sonucu üst düzeyde desteklenmiştir. Bu yardımlar ve destekler, ancak Türkiye Florası’nın çok hızlı çalışılması ve işlerin planlandığı şekilde gitmesi durumunda devam edecekti. Proje tamamlanana kadar karşılıklı bu olumlu ilişkiler ve işler planlandığı şekilde devam etmiştir. Türkiye Florasının ilk cildi 1965 yılında Edinburg’da basılmıştır. Son cilt olan 9. cilt ise 1985’de, ayrıca ek cilt olan 10. cilt 1988’de yayınlanmıştır(Türkiye Florası üzerine devam eden çalışmalar sonucu 2000 yılında 11. cilt basılmıştır). 10. cilt Davis tarafından 2 araştırma asistanı ile birlikte (Robert Mill & Kit Tan) çok geniş bir şekilde hazırlanarak yazılmıştır. Net istatistiklere göre 20 yıllık bir periyotta tamamlanmış olan ilk 9 ciltte 8800 tür üzerinde inceleme yapılmıştır. Yani bu, her yıl 400’ün üzerinde türün incelenmesi anlamına gelmektedir. Boissier’in yazmış olduğu Flora Orientalis, Türkiye Florası oluşturulurken temel kaynak olarak kullanılmıştır. Flora of Turkey ve Flora Iranica gibi birer çalışma yapmak oldukça yerinde ve orijinal araştırma olmuştur. Dr. Mill son zamanlarda Türkiye’de 1332 tür tanımlamıştır. Bu süreç 1945’den bugüne kadar olan süreyi kapsamaktadır. Bu sayı toplam tür sayısının %15.5’ini karşılamaktadır. Ayrıca sonradan meydana gelen değişiklikler ve sinonim olan (yaklaşık 150 tane) türlerde göz önüne alınırsa yüzde dilim hala %13.5 gibi yüksek bir orana sahiptir. Endemizm durumu ise ayrıca yüksek bir orana sahiptir. Şu ana kadar Türkiye Florasının kökeni hakkında pek çok şey söyledik. Tabi ki çalışmaların tam ve doğru biçimde tamamlanması oldukça metronomik bir işlemi kapsamaktadır. Türkiye Florasının bugünkü durumu nasıl acaba? Çalışmalar süresince bu kadar sıkıntı çekmeye ve para harcamaya değer miydi? Şu an Türkiye Florası hakkında 25 yıl önce bildiğimizden çok daha fazlasını biliyoruz. Bu da çok önemli bir sonuçtur. Diğer bir sonuç ise şuan Türkiye’deki her üniversitede işin ehli olan bir çok botanikçi vardır. Bu botanikçiler zamanında Türkiye Florası yazılırken ve bu konuda çalışmalar sürerken, üst düzeyde efor sarf eden ve yardımcı olan botanikçilerin öğrencileri ve eserleridir. 1950’li yıllarda Türkiye’de sistematik botanik çalışan kimse neredeyse yoktu. Türk botanikçilerin sayısı oldukça azdı. Türkiye Florası yazılırken genç Türk botanikçiler Edinburg’a gelmişler ve olanaklarından yararlanışlardır. Bu da onlara pek çok fayda sağlamıştır. Hala bu bağlantılar ve ilişkiler olumlu bir şekilde devam etmektedir. Şuan Türkiye’de bitki sistematiği çalışmaları hayattadır ve işler yolunda gitmektedir. Bu durum diğer alanlarda da sevindirici boyutlardadır. Yani orman botaniği, korumacılık, sitoloji, biyokimya, bitki sosyolojisi ve foto kimya. Tüm bu olumlu gelişmelere rağmen botaniksel uzmanlık anlamında hala sağlam bir alt yapı oluşturulamamış ve maalesef laboratuarlarla ilişkili, kütüphane olanakları olan ve en önemlisi araştırmalarla desteklenen, bundan kaynak alan ulusal bir herbaryum hala kurulamamıştır. Bu türlü bir herbaryum dünyanın herhangi bir yerinde botanik araştırmalarının vazgeçilmez bir parçası olmalıdır. Hala tamamlanamamış olan Türkiye Florası hakkında bu kadar konuşmamızın ana nedeni tarihsel açıdan çok ilginç olması, aynı zamanda özellikle Flora yazımına ve genel olarak taksonomik botaniğe uygun bir çok yönünün olmasından kaynaklanmaktadır. Galiba bu konuda peşin hüküm gösteriyor ve duygusal davranıyorum, fakat bu Flora projesi, pek çok yönden modern ve bilimsel bir Flora projesinin nasıl olması gerektiğine çok güzel bir örnek olmuştur. Bu çalışma kolay kullanım özelliğinde, içerdiği türler hakkındaki gözlemleri aydınlatıcı ve ayırt edici olan özet bir çalışmadır. Daha da önemlisi tahmin edilen ve tasarlanan sürede tamamlanmıştır. Dünyanın diğer bir çok yerinde, şuan tamamlanmak üzere olan bir çok Flora çalışmasında, çok sayıda taksondan bahsedilmektedir. En kötü ihtimali göz önüne alırsak, Floralarda adı geçen ve bugün yaşayan bir çok takson, en fazla bizden birkaç nesil sonra belki de nesli tükenmiş olacaktır. Flora of Southern Africa ve Flora Malesia monografiktir. Fakat tam olarak gerçekçi çalışmalar sonucu oluşturulmamışlardır. Flora Tropical East Africa floristik çalışmaları (yaklaşık 40 yıl önce başlamıştır.), Flora Thailand çalışmaları bunlara birer örnektir. Son olarak, Hooker’ın ortaya koyduğu bir çalışma olan Flora of British India’nın yerini tamamlanmış haliyle ve Fascicle Flora of India adıyla anılan bir çalışma ne zaman alacak? Yani bu bölgelerin başlı başına, ayrıntılı ve gerçekçi çalışmalara ihtiyacı vardır. Prof. Dr. Rechinger, İran Florası hakkında yakın zamanda konuştuğu için bu konuda fazla bire şey söylemeyeceğim. Üzerinde durmak istediğim bir konuda şudur; Böyle geniş ve büyük bir proje nasıl oluyor da, bir kadın(karısı Wilhemine) ve bir erkek tarafından başlatılıp tamamlanabiliyor. Bu, üzerinde konuşulup düşünülmesi gereken bir noktadır. Flora Iranica’ya ait oldukça ince olan ilk fasikül 1963 yılında yazılmıştır. Bu çalışma zamanımıza ait tam ve doğru diğer çalışmalar içinde geliştirilmiştir. Yakın zamanda yayınlanmış olan Caryophyllaceae (no:163) familyası da benzer bir şekilde bir durum sergilemektedir. Bu familyada 450’nin üzerinde türden bahsedilmektedir ve bu muhtemelen tüm Floranın ¼’ünü oluşturmaktadır. Tanımlanan bu 450 tür, familya hakkındaki bilgilerimizin gelişmesine önemli ölçüde katkıda bulunmaktadır; bazı cinsler yüksek oranda endemizm içermektedir. Örneğin Silene cinsinin yaklaşık %40’ı ile %60’ı endemiktir. Rechinger’in tarihsel özelliği göz önünde tutulursa, eğer Flora yayınlamayı yaklaşık 25 yıl önce bitirmiş olsaydı, şaşırtıcıdır ki O, Büyük İran Florası için ilk bitki toplama seyahatlerine 50 yaşının üzerindeyken (Rechinger 1989) başlamış olurdu. 50 yaşının ortalarındayken de aşağı yukarı 10.000 tür içeren bir Flora çalışmasına girişmiş olurdu. Elbetteki O, dünyanın bir çok yerindeki çok değerli bir çok botanikçiyle bağlantı ve yardımlaşma içindeydi. Daha 1990’da 8.000 üzerinde tür incelemiştir. Flora of Turkey üzerine yapılan bir eleştiride, bu çalışmanın çok yetersiz oluşuydu. Bu kesinlikle İran Florasının düzenlemesine yapılan bir eleştiri değildir; İran Florası fotoğraf, şekil ve grafiklerle desteklenmiş ve oldukça iyi bir şekilde ortaya konmuştur. Fakat bu arzu edilen ekler kitaplara konunca, fiyatlarda yukarı fırladı. Buna bağlı olarak korsan ve kopya kitaplar kullanılmaya başlandı. Avrupa’da sınırlı olarak basımı yapılan bilimsel yayınların fiyatlarının yüksek olması da yine üzücü bir gerçektir. Örneğin bir adet Flora of Turkey seti almak için £500 ödemeniz gerekir. Aynı şekilde Flora Iranica seti de benzer fiyatlardadır. İran Florası üzerinde duracağımız son bir nokta ise şudur; Genel botanik topluluğu (G.B.T.), usulen bu gerçeği taktir ettiğini göstermelidir. Boissier’in Flora Orientalis’inde olduğu gibi onun Flora çalışmalarının sınırları siyasi sınırlara dayanmaz. Daha çok bu sınırlar doğal olarak ayrılmış olan bölgelerle ilgilidir. Kaçınılmaz olan şudur ki harita üzerine bir çizik atsanız bu, yapay sınırlar yarattığınızın bir işaretidir. Söz konusu olan ve yayınlanan bu üç Floristik çalışmaların sonuncusuna ait yorumlar Pakistan Florası üzerine olacaktır. Pakistan Florası diğer ikisinden çok önemli ve büyük bir farklılık arz etmektedir. Bu çalışma Pakistan’ın kendi botanikçilerinin bir ürünüdür ve iki özerk editör tarafından yapılmıştır. Bu iki editörden ilki Karachi’de bulunan Prof. Ali diğeri ise Kuzey Kavalpindi’de yaşayan Prof. E. Nasır’dır. Büyük ve geniş familya tanımlamaları bu iki botanikçi tarafından hazırlanmışlardır. Yine sanatsal ve estetik çalışmalarda aynı şekildedir. Bu proje 1960’larda başlamış gözükse de (USA ziraat departmanı sermayesiyle) aslında başlangıcı daha eskilere dayanmaktadır. Dr. Steward, Ladak’da iken 1911 yıllarında yani 80 yıl önce bitki toplamaya başlamıştır(Steward 1982). Sonraki 50 yıl veya daha fazla yıldır O, botaniğin özüne inmiş, öğrencileri cesaretlendirmiş ve eğitmiştir. Bugün Pakistan’daki tüm yerleri dolaştı ve bitki topladı. Tüm bu seriler boyunca çeşitli yayınlar çıkardı. Bu yayınlar genelde değişik yerlerin Floraları hakkındaydı. O’nun bu aktiviteleri Pakistan florasının gerçek kökenini bulmaya yönelikti. 