Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 2777 kayıt bulundu.

Bilim, İnanç ve Eğitim

Bilim müfredatında herhangi bir tür yaratılışcılığın bulunmasına karşı çıkan biyologlar ve diğerleri ifade özgürlüğüne karşı değillerdir ve dinsel inancı ortadan kaldırmaya çalışmıyorlar.Onlar yaratılış öykülerinin sadece tarih ya da çağdaş toplum gibi derslerinde öğretilmesini kabul edilebilir bulsalar da bu inançların geçerli bilimsel hipotezler olmadığını bilim derslerinde yeri olmadığını savunmaktadır.Malesef,bilim dersleri almış olsalarda çoğu insanın bilimin ne olduğu ve nasıl işlediğine dair anlayışı çok sınırlıdır.Oysaki evrim yaratılış tartışmasında tam da bu anlayışın çok önemli bir yeri vardır.Popüler inancın aksine,bilim bir olgular toplamı değil doğal fenomenler hakkında bir anlayış edinim sürecidir.Bu süreç,hipotezlerin öne sürüldüğü ve gözlemsel ve deneysel kanıtlarla test edildiği bir süreçtir.Hipotezlerin kanıtlanması gibi konuşmaların aksine bilimcilerin çoğu hipotezlerin mutlak anlamda kanıtlanamayacağı konusunda bilim felsefecileriyle aynı görüştedir.Diğer bir deyişle,bilimciler matematikte olduğu gibi mutlak ve garantili bir kanıt elde edemez.Daha ziyade,var olan verileri o anda en iyi açıklayan hipotez geçici olarak kabul edilir çünkü bu hipotezin değişebileceği,genişleyebileceği ya da yeterli kanıt bulursa ya da henüz düşünülmemiş daha iyi bir hipotez kurgulanabilirse reddedilebileceği görüşü bilimciler arasında egemen görüştür.Bazen gerçekten de tamamen yeni bir paradigma eskisinin yerini alır;mesala 1950 lerde levha tektoniği kıtaların yerlerinin sabit olduğu inancının yerini alarak jeolojide devrim yapmıştır.Daha sık rastlanan ise eski hipotezlerin zaman içinde kademeli bir şekilde değişmesi ve genişlemesidir.Söz gelimi modern genetiğe yol açan Mendelin ayrışım ve bağımsız ayrılma yasaları,bağlantı ve indirgemeli bölünme itkisi (meiotic drive) gibi olaylar keşfedildiğinde değiştirilmiş ama parçacıklara(genler) bağlı kalıtımın altında yatan ilke bugün de geçerliliğini korumaktadır. Bu süreç bilimin en önemli ve değerli özelliklerinden birini yansıtmaktadır:eğer bireysel olarak bilimciler bir hipoteze inanıyor olsalar bile bir grup olarak bilim insanları değiştirilemez bir biçimde kendilerini hiçbir inanca adamayacak ve ikna edici aksine aksine kanıtlar olduğunda bu hipoteze olan inançlarını sürdürmeyeceklerdir.Eğer kanıtlar aksini gösterirse düşüncelerini değiştirmek zorundadırlar ve değiştirirler.Gerçekten de, bilim yerleşik düşüncelerdeki küçük zayıflıkların araştırılmasından oluşmaktadır ve bir bilim insanının şöhretine önemli bir hipotezin yetersiz ya da hatalı olduğunu göstermekten daha fazla katkıda bulunabilecek başarı türü sadece birkaç tanedir.Bu nedenle bilim sosyal bir süreç olarak bir denemedir;inanç ve otoriteyi sorgular ;öne sürülen görüşleri kanıtlar aracılığıyla sürekli bir şekilde test eder.Bilimsel iddialar gerçektende doğal bir seçilim sürecinin ürünleridir çünkü düşünceler (ve bilimciler) birbirleriyle yarış halindedir ve böylece bir bilim alanındaki düşüncelerin toplamı açıklama içeriği ve gücü bakımından sürekli büyür(Hull , 1988). Bilim bu açıdan iddialarını test etmek için kanıtlara başvurmayan,belli inançlara,deney ve gözleme dayanmayan bağlılıklarını sarsmak için kanıtlara izin vermeyen ve doğal dünyayı açıklama kapasitesi artmayan yaratılışçılıktan ayrılır. Bu nasıl olabilir ? Bir akıllı tasarım,yandaşının şöyle dediğini kabul edelim : çok hücreli canlılar tek hücreli canlılarla karşılaştırıldığında o kadar karmaşıktır ki bunlar mutlaka zeki bir tasarımcının müdahalesi sonucu ortaya çıkmıştır.Eğer bu akıllı tasarım yandaşı dünya dışı varlıkların bu işten sorumlu olduğunu iddia etmiyorsa,bu tasarımcı maddi bir varlık değil doğa üstü bir varlık olmak zorundadır. Bu durumda ,bu tasarımcı nedir,canlıları yeni özelliklerle nasıl donattı,bunu yapması ne kadar zaman aldı ve bunu neden yaptı ? Doğa bilimleri en azından bu tür sorulara yanıt vermeyi hayal edebilir (söz gelimi filogenetik aratürleri araştırabiliriz,ilinti özellik farklılıklarını şifreleyecek genlerdeki farklılıkları analiz edebilir,taşıl arayabilir,çok hücreliliğin seçim açısından yararı hakkında deney yapabiliriz).Fakat AT hipotezi bu tür araştırma fikirleri ortaya koyamaz. Bilimsel araştırma,deneysel ve gözlemsel verilere dayanarak hipotezleri sınamanın bir yolunu bildiğimizi şart koşar.Bilimsel hipotezlerin en önemli özelliği onların en azından ilkece-test edilebilir olmasıdır.Bazen bir hipotezi doğrudan gözlemle sınayabiliriz,fakat çoğu zaman bir süreci ya da nedeni doğrudan göremeyiz.(örneğin,elektronlar,atomlar,hidrojen bağları,moleküller ve genler doğrudan gözlemlenebilir değildir ve DNA kopyalaması sırasında bir mutasyonun oluşumunu seyredemeyiz).Bu tür süreçleri gözlem ya da deneylerin sonuçlarını çekişen hipotezlerce ortaya atılmış kestirimlerle (prediction) karşılaştırarak çıkarsarız.Bu tür çıkarımlar yapabilmek için,bu süreçlerin doğa yasalarına belli koşullar geçerliyken belli tür olayların daima meydana geleceğini belirten ifadeler uyduğunu kabul etmek zorundayız.Diğer bir deyişle bilim (fizik ve kimya yasalarında örneğini gördüğümüz gibi) doğal fenomenlerin tutarlılığına ya da (en azından istatiksel olarak) kestirebilirliğine dayanır.Doğa üstü olay ya da varlıkların kabulü , doğa yasalarının varlığını askıya aldığı ya da ihlal ettiği için bilim bunlar hakkında çıkarımda bulunamaz ve daha doğrusu bu tür varlık ve olayları kabul eden hipotezlerin geçerliliğini sınayamaz. Dinin doğal olaylar hakkında bilimsel,mekanistik bir açıklama sağlayamaması gibi,biliminde doğal fenomenler hakkında olmayan sorulara yanıt veremeyeceğini anlamak önemlidir.Bilimin bize neyi güzel ya da çirkin , iyi ya da kötü,ahlaka uygun ya da ahlak dışı olduğunu söyleyemez.Bilim bize yaşamın anlamının ne olduğunu ve doğa üstü bir varlık olup olmadığını da söyleyemez(bkz. Gould 1999;Pigluicci 2002). Bilim insanları dünya çapında bir tufanın varlığını ya da dünyanın tüm canlıların yaşının 10.000 yıldan daha az olduğu gibi bazı özel yaratılışçı savları sınayıp yanlışlayabilir ama bilimciler tanrının var olduğunu ya da tanrının herhangi bir şeyi yarattığı gibi hipotezleri sınayamazlar çünkü bu tür hipotezlerin ne gibi oluşumları kestirebileceğini bilemeyiz.(Bu doğaüstü olanıklılıkları kesin olarak yanlışlayabilecek bir gözlem düşünmeye çalışın).Bu nedenle bilim,doğal dünya hakkında açıklamayı arzu ettiğimiz her şeyden doğal nedenlerin sorumlu olduğunu kabul etmek zorundadır.Bu zorunlu olarak METAFİZİK DOĞACILIK her şeyin gerçekten doğa üstü değil doğal nedeni olduğu ön kabulü görüşünü kabul ettiğimiz anlamına gelmez ,sadece YÖNTEMSEL DOĞACILIK bilimsel açıklamalar aradığımızda sadece doğal nedenleri dikkate almamızı söyleyen işlevsel ilke görüşünü kabul etmeyi gerektirir.Yaratılışcılığın temel iddiası olan biyolojik çeşitlilik doğa üstü güçlerin bir sonucudur iddiası ise sınanamaz. Bu akıllı tasarım kuramı içinde aynı şekilde doğrudur.Bu kuram bilimin yöntemleri ile değerlendirilemez. Hipotez,kuram ve olgu gibi terimleri kullandığımız için bunların ne anlama geldiğini anlamamız zorunludur.Hipotez bir önerme,bir kabuldür.1944den önce,çok az kanıtın desteklediği genetik maddenin DNA olduğu düşüncesi makul bir hipotezdi.1944den bugüne,destekleyen kanıtlar arttıkça bu hipotez giderek daha da güçlendi.Bugün bu görüşü bir olgu olarak kabul ediyoruz.Basit bir şekilde söyleyecek olursak,olgu kanıtlarla çok fazla desteklenerek artık doğruymuş gibi kabul etmemizde hiçbir sakıncası olmayan bir hipotezdir.Diğer bir deyişle,neredeyse hiçbir kuşkuya yer vermeyecek şekilde doğru olduğu kanıtlanmıştır.Ama sadece neredeyse. Yoksa akla gelebilecek herhangi bir kuşkuya yer vermeyecek şekilde kanıtlanmış değildir. Bilimde kullanıldığı biçimde kuram(teori) ise , desteklenmeyen bir spekülasyon ya da (popüler kullanıldığı biçimde) bir hipotez değildir. Tersine,bir kuram diğer düşünceleri ve hipotezleri kapsayan ve onları bağdaşık bir doku şeklinde ören büyük bir düşüncedir.Kuram,olgun,akıl yürütme ve çok çeşitli gözlemleri açıklayan kanıtlara dayalı birbiriyle bağlantılı bir tümceler bütünüdür.Oxford English Dictionary tarafından verilen tanımlardan biri şudur : bir grup düşünce ya da olayın açıklamasını sağlayan düşünce ve ifadeler bütünü;bilinen ya da gözlenen bir şeyin genel yasaları,ilkeleri ya da nedenleri olarak bilinen bir anlatım. Böylece atom kuramı,kuantum kuramı ve levha tektoniği kuramı sadece spekülasyon ya da fikirler değil,çok çeşitli kuralları açıklayan ve kuvvetli bir şekilde desteklenen düşüncelerdir. Biyolojide birkaç kuram vardır ve kesinlikle evrim bunlardan en önemli olanıdır. Bu durumda evrim bir olgu mudur yoksa kuram mı ? Bu tanımların ışığı altında evrim bilimsel bir olgudur.Diğer bir deyişle,ortak atalardan değişim yoluyla tüm türlerin türeyişi 150 yılda çok sayıda kanıtla desteklenmiş ve tüm testleri başarıyla geçmiş bir hipotezdir,yani bir olgudur.Fakat evrimsel değişimin tarihçesi,canlıların geçirdiği(mutasyon,seçilim,genetik sürüklenme,gelişimsel sınırlamalar vb. hakkındaki) çeşitli değişimleri açıklayabilen bir ifadeler bütünü olan evrim kuramı tarafından açıklanır. Canlıların çeşitliliği ve özellikleri için sunulan yaratılışcı açıklamalar bilimin yöntemleri ile değerlendirilemeyeceğinden bu görüşe bilim sınıflarında eşit süre verilmemelidir.Ayrıca bilimsel olmayan ya da yanlışlığı gösterilmiş olan hipotezlere de eşit süre verilmemelidir.Kimya öğretmenleri simya kurşun gibi bir elementin büyü yoluyla altın gibi başka bir elemente dönüştürülebileceği hakkındaki eski bir düşünce öğretmez ve öğretmemelidir ; yerbilimleri sınıfları Yerkürenin düz olduğu hipotezinden bile söz etmemelidirler;tarih ve psikoloji öğretmenleri tarihsel olayları ya da kişilik özelliklerini açıklayan astrolojiyi dikkate almamalıdır her e kadar bu tür bilim dışı düşüncelere inanan insanlar varsa da.İdeal demokrasi bazen yanlış olan ve tamamen pratik nedenlerle bu şekilde anlamamızın zorunlu olduğu düşünceleri kapsayacak kadar genişletilemez.Günlük hayatta,doğa üstü değil doğal açıklamaları benimser onlara göre yaşarız.1962de Massachussets eyaletinin Salem kasabasında insanları cadılıktan mahkum etmiş Püritanlardan farklı olarak biz,artık bir kişinin cadının büyüsünden etkileneceği ya da şeytani güçlerce ele geçirebileceği düşüncelerini ciddiye almayız. Bir suçlu Şeytan benim bunları yapmama neden oldu diyerek serbest kalabilseydi bu bizi çileden çıkarırdı.Kaderinin tanrı tarafından belirlendiğine canı gönülden inanmış birisi bile uçağın motorları çalışmasaydı paniğe kapılırdı.Bilimsel açıklamalara bağlı yaşıyoruz ve bilimin kendisini kanıtlamış olduğunu biliyoruz-çükü bilim işe yarar. ALINTI KAYNAĞI : PALME YAYINCILIK 1.BASKI Evrim Douglas J.Futuyma Çeviri Editörleri : Prof.Dr.AYKUT KENCE Prof.Dr.A.NİHAT BOZCUK Bölüm : 22 Sayfa 525 526 - 527 Gönderi:Onur Doğan  

http://www.biyologlar.com/bilim-inanc-ve-egitim

Endosporlar

Endosporlar

Endospor, bir bakterinin uygun olmayan koşullar altında sitoplazma yüzeyini minimuma indirerek metabolizmasını en düşük halde çalıştırmasıyla ortamın dış etkilerinden korunması amaçlı olarak aldığı haldir.

http://www.biyologlar.com/endosporlar

TUNDRA

Kutuplarda, toprakları sürekli don olan dağların yüksek kesimlerinde ve yaz aylarında kısa bir vejetasyon dönemine sahip olan bölgelerde görülür. Sıcaklık 0°C'lik bir izoterm gösterir; arktik yani alpinik vejetasyon (likenler, yosunlar ve bodur çalılıklar) yaygındır; ağaçlar sürekli büyüme yeteneğini yitirmişlerdir. Soğuk ve berrak sular, bu donmuş topraklarda derinlere süzülüp akamadıklarından, gölet, turba ve bataklıklar oluştururlar. Aşırı iklim şartları (biyosönötiğin ikinci kuralına göre) tür bakımından fakir kommünitelerin oluşumuna neden olur. Öncelikle Avrupa, Asya ve Kuzey Amerika'nın kuzey kıyılarını içine alan arktik tundralarda, ren geyikleri (Rangifer), kutup tilkisi (Alopex lagopus), kartavşanları ya da kutuptavşanları (Lepus timidus ve Lepus articus), misköküzü (Ovibos, bugün sadece Grönland'da yaşar), lemmingler (Lemmus) ve birkaç tür kazıcı fare gibi az sayıda memeli hayvan türü bulunmaktadır. Bunlara kıtaların buzul kenarındaki kutupayıları (Thalarctos) ve arktik deniz memelileri de dahildir. Tundralar, kuş ve böcek faunası bakımından da fakirdir. Bu hayvanların tipik özellikleri, soğuğa dayanıklılık, yaz döneminde gece ve gündüz işlerliği, vücut renklerinin açık renkli olması olarak sayılabilir. Arktik ve antarktik tundralarla karşılaştırılabilen yüksek dağ biyotopları "Oreal", alpinik bir formasyon olarak ağaç sınırının üst yarısında görülür. Ada biçimindeki bu küçük bölgelerin özel memeli faunası oluşmamış; fakat tundralardaki gibi tipik kuşlar ve böcekler meydana gelmiştir. Özellikle ülkemizin yüksek dağlarında tipik bir böcek faunasına rastlanır. Tundralar, özünde bir buzul relikti olan ekosistemlerdir. Buzul dönemlerde, tundralar önemli ölçüde genişlemiştir. Bu genişleme sırasında faunanın bir kısmının (örneğin mamut ve yünlü gergedanların) soyu tükenmiş, diğer türler de (misköküzü, rengeyikleri ve kutupayısı) iyice azalmıştır. Yaşamaya uygun olmayan aşırı iklim koşulları, kommünitenin az sayıda üyesine ve özellikle insan müdahalesine karşı büyük ölçüde duyarlı olan canlılara etkili olmuştur. Sivrisineklerin çok büyük miktarlarda bulunması tundralar içinde tipiktir. Çünkü larvalar için çok sayıda uygun su birikintileri bulunur. Ancak buralarda sivrisineklerin kan emmesi (dişilerin) ve bununla ilişkili olarak bitki özsuyu (erkek) ile beslenme zorunluluğu, sınırlayıcı bir durum oluşturur.

http://www.biyologlar.com/tundra

Kompakt Kemik Dokusu ve Yapısı

Kompakt bir kemiğin (örneğin femurun diyafizi) mikroskobik incelemesinde dokunun ha-vers kanalları etrafında 3-7 µm kalınlıktaki lamellerden, hücrelerden ve sert bir matriks-ten oluştuğu görülür. Düzgün ve boşluk içermeyen bir tertiplemede olan kompakt kemikteki os-teoplastlar (laküna) dallıdır ve kanalikül adını da alır. İçine ise osteositler (kemik hücre-leri) yerleşmiştir. Kompakt kemiklerdeki bu kanaliküller her bir lamelde birçok sayıda oldu-ğundan ait olduğu Havers sisteminin en içinden en dış lameline kadar temas kurarlar. Böylecedokuda bir ağ oluşturarak metabolizmanın olaylanmasını sağlarlar. Lamellerin sayısı 4 ile 20arasında değişmektedir (Şekil 7.1). Özellikle enine yapılmış bir kemik kesitinde bu Havers sis-temi konsetrik tertiplenmiş halkalar şeklinde ortaya çıkar. Dokunun incelenmesinde lamel sis-temi şöyle sınıflandırılır:1. Havers Lamelleri2. Periyostun altında dış esas lameller3. Endosteum etrafındaki iç esas lameller4. Osteonların arasındaki ara lameller.Şekil 7.1: Kemik dokusundaki kanaliküller içinde osteositin yerleşimi Bir Havers kanalıyla onun etrafındaki lamellerin tümüne birden osteon adı verilir. Bir Ha-vers kanalı yan dallarla kemik iliği ve periyosteumla bağlantı kurar. Bu yan dallara Volk-mann Kanallarıadıverilir. Haversteki damarlar longitudinal tertiplenmişolup yan dallarıyla dakomşu damarlarla temastadırlar. Havers kanalı 20-100 µm çapındadır ve 1-2 adet damariçerir. Damarlar genellikle kapiller, postkapiller venül veya seyrek olarak arteriol olabilir. Sert birmatrikse sahip olan kemik dokusunda diffüzyon olanağı olmadığından kanal ve kanaliküllerlekemiğin dışından içine kadar ilişki kurulur ve bu şekilde metabolizma için gerekli maddeler da-mar ve kanaliküllerle hücrelere kadar ulaşır. (Şekil 7.2)Şekil 7.2: Kompakt ve spongiyöz kemiğin şematik görünümü Periyosteum Bağ dokusundan yapılı olan bu tabaka eklem yüzeyleri hariç tüm kemiği dıştan çevreler. Peri-yosteumun; kemiğe desteklik yapmasında, beslenmesinde, gelişiminde (perikondral kemik-leşmeye bakınız) ve tamir olaylarında büyük önemi vardır. Yapısında kollajen ve elastik liflerbulunur. Ayrıca Sharpey lifleri adı verilen kollajenler de matriks içine doğru ilerleyerek pe-riyosteumu kemiğe bağlamaktadır. Bunlar dış esas lameller ile ara lamellere kadar uzanabi-lirler. Perikondriyum bol damar içerir ve 2 tabakası bulunur:a- Dış tabaka daha çok sıkı bağ dokusu yapısındadır.b- İç tabaka gevşek bağ dokusunda olup hücreden zengindir.Tabakaların her birinin ayrıfonksiyonlarıvardır. Dışkat, kollajen ve elastiklerden yapılıdır, me-tabolizmada rol alan damarları (aynı zamanda lenfatikleri) içerir. İç tabakanın hücreleri iseözellikle kemik yaralanmasında osteoblast haline dönüşerek yeni kemik dokuyu yapar veo bölgeyi onarırlar. Onarım sırasında osteoblastların epiteloid hücreler şeklinde tabakalaşmayaptığı gözlenir. Bu nedenle bu tabakaya osteojenik kat da denmektedir. Kemik onarımınakatılan bu hücreler normal koşullarda aktif değillerdir. Endosteum ; Bu tabaka kemik iliği kavitesini ve kompakt kemiğin kanal sistemlerini çevreleyen ince bir reti-küler bağ dokusudur ve periyosteumdan incedir. Bu tabakanın hem kemik doku hem de he-mopoetik (kan hücresi yapımı) hücreleri yapabilme özelliği vardır.Görüldüğü gibi kemiğin belirli boşluklarınıve yüzeyini kaplayan bu iki bağdokusu tabakasıçokönemli rolleri üstlenmiş olduğundan herhangi birisinin bozulması veya zedelenmesi durumun-da kemik için hayati önemi olan fonksiyonlar da olumsuz etkilenmektedir. Spongiyöz Kemik Dokusu (Trabeküllü Kemik); Kemiğin bu formu da kompakt kemiğe benzemekle beraber trabeküller lamelden yoksundur.Dolayısıyla histolojik preparasyonlarda enine kesitte sirküler lamel tertiplenmesi görülmez.Buna karşılık bol boşluklu veya trabeküller oluşan adeta petek gibi bir dokusu vardır. Bu boş-luklar kemik iliği ile doludur. Özellikle uzun kemiklerin epifizindeki spongiyöz doku basıncın ve-ya kuvvetin geldiği yönde düzenlenmiştir. Böylece yapıçok daha sağlam bir hale gelmektedir.

http://www.biyologlar.com/kompakt-kemik-dokusu-ve-yapisi

Bitki ve Hayvanların Teşhisi

Eğer elimizde ismi bilinmeyen bir canlı varsa, onu teşhis için önce o canlının özelliklerini belirlemek gerekir. Buna tanımlama denir. Yani canlının hangi yakın türlerle ilişkili olduğunu ve onlardan farkının belirtilmesi gerekir. Toplanan bir canlının tayin edilerek isminin belirlenmesi iki şekilde olur. 1. Flora ve Fauna kitaplarındaki tayin anahtarlarıyla. Coğrafik olarak sınırlandırılmış bitkilerin tümüne Flora, hayvanların tümüne ise fauna denir. Örneğin bir dağın, bir adanın bir ülkenin flora ve faunasından söz edebiliriz. Türkiye Florası, Sipil dağı (Manisa) Florası gibi. 2. Herbaryum (bitki kolleksiyonlarının saklandığı yer) ile hayvan kolleksiyonlarının saklandığı müzeler aracılığı ile. Buralardaki örneklerle elimizdeki örneği karşılaştırmak yoluyla teşhis yapılır. Eğer bu canlı türü flora ve fauna kitaplarında veya herbaryum ve müzelerde yoksa- teşhisi yapılamıyorsa, -ilk önce yakın ülke flora ve fauna kitaplarına bakılır. Burada da yoksa dünya fauna ve flora kitaplarına bakılır. Eğer bu bitki veya hayvan örneğinin teşhisi hiçbir şekilde yapılamıyorsa canlılar dünyası için YENİ TÜR yapılmasına karar verilir. Yeni türü yayınlama işlemi: 1. Yeni bir türü yayınlar iken latince tanımlama (deskripsiyon) yapılır. 2. Bu tanımlamada bitki yada hayvana ait ayırtedici morfolojik özellikler ve üzerinde çalışılmış ölçümler de verilebilir. 3. Sonra hangi türlerle akrabalık ilişkisi olduğu belirtilir. 4. Latince bu tanımdan sonra tanımın altına geçerli dillerden biri ile (İngilizce, Fransızca veya Almanca) tekrar yazılır. 5. Bilimsel dergilerde yayınlanır. 6. Böylece tüm dünya ve özellikle bilim dünyası yeni türden haberdar olur. Teşhis Anahtarları Teşhis, bir canlı örneğin, elimizde bulunan kolleksiyon ve kaynak (kitap, dergi) yardımıyla onun hangi taksonomik kategoriye örneğin hangi cins ve türe ait olduğunu bulmak demektir. Teşhis terimi “tanımak” veya “diagnosis” olarak da ifade edilebilir. Bunun için tüm taksonomik karakterler (morfolojik, sitolojik, moleküler, fizyolojik, ekolojik, coğrafik) önem durumuna göre ele alınıp örneğe uygulanır. Bu uygulamada başvurulan en önemli araç teşhis anahtarıdır. Teşhis anahtarı;“Teşhis için gerekli olan ayırt edici ve birleştirici karakterleri özel bir yol takip ederek gösterme aracıdır”. Anahtar varyete, alttür, tür, cins, altfamilya, familya ve diğer yüksek kategorilerin teşhisinde yardımcı olan bir araçtır. Anahtar yaparken teşhis karakterlerini iyi seçmek ve seçilen bu karakterleri anahtar içine usulüne uygun olarak yerleştirmek gerekir. Anahtar yapacak olan sistematikçi, teşhis için en önemli karakterleri seçmesini bilmeli ve bunların değişik olanlarını ele almalıdır. Araziden alınan canlıyı teşhis etme Yapılan arazi çalışması ile toplanan bireyler, usulsüne uygun şekilde müze (hayvan) yada herbaryum (bitki) örneği haline getirilir. Teşhis için bazı safhalar vardır. İlk önce teşhisi yapılacak olan örneklerin, hayvan ise; literatür bilgilerimize göre hangi yaş grubu veya gelişme dönemine ait bireylerle temsil edilmesi gereği, bitki ise; tüm bitki kısımlarını tam olarak gelişmiş (olgun) halde taşıyıp taşımadığının belirlenmesidir. Yani, teşhis bir hayvan larvasına göre yapılacak ise o türün larvasını toplayarak karşılaştırmalıyız. Bir ergin bireyi larva ile karşılaştırarak bir sonuca varamayız. Yada bitkide teşhis için mutlaka bulunması gereken çiçek, meyve, yaprak gibi kısımların bulunmaması halinde teşhis yapılamayabilir. Tüm bu şartlar sağlandıktan sonra; eğer bir hayvanı teşhis yapıyorsak, ilk olarak dış görünüşleri itibariyle bize göre aynı olan bireyleri ayıklayarak biraraya toplamalıyız. Burada hafif renk ve boy farklılıkları önemsiz görülebilir. Bu işlemin sonunda bazı gruplarımızın bir veya birkaç, bazılarının ise çok sayıda bireyle temsil edildiğini göreceğiz. Daha sonra gruplar içerisinde eşey ve yaş ayrımını yapmalıyız. Bazen aralarında bir karakterle ortaya çıkan normal olmayan bireyler bulunabilir. Bunları ayrı değerlendirmek gerekir. Sonuçta sıra, ayırabildiğimiz grupların hangi bilinen taksona ait olduğunun bulunmasına gelmiştir. Eğer bir bitkinin teşhisini yapıyorsak; herbaryum, flora kitapları, resimli kitaplar ve dergilerden yararlanırız. Bitkinin teşhis anahtarındaki karekterlere uyup uymamasına göre, takibi yapılarak hangi türe ait olduğu bulunur. Teşhisi yapılan bitkinin ait olduğu türünün (takson) doğru olup olmadığını karşılaştırmak için, herbaryum örnekleriyle resimli kitaplardan yararlanılabilir. Bunun için elimizde karşılaştırma materyali varsa ondan yararlanılır, yoksa veya yeterli değilse o zaman ait olduğunu tahmin ettiğimiz canlı grubuna ait sistematik yayınları toplayarak örneklerimizi bunların içinde bulmaya çalışırız. Böyle yayınlara dayanarak yapılacak teşhisler, o canlı grubuna ait düzenlenmiş teşhis anahtarları, bunlarla ilgili tamamlayıcı çizimler ve fotoğraflardan yararlanılarak gerçekleştirilir. Teşhiste örnekler, kısaca, daha önce taksonomik adları belirlenmiş bireylerle karşılaştırılarak ait oldukları takson tayın edilir. Teşhiste sorumluluk, onu yapan kişiye aittir. Bilimsel materyalleri teşhis edenler her örneğe, ait olduğu taksonun adını ve teşhisi yapan kişi olarak kendi adını, teşhis tarihini yazarak eklemelidirler. Canlıların teşhis işlemini yapan, bu konuyla uğraşan kişiler, bilim adamları arasında bile çok azdır. Ancak sistematik ve taksonomi hatta ekoloji ile ilgilenenlerin, teşhis işlemini de yapması şarttır. Ancak Biyolojinin diğer yan dallarıyla uğraşanların, çalıştıkları materyali teşhis ettirmeleri söz konusu olabilir. Sistematikçiler bu bakımdan biyolojinin diğer alanlarına bir anlamada servis hizmeti de sunarlar. Teşhis, eldeki örneğin literatürde mevcut yazılı veya şekil halindeki bilgilerle karşılaştırılmasıyla da gerçekleştirilebilir. Zaman zaman farklı sınıflandırmalar teşhis işlemini karmaşık bir hale sokar gibi görünürse de, farklı yöntemlerin, tartışılarak değerlendirilmesiyle zaman içerisinde en doğru olan sisteme ulaşılmasına katkısı büyüktür.

http://www.biyologlar.com/bitki-ve-hayvanlarin-teshisi

GÖLLER VE ÖZELLİKLERİ

Göl : Karalar üzerindeki çukur alanlarda birikmiş ve belirli bir akıntısı olmayan durgun su kütlelerine göl denir. Göller tek tek bulundukları gibi yan yana birden fazla da bulunabilirler. Göllerin yan yana bulundukları bölgelere göller yöresi denir. Göllerin Özellikleri Göllerin bulundukları bölgenin iklimi, jeolojik ve jeomorfolojik özellikleri; Gölün büyüklüğü : Dünya üzerindeki göllerin büyüklükleri değişkendir. Hazar Gölü Dünya’nın en büyük gölüdür. (424.000 km2) Gölün beslenmesi : Göller, yağış suları, akarsular ve kaynaklar tarafından beslenir.Göllerin su seviyeleri beslenmeye bağlı olarak değişir. Bazı göller fazla sularını bir akarsu ile deniz boşaltır. Bu akarsulara göl ayağı ya da gideğen denir. Göle su taşıyan akarsulara ise geleğen denir. Örneğin Manyas ve Ulubat (Apolyont) gölleri bir akarsu ile sularını Marmara Denizi’ne boşaltır. Gölün derinliği : Tektonik ve krater göllerinin derinlikleri genellikle fazladır. Dünya’nın en derin gölü tektonik bir göl olan Baykal Gölü’dür. Göl suyunun tuzluluğu : Göl sularının içinde çözünmüş halde madensel tuzlar bulunmaktadır. Buharlaşma nedeniyle göl suyunun tuz yoğunluğu artar. Özellikle kapalı havzalarda yüzeyden akış olmadığı için göl suları tuzludur. Örneğin ülkemizdeki Burdur Gölü ve Tuz Gölü’nün suları tuzludur. Açık havza göllerinde ise, sular yüzeyden boşaldığı için madensel tuz oranı düşük, buna bağlı olarak sular tatlıdır. Göl suyunun sıcaklığı : Göl suyunun sıcaklığı, gölün bulunduğu enleme, iklim koşullarına ve mevsime göre değişir. Ayrıca gölün derinliği, gölün bulunduğu yükselti ve gölü besleyen sular da göl suyunun sıcaklığı üzerinde etkilidir. Göl suyunun hareketliliği : Göl suyunun hareketliliği üç nedene bağlıdır : Gölün beslenmesine ve havzadaki iklim koşullarına bağlı oluşan seviye farkı nedeniyle su seviyesinde değişiklik olur. Göl yüzeyinde rüzgarlar etkisiyle dalgacıklar oluşur. Göl yüzeyinin bir bölümündeki basınç değişmeleri alçalma ve yükselme şeklindeki ritmik hareketlere neden olur. Bunlara duran dalga ya da seş (seiches) dalgaları denir. Göl Tipleri Göller, göl çanağının oluşum özelliklerine göre yerli kaya gölleri ve set gölleri olarak iki ana bölümde toplanır. Yerli Kaya Gölleri Göl çanağının çeşitli nedenlerle ana kaya üzerinde oluşturduğu göllerdir. Göl çanağını oluşturan etkene göre 4 gruba ayrılır. Tektonik Göller : Yerkabuğunun tektonik hareketleri sırasında oluşan çanaklardaki göllerdir. Volkanik Göller : Volkanik patlamalar ile oluşan çanaklardaki göllerdir. Krater gölü, kaldera gölü ya da maar gölü gibi çeşitleri vardır. Karstik Göller : Eriyebilen kayaçların bulunduğu yerlerde oluşan göllerdir. Buzul Gölleri : Buzullaşma döneminde buzulların aşındırmasıyla oluşan çanaklardaki göllerdir. Göl Tipleri Göller, göl çanağının oluşum özelliklerine göre yerli kaya gölleri ve set gölleri olarak iki ana bölümde toplanır. Set Gölleri Çöküntü çukurlarının, vadilerin ya da koyların önünün bir setle kapatılması sonucu oluşan göllerdir. Alüvyal Set Gölleri : Akarsuların yan kollarının taşıdıkları alüvyonlarla ana akarsuyun önünü kapatması ile oluşan göllerdir. Kıyı Set Gölleri : Deniz akıntılarının oluşturduğu kıyı kordonlarının koyların önünü kapatmasıyla oluşan sığ göllerdir. Bu göllere lagün adı da verilir. Moren Set Gölleri : Buzullardan çıkan suların önünün moren setleri ile kapatılması sonucu oluşan göllerdir. Heyelan Set Gölleri : Akarsu vadisinin önünün, toprak kayması sonucunda toprak kütlesi tarafından kapatılmasıyla oluşan göllerdir. Volkanik Set Gölleri : Volkanik olaylar sırasında çıkan lavların bir çukurluğun önünü kapatmasıyla oluşan göllerdir. Yapay Set Gölleri : Akarsu vadisinin önünün yapay bir setle kapatılması ile oluşan baraj gölleridir. Baraj gölleri enerji üretmek, içme ve sulama suyu sağlamak, erozyonu önlemek, taşkınlardan korunmak amacıyla yapılır. Türkiye’de Göller Ülkemizde göller, göl oluşumuna uygun koşulların bulunduğu Marmara, İç Anadolu, Doğu Anadolu ve Akdeniz Bölgesi’nde yoğunlaşmıştır. Özellikle Akdeniz Bölgesi’nin batı kesiminde, göllerin kümelenmiş olduğu bir alan bulunmaktadır. Buraya Göller Yöresi adı verilir. Göller Yöresi : Batı Toroslar’ın iç bölümünde kümelenen Beyşehir, Eğridir, Burdur, Suğla, Kovada, Acıgöl, Salda ve Yarışlı göllerinin bulunduğu alana göller yöresi adı verilir. Yerli Kaya Gölleri Tektonik Göller : Sapanca Gölü, İznik Gölü, Ulubat Gölü, Manyas Gölü, Eber Gölü, Akşehir Gölü, Eğirdir Gölü, Acıgöl, Burdur Gölü, Beyşehir Gölü, Kovada Gölü, Suğla Gölü, Seyfe Gölü, Tuzla Gölü, Tuz Gölü, Hozapin Gölü. Volkanik Göller : Acıgöl (Konya), Acıgöl (Nevşehir), Nemrut Gölü Karstik Göller : Sultan Obruk Gölü, Çıralıdeniz Gölü, Meyil Gölü, Pozan Gölü, Avlan Gölü, Karagöl. Buzul Gölleri : Uludağ, Geyik Dağları, Boklar Dağları, Aladağ, Munzur Dağları, Doğu Karadeniz Dağları, Cilo Dağları, Hakkari Dağları. Ülkemizde doğal setleşmelerle oluşan göller oldukça fazladır. Set Gölleri Alüvyal Set Gölleri : Akgöl, Eymir Gölü, Mogan Gölü, Marmara Gölü, Bafa Gölü, Köyceğiz Gölü, Balık Gölü. Kıyı Set Gölleri : Terkos, Büyükçekmece, Küçükçekmece, Büyük Menderes deltasındaki lagünler (Karinegölü, Deringöl, Akgöl, Dalyan), Kızılırmak deltasındaki lagünler (Balıkgölü, Limangölü, Tuzlugöl, Karaboğazgölü), Yeşilırmak deltasındaki lagünler (Semenlikgölü) Moren Set Gölleri : Uludağ, Geyik Dağları, Boklar Dağları, Aladağ, Munzur Dağları, Doğu Karadeniz Dağları, Cilo Dağı, Hakkari Dağları (Moren set gölleri ülkemizde buzullaşmanın görüldüğü yukarıda belirtilen yüksek dağlarımızda bulunurlar.) Heyelan Set Gölleri : Yedigöller, Abant Gölü, Borabay Gölü, Sera Gölü, Tortum Gölü Volkanik Set Gölleri : Çıldır Gölü, Erçek Gölü, Haçlı Gölü, Nazik Gölü, Van Gölü Yapay Set Gölleri : Kadıköy Gölü, Büyük Orhan Gölü, Güzelhisar Gölü, Topçam Gölü, Gülüç Gölü, Çubuk Gölü, Hirfanlı Gölü, Sille Gölü, Çakmak Gölü, Uzunlu Gölü, Keban Gölü, Kartalkaya Gölü, Kozan Gölü, Atatürk Gölü, Demirdöven Gölü, Göksu Gölü