1972’de Keşmir ve Pakistan’daki vasküler bitkilerin izahlı bir katalogunu yayınladı. Son zamanlarda Labiatae familyasını kaleme alırken (Hedge 1991) edindiğim deneyimleri göz önüne tutarsak, bu çalışmanın ne kadar önemli, doğru ve tam bir iskelet çalışması olduğu ortaya çıkar. Maalesef bu çalışmanın küçük bir kısmı da kaybolmuştur. Ali bu katalog hakkında ilk defa şunları söylemiştir(1978). –“Biz bu Flora projesindeki ilk günlerde eserin müsveddesini oluşturmaya doğru ilerleme kaydettik ve bu katalog mütevazı çalışmalarımıza temel olmuştur. Flora of Pakistan’ın ortaya konması sırasında çalışmalara yardım edenlerin ve editörlerin karşılaştığı zorlukları hatırlamak çok önemli olacaktır. Onlar ne Edinburg’un sahip olduğu gibi bir bahçeye, ne herbaryum olanaklarına, ne de kütüphanelere sahiptiler. Tüm bunlara rağmen onlar Pakistan’da bulunan tip örnek sayısında küçükte olsa bir artış sağlamışlardır. Yinede parasal desteğin devamlılığı konusunda da çok sık ve tahmin edilemez oranlarda sıkıntı çekmişlerdir. Bu noktada çok eleştirmeden şunları söylemek yerinde olacaktır; sonraki fasiküller ilk çıkanlara nazaran daha iyi durumdaydı. Çünkü ilk çıkan fasiküllerde yeni taksonlar ve türler yaratmaya, tartışmalı olan, aslında informal incelenmesi daha iyi olacak varyasyonlara formal sıralama verilmesine bir eğilim vardı. Her ne kadar taxonomistlerin doğasında var olan yeni tür ve takson yaratma eğilimi oldukça üst düzeyde olsa da, onlar taxonomik cesaretlerini sergileme hissindeydiler - şahsi olarak - artık yok olamaya başlayan fedakar taxonomistler (hepimizin olması gerektiği gibi) biliyorlar ki yeni bir tür yaratmaktansa, bir türü indirgeyip synonim yapmak, botaniğe daha büyük katkılar sağlayacaktır. Fakat ben, Pakistan Florasının ilk bölümüne olan eleştirimin aynısını Türkiye ve İran Florasının ilk bölümlerine de yapmıştım. Bazen böyle durumlar tanımlama yaparken yetersiz materyal kullanımından kaynaklanmaktadır. Buna örnek olarak Türkiye Florasındaki Chenopodiaceae tanımları verilebilir ve bu tanımlar 1966’da 2. ciltte yayınlanmıştır. Fakat sonraki 35 yıl içinde materyal toplanarak diskripsiyonlara açıklık kazandırılması ve bunların birleştirilerek yeniden yazılmaya ihtiyaçları olmuştur. Her ne kadar Pakistan Florası hala tam olarak bitmemiş ve tanımlanmamış olsa da öyle sanıyorum ki Prof. Ali ve Nasır yaptıkları botaniksel sanat çalışmaları ve sayısız diskripsiyonu başarıyla oluşturdukları için samimi ve içten kutlamalara layık olmuşlardır. Flora of Pakistan çok iyi tanımlanmış bir flora kitabı ve çalışmasıdır. Son Sözler ve Kat Edilen Mesafe Bir bölgede yapılan ilk floristik çalışmalarla, yöre florasını tam olarak bitmiş düşünemeyiz. Bu araştırmaların tam olarak bitmiş sayılabilmesi, uzun sürekli ve kesintisiz çalışmaların varlığına bağlıdır. Yani herhangi bir alanda yapılacak birkaç arazi çalışması, söz konusu bölge florasını tam olarak ortaya koymak için yeterli sayılamaz. Britanya’daki floristik çalışmalar hakkında daha önce konuşmuştuk. Britanya florasının küçük ve büyük birçok bölgenin florasını içerdiğinden, çalışmaların 250 yıldan buyana sürdüğünden ve hala devam ettiğinden bahsetmiştik. Eğer G.B. Asya’da da 250 yıl boyunca etrafta hala botanikçilerin etkin bir şekilde çalışmaları şartıyla, belki o zaman bölge florası Britanya’nınki kadar iyi bilinen ve ortaya konmuş duruma gelecektir. Bölgesel flora çalışmaları ancak sınırlı oranda objektif olabilir ve sadece herbaryum materyalleri ile sağlanabilecek sınıflamaları içerebilir. Fakat bu herbaryum materyalleri azımsanmamalı ve yabana atılmamalıdır. Bu münasebetle yazarın daima, sınıflamaları oluştururken dürüst olması gerekir. Bu çok önemlidir. Örneğin, iki tür arasında farklılıklar tam olarak ortadaysa bu durumda Flora yazarının görevi, bu iki tür arasındaki ayırımı anlaşılır biçimde ortaya koymaktır. Pek çok flora yazarını kendini isteklerine düşkün ve bencil (yani onlar bunu yapıyorlar çünkü bu onların hoşuna gidiyor ve maalesef sadece kendileri için yazıyorlar) yada işinin ehli olan ve bilimsel düşünebilen botanikçiler olarak iki guruba ayırabiliriz. İdeal, mükemmel ve işinin ehli olan flora yazarları hazırladıkları anahtarları, diskripsiyonaları ve tanımlamaları oluştururken başkalarının da kullanacağını daima düşünür ve çalışmalarını buna göre yapar. Bazı flora yazarları ise anahtarlarını ve diskripsiyonalrını farkında olarak yada farkında olmayarak araştırmacıların kullanamayacağı tarzda oluşturur. Yani kullanıcı anahtardaki ayıt edici özelliklerle tam ve kesin bir sonuca ulaşamaz. Bu tip yazarlara örnek vermeyeceğim..! Yakın bir gelecekte yaklaşık olarak tüm G. B. Asya florası tamamlanacaktır. Dolayısıyla şu soruyu sormak yerinde olacaktır. “bundan sonra ne yapacağız ve nereye gideceğiz!” Şüphesiz ki, bitki ve onun çevresi hakkında yapılan arazi çalışmaları konusunda reel gelişmeler yaşanmaktadır. Bu gelişmeler ise kendi bölgelerinde, daha önce yapılan Floristik çalışmalardan elde edilen bilgiler ışığında, yerel botanikçiler tarafından devam ettirilmeli ve tamamlanmalıdır. İyi ve modern Flora çalışmalarını içeren sistematik botanik dalına aşırı önem verip botanik biliminin tamamı gibi düşünmek yanlış olacaktır. Bunun yerine bu sahayı botanik bilimi içinde genişçe bir alan olarak düşünmek gerekir. Daha önce dediğimiz gibi taxonomiyi küçük bir ayrıntı olarak görmekte yine doğru ve yerinde bir yaklaşım olmaz. Örneğin Pakistan Florası için Labiatae familyasının diskripsiyonlarını ve İran Florası için ise Chenopodiaceae diskripsiyonlarını hazırlarken tür “çiftlerinin” ayrımına gitmeyi gerektiren bir çok problemle karşılaştım. Yani birbirine çok yakın akraba olan veya henüz akrabalıkları kanıtlanmamış 2 tür düşünelim. Dolayısıyla bu türlerin birbirlerinden karakter yönünden farklılıkları halen tanımlanmamış olanları, çok yakın ve benzer habitatları paylaşanları ve hemen hemen aynı alanlarda yayılış gösterenleri bulunmaktadır. Genç türlerin ayrımı neden hala tam anlamıyla yapılamamıştır. Bu durum gelecekteki araştırma projeleri için, Flora diskripsiyonlarında tamamlanması ve düzeltilmesi gereken önemli problemlere sadece bir örnektir. Eski bir gazetede (Davis & Hedge 1975) Davis ile birlikte modern botaniğin çeşitli bölümlerinin yerel botanikçiler tarafından araştırılıp geliştirilebileceğini tartışmıştık. Gelecekte G. B. Asya’nın doğal bitkilerinin koruma altına alınmasını garanti eden dev projelere gerek kalmayacaktır. Çünkü bu bölgeler yerel botanikçiler tarafından ayrıntılı bir biçimde ele alınacak ve çalışmalar sürekli devam ettirilecektir. Son olarak G. B. Asya, Boissier’den Davis, Rechinger ve Steward’a ve elbetteki Prof. Ali ve Nasır’a kadar bir çok botanikçinin ilgisini çekmiştir. Dolaysısıyla botanikçiler açısından daima şanslı bir bölge olmuştur. Yeni nesil botanikçileri açısından gelecek hala parlak ve araştırmaya açıktır. Türkçeye Çeviren: Barış BANİ (I.C. HEDGE Royal Botanic Garden,Edinburg EH3 5LR, Scotland, UK. I. PLoSWA)