http://www.biyologlar.com/goller-ve-ozellikleri-1

BİYOKRİMİNAL ENTOMOLOJİ

Böcekler çeşitli özellikleri nedeniyle cinayetlerin çözümüne katkıda bulunabilmektedirler; Cinayetlerin çözümüne nasıl yardım ettiklerinden önce böcekler dünyasına kısaca bir bakalım. Böcekler Dünya üzerinde yaşayan en kalabalık canlı grubunu oluşturmaktadır. Yaklaşık 1.5 milyon böcek türü Dünya’yı bizimle birlikte paylaşmaktadır. Kutuplar ve derin denizler hariç heryerde böcekleri görmek mümkündür. Dünya üzerinde insanlardan sonra en baskın canlı grubu olarak yeralmaktadırlar. Yeryüzündeki en başarılı canlı grubu böceklerdir çünkü: Çok küçük vücuda sahip olmaları Kanatlarının bulunması Larva veya ninfleri ile erginlerinin farklı besin maddeleri üzerinde beslenmeleri Çok sayıda yavru oluşturabilmeleri Kütikülaya sahip olmaları Hacimlerine göre yüzey alanlarının az oluşu Böcekler hemen heryerde yaşayabildiği gibi her türlü besinlede beslenebilmektedirler. Canlı bir bitkinin kök, gövde, dal, yaprak, meyva, tohum, ölü bir bitkinin tüm kısımları, depolanmış besinler, kıl ve ölmüş tüm hayvanlar ve insan üzerinde beslenebilmektedirler. Vücut üç bölümden oluşmaktadır. Baş, toraks ve abdomen. Vücudun her tarafını çok sert yapıda olan kütikula yada diğer ismiyle dış deri örtmektedir. Bu deri yani kutikula böcek erginliğe ulaşırken belirli aralıklarla atılmak zorundadır (Derinin atılması ve konu ile ilgisini anlat). Baş üzerinde göz, ağız ve antenler yeralmaktadır. Toraksta ise yürüme ve uçma görevini üstlenen bacaklar ve kanatlar yeralmaktadır. Abdomende çeşitli sistemler bulunmaktadır. Böceklerin gelişme ve değişme yani metamorfoz tiplerine baktığımızda ise birbirinden farklı metamorfoz tipleri olduğunu görüyoruz. Bunlar Ametabola, Neometabola, Hemimetabola (yarım metamorfoz),Holometabola (tam metamorfoz) Holometabola yani tam metamorfoz cinayetlerin saatinin veya gününün belirlenmesinde kullanılan temel unsurdur. Holometabola bir böceğin gelişmesi yumurta, larva, pupa ve ergin olmak üzere dört bölüme ayrılmaktadır. Böcek canlı üzerine yumurtalarını bırakır, bu yumurtalar türe özgü olarak birkaç saatten birkaçgüne uzanan bir sürede geliştikten sonra açılmaktadır. Açılan yumurtalardan genç larvalar çıkar. Bu larvalar çıkar çıkmaz hızlı bir şekilde beslenmeye başlarlar. Yine türe özgü olarak değişen günde gömlek değiştirerek ikinci larva çıkar. Larvanın beslenmesi ve gömlek değiştirmesi ardı ardına devam eder. Her gömlek değiştirmede larvanın boyu büyürken şeklide nispeten değişiklik göstermektedir. Son deri değiştirildikten sonra larva pupa dönemine girmektedir. Pupa döneminde larvaya ait organlar yıkılarak yerine ergin böceğe özgü yenileri yapılmaktadır. İşte bu döngünün tamamlanması bir jenerasyon veya kuşak veya döl olarak adlandırılmaktadır. Bu döngünün tamamlandığı süre her tür için değişiklik göstermektedir. İşte bu sürelerin bilinmesi cinayetin nezaman işlendiği hakkında ipuçu vermektedir. ENTOMOLOJİYİ KULLANARAK ÖLÜM NEDENİNİN BULUNMASI * Bir suç araştırmasında, kurbanın ne zaman öldüğünü bilmenin yanısıra, nasıl öldüğünü bilmekte çok önemlidir. Bu bilgi katilin bulunmasında kullanılabilir. * Zehire, kanda, idrarda, mide içeriğinde, saçta ve tırnakta rastlanabilir. Başka bir önemli kaynakta ceset üstünde oluşan larvalardır. Bir süre sonra mide içeriğinden, kandan veya idrardan tahlil yapmak olanaksızlaşırken larvalardan, boş pupalardan ve larvasal deri parçalarından örnek almak hala mümkündür. Bu kimyasalların çoğu larvaların hayat döngüsünü de etkiler. Örneğin yüksek dozlarda kokain bazı Sarcophagidlerin gelişimi hızlandırır. • Bir insectisid olan malathion, çoğunlukla intiharlarda kullanılır ve ağız yoluyla alınır. Ağızda malathion olması, olası kolonileşmeyi geciktirir. • Bir antideprezan olan amitriptyline, Sarcophagidae türlerinin en az bir tanesinin oluşumunu 77 saate kadar uzatabilir. • Kurbanın uyuşturucu yada ilaç kullanıp kullanmadığının bilinmesi, sadece ölüm sebebi değil, ölüm zamanı tahmininde de yardımcı olur. * Ceset üzerinde leşsineklerinin sardığı yerlerde ölüm sebenin bilinmesi veya ölümden önceki olayların yeniden göz önünde canlandırılabilmesi için çok önemlidir. Örneğin kurban ölmeden önce bir yaralanma veya bozulma geçirmişse, geçirmemişe göre daha değişik yerlerinde istila olabilir. Bıçak saldırısında, korunma amaçlı olarak olarak kollar, boğazın ön kısmını ve kafayı kapatır. Bu durumda kolun alt kısımları yaralanır ve ölüm sonrasında leş sinekleri buraya yerleşebilir. * Böceklerin insanlar üzerinde genel yerleşme yerleri doğal açıklardır. Bu yerler tercih edilir. Leş sinekleri çoğunlukla yüz bölgelerinde, nadirende genital bölgelere yumurtalarını bırakırlar. Eğer ölüm cinsel saldırı sonrası olduysa, genital bölgelerdeki kanama sonucu, leş sinekleri buralara yerleşmeyi tercih ederler. Bu şekilde, genital bölgelerde sinek oluşumu varsa, cinsel saldırı düşünülür. Tabii ayrıca bu düşünce diğer kanıtlara da uymalıdır. Doğal bozunmanın sonucu olarak, yumurtaların genital bölgelere yerleşmesiyle, bölgeler birkaç gün (4-5) içinde larvalarla dolar. ENTOMOLOG OLAY MAHALLİNDE HANGİ BİLGİLERİ EDİNEBİLİR Entomologlar genelde cinayetlerin üzerinden ne kadar zaman geçtiğinin belirlenmesi için çağrılırlar. Entomologlar toplanmış derecelendirilmiş zaman tekniği olarak bilinen, tür süksesyonu, larval uzunluk ve daha birçok değişik tekniği de içeren yöntemle, gerekli veriler elde olduğunda çok değerli işler yapabilirler. Nitelikli bir adli entomolog olası postmortem zamanı için tahminlerde de bulunabilir. Bazı sinekler değişik habitatları seçerler. Mesela yumurtalarını koymak için kapalı veya açık alan tercih eden böcek türleri vardır. Açık alanlarda gölge veya güneşte duran leşleri tercih edebilirler. Bu durumda üzerinde kapalı alanda büyüyen sinek larvaları bulunan leşin açık alanda bulunması, ölümden hatta böcek yayılmasından sonraki zamanlarda cesedin taşınıp, yerinin değiştiğinin göstergesidir. Benzer olarak cesedin dondurulması veya sarılma, üzerinde oluşması muhtemel böcek süksesyonunun değişmesine neden olur. Böceklerin normal yumurta bırakma sürelerini engelleyen herhangi bir olay, türlerin sırasını ve tipik kolonileşme zamanlarının değişmesine neden olur. Bu normal böcek süksesyonundaki veya faunasındaki değişiklik, eğer normal ortamda veya coğrafik koşullarda ne olması gerektiği biliniyorsa, adli entomologlar için farkedilmemesi imkansız bir olay olur. Böceklerin hiç olmaması ise cesedin postmortem aralıkta, dondurulduğu, sıkıca kapatılmış bir konteynerde olduğu yada çok derine gömüldüğü sonucu ortaya çıkarabilir. Entomolojik kanıtlar, saldırı yada tecavüz gibi durumların da ortaya çıkarılmasında yardımcı olabilir. Kurbanlar eğer kötü kıyafetler içinde yada dışkı ve idrarlı (sidikli) kıyafetler içinde bulunurlarsa bağlandıkları yada uyuşturuldukları yani muhakeme kabiliyetinde olmadıkları anlaşılır. Bu tip maddeler, herhangi başka bir durumda bulunamayacak bazı bazı böcek türlerini çekerler. * Bozunan insan kalıntılarından toplanan böcekler toksik analizler için de değerli kanıtlar olurlar. Böceklerin doymak bilmez iştahı cesedi kısa bir sürede iskelet yığınına çevirebilir. Çok kısa sürede toksik analiz için gereken kan ve sidik gibi vücut akışkanları ve yumuşak doku yok olabilir. Ama böcek larvaları toplamak ve bunları insan dokusuymuş gibi standart toksik analizlere sokmak mümkündür. Böcekler üzerinde toksik analiz yapmak başarılı olabilir çünkü ölümden sonra insan dokuları üzerinde bulunan ilaç ve toksinler böcek larvalarında da benzer sonuçlar doğurur. ÖLÜM ZAMANININ TAHMİNİ * İlk çürümeden sonra, ceset kokmaya başlar, çeşitli böcek türleri cesede gelmeye başlar. Genellikle ilk gelen böcekler Dipterler yani sinekler. Özellikle leş sinekleri blow flies yani Calliphoridae ve et sinekleri Sarcophagidae’ ler. * Dişi böcekler ceset üzerine yumurtalarını özellikle burun, göz, kulak, anüs, penis ve vajina gibi doğal boşluklar civarına bırakırlar. Eğer ceset üzerinde yaralar varsa yumurtalar böyle kısımlara da bırakılır. Et sinekleri (flesh flies) yumurta yumurtlamazlar bunun yerine larva bırakırlar. * Kısa bir süre sonra, türlere bağlı olarak, yumurtalardan küçük larvalar çıkar. Bu larvalar ölmüş doku üzerinde beslenirler ve hızla büyürler. Kısa bir zaman sonra larva deri değiştirir ve ikinci larval döneme ulaşır. * Sonra çok fazla beslenir ve deri değiştirerek üçüncü larval döneme geçer. Larva tam olarak büyüdüğünde hareketsiz kalamamaya başlar ve cesedin içinde dolaşmaya başlar. Bu dönem prepupal safha olarak adlandırılır. Prepupa deri değiştirerek pupal safhaya geçer fakat üçüncü larval dönemdeki deri, daha sonra puparyuma dönüşen, korunur. Tipik olarak yumurtadan pupal safhaya 1-2 hafta arasında bir zaman geçer. Tam zaman türlere ve çevre sıcaklığına bağlıdır. Leş sinekleri (Blow flies) ve et sineklerinin bazı türlerinin yaşam döngüsünün tablosu burada sağlanabilir ve leş sineklerinin yaşam döngüsü buradan sağlanabilir. Böceklerin yardımıyla ölümün zaman tayininin arkasındaki teori yada tercihen ölüm sonrası zaman aralığı (kısaca PMI) işlemi çok basittir: ölümden hemen sonra vücuda böcekler geldiği zaman böceğin yaş tahmini ölümün zamanının tahmini yolaçacaktır. Leş sineğinin yumurta, larva, pupa ve ergininden nasıl yaş tayin edilir. Yumurta: Leş sineği yumurtladığı zaman, yumurtaları embiryonik gelişmesi çok kısa sürede olmaktadır. Yumurtalar yaklaşık 2 mm uzunluğundadır. İlk sekiz saat süresince yada daha fazla gelişmeyle ilgili çok az işaret vardır (dıştan gözlenen herhangi bir gelişme olmaz bununla birlikte ilk 8 saatte segmentasyon vardır. Daha sonra organ taslakları oluşmaya başlar Protrpod- Oligopod, asetat göster). Bu değişikliklerden sonra yumurta safhasının sonunda yumurtanın koriyonu boyunca larvayı görebiliriz. Yumurta safhası tipik olarak bir gün yada biraz daha fazla sürede sonlanır. Larva: Leş sineği üç larval deri değiştirmeye sahiptir. İlk deri değiştirmede 1.8 gün sonra yaklaşık 5 mm. boyundadır, ikinci deri değiştirmede 2.5 gün sonra yaklaşık 10 mm. uzunluğundadır, üçüncü deri değiştirmede 4-5 gün sonra yaklaşık 17 mm. uzunluğundadır. Tam larval dönemi teşhis etme en kolayıdır ve larvanın büyüklüğü, larvanın ağız parçaları ve vücudun posteriöründeki stigmaların yapısı temel alınarak yapılır. Farklı larval dönemler arasındaki farklılığın nedeni mikroklimaya, örneğin sıcaklık ve neme bağlıdır. Biraz sıcaklık nem ilişkisini anlat. Prepupa: Larva üçüncü deri değiştirmenin sonunda hareketlenmeye başlar ve vücuttan uzaklaşmak için harekete geçer (bu leş sinekleri için karakteristik bir davranıştır). Cesedin kanı kademeli biçimde boşaltılacak, ve yağ doku (fat body) kademeli olarak larvanın iç yapısına katılacak. Biz larvanın bir prepupa ya dönüştüğünü söyleriz. Prepupa yaklaşık 12 mm. boyunda ve yumurtlamadan sonra 8-12 gün arasında görünür. Pupa: Prepupa kademeli olarak zamanla koyulaşan pupa ya dönüşür. Yaklaşık 9 mm. boyunda olan pupa yumurtlamadan sonra 18-24 gün arasında görünür. Boş pupariumun bulunmasıyla adli entomolog söz konusu kişinin yaklaşık 20 günden fazla bir süre önce ölmüş olduğunu söylemelidir. Teşhis, üçüncü larval derinin geride kalan ağız parçalarından yapılabilir. Önemli bir biyolojik olayda vücudun değişik kısımlarında başarılı olan (beslenen) organizmaların bir süksesyon yani bir silsile oluşturmalarıdır. Örneğin, Kemik üzerinde özelleşmiş olan Coleopterler kemik ortaya çıkıncaya kadar bekleyeceklerdir. İlk olarak cesede ulaşan leş sinekleridir (Blow flies), kısa süre sonra Coleoptera’dan Staphylinidler izler. Bozulmanın (çürümenin) ilerlemesiyle, bir çok grup olay mahalline ulaşır, birçok grup, vücuttaki sıvıların sızması sebebiyle kurumasından hemen önce olay mahallinde yeralır. Vücut kuruduktan sonra, Dermestidler, Tineidler ve belirli akarlar ceset üzerinde baskın grup olacaklardır ve leş sinekleri kademeli olarak gözden kaybolacaklardır. Topraktaki faunanın nasıl değiştiğinede dikkat et. Bu da ölümden sonraki zamanının tahmininde kullanılabilir. Böceklerin ardı ardına gelme bilgisi (silsile:süksesyon) bir database içine dahil edilebilir ve bir entomolog bir olayı araştırmaya başladığı zaman ceset üzerinde bulunan taksonu bilgi olarak kullanabilir ve ölüm zamanının tahmininde veri olarak kullanılır. Birçok böcek, çürümekte olan ceset üzerinde yaşamada özelleşmişlerdir. Bir örnek, ölümden sonra 3-6 ay arasında larvası oluşan peynir sineği, Piophila casei, dir. Bu tür bütün dünyada peynir ve salam zararlısı olarak iyi bilinir ve bütün dünyaya yayılmıştır. Ergin peynir sineği ölümden sonra ilk (erken) safhalarda bulunabilir fakat larva daha sonra oluşur. İnsan cesedinin kalıtılarında en erken gözlem (tespit) ceset iki aylık olduğu zamandır ve bu durum en iyi yaz koşullarındadır. OLAY YERİNİN ENTOMOLOJİK KANITLAR İÇİN İNCELENMESİ Olay yerinde izlenmesi gereken prosedür habitata göre değişmektedir fakat biyokriminal entomologların görevlerini genel olarak beşe ayırabiliriz. 1- Olay yerinde görsel gözlem ve not alma. 2- İklimsel verilerin olay yerinde toplanmaya başlaması. 3- Ceset yerinden oynatılmadan önce vücut üzerinden örnekler alınması. 4- Ceset yerinden oynatılmadan önce 6 metreye kadar yakın çevresinden örnekler alınması. 5- Ceset alındıktan sonra, tam altından ve 1 metreye kadar yakın çevresinden örnekler alınması. Olay yerindeki böcek aktivitesinin gözlenmesi çok yararlı olabilir çünkü, entomologlar bu konuda olay yerini inceleyen araştırıcılardan daha değişik şekilde eğitim alırlar. Entomolog, araştırıcıların göremeyeceği yada önemsemeyeceği bir şeyi farkedebilir. Yada tam tersi olabilir. Olay Yerinde Nelere Bakılmalıdır? * Olay yeri hangi habitat içindedir: şehir, şehir içi mi, kırsal bir alan mı, yoksa sulu bir bölge mi? Ormanlık mı, yol kenarı mı, kapalı bir bina mı, açık bir bina mı, havuz mu, göl mü, nehir mi yoksa tamamen farklı bir habitat mı? Habitat, cesedin üzerinde hangi tip böcek olması gerektiği belirleyecektir. Ceset üzerinden toplanan entomolojik kanıtlar eğer bulunduğu yerin habitatına uymuyorsa , bu, bedenin başka bir yerden getirilip atıldığına işaret olabilir. * Uçucu ve sürüngen böceklerin çeşitlerinin ve sayılarının değerlendirilmesi. • Ceset üzerinde ve çevresinde gelişen böcek oluşumunun en fazla olduğu yerlerin not edilmesi. Bu istilanın yumurta, larva, pupa veya ergin gibi hangi evrede olduğu. Tek bir tanesi yada herhangi birilerinin beraber olması gibi. • Yetişkin bir tür böceğin yetişkin olmadan önceki evrelerinin incelenmesi. Bu evreler yumurta, larva, pupa(lık), boş pupa(lık), larva derilerinin bırakılması, tortu maddesi, çıkış delikleri ve beslenme izleri gibi olabilir. • Arı, karınca veya yabanarıları ve başka farkılı böceğin verdiği zararların not edilmesi. • Cesedin tam olarak yerinin el ve ayak gibi parçalarının yerinin belirlenmesi. Yüzün ve kafanın durumu. Hangi vücut parçalarının yerle temas ettiğinin belirlenmesi. Gün ışığında, gölge ve ışığın nereye geldiğinin not edilmesi. • Cesedin 3-6 m. yakınındaki böcek aktivitesinin kontrol edilmesi. Cesedin civarındaki, uçan, dinlenen ve sürünen, yetişkin, larva veya pupa dönemi böceklerin not edilmesi. • Yaralanma, yanma, gömülme, parçalanma gibi doğal olmayan, çöpçü ve bunun gibi insanların sonradan verdiği değişikliklerin not alınması. Bu görüntülerin hepsinin fotografı çekilmeli. Böceklerin toplanmadan önce hangi evrelerde oldukları da fotograflanmalı. Olay Yerinde İklimsel Verinin Toplanması PMI nin hesaplanmasında iklimsel verilerin olay yerinde toplanması çok önemlidir. Böceğin hayat çemberinin uzunluğu genelde olay yerindeki sıcaklık, bağıl nem gibi hava olaylarına bağlı olarak belirlenir. Aşağıdaki iklimsel veriler olay yerinde toplanmalıdır: 1- Cesedin 0.3-1.3 m. civarındaki yerel sıcaklık. 2- Yerin ve üstünde varsa eğer herhangi bir örtünün sıcaklığını termometre yerleştirilerek ölçülmesi. 3- Vücudun sıcaklığının da termometro yerleştirilerek ölçülmesi. 4- Vücut altı sıcaklığının yer ile ceset arasına konulan bir termometro ile ölçülmesi 5- Larva yoğunluğunun, merkeze konulan bir termometre ile ölçülmesi. 6- Toprağın vücut kaldırıldıktan sonraki sıcaklığın ölçülmesi. Ayrıca bedenin 1-2 m. uzağındaki sıcaklık ölçülmelidir. Bu üç aşamalıdır: Tam altından (çim ve yapraklar), 4 cm. Derinden ve 20 cm derinden Hava durumu, olay yerine en yakın meteoroloji istasyonundan öğrenilebilir. Minimum gereksinimler, maksimum ve minimum sıcaklık ve kalıntının miktarıdır. Öteki bilgilerin de toplanması güzel olur ve olayların yeniden yaratilmasında yardımcı olur. İklimsel veriler, kurbanın son görüldüğü ana kadar uzatılıp incelenmelidir. Cesedin Kaldırılmasından Önce Örneklerin Toplanması Olay Yerinde Böceklerin Bedenden Toplanması: İlk önce toplanması gereken böcekler yetişkin sinekler ve böceklerdir. Bu böcekler hızla hareket ederler ve suç mahallini hızla terkedebilirler. Yetişkin sinekler biyolojik merkezlerden tedarik edilebilecek böcek ağlarıyla yakalanabilir. Etil asetat yada alelade tırnak cilası ile böcekler hareketsizleştirilir. Daha sonra % 75 lik etil alkol bulunan şişeye aktarılır. Toplanan örneklerin etiketlendirilmesi çok önemlidir. Etiketler siyak kurşun kalemle yapılmalıdır, kesinlikle tükenmez veya dolma kalem kullanılmamalıdır. Etiket örnekle birlikte alkol içine atılmalıdır. Toplama etiketi aşağıdaki bilgileri içerir. 1- Coğrafik konum 2- Toplama saati ve günü 3- Olay numarası 4- Beden üzerinde toplama yapılan bölge 5- Toplayanın ismi Etiket iki adet olarak hazırlanmalı ve biri şişenin dışına diğeri içine konmalıdır. Ergin örnekler toplandıktan sonra, ceset üzerinden larval örneklerin toplanmasına başlanabilir. Önce araştırmacı kolay görülemeyecek yumurtaları araştırmalı. Bu adımdan sonra, larva beden üstünde kolayca görünür Verilerin Analiz Edilmesi Ölümden Sonra Ceset Hareket Ettirildi mi? Ölümden sonra, cesedin üzerinde mantarlar, bakteriler ve hayvanlar kolonileşmeye başlarlar. Cesedin, üzerinde yattığı yerde zamanla değişebilir. Cesetten sıvıların sızıp gitmesiyle bazı böcekler yok olurken, bazılarının da sayısı zamanla artar. Biyokriminal entomolog ceset üzerindeki faunaya bakarak ne kadardır orada olduğunu ve cesedin altındaki topraktaki böcekleri inceleyerek de yaklaşık ölüm zamanını tahmin edebilir. Eğer ikisi arasında bir farklılık varsa, yani toprak analizi kısa PMI’I, vücut faunası da uzun bir PMI’I gösteriyorsa, bu cesedin hareket ettirildiğine bir işaret olabilir. Bazı Calliphoridler güneş severdir, yumurtalarını sıcak yüzeye koymayı tercih ederler, yani güneşli yerlerde bulunan cesetler üzerinde oluşurlar. Diğer leş sinekleri gölgeleri tercih ederler. Örneğin Lucilia güneşi tercih ederken Calliphora gölgeyi tercih eder. Bazı türler sinantropiktir yani şehirsel bölgelerde yaşarlar. Bazıları da sinantropik değildir, onlar kırsal alanlarda görülürler. Calliphora vicina sinantropik bir sinektir, çoğunlukla şehirlerde rastlanır. Calliphora vomitoria ise kırsal alanlarda bulunan bir türdür. Ölüm Yeri İşlemleri (Cinayet mahalindeki İşlemler) Yer incelemeleri ve hava verileri; olay yerinde bedenden böceklerin toplanması; bedenin yerinin değiştirilmesinden sonra böceklerin toplanması; toplanan böceklerin biyokriminal entomologlara gönderilmesi Böceklerin ve diğer arthropodların ölüm yerinden toplanması sırasında cesete verilebilecek zararlara dikkat etmek önemlidir. Bu yüzden entomologlar (yada olay yerinde görevli toplama yapan kimse) öncelikli araştırıcıyla temasa geçilmeli ve entomolojik delilleri toplamak için bir plan yapılmalı. Olay yeri gözlemi ve hava verileri: Ölüm yerinin entomolojik araştırması belli adımları izleyerek analiz edilebilir. 1- Olay yerinin gözleminde bitki örtüsü için habitata ve bedenin yerine ve eğer bir bina içindeyse açık pencere yada kapıya yakınlığına dikkat edilmelidir. Beden üstündeki böcek istilalarının yeri en az böceklerin hangi evrede olduğunun (yumurta, larva, pupa, ergin) belirlenmesindeki kadar dikkat edilerek belirlenmeli. Omurgalı hayvanlar, yumurta ve larvanın ve diğer böceklerden ötürü –ateş karıncaları gibi- işe yarayacak kanıtların belirlenmesi yararlı olur. Ölüm yerinin şekli üzerindeki gözlemlerde de en az bunlarda olduğu kadar dikkat edilmelidir. 2- Olay yerinde klimatolojik verilerin toplanması. Bu veri şunları içermeli: a) Olay yerindeki hava sıcaklığı gölgede, bir termometre ile, göğüs yüksekliğinde, yaklaşık olarak belirlenebilir. TERMOMETREYİ DİREKT GÜNEŞ IŞIĞINA MARUZ BIRAKMAYIN. b) Larva kütlesinin ısı derecesi (larval yığından direkt termometre ile almak) c) Yer yüzeyinin sıcaklığı. d) Bedenle yer arasında kalan yerin sıcaklığı (tamamen iki yüzey arasında kalan kısımda bırakılan termometre ile). e) Toprak sıcaklığı doğrudan vücudun altından alınır (vücut kaldırılınca derhal sıcaklık alınır). f) Hava verileri maksimum ve minumum günlük ısı derecesini ve sağnak yağışı, kurban kaybolmadan 1-2 hafta öncesinden bedenin bulunmasından 3-5 gün sonrasına kadar ki periyodu içerir. Bu bilgiler ulusal hava durumu ofislerinden yada devlete bağlı klimatoloji ofislerinden elde edilebilir. Biyolog Yalçın DEDEOĞLU

http://www.biyologlar.com/biyokriminal-entomoloji

York Testi ve Gıda İntoleransı Nedir ? York Testi Bilgileri

York Testi ve Gıda İntoleransı Nedir ? York Testi Bilgileri

York test, bir gıda intoleransı testidir .Günümüzde popüler testler olarak sıkça gündeme gelen gıda intolerans testleri, besin intolerans veya gıda duyarlılık testleri olarak da adlandırılmaktadır. Piyasada ve sağlık kuruluşlarında gıda (besin ) intoleransını saptayan bir çok test vardır. York Test de, bu testler arasında bilinirliği yüksek olan bir testdir. Hatta bazı kişiler, besin intolerans testlerini , genel bir ifadeyle York testi olarak adlandırmaktadır. York testin kullanılma amacı, işlevi ve etkinliğini daha iyi anlayabilmek için, kuşkusuz gıda ( besin) intoleransı kavramını da anlamak gerekmektedir. Gıda ( besin) İntoleransı Nedir? Gıda intoleransı, bir çok kişide ortaya çıkan bir sağlık sorunudur. Gıda intoleransı olan kişilerde, toleransın olduğu gıdaya karşı insan vücudu normal olmayan tepkiler verir.Sağlıklı ve normal olarak bilinen bir gıda, tüketildiğinde insan vücudunda istenmeyen reaksiyonlara yol açarak, çeşitli sağlık sorunlarına yol açar. Oluşan reaksiyonların ve rahatsızlıkların ana sebebi ise, sindirim sisteminizde tolerans yani duyarlılık oluşturan gıdaların tam olarak sindirilememesidir. Sindirimi tam olarak olmayan gıdalar ise insan vücudunca yabancı bir madde olarak algılanmaktadır. Yabancı madde olarak algılanan bu gıdalara karşı da vücudumuz tepki vermekte bu durum da sağlık sorunlarına yol açmaktadır. Günümüzde doktorlar, geçmeyen sindirim sistemi rahatsızlıkları olan hastalarına, gıda intolerans testlerini daha sık istemektedirler. Gıda ( besin) İntoleransı Belirtileri Nelerdir? Gıda intolernsı, bir çok gıdanın tetikleyebildiği bir sağlık sorunu olduğu için buna bağlı olarak ortaya çıkan sağlık sorunları ve belirtiler de geniş bir yelpaze içinde değerlendirilir. Gıda intoleransı belirtilerinin başlıcalarını birlikte inceleyelim. * Hazımsızlık, kabızlık,şişkinlik, gaz, ishal, mide krampları gibi sindirim sistemi şikayetleri * Yorgunluk ( sürekli hale gelen bir yorgunluk), vücütta farklı bölgelerde görülebilen ödem (şişkinlik) * Migren, uyku bozukluğu ve romatizmal hastalıklar * Sindirim sistemi şikayetleri ile birlikte çeşitli barsak hastalıkları * Çeşitli deri hastalıkları ( sivilce, döküntüler gibi) York Test Ne Amaçla Yapılmaktadır? York Test, test yapılan kişide, herhangi bir gıdaya karşı intolerans yani duyarlılık varsa bunu ortaya çıkarmaktadır. York Test Nedir? York Test, gıda intoleransı varlığında, vücudumuzun buna yol açan gıdalara karşı verdiği reaksiyonları ortaya çıkaran ve sorun yaratan gıdaları öğrenmemeizi sağlayan bir testdir. olan bir testdir.. York Test için parmaktan alınan kan örneği yeterlidir.Kan örneği bir sağlık merkezinde alınabileceği gibi, testi yaptıracak kişinin adresine gönderilen test kiti aracılığı ile, evde de alınabilmektedir. Alınan test numuneleri ise, uygun koşullarda yurt dışındaki York Test laboratuarlarına gönderilmekte ve sonuçlar bu merkezlerde analiz edilmektedir. Test sonuçlarına göre, eğer bir gıda intoleransı varsa, buna göre kişiye bir beslenme programı önerilmektedir.Uygun beslenme ve diyet programıyla hastaların gıda intoleransına bağlı şikayetleri önemli oranda iyileşmektedir. York test, ideal olarak hasta,hekim ve diyetisyen işbirliği ile en yararlı sonucu verecektir. York Test’in En Sık Kullanım Alanları Nelerdir? Gıda ( besin) intoleransı araştırılması Özellike gıda intoleransı kaynaklı obesite ( şişmanlık) sorunlarında diyetisyen ve hekim işbirliği ile obesite tedavisine destek sağlanması York Test Nerelerde Yapılmaktadır? York Test çeşitli sağlık merkezlerinde ve İstanbul Ortaköy’de bulunan York Test Türkiye merkez ofisinde yapılmaktadır. http://tahlil.com

http://www.biyologlar.com/york-testi-ve-gida-intoleransi-nedir-york-testi-bilgileri