http://www.biyologlar.com/botanigin-tarihcesi

PROTOZOON KOMMUNİTELERİ

Ekologlar kommuniteyi zaman ve mekan ile sınırlanmış, birbirleri ile etkileşim içinde bulunan türler topluluğu olarak tanımlarlar. Pratikte protozoa gibi belli organizma grubu için kesin bir kommunite sınırlaması yapmak çoğu kez zor veya imkansızdır. Zira aynı habitatta protozoon olmayan fakat protozoonlarla av-avcı ilişkisi olan, onlarla besin ve diğer kaynaklar için rekabet eden diğer organizmalar da mevcuttur. Bunun yanı sıra aynı zaman ve mekanda bulunan bazı protozoonlar arasında ilişkiler çok zayıf, hatta hiç olmayabilir. Protozoon kommunite kavramında bir diğer problem de örnekler konusunda karşımıza çıkmaktadır. Sucul bir habitattan alınan bir kavanoz su örneği çok sayıda pelajik protozoon türünü içerir. Fakat aynı örnek bir miktar askıda katı madde ve bunlara bağlı olarak yaşayan, pelajik olmayan protozoonları da içerebilir. Benzer şekilde sediment örnekleri de sedimente ait olmayan diğer protozoon gruplarını içerebilir. Bütün bu sebeplerden dolayı protozoon kommuniteleri gerçek anlamda biyolojik kommuniteden ziyade benzer habitatlarda birlikte bulunan protozoon toplulukları anlamında kullanılmaktadır. Tatlı su protozoonları yaşama alanlarına göre pelajik (planktonik), bağlı (perifiton) ve bentik olmak üzere üç farklı kommunite altında incelenebilir [3, 28]. Pelajik Kommunite Pelajik kommunite üyeleri su sütununda serbest olarak yaşayan türleri içerir. Koloni oluşturan veya ayrı yaşayan flagellatlar ile siliyatlardan oluşur (Şekil 2). Flagellat kolonileri genellikle küresel biçimli (Gonium, Synura) olmakla birlikte, saçaklı formlara sahip olan üyeleri (Dinobryon) de mevcuttur. Heterotrofik kamçılılar bakteriler, siliyatlar ise bakteri alg, flagellat protozoa ve diğer siliyatlar ile beslenir. Çözünmüş oksijen miktarının düşük olduğu habitatlarda bazi siliyatlar (Coleps, Euplotes gibi) endosimbiyotik alg taşıyabilirler. Bu algler konağa besin ve oksijen sağlar. Su yüzeyinde veya içerisinde bulunan bitkiler, hayvanlar ve diğer partiküller ile zemin materyali üzerinde yaşayan protozoonları içerir. Bazı türler sürekli veya geçici olarak üzerinde yaşadıkları materyale tutunmuş olarak, bazıları da bu materyaller üzerinde sürünerek yaşamlarını sürdürürler. Bir grubu da (örneğin, Vorticella spp.) hücre bölünmesinden sonra bir süre serbest olarak (larval evre) yaşar. Bakteri, alg, diyatom ve diğer protozoonları besin olarak kullanırlar. Sesil türler çoğunlukla bakterileri süzerek beslenir. Bazı bağlı protozoon kommunite üyeleri. 1 Actinomonas, 2. Codosiga, 3. Anthophysa, 4 Bicosoeca, 5 Actinomonas, 6 Paraphysomonas, 7 Bodo, 8 Rhynchomonas, 9 Urceolus, 10 Clathrulina, 11 Acanthocystis, 12 Aspidisca, 13 Euplotes, 14 Trithigmostoma, 15 Acineta, 16 Vorticella, 17 Zoothamnium, 18 Epistylis, 19 Vaginicola, 20 Chilodonella. (Patterson ve Hedley, 1992’den değiştirilerek). Bentik Kommuniteler Sucul habitatların zeminini oluşturan bentik bölge, organik materyalin biriktiği, biyolojik verimliliğin yüksek olduğu ortamlardır. Burada yaşayan protozoon tür kompozisyonu, ortamdaki organik madde ve çözünmüş oksijen miktarına göre değişir. Bu bakımdan bentik protozoon kommuniteleri temiz, organik maddece zengin ve anoksik bentik bölge kommuniteleri olmak üzere üç kısımda ele alınacaktır. Temiz bentik kommunite: Organik madde birikiminin az olduğu bentik bölgelerde yaşayan protozoonların oluşturdukları populasyonlardır. Bol miktarda bakteri ve bunlar üzerinden beslenen protozoon gruplarını barındırır (Şekil 4). Protozoon çeşitliliği ve bolluğu mevsime, organik maddenin miktarı ve suyun derinliği gibi faktörlere bağlı olarak değişir. Bazı temiz bentik bölge protozoonları. 1 Paraphysomonas, 2 Notosolenus, 3 Entosiphon, 4 Paraneme, 5 Bodo, 6 Protaspis, 7 Rhynchomonas, 8 Petalomonas, 9 Cryptodifflugia, 10 Arcella, 11 Difflugia, 12 Amoeba, 13 Mayorella, 14 Pompholyxophrys, 15 Actinophrys, 16 Actinospaherium, 17 Loxophyllum, 18 Cinetochilum, 19 Cyclidium, 20 Paramecium, 21 Apidisca, 22 Euplotes, 23 Stylonchia, 24 Spirostomum. (Patterson ve Hedley, 1992’den değiştirilerek). Organik maddece zengin bentik kommunite: Organik maddece zengin fakat anoksik koşulların hüküm sürmediği ortamlarda bulunan mikroaerofilik protozoonların oluşturduğu populasyonlarıdır (Şekil 5). Düşük çözünmüş oksijen ve asiditeye toleranslı türleri içerir. Tür çeşitliliği azdır. Bakteriler ve çözünmüş organik madde protozoonların temel besin kaynağını oluşturur. Organik maddece zengin bentik kommunite: Organik maddece zengin fakat anoksik koşulların hüküm sürmediği ortamlarda bulunan mikroaerofilik protozoonların oluşturduğu populasyonlarıdır (Şekil 5). Düşük çözünmüş oksijen ve asiditeye toleranslı türleri içerir. Tür çeşitliliği azdır. Bakteriler ve çözünmüş organik madde protozoonların temel besin kaynağını oluşturur. Organik maddece zengin bentik bölge protozoonları. 1 Helkesimastix, 2 Bodo, 3 Heteromita, 4 Cercomonas, 5 Chilomonas, 6 Trepomonas, 7 Hexamita, 8 Spumella, 9 Polytoma, 10 Astasia, 11 Cryptodifflugia, 12 Colpidium, 13 Glaucoma, 14 Paramecium caudatum, 15 Paramecium putrinum, 16 Cyclidium, 17 Halteria, 18 Holostica, 19 Diplophrys, 20 Spirostomum teres, 21 Loxodes. (Patterson ve Hedley, 1992’den değiştirilerek). Anaerobik bentik kommunite: Sucul ortamlarda aşırı organik madde birikimi yoğun mikrobiyal aktiviteye ve buna bağlı olarak yüksek çözünmüş oksijen kullanımına sebep olur. Mikroorganizmalar tarafından kullanılan oksijen, sisteme giren oksijenden daha fazla olduğu durumlarda oksijen tamamen kullanılacak ve anaerobik koşullar hüküm sürecektir. Bu gibi aşırı organik maddenin bulunduğu oksijensiz sedimentlerde yaşayan protozoon populasyonları anaerobik kommuniteler olarak bilinir (Şekil 6). Tür çeşitliliği oldukça düşüktür. Oksijen bu organizmalar için öldürücüdür. Temel besin kaynaklarını sülfür bakterileri oluşturur. Anaerobik bentik protozoon kommunitesi. 1 Mastigoamoeba, 2 Mastigella, 3 Hexamita, 4 Trepomonas, 5 Trigonomonas, 6 Brachonella, 7 Metopus, 8 Spirostomum, 9 Plagiopyla, 10 Loxodes, 11 Saprodinium, 12 Myelostoma, 13 Caenomorpha, 14 Trimyema, 15 Lagynus, 16 Pseudocohnilembus, 17 Enchelyomorpha. (Patterson ve Hedley, 1992’den değiştirilerek).