Hipotez, Olgu ve Bilimin Doğası

Douglas Futuyma, çeviren Mehmet Cem Kamözüt Örneğin, DNA’nın genetik malzeme olduğundan nasıl emin olabilirsiniz? Ya bunu “kanıtlamış” olan bilimciler bir hata yapmışlarsa? Kesinlikle doğru olduğu gerçekten kanıtlanmış bir şey var mıdır? Bilim, dünyayı algılamanın farklı ve eşit derecede geçerli biçimlerinden yalnızca biri, baskın Batılı biçimi midir? Evrim bir gerçek midir, yoksa bir kuram mı? Ya da tıpkı yaratılışçıların benimseme hakkına sahip oldukları karşı görüş gibi, bu da benim benimseme hakkına sahip olduğum görüş mü? Varsayımsal bir örneği ele alalım. Bilinmeyen bir hastalıktan ölmekte olan koyunların ölüm nedenini belirlemekle görevlendirildiniz. 50 hasta, 50 sağlıklı koyundan doku örnekleri aldınız ve hasta hayvanların 20 tanesinin, sağlıklı olanların da yalnızca 10 tanesinin karaciğerinde bir tekhücreli teşhis ettiniz. Bu farklılık, iki koyun grubunun söz konusu tekhücrelinin görünme sıklığı açısından bir fark göstermediğini söyleyen SIFIR HİPOTEZİNİ reddetmeye yeterli midir? Bu soruya yanıt verebilmek için istatistiksel testler yaparak bu sayılar arasındaki farklılığın sırf şans yoluyla ortaya çıkıp çıkamayacağına bakarsınız. Ki kare (χ2) istatistiğini hesaplarsınız (burada bu değer 4,76’dır), bir ki kare değerleri tablosuna bakar ve “0,025 < p < 0,05” ifadesini bulursunuz. Benzerleriyle neredeyse tüm bilimsel veri analizlerinde karşılaştığınız bu ifade ne anlama gelir? Bulduğunuz farklılığın (hasta ve sağlıklı koyunlardan aldığınız örneklerin rastgele olduğu varsayımı altında) sırf şans eseri gerçekleşmiş olma olasılığının –yani gerçekte hasta koyunlarla sağlıklı koyunların sözkonusu tekhücreli ile enfekte olma oranları arasında bir farklılık olmaması olasılığının– 0,05’ten küçük ama 0,025’ten büyük olduğu anlamına… Bilimdeki her deney ya da gözlem daha büyük olası gözlem evreninden (bizim örneğimizde tüm koyunlar) alınan örneklemlere dayanmaktadır ve her durumda eldeki verinin bu daha büyük evrene ilişkin gerçekliği yanlış temsil etme olasılığı vardır. Yani ilişkisizlik hipotezini –koyun grupları arasında bir farklılık olmadığı, deney sonuçlarıyla oynanmasına bağlı bir etki olmadığı, ya da belirli değişkenler arasında korelasyon olmadığı hipotezini– yanlışlıkla reddetmek her zaman olanaklıdır. Ne mutludur ki bazı durumlarda, doğru bir ilişkisizlik hipotezini reddetme ve yanlış olan alternatif hipotezi doğru olarak kabul etme olasılığı 0,00001 ya da daha az olabilir. Bu durumda ilişkisizlik hipotezini güvenle reddedebilirsiniz, ama kesin olarak emin olamazsınız. O halde 100 koyunla yapılan çalışma hasta koyunlarda söz konusu tekhücrelilere rastlama olasılığımızın daha fazla olduğu varsayımını desteklemektedir; ama yalnızca zayıf bir şekilde. Ölümün nedeninin tekhücreliler olabileceğini düşünüyor ama korelasyonun yetersiz olmasından dolayı endişe duyuyorsunuz. Siz de örnekleminizi 1000 koyuna çıkardınız, karaciğer biyopsisi yaptınız; örneklerinizi tekhücreliler açısından (düşük yoğunlukta olmaları nedeniyle ilk çalışmanızda gözden kaçırmış olabileceğiniz vakarı da açığa çıkarak biçimde) daha detaylı incelediniz; ertesi yıl hangi koyunların öldüğünü kaydettiniz. Büyük bir hoşnutlukla gördünüz ki tekhücreliye rastlamadığınız koyunların yalnızca %5’i ölürken enfekte koyunların %95’i öldü. Hayatta kalanlar yıl sonunda kesildiklerinde görünürde sağlıklı olan koyunlarda hala bir enfeksiyon belirtisine rastlanmadı. Zafererinizle övünen bir biçimde danışmanınıza ölüm nedeni olarak tekhücreliyi rapor ettiniz. Doğru mu? Yanlış, dedi size. Diğer hipotezleri elememişsiniz. Belki de hastalığa, tesadüfen koyunun görece zararlı tekhücreliye karşı direncini de azaltan bir virüs neden oluyordur. Belki bazı koyunlar ömürlerini kısaltan bir gene sahip ve bu gen aynı zamanda enfeksiyon dirençlerini de azaltıyor. “Yapmanız gereken” diyor, “bir deney”. “Rastgele seçtiğiniz bazı koyunlara tek hücreliyi içeren, diğerlerine de tek hücreli dışında tüm içeriği aynı olan bir sıvı enjekte etmek”. Bunu yapıyorsunuz ve başarısız birkaç denemeden sonra koyunların tek hücreliyi oral yollardan almadıkça enfekte olmadıkları ortaya çıkıyor. Sonuçta deneysel olarak enfekte edilmiş 100 koyunun 90’ının 3 ay içinde öldüğünü, 100 “kontrol” koyununun 95’inin deneyin sürdüğü 1 yıl boyunca yaşadığını memnuniyetle rapor ediyorsunuz. Ki kare testleri p’nin 0,0001’den küçük olduğunu gösteriyor. Yani elinizdeki sonuçların şans sonucu ortaya çıkmış olması son derece düşük bir olasılık. Bu noktada tek hücrelinin hastalığa ve ölüme neden olduğuna dair dikkate değer bir güveniniz olabilir. Ama bunu hala mutlak olarak kanıtlamadınız. Koyunlara yalıtıp enjekte ettiğiniz yalnızca tek hücreli değil de görünmeyen bir virüs de olamaz mı? Koyunlara enjeksiyonu rastgele yaptığınızdan emin misiniz? Yoksa enjeksiyon için farkında olmadan zayıf görünen hayvanları seçmiş olabilir misiniz? Hipotezinize uymayan 15 hayvanın durumunu sizce ne açıklıyor? Ve her ne kadar p < 0,0001 olsa da hala kötü bir “şanslı kura” tutturmuş olma şansınız var, yok mu? Örneği uzatmaya gerek yok, buradan çeşitli dersler çıkarabiliriz. Öncelikle veriler kendi başlarına hiçbir şey anlatmazlar, önceki bilgilerimiz ve kuramımız ışığında yorumlanmalıdırlar. Bu örnekte başka bazı şeylerin yanı sıra (ki kare testi gibi istatistklerin temelinde yatan) olasılık kuramına, deneysel tasarım kuramına ve virüslerin var olduğu ve sonuçlarımızı karıştırabileceği bilgisine gereksinim duyduk. Bilim tarihi, yeni kuram ve bilgiler ışığında düzeltilmesi ya da reddedilmesi gerekmiş olan sonuçların örnekleriyle doludur. Örneğin 1950’lerin sonlarına kadar neredeyse tüm jeologlar kıtaların sabit konumda olduğuna inanıyordu; şimdi tümü levha tektoniği ve kıta kaymalarına inanıyor ve pek çok jeolojik olgunun bunun ışığında yeniden yorumlanması gerekti. İkinci olarak varsayımsal araştırma deneyimimiz güvenilir bir sonuca ulaşmak için pek çok çalışma gerektiğini göstermiştir. Ders kitaplarındaki, bir gerçeği dile getirdiğini söyleyen her tümcenin genellikle en azından bir kişinin yaşamının en az birkaç yılı boyunca büyük bir çaba harcamasını gerektirdiğini gözden kaçırmak kolaydır. Bu nedenle bilimciler sonuçlarını, birazdan tekrar söz edeceğimiz gibi dikkate değer bir güçle savunurlar. Üçüncü olarak ve bu en önemlisidir araştırma, ne kadar dikkatlice ve yorucu bir biçimde tasarlanmış ve gerçekleştirilmiş olursa olsun kanıta yaklaşır ama asla onu tam olarak elde edemez. Kabul ettiğiniz hipotezinizin günün birinde, bugün hayal edemeyeceğimiz tümüyle yeni kuramlar ya da veriler ışığında düzeltilmesi ya da reddedilmesi olasılığı –neredeyse yokmuş gibi görünebilecek olsa da– her zaman vardır. Bunun sonucu olarak neredeyse tüm bilimsel makaleler sonuçlarını, kuşkuya yer bırakan bir biçimde sergilerler. Drosophila genetiği üzerine yeni yayımlanmış bir makalede şu sonucu okudum: Deney “sperm yerdeğiştirmesinin iki bileşenini bir araya getiren farklı mekanizmalar olduğunu düşündürtüyor” (Clark et al. 1995). Aslında veriler harikaydı, deney dikkatlice tasarlanmıştı, istatistiksel analizler örnek olacak nitelikteydi, ama yazarlar görüşlerini kanıtladıklarını savlamıyorlardı. Bilimciler genellikle sonuçlarına muazzam bir güven duyarlar, ama kesinliğe sahip değillerdir. Belirsizliği yaşamın bir gerçeği olarak benimsemek iyi bir bilimcinin dünya görüşü için kaçınılmazdır. Öyleyse bilimdeki her ifade bir HİPOTEZ olarak anlaşılmalıdır. Neyin doğru olabileceğini söyleyen bir ifade. Bazı hipotezler zayıfça desteklenmektedir. Başka bazıları (örneğin dünyanın güneş çevresinde döndüğü ya da DNA’nın kalıtsal malzeme olduğu gibileri) o kadar iyi desteklenmiştir ki, onları olgu olarak görürüz. Olgu denilince, tam bir kesinlikle mutlak olarak doğru olduğunu bildiğimiz bir şey anlamak bir hatadır. Hiçbir şeyi böyle bilmiyoruz (Bazı felsefecilere göre kendimiz de dahil herhangi bir şeyin var olduğunundan bile emin olamayız. Dünyanın tanrının zihnindeki tutarlı bir düş olmadığını nasıl kanıtlayabiliriz?). Doğrusu şudur: Bir olgu bir hipotezdir, ancak delillerle o kadar güçlü desteklenmektedir ki onu doğru olarak kabul ederiz ve doğruymuş gibi davranırız. Bilimcilerin, kuvvetle desteklenmiş hipotezler ya da olgular olarak ortaya koydukları ifadelere duydukları güveni neden paylaşmalıyız? Bilimin sosyal dinamikleri yüzünden. Tek bir bilimci yanılıyor olabilir (ve çok ender de olsa bir bilimci kasıtlı olarak verileri çarpıtabilir). Ama eğer konu önemliyse, alanın ilerlemesi (örneğin bütün moleküler biyolojinin, DNA’nın yapısı ve işlevine bağlı olduğu gibi) bu konuya bağlıysa, diğer bilimciler bulguları kuşkucu biçimde sorgulayacaklardır. Bazıları bilinçli olarak deneyi yinelemeye çalışabilir; başkaları da hipotezin doğru olduğu varsayımıyla araştırmalar yürütecekler ve eğer gerçekte yanlışsa uyumsuzluklar bulacaklardır. Başka bir deyişle bu alanda çalışan araştırmacılar hataları bulmaya çalışacaktır; çünkü kendi işleri ve kariyerleri söz konusudur. Üstelik bilimciler yalnızca entelektüel merakla değil (her ne kadar başarılı olmayı nadiren umabilirlerse de) tanınma ve ünlü olma güdüsüyle de hareket ederler. Yaygın kabul görmüş bir hipotezi yanlışlamak da profesyönel alanda tanınmaya giden yolu açar. Kalıtımın DNA’ya dayanmadığını ya da AIDS’in nedeninin HIV (Human Immunodeficiency Virus, İnsan Bağışıklık Yetersizliği Virüsü) olmadığını gösterebilen bilimci, alanında ünlü olacaktır. Elbette hipotezi ilk ortaya koyanların kaybedecek çok şeyi vardır. Yatırmış oldukları yoğun bir emek –ve hatta– itibarları. Dolayısıyla tipik tutumları, görüşlerini –bazen aksi yöndeki ezici delillere rağmen– tutkuyla savunmak olacaktır. Bu sürecin sonucu her bilimsel disiplinin karşıt hipotezlerin savunucuları arasındaki tartışmalar ve entelektüel savaşlarla dolu olmasıdır. Fikirler arasında, sonucu daha çok delilin ve daha dikkatli çözümlemenin belirlediği, en inatçı skeptiklerin bile uzlaşımsal görüşe kazanılacakları (ya da ölüp gidecekleri) zamana kadar sürecek bir rekabet –bir tür doğal seçilim– vardır. Olgu ve Kuram Olarak Evrim Evrim bir olgu mudur, kuram mıdır, yoksa hipotez midir? Bilimde sözcükler genellikle kesin bir anlamda ve gündelik yaşamdaki kullanımlarından farklı çağrışımlarla kullanılırlar. Bu aşırı önemli bir durumdur ve bu kitapta pek çok örneğiyle karşılaşacağız (uyum, rastgele, korelasyon). Bu sözcükler arasında hipotez ve kuram da vardır. İnsanlar –sanki hipotez delillerle desteklenmeyen bir fikir demekmiş gibi– sıklıkla bir şeyin “sadece” bir hipotez olmasından söz ederler (“sigaranın kansere neden olduğu yalnızca bir hipotezdir” örneğindeki gibi). Ancak bilimde hipotez, neyin doğru olabileceğine ilişkin bilgi birikimimize dayanan bir ifadedir. Zayıf biçimde desteklenmiş olabilir, özellikle de başlarda. Ama görmüş olduğumuz gibi neredeyse bir olgu olacak düzeyde destek de kazanabilir. Kopernik için Dünya’nın Güneş çevresinde dönmesi orta düzeyde desteklenmiş bir hipotezdi; bizim içinse kuvvetle desteklenmiş bir hipotezdir. Benzer biçimde, bilimde bir kuram, desteksiz bir spekülasyon değildir. Bundan ziyade, usavurum ve delillere dayanan, çeşitli gözlemleri açıklayan, uyumlu, olgun, birbiriyle ilişkili bir ifadeler bütünüdür. Ya da Oxford English Dictionary’nin tanımını alırsak bir kuram “bir grup olgu ya da görüngüyü açıkladığı ya da anlaşılır kıldığı düşünülen bir fikirler ve ifadeler sistemi ya da şablonudur; gözlem ya da deneyle desteklenmiş ya da yerleşmiş ve bilinen olguları anlaşılır kıldığı söylenen ya da kabul edilen bir hipotezdir; bilinen genel yasalar, ilkeler, bilinen ya da gözlemlenmiş bir şeyin nedeninin ifadesidir”. Dolayısıyla atom kuramı, kuantum kuramı ve levha tektoniği kuramı sırf spekülasyon ya da görüş değillerdir; (sigaranın kansere yol açtığı hipotezi gibi) hatta iyi desteklenmiş hipotezler de değillerdir. Her biri delillerle kuvvetle desteklenmiş çok çeşitli olguları anlaşılır kılan, iyi işlenmiş, birbiriyle ilişkili fikirler bütünüdür. Bir kuram bir ifadeler ağı olduğundan, genellikle tek bir kritik deneye dayanarak kabul edilmez ya da çürütülmez (basit hipotezlerin başına ise sıklıkla bu gelir). Bunun yerine kuramlar, yeni görüngüler ve gözlemlerle karşılaştıkça evrilirler; kuramın bazı parçaları atılır, düzeltilir, eklemeler yapılır. Örneğin kalıtım kuramı başlangıçta Mendel yasalarından parçacıklı karakterlerin kalıtımı, baskınlık ve farklı karakterleri etkileyen “etmenler”in (genlerin) bağımsız ayrılımından ibaretti. Kısa süre içinde baskınlık ve bağımsız ayrılıma ilişkin aykırı durumlar bulundu, ama parçacıklı karakterlerin kalıtımın çekirdek ilkeleri kaldı. Genetikçiler, yirminci yüzyıl boyunca bu çekirdeği işleyerek, ona eklemeler yaparak Mendel’in düşünebileceğinden çok daha karmaşık ve ayrınıtılı bir kalıtım kuramı geliştirdiler. Kuramın bazı kısımları son derece iyi oturtulmuştur, başka bazılarıysa hala iyileştirmeye açıktır. Kalıtımın ve gelişimin mekanizmaları daha da anlaşıldıkça pek çok ekleme ve değiştirme olması beklenebilir. Yukarıdaki tartışmanın ışığında evrim bir bilimsel olgudur. Ama evrim kuramıyla açıklanır. Türlerin Kökeni’nde Darwin iki büyük hipotez ortaya koymuştur. Biri –değişiklikler yoluyla– ortak bir atadan türeme hipotezidir (kısaca değişikliklerle türeme). Bu hipotezi “evrimin tarihsel gerçekliği” olarak da anacağım. Diğer büyük hipotezi de, Darwin’in değişikliklerle türeme için önerdiği nedendir: Doğal seçilim kalıtsal çeşitlilik içinden ayıklama yapar. Darwin, evrimin tarihsel gerçekliği –yani ortak bir atadan değişerek türeme– için fazlasıyla delil sağladı. 1859’da bile bu görüşün epey desteği vardı. Yaklaşık 15 yıl içinde birkaç bağnaz dışında tüm biyolojik bilimciler bu hipotezi kabul etmişlerdi. O günden beri paleontolojiden, biyocoğrafyadan, karşılaştırmalı anatomiden, embriyolojiden, genetikten, biyokimyadan ve moleküler biyolojiden yüzbinlerce gözlem bu görüşü destekledi. Kopernik’in Güneş merkezlilik hipotezi gibi, ortak bir atadan değişiklerle türeme hipotezi de uzun süredir bilimsel bir olgu statüsündedir. Nasıl ki bir kimyacı suyun hidrojen ve oksijenden oluştuğunu gösteren bir makale yayınlamaya çalışmazsa, bugün hiçbir biyolog da “evrim için yeni kanıtlar” konulu bir makale yayınlamayı düşünmez. Yüz yılı aşkın bir süredir, bilimsel çevreler bunu tartışılacak bir konu olarak görmemektedir. Darwin, evrimin nedeninin kalıtsal çeşitlilik üzerindeki doğal seçilim olduğu hipotezini öne sürmüştü. Argümanı mantığa ve çok çeşitli dolaylı delilin yorumuna dayanıyordu ama doğrudan hiç delili yoktu. Kalıtımın anlaşılmasının ve doğal seçilim delillerinin hipotezini tam olarak desteklemesi için 70 yıldan daha uzun bir süre geçmesi gerekecekti. Üstelik bugün biliyoruz ki evrimin Darwin’in fark ettiğinden daha fazla nedeni vardır ve doğal seçilim ve kalıtsal çeşitlilik onun sandığından daha karmaşıktır. Bu kitabın büyük kısmı evrimin nedenlerine ilişkin bugünkü anlayışımızı oluşturan mutasyon, rekombinasyon, gen akışı, yalıtım, rastgele genetik sürüklenme, doğal seçilimin çeşitli biçimleri ve başka etmenlerden oluşan karmaşık düşünceler bütününe ilişkindir. Evrimin nedenleri hakkındaki bu birbiriyle ilişkili düşünceler ağı evrim kuramı ya da evrimsel kuramdır. Bu “sırf spekülasyon” değildir; çünkü tüm fikirler delillerle desteklenmiştir. Bir hipotez de değildir. Çoğu iyi desteklenmiş bir hipotezler bütünüdür. Yukarıdaki bölümde tanımlandığı anlamda, bir kuramdır. Bilimdeki tüm kuramlar gibi, tam değildir. Tüm evrimin nedenlerini henüz bilmiyor olduğumuz ve bazı ayrıntılar sonradan yanlış çıkabileceği için… Ancak evrimin ana ilkeleri o kadar iyi desteklenmiştir ki, çoğu biyolog bunları büyük bir güvenle kabul eder. www.evrimcalismagrubu.org  

http://www.biyologlar.com/hipotez-olgu-ve-bilimin-dogasi

Bakterilerde Metabolizma

Üst organizmalardan farklı olarak bakterilerde görülen metabolik tipler büyük bir çeşitlilik sergiler. Metabolik özelliklerin bir bakteri grubu içinde dağılımı geleneksel olarak onların taksonomisini tanımlamak için kullanılmıştır ama bu özellikler çoğu zaman modern genetik sınıflandırmaya karşılık gelmez. Bakteriyel metabolizmayı besinsel gruplara göre ayırırken üç ana kıstas kullanılar: büyüme için kullanılan enerji türü, karbon türü ve elektron vericisi. Solunum yapan mikroorganizmalar için kullanılan bir diğer kıstas, aerobik veya anaerobik solunum için kullanılan elektron alıcılarıdır. Bakterilerde karbon metabolizması ya heterotrofiktir, organik bileşikler karbon kaynağı olarak kullanılır veya ototrofiktir, yani hücresel karbon, karbon dioksitin karbon fiksasyonu elde edilir. Tipik ototrofik bakteriler arasında fototrofik siyanobakteriler, yeşil kükürt bakterileri ve bazı mor bakteriler sayılabilir, ama pekçok kemolitrofik türler de, örneğin azotlayıcı ve kükürt yükseltgeyici bakteriler de bu grupta yer alır. Bakterilerin enerji metabolizması ya fototrofiye, yani ışığın fotosentez yoluyla kullanımına, ya da kemotrofiye, yani enerji için kimyasal bileşiklerin kullanımıdır ki bu bileşiklerin çoğu oksijen veya ona alternatif başka elektron alıcıları yoluyla yükseltgenir (aerobik veya anaerobik solunum). Nihayet, bakteriler ya inorganik ya da organik bileşikler elektron vericileri kullanmalarına göre, sırasıyla, litotrof veya organotrof olarak siniflanirlar. Kemotrofik organizmalar, hem enerji korunumu (solunum veya fermantasyon ile) hem de biosentetik tepkimeler için bu elektron vericilerini kullanır, buna karşın fototrofik organzmalar onları sadece biyosentetik amaçla kullanırlar. Solunum yapan organizmalar enerji kayanğı olarak kimyasal bileşikler kullanırlar, bunun için elektronlar bir yükseltgenme-indirgenme (redoks) tepkimesi ile indirgenmiş bir substrattan bir son elektron alıcısına taşınır. Bu tepkimenin açığa çıkardığı enerji ile ATP sentezlenir ve metabolizma yürütülür. Aerobik organizmalarda oksijen elektron alıcısı olarak kullanılır. Anaerobik organizmalarda nitrat, sülfat veya karbon dioksit gibi başka inorganik bileşikler elektron alıcısı olarak kullanılır. Bunlar sonucunda ekolojide büyük önem taşıyan denitrifikasyon, sülfat indirgenmesi ve asetogenez süreçleri meydana gelir. Kemotroflarda, bir elektron alıcısının yokluğu halinde, bir diğer olası yaşam yolu fermantasyondur, bunda indirgeniş substratlardan elde edilen elektronlar yükseltgenmiş ara ürünlere aktarılarak fermantasyon ürünleri meydana getirir, örneğin laktik asit, etanol, hidrojen, butirik asit gibi. Substratların enerji seviyesi ürünlerinkinden daha yüksek olması sayesinde fermantasyon mümkün olur, böylece organizmalar ATP sentezler ve metabolizmalarını çalıştırırlar. Bu süreçler, çevre kirlenmesine olan biyolojik tepkilerde de önemlidirler: örneğin sülfat indirgeyici bakteriler, cıvanın çok toksik şekillerinin (metil- ve dimetil-cıva) üretiminden büyük ölçüde sorumludur. Solunum yapmayan anaeroblar fermantasyon yoluyla enerji üretip indirgeyici güç elde ederler, bu sırada metabolik yan ürünleri (biracılıkta etanol gibi) atık olarak salgılarlar. Seçmeli anaeroblar (fakültatif anaeroblar), içinde bulundukları çevresel şartlara göre fermantasyon ile farklı elektron alıcıları arasında seçim yaparlar. Litotrofik bakteriler enerji kaynağı olarak inorganik bileşikler kullanırlar. Yaygın kullanılan elektron vericileri hidrojen, karbon monoksit, amonyak (nitrifikasyona yol açar), feröz demir ve diğer indirgenmiş metal iyonları, ve bazı indirgenmiş kükürt bileşikleridir. Metan gazı metanotrofik bakteriler tarafından hem bir elektron kaynağı hem de karbon anabolizmasında bir substrat olarak kullanılması bakımından dikkat çekicidir. Hem aerobik fototrofi hem de kemolitotrofide, oksijen nihai elektron alıcısı olarak kullanılır, anaerobik şarlarda ise inorganik bileşikler kullanılır. Çoğu litotrofik organizma otortorfiktir, buna karşın organotrofik organzmalar heterotrofiktir. Karbon dioksitin fotosentezle fiksasyonuna ek olarak bazı bakteriler, nitrojenaz enzimini kullanarak azot gazını sabitlerler (azot fiksasyonu). Çevresel olarak önemli olan bu özellik, yukarıda sayılmış metabolik tiplerin herbirindeki bazı bakterilerde görülür ama evrensel değildir.

http://www.biyologlar.com/bakterilerde-metabolizma

Biyoinformatik Ders Notları

Biyoinformatik Nedir? * Bilgisayar olmadan işleyip veri toplayamayacağımız işlemlerde kullanmak amacı ile ortaya çıkmıştır. ilk insan genom projesi ile başlamıştır. Biyoinformatik, biyolojik sorulara cevap verebilmek amacı ile bilgisayarların bilgisayar yazılımlarının ve biyolojik verilerin birleşmesinden oluşan bir daldır. örneğin 3 milyar nükleotid vardır insan genomunda 3 milyar nükleotid de el ile yazılamayacağından dolayı biyoinformatiğe ihtiyaç duyulmuştur. * Fakat bilgisayarın hızla gelişmesiyle sadece biyoinformatiğin konuları değil her türlü bilgi bilgisayara işlenir oldu. ** Biyoinformatikten faydalanan bilim dallarını şöyle sıralayabiliriz? • Moleküler Biyoloji • Genomik • Fonksiyonel genomik • Sistem Biyolojisi • Protein mühendisliği • Farmasötik araştırmalar • Tıp • Ekoloji/ Populasyon genetiği * Proteinler neden katlanıyor? Proteinlerin enzim substart ilişkisinde 3 boyutlu yapıyı gerçekleştirmek için diyebiliriz. ** Biyoinformatiğin işlevsel temelini oluşturan unsurlar nelerdir? •Bilginin depolanması •Bilgiye ulaşma •Bilgiyi analiz etme * Biyoinformatikte bilgiye veritabanları vasıtasıyla ulaşıyoruz en çok kullanılan ve bizim şimdiye kadar gördüğümüz veri tabanları NCBI: Genel bir veri tabanı Pubmed : Tıbbi biyolojik bilimler OMIM: Genetik temeli oluşturan haritalama ve genetik bilgi örneğin sigara duyarlılığı 5p15,33 yani okunuşu: 5. kromozomun kısa kolunun 15. bandının 33. alt bandı 23q 12,23 okunuşu 23. kromozomun uzun kolunun 12. bandının 23. alt bandı... Taxonamy: Tüm sistematiği her türlü ayrıntısına göre inceler. ** Veri tabanı programlarının bilgi kavramı için önemli sayılan özellikleri nelerdir. 1.Gelişen erişim olanaklarının elvermesi ile bilgi bölünmeden ortaklaşa kullanılabilmektedir. 2. Etkileşimli ortamlarda oluştuğu anda bilgisayara aktarılan bilgi sürekli olarak kendiliğinden artmaktadır. 3. Büyük boyutlardaki bilgi içerisinden gerekli olana erişim gibi oldukça önemli bir problemi ortadan kaldırmaktadır. 4. Veriyi işlemek, yeni bilgi oluşturmak, ondan yararlanabilmek veritabanları ile daha kolay hale gelmektedir. 5. Bilginin güncellenmesi, her her zaman en son durumu göstermesi veri tabanlarının önemli bir özelliğidir. ** Veri tabanının sorunları nelerdir? Vektoriyeldizilerde kirlilik (Yanlış ya da gereksiz veri girişi) Kalabalık (bir gene ait dizi parçasının biden fazla kez girilmesi) Aynı gene ait birden fazla EST (Expressedsequencetag) Bu problemlerin ortadan kalırılmasındagenom projelerinin ileri aşamalarını oluşturan UNIGENE, VecScreengibi projelerden faydalanılacaktır. kromozom nedir = DNA nı histon proteinleri etrafında sarılmasıyla, yoğunlaşarak oluşturduğu, canlılarda kalıtımı sağlayan genetik birim. gen nedir = anlamlı ve foksiyonel proteinler oluşturan DNA dizilerine denir. genom = Bir organizmadaki DNA'ların tümünü tanımlar. proteom = Bir organizmadaki proteinleri tümünü tanımlar. veritabanı nedir = Toplanan bilgileri işleyebilen, istenen sonuçları kolaylıkla hazırlayabilen bilgisayar programıdır. genomik = Genom ile ilgilenen bilim dalı proteomik nedir = Proteom ile ilgilenen bilim dalı ** Bilimsel makale nedir ? nasıl basılır ? Yapılan makalenin uluslar arası A- B- C sınıfına göre bu dergilerde yayınlanması gerekmektedir. Yayınlanmadan önceki aşamalarda makale yazılır dergiye gönderilir --- Dergide önce editör kontrolünden geçer-- eğer geçerse editör hakem heyetine gönderir-- hakem heyetinden geçerse geçer veya düzeltilip geçer veya geçmez daha sonra uygun bi sayısında full text olarak basılır. DNA mikroarreyleri, nükleik asitlerin hibridizasyon özelliklerinden faydalanarak farklı tipte doku ya da hücrelerde genom boyutunda DNA ve ya RNA moleküllerinin varlığı ve miktarını belirlemek için kullanılan bir teknolojidir. her gen 16-20 oligoniklootit ile ifade edilir Tam eş (PM) 25 er oligonüklootit ile ifade elilir. Hatalı eş (MM) oligo: Tam orta noktada yanlış baz taşıyan oligonüklootid. Oligo çifti: PM-MM çiftleri. Her gen için 16-20 oligo çifti bulunur. MM oligo dizaynı ile non-spesifik bağlanma miktarının ve arka plan gürültünün ölçülmesi amaçlanmıştır. DNA microarraylerin üretiminde genelde 3 tip teknoloji kullanılır. - Fotolitografi - Mekanik Mikro dağılım - Ink jets Temel Kullanım Alanları - Transkript miktarının tespit edilmesi (gen ekspresyon seviyesi analizi) - Genotiplendirme (SNP çipleri) - DNA kopya sayısının belirlenmesi - mRNA bozunum hızının ölçülmesi - Protein bağlanma bölgelerinin tanımlanması - Gen ürünlerinin hücre içi lokalizasyonunun tespit edilmesi Transkiriptom: bir yada bir grup hücre tarafından üretilen tüm mRNA moleküllerini ya da transkript varlığını ifade eden bir terimdir. her hangi bir organizmanın tüm transkript durumunu ifade etmek için kullanılabileceği gibi, belli bir hücre tipinde belli bir transkript içinde kullanılabilir. mRNA daki transkript seviyesi - Bulunduğu gelişim evresi - Bulunduğu hücre döngüsü - Hastalık ve sağlık durumlarının genetik seviyedeki etkileri - Tedaviye ve çevresel etkenlere karşı verilen biyolojik cevap. Bicroarrey teknolojisinin Transkriptom bilgileri ile - Kanser araştırmalarında - İmminolojik araştırmalarda - Kompleks metobolik araştırmalarda Kullanılır. **mRNA dan karşılığını alarak DNA nın kodunu çıkartıp oluşturulan DNA ya tanımlayıcı yani cDNA denir. ve mikroarray teknolojisinde kullanılır. PCR ile çoğaltılmış DNA fragmanları farklı metotlar kullanılarak çip yüzeyi üzerine sabitlenerek yapıştırılır. ** Microarrayda işaretleme yapan boyalar Cy3 kırmızı ışıma yapar Cy5 yeşil ışıma yapar. ** Çip/Slayt görüntüleme lazer ile nokta ışıma yapılarak gelen sinyal okunur ve konfokal mikroskop ile görüntülenir. ** Spotlardaki ışımanın şiddetine göre eğer spot yeşil ise yeşil ile işaretlenmiş olan gen diğerine göre fazla eksprese ediliyor demektir. eğer spot kırmızı ise kırmızı ile işaretlenmiş olan gen diğerine göre fazla eksprese ediliyor demektir. eğer spot sarı ise söz konusu gen yada transkript ediliyor anlamına gelir. ** Mikroarrey biyoinformatiği Teknoloji > Bilgisayar gücü > algoritma > Analiz araçları Microarray avantajları: - Aynı anda binlerce genin eksprepyonu hakkında bilgi verir. - Binlerce nokta kullanılarak tüm genom taraması ile detaylı bir genotiplendirme imkanı sunar. - Amaca yönelik olarak farklı dizayn edilebilir. - Laboratuar aşamaları kolay ve hızlıdır. - Teknolojisi ile gelişimini sağladığı biyoinformatik analiz yöntemlerini kullanarak oldukça fazla miktardaki verileri hızlı ve farklı şekillerde analiz edilir. Mikroarrey Önemli Noktaları: - Probun seçilmesi ve hedefin hazırlanması - Spotlamanın düzgün yapılması - Yüksek kalite ve saflıkta RNA izolasyonu - Kaliteli ve sabit işaretleme verimliliği - Housekeeping genler ile normalizasyona gidilmesi - Yeteri kadar tekrar kullanılması ** in slico: bilgisayar ortamlarındaki yapılan araştırma yöntemleri demektir. ** Hastalıklar poligeniktir. ** Moleküler tıp açısından 4 ana parametre bizi olduğmuz şey yapmaktadır bunlar: • DNA düzeyindeki ana genetik dizimiz • Gen ekspresyonu üzerindeki çevresel etkiler • Gen ekspresyonunu etkileyebilen olasılık fonksiyonları • Bireysel hücrelerin genomunu değiştirebilen viral enfeksiyonlar Biyoinformatik ve Dizi Karşılaştırmaları (BLAST) ** Dizilerin karşılaştırılması bize : Yeni geninizi daha iyi anlamak için benzer genleri başka türlerde lokalize etme konusunda fayda sağlar. ** 6. slayt 4 sayfadan dizi sorusu çıkabilir arkadaşlar?? ** BLAST belirli bir diziyi veritabanandaki diğer diziler ile karşılaştırmak üzere hazırlanmış bir algoritmik veritabanıdır. ** BLAST ile bir uygulama yaptığımızda - Hangi bakteri türünde amino asit dizisini bildiğim proteine benzer bir protein üretiliyor olabilir. - Dizinin elde ettiğim DNA nereden geliyor? - Yapısını yeni belirlediğim proteine benzer proteinleri kodlayan başka genler var mı? ** Benzerliği Belirlemede kullanılan Algoritmalar: - Needleman- Wunsch: Global hizalama algoritmasıdır. -Smith Waterman: Needleman a göre daha lokaldir. Maksimum sayıda eşleşme aranır. -BLAST: bu yöntem ise dizi veritabanından benzer olup aynı zamanda anlamlı olanları bulur. ** En yaygın bulunan 5 BLAST programı vardır? - BLASTN: nüklotidler içindir. - BLASTSP, - BLASTX, - TBLASTN, - TBLASTX: protein içindir. BLAST Analizinin Aşamaları: • Temel olarak üç aşama vardır: ekim, uzatma, ve değerlendirme. • Ekim– Eşleşmeye nerden başlanacağının belirlenmesi. • Uzatma– Ekim noktasından itibaren eşleşmenin uzatılarak ilerlemesi. • Değerlendirme– Hangi eşleşmelerin istatistiksel olarak anlamlı olduğunun belirlenmesi.

http://www.biyologlar.com/biyoinformatik-ders-notlari

Bitki Ütüleme veya Fotopresli Hızlı Kurutma Sistemi

Genelde 45 °C ve üzerindeki sicaklik dereceleri kurutmada uygun degildir. Bitkilerde fermantasyona sebep olan renk degisimlerine neden olur. Hizli kurutma ile renkler bozulmadan korunabilir. Bu sirada fermantasyon olayi aktif olmamali, çiçek renkleri zarar görmemelidir. Sicaklik iyi ayarlanmalidir. Örnegin; elektrikli ütü ile yapilacak bir islemde sicaklik seçimi “Sentetik” ayarinda olmalidir. Yani, sentetik kumasi eritmeyecek derecede olmalidir. Basit yöntem; filtreli kagitlar arasindaki bitkinin ütülenmesidir. Bunun için iki sert lifli kartona ihtiyaç vardir. Iki filtreli kagit arasina bitki yerlestirilmis halde bu sert lifli karton arasina konularak, hafif baski ile ütülenir. Filtreli kagittan çikan nem buharlasir. Daha sonra hepsi bütün olarak ters çevrilerek yeniden ütülenir, 20 dakika sonra bitkinin kuruyup kurumadigi kontrol edilir. Kesinlikle uzun süre fazla isi ile ütülenmemelidir, aksi halde bitki kirisir ve dalgali burusukluklar olusur. Elektrikli Fotopreste kurutma yöntemi; Bunda dolgu maddesi, iki filtreli kagit levha ve basit bir örgü bez ile kurutma isi yapilir. Fotopreste ayarlanabilir isi basamaklari vardir. Kurutma süresi her bitkinin su içerigine ve presin isisina göre yarim saatten bir saate kadar sürebilir. Kuruyan yüzeyin bombelesmesi yüzünden küçük bitkiler tercih edilir. Basarili ütü metodunda “Ön çalisma” için kalin, öz suyu bol bitkiler kullanila bilinir (Stehli und Brünner, 1981).