http://www.biyologlar.com/protozoon-kommuniteleri

Beslenme Şekliniz Kanser Riskini Belirliyor

Beslenme Şekliniz Kanser Riskini Belirliyor

Kanser hastalığında nedenlerinin de, korunma yollarının da başında beslenme geliyor. Yeterli ve dengeli beslenen kişiler kanserden kalp hastalıklarına, bağırsak problemlerinden sindirim sistemi sorunlarına kadar birçok hastalıktan korunuyor. Neolife Tıp Merkezi Uzman Diyetisyeni Lale Özbek, günümüzde en sık yapılan hatanın çocukları erken yaşta şeker ve türevlerine alıştırmak olduğunu belirtiyor. Sağlıklı beslenmede kilit nokta ise doğal gıdalar tüketmek… SEBZE&MEYVE Günde en az 5 porsiyon tüketmek gerekiyor. Mümkün olduğunca soymadan ve pişirmeden tüketilirse alınan vitamin ve mineral oranı artıyor. Çocuklara sebze yeme alışkanlığının küçük yaşta başlatılması ve ailenin çocuklara örnek olması öneriliyor. YAĞLAR Aşırı yağ tüketimi kanser oluşumuna etki ediyor. Aşırı tereyağı tüketimine bağlı olarak; lösemi, ağız, özofagus, tiroid, mide, pankreas, endometrium, prostat, kolorektal, testis gibi kanser türlerinin riskinin arttığı biliniyor. Aşırı mısıryağı tüketimine bağlı olarak; kolon, mide, prostat, pankreas, karaciğer, akciğer gibi kanser türlerinin riskinin arttığı biliniyor. Soya yağı; içeriğine soya girmiş tüm ürünler meme kanseri riskini artırıyor. Aşırıya kaçmamak kaydıyla hakiki sızma zeytinyağı kullanılması öneriliyor. ETLER Sağlıklı bir yaşam için et tüketiminde aşırıya kaçılmasını önermediklerini belirten Uzman Diyetisyen Lale Özbek, “Özellikle mangal, döner usulü ateşe direkt maruz kalan etler; kolon, rektum, endometrium, safrakesesi, karaciğer, mide, akciğer, özofagus, lösemi, prostat gibi kanser türlerinin riskini artırıyor. Günde yaklaşık 100 gr et tüketilmesini, bir öğünde et tüketiliyorsa diğer öğünde sebze tüketilmesini öneriyoruz. Şarküteri ürünleri ise içeriğindeki sodyum nitrat nedeniyle mide kanserini tetikliyor. Nadiren yenilse dahi yanında portakal suyu ya da gerçek limon sıkılmış bir salata yemek bu gıdalardaki zararlı maddelerin emilimini azaltıyor” diyor. KURU BAKLAGİLLER Bitkisel protein kaynağı olduğu için kolesterolü yükseltmeyen kuru baklagiller, bağırsakları çalıştırıyor, kan şekerini dengeliyor. MUCİZE BESİNLER BALIK ve SEBZE&MEYVE Birçok kişi zayıflamak, sağlıklı olmak ya da kanserden korunmak için mucize besinler arıyor. Uzman Diyetisyen Lale Özbek, mucize olarak nitelendirilebilecek gıdaların balık, sebze ve meyveler olduğunu vurguluyor. Omega 3 ihtiyacının karşılanması için herkesin haftada 400 gr ızgara ya da buğulama derin su balığı yemesini; günde en az 5 porsiyon meyve ve sebze tüketmesini öneriyor. http://tahlil.com

http://www.biyologlar.com/beslenme-sekliniz-kanser-riskini-belirliyor

Lokosit Sayımı

1mm³ kanda bulunan lökosit sayısını hesaplamaktır.Gerekli Malzemeler:1.Mikroskop: Bu deneyde 10’luk ve 40’lık büyütmeler kullanılacak, immersiyon yağı ile kullanılan 100’lük büyütme ise kullanılmayacaktır.2. Turck Solüsyonu: Bu solüsyon içinde bulunan asetik asit sayesinde eritrositler ortadan kalkar ve sadece lökositler kalır. Yine bu solüsyon içinde bulunan metilen mavisi ile de lökositlerin çekirdekleri hafif boyanmış olarak görülürler. Böylece lökositleri saymak daha kolay hale gelir.Bu solüsyonun içinde bulunan maddeler aşağıda belirtilmiştir.Turck Solüsyonu       Lökosit Sayımı İçinAsetik asit (%1’lik)     3ccMetilen Mavisi           15-20 mgDistile Su                 300cc3. Lökosit sulandırma pipeti: Şekilde de görüldüğü gibi, bu pipet üzerinde; 0.5, 1 ve 11 çizgileri vardır Pipetin 1 ve 11 çizgileri arasında kalan kısmında bir balon vardır. Burada kan turck solüsyonu ile karıştırarak sulandırılır. Balon içinde bulunan beyaz boncuk, kanın solüsyon ile karışmasını kolaylaştırmak içindir.Deney sırasında 0.5 çizgisine kadar kan çekilip, turck solüsyonu ile 11 çizgisine tamamlanırsa, kan 20 kat sulandırılmış olur. Eğer 1 çizgisine kadar kan çekilip, turck solüsyonu ile 11 çizgisine tamamlanırsa, bu seferde 10 kat sulandırılmış olur. (biz daha çok 10 kat sulandırmayı kullanmaktayız.)4. Sayma Lamı (Thoma veya Neubauer):Thoma Lamı: Şeklini gördüğümüz Thoma lamı, özel olarak hazırlanmış, üzerinde mikroskobik olarak görülebilen enine ve boyuna çizgilerin sınırladığı alanlar bulunan bir lamdır.Şekilde görüldüğü gibi, Thoma lamına yandan bakılacak olursa, üzerine lamel kapatıldığında lam ile lamel arasında bir boşluk kaldığı görülür. Lam ile lamel arasındaki bu boşluğun kalınlığı 1/10 mm’dir.Bu lam üzerinde her biri 1mm² olan 2 tane sayma alanı vardır. Şekilde görülen en büyük karenin alanı 1mm²’dir. Bu alan, birbirine yakın çizilmiş enine ve boyuna üçlü çizgilerle 4x4=16 eşit kareye bölünmüştür. Bu 16 karenin her birine büyük kare adı verilir ve bu karelerin kenar uzunlukları, üçlü çizgilerden dışarıda bulunanlar esas alınarak hesaplanır.Dolayısıyla bu 16 kareden her birinin kenar uzunluğu ¼ değil 1/5 mm olur. Çünkü, üçlü çizgiler de bir yer kaplamaktadır ve üçlü çizgilerin her birinin kalınlığı da 1/20 mm’dir.Üçlü çizgilerle 16 eşit parçaya ayrılmış olan bu kareler, bu defa tekli çizgilerle tekrar 16 eşit kareye ayrılırlar ve her bir karenin kenar uzunluğu da 1/5x1/4=1/20 mm’dir. Görüldüğü üzere, bu karelerin kenar uzunluğu, üçlü çizgilerin kalınlığı ile aynıdır.5. Lamel: Sayım yapılabilmesi için Thoma lamının üzerine bir lamel kapatılmalıdır. Thoma lamının sayım alanlarının kenarlarında bulunan sütunlardan dolayı, lamel kapatıldığında lam ile lamel arasında 1/10 mm kalınlığında bir boşluk kalmaktadır.6.Alkol,pamuk: Delinecek bölgenin temizlenmesi amacıyla %70’lik etil alkol bir pamuğa emdirilir ve bölge temizlenir.7.Lanset: Lansetin steril olduğundan emin olunmalı, delme işleminden önce lansetin uç kısmına dokunulmamalıdır. Lanset bir defa kullanıldıktan sonra atılmalı, başka bir kimsede tekrar kullanılmamalıdır.Deneyin Yapılışı: İlk önce kan alacağımız kişi oturtulmalıdır. Delmek istediğimiz parmak ucunun iç yüzü alkollü pamukla temizlenmelidir. Delmek için kullanacağımız lansetin steril olduğuna emin olmalı, lanseti yalnızca tek bir kişide kullanıp atmalıdır.Parmağı deldikten sonra çıkan ilk damlayı, kuru bir pamukla siliyoruz. Çünkü ilk çıkan damla sonrakilere göre daha çabuk pıhtılaşır ve hücre bakımından da daha zengindir..Lökosit pipetini elimize alıp pipeti yatay tutarak kan damlasına daldırıyoruz. Pipetin emici kısmından emerek 0.5 veya 1 çizgisine kadar kan çekiyoruz. Pipetin dışındaki kanı pamukla silmeliyiz. Bunu yaparken de pipetteki kan sütununun çektiğimiz işaretten aşağı düşmemesine dikkat etmeliyiz.Pipette kan çekme işlemi tamamlandıktan sonra emici kısmı ağzımızdan çıkarabiliriz. Pipeti yatay tuttuğumuz zaman kan sütunu aşağıya kaymayacaktır. Pipeti yatay tutarak getirip hayem solüsyonuna daldırıyoruz ve çekerken balon kısmına gelince pipeti dik pozisyona getiriyoruz. 11 çizgisine kadar solüsyon çekiyoruz. Tam 11 çizgisine geldiğinde pipetin arka ucunu elimizle kapatıp, pipeti yatay pozisyona getirerek solüsyonun içinden çıkarıyoruz.Pipetin iki ucunu baş ve orta parmaklarımızla kapatarak bir iki dakika kadar çalkalayıp lökositlerin homojen olarak dağılmasını sağlıyoruzThoma lamının şekilde gösterildiği gibi sayım alanının her iki tarafında bulunan kısımlarını sulandırma solüsyonu veya başparmağımızın nemiyle hafifçe ıslattıktan sonra lameli bastırarak kapatıyoruz.Pipetteki eritrosit süspansiyonunun ilk birkaç damlasını dışarı akıtmalıyız. Çünkü, pipetin ucundan 1 çizgisine kadar olan kapiller kısmında kan ile solüsyonun karışması gerçekleşmez. Buradaki solüsyonun atılması gereklidir.Pipetin ucunu, sayım alanının bulunduğu bölmenin üzerindeki lamelin kenarına değdirerek, çok ufak bir damlayı lam ile lamel arasına bırakıyoruz. Bu sıvı, kapillerite nedeniyle lam ile lamel arasına yayılacaktır. Sıvı, set kısımlarına geçmemelidir. Aksi halde sayım alanı üzerindeki yükseklik artar ve hacim değişir. Sıvı lamelin üzerine de taşırılmamalıdır.Lamı mikroskoba yerleştiriyoruz ve eğer sıvı hareketi varsa bir iki dakika bekliyoruz. İlk önce 10’luk büyütme ile bakarak sayma alanını buluyoruz ve sayımı yapabilmek için 40’lık büyütmeye geçiyoruz.Lökosit sayımında 1mm²’lik sayma alanının tamamında bulunan lökositler 40’lık büyütme kullanılarak sayılır. 40’lık büyütmede bakıldığında 1mm²’lik alanın bütünü görülemeyeceği için, ilk önce sol üst büyük kareden başlayarak sağa doğru 4 büyük kare sayıldıktan sonra, kalınan noktadan alt satıra geçilir ve bu sefer de büyük kareler sağdan sola doğru ilerleyerek sayılır. Böylece devam edilerek 1mm²’lik alandaki lökositler sayılmış olur.Lökosit Sayısının Hesaplanması:1mm²’lik alandaki tüm lökositleri sayıyoruz.Daha sonra 1mm²’lik sayma alanı üzerinde bulunan hacmi hesaplıyoruz.(Hacim= En x Boy x Yükseklik)(1x1x1/10=1/10 mm²)1mm²’lik alan üzerindeki hacim hesaplandıktan sonra, basit bir orantı ile 1mm³ sulandırılmış kandaki lökosit sayısı hesaplanabilir.Bulduğumuz değer, sulandırılmış kandaki lökosit sayısını gösterdiğinden, normal kandaki lökosit sayısını bulmak için sulandırma oranımızla çarpıyoruz. Eğer 0.5 çizgisine kadar kan çekilip 11’e tamamladıysak 20 ile, eğer 1 çizgisine kadar kan çekip 11’e tamamladıysak 10 ile çarpıyoruz. Bulduğumuz bu değer, 1mm³ kandaki lökosit sayısını ifade etmektedir.1mm³ kandaki lökosit sayısının fizyolojik değerleri aşağıdaki tabloda gösterilmiştir.Lökosit sayısının fizyolojik değerleriYetişkinlerde    4000-10.000/mm³Yeni doğanda     12.000-18.000/mm³Lökositoz: 1mm³ kanda lökosit sayısının 10.000’in üzeride olmasıdır. Lökositoz durumunda kanda hangi lökosit sayısının arttığını bulmak için periferik yaymada lökosit formülü yapılarak lökosit tiplerinin oranlaması yapılır.Lökopeni: 1mm³ kanda lökosit sayısının 4000’den az olmasına denir.Lökositoz nedenleri:1-Sistemik enfeksiyonlar: Sepsis, Menengit, Pnömoni vs.2-Lokal enfeksiyonlar: Apse, Tonsilit, Sinüzit, Otitis media, Ampiyemi vb.3-Metabolik hastalıklar: Diabetik ketoasidoz, Üremi, Gut, Eklamsi vb.4-İlaç ve zehirler: Digitaller, Epinefrin, Civa, Co, Pb.5-Kan yapımı sistemik hastalıkları: LösemiLökopeni nedenleri:1-Bazı akut ve kronik enfeksiyonlar: Tifo, Pratifo, Brucelloz2-Bazı virüs ve riketsiya hastalıkları: Kızamık, Kızamıkcık, İnfeksiyoz hastalıklar.3-Bazı protozoal hastalıklar: Leshmaniazis, Sıtma.4-Hematopoetik hastalıklar: Aplastik anemi, Agranulositoz, Pernisiyoz anemi. Hemogram yani kan sayımı testleri sonrası,tahlil sonucunu incelerken hastaların merak ettiği test parametrelerinden biri de wbc yani lökosit testidir.Lökositler, halk arasında akyuvar olarak da bilinir.WBC yani lökosit testinin normal değerleri yenidoğan çocuktan,15 yaş sonrası kişilere kadar farklı değerler göstermektedir.6 aylık bir bebeğin normal olan wbc değeri yetişkin bir bireyde ise bir hastalık belirtisi olabilir. WBC(lökosit) testinin yaş gruplarına göre normal değerlerini Tahliller ve Normal Değerleri bölümümüzde bulabilirsiniz.Lökosit sayısında artış görülmesine lökositoz adı verilir.Hangi durumlarda lökosit değerleri normalin üstüne çıkmaktadır? Sistemik enfeksiyonlar(sistemleri tutan enfeksiyonlar)(sarkoidoz gibi)Lokal enfeksiyonlarMiyokart enfarktüsüLösemilerGebeliklerdeAşırı sigara tüketinde Lökosit sayısında azalmaya ise lökopeni adı verilir.Aşağıdaki durumlarda da lökosit değerleri normalin altına iner. Bazı Virüs Hastalıkları (Gripler,özellikle son domuz gribi vakalarında wbc düşüklüğü sık olarak görüldü)Riketsiya HastalıklarıAplastik anemiAlösemik lösemiTifo ve paratifoBrucella HastalığıMiliyer tüberküloz Kaynak: www.labderoda.org

http://www.biyologlar.com/lokosit-sayimi

Helmintlerde Tespit, Boyama ve Kalıcı Preparat Yapımı

Ahmet GÖKÇENHarran Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Şanlıurfa, TürkiyeÖZET: Helmintlerin toplanma, gevşetilme, tespit, boyanma ve kalıcı preparat halinde saklama teknikleri parazitologlar için büyük önemarz eder. Parazitlerin, canlı olarak toplanmaları ve direkt tespit edilmeleri gerekir. Bu süreç, parazitlerin iç ve dış yapılarının uygun şekildekorunmalarını sağlar. Helmintlerin gevşetilmesi ve normal şekillerinin korunması için çeşitli metodlar kullanılabilir. Bu metotlarörneklerin uzun süre korunmasını sağlar. Boyama ve montaj teknikleri; örneğin türüne, büyüklüğüne ve gelişme dönemine göre değişir.Bu derlemede helmintlerin gevşetilmesi, tespiti, boyama ve kalıcı preparat haline getirilmeleri tartışılmıştır.Anahtar Sözcükler: Helmint, gevşetme, tespit, boyama, kalıcı preparat.Fixation, Staining and Preparation of Permanent Mounts of HelminthsSUMMARY: The techniques for the collection, relaxation, preservation and staining of helminths are very important for parasitologists.Parasites should be collected alive and fixed directly in the living condition. These procedures insure proper preservation of internal andexternal details of parasites. There are various methods for relaxing and preserving the normal morphology of helminths. These methodsare absolutely essential for permanent preservation of the specimens. Staining and mounting techniques vary depending upon size ofspecimens, species, and stage of development of the organisms. In this review, the preparation of permanent mounts, relaxation, fixationand staining methods of helminths has been discussed.Key Words: Helminth, relaxation, fixation, staining, permanent mountsGİRİŞHelmintlerin teşhisi değişik gelişme formlarından birinin veya yumurtalarının görülmesi ile yapılmaktadır. Büyük çoğunluğunsindirim sisteminde yerleştikleri için dışkı muayenesinin teşhiste ayrı bir önemi vardır. Dışkı muayeneleri, eğitim amacıyla öğrenci laboratuarlarında yapılabildiği gibi, hastalıkların teşhisi için hastanelerin parazitoloji laboratuarlarında da sık sık yapılmaktadır (5, 8, 9, 10).Helmintlerden kalıcı preparat hazırlanması, referans laboratuvarlarında rutin olarak yapılmaktadır. Özellikle helmint enfeksiyonlarının yaygın olduğu bölgelerde gerek doğru teşhis gereksebu alanda yeni çalışmaya başlayan teknik personel veakademisyenlerin eğitimi amacıyla koleksiyonlar oluşturulmaktadır.Çünkü incelenecek örneği her zaman ve her yerdebulmak mümkün değildir. Ayrıca öğrenci laboratuvarlarındamüfredat programına göre uygun örnekleri seçerek uygulamalıeğitim birimlerinde kullanılma kolaylığı sağlar (1).Kalıcı preparat yapmanın ön koşulu, kullanılacak helmintlerincanlı, morfolojik yapısının tam, sağlam ve konaktan elde edilmişolmasını zorunlu kılar. Yapılan koleksiyonun da kolaylıklaulaşılabilir, teşhis ve eğitim amacıyla kullanılabilir olmasıgerekir (1, 12).Gerekli laboratuar malzemeleri :1. Laboratuvar önlüğü: Çalışanların üzerlerinin kirlenmemesi, çeşitli boya ve kimyasal maddelerin elbiselerezarar vermemesi için,2. Doğal kıl ve tüylerden yapılmış değişik boyda yumuşak tüylü muhtelif fırçalar: Örneklerin temizlenmesiiçin kullanılır. Sentetik ve plastik fırçalar kullanılan bazı solüsyonlardan etkilenip bozulabilir.3. Diseksiyon seti: Sindirim sistemlerinin açılması ve büyük helmintlerin kesilip bölümlere ayrılması için kullanılır.4. Eldiven: Tek kullanımlık olanlar tercih edilir.5. Permanent kalemler: Preparatları ve saklama şişelerini işaretlemek için kullanılır.6. Boyama kapları: Kullanım amacına göre çeşitli büyüklüklerde olmalıdır.7. Plastik poşet ve torbalar: Atık malzemelerin toplanması için kullanılır.8. Kullanılacak tüm cam ve benzeri malzemelerin temiz ve kuru olması, kimyasal solüsyonların taze hazırlanmış olması, boya solüsyonlarının filtre edilmiş Makale türü/Article type: Derleme/ReviewGeliş tarihi/Submission date: 02 Kasım/02 November 2007Düzeltme tarihi/Revision date: 14 Şubat/14 February 2008Kabul tarihi/Accepted date: 06 Mart/06 March 2008Yazışma /Correspoding Author: Ahmet GökçenTel: (+90) (414) 312 84 56 Fax: (+90) (414) 314 41 58E-mail: agokcen@harran.edu.trGökçen A.178 olması ve içlerinde çökelti ve tortulaşma olmaması gerekir.9. Kaliteli ve uzun süre dayanıklı olan yapıştırıcı kullanılmalıdır. Tavsiye edilen en iyi yapıştırıcı Kanada balsamı ve Gum-damardır. Diğer yapıştırı-cılar kuruyunca veya belli süre sonra opaklaşır ya da kristalleşerek preparatın bozulmasına yol açabilir. Ayrıca hava kabarcıkları oluşturarak helmint örneğinin net görülmesine engel olabilirler (12).Örnek toplama ve preparat yapımında dikkat edilecek genel hususlar :Her hayvanda çeşitli parazit türleri bulunabilir. Ancak bir hayvandaher türden yeterli sayıda helmint olmayabilir. O zaman birkaçhayvandan toplanan türlerden preparatlar yapılabilir. Bazıhelmintler (Ascaridae’lerin çoğu, Anoplocephalidae’lerin bazılarıgibi) tek bir preparata sığmayacak kadar büyük olabilir. Böyledurumlarda morfolojik özelliklerine göre teşhise yardımcı olanbölümleri dikkate alınan helmintler, parçalar halinde ayrılarakkalıcı preparatlara monte edilebilir. Kayıt ve işaretleme işlemleridüzenli tutulmalı ve özellikle bölümlere ayrılan örneklerdekarışmaya fırsat verilmemelidir. Buna karşın nematodlarınçoğu ince bir kutikülaya sahip olduklarından boyama ve montajyapılamayabilir. Bunların tespiti, suyunun giderilmesi vemontajı çok zor olduğu için genellikle içine birkaç damla gliserinilave edilmiş %70’lik etil alkollü şişelerde saklanabilirler. Eğitimamacıyla kullanılacakları zaman bu şişelerden alınıp ya doğrudanya da laktofenolde şeffaflandırıldıktan sonra morfolojik özelliklerimikroskopta incelenebilir (12).Örnek toplama, gevşetme, tespit ve boyama işlemleri esnasındaaceleci olunmamalı, işlem aşamaları sırası atlanılmadanve belirtilen zaman süreçleri içerisinde tam olarak uygulanmalıdır.Örneğin alkol serilerinden tam geçirilmeyen ve bununsonucu tam dehidrasyonu sağlanmayan örnekler preparatlardabulanıklaşır ve boyanan materyalin tüm ayrıntıları net olarakgörülemeyebilir. Bazı helmint örnekleri çok küçük olduğu içingerek temizlerken, gerekse mikroskop altında çalışırken veyaörnekleri tespit ve boyama kaplarına naklederken örneklerzarar görüp teşhise yardımcı olan morfolojik özellikleri tahripolabilir. Bu gibi olumsuzluklara yol açmamak için nazik vekibar olunmalıdır (1, 11).Kalıcı preparat yapılacak helmintler, iç ve dış detaylarınınbozulmaması için canlı olarak toplanmalı ve derhal tespit edilmelidir.Parazit öldükten sonra vücudunda otolitik reaksiyonlarbaşlayacağından teşhis kriterleri olan bazı detaylar dadejenere olabilir. Konak hayvan ölünce ektopara-zitler konağıterk ederken endoparazitler belli bir süre sonra ölürler ve kısasüre içinde dejenere olmaya başlarlar. En iyi örnek, konakhayvan ölür ölmez ya da otopsi veya tüketim amacıyla kesilirkesilmez elde edilen canlı helmintlerdir. Cestod vetrematodlarda dejenerasyon ölümden birkaç dakika sonra başlarkennematodlarda bu süre birkaç saate kadar uzayabilir (10,12).Helmintlerin boyanarak kalıcı preparat haline getirilmeaşamaları :a. Helmintlerin konaklardan elde edilmesi,b. Helmintlerin temizlenmesi,c. Helmintlerin relaksatiyonu-gevşetilmesid. Helmintlerin fikzasyonu-tespitie. Helmintlerin boyanması ve kalıcı preparatlara monteedilmesi.a. Helmintlerin konaklardan elde edilmesi: İyi bir preparatyapımı için, örneklerin bütün ve canlı olarak elde edilmesigerekir. Örnekler yeni ölen veya otopsi için kesilen konaklardankısa sürede toplanmalıdır. Küçük hayvan-larda tüm sindirimsistemi özafagustan rectuma kadar bütün olarak açılır. Büyükhayvanlarda ise sindirim sistemi aralarına çift ligatür konulmuşbölümlere ayrılarak bir diseksiyon makası ile açılmalıdır. Mukozayayapışmış helmintleri çıkarmak için zorlamamalı, kendiliğindenayrılması için içerisine fizyolojik tuzlu su ilave edilmişbir küvete konularak, birkaç saat buzdolabında masere edilmeksuretiyle serbest kalmaları sağlanmalıdır. Cestodların skoleksleribağırsak lumanine yapışık olduğundan kıl fırça veya diseksiyoniğnesi ile çok dikkatli bir şekilde lumenden ayrılıp toplanmalarıgerekir. Çok küçük helmintleri toplamak için diseksiyonun mikroskobukullanılabilir.Canlı helmintlerin parçalanması, distorsiyonu ve iç organlarınınaçığa çıkarak zarar görmesini önlemek için; toplama,temizleme ve transfer esnasında küt makas, dişsiz pens, yumuşaktüylü fırça, puar ve pipet gibi malzemeler ile izotonik sıvılarkullanılmalıdır. Organın dokusu içerisinde bulunanhelmintleri toplamak için bu organları küçük parçalara ayırarakincelemek gerekir. Uzun süre önce ölmüş veya dondurulmuşhalde olan örnekler kalıcı preparat yapımı için uygundeğildir (9, 12).b. Helmintlerin temizlenmesi: Konak hayvanlardan dikkatlicealınıp petri kutularına nakledilen helmintler; dış yüzeyine yapışmışdışkı artıkları ve benzeri yabancı partiküllerden serumfizyolojik içinde yumuşak bir fırça yardımıyla yıkanarak temizlenir.Çok küçük örnekler stereomikroskop altında temizlenebilir.Temizlik esnasında bir kaba aşırı miktarda örnek konulmamalı vekaplar çalkalanmamalıdır (12).c. Canlı helmintlerin relaksatiyonu-gevşetilmesi:Relaksatiyon veya gevşetme, helmintlerin doğal görünümdekalmalarının yapay olarak sağlanmasını içeren bir süreçtir.Tam gevşetilmeyen helmintlerin, büzüşüp kıvrılarak bir yumakhalinde toplanmaları nedeniyle montaj esnasında teşhiseyarayan morfolojik özellikleri tahrip olabilir.Monogenea’lar narin yapılı trematodlar olup genellikle soğukkanlıhayvanların (Balık, kurbağa vb.) deri, solungaç ve burunboşluklarına çekmenleriyle tutunmuş olarak yaşarlar. Bunlarbalıkların 1/4000’lik formalin solüsyonunda 30 dakika kadarbekletilmeleri ile gevşemiş halde toplanırlar. KüçükHelmintlerde tesbit, boyama ve kalıcı preparat yapımı179trematodlar preparata yerleştirilir. Üzerine birkaç damla serumfizyolojik damlatılıp lamel kapatılır ve buzdolabında bir saatkadar bekletilerek gevşetilebilir. Çok küçük olanlarıdiseksiyon mikroskobu kullanılarak puar veya ince bir pipetyardımıyla alınıp AFA (Alkol-Formalin-Asetik asit) (*) solüsyonundasaklanırlar (3, 4, 13).Digenea’lar halk arasında kelebek olarak adlandırılan, genellikleince bağırsak, safra kesesi, safra kanalları, idrar kesesi gibi içorgan boşluklarında bulunan trematodlardır. Bunlar yerleştiğiorganların diseksiyonu ve içeriğin çeşme suyu altında yıkanmasıile toplanırlar. Tespit edilmeden su içinde uzun süre kalırlarsaosmotik şok sonucu yırtılmalara ve dejenerasyonlara maruzkalabilirler. Daha büyük trematodlar, ise serum fizyolojik içerisindebirkaç saat veya bir gece buzdolabında bekletilerek gevşetilebilirler.Bir lam boyutundan daha uzun olan örnekler birkaçkez katlanarak lam boyutuna getirilebildiği gibi deney tüpleriveya cam kavanozlar içinde ya da uzun cestodlarda olduğu gibiuygun yerlerinden kesilerek müstakil bölümler halinde gevşetilebilirler(1, 3, 4, 11, 13).Cestodlar, segmentli yapıda olup genellikle konakların sindirimsistemi lumeninde yapışma organelleri ile tutunmuş haldebulunurlar. Dış yüzeyine yapışan dışkı artıklarından bir fırçayardımıyla temizlendikten sonra, soğuk distile su, serum fizyolojikveya % 5-10’luk etil alkolden herhangi birisinde 5–15dakika bekletilerek gevşetilirler (4, 6, 9, 11).Nematodlar dışkı artıklarından temizlendikten sonra doğrudanglasiyal asetik asit içine atılıp 5–10 dakika bekletilir, daha sonrakıvrılanları uzatılarak düzeltilir ve hızlı bir şekilde % 70’lik etilalkole alınırlar. Bazı nematodlar bu esnada rupture olup parçalanabilir.Buna engel olmak için temizlenen nematodlar direktkaynama derecesindeki sıcak % 70’lik etil alkole atılıp düzeltilerekgevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisinebirkaç damla gliserin ilave edilmesi, nematodların hemyumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığındakuruyup çatlamasını önler (6, 12).Acanthocephala’ların gevşetme