http://www.biyologlar.com/bitki-utuleme-veya-fotopresli-hizli-kurutma-sistemi

Bitki Fizyolojisi Bölüm 1

Fizyolojinin başlangıçı tohumun çimlenmesiyle başlar.Çünkü bitkilerin hayat devreleri spor ya da tohum faaliyetleriyle başlar.Çimlenme embriyodan ekolojik isteğe göre optimum koşullarda normal bitki yapılarını oluşturma yeteneğidir.Bir tohum gömleğinden radikula belirmesi çimlenmenin en önemli kısmıdır.Bu devrede sert koruyucunun engel olmaktan çıkarılması esnasında ise bir çok fizyolojik olayların başlamasıdır.Çünkü buradaki fizyolojik olayların sonucunda hücre bölünmeleri başlayıp tohumda büyüme dolayısıyla hacminde artma olacaktır.O halde radikula belirmesinden itibaren(çimlenmenin başlangıcı) henüz ayrıntısı bilinmeyen biyokimyasal(Fizyolojik) olaylar meydana gelmekle beraber bu olayların en önemlisi solunumun artmasıdır.Bu durumdan sonra çimlenmede 2. derecedeki metabolik aktivite enzim aktivitesinin artmasıdır.Burada faaliyet gösteren enzimlerin bir kısmı önceden tohumda vardır,bir kısmı da hücre tarafında sonra üretilmektedir.Bütün bunlar bize çimlenmeyle metabolik faaliyetlerin başladığı ve hücre için ihtiyacı olay her şeyi üretebildiği fikrini vermektedir.Örneğin çimlenme esnasında tohumda üretilen amilaz enzimi depo maddelerinin parçalanmasında önemlidir.Ayrıca RNA-az ve proteolitik enzimlerde çimlenme sırasında üretilen enzimlerdir.Tohum çimlendikten yaklaşık ½ saat sonra ,bu kez protein sentezinin aniden arttığı görülmektedir.Çünkü çimlenmeden yarım saat sonra mevcut hücrede polizomların sayısı aniden artar.Hücrenin bir iskeleti vardır ve hücrede bir bölgeden bir bölgeye geçiş kolay değildir.Hücrede proteinlere az ihtiyaç olduğu zamanlarda Ribozomda üretilen protein yeterliyken hücre tam inhibitörle karşılaştığında bu yeterli olmamaktadır. Çünkü hücredeki bu zehrin dışarı atılması için daha enzime ve proteine ihtiyaç olduğundan ve bunu da ribozomda üretilen protein yeterli olmadığından dolayı polizomlardaki protein üretimi aniden artar. Mevcut enzimler ve bunların aktivitelerindeki artış su alıp turgorunu artıran ve buradaki reaksiyonların endosperme doğru hareketlerini de beraberinde getirir. Endospermdeki besinler parçalanıp eritilerek embriyonun beslenmesi için aktive edilir. Bir tohumun hem çimlenmeden önce hem de çimlendikten sonra biyolojik polimerler tarafından deneye tabii tutulursa çimlendikten sonra bunların atıldığı görülür.Söz konusu azalma çimlenmenin ilk evrelerinde maksimumdur (Bölünme o devrede fazla olduğu için). Tohumda fizyolojik faaliyetlerin gerçek anlamda başlayıp normal bir çimlenme olması iki faktöre bağlıdır.Bunlar: • İç Faktörler: 1. İç faktörün asıl özelliği tohumun biyolojik yapısı ve ekolojik isteği tarafıdan tayin edilir.Bundan sonraki endospermdeki enzim ve hormonların bozulmamış olması,patikte buna tohumların canlılığını sürdürmesi denir.Bu durumda tohum dormansi durumundadır. 2. Tohumları olgunlaşmış olması 3. Embriyonun yaralanmamış ya da zedelenmemiş olması. 4. Tohum parazitleri ve zararlıları tarafında yaralanmamış olması. 5. Büyüme ve gelişme esnasında oluşacak tohum kabuğunun endospermi koruyacak şekilde güçlü çimlenmeye engel olacak şekilde bir yapı göstermesi gerekir. • Dış faktörler: Dış faktörler tohumun çimlenmesinde iç nedenlere oranla çok daha etkili ve yaygındır.Bu da habitat ve nişin ekolojik koşullarını kapsar.Bunlardan en önemlisi de tohumun çevresinde yeterli nem kullanabilir ve oksijene ulaşması gereklidir.Yukarıdaki faktörler optimum koşullarda olmazsa tohum tohuma geçemez. İç faktörler bazen genel olarak çimlenme için dış faktörler yeterli olsa da uygun olmuyor. Aynı durum bitkilerin diğer organlarında da görülebilir.Ama esasen dış koşullar dikkate alınmadan iç faktörler gelişmeye engel olabilmektedir.O yüzden çevre koşullarının uygun dönemi başlamasına rağmen bir çok tohum çimlenmeye geçmiyor.Bu olaya çimlenme durgunluğu anlamındaki dormansi denir. Tohumda çimlenmenin olmaması her zaman dormansi değildir.Çünkü çimlenme sırasındaki büyüme ve gelişme döneminde çeşitli nedenlerle gerileme olabilir.Dormanisinin doğal ve kültür bitkilerinde spesifik durumları vardır. Doğal bitkilerde yukarıda açıklanan içsel nedenlerle,kültür bitkilerinde ise tohumun derinde kalması,çeşitli engelleyiciler,kimyasal ilaçlar vs. çimlenmeyi engelleyebilir.O yüzden tohum ya da başka bir bitki organındaki pasifliği dormansi olarak nitelendiremeyiz. Çevre koşullarının etkisiyle bir bitki organının gelişmesindeki gecikme daha çok dinlenme hali bu sözcük ile ifade edilir. Sonuç olarak bitkilerdeki her dinlenme dormansi değil,ancak her dormansi bir dinlenmedir.Dormanside yukarıdaki iç nedenlere ilaveten tohum kabuğunun su ve gazlara karşı geçirimsiz olması kabuğun mekanik olarak embriyonun gelişimini engellemesi ve bazı doğal inhibitörlere sahip olmasıdır.Dış etkenlerden çimlenmede rol oynayanlar nem ve suyun etkisi olup bitki dünyası bu bakımdan iki guruba ayrılır.Bunlardan bir grubunun çimlenmesi için toprak nemi yeterlidir.Oysa aynı olay için diğer gruba aktif su gereklidir.Halbuki habitatta her ne kadar toprak suyu ve nem birbirinin tamamlayıcısı ise de hem aktif suyun minimum miktarının azalmasıdır. 1)Su ve Nemin Etkisi:Çoğu bitki tohumunun çimlenmesi için yeteri kadar su gerekmektedir.Ancak bazı tohumlar toprağın su kapasitesi %50 bazılarında %75 olduğunda çimlenir.Tohumları çimlenmesi için niş suyunu %50-75 olmalıdır.Buna rağmen tüm tohumlar tarla kapasitesinde su absorbe edebilirler.buna göre tohumların çimlenme suyunun tarla kapasitesi olduğu söylenir.Kuru topraktaki tohumların suyu emme kuvveti ne kadar fazla olursa olsun aldıkları su şişmelerine yeterli olsa bile ancak kısmen çimlenme sağlanır. Görülüyor ki ortamın osmotik basıncı ile çimlenme şansı paralellik gösterir.Tohumlara sağlanan fazla ve sürekli su çimlenmeyi hızlandırır.Ancak kademeli olmayan sürekli artış sınırlayıcıdır.Genel olarak havada %90 nem olduğunda tohum sadece bundan 2 gün faydalanabilir.Tohumun aktif suyla ıslanması 1-1.5 gündür.Uzayan süre ket vurucu olabilir.Burada tohumun emdiği su enzim faaliyetleri için ortam sağladığı gibi çözünen protein,yağ vs. besin maddelerini embriyonun büyüme noktalarına taşınmasını sağlar. Tohumdaki su alımı kabuktaki hidratasyon suyunda biraz yükselmiş atmosferden alınır. 2)Sıcaklığın Etkisi: Sıcaklığın çimlenmeye özel etkisi tam anlaşılamamasına rağmen su varlığında reaksiyonların başlaması ve hızına,suyun absorbsiyonuna ve tohumun oksijen alımına önemli etkileri olduğu kesindir.Bitkilerde türler arasında olduğu gibi aynı türün diğer bireyleri arasında görülen sıcaklık farkı isteği(niş durumunda) tohumlardan ziyade olgunluk çağında daha kolay belirlenmiş bitki yaşı ile depolama şartlarına bağlanmıştır.Oysa bitkilerin tohumdan tohuma kadar habitatta eko-fizyolojik koşullarda yaşar.Aynı türün bireyleri farklı sıcaklıklardaki habitatlarda yaşabiliyorsa bu onların ekolojik koşullara karşı toleransın sonucudur.Çünkü daima ekolojik koşullar optimum koşullar için gösterilir.Genel olarak serin iklim bitkileri sıcak iklim bitkilerinde daha düşük sıcaklıkta çimlenir.Bu nedenle kozmopolit bitkiler dünyanın %50’sinde yaygındır. Bitkilerin tohum çimlenme anındaki sıcaklık isteğini karmaşık hale getiren yetişme dönemidir.Örneğin,Colchium,Crocus,Muscari,Gagea vs. gibi bitkiler kar tabakası çözündüğü an;Phlomis,Cardus,Carthamus vs.sıcaklık 14-25oC’ye arttığında;Cyclamen,Muscari ve Gagea bazı türleride 8-14oC’de çimlenir.Bu gruplardan ilki ilkbahar geofiti,ikincisi yaz geofitleri, üçüncüsü ise sonbahar geofitleri denir.Genel olarak bir çok serin iklim bitkisi 20oC,sıcak iklim bitkileri35oC’de çimlenir.Bu iki durumdan meydana gelen sapmalar.gece-gündüz arasındaki sıcaklığı farkı çimlenmeye teşvik etmesinden kaynaklanır. 3)Işığın Etkisi:Bilhassa doğal bitkiler çimlenmede ışık gereksinimi bakımından ışığı seven,ışığa ihtiyat duyan ve fazla ışıktan zarar gören şekline üçe ayrılır.Bilhassa tohumda ışığa karşı davranış embriyo sitoplazmasındaki bir foto-kimyasal sistemin fitokrom denen bir pigmenti üretmesinden anlaşılır.Fitokrom pigmenti fotoreversibl(Dönüşebilen ışıkları emebilen) olduğu için çimlenmede iş yapan eko-fizyolojik olayların ışıkta ya da karanlıkta olduğuna karar veren metabolik kontrol düğmesidir.Örneğin fitokrom kendisi ışıkta çimlenen karanlıkta çimlenmeyen tohumlar için özellikle kırmızı ışığı emerken,bunun tersinde ışık emilimini engeller.Dolayısıyla bu metabolik anahtar alınacak ışığın miktarını ayarladığı için bitki dünyasında çok ışık kullanan(uzun gün bitkileri),az ışık kullanan(kısa gün bitkileri) ve sadece difüz ışık kullanan(gölge bitkileri)şeklinde üçe ayrılır.Çimlenmede etkin olan en önemli faktör ise vernalizasyon olayıdır.Deneysel çalışmalar çimlenmenin sadece ışıkla değil düşük sıcaklık periyodu ile ilgili olduğu görülmektedir.Çünkü bu olayla oluşan uyartı sadece soğuk periyotlarda oluşmuştur.Uyarıya neden olan faktörler ise soğuk ve ışığın etkisiyle üretilen ve özel uyarıcı görev yapan vernalin hormonudur.Bu olayın anlamı ilk baharlaştırma ya da düşük sıcaklıkta akımın(indüksiyon) hızlandırılması anlamına gelir. Bitkilerde vernalizasyonun en açık görüldüğü yer vejetasyon konileri ve tohumlardır. Vernalin hormonu hem tohumlarda oluşup embriyo sitoplazmasının metabolizmasında rol oynar hem de vejetasyon konisinden alınan uyartının diğer kısımlara aktarılmasında rol oynar. Olay her bitkide az çok belli bir indüksiyon ısısıyla bu ısının belli bir etkinlik süresi (vernalizasyon süresi)vardır ve türe göre değişir.Buna göre deneyler bitkileri vernalizasyon açısından da obligat ve fakültatif şeklinde ikiye ayrılmıştır.Obligatlar uzun gün bitkileri olup soğuk periyot şarttır.Diğerlerinde çimlenmeyi hızlandırmasına karşın eksikliliğinde de çiçeklenme olabilir.Ancak tohumların tohuma geçmesi garanti değildir. Deneyler tohum halde vernalize edilen türlerin soğuk periyot ihtiyacını fakültatif,fide ve sonraki dönemlerde vernalize edilenlerin ise obligat olması gerektiğini ortaya koymuştur. Örneğin çevremizde gördüğümüz buğdaylar ekimde tarlaya atılır.Su periyodu gelinceye kadar fide olur.Soğuk periyodu öyle geçirir. 4)Oksijenin Etkisi:Çimlenmede tohumdaki besin maddelerinin oksidasyonu içi oksijen gerekmektedir.Çünkü bu katabolik olayla açığa çıkacak enerji embriyonun hayatını sürdürecek en önemli kaynaktır.Burada hücre büyüdükçe embriyo büyür ve oksijen ihtiyacı artar.Çoğu tohumlar kuru iken geçirimsizdir.Fasulye ve bezelye tohumları bu konuda gaddardır.Tohumlar su geçirmeye başladığı zaman oksijen girişi de başlar.Fakat tohumdaki hidratasyon suyu çimlenmeye ket vurucu yöndedir. O halde çimlenmenin gerçekleşmesinde tohumun en az %20 oksijen temas halinde olması gerekir.Doğal bitki tohumları derinlere gömüldüğünde ve oksijen almadığı sürece çimlenmez,fakat hayatta kalırlar.Ekosistemin dengesi için son derece önemli olan tohumlar her durunda sisteme en önemli katkıyı yapmaktadır.Ancak işleme karıştırma,erozyon ya da başka bir yolla toprak yüzeyine yaklaşmada çimlenir.O halde çimlenmede nişin durumu çok önemlidir(tohum yatağı).Nişte nem artınca nem azaldığında bu ikisini birlikte kapsayan topraklar iyidir.Sonuçta yukarıda belirtilen faktörlerin bir arada bulunması halinde nişteki tohumun hava almasıyla kuru ağırlığı %60-100 artarak çimlenir.Olayda en önemli rolü şişme göstermiştir.Yani su metabolizmasıyla ilgili olan olaylar tamamlanmıştır(difüzyon,osmoz). Sonra tohumda depolanmış ilk şekerler suda erir,nişasta ise diastaz enziminin etkisiyle su alarak maltoza dönüşür.Buradaki maltozda maltaz enziminin etkisiyle glikoza çevrilir.böylece glikoz difüzyon-osmoz kuvvetleriyle hücreden hücreye geçerek yeni uyanmaya başlayan fideciğe ulaşır ve orada ilk etapta selüloz ve nişasta gibi maddeleri teşkil eder.Proteinler ise başka enzimlerle aminoasitler ve amidlere parçalanarak fidecik büyümesinde değişik şekilde kombine olarak farklı proteinlerin yapımı için kullanılır.Özellikle yağlı tohumlardaki yağlarda lipaz enzimiyle yağ asitleri ve gliserine parçalanır. Bunlara da çeşitli kimyasal değişikliklerle şeker yağların yapımında kullanılır. Çimlenmedeki fizyolojik faaliyetler ve büyümede kullanılan enerji,solunuma alınan oksijen vasıtasıyla karbonun Karbondioksite,H’nin su haline gelmesiyle(biyolojik oksidasyon) saptanır.Bu nedenle çimlenme halindeki bir tohumda solunum,kuru haline göre yüzlerce kat fazladır.Örneğin 1kg buğday çimlenirken 1 m3 havanın içerdiği oksijenin yarısını kullanır.Böylece solunumla oksijen devreye girince başlayan büyüme ve gelişme olaylarında diğer elementlerde ihtiyaç haline gelir.Tohum,kökleriyle aktif su alımına geçmeden önce ihtiyaç duyduğu en önemli elementler nitratlardır.Çünkü nitratlar tohum fide haline geldiğinde yaprağı oluştururken yapacağı fotosentez olayını düzenlemek için ışığa karşı istek ve hatta tohumdaki çimlenmeyi artırırken vejetatif metabolizmayı da artırmaktadır.Çimlenmede nitratlar sınırlayıcıdır.Çimlenme bittikten sonra büyüme ve gelişme olaylarını 3 temel gruba toplamak mümkündür: 1. Metabolik olaylar fizyolojisi 2. Büyüme ve gelişme fizyolojisi 3. Hareket fizyolojisi O halde madde değişimi olan metabolizmayı metabolizma fizyolojisi diğerlerini ise 2 ve 3. maddeler inceler. 1)Metabolizma Fizyolojisi:Burada bitki hücreleri ve dokuları fiziksel ve kimyasal değişiklerle yönlenir.Su,gaz ve eriyiklerin bitkilerce nasıl alındığını ;bunların bitkilerde hücreler dokular ve organlar arasında nasıl taşındığını;besin ve kompleks bileşiklerin (hormonlar)nasıl sentezlendiğini;büyüme ve gelişme olaylarında ihtiyaç enerjisinin sentezlenen bileşiklerden nasıl sağlandığını;yeni dokuların nasıl yapıldığını ve vejetatif bazı dönemlerinde üreme organlarının teşekkülüne ne zaman başladığını araştıran bir fizyoloji koludur.Bu temel olaylar iki yönde ele alınır: a) AnabolizmaSentez ya da asimilasyon olaylarını gerçekleştiren bu devre bitkilerin değişik yollarla ortamdan aldıkları ham besin maddelerini bünyelerinde yararlı bileşikler yapımı olayıdır.Yani metabolizmanın yapıcı kısmıdır. b) KatabolizmaParçalanma olayları olup bitki biyolojik dinanizmde gerekli enzimce zengin bileşiklerin kullanılması için bileşiklerin parçalanması olayıdır.Yani metabolizmanın yıkıcı kısmıdır. Metabolizma fizyolojisinde en önemli unsur bitkileri oluşturan elementlerdir ve ayrıntılı incelenmeleri gerekmez.İlkel analizle elde edilen sonuçlar metabolik olaylar hakkında zaten yeterli bilgi veriyor.Tüm canlı hücrelerinde olduğu gibi bitki hücrelerinde de su maksimum düzeyde bulunur.Alınan suyun çoğu atmosfere verilir.Bir bölümü dokularda su olarak kalır ve diğer kısmı da değişik bileşikler yapmakta kullanılır.Bitki nişinde suyun az ya da aşırı bulunması gelişimi diğer faktörlere oranla daha fazla etkiler.Su azlığında yeterli turgor sağlanmaz.Hücrelerin büyüyüp gelişmesinde turgor basıncıyla meydana gelen reaksiyonlar sonucu sağlana enerjiye bağlı olduğu için biyolojik dinanizm(BD) minimuma iner.Yine bitkilerde su azlığında yaşlı organlardan gençlere su nakli yapılarak bu ekstrem koşulun önüne geçilir.Su noksanlığında bitkinin ilk kontrolü stomalara müdahale etmektir.Su fazlalığında akuatik bitkiler hariç diğerlerinin gelişimini olumsuz etkiler.örneğin nişte biriken su toksik etkisi yapan maddeleri artırır,solunum için gerekli oksijeni azaltır.Daha da önemlisi bitki topraktan nitratları alamaz.Böylece kök gelişmesi azalır.Bu da genel metabolizma düşüşüne neden olduğundan kök gelişmesi nedeniyle verim düşer.Bitki gevşek yapılı olur ve direnç azalır.Bitkideki su miktarı türe,aynı türün farklı organlarına ,aynı organların günün değişik zamanlarındaki durumuna ve mevsimlere,bitkinin yaşına,toprağın tarla kapasitesine, absorbsiyon transporasyon miktarlarına ve toprağın mineral zenginliğine göre daima değişkendir.Bir çam tohumuyla yapılan deneyde tohum çimlenmeden önce %7 su içerirken, çimlenme esnasında bu miktar %172 artar.Meritemlerde %90 su içeren kök ve yumrularda daha az su bulunur.Bitkilerdeki su kapasitesinin en değişken dönemi günün farklı saatleri ve mevsimleridir.Bu durum tamamen kuru madde artışı ve kuru madde işgalinden dolayı su miktarı azalmasından kaynaklanır.Ama özel olarak günü farklı saatlerindeki değişme ise suyun absorbsiyonu ile transporasyonu ile alakalıdır.Güneşli günlerde sabah erkenden öğlene doğru transporasyonda da artış olur.Bu olayın temelinde sabahın erken saatlerinde bitkinin suyu taşıma güçlülüğü vardır.Yani absorbsiyon yetersizdir

http://www.biyologlar.com/bitki-fizyolojisi-bolum-1

ÜLKEMİZDE VE DÜNYADA BİYOLOJİK SİLAHLARA KARŞI AŞI GELİŞTİRME ÇALlŞMALARI

18 nci Yüzyılın sonlarında insanlık tarihinin en büyük buluşlarından olan mikroskop, aşı ve serum bulunmuştur. Bu biyolojik buluşlar sonucu bağışıklık ve aşılarla ilgili çalışmalar başlamış ve günümüze kadar gelişerek devam etmiştir. Insan aşılarının tarihi gelişimi şöyle özetlenebilir. Yeni Bağışıklık kazandırma ve uygulama programları çerçevesinde öncelikli araştırma alanları şöyle özetlenebilir. a. Geliştirilmesi Gereken Aşılama Türleri : (1) DNA aşıları (2) Mukoza (salgı hücrelerinin oluşturduğu epitel tabaka) bağışıklık sistemleri (3) Kombine aşılar (4) Terapötik (tedaviye yönelik) aşılar. b. Geliştirilmesi Gereken Uygulama Türleri : (1) Kontrollu salınım sistemleri (2) Subunit aşı türleri (3) Kurutulmuş aşı sistemleri (a) Parenteral (damar, kas içi, deri altı yolla) (b) Mukoza yolla. Ülkemizde aşı üretimi son derece yetersizdir. Aşı ve serum ihtiyacının çoğu ülke dışı kaynaklardan sağlanmaktadır. Klasik anlamda aşı üretien tek kurumumuz Refik Saydam Hıfzıssıhha Merkezi Başkanlığı olup, klasik çocukluk çağı rutin aşıları üretmektedir. Bu çocukluk çağı aşıları BHM"lerine karşı oldukça yetersiz kalacaktır. Yapılan bir araştırmaya göre özellikle gelişmiş ülkelerde BHM"leri konularında araştırma ve geliştirme yapan çok iyi düzeyde 43 tesisin bulunduğu bilinmektedir. Dünyada 70 adet BHM"si üretim imkanına sahip, 106 adet de kısıtlı miktarda bu imkana sahip tesisi ve aşı üretimi gerçekleştiren toplam toplam 163 tesisin varlığı beyan edilmiştir. Kanada, ingiltere ve Amerika istisna gerçekçi tanımlanmış BHM"si tehditlerine karşı, yeterli imkan ve kabiliyeti ortaya koyamamıştır. ABD Ordusunda aktif görevdeki askeri personele uygulanan aşılama geniş ve güvenli bir uygulama örneğidir. Amerikan ordusu için özel olarak üretilen bu aşılar piyasada bulunmamaktadır. Ayrıca ""Geliştirilmiş Aşılar"" (Deployment Vaccines) adı altında özel görevlere gönderilecek personellere özel aşılar uygulanmaktadır. Örneğin Körfez harbi sırasında özel tim personeline Anti-botulinum aşısı yapılmıştır. Aşı olan personel arasında çok şiddetli yan etkiler meydana gelmiş, Körfez harbinden sonra ortaya çıkan ""Gulf Sendromu"" belli açılardan bu aşıya bağlanmıştır. Geliştirilmiş Aşılar içinde tifo, veba, kolera, kuduz, menenjit, hepatit B, sarı humma ve Japon Ensefalit aşıları bulunmaktadır. Yine ABD Ordusunda ekzotik hastalıklara karşı ge!iştirilmiş deneme aşamasında aşılar da bulunmaktadır (USAMRIID/ Maryland). Bu aşılar arasında Venezuella Beygir Ensefaliti aşısı, Doğu Beygir Ensefaliti aşısı, Tularemie, Q-Ateşi, Rift Vadisi Ateşi, Botulinum toksini A,B,C,D,E (poyvalan) ve Şarbon aşısı sayılabilir. Aşı teknolojilerinin gelişmesi sonucu çok değerli ucuz emin ve güvenilir tek doz uygulamalı DNA aşılarının üretimini gelecekte gündeme getirecektir. Ancak şu anki teknolojik bilgiler böyle bir aşının üretimini mümkün kılmamaktadır. Gelişmiş bir çok ülkenin en üst düzey yöneticilerince de ifade edildiği gibi 2000"li yılların BIOTERÖR yılları olacağına dair ifadeler vardır. Bu nedenle gelişmiş ülkeler 2000 yılı için NBC Savunma planlarına bu tehdidi karşılamaya yönelik olaraK biyolojik harp maddelerine karşı bağışıklık ve aşı programları üretimi amaçlı projeler geliştirmekte ve uygulamaya sokmaktadırlar. Tehdit değerlendirilmesi neticesinde kullanıcının elinde olduğu bilinen veya tahmin edilen BHM"lerine karşı aşı programı geliştirilmesi, saldırı esnasında oluşabilecek zafiyetleri ve zayiatı en aza indirerek muharebe etkinlığinin sürdürülmesini sağlayacaktır. Dr. Erol DEMİR

http://www.biyologlar.com/ulkemizde-ve-dunyada-biyolojik-silahlara-karsi-asi-gelistirme-callsmalari

Kıkırdaklı Balıklar

İskeletleri kikirdak yapida oldugundan bu hayvanlar, kikirdakli baliklar anlamina; Chondrichthyes olarak isimlendirilmislerdir. Kikirdak yapidaki iskelet ilkel bir özellikten çok dejeneratif bir özellik olarak kabul edilir. Çünkü bunlarin en yakin akrabalari olan Plaucodermi fosillerine devoniende rastlanmasina karsin, ilkel kemikli baliklarin fosilleri siluriende bulunmustur. Iskeletin bazi kisimlarinda kalkerlesme görülmesine karsin bu sinifin hiç bir örneginde kemik yapiya rastlanmaz. Kordalilar içerisinde hareketli çeneler ilk kez bu hayvanlarda görüldügünden Gnasthostomata (çeneliler) subfilumunun en basit yapili örneklerini içerisine alir. Bunlarin çift haldeki üyeleri ve omurlari bulunur. Hemen hemen hepsi yirticidir ve çesitli canlilarla beslenirler. Çok az bir kismi disinda hepsi genellikle denizlerde yasar. Jeolojik devirlerde yasamis bir çok kikirdakli baligin, bugün pul, dis ve yüzgeç isini gibi sert kisimlarinin fosillerine rastlanmaktadir. Kikirdakli baliklar biyolojik açidanda çok ilginçtir. Çünkü bunlarin bazi anatomik özelliklerini, yüksek yapili omurgalilarin erken embriyonik evrelerinde de görmek olasidir. Bunlarin, Ostracodermi-Plakodermi arasi bir atadan zirhlarini ve iskeletlerindeki kemik yapilari kaybederek olustuklari kabul edilir. Karakteristik özellikleri: 1) Vücut fusiform veya mekik seklinde, bazilarinda ise yassilasmistir. Derileri sert, plakoid pullarla kapli ve bol miktarda mukus bezi içerir. Median (tek) ve lateral (çift) yüzgeçleri mevcut olup, isinlarla desteklenirler. Ventral (pelvik=karin) yüzgeçler erkeklerde degisiklige ugrayarak spermalarin disiye aktarilmasina yarayan kopulasyon organlari haline gelmistir. Caudal ((kuyruk) yüzgeç genelde heteroserk seklindedir. 2) Agiz ventral ve mine tabakasi ile örtülü çok sayida disleri bulunur. Burun delikleri 1-2 tanedir ve agiz boslugu ile baglantilari yoktur. Alt ve üst çenelerin her ikiside mevcuttur. Baüirsaklarin iç yüzeyinde helozon seklinde kivrintilar bulunur. 3) Iç iskelet kikirdak halindedir ve gerçek kemikleri yoktur. Notokord her zaman mevcuttur. Birbirleriyle birlesmis omurlara veya tek halde bulunan bir omurgaya sahiptirler. Pektoral (gögüs) ve ventral kemerler mevcuttur (appendicular iskelet). Kafatasi (cranium) çift haldeki duyu kapsülleriyle birlesmistir. Ayrica agiz, dil ve solungaçlari destekleyen visseral iskelet yapilarida bulunur. 4) Kalpleri bir kulakcik ve bir karincik olmak üzere iki gözlüdür. Ayrica sinus venosuslari mevcuttur. Aort yaylari birkaç çifttir. Eritrositleri çekirdekli ve oval yapidadir. 5) Genellikle solungaçlari 5-7 çifttir. Solungaçlardan her biri ayri bir delikle disari açilir. Bazilarinda birden çok solungaç birleserek müsterek bir delikle de disari açilabilir. Solungaç kapaklari (operculum) yalniz Holocephali alt sinifinda vardir. Hava keseleri yoktur. 6) Beyinleri oldukça gelismistir ve 10 çift beyin sinirleri vardir. Her bir kulakta üçer yarim daire kanali bulunur. 7) Vücut sicakligi degiskendir (poikilothermus). Çevreye bagli olarak degisiklik gösterir. Bosaltim organlari mezonefroz böbrek tipindedir. 9) Ayri eseylidirler. Üreme organlari çift haldedir. Esey organi kanallari kloaka açilir. Döllenme, iç döllenme seklindedir. Ovipar, vivipar veya ovovivipardirlar. Yumurtalari büyüktür, fazla miktarda yedek besin içerir, segmentasyon tam degildir, ancak belli bir kisim segmentasyona ugrar (meroblastic) ve embriyo tabakalari bulunmaz. Gelismeleri dogrudan dogruyadir yani larva ve metamorfoz yoktur. Kikirdakli baliklar , Cyclostomata’ya göre daha ileri bir organizasyon gösterirler. Bunu kanitlayan özellikleri sunlardir: 1-vücutlarinda pullar vardir. 2-Iki çift lateral (çift) yüzgeçleri vardir. 3-Kafatasina bagli hareketli çeneleri bulunur. 4-Disleri mine ile örtülüdür. 5-Dermal yapida yüzgeç isinlarina sahiptir. 6-Belirgin bir mide ve pankreaslari bulunur. 7-Herbir iç kulakta üçer yarim daire kanali bulunur. 8-Dorsal kaburgalari bulunur. 9-Üreme organlari ve bu organlarin kanallari çift halde bulunur. 10-Omurga notokordu siki bir sekilde kusatmistir. Kikirdakli baliklarin, kemikli baliklardan daha basit organizasyonlu olarak kabul edilmesi ise su nedenlere dayanmaktadir: 1-Iskeletleri kikirdak yapidadir ve gerçek kemikleri yoktur. 2-Plakoid pullara sahiptirler. 3-Solungaçlarin her biri çogunlukla ayri bir delikle disari açilir. 4-Hava (yüzme) keseleri yoktur. 5-Genellikle yutak ile baglantisi olan bir çift spirakulum’lari vardir. Bazi örnek türler: Hexanchus griseus (Alti solungaçli köpek baligi), Chlamydoselachus anguineus (Yakali köpek baligi), Carcharis ferox (öfkeli köpek baligi), Lamna nasus (Dikburun karkariyas baligi), Cetorhinus maximus (Büyük camgöz baligi), Alopias vulpinus (Tilki baligi) Mustelus mustelus (Asil köpek baligi), Sphyrna zygaena (Çekiç baligi), Torpedo torpedo (Lekeli elektrikli balik), Raja clavata (Vatoz).

http://www.biyologlar.com/kikirdakli-baliklar

KEMİK DOKUNUN HÜCRELERİ NELERDİR

Kemik dokusunda 4 tip hücre ayırt edilir: ■Osteoprogenitör hücre ■Osteoblast ■Osteosit ■Osteoklast Osteoprogenitör Hücreler ; Kemiğin ana hücreleri olup mezanşimden kaynaklanırlar. Genellikle soluk boyanan nukleuslu,asidofilik sitoplazmalı hücreler olup endosteumda, periyosteumun iç katında ve Havers kanal-ları gibi bölgelerde bulunurlar. Osteoprogenitor hücreleri mitozla olgun kemik hücrelerine fark-lılaşmaktadırlar. Bu hücreler kemik büyümesinde, zedelenmesi veya kırık tamirinde aktif halegelerek bölünürler ve osteoblast hücrelerine dönüşürler. Osteoblastlar; Kemik dokusunda matriksin yapımında sorumlu olan bu hücreler, kübik ya da alçak prizmatikboylu hücrelerden yapılmıştır. İri nukleuslarıolup sitoplazmalarıkoyu bazofiliktir. Elektron mik-roskobunda Golgi ve endoplazmik retikulumları iyi gelişmiş olarak görülür. Lipid damlacıklarıve lizozom benzeri yapılar da sitoplazmada yer alır. Hücreler birbirleriyle kısa çıkıntılarla ilişki-dedir. Kuvvetli alkalen fosfataz ve PAS pozitif reaksiyon verirler. Alkalen fosfataz hem matrikshem de kalsifiskasyonda rol alan önemli bir enzimdir. Enzim fosfatın hidroliziyle lokal inorganikfosfat konsantrasyonunu arttırmakta ve bunun kalsiyum iyonlarıyla birleşmesi sonucu kalsi-yum tuzlarıhalinde dokuya çökmesi sağlanmaktadır (kemikteki inorganik matriks yapısına ba-kınız). Organizmada kemik yapım hızının ölçülmesi istendiğinde de kandaki alkalen fosfatazenzimi seviyesine bakılmaktadır. Osteositler; Kemiğin esas hücreleri olup, olgun kemik hücresi adını da alır. Bu hücreler lakünaları içindeyerleşmişlerdir. Gelişimlerini tamamlamış olduklarından sentez yapamazlar. Bu nedenle gra-nüllü ER ve Golgilerinde azalma görülür. Sitoplazma bazofilisi de daha azdır. En tipik özellikle rinden biri de uzantılarıdır. Konunun başında değindiğimiz gibi bu sitoplazmik uzantılar kanali-küller içinde seyreder (Şekil 7.1). Bu şekilde her hücre lakünasıiçine gömülü kalmayıp birbirle-riyle temas kurmaktadırlar. Bu noktalarda neksuz ve aralıklı bağlantı kompleksleri olduğuelektron mikroskopunda gösterilmiştir. Osteositlerin kalsiyumun kemiklerden kana verilmesin-de ve hameostatik mekanizmayı düzenleme (kalsiyum konsantrasyonunu düzenleyerek) gibiönemli metabolik rolleri de vardır. Hücrelerin ölmesi halinde ise matrikste rezorbsiyon olayıgö-rülür. Osteoklastlar; Kemikte yıkımı veya kemik rezorbsiyonunu gerçekleştiren hücrelerdir. 20-100 µm çapındaçok büyük hücrelerdir ve 2 den 50 kadar değişen sayılarda nukleusları bulunur. Fonksiyonla-rından dolayı makrofaj türü hücre olarak da kabul edilirler. Ayrıca mononüklear fagositer siste-me dahil hücrelerdir ancak aktif fagositoz yapmazlar. Osteoklastlar içerdikleri kollagenaz ve di-ğer proteolitik enzimlerle kemiği rezorbe etmektedirler. Eritici enzimlerle eritilen kemik dokusuuzantılarla hücre içine alınmaktadır. Osteoklastların sitoplazmaları genellikle asidofil ve vaku-ollüdür. Hücrelerin çok sayıda lizozomları, mitokondriyonlarıve iyi gelişmişbir Golgi kompleks-leri vardır. Bu hücreler kemikte Howship lakünası adı verilen boşluklarda yerleşmişlerdir.Osteoklastlarda kemiğe bitişik yüzlerinde hücre yüzeyinin genişletilmesinde rol oynayan fırçakenarlı hücre uzantıları gözlenir. Osteoklastlar hormonlara karşı da çok duyarlıdırlar. Örneğinparatiroid hormonu hücrede RNA sentezini arttırmada etkili olurken, kalsitonun hormonu bu-nun tersi etki yapmaktadır. Kemik yıkımı, kemiğin modelleşmesinde önemli rol oynar (kemikoluşumuna bakınız). Bu olay osteoklast ve osteoblastların uyumlu çalışması neticesinde ger-çekleşmektedir.

http://www.biyologlar.com/kemik-dokunun-hucreleri-nelerdir

Bitki ve Hayvan Hücrelerinin Ortak Özellikleri

Dünya üzerinde yaşayan canlılar, bitkiler ve hayvanlar olmak üzere iki kısımda incelenebilir. Bu canlı organizmaların temel bir takım ortak özellikleri bulunmaktadır. 1. Hücre yapısı: Bütün canlılar hücre ya da hücrelerden oluşmuştur. Hücre organizmanın temel birimidir. Hücrede geçen bir takım olaylar canlılığın devamına izin verir… 2. Beslenme: Canlılar yaşam faaliyetlerini gerçekleştirebilmeleri için dış ortamdan besin olmak zorundadırlar. Hayvansal organizmalar besinlerini dış ortam hazır olarak alırken, bitkiler kendi besinlerini kendileri sentezler. 3. Hareket: Canlılar dış ortamdan gelen uyaranlara karşı tepki gösterirler. Dış ortamdan gelen uyartılar ışık, ısı v.s olabilir. 4. Büyüme: Canlılarda hücre bölünmesi ile hücre sayısı artar. Buna bağlı olarak organizma büyüme eğilimine girer. Organizmaya alınan besinlerin büyük bir kısmı bu amaç için kullanılır. 5. Üreme: Canlılar kendi nesillerini devam ettirebilmek için ürerler. Eşeysiz ve eşeyli üreme olmak üzere iki tip üreme canlılarda görülür. 6. Solunum: Canlıların yapılarına almış oldukları besinleri hücre organ ellerinde oksijenli ya da oksijensiz bir şekilde yakarak enerji üretmeleri olayıdır. Oksijenli solunum olayı özetlenecek olursa; Besin+Oksijen ———>Su+Karbondioksit+ Enerji şeklinde gerçekleşmektedir. Tabiatta birtakım canlılar (Bira mayası) enerji üretmek maksadı ile oksijensiz solunum olayını gerçekleştirir. Besin ———>Etilalkol+Karbondioksit+Enerji şeklinde gerçekleşmektedir. Bu olaya aynı za­manda fermantasyon= mayalanma da denir. 7. Boşaltım: Canlılar, çeşitli faaliyetler sonucu organizmalarında oluşan artık maddeleri, kararlı bir iç ortam oluşturmak için atarlar. Canlılar bu olayı gerçekleştirebilmek için çeşitli organ sistemleri oluşturmuşlardır. 8. Sindirim: Canlılar, yapılarına almış oldukları büyük molekülleri küçük moleküllere çevirirler. 9. Sentez: Canlılar, yapılarına almış oldukları küçük molekülleri organizmalarına uygun büyük moleküllere dönüştürürler. Örneğin; protein sentezi

http://www.biyologlar.com/bitki-ve-hayvan-hucrelerinin-ortak-ozellikleri

Fosiller Nasıl Oluşur

Fosiller Nasıl Oluşur

Canlılar öldükten sonra organik-yumuşak kısımları diğer hayvanlar tarafından tüketilir veya bakteriler tarafından tahrip edilir.