ve tespiti nematodlarda olduğugibi yapılır. Ancak başlarında morfolojik teşhis kriterlerine esasolan dikencikler bulunduğu için daha fazla itina ister. Lumeneyapışmış halde bulunan proboscis kısmı çok dikkatli bir şekildekopartılmadan çıkarılmalı ve daha sonra doğrudan distile su içinealınıp 30–120 dakika kadar tutularak temizlenmelidir (1, 11).Sülükler, içerisine birkaç mentol kristali atılmış çeşme suyunaalınıp 15–60 dakika bekletilerek gevşetilirken bazen saatlercebeklemek gerekebilir. Diğer bir yöntem ise sodyum karbonatlısuda bekletme yöntemidir (1).d. Helmintlerin fikzasyonu-tespiti: Fikzasyon veya tespitdokuların canlı iken sahip olduğu özelliklerinin muhafazaedilmesini sağlayan bir süreçtir. Örneklerin uzun süre dayanıklıkalması için iyi bir şekilde tespit edilmesi gerekir. Tespitinamacı gevşetilmiş örneklerin gerçek boyutunda kalmalarınısağlamak ve bünyelerinde olabilecek metabolik ve dokusaldeğişiklikleri durdurmaktır (12).Tespit için kullanılan çeşitli metotlar vardır. En basit, kolay veucuz olanı % 5’lik sıcak formol ile tespittir. Bunun yanındaAFA fiksatifi, Gilson’un fisatifi (**) veya Shaudin’in fikzatifi(***) de kullanılabilir (1).Küçük Digenea’lar dışkı ve benzeri artıklardan temizlendiktensonra doğrudan AFA solüsyonu ile tespit edilirken, büyükolanları iki lam arasına konularak 48 saat süreyle tespit edilip% 70’lik etil alkolde uzun süre saklanabilirler (12).Cestodlar canlılık belirtileri tamamen kaybolmadan ilk 5–30dakika içinde tespit edilmelidirler. Küçük cestodlar doğrudanAFA solüsyonuna alınırken, büyük olanları morfolojik yapılarınagöre 3–4 cm uzunluğunda kesilerek, ezilip parçalanmayacakşekilde iki lam arasına sıkıştırılmalıdır. Daha sonra lamlarınyanlarına bir pipet yardımıyla tespit solüsyonu ilave edilerekcestod yüzeyleriyle teması sağlanır. Bundan sonra Digenea’lardaolduğu gibi 24–72 saat tespit solüsyonunda bekletildikten sonra %70’lik etil alkole alınarak uzun süre saklanabilirler (12).Nematodlar glasiyal asetik asitte hem tespit edilip hem desaklanabilirler. Bunun yanında direkt kaynama derecesindeki%70’lik sıcak etil alkole atılıp düzeltilerek gevşetilir ve tespitedilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserinilave edilmesi, hem nematodların yumuşak ve daha elastikkalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasınıönler (1, 6, 12).Acanthocephala’lar temizlendikten sonra direkt AFA solüsyonunaalınarak tespit edilir. AFA solüsyonunda 3–7 gün tespitedildikten sonra %70’lik etil alkole alınıp uzun süre saklanabilir.İşlemler esnasında ve bu helmintleri naklederken çok dikkatliolunmalıdır. Aksi halde pens ile baş kısmından tutulursateşhiste yararlanılan baş kısmındaki dikencikler dejenere olabilir(12).Sülükler iki lam arasına sandviç gibi bağlanıp dış yüzeyindenAFA solüsyonu ile teması sağlanarak 15–30 dakikada tespit edilirler.Ya da bağlı şekilde AFA solüsyonunda 7 gün tespit edildiktensonra % 70’lik etil alkolde uzun süre saklanabilirler (1).e. Helmintlerin boyanması ve kalıcı preparata monteedilmesi: Monogenea’lar çift lamel arası gliserin jeli (****)ile preparat yapılıp lama yapıştırılmak suretiyle kalıcı preparathaline getirilirler. Şeffaf oldukları için iç organelleri kolaylıklagörülebilir ve boyanmadan kalıcı preparat yapılabilirler (12).Bunun için:1. Gevşetme ve tespiti yapılmış Monogenea’ya ait helmintbir pipet veya puar yardımıyla 22 x 22 mm veya daha büyükölçekli bir lamel üzerine yerleştirilir.2. Hava kabarcığı oluşturmadan üzerine bir damla gliserinjeli damlatılır.Gökçen A.1803. Üzerine yavaşça daha küçük bir lamel kapatılıp serin biryerde bir süre bekletilir, kenarlardan çıkan gliserin jelinfazla kısmı tıraşlanarak temizlenir.4. Bu şekilde hazırlanan örnek daha sonra bir lam üzerinemonte edilerek Kanada balsamı ile yapıştırılır. Lamamontaj esnasında küçük lamelli olan taraf alta yani lamatemas eden yüze gelmeli ve kenar boşlukları büyük lameltarafından korunmuş olmalıdır. Montaj işlemi biten preparat,37 ºC’lik etüvde bir süre kurutularak kullanıma hazırhale getirilebilir (1, 12).Digenea’ların boyanmasında Mayer’s hematoksilen, Semichon’sacetocarmine, Van Cleave’s acetocarmine veya Malzacher’s boyamasıgibi çeşitli boyama metotları kullanılabilir. Aşamaları-nınkarmaşık olmaması ve kolayca yapılabilmesi nedeniyle en çoktercih edilen Semichon’s acetocarmine (*****) boyama metodudur(10, 12).Bunun için:1. Etil alkolde saklanan örnekler direkt Semichon’s asetocarminboya solüsyonuna alınarak 2–4 saat boyanır.2. Boyanan örnekler %70’lik etil alkolde 15–30 dakikabekletilir.3. Boyanın sabitlenmesi için %70’lik asit alkolde trematodunbüyüklüğüne göre 15 saniye – 10 dakika arasında tutulur.4. Örnekler 15 saniye – 10 dakika arasında %70’lik bazikalkol ile muamele edilir.5. Önce %70’lik etil alkolde 5 dakika, sonra %95’lik etilalkolde 15–30 dakika ve daha sonra %96’lık absolüte etilalkolde her biri 15–30 dakika olmak üzere üç kez alkoldengeçirilir.6. Ksilen veya toluende her biri 10–20 dakika olmak üzereiki kez tutulur. Daha sonra iki lam arasına monte edilerekKanada balsamı veya Gum-damar ile yapıştırılır.Cestodların boyanması Digenea’lardaki gibi Semichon’sacetocarmine metoduyla yapılabilir. Bunun yanında BoraxCarmine (******) ile de boyanmaktadır. Büyük cestodlardateşhis kriterlerine esas olmak üzere morfolojik farklılık gösterenskoleks-baş bölgesi 2–3 cm aşağısındaki boyun bölümündenkesilir, 2–3 cm uzunluğunda birkaç genç halka ile birkaçolgun halka alınarak boyanıp ayrı ayrı preparatlara monteedilir. Metrelerce uzunluğundaki cestodun tamamını boyamayagerek yoktur. Tespit ve boyama esnasında çok dikkatliolmalı, birden fazla tür varsa farklı türlerin skoleks ve halkalarıbirbirine karıştırılmamalıdır (12).Borax Carmin ile boyama prosedürünün aşamaları şunlardır.1. Örnekler alkol serilerinden (%70, %80, %90 ve %96’lık)geçirilir.2. Hazırlanan Borax – Carmin solüsyonunda 15 dakikaboyanır.3. Beşer dakikalık sürelerle üç kez distile sudan geçirilir ve%70’lik etil alkol şişelerine alınır.4. Preparata monte edilerek kanada balsamı ile yapıştırılıp,37 °C’lik etüvde kurutulur.Nematodların bir kısmı toprakta serbest yaşarken, önemli birbölümü de insan ve hayvanların sindirim, kan ve lenf sistemlerindeparazit olarak yaşamaktadır (2, 3, 4, 11). Nematodların 2cm’den küçük olanları bütün halde bir preparata monte etmekiçin uygundur. Buna karşın daha büyük nematodlar morfolojikyapılarına göre teşhise yardımcı olacak bölümleri kasilerekayrı ayrı bölümler halinde monte edilmelidir. Ya da parafinlibloklarda histolojik kesitler alınarak preparatlara monte diliphematoksilen eosin ile boyanarak teşhis edilirler (12).Tespitten sonra değişik yoğunluktaki alkol serilerinden geçirilennematodlar ksilen veya toluende bekletildikten sonra boyanmadandirekt preparata monte edilebilirler. Eğer %70’liketil alkolde saklanacaklarsa içerisine %5’lik gliserol ilaveedilmesi gerekir (10, 12).Kalıcı preparat yapımında prosedür şu aşamalardan oluşur:1. Nematodlar eğer tespit edilmemişse, %70’lik etil alkolde30 dakika tespit edilir.2. Alkol serilerinden geçirilişi. %95’lik etil alkolde 30 dakika,%96’lık absolüte etil alkolde iki kez 30’ar dakika,Ksilen veya toluende önce 15, sonra 30 dakika bekletilmeli.3. Preparata montajı yapılıp üzerine lamel kapatılarak Kanadabalsamı ile yapıştırılır. Daha sonra 37 ºC’lik etüvdebirkaç hafta kurutularak kalıcı preparat haline getirilebilir.Acanthocephala’lar genellikle balık, kaplumbağa, su kuşlarınadiren insan ve evcil hayvanların ince bağırsaklarında lokalizeolurlar (4, 11, 13). Acanthocephala’lar boyalı veyanematodlarda olduğu gibi boyasız olarak mikroskopta incelenebilir.Boyama yapılacaksa; Van Cleave’s hematoxylin veyaMayer’s hematoxylin metodlarıyla ya da cestodlarda olduğugibi en çok önerilen Semichon’s acetocarmine metoduylaboyanarak kalıcı preparatları yapılabilir (10, 12).Sülükler genellikle göl, havuz, bataklık gibi durgun sularda veyayavaş akan dere, ırmak ve nehirlerde; ya balık, kaplumbağa gibikonaklara yapışmış halde ya da serbest halde bulunurlar (4). Büyüksülükler boyanmadan direkt incelenip % 70’lik etil alkolkonulmuş şişelerde boyanmadan saklanırken, küçük sülüklerDigenea’larda olduğu gibi gibi Semichon’s acetocarmine metoduylaboyanarak kalıcı preparatları yapılabilir (10, 12).Parazitlerin iç ve dış yapılarını uygun şekilde korumak içinlaboratuarlarda değişik metotlar uygulanmaktadır. Teşhis veeğitim amacıyla kullanılan ve söz konusu metotlarla elde edilenkoleksiyonlardan her zaman yararlanılabilir. Sonuç olarak,bu derlemede farklı kaynaklarda dağınık şekilde bulunanHelmintlerde tesbit, boyama ve kalıcı preparat yapımı181helmintlerdeki gevşetme, tespit, boyama ve kalıcı preparatamontaj metotlarının toplu olarak sunulması gereği vardır. Bununzaman ve emek kaybını önlemek için helmintoloji alanındayeni çalışmaya başlayanlara kolaylık sağlayacağı düşünülmektedir.Metinde geçen kimyasal bileşikler ve formülasyonları(*) AFA (Alkol-Formalin-Asetik asit) fikzatifi1. Ticari Formalin (HCHO) : 100 ml2. Etil alkol (C2H5OH, % 95’lik) : 250 ml3. Glasiyal asetik asit (CH3COOH) : 50 ml4. Gliserin (C3H5(OH)3) : 100 ml5. Distile su : 500 ml(**) Gilson’un fikzatifi1. Nitrik asit (HNO3, % 80’lik) : 15 ml2. Glasiyel asetik asit (CH3COOH) : 4 ml3. Civa klörür (HgCl2) : 20 gr4. Etil alkol (C2H5OH, % 60’lık) : 100 ml5. Distile su : 800 ml(***)Shaudin’in fikzatifi1. Civa klorür (HgCl2, Distile su ile doymuş halde) : 200 ml2. Etil alkol (C2H5OH, % 95’lik) : 100 ml3. Glasiyel asetik asit (CH3COOH) : 15 ml(****) Gliserin jeli bileşimi1. Jelatin : 10 gr2. Distile su : 60 ml3. Gliserin : 70 ml4. Fenol : 1grHazırlanışı: Kristal fenol suda çözülür ve jelâtin ilave edilir.Çözünüp homojen hale gelinceye kadar ısıtılır. Daha sonrageniş ağızlı bir cam şişeye katılıp soğutulur ve kullanılır.(*****) Semichon’s Acetocarmine (Stok solüsyonu)1. Glasiyal asetik asit (CH3COOH) : 250 ml2. Distile su : 250 ml3. Carmin : 5 gr4. Etil alkol (C2H5OH, % 70’lik) : 500 ml(******) Borax Carmine bileşimi1. Carmine : 3 gr2. Borax (Na2B4O7. 10H2O) : 4 gr3. Distile su : 100 ml4. Etil alkol (C2H5OH, % 70’lik): 100 mlHazırlanışı: Carmin ve borax distile su ile çözünene kadarkaynatılır, soğutulur ve etil alkol ilave edilerek 1–2 gün bekletildiktensonra süzgeç kâğıdından süzülerek kullanılır.KAYNAKLAR1. Anonim, 1961. Laboratory Procedures in Parasitology, TM 8–227–2. Headquarters, Washington, USA.2. Anderson RC, 1992. Nematode Parasites of Vertebrates, TheirDevelopment and Transmission, CAB Int, UK. p. 1–12.3. Dunn AM, 1978. Veterinary Helmintology, 2nd. ed., WilliamHeinemann, London. p. 295–304.4. Güralp N, 1981. Helmintoloji, Ank Ünv Vet Fak Yay No: 368Ders Kitabı: 266, İkinci baskı, Ank Ünv Basımevi, Ankara.5. Hendrix CM, 1997. Laboratory Procedures for VeterinaryTechnicians, 3rd. Ed., Mosby, Inc., USA.6. Kassai T, 1999. Veterinary Helminthology. 1st ed., Butterworth-Heinemann, Oxford. p. 181–204.7. Merdivenci A, 1967. Türkiye’nin Marmara Bölgesinde EvcilTavuk, Hindi, Ördek ve Kazlarda Görülen Trematod, Cestod veNematodlara Dair Araştırmalar, Kutulmuş Matbaası, İstanbul.8. Ministry of Agriculture, Fisheries and Food (MAFF), 1971.Manuel of Veterinary Parasitological Laboratory Techniques,HMSO, Technical Bulletin No:18, London.9. Pratt PW, 1997. Laboratory Precedures for VeterinaryTechnicians, 3rd. ed., Mosby Inc., Missouri.10. Sloss MW, Kemp RL, Zajak AM, 1994. Veterinary ClinicalParasitology 6th. ed., Iowa State University, Ames, Iowa.11. Soulsby EJL, 1986. Helminths, Arthropods and Protozoa ofDomesticated Animals, 7th. ed., Bailliere Tindall, London. p.763–777.12. Upton SJ, 2005. Animal Parasitology, Biology 625 LaboratoryManual, Kansas Satate University, USA.13. Urquhart GM, Armour J, Duncan JL, Dunn AM andJennings FW, 1988. Veterinary Parasitology. ELBS, LongmanUK. p. 269–279.Kaynak: Türkiye Parazitoloji Dergisi, 32 (2): 177 - 181, 2008PDF formatını buradan indirebilirsiniz.: www.tparazitolderg.org/pdf.php3?id=341

http://www.biyologlar.com/helmintlerde-tespit-boyama-ve-kalici-preparat-yapimi-1

E. coli Besiyerleri

Geliştirme koşullarından bağımsız olarak yeterli bir aktivite gösteren karakteristik yapısal enzimlerin belirlenmesi bakterilerde hızlı bir identifikasyon sağlamaktadır. E. coli, bir kaç Salmonella ve Shigella suşu dışında ß-D-glucuronidase (MUGase) enzimine sahip Enterobacteriaceae üyesi olan tek türdür. Bu enzim, 4-methylumbelliferyl-ß-D-glucuronide (MUG)'i uzun dalga boylu UV ışığı altında fluoresans veren 4-methylumbelliferon 'a parçalar. E. coli aranması/sayılması için hazırlanan besiyerlerine MUG ilave edilmesi, geliştirilmesin bu besiyerinde yapılması ve sonuçta sıvı kültürün/koloninin uzun dalga boylu UV lamba ile kontrolü E. coli tayinini hemen hemen bitirmektedir. Sahte pozitif reaksiyonlardan kurtulmak için indol testi yeterli olmaktadır. Hepsi Merck/fluorocult cinsi olmak üzere; BRILA (Brillant Green Bile Broth), CASO (Tryptic Soy) Agar, DEV Lactose Peptone Broth, ECD (E. coli direct) Agar, Lauryl Sulphate Broth, LMX Broth besiyerlerinde UV ile fluoresans pozitif alındıktan sonra doğrudan sıvı besiyerinde gelişen kültürün üzerine veya katı besiyerinde gelişen koloni üzerine Kovac's indol ayıracı damlatılarak indol testi yapılır. Floresan ve indol pozitif tek bakteri E. coli 'dir.Bazı kültürlerde MUG reaksiyonu (fluoresans) net bir şekilde belirlenemez. Bu gibi durumlarda 1N NaOH 'den 1 mL kadar ilave edilmesi ile fluoresans reaksiyon netleşir. MUG, selektif katkı olarak besiyeri üreten diğer firmalar tarafından da pazarlanmaktadır.E. coli 0157: H7 Agar (Merck)Enterohemorajik E. coli 0157: H7 'nin izolasyonu ve ayrımı için geliştirilmiş bir besiyeridir. Bileşimindeki sodium deoxycholate gram pozitiflerin gelişimini inhibe eder. Bromothymol blue pH indikatörü olarak sorbitolun kullanımını gösterir. Sorbitol pozitif bakteri kolonileri sarı renk alırken sorbitol negatif koloniler yeşil renkli olarak kalırlar. Sodium thiosulphate ve ammonium iron (III) citrate, H2S oluşturan patojenlerin ayrımında rol alır. E. coli 0157: H7, diğer E. coli suşlarından farklı olarak MUG negatif bir özellik gösterir. Bu besiyerinde gelişebilen farklı bakterilerin kültürel özellikleri aşağıdaki gibidir.Bakteri Koloni rengi Presipitat MUG SorbitolE. coli 0157: H7 yeşilimsi - - -E. coli sarı ± + +Proteus mirabilis siyah-kahve - - -Shigella sonnei yeşilimsi - + -Enterobacter aerogenes sarı ± - +Chromocult Coliform Agar (Merck)Karakteristik bakteriyel enzimlerin kromojenik bir substrat ile belirlenmesine yönelik hızlı bir identifikasyon yöntemi ve bu yönteme dayalı besiyeridir. Kromojenik substrat besiyeri bileşimine dahil edilmiştir. İdentifikasyon, karakteristik koloni rengi ile bir anlamda tamamlanır. Renk bir kaç gün stabil kalır, pH 'dan sıcaklıktan ve ışıktan etkilenmez. Renk, besiyerine difüze olmadığı için yüksek sayıda koloni varlığında dahi tek koloni izolasyonu mümkündür.Besiyeri formülasyonu içinde yer alan seçilmiş peptonlar, pyruvate ve fosfat tampon aşırı hasar görmüş koliformlar için gelişme ortamı sağlar. Lauryl sulphate koliform bakteriler için bir olumsuzluk yaratmazken Gram pozitif bakterilerin gelişimini önemli ölçüde inhibe eder.Koliform grubu bakteriler için karakteristik olan ß-D-galactosidase enzimi kromojenik bir substrat olan Salmon-GAL ile, E. coli için karakteristik olan ß-D-glucuronidase enzimi ise yine kromojenik bir substrat olan X-glucuronide ile belirlenir.35-37 oC 'da 24-48 saat inkübasyon sonunda koyu mavi-menekşe renkli koloniler üzerine Kovac's çözeltici damlatılarak indol reaksiyonu belirlenebilir. Bu besiyerinde gelişen bakterilerin kültürel özellikleri aşağıdaki gibidir.Salmon X-Bakteri Koloni rengi -GAL Glucuronide IndolE. coli koyu mavi/menekşe + + + Citrobacter freundii kırmızı + - -Klebsiella pneumoniae kırmızı + - -Enterobacter cloacae kırmızı + - -Salmonella enteritidis renksiz - - -Shigella flexneri renksiz - - -

http://www.biyologlar.com/e-coli-besiyerleri

Alabalık Hastalıkları

Balık hastalıklarının teşhisi özel bir bilgi ister. Hastalık çıktığında konu üzerinde tecrübeli bir veteriner çağırılması en doğru davranış olur. Üreticiler bakımından hastalıkların çıkmasını önleyici koruyucu tedbirlerin önceden ele alınması ve düşünülmesi temel sağlık prensibi olmalıdır. Hastalıklardan korunmak için iyi, düzenli ve dengeli bir besleme, balıkları normalden fazla sık bulundurmama, su olanaklarının devamlı şekilde yeterli olmasının sağlanması, diğer işletmelerden balık satın alındığında karantina da tutularak hastalık getirmelerinin engellenmesi gibi bir çok konuda tedbirli olmak gerekir Solungaç Hastalığı: Solungaçlar şişmiş ve üzerleri mukoza ile kaplanmıştır ileri dönemde hastalıklı yerler kanar ve ağız etrafı yaralar ile kaplanır Balıkların hareketi azalmıştır, yem almak istemezler Solungaçlar soluklaşmıştır. Daha çok küçük yavru balıklarda görülen ve tahripkâr olabilen bir hastalıktır. Tedavi için, 1/200'lük bakır sülfat eriyiğinde 2 dakikalık daldırma banyosu, 1/15000 oranındaki malahit yeşilinde 2 saniyelik daldırma banyosu ve 100 kg. balık için günlük yeme 2 gr. sülfamerazin katılarak balıkların bir hafta süreyle yemlenmesi önerilmektedir Vibriosis: Vücut üzerinde iç kısmı irin ile dolu şişkinlikler belirir Yüzgeç bağlantılarında kan birikimleri görülür. Anüs çıkıntılı bir durum alır ve gözlerde patlak durumundaki şişkinlikler görülebilir. Vücudun genel renginde bir kararma izlenir. İç organlarda ise dalağın şiştiği, böbreğin erimeye başladığı ve sindirim organlarının sarımsı bir mukoza ile kaplandığı görülür. Balık yemlerine binde 3 terramisin veya %02 furazolidone katılarak bir haftalık yemleme önerilmektedir. Kostiasis:Bir parazit hastalığıdır. Vücut ve yüzgeçlerde pas renginde lekeler görülmesi ile anlaşılır. Malahit yeşili banyosu veya formaldehit banyosu (l/500'lük) önerilir. İchthyaphthiriasis hastalığı:Balıklarda parlaklık artmıştır. Vücut üzerinde beyaz küçük kesecikler görülür. Solungaçlarda da yığıntı şeklinde beyazlıklar belirir. 1/4000 oranındaki formaldehit eriyiğinde 1-2 saatlik banyo önerilmektedir. Devamlı temizlik, ölü balıkların hemen atılması, havuz değiştirilerek balıkların bol su akıntılı diğer bir havuza alınması tedaviyi hızlaştıncı etkilerde bulunabilir. Oktomitus:Sindirim organlarında görülen bir hastalıktır. Balıklar aşırı zayıflar ve çoğunlukla ishal görülür. Bazı vücut bölgelerinde deri üzerinin siyahlaştığı izlenir. Kesin teşhis mikroskop kontrolü ile yapılır. Yemlere %02 oranında fumagill'in veya %02 Carborsane karıştırılması bildirilmektedir. Dönme hastalığı (Whirling):özellikle küçük yavrularda görülür. Hasta balıklar kendi kendilerine oldukları yerde dönerler. Bu balıklar veya hastalık görülen havuzda yavru sayısı az ise balıkların tümünün imha edilmesi bile düşünülmelidir. Viral septisemi:Bir yaşını aşmış balıklarda görülen bu hastalığın kesin tedavisi bilinmemektedir. Hasta balıklarda vücudun siyahlaştığı ve gözlerin dışarı fırladığı görülür. Daha sonra balık su da daireler çizerek yüzer ve zayıfladığı izlenir. Troid tümörleri:Balıklarda troid bezlerinin şişmesinin izlenmesi ile.teşhis edilir. Yemlere iyotlu tuz katılması yolu ile iyot eksikliğinden ileri gelen bu hastalık önlenebilir. Diğerleri:Balık hastalıkları çok geniş konuları kapsamaktadır, özellikle yemlerin kalitesinin düşük olması bir çok hastalıklara neden olabilmektedir. Bu nedenle kaliteli yem kullanmak ve temiz bir yetiştirme ortamı sağlıklı bir üretim için temel şartlardır. Rasyonlarda protein oranının düşük olması çeşitli solungaç hastalıkları ve sindirim bozukluklarına neden olabilir. Bozuk yemler ile hazırlanmış rasyonlar karaciğerlerde beklenmeyen arazlara neden olabilmektedir. Beslenme yetersizlikleri anemi ve zayıflama hastalıklarının başlıca amili olabilir. Mineral ve vitamin eksikliklerinin yapacağı bir çok arazlar çoğu kez bilinmeyen hastalıklar görünümünü yaratabilir. Çünkü her türlü vitamin noksanlığının kendine göre vücutta meydana getirdiği zararlar mevcuttur. Aşırı yağlı yemler ile beslenme karaciğerlerde yağlanmaya neden olabilir ve kısırlık meydana getirebilir. Küflü yemler visceral granuloma adı verilen ve böbreğin şişmesi ve açık gri renkli modüllerin böbrekte oluşmasına neden olan hastalık amili olabilmektedir. Uzun süren açlık zayıflama ve neticede ölüme varan sonuçlara götürebilir. Suya karışacak deterjanlar ve diğer artık maddelerinde sağlık ve hastalıklar üzerinde çok önemli etkileri vardır. Hastalıkların önlenmesinde kullanılan formol, metilen mavisi, malahit yeşili gibi maddelerinde normal dozlardan fazla kullanılması ve suya karışması da çok tehlikeli ve toplu ölümlere neden olabileceği unutulmamalıdır. Kireç, çimento ve boya artıkları, oksijen yetersizliği, suyun sertliğinde ani artış veya eksilişler, pH durumundaki kritik değişmeler gibi bir çok konularda hastalık ve ölüm nedeni olabilir. Sonuç olarak çevre koşullarının en iyi düzeyde tutulması, yemlemenin çok iyi planlanması ve balık sıklığının iyi düzenlenerek gerekli oksijeni devamlı sağlayacak temiz suyun kesintisiz havuzlara verilebilmesi, hastalıkları tedavi etme yerine gerekli korunmaların düzenlenmesi ile başarılı bir yetiştiriciliğin mümkün kılınabileceği hiç bir zaman unutulmamalıdır. KAYNAK;www.tarimsal.com/alabalik.htm