http://www.biyologlar.com/fosiller-nasil-olusur

GÖLLLER VE OLUŞUM ŞEKİLLERİ

Karalar üzerindeki çukurlarda birikmiş durgun sulara göl denir. Bulundukları bölgenin iklim jeolojik ve jeomorfolojik yapısına bağlı olarak farklılık gösteren dünyanın hemen her tarafına dağılmış irili ufaklı bir çok göl bulunur. Dünyanın en büyük gölü Asya kıtasında Hazar ve en derin gölü de yine bu kıtada Baykal gölüdür. Göller yağışlarla göle dökülen akarsularla ve kaynaklarla beslenirler. Eğer bir göle buharlaşma yoluyla kaybettiğinden daha fazla su gelirse göl suları yükselir. Gölün fazla suları göl çanağının en alçak yerinde bir dere halinde dışarı akmaya başlar. Buna gideğen yada göl ayağı adı verilir. Sularını okyanuslara ve denizlere ulaştıran göllerin suları tatlı,ulaştıramayanların ise tuzludur. Örneğin:Tuz ve Van gölü • Dünya üzerinde çöküntü gölleri en fazla Doğu Afrika graben sahası üzerinde yer almaktadır. • Dünyada en fazla göllerin bulunduğu sahalar Doğu Afrika, Finlandiya ve ABDde göller yöresidir. Oluşumlarına Göre Göller A-Yerli Kaya Gölleri 1. Tektonik Göller: Yerkabuğunun çöküntüye uğramış yerlerinde oluşan göllerdir. Doğu Afrika gölleri,Lut gölü,Baykal gölü,Güney Marmara gölleri,Göller yöresi gölleri 2. Volkanik Göller:Volkanik patlamalar sonucu oluşan çukurluklara suların dolması ile meydana gelen göllerdir.Volkan konisinin ağzında meydana gelen göllere krater gölleri denir. Örn:Nemrut gölü gibi. Patlama çukurluklarında oluşan göllere ise maar gölleri denir.Örn: Meke Tuzlası 3. Buzul Gölleri:Buzulların oydukları alanları zamanla suların doldurması ile oluşan göllerdir.Kuzey Avrupadaki göller,K.Amerikadaki büyük göller ve yüksek dağlardaki sirk gölleri Türkiyede 4. Karstik Göller B-Set Gölleri 1. Heyelan Set Gölleri 2. Lav Set Gölü 3. Alüvyal Set Gölü 4. Kıyı Set Gölü 5. Delta Gölleri 6. Baraj Gölleri GÖLLER Kara içlerindeki çukurlukları dolduran durgun sulara göl denir. Göllerin Özelliğinde (acı, tuzlu, tatlı olmasında) Etkili Faktörler: 1. Gölün büyüklüğü ve derinliği:Büyüklük ve derinlik arttıkça tuzluluk azalır. 2. Gölün gideğeninin olup olmaması: Göl sularını bir gideğen ile boşaltabiliyorsa suları tatlı olur. 3. İklim: Nemli iklim bölgelerinde göllerin tuzluluğu daha azdır. Genelde tatlı suludurlar. 4. Göl çanağını oluşturan kayaların özelliği OLUŞUMLARINA GÖRE GÖLLER 1. Tektonik Göller: Yer kabuğu hareketleri ile oluşan çukurlukları dolduran sulardır. En fazla Doğu Afrika’da görülür. Yurdumuzda ise Tuz G., Manyas (Kuş g.), Ulubat, İznik, Sapanca, Akşehir, Beyşehir, Burdur, Eber, Hazar, Ilgın gölü gibi. 2. Karstik Göller: Karstik bölgelerdeki çukurlukları dolduran durgun sulardır. Ör: Salda, Suğla, Kestel, Avlan, Kovada gölleri gibi. 3. Buzul Gölleri: Yurdumuza bazı yüksek dağların üst kısmında görülür (Cilo, Sat, Ağrı, Tendürek, Süphan, Kaçkar, Uludağ, Erciyes, Bolkar, Aladağlar,Bey dağları gibi). Dünya üzerinde en fazla Kuzeybatı Avrupa’da görülür. Ayrıca Kanada’nın güneyi ile A.B.D’nin kuzeyindeki göller buna örnektir. 4. Volkanik Göller: Yurdumuzda Nemrut, Meke Tuzlası (Konya –Karapınar), Gölcük (Isparta), Acıgöl (Konya) gölleri buna örnektir. 5. Doğal Set Gölleri • • Heyelan Set Gölü: Tortum, Sera, Abant, Yedi Göller. • • Alüvyon Set Gölü: Marmara, Bafa(Çamiçi), Köyceğiz, Eymir, Mogan • • Kıyı Set (Lagün): B. Ve K. Çekmece Terkos (Durusu) ,Akyatan, Balıklı, Simenlik • • Volkanik Set: Van ,Erçek, Nazik, Balık, Çıldır. • • Buzul (Moren set) Set : En fazla K.Batı Avrupa’da görülür. 6. Yapay Set : Baraj gölleri buna örnektir. Yurdumuz akarsuları üzerinde baraj kurmaya en elverişli bölgemiz D.Anadolu, en elverişsiz bölge Marmara Bölgesi’dir. Hidro elektrik potansiyeli en fazla olan bölgemiz D.Anadolu Bölgesidir. Barajların Yapılış Amaçları • • Enerji üretmek, • • İçme ve sulama suyu sağlamak, • • Taşkınları önlemek, • • Balıkçılık GÖLLER Kara içlerindeki çukurlukları dolduran durgun sulara göl denir. Göllerin Özelliğinde (acı, tuzlu, tatlı olmasında) Etkili Faktörler 1. Gölün büyüklüğü ve derinliği:Büyüklük ve derinlik arttıkça tuzluluk azalır. 2. Gölün gideğeninin olup olmaması: Göl sularını bir gideğen ile boşaltabiliyorsa suları tatlı olur. 3. İklim: Nemli iklim bölgelerinde göllerin tuzluluğu daha azdır. Genelde tatlı suludurlar. 4. Göl çanağını oluşturan kayaların özelli

http://www.biyologlar.com/golller-ve-olusum-sekilleri

AKILLI TASARIM-EVRİMSEL TASARIM

“En büyük tehlike akılsızlığı, akıllılık olarak gördüğünüzde başlar ”Prof. Dr. Ali Demirsoy, Hacettepe Üniversitesi Bazı bireylerde kalıtsal bir nedenle ortaya çıkan sorunlar “Anomali” ya da “Hastalık” olarak adlandırılır. İyi bir tasarımda bu anomalilerin hiç olmaması ya da çok seyrek olması beklenir. Hâlbuki bugün tıbben her insanda doğuştan en az 10 anomalinin olduğu söylenir. Bu normal tasarlanmış bir arabanın beklenilmeyen bir arıza göstermesi gibi bir şeydir. Kâğıt üzerinde böyle bir hata beklenmez; imalat sırasında ortaya çıkar. Dolayısıyla buna üretim hatası denir ve suç tasarlayıcısına yüklenmez. Akıllı tasarıma göre bir canlının tasarlanmasından ölümüne kadar geçen süreçler doğaüstü güç tarafından denetlenmektedir ve dolayısıyla hem tasarım aşamasında hem de üretim süreci içerisinde –biz fani varlıkların kusuru olmadan- ortaya çıkabilecek tüm aksaklıklardan doğaüstü güç sorumludur. Ancak hem yetkili ve her şeye kadir ol hem de hata yap ikilemini çözemeyen dogmatikler, çıkarı “Takdiri İlahi”, yani doğaüstü gücün isteği ya da takdiri olarak sunarak hem kendilerini hem de karşılarındakileri kandırmanın yolunu bulmuşlardır. Elimizde olan ya da olmayan gelebilecek her olumsuzluğun faili ya da sorumlusu bulunmuştur: Bir türlü hesap soramayacağımız, ulaşamayacağımız, ne eder ne yaparsa iyidir diye inandığımız Doğaüstü Güç; çoğumuza göre Tanrı. Böylece insanlık tarihi boyunca kusurumuz olsun ya da olmasın uğradığımız her zararı büyük bir tevekkül (kabul) ile benimseyeceğimiz bir felsefeye saplanmış olduk. Ancak herkeste her zaman görülen, yani bir anomali olarak değil de, genel bir tasarım hatası olarak herkesin gözlediği yapı ve işleyişlere ne diyeceğiz; bu sefer “Taktiri ilahi” demeyle atlatamayız. Çünkü takdir, birçok seçeneğin arasında birisine layık görülen bir şeyi ifade eder. Yani başımıza bir bela gelmişse, yüce Tanrı o iş için beni seçmiş demektir. Dogmaya inanıyorsanız yapacağınız bir şey olamaz, kabul edeceksiniz. Eğer inanmıyorsanız nedenini araştıracaksınız, gerekirse er ya da geç çaresini bulacaksınız. Ancak, bir kusur sadece bir toplumun birisinde değil de herkeste bulunuyorsa, o takdiri ilahi olmaktan çıkmış, genel bir tasarım kusuru olmuştur. Bu tasarım kusurları eğer her şeyi bilen ve her şeye kadir bir varlık tarafından yapılmışsa, o zaman bu varlığın, kulları olan bizler için iyi niyetinden kuşku duyabiliriz. Çünkü hiç kimse durup dururken kitle halinde eziyet etmeyi amaçlamaz. Bunun tanımı psikolojide ya da sosyolojide hoş olmayan çok ağır bir tanımdır… Gelin görün ki, ortalığı akıllı tasarım velvelesine veren birçok insan (bunların arasında ne yazık ki bilim adamı; hatta bilimlerin bilimi diyebileceğimiz biyoloji alanında çalışanlar), aşağıda yüzlercesinin arasından verilmiş sadece birkaç genel kusurun neden doğaüstü güç tarafından reva görüldüğünü bir türlü açıklayamıyor. Moleküler ya da hücre düzeyine indiğimizde hatalı tasarımla ilgili onlarca örnek verebiliriz. Ancak bu örnekler çok akademik kalacağından, bu konuda yeterince bilgisi olmayanlar anlamakta zorlanabilir diye verilmemiştir. Doğuştan yüksek tansiyon, şeker hastası, çeşit çeşit yetmezlikler, kas ve kemik bozuklukları ve benzer onlarcasını kişiye özgü olduğu genel bir durumu yansıtmadığı için –genel bir tasarım hatası olarak- gündeme getirmeyeceğiz. Bu nedenle vereceğimiz tasarım hatalarına ilişkin örnekler özellikle hemen herkesin her zaman tanık olduğu çocuklardaki bazı kusurlardan –yani genel tasarım hatalarından- seçilmiştir. Bunun nedeni, akıllı tasarımcıların, ortaya çıkmış kusuru, ergin kişinin suçlarına –günahlarına- bağlamasından kurtulmak içindir. 1. Çocuk büyüten ve gecelerini uykusuz geçiren herkes şunun farkındadır. Çocuklar doğduklarının ilk birkaç ayında bazen çok daha uzun süre gaz sorunu yaşayarak ailelerini ve kendilerini perişan ederler. Bu gaz ya anadan geçer ya da çocuğun sindirim sistemindeki tasarım hatasından kaynaklanır. Ancak bir evrimsel biyoloji uzmanına sorarsanız, ağaçtan ağaca atlarken anasının sırtına yapışarak, her sıçrayışta sürekli gazını çıkaran bir canlının böyle bir sorunu olmamıştır. Bu nedenle primat yavruları gaz sancıları çekmez. Ne zamanki doğal yaşamdan ve doğal evrim sürecinden ayrıldık, bu sorun karşımıza çıktı. Ancak evrimsel yapısal değişim, sosyal evrime ayak uyduramadığı için, zamanında gerekli önlemler oluşamadı. 2. Çocukların iç kulak ile ağız arasındaki östaki borusu, normalden kısa olduğu için ağızdaki mikroplar sık sık orta kulağa geçer ve bir sürü soruna neden olur. Primatlarda bu sorun var mı; büyük bir olasılıkla yok.Ancak bir evrimsel biyoloji uzmanına sorarsanız, sosyal gelişmeleri öğrenebilmek için, kafası beklenilenden çok daha büyük olarak dünyaya gelmeye zorlanmış bir çocukta bu sorunun ortaya çıkması kaçınılmazdır. Acaba doğaüstü güç insanın sosyal yaşama geçişini bilemiyor muydu? Yoksa böyle bir ödüle karşı ceza mı uygulamaya kalkıştı? 3. Çocukların, özellikle kız çocuklarının idrar kesesini dışarıya bağlayan kanal erişkinlere göre kısa olması nedeniyle sık sık idrar yolları hastalıklarına tutulmaktadır. Ne olurdu bu boruyu biraz daha uzun olarak yaparak yaratsaydı?Ancak bir evrimsel biyoloji uzmanına sorarsanız, dört ayağının üstünde gezen bir canlı için bu kısalığın büyük bir sakıncası yoktu; ne zaman ki, yere inip de ilk olarak otura otura sonra iki ayağımız üzerinde gezmeye başladık; oturduğumuz yerdeki mikroplar çok daha kolay içlere kadar girebildiği için bu sorunlar ortaya çıktı. O zaman sormazlar mı, beni iki ayağım üzerine kaldırırken, bu boruyu niye bir iki santim uzatmadın?4. Penisteki sünnet derisi çoğunluk herhangi bir soruna neden olmadan doğum olmasına karşın, bir kısmında idrar yapamayacak derecede kapalı olduğu için önemli sorunlara neden olmaktadır. Bu derinin erişkin olmadan kesilmesi ise Musevi ve İslam inancına göre tanrının isteğidir. Bu derinin atılması sırasında, yine bu iki dinin de ortak olarak birleştiği inanca, yani çocukların suçsuz olarak doğduğu inancına karşın, milyonlarca çocuğun sünnet işlemi sırasında mikrop kapmasından dolayı ölmesini nasıl açıklayacaksınız? Günahsızların ceza çekmesi hiçbir öğretide hoş karşılanamaz. Ancak bir evrimsel biyoloji uzmanına sorarsanız, bu deri kapalı durarak idrar yollarının ve penis başının olası enfeksiyonları önlemek için meydana gelmiştir. Doğal ortamda er ya da geç normal işlevini görmeye başlar; ancak bezlere sarılmış kapalı ortamda yetiştirilen bir bireyde bu aksaklığın giderilmesi zor olur.5. Bugün hangi çocuk doktoruna giderseniz gidin, çocuğa bakmadan D vitamini de içeren bir ilaç yazıyor. Bunu muhakkak almalısınız diyor. Burada birisi yanılıyor, ya doktor ya da doğaüstü güç. Çünkü akıllı tasarım olsaydı, ana sütü ile birlikte bu maddeler de verilmiş olacaktı. Ancak bir evrimsel biyoloji uzmanına sorarsanız, insan, güneş ışığının çok yoğun olduğu Doğu Afrika’da evrimleştiğinden D vitamininin oluşması için ek bir kaynağa ihtiyaç duyulmamıştı. Ne zaman ki kuzeye yayıldı, eksiklik ortaya çıktı. Düzeltilebilir miydi? Çok basit birkaç önlemle bu eksiklik giderilebilirdi. Zaten canlıların hemen hepsi (bizden başka yer değiştiren iki memeli hariç) bulundukları yerde kaldıkları için gerekli D vitaminini sentezlemektedirler. Bunu yer değiştiren insan yapamadığı için, gittiği yerde özellikle güneş ışınlarının eksikliğinden dolayı bozukluk ortaya çıkmaktadır. Eğer akıllı tasarımcıların inandığı gibi insanoğlu orta kuşakta bulunan bir yerde dünyaya inmiş olsalardı, böyle bir eksikliği yaşamayacaklardı. Demek ki bir enlemden öbür enleme geçince akıllı tasarım akılsız tasarım haline dönüşmüş. Niye düzeltilmemiş? Doğa aklıyla değil, seçenekleri rastlantıyla seçtiği için her zaman doğru yolu bulamaz; bu nedenle de bu güne kadar jeolojik dönemlerde bağrında barındırdığı yaklaşık 20 milyon (belki 100 milyon) canlı türünü bu akılsız tasarıma kurban etmiştir. 6. Hemen hemen hiçbir işleve sahip olmayan 20 yaş dişlerimiz çoğumuzun korkulu rüyası olmuş; birçoğumuza kötü günler yaşatmıştır. Dogmatikler bunun için kem küm bir şeyler söyleseler de hiç kimse inandırıcı bir açıklamasını yapamamaktadır. İnançlara göre insan aynen yaratılmışsa, evrimleşmemişse, 20 yaş dişleri de insanın başına bela olarak verilmiştir. Ancak bir evrimsel biyoloji uzmanına sorarsanız, bu dişler otçul (daha çok ot yediğimiz) dönemde öğütme işinde kullanılıyordu; daha sonra omnivor (yani her şeyi yer hale geçince), özellikle de yiyeceklerimizi pişirerek daha yumuşak hale getirince gerek kalmadığı için doğal seçilim ile ortadan kaldırma sürecine sokulmuştur. Evrim, sabırlı ve sürekli bir işleyişin adı olduğu için de, hemen ortadan kaldırılamamış, zamana bırakılmıştır. 7. Osteoporaz (kemik erimesi). Bugün kırk yaşını geçmiş herkesin korkulu rüyasıdır ve geçici de olsa tedavisi için önemli harcamalar yapılmaktadır. Her şeyi bilen doğaüstü güç, ömrümüzün ortalarında neden bizi oluşturan iskeletin içini boşaltsın ve kırıklarla uğraştırsın. Bunların içine her besinimizde bolca bulabileceğimiz kalsiyumu yerleştirme güç mü olacaktı? Yoksa bu da mı takdiri ilahi hanesine yazılacak? Ancak bir evrimsel biyoloji uzmanına sorarsanız, kemikler işlev gördüğü sürece ve doğada güç kullandığı sürece sağlıklı kalır; sürekli kitap okuyan ve dua eden birinin, kemikler (bu bağlamda kaslar) üzerindeki tonus (basınç etkisi) azalacağı için içini boşaltması kaçınılmazdır. Evrim, gerçekler üzerinden işlev yapar, acımasızdır, tarafsızdır; duygular ve sevgiler üzerinden değil…8. Elli yaşını geçmiş her erkeğin aklı prostatındadır. Çoğunluk doğru dürüst işeyemez, olur olmaz yerde işemeye kalkışır; bu nedenle kana kana bir şey hatta su bile içemez. Tuvaletin başında dakikalarca bekler. Daha sonra eşeysel işlevleri aksadığı için karısından azar işitir; aşağılanır; semavi dinlerin üstün varlık olarak tanımladığı o erkek süklüm püklüm bir kediye (kedi bile denmez olsa olsa pisik demek gerekir) dönüşür ve daha da vahimi er ya da geç kanserleşmeye başlar. Doksan yaşına gelmiş bir insanın %90 prostat kanseri olma olasılığı vardır. Dogmatikler akıllarını kutsal kitaptaki bilgilerle bozdukları ve prostat da bu kitapların bulunduğu dönemde bilinmediği için birkaç yakın ayet ve hadisle belki geçiştirebilirler; ancak en iyisi bu konuya hiç değinmemektir… Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, prostat bezi, sahneye çıkarken ozmos, yani su geçişlerini düzenleme gibi bir görevi üstlenmek için ortaya çıkmıştı; ancak zamanla başka işlevleri de yüklenince, olması gerekenden fazla bir görevi daha üstlendi ve başarılı da olamadı. Eğer bir varlığı korkularından arındırmak için tasarım yapmış olsaydınız, iki paralık bir sifinkter (kapak) ile bu sorunu çözerdiniz. Ancak, evrim gelecek için plan kurmaz, o anda gereksinme duyulan şeyleri en iyi şekilde seçmeye kalkışır. Bu nedenle de evrim her zaman mükemmeli bulamaz.10. Menopoza girmiş her kadının rahim kanseri ve meme kanseri korkulu rüyasıdır. Çocuk yapma yetisini yitirmiş ve başka bir görevi kalmamış bir organın vücuttan kaldırılması çok zor biyolojik işlem değildir. Böyle bir korkuyu insanlara yaşatmanın ne anlamı var? Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, doğa bir canlının üreme gücünü yitirmiş bir bireyi barındırmak gibi bir lüksü olmadığı için uygun yöntemi geliştirme denemesine girişmemiştir. 11. Neredeyse her üç kişiden biri omurga rahatsızlığı çekmektedir. Diğer canlılara bakıyorsunuz beli kayan canlı yok gibi. Bu insana eziyet niye? Akıllı tasarımcılar “Tanrının verdiği organı korumak gerekir” diye bir yaklaşımla konuyu savsaklamaya kalkışırlar. Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, bir zamanlar dört ayak üzerine yürüyen atalarımız, ağırlığı tüm omurgaya dağıttığı ve onu da dört noktadan toprağa verdiği için böyle bir sorunla karşılaşmadı. Ancak iki ayağı üzerine kalkınca, ağırlık merkezi 4-5. omurların arasına yoğunlaştı, burası da yeterince kasla desteklenemediği için ve evrim mekanizması deneme-yanılma yöntemi ile çalıştığı yani çok ağır işlediği için de bu kadar kısa süre içinde gerekli önlemi geliştiremedi. Böylece öne uzattığımız iki elimizle tutacağımız bir kiloluk bir yük, kaldıraç misali 4-5. omurlara 20 kiloluk bir baskı oluşturdu. 12. Hemen hiçbir hayvanda görülmeyen fıtık ve özellikle kasık fıtığı niye insanlarda görülüyor diye düşünebilirsiniz. Akıllı tasarımcılar ancak bir önceki yanıtı verebilirler. Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, bir zamanlar dört ayak üzerine gezdiğimiz için iç organlar özellikle testislerin vücut dışına çıktığı kanala (ingunial kanala) basınç yapmıyordu; ne zaman ki iki ayak üzerine kalktık, iç organlar basınç yapınca, özellikle belirli bir yaştan sonra bağırsaklar bu kanaldan dışarıya sarkmaya başlar. Evrimsel gelişme bu aksaklığı niye düzeltmedi? Ya bir çıkar yol bulamadı ya da geliştirmek için yeterince zaman bulamadı. Akıllı bir tasarım olsaydı hem bu sorunu hem de yukarıdaki sorunu bir çırpıda çözecek çareyi yürürlüğe koyardı.13. Eskiye ait insan fosillerine bakıyoruz; çürük diş hemen hemen yok (biraz da erken öldüklerinden dolayı); ancak ne zaman ki besinlerini öğütüp, pişirmeye ve özellikle de tahılla beslenmeye başlıyorlar, o zaman diş çürükleri ortaya çıkıyor. Doğaüstü güç insanı vahşi bir hayvan gibi doğada dolaşsın diye mi tasarladı? Uygarlığa geçeceği ve geçişte yaşanacak sorunlar tahmin edilemez miydi? Akıllı tasarımcılara sormanıza gerek yok; çünkü onlar bulunan bunca insana ait fosili zaten insan neslinin atası olarak kabul etmiyorlar. İnsanın zembille gökten indiğine inanıyorlar. Ancak bir evrimsel biyoloji uzmanına sorarsanız, “diş çürümeleri neden oluyor?” diye, o size der ki, tahılla beslenme, mayalanmaya bağlı olarak ağızda asidik tepkimelerin ve aşınmaların meydana gelmesini tetiklediği için olmuştur diyecektir. Bu tasarım hatasını giderebilmek için de akşam-sabah macunlarla fırçalama yoluna gideriz. 14. Akşam sabah hamdolsun verdiğin nimetlere diye dua ediyoruz. Bu kadar çeşitli yiyecek verdiği için. Pekâlâ, yaklaşık 400.000 bitki olmasına karşın niye daha çok çeşitli meyve ve sebze sunmadığını bir türlü aklımıza getirmiyoruz. Çünkü olandan başkasını düşünemiyoruz. Düşünebilmeniz için evrim mantığına sahip olmanız gerekir; o da bizde yok. İnsan oluştuktan çok daha sonraki devirlere bakacak olursak, bugün nimet olarak tanımladığımız sebze ve meyvelerin ve keza hayvanların hiç birini göremeyiz. Doğa, elmayı, armudu, kirazı, kayısıyı, portakalı, şeftaliyi, mısırı, domatesi, salatalığı, kabağı, nohudu, şeker pancarını, karnabaharı, lahanayı, kıvırcığı, marulu, Çin marulunu, kırmızılâhanayı, Montofon ineğini, Holstein ineğini, Legorn tavuğunu ve bugün kullandığımız daha onlarca ürünü bugünkü haliyle evrimleştirmemiştir. Ama her devirde evrim mantığına sahip insanlar olduğu için “akıllı tasarım ürünü olarak belirtilen” verimsiz varlıkları insani tasarımla çok daha kullanılabilir ve verimli hale getirdiler. Siz, domatesi, şeftaliyi, elmayı, portakalı ve yukarıda yazılan bitki ve meyveleri doğaya bırakın belirli bir süre sonra asıllarına döneceklerdir, yani evrimsel tasarıma. Montofon ineğinin, Holstein ineğinin ve Legorn tavuğunun zaten doğada üreme şansı olmayacaktı. Kıvırcığı, marulu, karnabaharı, lahanayı, Çin marulunu, aysbergi, süs lahanalarını, brokoliyi, kırmızılâhanayı doğaya bırakın yıllar sonra yumruları sadece bir fındık bilemedin ceviz kadar kalmış Bürüksel lahanasına döndüğünü göreceksiniz. İnsan olmasaydı mısır bitkisi ise hiçbir zaman olmayacaktı. Doğa insanı düşünerek bunları evrimleştirmediği için, bizim amacımıza en uygun şekli vermedi. Akıllı bir tasarımda eşrefi mahlûka neden en iyisinin sunulmadığını merak etmiş olmalısınız. Nede olsa insan olmanın en önemli özelliği merak etmektir. Daha iyi bir tasarımın yapılma zevki insana mı bırakılmış dersiniz (böylece akıllı tasarımcılara zor zamanlarda kullanabilecekleri bir açıklama da vermiş oluyorum). Bütün bu değerli yiyeceklerimiz doğada bugünkü haliyle bulunmuyor. Doğal işletiminin hatalarla dolu olmasından dolayı, anormallikler, örneğin poliployidi dediğimiz kromozom çoğalmaları nedeniyle bugünkü sulu ve iri meyveler oluşuyor ya da doğaüstü gücün bizim için esirgediği kalıtsal kombinasyonları insanlar ıslah yoluyla kendisi yapıyor.15. Doğada birbiri için zararlı çok sayıda canlı vardır. Ancak bir canlıya zarar veren bir tür başka bir canlı için yararlı işler yapara; ya da tersi. Örneğin çoğumuzun irkildiği yılan, doğanın dengesinin sağlanması için en önemle canlı gruplarından biridir. Yılanlar olması kemiriciler doğadaki bütün dengeleri allak bullak eder. Dolayısıyla kimin yararlı kimin yararsız olduğuna doğanın işletim sistemi karar verir. Ancak bazı canlı türleri örneğin çiçek, veba, humma, sıtma ve benzer onlarcası, doğada başka hiçbir canlıya şu ya da bu şekilde yarar sağlamıyor. Biyolojik döngülerinin varsa ara kademelerinde de sağlamıyorlar. Bu canlılar sadece insanları hasta etmek için evrimleşmiştir (akıllı tasarımcılara göre yaratılmışlar). Bir doğaüstü güç bu kadar canlı türü içinde en çok değer verdiği ve eşrefi mahlûkat olarak kitaplarında tanımladığı bu türe bu kadar eziyeti, korkuyu ve ıstırabı neden reva görmüştür dersiniz? İnsanlık tarihinden bu yana milyarlarca insan (bunların içinde günahsız olarak bildiğimiz çocuklar) ömrünün baharını bile görmeden bu canlılarca öldürüldüler. Sizce böyle bir tasarım akıllı tasarım mıdır? Sus sus öyle söyleme –Tanrının işine karışılmaz- günahkâr olursun demeyle ne zamana kadar yorumlama yetinizi bastıracaksınız? Dünya tamamlanmamış bir tasarımdır-Van Gogh Bir anlamda dünya tamamlanmamış bir tasarım olduğu için evrim sürmektedir. Eğer her şey mükemmel tasarlanmış olsaydı, evrimleşmeye gerek duyulmayacaktı. Halbuki canlı daha iyi daha etkili daha uyumlu yapıyı kazanabilmek için 3.8 milyar yıldır daha yetkin olmayı aramaktadır, yani evrimleşme çabası içerisindedir. Bir zamanlar denizanalarının daha sonra balıkları daha sonra kurbağagillerin daha sonra sürüngenlerin daha sonra kuş ve memelilerin ortaya çıkışı bu tasarımı daha başarılı hale getirmedir. Tanrısal bir tasarımda ilk olarak basitini yapma, daha sonra kullana kullana daha etkilisini geliştirme gibi bir mantık olamaz. Bir taraftan Tanrının her şeye kadir olduğuna ve deneme yanılma yöntemiyle doğruyu bulma gibi bir savurganlığa gerek duymayacağına inanma, diğer taraftan da zaman içinde organizasyon bakımından gittikçe daha gelişmiş canlıların dünyada sırasıyla yer aldığını, organizasyon bakımından ilkel olanların zamanla ortadan kalkıp yerini daha gelişmiş organizmalar bıraktığını gözleyip de evrim fikrine inanmama, ancak akıllı tasarımcılara yakışır. Hemşerim ve yakın dostum olan ressam Prof. Dr. Zafer Gençaydın, bir gün bana biliyor musun Ali, Ortaçağda doğması ve Ortaçağ mantığında yaşaması gereken birçok insan, herhalde yanlış bir planlamadan dolayı ne yazık ki zamanımızda doğmuştur; doğmakla da kalmamış bir kısmı üniversitelerde hoca olmuşlar, dedi. Ah, Tanrı dünyayı yeniden yarataydı,Yaratırken de beni yanında tutaydı;Derdim: “Ya benim adımı sil defterinden,Ya da benim dilediğimce yarat dünyayı.” Ömer Hayyam Daha önce değindiğimiz gibi, evrim gelecek için plan kurmaz, tasarım yapmaz; o anda elde bulunan nesneleri ya da özellikleri yine o anda gereksinme duyulan şekilde seçmeye kalkışır. Bu nedenle de evrim her zaman mükemmeli bulamaz. İşte bu nedenle dünyada bu güne kadar yaşamış canlıların %96’sı yeni değişimlere çözüm yolu bulamadığı ya da daha önce başarılı bir şekilde geliştirdiği özellikleri ile devam edemediği için yaşam sahnesinden silinmiş, yerlerini daha başarılı olanlara bırakmışlardır. Burada dogmatikler ile evrimciler arasında düşünce bakımından çok derin bir fark vardır. Dogmatikler, bu cümleden dinciler, akıllı tasarımcılar ve benzerleri görüşte olanlar başarılının (güçlünün) tanımını farklı anlarlar. Bu nedenle de doğanın işletim sistemini bir türlü anlayamazlar. Hatta bir televizyon tartışmasında, bir biyoloji profesörü (o günlerde Biyologlar Derneğinin de başkanıydı), bana dönerek hoca hoca, ne diyorsun, bir bakteri bir filden daha güçlü mü ki daha başarılı diyorsun. Dogmatiklerin güçten kastı, kas gücü ile sınırlıdır. Esasında bu görüşleri sonlarını da hazırlamaktadır. Çünkü gücü, sosyal yaşamda silah, anarşi, terörizm, para ve kaba kuvvet olarak bilirler. Hâlbuki bir evrimci, kas ve kemik gücüne dayanmayan bilgi ve becerinin daha üstün olduğunu gözlemleri ile öğrenmiştir. Bir virüsün bir fili yok edeceğini bilir. Çünkü evrimsel seçilimde kaba güç değil (bu güç ancak aynı türün bireyleri arasında daha sağlıklıyı –erkek kavgaları gibi- seçme için kullanılan evrimsel bir yöntemdir), çevrenin koşullarını en iyi kullanan, kalıtsal materyalini gelecek kuşaklara en hızlı ve en çok aktaran (çoğalan) ve başka bir türü kullandığı ince yöntemlerle alt edenler ayakta kalır; yapamayanlar elenir. Akılsız tasarımın en akıllıca yönü, akılsız olmasıdır. Hiçbir zaman tasarlayarak bir şey oluşturmaz. Tek amacı vardır: Olabildiğince çok çeşit üretmek. Bunun için israftan kaçmaz, daha doğrusu onu israf olarak görmez. Bu nedenle bir balık özelliği birbirinden farklı bir milyon yumurta bırakır. Bir tanesinin ortama uyum yapması başarıdır. O seçmeyi doğaya bırakır; bu nedenle doğal seçilim diyoruz. Üç beş bireyin yaşayabileceği bir ortama milyonlarca yumurtanın bırakılmasının başka ne anlamı olabilirdi? Bu nedenle kural olarak doğada yavrularını eksiksiz ya da kayıpsız büyüten hiçbir canlı yoktur diyebiliriz. O zaman bugünkü koşullarda neredeyse insanların doğurdukları çocukların hepsi yaşıyor diyebilirsiniz. Tam bir Akıllı Tasarımcı mantığı. İyi de o çocukları yaşatmak için doğada hiç olmayan ilaçları ve aletleri kullanarak onları başarabiliyorsunuz. Yani Akıllı Tasarımcıların mantığıyla Tanrı tasarımına karşı gelerek, o tasarımın hatalarını ilaçlarla aletlerle düzelterek… Tasarım hatasına yer yoktur. Doğa mükemmel bir mühendis değildir; varsayılan bir doğaüstü güç gibi her şeyi bilen, planlayabilen ve geleceği gören bir işletim sistemi de değildir. Var olanı kullanarak o günkü koşullara en iyi uyumu yapacakları seçen bir sistemdir. Bu nedenle doğanın işletim sisteminde keşke şöyle olsaydı özlemini dile getiremeyiz. Çünkü istek, ancak akıllı bir varlık tarafından yerine getirilir; akılsız olan bir yapı tarafından değil. Doğanın aklı yoktur; onun aklı evrimin işleyiş tarzı ve yöntemidir. Bu nedenle, ancak doğaüstü güçlere dua ederiz. Geçmişte doğal güçlere de (güneşe, aya, yıldıza, fırtınaya, ateşe ve yüzlercesine) dua ettik; yararını görmediğimiz için hemen hemen büyük bir kısmımız bu yakarmayı bıraktık; bu sefer sekiz cihetten münezzeh (yani önde, arkada, sağda, solda, altta, üste, içte ve dışta bulunmayan) varlıklara yöneldik; dilerim bu sefer başarırız… Sesimizi ve yakarışlarımızı duyan olur… Doğadaki bazı mekanizmaları anlayabilmek için evrim kavramı ve bilgisi kaçınılmazdır (dogmatiklerin böyle bir bilgiye ihtiyaçları yoktur, olmayacaktır da) . Örneğin kendi kendinize sorabilirsiniz, niye bir balık bir milyon yumurta meydana getiriyor da ancak 3-5 tanesi erginliğe ulaşabiliyor. Bir insan doğal ortamda 10 çocuk doğuruyor da ancak 1-2 tanesi erginliğe ulaşabiliyor. Bu bir savurganlık, materyal, zaman ve imkân yitirilmesi değil midir? Akıllı tasarım en az malzeme ile en çok üretim yapmanın adıdır. Hâlbuki doğa bu bakımdan inanılmaz derecede savurgandır. İşte bunun neden böyle olması gerektiğini ancak evrim bilimi bize veriyor. Çünkü akıllı bir tasarımda, her şey önceden planlanır ve tasarlanır. Eğer Ay’a gidecekseniz ona göre bir uzay gemisi, Mars’a gidecekseniz ona göre “bir” uzay gemisi tasarlarsınız. Ne bir eksiği ne bir fazlası vardır ve bu yapılar akıllı tasarımlardır. Doğa bizim bildiğimiz akla sahip olmadığı için, sorunun altından kalkabilmek için (böyle bir ifade de doğru değildir; çünkü bu da bir aklı ifade eder; esasında öyle olduğu için bize akıllı gibi görünüyor) çeşit yaratma peşine düşmüştür. Bu nedenle bir canlı birbirinden özellikleri bakımından kademe kademe farklı olan çok sayıda döl üretme stratejisini geliştirmiştir. Bir milyon tohumdan biri ya da bir milyon yumurtadan sadece biri, daha önce hiç karşılaşılamayan bir ortamda başarılı özellikleri kombine etmiş ise, o ayakta kalır diğerleri elenir. Sadece insan için örnek verelim: Her çiftleşme sırasında 300 milyon sperm üretilir, kural olarak sadece biri döllenme işlevini yapar. Ancak bu spermlerin ve yumurtaların sayıca çokluğu aynı bir dişiden ve aynı bir erkekten özellikleri bakımından farklı 70 trilyon çocuğun meydana gelmesini sağlar. Bu incirde de böyledir, narda da böyledir, balıkta da öyledir. Bir önceki paragrafta verdiğimiz uzay gemisi örneğini buraya taşırsak, önceden amaçladığımız inilecek gök cismine göre gemi planlanmadığını, binlerce, milyonlarca gemi yapılıp uzaya gönderildiğini, bunlardan birinin ya da birkaçının bir rastlantı olarak bir gök cismine inmesi ve taşıdığı özellikleri açısından orada gelişebilecek durumda olması halinde, yeni bir uygarlığın, biyoloji açıdan yeni bir türün doğuşu gerçekleşir. Böyle bir çeşitlilik zorunluluktur; çünkü gelecekte neyle karşılaşacağını bilmeyen bir sistem, çıkış yolunu olasılıkları ve çeşidi artırma ile bulabilirdi. İşte doğanın bu savurganca görülen işletim sistemi, böyle bir nedenle korunmuştur. Ne kadar akıllı bir sistem olursa olsun, gelecekte ne olacağını tam kestiremez ve bu da yok olmayla sonlanabilir. Evrimcilerin düzensizlikler içindeki düzen dediği sistem; rastgele seçilim bu nedenle başarılı olmuştur. Bu, düşünemeyen bir sistem için mükemmel bir stratejidir. Akıllı tasarım olsaydı her ortama göre kalıtsal bir birleşim imal edilirdi. O zaman da niye bundan 600 milyon yıl önce balık, 500 milyon yıl önce sürüngen, 300 milyon yıl önce memeli, 50 milyon yıl önce insan dünyada bulunmuyordu diye sorarlar? Çünkü doğa rastgele, deneme-yanılma ile ancak bu kadarını başarabildi. Akıllı bir tasarım olmuş olsaydı, bu kadar zahmetli bir yolu aşmaya gerek olmayacaktı. Aksini doğada kanıtlayan tek bir örnek yoktur. En çok sevilen ya da değerli şey özene bezene tasarlanır ve dikkatle imal edilir. İnsan Tanrı gözünde en değerli varlık olmasına karşın en çok defekti (bozukluğu) olan tür gibi görünüyor. Şimdilik insan soyunda adı konmuş 9.000 çeşit kalıtsal hastalığın olduğu bilinmektedir. Bir fabrika düşünün ki, herkesi kapsayacak bir tasarım hatasından değil (onu daha sonra ele alacağız), sadece kişilere özgü tasarım ve imalat hatasından dolayı 9.000 çeşit bozukluğu olan ürün imal ediyorsunuz ve buna da akıllı tasarım diyorsunuz. Ya akıllılığı bilmiyorsunuz ya da tasarım ne demektir onu bilmiyorsunuz. Sıkıştığınızda takdiri ilahi diyorsunuz. Bunlara kullanıldığı zaman ortaya çıkan “yaşlanmaya bağlı hastalıklar” dâhil değildir. Bu hastalıkların sayısı büyük bir olasılıkla yeni tanımlarla birlikte on binlerin üzerindedir. En ilginç olanı da hekimlerin büyük bir kısmının akıllı tasarıma sıcak bakmalarıdır. Bu, kendi mesleklerini bile tanımıyorlar anlamına gelir. Doktorluk, kalıtsal ya da sonradan ortaya çıkan bir eksikliğin giderildiği meslektir. Çoğunluk da tasarım hatalarının düzeltilmeye çalışıldığı bir meslektir. Akıllı bir tasarımı, oransal olarak bir anlamda çok daha zayıf akıllı sayılabilecek birileri düzeltiyor. Ancak bütün bunları görebilmek belirli bir sezinlemeyi, bilgiyi ve en önemlisi sadece insana özgü olan yargılamayı gerektirir. İnsan doğası gereği ben merkezli (antroposentrik) olduğu için, her şeyi kendi çıkarı açısından değerlendirir. Ben yaşıyorsam ve özellikle de iyi yaşıyorsam, bu çok iyi kurulmuş tanrısal bir düzenin sonucunda olmaktadır. Ancak, henüz erginliğe ulaşmadan ölen kardeşlerim için böyle bir yargı geçerli değildir. Benim çocuklarımın eli yüzü düzgün ise, bu tanrısal akıllı bir tasarımın sonucudur; ancak komşunun bütün aileyi ömür boyu sıkıntıya sokan sakat doğmuş çocuğu “Tanrının benim halimden şükretmem için yapmış olduğu bir düzenlemedir”. Tanrısal tasarımda acaba bencillik ve narsistlik bir ön koşul mudur? Pekâlâ, bu kadar insan neden doğanın mükemmel bir düzen içinde işlediğine inanıyor ve her şeyin mükemmel olduğuna inanıyor? İlk olarak insanı insan yapan empati yoksunluğundan. Çünkü başkasının kusuru, eksikliği ve derdi onu ilgilendirmiyor. Bu kadar kusuru görmemezlikten geliyor. Ancak en önemlisi, normalin ve anormalin ne olduğunu tam bilmiyor, tanımlayamıyor. Örneğin diyor ki bak ne güzel yiyecekler verilmiş yememiz için. Şimdi ben soruyorum, ne verilseydi aynı şeyi söyleyecektiniz. Başkasını bilmiyorsun ki. Ne güzel renkleri görüyoruz diyorsunuz? Başka renkleri tanımıyorsunuz ki bu yargıya sarılıyorsunuz. Gördüğümüz renkler ışık bandının yüzde biri bile değil; akıllı bir tasarım olsaydı biz çok daha zengin renkleri görecektik. Ancak bir evrimci bizim sadece 3 rengi neden görebildiğimizi biliyor; bu nedenle daha fazlasını da talep etmiyor. Tanrısal bir tasarımda daha fazlasını talep edebilirdik. Ancak bir evrimci görme pigmentlerinin oluştuğu dönemde, güneş ışınlarının en yoğun mavi, yeşil, kırmızı bantlarda yeryüzüne ulaştığını bu nedenle böyle bir tasarımla yetindiğini biliyor. Eğer bu dönemde X, alfa, beta ışınlarıyla da karşılaşmış olsaydık, onları da tanıyacak sistemi geliştirebilirdik ve bugün çoğu ortamda ortaya çıkan radyasyonu önceden görebilirdik ya da onlara dayanıklı bir kalıtsal molekül geliştirebilirdik. Bu cümleden bir şeyi özellikle vurgulamak istiyorum: Her şeyi büyük bir tasarım olarak görenlerin, “bu da beklenen bir şeydir, şaşılacak nesi var ki” diyebilecekleri bir tasarımları var mıdır? Önünü ve arkasını, nedenini bilmediğiniz, nasıl oluştuğunu bilmediğiniz her şey, yani basitten karmaşıklığa doğru giden yolu yani evrimsel süreci tanımadığınız sürece, uca ulaşmış her şey sizin için mucizenin bir ürünü olarak görülecektir. Bu basit bir hesap makinesini bile anlayamayan birinin bilgisayarı anlamaya kalkışması kadar sığ bir yaklaşımdır. Akıllı tasarımcılar! Evrimde basitten karmaşıklığa giden yolu öğrenmediğiniz sürece sizin hiçbir şeyi anlama ve görme şansınız olamayacaktır. Ya öğrenin ya da yoldan çekilin. Eğer akıllı tasarımla yetinmeye kalkışsaydık ne uzaya gidebilirdik ne denizlerin dibine inebilirdik. Bizim tasarımımız, ancak dünyanın yüzeyinde ince bir katmanda yaşamaya izin veriyor. İnsanı değerli bir varlık olarak niteleyen yüce bir yaratıcı bizi evrensel bir karantinaya niye sokmuş dersiniz? Bütün bu ortamlarda yaşayabilecek bir donanım verebilirdi. Ancak insan bu dünyanın çocuğu olduğu için, evrimleşerek oluştuğu için ne bulduysa onunla yetinmiştir. Evrim geleceği tahmin edemez, göremez; ancak çeşidini artırarak olası bir uyumun gerçekleşmesini sağlayabilir. Bunu da her zaman başaramaz. Bazen de belirli bir dönem için başarır; ancak kazandırdığı özellikler değişen koşullar yüzünden o canlıyı çıkmaz sokağa sokarak ortadan kalkmasına neden olur. Ancak, en önemli yargı ve yanılgı, yine akıllı tasarımcılardan elde edilebilir. Çünkü akıllı tasarımcıların hemen hepsi bütün bu sistemin mükemmel olduğunu savunur ve dayandıkları inançlar ise insanı evrenin efendisi olarak kabul eder ve onları “Eşrefi Mahlûk”, yani mahlûkların efendisi olarak görür. Bu demektir ki, insan yapılabilinecek ve elde edilebilinecek her güzelliğe layıktır. Bu güzellikleri insandan esirgemek, eşrefi mahlûk dediğimiz varlığa kötülüktür. O zaman gelin sizinle bir biyolojik oyun oynayalım. İnsanı yeniden tasarlayalım. Sürekli kendini onarmayla ölümsüzlük olabilirdi; ancak o zaman dinsel öğretideki öbür dünya sorgulamasından kaçmak anlamına gelirdi ki, bu dinsel öğretilerin belini kırar. Çünkü dayandıkları en önemli dayanak öbür dünyadaki görülecek hesabın cezası ve ödülüdür. Bu güzel tasarımı tutucuların hiçbiri kabul etmeyeceği için rafa kaldıralım. Öyle bir tasarım yapalım ki, hem dini öğretiler zarar görmesin hem de herkesin işine yarasın. Bilindiği gibi zaman insan için en önemli değer olmuştur. Yapacağımız işi ne kadar hızlı ve doğru yaparsak o kadar başarılı olur, rahat ederiz. O zaman vücudumuza –bize inanılmaz katkılarda bulunacak- hiçbir zararı olmayacak yeni bir tasarım ekleyelim derim. Örneğin, doğada, en az 500 canlı türünde çok az enerji kullanarak (kullanılan enerjinin %99’u ışığa çevrilerek) ışık çıkarma mekanizması eşrefi mahlûk biz insanlara sorunsuz monte edilebilirdi. Keza doğada, örtülerle açılıp kapanabilen çok sayıda göz yapısı da bilinmektedir. O zaman bir insanın bir parmağının ucuna, açılıp kapanabilen, aynı zamanda bir ışık sistemiyle desteklenmiş, hatta büyültme ve küçültme yeteneği olan bir göz sistemi yerleştirilebilirdi. Bunun biyolojik olarak olmaması için hiçbir neden yoktur. Bugün sistemi yeniden tasarlama görevi en basit bilgisi olan bir biyologa verilse bile bunu rahatlıkla başarabilir. Böyle bir ek yapının insanoğluna kazandıracağı olanakları ve zamanı düşünebiliyor musunuz? Bir makineyi sökmeye gerek kalmadan inceleyebilirsiniz; bir doktor bu parmakla vücudun herhangi bir deliğinden girerek ışıklı ortamda dokuları ve yapıları inceleyebilir; bir mekâna girmeden anahtar deliğinden içeriyi inceleyebilirdiniz. Sayısız olanak kazandırır. İnsanoğlu bugünkünden çok daha rahat yaşardı, çok daha ilerlemiş olurdu. Nasıl oluyor da basit bir adam bu denli yararlı bir sistemi düşünebiliyor da, her şeyi bilen bir varlık, bu imkânları bizden esirgemiş oluyor? İnsan üzerinde buna benzer onlarca –yaşamı kolaylaştıran- düzeltme yapılabilir ve yeni tasarım monte edilebilir. Bence akıllı tasarımı savunanlar –onu bilgisiz, beceriksiz ve egoist duruma düşürerek- inandıkları Tanrıya hakaret etmiş oluyorlar. Kaş yapayım derken göz çıkarıyorlar. Eşrefi mahlûk ile sefil mahlûk arasındaki ince çizgiyi anlayamıyorlar. Bazen bu kadar kanıta karşın birilerinin hala akıllı tasarıma tutunmuş olmasını, doğrusu “yine de Tanrısal bir tasarım” olarak kabul etmeye mecbur kalıyorum; çünkü doğa bu kadar hasarlı düşünce sistemi olanları bu kadar uzun süre sahnede tutmazdı; tutamazdı; ancak doğaüstü bir gücün yardımı ile böyle bozuk bir sistem borusunu öttürmeye devam edebilirdi. ABD'de yaratılış düşüncesinin, 1987 yılında (Edwards-Aguillard davasında) Anayasa Mahkemesinin aldığı kararla devlet okullarında okutulması Anayasaya aykırı olduğu gerekçesiyle yasaklanmıştır. Bu dava sürecinde Nobel Ödülü kazanmış 72 bilim adamı, 17 eyalet bilim akademisi ve 7 bilimsel organizasyon yaratılışın dini dogmalardan ve inançlardan oluştuğunu ve bilimsel olmadığını belirten bir yazı yayınladılar. Yaratılış ve akıllı tasarım konusunda diretme özellikle Amerika’nın gericileri ve sömürge zihniyetinde olanlarca sürdürülüyor. Bizimkiler farkında mı dersiniz? Mütedein (kendi halinde inanç sahipleri) olanlar ilk bakışta “Yaratılış ve Akıllı Tasarım Yaklaşımları”na geleneksel görüşlerine ters düşmediği için karşı çıkmıyorlar. Ancak, Amerika’nın bu kirli amaçlı zihniyeti, bizim gibi ülkelerde, özellikle satılmış kişilerce organize ediliyor ve yaygınlaştırılıyor. Bu konuda Türkiye’de yapılan ve karşılıksız dağıtılan yayınların bedelinin 21 milyon TL (21 trilyon YTL) olduğu belirtiliyor. Kaynağı? Bilinmiyor… Emniyet araştırıyor mu? Haşaaa… Akıllı tasarım akımı, tarihin en cani ve kanlı katililerinden biri olarak tanımlayabileceğimiz Amerika Başkanı Bush’un müntesip olduğu (bağlı olduğu) Kalvinist Kilisenin öncülüğünde başlatılmıştır ve akıllı tasarım zırvası bizzat Bush tarafından defalarca telaffuz edilmiştir. Kilise, akıllı tasarımın ve yaratılışın okullarda okutulması için defalarca yüksek mahkemeye başvurmuştur. Diyelim ki böyle bir yaklaşımı kendi inançlarını güçlendirmek açısından bir amaç olarak görmüş olabilirler. Ancak aynı kilise (kiliseler birliği) Amerika Irak’a saldırırken şöyle bir karar aldı. İsa, hem Tanrıdır hem Tanrının oğludur ve hem de Mesih’tir. Bunu kabul etmeyenler, buna iman etmeyenler biidraktir (idrak ya da anlama yeteneği yoktur); biidrakler insani sayılmazlar ve biidraklar üzerinde operasyon (burada öldürme ya da belki tıbbi deney yapma bile olabilir) yapma insanlık suçu sayılmaz. Böylece Irak’taki katliam da meşru bir zemine oturtulmuş oluyordu. Ancak, bu yaklaşımdan “Akıllı-Akılsız Tasarım”la ilgili önemli bir sonuç da çıkarılabilir. Demek ki “Akıllı Tasarım”a inanmış Kalvinist Kilise, Tanrının kendi inançlarının dışındakileri (Müslümanlar, Budistler, Ateistler vd. hatta Hıristiyan olup da başka mezheplere mensup olanları bile) yani dünya nüfusunun yaklaşık beşte dördünün bozuk mal olarak çıkarıldığını kabul ediyor. Bir anlamda akılsız tasarımı, üretim bozukluğunu tescil ediyor. Böyle bir kabul, onların İsrail’deki, Gazze’deki, Irak’taki, Afganistan’daki, Vietnam’daki, Somali’deki katliamlara duyarsız kalmasını sağlıyor. Zaman zaman Müslüman ya da diğer bir dinden olup da bu Kalvinistlerin bu fikrine dört elle sarılanları gördüğümde, Kalvinist Kilisesinin “Biidrak” tespitine inanacağım geliyor… Akıllı tasarımın görünürde çok sinsi bir siyasi boyutu da var. Amerika’da ortaya çıkan bu eğilimin zaten tarihten gelen çok geçerli bir temeli vardı: Kadercilik. Kadercilik, geçici olarak insanları rahatlatmış; ancak uzun vadede çıkmaza sokmuş; ancak en önemlisi sömürü düzenine karşı çıkamayacak kadar gözlerini kör etmişti. Batının vahşi kapitalizminin sömürü düzeni kurabilmesi için, bu kadar köklü ve kapsamlı bir öğreti biçimi bulunamazdı. Son birkaç on yıl içerisinde sinsi organizatörler harekete geçti; ülkesindeki akıllı tasarımcılar “kurulu düzene karşı çıkmayan munis vatandaşlar olacak” sömürülecek ülkelerin vatandaşları da hem meşgul edilecek hem de kolayca güdülebilecekti. İşbirlikçiler dünden hazırdı. Bu ülkelerde dini inançları bugüne kadar sömürü aracı olarak kullanan sayısız insan vardı. Bunların, oynanan oyunu fark etmesi de mümkün değildi; çünkü kul kültürü ile yetişmişlerdi; söylenene tartışmadan iman etmeleri başından beri inandırılmıştı. Böylece dünyada ne olup bitiyordan haberi olmayan, aklını öbür dünya ile bozmuş, bilimsel gelişmeleri zındıklık olarak tanımlayan, lidere körü körüne bağlı bir kesim yaratıldı. Daha doğrusu böyle bir kesim vardı, sayıları artırıldı. Sömürü düzeni tarihtekinin aksine bu sefer kansız olarak kuruldu. Dönün bir dünyaya bakın, öbür dünya işlerine daha çok zaman ayıran ülkelerin hepsi açık ya da kapalı sömürgedir. Bir toplumun hepsinin aydın olması arzulanır; ancak bu şimdilik hayal gibi görünüyor. O zaman bilimi rehber yapmış, yaratıcı, kurulu düzeni tenkit edebilen, yeni seçenekler sunabilen, toplumu geleceği hazırlayabilen insanların öne geçirilmesi yavaş da olsa yine de bir gelişmenin lokomotifi olabilir. İşte bu lokomotiflerin de önünün kesilmesi hem ülke içerisinde inançları sömüren zümre için hem de ülke dışında yağmalamaya, sömürmeye ant içmiş ülkelerin geleceği için gerekir. Işığını ve yol göstericisini yitirmiş bir toplumun sindirilmesi, sömürülmesi ve yönlendirilmesi zor olmayacaktır. İşte bu nedenle Türkiye ve Türkiye gibi ülkelerde, evrim kavramını özümsemiş ve onu, topluma yolunu bulması için ışık gibi tutacak insanları saf dışına atmak gerekirdi; onu da yeni kuşak gericiler, yani Akıllı Tasarımcılar yapıyor. “Eğer Akıllı Tasarım” olsaydı, “Akıllı Tasarımcılar” olmayacaktı. Prof. Dr. Ali Demirsoy Hacettepe Üniversitesi Kaynak: www.biyologlar.org.tr

http://www.biyologlar.com/akilli-tasarim-evrimsel-tasarim

Bakterilerde Büyüme ve üreme

Çok hücreli organizmalardan farklı olarak, tek hücreli organizmalarda büyüme (hücre büyümesi) ve hücre bölünmesi yoluyla üreme sıkı bir sekilde birbirine bağlıdır. Bakteriler belli bir boya kadar büyür ve sonra eşeysiz üreme şekli olan ikili bölünme ile ürerler. En iyi şartlarda bakteriler büyük bir hızla büyür ve ürerler; bakteri topluluklarının sayısı her 9,8 dakikada ikiye katlanabilir. Hücre bölünmesinde birbirinin aynı iki yavru hücre meydana gelir. Bazı bakteriler, eşeysiz üremelerine rağmen, daha karmaşık yapılar oluştur, bunlar yavru hücrelerin yayılmasını kolaylaştırır. Buna örnek myxobacteria'larda tohum yapıları ve Streptomyces'te hif oluşumudur. Bazı bakterilerde ise tomurcuklanma olur, hücre yüzeyindeki meydana gelen bir uzantı kopunca bir yavru hücre meydana gelir. Laboratuvarda bakteriler çoğu zaman katı veya sıvı ortamda büyütülürler. Katı büyüme ortamı olarak agar kapları kullanılır, bunlar aracılığıyla bir bakteri suşunun saf bir kültürü elde edilir. Ancak, büyümenin hızının ölçülmesi veya büyük miktarda hücrenin eldesi gerektiğinde sıvı büyüme ortamları kullanılır. Karıştırılan bir ortam içinde büyüyen bakteriler homojen bir hücre süspansiyonu olştururlar, böylece kültürün eşit olarak bölünmesi ve başka kaplara aktarımı kolay olur. Ancak sıvı ortamda tek bakteri hücrelerinini izole edilmesi zordur. Seçici ortam (belli besin maddeleri eklenmiş veya eksik bırakılmış, veya antibiyotik eklenmiş ortam) belli organizmaların kimliğinin tespitine yardımcı olur. Bakteri büyütmek için kullanılan çoğu laboratuvar tekniğinde, çok miktarda hücrenin hızlı ve ucuz olarak üretilmesi için bol miktarda besinler kullanılır. Ancak, doğal ortamlarda besinler sınırlı miktradadır, bu yüzden bakteriler ilelebet üremeye devam edemez. Besin sınırlaması farklı büyüme stratejilerinin evrimleşmesine yol açar (bakınız r/K seçilim teorisi. Bazı organizmalar besinler mevcut olunca son derece hızlı çoğalır, örneğin yaz aylarında bazı göllerde yosun ve siyanobakteriyel büyümelerinde olduğu gibi. Başka bazı organizmalar sert çevresel şatlara adaptasyonları vardır, örneğin Streptomyces'in rakip organizmaları engellemek için çoklu antibiyotik salgılaması gibi. Doğada çoğu organizma besin teminini kolaylaştıran ve çevresel streslere karşı koruyucu topluluklar halinde (biyofilm gibi) yaşar. Bu ilişkiler belli canlı veya canlı gruplarının büyümesi için şart olabilir (sintrofi). Bakteriyel büyüme üç evre izler. Bir bakteri topluluğu yüksek besin bulunduran bir ortama ilk girdiğinde hücrelerin yeni ortamlarına adapte olmaları gerekir. Büyümenin ilk evresi bekleme aşamasıdır (latent dönem veya lag fazı), bu yavaş büyüme döneminde hücreler yüksek besili ortama adapte olup hızlı büyümeye hazırlanırlar. Hızlı büyüme için gerekli olan proteinler üretilmekte olduğu için bekleme döneminde biyosentez hızı yüksektir. Büyümenin ikinci evresi logaritmik faz (log fazı) veya üssel faz olarak adlandırılır. Bu evrede üssel büyüme olur. Bu evrede hücrelerin büyüme hızı (k), hücre sayısının iki katına çıkma süresi de jenerasyon zamanı (g) olarak adlandırılır. Besinlerden biri tükenip sınırlayıcı olana kadar süren log fazı sırasında besinler en yüksek hızla metabolize olur. Büyümenin son evresi durağan faz olarak adlandırılır, ve besinlerin tükenmiş olmasından kaynaklanır. Hücreler metabolik etkinliklerini azaltır ve gerekli olmayan hücresel proteinlerini harcarlar. Durağan faz, hızlı büyümeden bir strese tepki haline geçiş dönemidir, DNA tamiri, antioksidan metabolizması, ve besin taşıması ile ilişkili genlerin ifadesinde bir artış olur.

http://www.biyologlar.com/bakterilerde-buyume-ve-ureme

SİLVEA

Ilıman bölgelerin ancak yazın yeşil olan ve yapraklarını döken ormanlık alanlarıdır. Tipik olarak Doğu ve Kuzey Amerika ile Orta Avrupa'da görülür. Ekolojik nişlerinin zenginliği bakımından tipik olan bu bölgenin tür sayısı da oldukça zengindir. Taiga faunasındaki elemanların büyük bir kısmı silveada da bulunur (örneğin büyük memeliler ve birçok kuş türü gibi). Buraya, ayrıca, soğuğa az dayanıklı hayvanlar, yapraklarını döken ağaçlara ve onlara eşlik eden diğer bitki örtüsüne bağlı böcekler ile böcekçil kuşlar girmektedir. Yaz sıcaklıklarının yüksek olması, sıcağı seven türlerin, en azından geçici olarak buralarda barınmasına izin verir. Sonbaharda yaprakların büyük ölçüde dökülmesi, toprakta kuvvetli bir humus tabakasının oluşumuna neden olur. Bu da iyi bir şekilde zenginleşmiş ve olgunlaşmış toprağın, dolayısıyla zengin bir toprak faunasının oluşmasına neden olur. Tropik bölgeler bir kenara bırakılırsa, birçok hayvan grubu bakımından zengin bir tür çeşitliliği görülür. Silveanın özellikle iklim bakımından uygun bölgelerinde çok yoğun insan yerleşimi vardır. Bu yoğun yerleşme, faunaya zarar vermektedir. Birçok yerde ormanlar tamamen yok edilmiş ya da kültür koruluklarına dönüştürülmüştür; ekonomik olarak yararlı bazı ağaç türlerinin monokültürleri bir koruluk biçiminde genişletilmiştir. Bundan dolayı silvea faunasında belirgin bir bozulma ya da fakirleşme ortaya çıkmıştır. Örneğin Avrupa'da vaşak, yabankedisi, kurt, ayı, su samuru ve kunduz gibi bazı memeli hayvanlar tamamen yok olmuş ya da çok azalmıştır. Hayvan gruplarının tümünde, şehirleşmenin ve tarım arazilerinin genişletilmesi sonucunda önemli tahribatlar ortaya çıkmıştır. Doğada koruma bölgelerinin oluşturulması, küçük memeliler, sürüngenler, böceklerin soylarını devam ettirmeleri için bir önlem olabilir. Fakat büyük memeliler ve kuşların korunması için yeni bireylere ve yedeklere gerek vardır. Bozulmamış silvea, Avrupa'da sadece Urallar'da ve kısmen Karpatlar'daki birkaç alanda kalmıştır. Fakat buralardaki gittikçe yaygınlaşan av turizmi de büyüyen bir tehdidi oluşturmaktadır.

http://www.biyologlar.com/silvea

Preslenmesi Zor Bitkilere Buhar İşlemi Uygulanması

Bazi bitki türlerinin preslenmesinde çesitli sorunlar ortaya çika bilmektedir. Örnegin Cirsium arvense (Köy göçüren)' de oldugu gibi dikenli yapraklar sorun yaratabilir. Kalin çiçek baslari preste kubbemsilesir, preslenmesi zorlasir. Diger bazi bitkilerde dikenler çok yer tutar ve filtreli kagidi delebilir. Bu bitkiler 2 sert lifli kartonun arasina konularak preslenir. Özsuyu bol ince kabuklu meyveler çizilir ve böylece özsu uzaklastirilmis olur. Büyük meyvelerde yas koruma yapilir. Sogan ve yumru kökler ortadan bölünüp, pörsümesi için önce bekletilmesi önerilir. Çünkü ölü dokular suyu filtreli kagida çok çabuk verirler. Kalin yaprakli etli bitkileri haslamak veya buhara tutmak preslemede kolaylik saglar. Çok saglam yapili bitkiler haslanabilirler. Bu amaçla bitki tele baglanarak birkaç saniye kaynar suya daldirilirlar. Diger bir yöntem de isi islemi özel bir buhar odasinda yapilabilir. Bitkiler levha üzerine yatirilir ve yapisina göre yarim ile iki saate kadar yogun buhara birakilirlar. Daha sonra disari alinip filtreli kagit levhalar arasinda preslenirler. Hizli su alimi ile bitkileri kurutma islemi kismen kisa sürer. Suyun buharlasmasi önce çok hizli olur. Bu yüzden 1 saat sonra ara tabakalar degistirilir. Çiçekler her kisa isitmadan önce bitkiden veya iki saate kadar yogun buhara birakilirlar. Daha sonra disari alinip filtreli kagit levhalar arasinda preslenirler. Hizli su alimi ile bitkileri kurutma islemi kismen kisa sürer. Suyun buharlasmasi önce çok hizli olur. Bu yüzden 1 saat sonra ara tabakalar degistirilir. Çiçekler her kisa isitmadan önce bitkiden uzaklastirilir ve özel olarak preslenirler (Stehhi und Brünner, 1981).