http://www.biyologlar.com/alabalik-hastaliklari

ARITMA TESİSLERİ VE PROTOZOA

Çalışma metodları birbirinden farklı olsa da arıtma tesislerinin tamamı çeşitli protozoon gruplarını barındırır (Çizelge 1). Biyolojik unsurlar organik madde üzerinden beslenerek organik maddenin topaklaşmasını ve çökmesini sağlarlar. Bakteri bu maddelerin sıvı fazdan uzaklaştırılmasında rol alan en etkin organizma grubunu oluştur. Protozoonlar, atık su arıtma sistemlerinde biyolojik parçalanmadan sorumlu bakteriler üzerinden beslendiklerinden dolayı, önceleri sistem için zararlı organizmalar oldukları düşünülmekteydi. Fakat daha sonraları yapılan çalışmalar protozoal predasyonun bakteriyel aktiviteyi teşvik ettiği ve dolayısıyla mikrobiyal parçalanma hızını artırdığı sonucunu ortaya çıkarmıştır. Günümüzde aktif çamur sistemlerinde, protozoonların çıkış suyu kalitesi üzerinde hayati öneme sahip organizmalar oldukları bütün otoriteler tarafından kabul edilen bir gerçektir [5, 12, 24]. Aktif çamur sistemi ile çalışan arıtma tesislerinde protozoonların rolünü belirlemek amacıyla çeşitli çalışmalar yürütülmüştür [5, 32, 33]. Bu çalışmalarda laboratuvar koşullarında geliştirilen arıtma modelleri protozoonlu ve protozoonsuz olarak çalıştırılmış, çıkış suları analiz edilmiştir. Protozoonsuz olarak çalışan arıtma modellerinin tamamında düşük kaliteli, protozoonlu çalışanların ise daha yüksek kaliteli çıkış suları ürettikleri görülmüştür (Şekil 7). Daha sonra protozoonsuz çalışan ünitelere aktif çamur protozoonları aşılandığında çıkış suyu kalitesinde önemli iyileşmelerin olduğu gösterilmiştir. Şekil 7. Protozoonlu ve protozoonsuz çalışan aktif çamur arıtma modellerinin çıkış suyu parametrelerinin karşılaştırılması (Curds, 1992’den). Protzoonların bakteri predasyonu, mikrobiyal aktiviteyi uyardığı gibi aşırı bakteriyel üremeyi kontrol ederek, çıkış suyundaki bakteri süsbansiyonunun azaltılması açısından da önem arz ederler. Protozoonlar genel olarak bakterileri besin olarak kullanmakla birlikte bazı türleri ortamda bulunan çözünmüş ve partiküler organik maddeleri de tüketerek arıtım sürecine doğrudan katılırlar. Ayrıca kesin veriler olmamakla birlikte, protozoonların sil ve kamçı hareketleri mikrosirkülasyon sağlayarak bakterilerin organik maddeyi kullanmalarına katkıda bulunduklarına dair görüşler de mevcuttur KAYNAKLAR [1] Corliss, JO. 2000. Biodiversity, Classification, and Numbers of Species of Protists. In: Nature and Human Society: The Quest Sustainable World (ed. PH. Raven, T. Williams ), pp.130-155, National Academy Press, Washington DC. [2] Foissner W, 1999. Soil Protozoa as Bioindikators: Pros and Cons, Methods, Diversity, Representattive Examples. Agriculture, Ecosystems and Environment, 74:95-112. [3] Fenchel T, 1987. Ecology of Protozoa. Science Tech. Inc., Wisconsin, U.S.A. [4] Anderson OR, 1988. Comparative Protozoology-Ecology, Physiology, Life History. Springer-Verlag, New York Inc. [5] Curds CR, 1992. Protozoa in the Water Industry. Cambridge University Pres, U.K. [6] Sudo R, 1984. Role and Function of Protozoa in the Biological Threatment of Polluted Waters. Advances in Biochemical Enginering/Biotechnology, 29:117-141. [7] Augustin H, Foissner W, 1992. Morphologie und Ökologie einiger Ciliaten (Protozoa: Ciliophora) aus dem Belebtschlamm. Arch. Protistenkd., 141:243-283. [8] Foissner W, Berger H, 1996. A User-Friendly Guide to the Ciliates (Protozoa, Ciliophora) Commonly Used by Hydrobiologists as Bioindicators in Rivers, Lakes and Waste Waters, with Notes on their Ecology. Freshwater Biology, 35:375-482. [9] Şenler NG, Bıyık H, Yıldız, İ. 1999. A Study of the Relationships Between Microfauna and Water Quality in Biological Sewage-Treatment Plant of Yüzüncü Yıl University in Van. Bio-Science Research Bulletin, 15:37-47. [10] Campell NA, Reece JB, Urry LA, Cain ML, Minorsky PV, Wasserman SA, Jackson RB, 2008. Biology. Pearson Education Inc., 8. Edition, San Francisco. [11] Atatür KA, Budak A, Göçmen B, 2003. Omurgasızlar Biyolojisi. Ege Üniversitesi Fen Fakültesi Kitaplar Serisi, N0: 187, İzmir. [12] Sleigh MA, 1989. Protozoa and Other Protists. Edward Arnold, New York, 342p. [13] Demirsoy A, Türkan İ, Gündüz E, 2004. Genel Biyoloji (Keton WT, Gould JL, Gould CG.’den çeviri). Palme Yayıncılık, Sıhhiye, Ankara. [14] Corliss JO, 1994. An Interim Utilitarian (“User-Friendly”) Hierarchial Classification and Characterization of the Protists. Acta Protozool. 33:1-51. [15] Lynn DH, Small EB, 2002. The Illustrated Guide to the Protozoa (ed. Lee JJ, Leedale GF, Bradbury P), 2. Edition. Allen Pres, Lawrence, Kansas. [16] Cavalier-Smith T, 2003. Protist Phylogeny and the High-Level Classification of Protozoa. Europ. J. Protistol., 39:338-348. [17] Finlay BJ, Esteban GF, 1998. Freshwater Protozoa: Biodiversity and Ecological Function. Biodiversity and Conservation, 7:1163-1186. [18] Fenchel T, Esteban F, Finlay BJ, 1997. Local Versus Global Diversity of Microorganisms: Cryptic Diversity of Ciliated Protozoa. Oikos, 80:220-225. [19] Finlay BJ, 1998. Global Diversity of Protozoa and Other Small Species. Int. J. Parasitol., 28:29-48. [20] Finlay BJ, 2002. Global Dispersal of Free-Living Microbial Eukaryote Species. Science, 296:1061-1063. [21] Finlay BJ, Fenchel T, 2004. Cosmopolitan Metapopulations of Free-Living Microbial Eukaryotes. Protist, 155:237-244. [22] Foissner W, 1999. Protist Diversity: Estimates of the Near-Imponderable. Protist, 150:363-368. [23] Foissner W, 1997. Global Soil Ciliate (Protozoa, Ciliophora) Diversity: A Probability-Based Approach Using Large Sample Collections From Africa, Australia and Antartica. Biodiversity and Conservation, 6:1627-1638. [24] Laybourn-Parry J, 1994. A Functional Biology of Free-Living Protozoa. London & Sydne,. UK, 218p. [25] Porter KG, Sherr EB, Pace M, Sanders MW, 1985. Protozoa in Planktonic Food Webs. J. Protozool., 32:409-415. [26] Pratt JR, Lang BZ, Kaesler RL, Cairns J, 1986. Effect of Seasonal Changes on Protozoans Inhabiting Artificial Substrates in a Small Pond. Arch. Protistenkd., 131:45-57. [27] Sherr EB, Sherr BF, 2002. Significance of Predation by Protists in Aquatic Microbial Food Webs. Antonie van Leeuwenhoek, 81: 293-308. [28] Patterson DJ, Hedley, S, 1992. Free Living Freshwater Protozoa. Wolfe Publishing Ltd., England. [29] Urawa S, Awakura T, 1994. Protozoa Diseases of Freshwater Fishes in Hokkaido. Sci. Rep., Hokkaido Fish Hatchery, 48:47-58. [30] Göçmen B. 2002. Genel Parazitoloji. Ege Üniversitesi Fen Fakültesi Kitaplar Serisi, No: 168, Ege Üniversitesi Basımevi, Bornova-İzmir. [31] Kim J-H, Hayward CJ, Joh S-J, Heo, G-J, 2002. Parasitic Infections in Live Tropical Fishes İmported to Korea. Diseases of Aquatic Organisms, 52:169-173. [33] Curds, CR, 1973. The Role of Protozoa in the Activated – Sludge Process, Amer. Zool., 13: 161-169. [34] Madoni, P., Davoli, D., Chierici, E. 1993. Comparative Analysis of the Activated Sludge Microfauna in Several Sewage Treatment Works, Wat. Res., 27(9): 1485-1491. Naciye Gülkız ŞENLER İsmail YILDIZ Yüzüncü Yıl Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 65080, Van, TÜRKİYE

http://www.biyologlar.com/aritma-tesisleri-ve-protozoa

Dipteraların Preparasyonu

Dipterlerin Preparasyonu Birçok çift kanatlı gruplarında genital organlar üzerine yapılan çalışmalar türleri güvenilir olarak tanımladığı için son derece cazip ve tamamıyla gerçektir. Bununla beraber bu genital yapıların karakterleri diğer yapısal karakterler gibi değişime maruz kaldığı için not edilmelidir. Ayrıca farklı yüzeylere sahip ve tanınması zor olan çok sayıda grubun veya oldukça birbirlerine benzeyen tür çiftlerinin ayırt edilmesindeki çıkış genital organlarına dayanır. Birçok durumda erkekler dişilere göre tanınma açısından daha iyi özellik gösterir. Birkaç grupta genel kuru numunelerde bazı genital yapı karakterleri farklılık gösterebilir (Asilidae, Empididae ve Dolichopodidae'nin bazı üyeleri) (Cyclorrhapha) özellikle iğneleme sırasında abdomenin üst bölgesinin çekilerek ayrıldığı zamanki durumlarda, özellikle araştırmacı tarafından az bilinen veya genel olarak az çalışılmış bir grupta sıklıkla genital organın preparatı hazırlanmalıdır. Preparat hazırlamak için genital organı çıkarma sırasında kırılma ve parçalanmayı önlemek açısından iğnelenmiş böcekler gece boyunca veya birkaç saat özel bir nemli odada bekletilmelidir. Bunlardan sonra Becker's pensinin yardımıyla veya daha büyük böceklerde normal penslerle uygun bir şekilde lam üzerine taşınır. Hiç kullanılmamış güvenli bir jilet parçası el altındaki tahta tutacağa yerleştirilir. Basit bir jiletten bunun gibi 4 tane microscalpels hazırlanır ve körelme gibi durumlarda destek çubuğuna uygun bir şekilde dikey olarak yerleştirilerek diğer microscalpels ile değiştirilebilir. Hypopyoium'un parçaları zarar görmeden karnın içinden alınsın diye genellikle abdomen yarısından az kısmı parçalara ayrılır. Cins ve familya halinde daha detaylı bir bilginin elde hazır olması için abdomenin daha küçük bir parçası kesilebilir. Orta büyüklükteki Dipterlerin preparatları binoküler mikroskop altında hazırlanabilir. Kesilen abdomen parçaları %5'lik KOH çözeltisinde veya genellikle yaklaşık 1 dk. Kaynatılmış %10-15'lik KOH çözeltisi içerisinde bir süre için (gece boyunca) korunur. Daha sonra KOH'ı uzaklaştırmak için soğuk veya sıcak suyla yıkanır. Preparatın KOH ile muamele süresi pratik deneyler tarafından tayin edilir ve böceğin boyutuna, sıcaklığa ve benzeri şeylere bağlıdır. Aşırıcı derecede uzun muamele yumuşak parçaları harap eder ve kitin veya kireçten yapılmış sert kabukları parçalar. Çünkü bu uzun muamele bu kısımların zarlarını yırtar. Böyle bir preparat ise çalışmak için uygun değildir. Yetersiz muamele ile yumuşak dokular bozulmadan kalır ve tetkiki engeller. Böyle bir durumda muamele tekrarlanabilir. Koyu, oldukça sert ve pigmentli türler H2O2 ile muamele edilebilir. Eğer böyle türler KOH içinde kalırsa pigmentleri kaybolur. Çalışmanın devamında yumuşak formların (2.0mm ve daha küçük) genital organları veya nispeten düz, yassı genital organlara sahip formlar Kanada balsamında kalıcı slaytları hazırlanır. Normal slaytlar kullanılabilir. Fakat kalın photofilmlerin şeffaf lamlarından daha küçük slaytlar hazırlamak daha uygundur ve lamlar üzerindeki bu slaytlar üzerine lameller kapatılır. Böyle preparatlar aynı kağıt üzerine ayrı ayrı numuler halinde sabit bir şekilde yerleştirilebilir. Çalışma sırasında geçici slaytlı ve abdomenin uç bölgesine ait daha büyük örnekleri KOH muamelesi ve yıkamadan sonra çalışmada uygunluk için ince sivri uçlu aletle farklı pozisyonlarda çevrilerek ve düzeltilerek gliserol içindeki oyuk blok veya depressionlu bir slayt üzerine yerleştirilir. (Örneğin, bir küçük iğnenin tahta kutu şeklindeki çubuğa yerleştirilmesi gibi) Böyle preparatlar kuru olarak kalması için küçük bir tüp içinde 1/3'lük gliserol karışımı, 1/3'lük alkol (%96) ve 1/3'lük su karışımları karıştırılarak birkaç yıl için saklanabilir. Bunun gibi tüpler o numunenin numarasına tekabül edecek şekilde veya numunenin kendisinin altındaki pozisyonda numaralandırılarak özel kutular içinde ayrı ayrı saklanır. Bunlardan sonraki durumda sadece küçük tüpler kullanılır. (Örneğin, 12-15mm uzunluğunda) Özetle genital preparasyon aşağıdaki aşamaları içerir: Genital segmentler kesilerek küçük bir cam tüp içine yerleştirilir. Tüp içine % 10'luk KOH çözeltisi ilave edilir. Tüp, birkaç dakika kaynamış su içeren daha büyük bir kap içine yerleştirilir. Tüp kaptan dışarı çıkarılır ve genital segmentler 1 kez saf su ile ve 2 kez % 70 alkol yıkanır. Daha sonra çalışılmak üzere genital, alkol veya gliserin içine konur. Depolama için genital birkaç damla gliserin polyeten mikrovial içerisine yerleştirilirilerek genital segmentlerin kesildiği örnekle birlikte iğnelenir.

http://www.biyologlar.com/dipteralarin-preparasyonu

 
3WTURK CMS v6.03WTURK CMS v6.0