http://www.biyologlar.com/preslenmesi-zor-bitkilere-buhar-islemi-uygulanmasi

Bitki Fizyolojisi Bölüm 2

Bilindiği gibi fizyoloji organeller, hücre ve dokular ile organ ve organizmaların canlılığını sağlayan işlevlerini, ilişkilerini ve cansız çevre ile etkileşimlerini inceleyen bilim dalıdır. Bitki fizyolojisi de bu çerçevede mikroalglerden ağaçlara kadar tüm bitkilerde bu konuları araştırır. Günümüzde bilgi birikiminin ve iletiminin çok hızlı artışı nedeniyle bilim dallarının sayılarındaki artış yanında sürekli yeni ara dalların ortaya çıkması sonucu bilim dalları arasındaki sınırları çizmek zorlaşmış ve giderek anlamını yitirmeye başlamıştır. Fizyoloji fizik ve kimya ile moleküler biyoloji, sitoloji, anatomi ve morfoloji ile biyofizik, biyokimya verileri ve bulgularından yararlanarak tıp ve veterinerlik, ekoloji ve çevre, tarım ve ormancılık ile farmasi ve gıda, kimya mühendisliği gibi uygulamalı bilimlerrindeki gelişmeler için altyapı sağlamaktadır. Bitki fizyolojisi de bitkilerle ilgili olan konularda aynı şekilde çalışarak.diğer temel ve uygulamalı bilimlerin gelişmesine katkıda bulunmaktadır. Uzunca bir süre önce fizyoloji ile biyokimyanın konuları arasındaki sınır netliğini kaybetmiştir. Giderek diğer bilim dalları ile aradaki sınırlar da bilgibirikiminin artışı sonucunda zayıflayacaktır. BİTKİ FİZYOLOJİSİNİN KONUSU VE DALLARI Klasik olarak fizyoloji, beslenme fizyolojisi, metabolizma fizyolojisi ve büyüme gelişme fizyolojisi olarak üç ana dala ayrılır. Bu yaklaşımla bitki fizyolojisinde beslenme kara bitkilerinin havadan, su bitkilerinin de sudan sağladığı gazlar ve kara bitkilerinin havadan sağladığı su buharı ile toprak veya sudan sağladıkları mineral iyonları, nasıl alındıkları ile ilgili konular beslenme fizyolojisi başlığı altında toplanır. Metabolizma fizyolojisi de bu çerçevede alınan hammaddelerin, hangi maddelere dönüştürüldüğü ve kullanıldığı, işlevlerinin neler olduğu, hangi durumlarda bu tabloda ne yönde ve nasıl değişimler olduğunu inceler. Biyokimya ile en yakın olan daldır. Metabolizma fizyolojisinin karmaşık ve genişkapsamlı oluşu nedeniyle de primer ( birincil, temel ), sekonder ( ikincil ) ve ara metabolizma, primer metabolitlerin depolanan ve gerektiğinde sindirilen dönüşüm ürünlerini konu alan alt dallara ayırılması gereği ortaya çıkmıştır. Büyüme ve gelişme fizyolojisi ise beslenme ile alınan, metabolize edilen maddelerin kullanılması ile organellerden, bitki hücrelerinin embriyo düzeyinden başlayarak organlar ile bitki organizmalarına kadar büyümelerini, belli bir yönde farklılaşarak özel işlevler kazanmalarını, bütün bu olayları etkileyen etmenleri ve etkileşimlerin mekanizmalarını inceler. Büyüme ve gelişme fizyolojisi hem moleküler biyoloji hem de biyokimya ve ekoloji ile yakından ilişkilidir. Çünkü büyümeyi ve sonra gelişmeyi tetikleyen mekanizma ve özellikle farklılaşmanın şekilleri açısından kapasite genetik yapı ve baskı, biyokimyasal özellikler ile çevre koşulları ile yakından ilişkilidir. Bilgi birikiminin artışı ile bitki gruplarına has özellikleri inceleyen veya yüksek bitkilerin yaşamında ve uygulamalı bilimlerde önemli yer tutan belli olgu ve gelişmeleri konu alan alt dallar ortaya çıkmıştır. Bitki hücre fizyolojisi, alg fizyolojisi, çimlenme fizyolojisi, çiçeklenme fizyolojisi, stres fizyolojisi, bunlardandır. Ayrıca fizyolojik olayların açıklanabilmesi gerekli temel bilgileri sağlayan fizik, enerjetik, kimya, fizikokimya ve biyokimya gibi dalların katkıları oranına göre de biyofizik, fiziksel biyokimya, biyo-organik veya inorganik kimya gibi dallara benzer şekilde biyofiziksel, biyokimyasal fizyoloji gibi alt dallara ayrılır. Günümüzde botaniğin ve diğer temel ve teknolojik bilimler ile dallarının konuları ile ilişkinin yoğunluğuna göre adlandırılan alt dallara da ayrılmıştır. Bitki ökofizyolojisi, ürün fizyolojisi, depolama fizyolojisi, fizyolojik fitopatoloji bu alt dallara örnek olarak verilebilir. Bu tür konu sınıflandırmaları çerçevesinde bitki fizyolojisini, fizyolojinin temel konularının bitkileri diğer canlılardan ayıran temel özelliklerin fizyolojik yönlerinden başlayarak ele almak ve bu temeller üzerinde açılım gösteren özel konulara yönelerek işlemek yararlı olabilir. Bilindiği gibi canlıların en temel özellikleri aldıkları enerjiyi belli sınırlar içinde olmak üzere çevreden alabilmeleri, kullanabilmeleri, depolayabilmeleri ve gerektiğinde açığa çıkarabilmeleri, biyolojik iş yapabilmeleridir. Cansızlardan enerjice etkin olmaları ile ayrılırlar, doğal cansız evren enerji karşısında tümüyle edilgendir. Bu nedenle de bitki fizyolojisini biyolojinin temeli olan biyoenerjetiğin temel konularını anımsayarak incelemeye başlamak gerekir. ENERJETİK VE BİYOENERJETİK Adından anlaşılacağı üzere enerji bilimi olan enerjetiğin temel dalı olan termodinamik ısı, sıcaklık, iş enerji dönüşümleri ve türleri arasındaki ilişkileri, bu arada meydana gelen yan olayları inceler. Fiziğin bir anadalı olan termodinamiğin fiziksel özellikler ile enerji arasındaki ilişkiler de konusudur. Kimyasal termodinamik ise fiziksel özellik değişimleri yanında meydana gelen kimyasal dönüşüm ve değişimleri inceler. Termodinamik olgu ve olayları makro ölçekte inceler, yani olayın gelişme şekli, yolu neolursaolsun başlangıç ve bitiş noktalarındaki durumları ile ilgilenir. Örneğin çekirdek enerjisinin nükleer bombanın patlatılması veya bir santralda kontrollu olarak uzun sürede tüketilerek açığa çıkarılan miktarı aynı olduğundan termodinamik açıdan aynı olaydır. Termodinamiğin birinci yasası da bu örnekte belirtilen şekildeki kütle – enerji arası dönüşüm olaylarının tümüyledönüşümden ibaret olduğunu, kütle ve enerji toplamının sabit kaldığını belirtir. Yani bu dönüşümlerde kütle + enerji toplamında artış veya kayıp söz konusu olamaz. Yasanın tanımladığı kütle + enerji kavramının anlaşılır olması için madde ve enerjinin ölçülebililir büyüklükler olması gerekir. Bunu sağlayan da enerji ve kütlesi tanımlanmış olansistem kavramıdır. Termodinamikte inceleme konusu olarak seçilen, ilk ve son enerji + kütle miktarı bilinen, ölçülen ve değerlendirilen sistem, onun dışında kalan tüm varlıklar ve boşluk ise çevredir. Örneğin güneş sisteminin termodinamiği incelenmek istenirse uzay çevredir. Güneşin termodinamik açıdan incelenmesinde ise gezegenlerle uydular da çevre içinde kalır. Evren sistem olarak ele alındığında ise çevre olarak değerlendirilebilecek bir şey kalmadığından evrende enerji + madde toplamı sabittir, enerji veya madde yoktan var edilemez ancak enerji – madde dönüşümü olabilir. Burdan çıkan sonuç da maddenin yoğunlaşmış olan enerji olduğudur. Enerjiyi ancak maddeye veya işe dönüştüğü zaman algılayabildiğimiz, gözlemleyebildiğimiz için maddedeki gizli enerjiyi ölçemeyiz. İkinci yasa bütün enerjetik olayların kendiliğinden başlaması ve sürmesinin ancak sistemdeki toplam maddenin en az ve enerjinin en üst düzeyde olacağı yönde olabileceğini belirtir. Bu durum sağlandığında sistem dengeye varır, entropisi – düzensizliği – başıboşluğu (S) maksimum olur. Bunun tersi yönünde gelişen olaylar ise reverzibl – tersinirolaylardır. Örneğin canlının bir termodinamik sistem olarak oluşması ve büyüyüp gelişmesi tersinir, ölmesi ise irreverzibl – tersinmez olaylardır. Canlı sistemde ölüm termodinamik denge halidir. Aynı şey kimyasal tepkimeler içinde geçerlidir, dışarıdan enerji alarak başlayan ve yürüyen endotermik tepkimeler kendiliğinden başlayamaz ve süremez, birim sürede çevreden aldığı ve verdiği enerjinin eşitlendiği, enerji alışverişinin net değerinin sıfır olduğu denge durumunda durur, kinetik dengeye ulaşır. Ancak eksotermik, enerji açığaçıkarantepkimelerkendiliğinden yürüyebilir. Canlılığın oluşumu ve sürmesini sağlayan biyokimyasal sentez tepkimeleri de dengeye ulaşan reverzibl tepkimelerdir ve ancek ürünlerinin tepkime ortamından uzaklaşmasını sağlayan zincirleme tepkime sayesinde termodinamik dengenin kurulamaması ile sürebilir. Üçüncü yasa termodinamik bir sistemde entropinin, yani madde halinde yoğuşmamış olan enerjinin sıfır olacağı -273 derece sıcaklığa ulaşılamayacağını belirtir. Bitkilerdeki biyoenerjetik olayların anlaşılması açısından önemli olan diğer enerjetik kavramları ise entalpi, ve serbest enerji ile görelilik kuramının ışık kuantı ile ilgili sonucudur. Termodinamik incelemenin başlangıç ve bitim noktalarında ölçülen entalpi - toplam enerji farkı (DH) olay sonundaki madde kaybı veya kazancının da bir ölçüsü olur. Canlılarda çevreden alınan enerjinin azalmasına neden olan koşullarda bu etkiye karşı iç enerji kaynaklarından yararlanma yolu ile etkinin azaltılmasına çalışan mekanizmalar harekete geçer. Evrimin üst düzeyindeki sıcak kanlılarda vücut sıcaklığını sabit tutan bir enerji dengesinin oluşu çok zorlayıcı koşulların etkili olmasına kadar entalpi farkını önler. Entropinin ölçümü çok zor olduğundan sistemdeki düzensizlik enerjisi yerine entropi artışı ile ters orantılı olarak azalan iş için kullanılabilir, işe çevirilebilir serbest enerji (G)ölçülür. Serbest enerji sistem dengeye varıncaya kadarki entalpi farkının bir bölümünü oluşturur. Entalpi farkının entropi enerjisine dönüşmeyen, yani atom ve moleküllerin termik hareketliliklerinin artışına harcanmayan kısmıdır. Termik hareketlilik doğal olarak sıcaklığa, atom ve moleküllerin çevrelerinden aldıkları enerji düzeyine ve hareketliliklerine,hareket yeteneklerine bağlıdır; atom veya molekül ağırlığı, aralarındaki çekim kuvvetlerinin artışı hareketliliklerini azaltır. Bir sistemde serbest enerji artışı entropi enerjisi azalırsa da çevrenin entropi enerjisi artışı daha fazla olur ve 2. yasada belirtildiği şekilde sistem + doğanın entropisi sürekli artar. Canlı sistem ele alındığında canlının oluşup, büyümesi ile sürekli artan serbest enerji karşılığında çevreye verilen entropi enerjisinin daha fazla olmasını sağlayan canlının çevresine aktardığı gaz moleküllerinin termik hareketlilik enerjisi gibi enerji formlarıdır. Einstein’ın E = m . c 2 fomülü ile açıkladığı enerji – kütle ilişkisi sonucunda astronomların güneşe yakın geçen kozmik ışınların güneşin kütle çekimi etkisiyle bükülmeleri gözlemleriyle dahi desteklenen ışığın tanecikli, kuant şeklinde adlandırılan kesikli dalga yapısı fotosentez olayının mekanizmasının anlaşılmasını sağlamıştır. Kimyasal termodinamikte yararlanılan temel kavramlardan olan kimyasal potansiyel fizyoloji ve biyokimyada da kullanılan ve birçok canlılık olayının anlaşılmasını sağlayan bir kavramdır. Bir sistemdeki kimyasal komponentlerin her bir molünün serbest enerjisini tanımlar. Sistemde bir değişim olabilmesi, iş yapılabilmesi için bir komponentinin kullanacağı enerji düzeyini belirtir. Eğer değişim, dönüşüm sırasında bir komponentin serbest enerjisi artıyorsa bir diğer komponentinki daha yüksek oranda azalıyor demektir. İki sistem arasında kimyasal potansiyel farkı varsa bu fark oranında kendiliğinden yürüyen bir değişme olur ve iletim görülür. Bu suda çözünen katı maddelerin – solutların, pasif – edilgen şekildeki hareketini açıklamakta da kullanılan bir terimdir. Bu terimin su komponenti için kullanılan şekli su potansiyelidir. Kimyasal potansiyel basınç değişimi ile ilgili olayları da içerdiğinden su basıncı – hidrostatik basınç tanımı da kullanılır. Elektriksel potansiyel farkı da kimyasal potansiyelin bir şekli olduğundan sulu iyonik çözeltilerde katyonların katod durumundaki, anyonların da anod durumundaki sabit ve yüklü kutuplara doğru hareketine neden olur. Söz konusu potansiyellerin mutlak değerleri değil aralarındaki fark itici güçtür. İki nokta arasındaki basınç, derişim, elektriksel yük, serbest enerji farkı gibi farklılıkların tümü canlılıkta rol oynar ve karmaşık dengeleri yürümesini sağlar. Bu denge birarada bulunan komponentlerin birbirleri ile etkileşmelerinden etkileneceğinden etkileşim potansiyelinin de değerlendirilmesi gerekir. Bunun için kullanılan terimler ise aktiflik – etkinlik sabiti ve efektiv – etkin derişimdir. Etkin derişim, etkinlik sabiti yüksek maddenin veya maddelerin derişim farkına dayanarak sistemdeki değişim potansiyelini değerlendirir. Sistemin değişim potansiyelini ortaya çıkarır. Bu çerçevede su potansiyeli sistemdeki bir mol suyun sabit basınç altında ve sabit sıcaklıkta yer çekiminin etkisi sıfır kabul edilerek sistemdeki saf su ortamından etkin derişimin daha düşük olduğu yere gitme potansiyelidir. Yani hidrostatik basınç artışına paralel olarak su potansiyeli artar. Daha önceleri Difüzyon basıncı eksikliği ve emme basıncı, emme kuvveti şeklinde tanımlanmış olan su potansiyeli günümüzde en geçerli olarak benimsenen, kuramsal temelleri sağlam olan terimdir. BESLENME FİZYOLOJİSİ Bilindiği gibi canlıların ortamdan sağladığı, olduğu gibi tüketerek kullandıkları besin maddeleri büyük canlı gruplarında farklılıklar gösterir. Bitkiler aleminde de özellikle su bitkilerinin sudan, kara bitkilerinin topraktan sağladığı inorganiklerin çeşitleri ve özellikle oranlarında farklılıklar görülür. Tipik bitki besini olarak kullanılan elementlerin hepsi inorganik formdadır. Ancak bitki köklerinin organik maddelerden de yararlandığı görülmüştür. Saprofit ve parazit bitkiler ise konukçuldan inorganikler yanında doğrudan organik madde de sağlarlar. Canlıların tükettiği maddeleri oluşturan elementler canlılıktaki işlevleri açısından esas olan ve esas olmayan elementler olarak ikiye ayrılır. Günümüzde benimsenmiş olan ayırım bir elementin hücrede canlılık için esas olan bir molekülün yapısına girip, girmemesine göre yapılır. Bu da noksanlığı halinde bitkinin vejetativ gelişmesini tamamlayamaması ve karakteristik, tekrarlanır bazı belirtilerin açık şekilde ortaya çıkması ve element eksikliği giderilince ortadan kaybolması şeklinde kendini gösterir. Suyun hidrojeni yanında karbon canlıların yapısını oluşturan ve canlılığı sağlayan organik moleküllerin tümünde bulunduğundan en önemli elementlerdir, canlılığın temel taşları olan nükleik asit ve proteinlerin yapısına girdiğinden, azot birçok organik maddenin maddenin yapısında önemli bir yere sahip olduğundan temel besin elementidir. Fosfor da tüm canlılarda enerji metabolizmasındaki yeri nedeniyle temel elementtir. Oksijen de solunumdaki rolü ile anaerob mikrobiyolojik canlılar dışındaki bitkiler için önemi ile onları izler. Yeşil bitkilerin yaşamı için şart olan maddeler arasında miktar açısından temel besinleri su ve karbon dioksit ile oksijendir. Kemosentez yapan bakteriler için de farklı formları halinde alınsa da karbon temel elementtir. Bunun yanında inorganik azotlu bileşikler de besin olarak çok önemli yer tutar. Çünkü bazı Cyanophyta grubu ilksel bitkiler yanında Leguminosae ve Mimosoidae familyaları gibi bazı yüksek bitkileri ancak Rhizobium bakterilerinin simbiyont olarak katkısı ile havanın azotundan yararlanabilirler. Bu grupların dışında bitkiler havada yüksek oranda bulunan serbest azotu besin olarak kullanamazlar. Tüm canlılarda mutlaka ve yüksek oranlarda bulunması gereken bu elementler yanında besin olarak alınan elementler alkali ve toprak alkali mineral elementleri grubuna giren ve tüketimleri, gereksinim duyulan miktarları nedeniyle makroelement denen inorganiklerdir. Bu elementlerden çok daha düşük oranlarda gerekli olan ve daha yüksek miktarları ile toksik etki yapan mikroelementler konusunda ise farklı bir tablo görülür. Bitki gruplarında cins ve tür düzeyinde bile seçicilik, tüketim ve yararlanma ile yüksek derişimlerinin varlığına dayanıklılık, zarar görmeden depolayabilme farklılıkları görülebilen elementlerdir. Bitkiler aleminde bulunan elementlerin toplam olarak sayıları 60 kadardır. Bu elementlerin toplam bitki ağırlığına, organ ağırlıklarına, doku ve hücreler ile organellerin ağırlıklarına ve kuru ağırlıklarına oranları yaşam evrelerine, çevre koşullarına ve bunlar gibi birçok etmene göre farklılıklar gösterir. Bitkiler için yaşamsal önem taşıyan esas element sayısı 17dir. Makro elementler tipik olarak 1 kg. kuru maddede 450 mg. cıvarında olan arasındaki oranlarda bulunan C, O, 60 mg. cıvarındaki H, 15 mg. cıvarında olan N, 10 mg. kadar olan K, 5 mg. cıvarındaki Ca, 2 mg. cıvarındaki P, Mg ve 1 mg. kadar olan S elementleridir. Mikroelementler arasında yer alan esas elementlerden Cl ve Fe 0.1, Mn 0.05 ve B ve Zn 0.02, Cu 0.006, Mo 0.0001mg / kuru ağırlık düzeyinde bulunurlar. Makroelementler hücre yapısında yer alan, mikroelementler yapıya girmeyip metabolizmada etkin rol alan elementlerdir. Esas makroelementler olarak bitkilerin canlılığı için şart olanlar arasında P, S, Ca, K, Mg, Fe yer alır. Bunların yanında Na deniz bitkileri ile tuzcul olan yüksek bitkiler için esas makroelementtir. Esas mikroelementlerden Fe ve Mo özellikle yüksek bitkiler için, B birçok yüksek bitkiler ve V bazı algler için esas elementtir. Kükürt dışındaki mikroelementler özellikle canlılık için önemli bazı enzimlerin kofaktörü olarak işlev yaparlar. S ise özellikle kükürtlü amino asitler üzerinden sitoplazmik protein zincirlerinin kuvvetli bağlarla sağlam bir yapı oluşturması nedeniyle önemlidir. Se, Al gibi bazı iz elementleri alarak depolayan fakat metabolizmada kullanmayan, o element için seçici olmayan türler de vardır. BESİN ALIMI Su içinde serbest yaşayan bitkilerin besinlerini doğal olarak suda çözünmüş halde bulunan gaz ve katı maddeler oluşturur ve difüzyon, osmoz yolları ile alınır. Yüksek su bitkileri ise buna ek olarak zemine tutunmalarını sağlayan sualtı gövdeleriyle topraktan da beslenirler. Gaz halinde bulunan besinler tüm bitkiler tarafından yayınım – difüzyonla alınır. Canlılık için sürekli kullanılması gereken temel besinler olduklarından, bu gazlardan yararlanma yeteneği olan canlı hücrenin lümenine girip, protoplazmasına geçtiklerinde hemen kullanılırlar. Bu nedenle de yayımımla alınmaları süreklidir. Su ve suda çözünmüş olan katı besinler ise aşağıda görüleceği üzere difüzyona ek olarak osmoz, ters osmoz ve aktif alım yolları ile alınırlar. Atmosferde doğal şartlarda %0.03 oranında bulunan CO2 güneş ışınlarının ısıya dönüşür kuantlarını içeren kızılötesi, yani 1 – 10 m dalgaboyundaki kesimini soğurarak canlılığın sürmesini sağlar. Suda çözündüğünde karbonik asit oluşturarak pH değerini düşürür ve suyun çözme kuvvetini genel olarak arttırdığı gibi özellikle alkalilerin çözünürlüğünü arttırır. Bu şekilde de beslenmeyi ve mineral madde alımını kolaylaştırır. Mineral madde iyonları sudaki karbonik asit ve diğer organik asitlerle tuz yaparak tuz – asit çiftinin sağladığı pH tamponu etkisiyle canlı özsuyunda pH değerinin canlılığa zarar verecek düzeyde değişmesini, pH 4 – 8.5 aralığı dışına çıkması riskini azaltır. O2 de suda çözünen bir gazdır ve çözündüğünde red – oks tepkimelerine girer. Tatlı suda 20 derece sıcaklıkta hacimce %3 oranında çözünür. Havadan ağır olduğundan atmosferdeki oksijenin suyla teması ve doygunluğa kadar çözünmesi süreklidir. Likenler, kserofitler gibi bazı bitkiler havanın neminden su temininde yararlanır. Ayrıca hücreler arası boşluklardaki hava da bu şekilde gaz besin sağlar. Tüm bu gaz halindeki besin alımları yayınımla olur. Kütle Akışı ve Şişme ile Su alımı Sıvıların yerçekimi etkisiyle akışı ve benzeri olayları hidrostatik basınç farkı gibi potansiyel enerji farklılıkları sağlar. Bu şekilde DH değerinin sıfırdan büyük olduğu yer değiştirme olayına kütle akışı – “mass flow” denir. Bu tür olaylarda çözücü ve çözünen tüm maddelerin atom ve molekülleri aynı şekilde hareket eder. Kütle akışı vaküolde, hücrelerarası boşluklarda ve canlı hücreler arasında da plazmodezmler üzerinden olur. Canlılardaki kütle akışında kapilarite önemli rol oynar, çünkü hücre ve hücrelerarası serbest akış yolları ancak mikron ve askatları düzeyindedir. Kapilerden geçiş ise geçen sıvınınviskozitesi – akışkanlığı ile yakından ilişkilidir. Viskozite, akış hızı değişiminin sabit tutulması için gerekli enerji miktarı şeklinde de tanımlanabilir. Bu değer de her bir sıvı için özgül bir değerdir. Çünkü akışkanlık sıvının bir molekül tabakasının diğerinin üzerinden kaymasına karşı gösterilen dirençtir ve bu direnç sıcaklıkla azalır, çünkü ısıl hareketlilik artar, dirence neden olan fizikokimyasal ve kimyasal bağlar zayıflar. Suyun elektrostatik olarak yüksüz kapilerlerden kütle akışı ile geçiş miktarı ve hızı yüksektir, çünkü dipol su moleküllerinin birbiriyle yaptıkları bağlar suyun yüzey tansiyonuna – basıncına sahip olmasını sağlar. Suda bulunan lipofilik maddeler suyun bu özelliği nedeniyle su yüzeyinde toplanır ve su ile beraber hareket ederler. Suda çözünen maddeler ise yüzey basıncını değişen oranlarda değiştirerek kapiler hareketliliğini ve dolayısı ile de kendi iletimlerini etkilerler. Suda iyonlaşarak çözünen maddelerin kimyasal potansiyeli hidrostatik basınç veya yerçekimi etkisinden çok daha büyük bir enerji farkı yaratacak düzeyde olan elektrokimyasal potansiyelleridir. Kütle akışı kuru olan tohumların ortamdan su alarak hacim artışı göstermeleri gibi pasif, edilgen olaylarda önemli yer tutar. Alınan su yapısal protein ve polisakkarit zincirleri arasındaki boşluklara da girerek, adsorbe olur, yapışır ve hidrasyonlarına ve hacımlerinin artışına, canlı veya canlı artığı dokunun da şişmesine neden olur. Yayınım – Difüzyon ve Geçişme – Osmoz Yayınım olayında ise olayın başladığı ve bittiği veya dengeye vardığında atom ve moleküller arası ilişkileri farklıllık gösterir. Uçucu maddelerin sıvı veya katı formdan gaz faza geçerek yayınması ve suyun buharlaşması buhar basıncı farkı sonucunda başlayıp yürüyen bir yayınım olayıdır ve DH = 0 olduğunda net, gözlenebilir, ölçülebilir yayınım durur. İki kapalı kap arasında yayınımı sağlayacak bir açıklık oluştuğunda gazların bağıl basınç oranları, yani herbirinin özgül toplam enerjileri arasındaki farka göre değişen şekillerde yayınım gösterirler. Kısmi, oransal gaz basıncı ile difüzyon basıncının doğrusal ilişkisi nedeniyle bir karışımda yer alan maddelerin yayınım oranları değişir. Ayrıca her birinin sıcaklık ve karşı basınç değişimlerine tepkileri de farklılık gösterir. Tüm bu farklılıkların temel nedeni atom ve moleküler yapılarının, ağırlıklarının yani özelliklerinin farkından doğan termik hareketlilik ve serbest enerji farklılığıdır. Bu da maddeye has bir özellik olduğundan yayınım - difüzyon sabitesi adını alır. Difüzyon hızı geçişi sağlayan açıklığın veya seçiciliği olmayan membranın alanı, yayınım konusu maddenin iki taraftaki derişim farkı ve yayınım sabitesine bağlıdır. Yayınımın da itici gücü ısıl hareketlilik olduğundan sıcaklık artışı ile hızı artar, daha kısa sürede dengeye ulaşır, fakat denge noktası sıcaklıktan bağımsızdır. Difüzyonu başlatan ve yürüten derişim farkı olduğundan yayınıma konu iki taraf arasındaki uzaklık artışı olayın yürüme hızını global olarak azaltır. Çünkü yayınım moleküler düzeyde derişim farkı dilimleri halinde yürür. Bu nedenle de hücre ve organel düzeyindeki hızı çok yüksektir. Üç gaz formundaki besin olan su buharı, O2 ve CO2 için 20 derece sıcaklıkta ölçülen yayınım sabiteleri saniyede yayınım alanı olarak sırası ile 0.25, 0.20 ve 0.16 cm2 dir, yani katıların sıvı ortamdaki yayınım sabitelerinden ortalama 10(4) kat fazladır. Bunun da nedeni gaz ortamında çok daha seyrek olan moleküllerin ısıl hareketle çarpışma nedeniyle zaman ve enerji kaybının çok daha az oluşudur. Bu tabloya karşın fotosentez hızının ışık ve sıcaklık tarafından sınırlanmadığı durumlarda karbon dioksidin kloroplastlara kadar yayınımı için geçen sürenin sınırlayıcı olduğu belirlenmiştir. Aynı şekilde terleme hızının hücre çeperlerinden su buharı yayınım hızı tarafından sınırlandığı ve bu şekilde de bitkilerin stomalarından gereksiz su kaybını önleyen bir mekanizma olarak yarar sağladığı saptanmıştır. Elektrostatik yüklü maddeler ile kolloidal maddelerin çözeltiler arasında yayınımları gazların ve gazlarla aynı davranışı gösteren yüksüz maddelerinkinden farklıdır. Çünkü hareketlilikleri zıt yüklü tanecikler arasındaki çekim kuvvetlerinin rastlantısal olarak değişen etki düzeyine bağlı olarak değişir. Canlılarda ise çözeltide serbest olarak bulunan ve yapısal, sabit durumda yüklü moleküller söz konusudur. Bu karmaşık ilişkiler de bitkilerde yayınım olayının orta lamel ve hücre çeperlerinin elektrostatik yapılarına bağlı değişimler göstermesine neden olur. Bu ilişkiler hücre veya doku düzeyinde hücre çeperlerinin permeabilitesi – geçirgenliği ölçülebilir terimiyle belirtilir. Yüklü madde yayınımı yük durumları ile sabit ve hareketli olan maddelerin yük durumu arasındaki denge nedeniyle miktar ve hız açısından belli bir seçicilikle karşılaşmış olur. Geçişme - Osmoz difüzyonun özel bir halidir. Yarıgeçirgen, seçici zar yanlızca çözgeni veya çözgenle birlikte çözeltideki bazı çözünmüş maddeleri geçirirken bazılarını geçirmemesinin sonucudur. Osmoza giren her bir madde kendi termodinamik sistemindeki entropiyi en üst düzeye çıkartacak şekilde hareket ettiğinden, membrandan geçemeyen molekülün yoğun olduğu tarafta geçebilen maddelerin derişimi artar. Bu birikme sonucunda toplam madde artışı ve sonucunda da membranın o yanında hacım artışı olur. Hücreler arası madde aktarımında da bu şekilde özsuda çözünmüş ve membrandan geçemeyen madde derişimi artışı çözgen olan suyun oransal derişiminin azalmasına neden olduğundan su alınmasına neden olur. Sonuç olarak kütle akışı ve difüzyonda maddelerin akışı birbirinden bağımsız başlar ve yürürken osmozda maddelerin bağıl oranı etkilidir. Canlı hücre membranı suya karşı geçirgen özellikte ve özsuda çözünmüş madde miktarı yüksek olduğunda su alımı kendiliğinden yürür. Canlılar bu mekanizma sayesinde su alımını ortamda su bulunduğu sürece garanti altına almış olur. Gözlenen hücreler ve organeller gibi canlı yapılarda net su alımının hücrenin çeperi, komşu hücrelerin veya dıştaki sıvı ortamın hücre üzerindeki karşı basıncının etkisi ile dengeye vardığında duruşudur, bu sayede yapının şişerek patlaması engellenmiş olur. Bu basınca da geçişme – osmoz basıncı, osmotik basınç denir. Çünkü büyüklüğü osmotik alımla sağlanan çözünmüş madde miktarı ile doğrudan ilişkilidir. Sonucu olarak da bir hücrenin hacminde değişime neden olan etkin osmotik basınç farkı yarı – geçirgenlik ve seçicilik sayesinde yayınımla sağlanabilecek olan madde hareketi miktarından çok daha yüksek olur. Temeldeki denge ise aynı türden iyonların membranın iki yüzü arasındaki kimyasal potansiyel farkının sıfır olmasıdır ve hidrostatik basınç farkının bu dengeye katkısı ihmal edilebilecek kadar küçüktür. Ana değişken ise membranın iki yüzü arasındaki elektriksel potansiyel farkıdır ve küçük bir orandaki değişimi bile çok daha büyük orandaki kimyasal potansiyel farkını, yani derişim farkını dengeleyebilir. Gene bu mekanizma canlı hücreye membrandaki iyonik madde kompozisyonunu düzenleyerek kolayca iyon alımı olayını denetleme olanağı verir. 20. yüzyılın başlarında Nernst başta olmak üzere araştırıcılar tarafından kuramsal temelleri atılarak asrın ortalarında kesinleşen bu bulgular 1967 yılında Vorobie tarafındanChara tatlısu alginin K iyonu alımı üzerindeki deneylerle kanıtlanmıştır. Hücre çeperi gibi hücrenin denetimi dışında kalan ve kütle akışı ile difüzyonun geçerli olduğu kısım için kullanılan terimlerden biri belirgin serbest alan (BSA) – “apparent free space”dir. Su alımı için iç osmotik basıncın dış ortamdan yüksek, hücre özsuyunun hipertonik olması gerekir. Yani toplam çözünmüş madde derişimi daha yüksek olmalıdır. Bu durumda herbir maddenin difüzyon basıncı farklı olacağından su moleküllerini geçiren zardan su kendi kinetik difüzyon dengesini sağlayıncaya kadar geçiş yapar. Hipertonik hücre turgor halindedir, sitoplazma çepere yapışık durumdadır. Çünkü osmotik basınç artışı çeperin karşı yöndeki basıncı ile dengelenmiştir. Hücre özsuyununizotonik osmotik basınca sahip olması halinde bir kısım suyunu kaybeder ve sitoplazmanın çeperden ayrılmaya başladığı görülür. Bu duruma sınır plazmoliz adı verilir ve izotonik osmotik basıncın ölçümünde kullanılır. Hücrenin iç osmotik basıncının dış basınçtan daha düşük olduğu hipertonisite durumunda sitoplazma çeperden ayrılarak ortaya toplanmaya başlar, hücre plazmolize olur. Hücrede plazmoliz ilerledikçe klasik deyimi ile emme kuvveti artar, daha yeni terminolojideki karşılıkları ile difüzyon basıncı eksikliği -“diffusion pressure deficit” – DPD” (DBE), su potansiyeli artar. Bunun da nedeni serbest haldeki suyun serbest enerjisinin adsorpsiyon veya adezyon, kohezyon ile tutulmuş olan sudan az oluşudur. Hücrenin yeniden turgor haline geçme,deplazmolize olma, yani plazmoliz durumundan kurtulma eğiliminin sonucudur. Tam turgor halindeki hücrede ise iç ve dış basınçlar eşit olduğundan su potansiyeli, yani net su alımı sıfır olur. Burada devreye doğal olarak hücre çeperinin elastiklik derecesi de girer. Bu nedenle ve henüz alöronlar gibi susuz bir hacim oluşturan yapılar olmadığından hacme oranla su miktarı meristematik dokularda yüksektir. Plazmoliz sırasında protoplazmanın tümüyle küçüldüğü, büzüldüğü deplazmolizde ise şiştiği görülür. Hücre özsuyunda serbest çözücü durumundaki suyun kaybından sonra sitoplazmik proteinlerin hidratasyon kaybı - dehidratasyonu sitoplazma hacminin değişmesine neden olur. Difüzyon basıncı eksikliğinin en yüksek olduğu tohumlar, dehidrate likenler gibi yapılarda su alımı ile deplazmoliz sertleşmiş alçıyı parçalayabilecek oranda hidratasyona ve deplazmolize neden olur. Hidratasyon termik hareketliliğin ve entropinin artışına neden olarak yapısal protein, sellüloz gibi moleküllerin zincirlerininin gevşemesine ve daha kolay bozunur hale gelmesine neden olur. Bu yüzden bir süre ıslatılmış olan bakliyat daha kolay pişer. Hücreler arasında su alışverişinin debisi bu çerçevede çeper ve membranların geçirgenliği ile DBE farkına bağlıdır. Fakat izotonik çözeltiler arasında bile plazma membranları madde alışverişini sağlar. Su içinde yaşayan bitkilerde süreklilik gösteren bu durumda madde alışverişini sağlayan kütle akımı ve özellikle de elektroosmozdur. Elektroosmoz bir iyon iletimi mekanizması ise de polarite nedeniyle hidrate olan iyonların yani kinetik taneciklerin çevrelerindeki su moleküllerini sürüklemesi sayesinde suyun da taşınmasını sağlar. Kinetik tanecikler iyonlar ile onları çeviren dipol su moleküllerinden oluşan, yani birarada termik hareketliliği olan tanecikler olup toplam kütlelerinin daha yüksek oluşu ve elektrostatik bağların zayıf oluşu nedeniyle termik hareketlilikleri yüksek taneciklerdir. Membranlardaki porlar boyunca yaratılan elektrik alanları, yani endotermik olarak belli bir yönde kutuplandırılan polar molekül dizilişleri üzerinden kayarak iyonik maddelerin taşınması gerçekleştirilir. Bu konu mineral madde beslenmesi içinde ele alınacaktır. Su moleküllerinin iyonlara kendiliğinden yapışarak kinetik tanecikler halinde iletilmesi iyon kaynağı durumundaki hücrede serbest su derişimini azalttığından DBE artar. Bu tür enerji gerektiren iyon ve su beslenmesine aktif madde alımı adı verilir. Örneğin tuzcul bitkiler, halofitler osmotik basıncı yüksek tuzlu topraklarda dahi beslenmelerini sağlarlar. Kserofitler çok kurak koşullarda kuru topraklardan su alabilirler. Aktif iyon alımı yaygın görülen bir olaydır, buna karşılık aktif su alımı özel durumlarda görülür. Bu nedenle aktif iyon alımı bitki yaşamında daha önemli yer tutar. Mineral Madde Beslenmesi Mekanizmaları Elektroosmozun bir iyon iletimi mekanizması olduğu, hidrate iyonların su moleküllerini sürükleyen ve membranlardaki porlar, kapilerler boyunca yaratılan elektrik alanları, yani potansiyel farklılıkları ile iyonik madde taşınması gerçekleştirdiği belirtilmişti. Elektriksel potansiyel farkı DE, elektriksel yükün bir noktadan diğerine gitmesi ile yapılan işin ölçütüdür. Daha önce değinildiği üzere yukarıda kısaca incelenmiş olan itici güçlerden de çok daha daha etkindir. Biyolojik bir membranın iki yanındaki E farkı ölçümleri hidrostatik veya kimyasal potansiyel farkı ölçümlerinden elde edilen sonuçlarla karşılaştırıldığında binlerce kez daha büyük olduğu görülmüştür. Bu nedenle de organeller ve hücreler arasında elektriksel yüklü madde iletimi çok daha etkin olarak yürür. Elektriksel bir yük ile DE arasında sabit bir ilişki vardır ki buna kapasitans denir, yani bir net yük biriminin yarattığı DE ile arasındaki sabit, özgül oranı belirtir. Yararlanılan sonucu ise bir bölgede yüksek oranlı potansiyel düşmesine neden olmadan serbest yük bulundurma, depolama kapasitesi – sığasının ölçüsü olmasıdır. Biyolojik membranların kapasitans ölçümleri bu değerin koşullardan oldukça bağımsız, sabit kalan bir değer olduğunu göstermiştir. Bitki hücrelerinde de bu değer tipik olarak -100 mV ölçülmüştür. Yükü membranların içindeki anyon derişiminin katyonlarınkinden yüksek olduğunu, değeri ise membranın iki yanındaki potansiyelin pek farklı olmadığını göstermiştir. Aynı şekilde bitki hücrelerindeki toplam iyon derişiminin de tipik olarak 0.1M düzeyinde ve koşullardan oldukça bağımsız sabit bir değer olduğunu belirlenmiştir. Bu derişimde 100mV kapasitans ise anyon / katyon oranının 100 000 olduğunun göstergesidir. Buna karşılık bitkilerde kuru ağırlık bazındaki mineral madde katyon /anyon derişimi oranı ortalama olarak 10 dur. Hücrelerin çevrelerinden önemli oranda katyon almalarına karşın elektrostatik dengenin ters yönde oluşmasının nedeni organik moleküllerdeki anyonik grupların yüksek oluşudur. Bu sayede organik metabolizmayı denetleyerek sürekli şekilde katyon alımına açık bir dengeden yararlanırlar. Güneş ışınları ve hava gibi topraktaki mineral elementlerinden daha kolay sağlayabildikleri kaynaklardan yararlanarak sentezledikleri organik anyonik maddeler sayesinde mineral katyonlarının alımını denetim altında tutabilirler. Yüksüz maddelerden farklı olarak iyonların derişimindeki artış aralarındaki uzaklığın, termik hareketlilikleri ile çarpışma olasılığını üssel olarak artışına yol açacak şekilde azalması demektir. Çünkü elektriksel çekim gücünün etkisi katlanarak büyür. Bağlanmaları ise, iyonik bağın kuvvetli oluşu nedeniyle bağlanma öncesindeki ısıl hareketliliklerinin önemli oranda azalmasına neden olur. Bir sistemdeki hareketlilik komponentlerinin hareketliliklerin toplamı olduğundan sistemi etkiler. Elektriksel yük elektriksel alan yarattığından etkisi çok yönlüdür ve nötrleşmesi ile diğer komponentler üzerinde çok yönlü etkiler yaratır. Bu nedenle de bir iyon türünün aktivite sabitesi çözeltisindeki tüm iyonların özellik ve derişimleri ile ilişkilidir. İyonun değerliliği arttıkça etkinliği de arttığından hücre özsuyu gibi iyonca zengin bir çözeltide iyonik aktivite değişimleri yüksek oranlı olur. Bu sayede de kara ve su bitkileri çok farklı özelliklerdeki topraklara, sulara adapte olarak yaşama olanağı bulabilirler. Gene canlıların denetimini sağlayan bir olgu da iyonların canlı membranın iki yanındaki aktivitelerinin dengeye varmasının iyonların iki yandaki aktiviteleri yanında membranın iki yüzü arasındaki elektriksel potansiyel farkına daha da kuvvetle bağlı oluşudur. Bu sayede de membranın elektriksel potansiyelini membran proteinleri ve lipid / fosfolipidleri ile denetleyebilen hücre dengeyi kurma olanağı bulur. Bu mekanizma hücrenin gereksinimine göre iyonları seçici olarak alması açısından önemli rol oynar. İyonların lameldeki porlardan ve plazmodezmlerden geçişinde iyon yükü / çapı ilişkisine bağlı olan seçici bir mekanizma oluşur. Donnan Dengesi Benzer şekilde örneğin bitki hücre çeperindeki orta lamelde yer alan pektik asitlerin karboksil kökü, membran lipidleri arasındaki fosfolipidler gibi sabit iyonların yerleştiği iyon kanalları kütle akışı ile mineral iyonlarının ile geçişine elektrokimyasal direnç gösterir. Görünür serbest alanda dahi iyonların suyla birlikte hareketine engel olur. Sitoplazmik membranlardaki lipidlerin çok yüksek direncinin fosfolipidlerce dengelenmesinde olduğu gibi direnci amfoterik karakteri nedeniyle değişken olan proteinler seçici bir denetim sağlar. Protein helislerinin iyon kanalı görevi oluşturdukları porun girişinde serin gibi polar amino asitlerin bulunmasına bağlıdır. Bu ( – ) yüklü amino asitler katyon difüzyonunu destekleyerek seçicilik sağlar. Porların işleyişinin anlaşılması sayesinde porları kapayan maddelerin keşfi 1991 tıp nobelini alan ilaç grubunun bulunmasını sağlamıştır. Küçük mineral iyonlarını içeren çözeltiler membrandaki sabit iyonik moleküllerle aralarında Donnan potansiyeli denen elektriksel bir potansiyel farkının doğmasına ve Donnan dengesi adı verilen dengenin oluşmasına neden olur. Bu dengenin de sağlanması için zıt yüklü maddelerin ters yönde geçişi veya suda çözünmeyen formlarının çözünür hale dönüştürülmesi gerekir. Elektrostatik Donnan dengesinin çeşitli ölçeklerde oluşması hücre içi ve hücreler arası iyonik maddelerin taşınımında ve dağılımında önemli rol oynar. Bu terimle belirtilen olayın ayırt edici temel özelliği hareketi sağlayan difüzyon potansiyel farkının membranın bir tarafındaki sulu çözelti ile membranın diğer tarafta kalan yüzü arasında oluşmasıdır. Sitoplazmadaki nükleik asitler, fosfat grupları ile ve proteinler de karboksilleri ile Donnan fazları oluştururlar. Bu anyonik gruplar membranın her iki tarafındaki katyonları kendilerine çekerek yönlendirirler. Bu şekilde de net olarak bir geçişmenin görülmediği elektrostatik bir denge kurulur. Sıvı fazdaki katyonların membrana yönlenmesi anyonların da ters yönde artan bir derişim değişimi oluşturmalarına neden olur. Termik hareketliliğin artışı bu dengenin sarsılmasına ve hareketli iyonların elektriksel potansiyel farklılıkları yaratmasına, bu arada oluşan kimyasal potansiyel farklarını dengeleyecek şekilde de geçişme yapmalarına neden olur. Canlı hücre çözünmüş maddelerin derişimini ilgili maddeleri suda çözünmeyen bileşikleri haline dönüştürerek ortamdan uzaklaştırmak veya tersine tepkimeyle serbest hale geçirerek de denetim altında tutar. Çözünür maddelerin çözünmeyen bileşiklerine dönüştürülmesi entropi azalmasına neden olan kimyasal bağlanma ile sağlanabildiğindenendojen, enerji harcanarak yürütülen aktif bir olaydır. Ancak canlı hücrede gerçekleşebilir. Bu olayın temelinde iyon aktivitesi ve bu değerin özgüllüğünden doğan sabitesi yatar. İyon aktivitesi iyonun derişimine bağlı kimyasal ve yüküne bağlı elektriksel potansiyellerinin açıklayamadığı bazı konuları açıklamakta kullanılan bir terimdir. Yükleri eşit olan iki iyondan kütlesi küçük ve elektron sayısı az olanın yükünün dipol su moleküllerini çekerek çevresine toplama gücü daha fazladır. Çevresinde daha kalın bir su zarfı oluşturur. Sözü edilen denge, seçicilik sonucu bir taraftan diğerine geçişi kısıtlanan veya engellenen iyonik maddelerin birikmesine neden olur. Bu birikimin konusu olan yüklü maddeler serbest halde kalamadığından zıt yüklü iyonlarla birleşerek çözeltinin nötralizasyonununu sağlar. Bu nötralizasyon dengesi için gereken iyonik maddelerin çözünür hale geçmesi veya dışarıdan alınması gerekir. Örneğin Ca++ iyonu, iyonik yük / su zarfı oranı büyük olduğundan porlar üzerinde büzücü etki yaparak su zarfı büyük ve iyonik yükü küçük iyonların geçişini kısıtlar, K + iyonu ise tersine olarak şişirici etki yapar ve bu iyonların geçişini kolaylaştırır. Genelde bitki hücrelerinin yoğun şekilde K, Na ve Cl alış verişi yaptığı görülür. Bu iyonların hareketlilikleri de membranlarda potansiyel farklarının doğmasına neden olur ve Cl net yükün iki taraftaki dağılımının sıfıra eşitlenmesini sağlar. Goldmann denklemi ise K, Na ve Cl iyonu geçirgenliğinin büyük oranda K seçiciliği yönünde olduğunu göstermiştir. Elektroosmoz da membrandaki bir porun iç yüzeyinde sabit halde dizilmiş iyoniklerin yüklerinin tuttuğu su zarfları zıt yüklü iyonik maddelerin su zarflarını çekmesi sonucu yürüyen osmotik alımdır. Bu şekilde oluşan elektriksel alan membranın iki tarafında elektriksel yük farklılığı doğurur. Bu da sabitlenmemiş kinetik taneciklerin kütle akışı ile çekilerek ters yönlü bir alan oluşturmasına neden olur. Bu iki zıt yönlü alanın oluşumu sırasında doğan hareketlilik ile su molekülleri sürüklenir ve iletilir, elektroosmotik su alımı olur. Benzer şekilde membran veya çeperde pektik veya proteinik iyonlara zayıf -H bağları gibi bağlarla tutulmuş, adsorbe olmuş olan zıt yönlü yonlar yerlerini alabilecek başka iyonlarla yer değiştirerek serbest hale geçer ve iletilir. Bu olaya da iyon değişimi adı verilir. İyon değişiminde aynı yüklü iyonlar birbirini ittiğinden dengeye çabuk ulaşılır, yani az miktarda madde bu olaya girebilir. Bağlanmayı sağlayan kuvvet adsorpsiyon kuvvetinden daha yüksek enerjilidir, kopması daha zordur. Ancak iyonlaşmış asidik veya bazik maddelerin hidroksonyum ve hidroksil veya karboksil kökleri bağlanmış olan katyon veya anyonların yerini alabilir. Bu arada açığa çıkan hidroksonyum ve hidroksiller de su oluşturduğundan su iletimi de sağlanmış olur. Bu olayların tümünde hidroksonyum ve hidroksil iyonları önemli rol oynadığından membranların ve özsuyun pH değeri ve değişimleri önemli rol oynar. Hücre organik asit sentezi ile pH ve amfoterlik denetimi, sentez yolu ile özsudaki serbest maddeyi bağlama veya başka maddeye dönüştürme gibi yollarla kimyasal potansiyel artışı yönünde aktif alım yaparken solunum enerjisi kullanır ve solunumun hızlandığı görülür. Ayrıca osmotik basınç ölçümlerinin kriyoskopik yöntemle yapıldığında sınır plazmoliz yöntemiyle elde edilen değerlerlerden farklı değerler vermesi ek bir su potansiyelinin olduğunu göstermiştir. Birçok bitki türünde yerüstü organları kesilerek terlemenin emiş kuvveti ortadan kaldırıldığında da kök ksileminden su salgılanması, kış uykusu kırılan birçok odunlu türünde daha hiç yaprak oluşmamışken sürgünlere su yürümesi kök basıncı denen aktif su alımının ve pompalanmasının kanıtlarıdır. Bu basıncın gün içinde değişim göstermesi, solunum inhibitörleri ve bazı bitki hormonları gibi uygulamalarla durdurulabilmesi de göstergeleridir. Aktif alım ve iletimin önemli bir göstergesi iyonun içine girdiği membranın iç tarafında, yani sitoplazma veya organelin içinde elektrik yükü artışı olmasıdır. Pasif alımda elektriksel nötralliği sağlayacak şekilde zıt yüklü iyon alımı veya aynı yüklü iyonun boşaltımı söz konusudur. Aktif geçişde membranın iki yüzü arasında da membranın kapasitansı ile orantılı olarak belli miktar membran potansiyeli farkı oluşur. Bu fark kısa bir süre sonra boşalarak sıfırlanır ve sonra tekrar artar, bu mekanizmaya da iyon pompası adı verilir. İyon pompası çalışınca membrandaki pasif geçiş olayları da doğal bir şekilde etkilenir ve membrandaki değişimi dengeleyecek yönde farklılaşır, difüzyon potansiyeli artışı ile elektrik potansiyelinin düşmesi sağlanır. Bitki hücresi membranlarının kompozisyonuna göre elektriksel dirençleri 1 – 8 Kohm / cm2 arasında değiştiğinden pompaların etkinliği membran kompozisyonunun denetlenmesi yolu ile hücre tarafından denetlenebilir. Bu sayede de bitkiler tuzlu topraklara dahi adaptasyon sağlayabilir. Membran direncinin yüksek oluşu, pompanın etkili çalışması ile aktif iletimin neden olduğu potansiyel farkı da arttığından saniyede 20 pikomol / cm2 gibi yüksek bir debi ile iyon alınabilmektedir. Aktif iletimin bir özelliği de pasif olarak yürüyen diğer olaylara göre sıcaklık değişimlerinden çok daha büyük oranda etkilenmesidir. Pasif olayların Q10 değeri yaklaşık olarak 1 civarında iken aktif alım ve iletimde bu değer birçok enzimatik olayda olduğu gibi 2 civarındadır. Bunun da nedeni membranın yaptığı enerji bariyeri etkisidir. Tıpkı enzimatik tepkimelerin aktivasyon enerjisi gereksinimindeki gibi aktif alımın olabilmesi için bu enerji düzeyinin aşılması gerekir. Bu nedenle aktif iyon alımı mekanizması bir pompaya benzer şekilde çalışır. Gerekli enerji depolanıncaya kadar alım işlemi kesintiye uğrar. Sıcaklık artışı da bu mekanizma aracılığı ile etkili olur. Aktif iyon alımının enzim kinetiğindeki Michaelis-Menten denklemine uyan değişimleri enzimler aracılığı ile yürüyen bir olay olduğunu göstermiştir. Bu tür olaylara enerji sağlayan madde bekleneceği üzere ATP’dir ve ATPaz enzimi aktivitesi de olayın denetimini sağlar. ATP hidrolizi ile açığa çıkan hidroksonyum iyonları ise ters yönde hareket ederek elektrostatik dengeyi sağlar. En iyi bilinen Na+ / K+ ATPaz’dır. İki peptid çiftinden oluşur ve Mg++ tarafından katalizlenen ATP hidrolizine bağımlıdır. Çeşitli iyon pompaları olup belli iyonlar için seçici oldukları bilinmektedir. Aktif alımın iyon seçici özelliği vardır ve yukarıda anlatılan mekanizma bunu açıklamak için yeterli değildir. Bu nedenle 1930 larda seçiciliği olan aktif taşıyıcı moleküllerin varlığı fikri ortaya atılmıştır. Deneyler benzer K+, Rb+ iyonlarının ve Ca++ ile Sr++ iyonlarının aynı taşıyıcı için rekabet ettiğini, bazı hücrelerde K+ iyonunu alıp, Na+ iyonunu boşaltan ve aynı mekanizma ile Mg++ ve Mn++ için çalışan diğer bir pompanın olduğu, Cl-, B- ve I- taşıyan tek bir sistem olduğunu gösteren deneysel veriler elde edilmiştir. Bu kadar seçici maddelerin ancak proteinler olabileceği belirtilmiş ise de 50 yıl kadar uzun bir süre kesin kanıtlar ortaya konamamıştır. Aktif pompaların varlığının bir kanıtı da dıştaki iyon derişiminin artışı ile artan solunum ve iyon alımının belli bir derişime ulaşıldıktan sonra doygunluğa erişmesidir. Bitkilerde bu değer tipik olarak 1 – 10 mmol/ gr. taze ağırlık – saatdir. Aktif alım mekanizmalarının ortaya çıkarılıp genel çerçevesi ortaya çıkarıldıktan sonra iyon alımının büyük oranda pasif şekilde alındığı ve aktif alımın hücrenin gereksinim tablosuna göre belli iyonların seçici olarak alımında rol aldığı, tamamlayıcı olduğu anlaşılmıştır. Yüksek Bitkilerde Su ve Mineral Madde Beslenmesi Tohumun şişme ile su almasından sonra yeni bir bitki oluşturmak üzere büyüme ve gelişmesi başladığında ilk olarak gelişen ve işlev görmeye başlayan organı kök taslağından oluşan köktür. Tohumun kotiledon kısmında depolanmış olan organik maddelerin sindirimi ve solunumla elde edilen madde ile enerji fotosentetik organların yeni metabolik maddeleri sağlayabilecek hale gelmeleri için gereken büyüme ve gelişme için yeterlidir. Fakat tohumun serbest akış ve hidrasyon ile kazandığı su ile şişmesinin sağladığı su ortalama %80 – 90 oranında su içeren bitkinin oluşması için çok yetersizdir. Bilindiği gibi kökün su ve mineral beslenmesini sağlayan yapılar emici tüylerdir. Kaliptranın arkasındaki meristematik bölgeden sonra gelen genç hücrelerin boyuna büyüme bölgesini izleyen gelişme ve farklılaşma zonunun epidermisinde görülürler. Canlı epidermis hücrelerinin enine eksende uzayarak tübüler çıkıntılar oluşturması ile ortaya çıkarlar. Yüksük hücreleri gibi dış yüzleri kaygan pektik maddelerle kaplıdır. İşlevsel ve fiziksel olarak ömürleri çok kısadır ve sürekli büyüyen kökün ileri doğru büyümesi sırasında yerlerini yenilerine bırakırlar. Bitki türlerinin su için rekabet gücünde kökün büyüme hızı yanında emici tüylerin çevrim hızı da önemli yer tutar. Hidrofitik bitkilerin su ve mineral beslenmesi yukarıda anlatılmış olan genel mekanizmalarla olur. Kara bitkilerinin beslenmesi ise daha geniş bir çerçevede ele alınarak anlaşılıp, değerlendirilebilir. Toprak Yapısı ve Su Verimliliği Toprağın bitkilere su sağlayabilme potansiyelini belirlemek üzere kullanılan Tarla Kapasitesi, Daimi Solma Noktası veya Yüzdesi, Su Basıncı (P), Su Tansiyonu, Nem eşdeğeri, Su Potansiyeli veya Yayınım Basıncı Eksikliği, Toplam Toprak Suyu Stresi, Kılcallık Kapasitesi gibi birçok terimler vardır. Burada konu bunlar arasında en yaygın olarak kullanılan bazı terimlerle ele alınacaktır. Toplam toprak su stresi, (Total soil moisture stress) konuya enerjetik açıdan yaklaştığı için bu konudaki en bilimsel terimdir. Konuya toprakta bulunan suyun serbest enerjisini azaltan iki temel kuvvet grubunun etkinliği çerçevesinde yaklaşır ve toprak suyunun serbest enerjisini azaltan bu iki grubu : Toprak suyu tansiyonunun ögeleri olan hidrostatik kuvvetler, yerçekimi ve adsorpsiyon kuvvetleri, Toprak çözeltisinin osmotik kuvvetleri olarak tanımlar. Hidrostatikler bilindiği gibi su basıncı, yüzey gerilimi gibi kuvvetler, adsorpsiyon kuvvetleri de su ile toprak kolloidlerini oluşturan kil gibi mineraller ve organik maddelerle su arasında etkili olan, suyun yerçekimi etkisini yenebilmesini sağlayan kuvvetlerdir. Osmotik kuvvetler de topraktaki su çözeltisinin içerdiği iyonlarla ilişkilerinin sonucu olan kuvvetlerdir. Toprak çözeltisinde çözünmüş iyon derişimi suyun azalması ve çözünür iyon miktarı artışı ile artar. Yani toprak kurudukça su alımı zorlaşır, kuraklığın zorlayıcı etkisi

http://www.biyologlar.com/bitki-fizyolojisi-bolum-2

Sürüngenler ve Sürüngenlerin Genel Özellikleri

Sürüngenler ve Sürüngenlerin Genel Özellikleri

Sürüngenler (Reptilia), amfibilerle kuşlar arasında yer alan bir omurgalı grubudur. Kara hayatına uyum sağlamışlardır. Derileri kuru ve derilerinde salgı bezi yok denecek kadar azdır. Derilerinin üzeri keratin tabakası ile örtülüdür. Keratin tabaka vücudun değişik yerlerinde pul ve plaklar halinde yapılar oluşturur. Bu tabaka zaman zaman atılarak yenilenir. Sürüngenlerin bir kısmı 4 bacaklı, bir kısmı da bacaksızdır. Bacaklı olanlarda bile vücut yere değecek kadar alçaktır. Sürüngenlerin büyük bir kısmı karada, bazıları da suda yaşarlar. Ancak suda yaşayanlar da akciğerleri ile solunum yaparlar. Sürüngenlerde genellikle çiftleşme organı bulunur. (Tuatara hariç) Bu nedenle de döllenme içte gerçekleşir. Çoğu yumurta bırakır. Yumurtalar dayanıklı elastiki kabuklu yahut kuş yumurtası gibi kolayca kırılabılir tiptedir. Bazı sürüngen türleri canli doğurur, (ancak memelilerde olduğu gibi yavru anasına bir bağ ile bağlı değildir) gelişmelerinde de bir larva devresi bulunmaz. Yumurtadan çıkan yavrular minyatür erginlere benzerler. Sürüngenler genellikle diğer hayvanları avlayarak beslenirlerse de, bazı kara kaplumbağaları ile bazı kertenkele türlerinin esas besinlerini bitkisel maddeler teşkil eder. SÜRÜNGENLERİN ÇEVRE İLE OLAN İLİŞKİLERİ Doğada sürüngenlerin de düşmanları vardır. Bunlar yırtıcı kuşlar ve bazı memeli hayvan türleridir. Daha sonra açıklanacağı üzere günümüzde sürüngenlerin en büyük düşmanı insanlardır. Sürüngenler içinde bazı yılan türleri ile sadece iki tür kertenkele (Heloderma horidum, Heloderma suspectum) zehirlidir. Kertenkelelerden zehirli olan Heloderma türleri sadece Orta Amerika’da yaşar. Dolayısıyla Türkiye’de yaşayan hiçbir kertenkele türü, zehirli değildir. Ancak ülkemizdeki yılanlardan bir kısmı zehirlidir. Zehirli yılan türleri Türkiye’deki yılan türlerinin yaklaşık %23’ni teşkil eder. Buna rağmen tüm yılanlardan korkulur ve görüldükleri yerlerde de öldürülürler. Yine Türkiye’de, yılan görünüşünde bacaksız kertenkele çeşitleri de (örneğin Ophisaurus apodus, Anguis fragilis) yılan sanılarak öldürülmektedirler. Sürüngen türleri daha çok sıcak bölgelerde bulunurlar. Soğuk bölgelere gidildikçe tür sayıları azalır. Yine deniz seviyesinden yukarılara çıkıldıkça, buralardaki sürüngenlerin tür sayıları da azalmaktadır. Değişik ortamlara uyum sağlamış sürüngen türlerinden bazıları ağaçlarda, bazıları da suda yaşamaktadır. Sürüngenlerin insanlarla olan ilişkileri diger hayvan gruplarından biraz farklıdır. Çünkü daha önce de değinildiği gibi, bazı yılan türleri zehirli olduğundan insanların Çoğu yılanlardan korkarlar. Bu korku sonucunda da sadece %23’ü zehirli olan bütün yılanları gördükleri yerlerde öldürürler. Böylece yılan populasyonlarına büyük zarar vererek doğal dengenin bozulmasına sebep olmaktadırlar. İnsan aktiviteleri sonucunda sürüngenlerin yaşadıkları ortamlar kirletilmekte, daraltılmakta veya ortadan kaldırılmaktadır. Dolayısıyla sürüngenlere de en çok zarar veren canlı grubu insanlardır. Ayrıca yine insanlar bazı sürüngenlerin derilerini ayakkabı, çanta v.b. eşya yapımında kullandıklarından, bu türleri insafsızca ve plansız olarak avlamaktadırlar. Bilinçsiz avlama sonucunda da bazı türlerin nesilleri yok olacak kadar azalmaktadır. Sürüngenler eski jeolojik devirlerde (Mesozoik) çok gelişip çeşitlenerek Dünyaya hakim olmuşlardır. Ancak daha sonra azalmışlar ve günümüze de küçük bir grubu gelebilmiştir. Bundan dolayı da diğer hayvan gruplarına göre sayıları belirgin şekilde daha azdır. İNSANLAR ve SÜRÜNGENLER Türkiye’de yaşayan sürüngen (kaplumbağa, kertenkele, yılan) türlerinin çok büyük bir kısmı zehirsizdir. Yılan türlerinden iki tür; Malpolon monspessulanus (Çukurbaşlı Yılan) ve Telescopus fallax Kedigözlü Yılan) bir çift olan büyük zehir dişlerinin üst çenenin gerisinde olması nedeni ile ince vücut kısımlarını (parmak v.s.) ısırmadığı sürece zararsızdır. Bu türler daha çok fare v.s. küçük memeli hayvanları zehirleyip, tüketerek ziraata ve çevre sağlığına katkıda bulunurlar. Diğer sürüngen türleri de tarım zararlısı bir çok böcek, sivrisinek larvası ve küçük memeli (Tarla Faresi, Sıçan v.s.) türlerini besin olarak tüketmek suretiyle, biyolojik mücadelede önemli bir yere sahiptirler. Sazlık-bataklık çevrelerinin kimyasal kirlenmesi sonucu sucul kaplumbağa topluluklarının azalması ile orantılı olarak, aynı ortamda yaşayan çeşitli zararlı böcek ve larvaların sayısı artmaktadır ki, bunları yok etmek için oldukça pahalıya mal olan önlemlerin alınması gerekmektedir. Yine aynı şekilde kertenkele ve yılan türlerinin, tanınmamaktan kaynaklanan korku neticesinde bilinçsiz bir şekilde yok edilmesi, önceden de bahsedildiği gibi bir çok hastalık taşıyan sıçan ile tarım zararlısı fare ve böcek türlerinin ortamda sayıca artmalarına yol açmakta ve bunlarla mücadelenin gereği, ekonomik kaybın hiç de küçümsenemeyecek düzeyde olduğu bilinmektedir. Unutulmaması gereken bir konu da sürüngen türleri, insanlar ile ortak besin kaynaklarını paylaşmamakta ve özellikle kertenkele ve yılanlar kendisine zarar verilmediği veya ürkütülmediği zamanlarda insanlara hiçbir zararı dokunmamaktadır. Özellikle kırsal kesimde yaşayan kişilerin nadiren de olsa karşılaşabileceği varsayılan Koca Engereğin (Vipera lebetina) zehir dişlerinin üst çenenin ön kısmında olması ve bu yüzden kolay ısırabilmesi nedeni ile insanlar dahil, küçük ve büyük baş memeli hayvanlar için tehlikeli olabilir. Türkiye’deki yılan türlerinin bulunması ve zehirli veya zehirsiz bir yılan tarafından ısırılma ihtimali karşısında yapılması gerekenler ve alınacak önlemler yılanlar bölümünün zehirler kısmında belirtilmiştir.

http://www.biyologlar.com/surungenler-ve-surungenlerin-genel-ozellikleri

Hücre teorisi

1)Bütün canlılar hücrelerden meydana gelmiştir. 2)Hücreler bağımsız hareket ettikleri halde birlikte iş görürler. 3)Hücreler bölünerek çoğalırlar. Bilinen en büyük hücre deve kuşu yumurtasıdır.Bilinen en uzun hücre ise sinir hücresidir. Hücreler ökaryot ve prokaryot olmak üzere iki kısımda incelenir. Prokaryot hücre: Kalıtım maddesi etrafında çekirdek zarı bulunmayan ve ribozom hariç hücre organellerine sahip olmayan ilkel hücre tipidir. Bakteri ve mavi – yeşil alg örnek verilebilir. Ökaryot hücre Kalıtım maddesi etrafında çekirdek zarı bulunan ve hücre organellerine sahip olan gelişmiş hücre tipidir. Ökaryot hücre üç kısımda incelenir. 1) HÜCRE ZARI · Yağ,protein az miktarda karbonhidrattan oluşur.Hücre zarının yapısı akıcı-mozaik zar modeli ile açıklanır.Bu modele göre zar; yağ denizinde yüzen proteinlerden oluşmuştur. · Karbonhidratlar hücre zarındaki yağlarla birleşerek glikolipid, proteinlerle birleşerek glikoprotein şeklinde bulunur.Bunun sağladığı avantaj ise hücrelerin birbirini tanıması ve bağışıklıktır.Hücre zarının özgüllüğünü veren kimyasal madde glikoproteindir. Glikolipidi ve glikoproteini golgi sentezler. · Madde giriş-çıkışı proteinler üzerindeki porlardan olur. · Zarın özellikleri : Canlıdır,saydamdır,esnektir ve seçici geçirgendir. · Zardaki proteinler enzim görevi yapar. · Zarın görevleri : Hücreyi dağılmaktan korur. Hücreye şekil verir. Hücreyi dış etkilerden korur. Madde alışverişini sağlar. Zarın seçici-geçirgen olması onun canlı olduğunu gösterir. Hücre çeperi cansızdır,esnek değildir,tam geçirgendir.Hücrenin dayanıklılığını arttırır, hücreye şekil verir.Üzerindeki deliklere geçit denir. Selülozik yapıdadır. Prokaryot hücrelerde de bulunur ama yapısı selülozik değildir. 2) SİTOPLAZMA Hücre zarı ile çekirdek arasını dolduran, canlı, renksiz, yarısaydam, suda çözünmeyen bir sıvıdır. İki kısımdır. a) Sıvı kısım: Su,protein,yağ,karbonhidrat,mineral,vitamin,RNA çeşitleri,nükleotidler,ATP ve enzimler gibi organik ve inorganik maddelerden oluşmuştur Görevi: 1) Biyokimyasal reaksiyonlar için zemin oluşturmak 2) Organellere yataklık etmek. 3) Rotasyon ve sirkülasyon hareketleri ile organellerin hareketini sağlamak. b) Organeller:Özel yapı ve görevi olan sitoplazmik cisimlerdir. ENDOPLAZMİK RETİKULUM Hücre zarından çekirdek zarına kadar uzanan zarlı kanallar sistemidir. Memeli alyuvarı hariç bütün çekirdekli hücrelerde bulunur. Hücre içine ve dışına madde taşır.Bazı maddeleri depolar.(Ca ve protein). Çekirdek zarı ve golgiyi yapar.Hücreyi bölmelere ayırarak,sitoplazmadaki asidik ve bazik tepkimelerin birbirini etkilemeden yapılabilmesini sağlar. Üzerinde ribozom bulunanlarına granüllü ER; bulundurmayanlara da granülsüz ER denir. Granüllü ER enzim salgılayan hücrelerde, granülsüz ER yağ sentezleyen hücrelerde çoktur. GOLGİ Çekirdeğe yakın bulunur.Hücre zarı yapımına katılır. Salgı maddelerin yapılması,paketlenmesi ve salgılanmasından sorumludur.Onun için süt bezi, tükrük bezi,ter bezi gibi salgı yapan hücrelerdeki sayısı diğer hücrelerdekilere oranla daha fazladır. Enzimleri paketliyerek lizozomu oluşturur.Hücre zarı yapımına katılır. Glikoprotein,lipoprotein,mukus,bağ dokusu ara maddesi ve ayrıca bitkilerde selülozlu maddeler salgılar. Memeli alyuvarı hariç bütün çekirdekli hücrelerde bulunur. LİZOZOM Büyük moleküllü besinleri parçalar.Kurbağa larvalarında kuyruğun kopması,salgılama dönemi biten memelilerde süt bezlerinin körelmesi,pasif kalan kasların küçülmesi,harap olmuş dokuların, yaşlı alyuvarların ve vücuda giren mikropların yok edilmesi lizozom sayesindedir. Fagositoz ve pinositoz yapan hücrelerde çoktur.ÖRNEK:Akyuvar hücresi ve tek hücreliler. Lizozom parçalanırsa hücre kendini sindirir.Buna otoliz denir. Lizozomun etrafındaki zar golgiden oluşur. İçerisindeki enzimler ribozomlarda üretilir. Üretilen enzimler ER ile taşınır. ER ile taşınan enzimler golgide paketlenerek lizozom oluşturulur. · Yani lizozomun oluşmasında ribozom,golgi ve ER etkilidir. NOT 1 : (Bazı kitaplara göre)Hayvanlara özgüdür.Bitkilerde ise lizozom benzeri yapılara fitolizozom denir. RİBOZOM Bütün hücrelerde bulunan en küçük organeldir. Protein ve rRNA’dan oluşur.Çekirdekçikte üretilir. Zarsızdır ve iki birimdir.Üst birim(büyük birim) protein,alt birimse(küçük birim) rRNA’dan oluşur. Protein ve enzim sentezler. Granüllü ER ve çekirdek zarı üzerinde,mitekondri ve kloroplastın sıvısında ve ayrıca sitoplazma da bulunabilir. Yoğun protein sentezi sırasında yan yana gelerek polizomları oluştururlar. Her canlıda ribozomların farklı olmasının sebebi rRNA’ ların farklılığındandır. Bir hücrenin canlılığını sürdürebilmesi için mutlaka ribozoma ihtiyacı vardır.(Enzimlerden dolayı) Enzim salgılayan bez hücrelerinde sayısı daha fazladır. MİTOKONDRİ Çift zarlıdır.İç zar kıvrımlıdır. Kıvrımlara krista,zarların arasını ve içini dolduran sıvıya matriks denir. Oksijenli solunum yaparak enerjinin üretildiği ve depolandığı yerdir. Enerji ihtiyacı fazla olan kas,sinir ve karaciğer gibi hücrelerde sayısı daha fazladır. Bulundukları hücrenin de enerjiye en çok ihtiyaç olan bölümlerinde toplanırlar. ÖRNEK:Sinirlerin sinaps bölgelerinde,spermlerin kuyruklarında ve kasların kasılma bölgelerinde,karaciğer hücrelerinde ve beyin hücrelerinde çok bulunur. Kendine ait DNA,RNA,ribozom ve ETS’si bulunur. Kendi DNA’sı olmasına rağmen hücre DNA’ sına bağımlıdır. Bitkilerde mesozom ve klorofil bulunduğundan dolayı mitokondri miktarı daha azdır. Prokaryotlarda ve memeli alyuvarında bulunmaz. SENTROZOM Bazı su yosunu,mantar,hayvan ve insan hücrelerinde bulunur. Sentriol denilen iki alt birimden oluşur. Hücre bölünmesi sırasında kendini eşleyerek zıt kutuplara çekilir ve iğ ipliklerinin oluşmasını sağlar. Hücre dışına uzanan kirpik,kamçı,sil gibi yapıları oluşturur. Sentrioller dikine duran dokuz çift tüpçükten oluşur. PLASTİDLER Sadece bitki hücrelerinde bulunan renk maddesidir.3 tiptir. a) Kloroplast Bitkiye yeşil rengini verir. Çift zarlıdır.İç zarı katmanlıdır.Bu katmanlara grana,içini dolduran sıvıya ise stroma denir. Fotosentez yaparak besin üretir. Kendine has DNA,RNA,ribozom ve ETS’si bulunur. Granalar içinde bitkiye yeşil rengini veren ve fotosentez için gerekli ışığı absorbe eden klorofil vardır. Bütün bitki hücrelerinde bulunmaz.ÖRNEK:Kökte. b) Kromoplast Bitkilerde meyve ve çiçeklerin rengini verir.Likopin(kırmızı),ksantofil(sarı) ve karoten (turuncu) olmak üzere üç çeşittir. Bitkilerde diğer renkler; koful öz suyunun asit veya baz oluşuna göre renk değiştiren aktokyan denen maddeler ile oluşturulur. c) Lökoplast Renksizdir.Genelde kök,gövde ve tohumda bulunur. Nişasta,yağ ve protein depolar. Işıkla karşılaşınca kloroplastlara dönüşür. KOFUL ER’dan,golgiden,hücre zarından ve lizozomdan oluşabilir. Hayvansal hücrelerde az ve küçük,bitkisel hücrelerde ise gençken küçük,yaşlandıkça büyürler.Çünkü tuzlu artıklar kofullarda biriktirilir. Hücre içi osmatik basınç ve pH’ı ayarlar. Kofulda bulunan su turgor basıncı oluşturarak hücreye diklik ve direnç verir. Metabolizmanın aktiflik derecesini belirler.Eğer koful büyük ve sitoplazmada miktarı çok ise metabolizma yavaşlar. Besin kofulu : Fagositoz ve pinositozla alınan besinlerin bir zarla çevrilmesiyle oluşur.Akyuvarlar mikropları fagositoz ve pinositozla aldığında dolayı,akyuvarlarda daha fazla sayıda besin kofulu bulunur. Kontraktil (vurgan) koful : Tatlı su tek hücrelilerinde bulunan daimi kofuldur.Fazla suyu dışarı atar. Boşaltım kofulu : Artık maddeleri ekzositozla dışarı atar. PEROKSİZOM Bitkisel ve hayvansal hücrelerde bulunan ve içerisinde katalaz enzimi bulunan organeldir. İçerisindeki katalaz enzimi H2O2 ‘yi H2O ve O2′ye parçalar. H2O2 hücre için çok tehlikelidir.Çünkü O2′nin reaksiyona girmesini yani solunumu önler. Sitoplazmanın pH derecesi 8,0′dır. Hücre Çeperi: Hücre zarı üzerinde selüloz birikmesi ile oluşur. Bitki hücresine sertlik ve desteklik verir. Bitki hücrelerinde bulunur.ölüdür.bazen yapısına bağlı olarak kütin, lignin mum gibi maddeler katılır. 3) ÇEKİRDEK Hücre bölünmesini sağlar.Kalıtım bilgisini taşır. Hücresel olayların yönetilmesinde ve karakterlerin sonraki nesillere aktarılmasında görevlidir4 bölümdür. A) ÇEKİRDEK ZARI · Çift katlı bir zardır. · Üzerindeki deliklere por denir.Bunlar hücre zarındaki porlardan daha büyüktür. · Hücre bölünmesi sırasında kaybolan bu zarın bölünmeden sonra yeniden yapılmasında ER ve golgi görevlidir   B) ÇEKİRDEK SIVISI · Homojen görünümlüdür.İçerisinde bol miktarda ATP,nükleotit,ribozom ve protein bulunur. C) ÇEKİRDEKÇİK · Bol miktarda RNA ve protein bulunur.Ribozom sentezi yapılır.Bakterilerde yoktur. D) KROMATİN İPLİK · Hücrede en çok bulunan maddedir. · DNA’nın kendisi olup kromozomları oluşturur.Kromozomlar DNA ve proteinden oluşmuştur. Kalıtsal karakterleri taşır.Üreme ve büyümeyi sağlar.Hücreyi yönetir. Kromozom sayısı, türlere göre değişkenlik gösterir. Örneğin insanda 46, soğanda 16 kromozom bulunur. Homolog Kromozom:Birisi anneden diğeri babadan gelen şekil ve yapısı aynı olan karşılıklı lokuslarında aynı karakter üzerine etkili genleri taşıyan kromozomlara denir. Homolog kromozom taşıyan hücrelere diploid( 2n) hücre denir.Üreme hücreleri gibi (n) kromozom taşıyan hücrelere haploid hücre denir.

http://www.biyologlar.com/hucre-teorisi

BİTKİ VE HAYVANLARIN İSİMLENDİRME İLKELERİ

Tüm Dünya yüzeyinde yaşayan canlıları düşündüğümüzde, aynı canlıya her ülkede ve hatta aynı ülkenin farklı yörelerinde farklı isimler verilmesi, gerek biyolojide (bilimde), gerekse de toplumlar arasında keşmekeş yaratacaktır. Örneğin, Türkçe Karanfil ismi verilen bitkiye, İngilizler Clove, Carnation ismini vermişlerdir. Bu örnekleri dünya düzeyine genişletecek olursak durumun ne denli karışık olacağı açıkça görülür. Bu karışıklığı önleme yönünden Linne’nin ortaya koymuş olduğu Binominal İsimlerdirme, bilim dünyası ve toplumlar için büyük bir rahatlık sağlamıştır. “nomen”Latince isim anlamına gelir ve takma anlamına gelen “clare” sözcüğüile birlikte “Nomenclature” canlı varlıklara isim verme anlamına gelmektedir. Hayvansal isimlendirme anlamına gelen Zoological Nomenclature, zoologların dili olup, bilinen hayvan gruplarının herbirine farklı isimlerin uygulanması tekniğidir. Bitkileri isimlendirme anlamına gelen Botanical Nomenclature ise, bilinen bitki gruplarının herbirine farklı isimlerin uygulanması tekniğidir. Amaç kullanılan bu dilin dünyada herkes tarafından aynı anlamda anlaşılmasıdır. İsimlendirme ilkelerinin 3 önemli özelliği vardır a) Emsalsizlik: İsimlendirmede, verilen her isim tektir. Böyle olması zoolojide ve botanikte karışıklığı önler. Yani her canlının tek bir bilimsel ismi vardır. b) Evrensellik: Canlıların sadece yöresel isimleri olsaydı bilim adamları arasındaki bilimsel iletişim olmazdı. Anlaşılabilmeleri için tüm yöresel isimleri bilmeleri gerekecekti. Bundan sakınmak için bilim adamları tüm dünyada kullanılmak üzere Uluslararası İsimlendirme İlkelerini kabul etmişlerdir. c) Sağlamlık: Bir canlıya bir isim verildikten sonra bu ismin sık sık değişmesi gerekir. Eğer sık değişim olursa sistemden beklenen yarar sağlanamaz. Bu nedenle Uluslararası İsimledirmede birçok önlem alınmıştır. Canlılarda Cins isimlerinin oluşturulması Yeni bulunan canlılara isim verirken, bu isimlerin Latince ve Yunanca olmasına göre sıfatların bu dillerin gramer kurallarına uyması gerekir. Örneğin, cins ismi bir isimse, cins isminin yanındaki ikinci kelime yani epitet ismi genellikle sıfat olmalıdır. Homo sapiens bilindiği gibi insanın bilimsel ismi olup, cins ismi olan “Homo” bir isim, “sapiens” ise akıllı anlamına gelen bir sıfattır. Cins isimleri italik harflerle yazılmalı, italik yazma olanağı yoksa altı çizilmelidir. İsmi veren kişi(ler) yani otör isminin altı çizilmez. Cins ve altcins isimleri, daima tek bir sözcükten oluşmalıdır. Bu sözcük basit veya bileşik olabilir. Yalın halde ve tekil bir isimdir. Fakat ilk harfi daima büyük harfle yazılır. Örneğin: Basit sözcük: Muscari, Pinus Bileşik sözcük: Eurygaster, Stenocephalus Cins isimlerine verilen isimlerin tanıtıcı nitelikte olması istenir. Örneğin: Silene, salya, salgı, Eurygaster, geniş karınlı anlamlarına gelir.

http://www.biyologlar.com/bitki-ve-hayvanlarin-isimlendirme-ilkeleri-1

Halk Sağlığı Alanında Haşerelere Karşı İlaçlama Usul ve Esasları Hakkında Yönetmelik

YÖNETMELİK Sağlık Bakanlığından Halk Sağlığı Alanında Haşerelere Karşı İlaçlama Usul ve Esasları Hakkında Yönetmelik BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç Madde 1- Bu Yönetmelik, halk sağlığını ve huzurunu bozan zararlılara karşı insektisit, rodentisit, mollusisit, gibi maddeler kullanarak mücadele etmek isteyen gerçek ve tüzel kişilere ait işyerlerinin çalışma usûl ve esasları ile resmi kurum ve kuruluşların ilaçlama usûl ve esaslarını belirlemek suretiyle halk sağlığının korunması amacıyla hazırlanmıştır. Kapsam Madde 2- Bu Yönetmelik, halk sağlığı alanında insektisit, rodentisit, mollusisit gibi maddeler kullanılarak zararlılar ile mücadele etmek isteyen gerçek, tüzel kişiler ve bunların işyerleri ile resmi kurum ve kuruluşların izin alma şekil ve şartlarını, çalışma usul ve esaslarını, denetimlerini ve çalışan personeli kapsar. Dayanak Madde 3- Bu Yönetmelik, 181 sayılı Sağlık Bakanlığı'nın Teşkilat ve Görevleri Hakkında Kanun Hükmünde Kararname'nin 43 üncü maddesine dayanılarak hazırlanmıştır. Tanımlar Madde 4- Bu Yönetmelikte geçen; Bakanlık: Sağlık Bakanlığını, Müdürlük: İl Sağlık Müdürlüğünü, Sağlık teşkilatı: Sağlık Bakanlığı merkez ve taşra hizmet birimlerini, Halk sağlığı alanı: Ev, otel, okul, hastane, işyeri, üretim yeri, fabrika benzeri; halkın yemesi, içmesi, eğlenmesi, spor yapması gibi insan yerleşim ve çalışma yerleri ve gündelik yaşamıyla ilgili fiziki mekanlar ve çevreyi, Zararlı organizma: İnsanlara, insan faaliyetlerine veya insanların kullandıkları veya ürettikleri ürünlere; hayvanlara yada çevreye yönelik istenmeyen veya zararlı etkileri olan her türlü organizmayı, Biyosidal ürün: Bir veya birden fazla aktif madde içeren, kullanıma hazır halde satışa sunulmuş, kimyasal veya biyolojik açıdan herhangi bir hedef organizma üzerinde kontrol edici etki gösteren veya hareketini kısıtlayan, zararsız kılan, yok eden aktif madde ve preparatları, İnsektisit: Haşere mücadelesinde kullanılan biyosidal ürünü, Rodentisit: Fare, sıçan ve diğer kemiricileri kontrol etmek için kullanılan biyosidal ürünleri, Mollusisit: Sümüklüböcek gibi yumuşakçaları kontrol etmek için kullanılan biyosidal ürünleri, Kaçırıcı (Repellent): Doğrudan veya dolaylı olarak insan yada hayvan hijyenine yönelik olanlarda dahil olmak üzere, pire gibi omurgasız yada kuş gibi omurgalı zararlı organizmaları ortamdan uzaklaştırmak için kullanılan biyosidal ürünleri, İlaçlama: Halk Sağlığı alanında kullanılan İnsektisit, rodentisit ve mollusisit gibi maddelerle yapılan zararlı mücadelesini, Alet ve cihaz: İlaçlamada kullanılan nakil araçları da dahil olmak üzere motorlu, motorsuz, sabit veya seyyar her çeşit alet, araç ve makine ile bunların çalıştırılması için gerekli malzemeleri, Gereç: İlaç hazırlama ve ilaçlamada kullanılan su kapları, içerisinde ilaç hazırlama kapları, ilaç nakil kapları, su tulumbaları, çadır, örtü, koruyucu elbiseler, maskeler, lastik veya kauçuk eldivenler, çizmeler, gözlük siperler gibi koruyucu malzemeyi, İzin: Zararlılara karşı insektisit, rodentisit, mollusisit ve benzeri maddeleri kullanarak mücadele etmek isteyenlere verilen belgeyi, ifade eder. İKİNCİ BÖLÜM İzin Alma ve Başvuru Şartları İzin alma zorunluluğu Madde 5- Bakanlık tarafından uzman nezaretinde kullanılması şartıyla izin verilen; insektisit, rodentisit veya mollusisit kullanarak zararlılar ile mücadele etmek isteyen gerçek ve tüzel kişilerin, 6 ncı maddede belirtilen bilgi ve belgelerle faaliyet gösterecekleri ilin müdürlüğüne müracaat ederek izin alması zorunludur. Başvuru için gereken belgeler Madde 6- Zararlılara karşı insektisit, rodentisit ve mollusisit kullanarak mücadele yapmak isteyen başvuru sahipleri bizzat veya mesul müdür vasıtasıyla müdürlüğe bir dilekçe ile başvurmaları gerekir. Dilekçe eki dosyada; a) Depolama yerine ait Gayri Sıhhi Müesseseler Yönetmenliğine göre alınacak, ikinci Sınıf Gayri Sıhhi Müessese Ruhsatı’nın bir örneği, b) Mesûl müdür sözleşmesi ve Bakanlıkça belirlenen eğitime katıldığına dair sertifika, c) Mesûl müdüre ait diplomanın noter onaylı örneği veya geçici mezuniyet belgesi, d) Sağlık veya yardımcı sağlık personeli sözleşmesinin ve diplomasının noter onaylı örneği veya geçici mezuniyet belgesi, e) Sağlık Bakanlığının tavsiye ve direktiflerine uyacağına ve Bakanlıkça ruhsat verilmiş insektisit, rodentisit, mollusisit ve benzeri haricinde kimyasal maddeleri kullanmayacağına ve tarım alanında kullanılan pestisitleri kullanmayacağına dair, mesul müdür veya işyeri sahibi tarafından verilecek taahhütname, f) Uygulanacak ilaçlama yöntemlerini gösterir belge, g) Kullanılacak ilaçların kimyasal grupları ve galenik şekilleri hakkında açıklama raporu, h) İlaçlamada kullanılacak alet, cihaz ve gereçlerin cins, sayı ve özelliklerini gösterir belge, ı) Ekip sayısı ve ekip elemanlarının nitelikleri hakkında belge, j) İlaç hazırlama ve ilaçlama anında alınacak koruyucu sağlık tedbirlerini açıklayan rapor, k) İlkyardım dolabı, ilkyardım çantaları ve içerikleri hakkında açıklama raporu, bulundurulur. Başvurunun değerlendirilmesi Madde 7- Bu Yönetmeliğin 6 ncı maddesine göre yapılan başvuru dosya üzerinde incelenir, başvuru dosyasının bu Yönetmeliğe uygun olması durumunda Müdürlük elemanları tarafından işyeri 10 iş günü içinde yerinde incelenerek sonuçlandırılır. İnceleme sonucunda bu Yönetmelik hükümlerine uygunluğu tespit edilen yerlere Ek-2’deki izin belgesi ve Ek-3’teki mesul müdürlük belgesinden ikişer nüsha düzenlenir. Düzenlenen bu belgeler ve başvuru dosyasının bir örneği Müdürlükte saklanır, diğer nüshaları mesûl müdüre imza karşılığında verilir ve işyerinin görünen bir yerine asılır. İzin verilen firma adı, adresi ve iletişim bilgileri yazılı olarak Bakanlığa bildirilir. Bu Yönetmelik kapsamındaki mevcut bir işyerine ait şube niteliğinde ikinci bir yer açılmak istenmesi veya faaliyet gösterdiği adresin değişmesi durumunda, 6 ncı maddede belirtilen evraklar ile başvuru aynen tekrarlanır. ÜÇÜNCÜ BÖLÜM Personel ve Fiziki Altyapı Standartları Mesûl müdür Madde 8- İşyeri faaliyette olduğu sürelerde bir mesûl müdür bulunması zorunludur. Mesûl müdür sadece bir işyerinde mesûl müdürlük görevini üstlenebilir. Mesûl müdürlük için Hekim, Veteriner Hekim, Eczacı, Tıbbi Teknolog, Ziraat Mühendisi, Biyolog unvanına sahip veya entomoloji, toksikoloji alanında yüksek lisans, çevre sağlığı ve toplum sağlığı bölümü en az önlisans diplomasına sahip olunması zorunludur. Bu diplomaya sahip kişiler Bakanlık tarafından belirlenecek eğitim programına katılarak sertifika almak zorundadırlar. Mesûl müdür, idari işlerden bizzat, diğer işlemlerden ise ekip sorumluları ile birlikte sorumludur. Mesûl müdürün idari işlerinden, işleyişten ve sunulan hizmetin gerektirdiği alt yapı olanaklarının sağlanmasından işyeri sahipleri de bizzat sorumludurlar. Mesûl müdürün görevleri şunlardır: a) Açılış ve işleyiş ile ilgili her türlü izin işlemlerini yürütmek, b) İşleyişte tanımlanmış alt yapı ve hizmet kalite standartlarının korunmasını ve sürdürülmesini sağlamak, c) Ekip sorumlularını eğitmek, İşyerinin işleyişinde alt yapı, personel, malzeme yapısında meydana gelen ve bu Yönetmelikte bildirimi zorunlu kılınan bütün değişiklikleri zamanında Müdürlüğe bildirmek, d) Görevine son verilen veya ayrılan personelin izin belgelerini en geç bir hafta içerisinde Müdürlüğe iade etmek, e) Çalışma saatleri içerisinde hizmetlerini düzenli ve sürekli olarak yürütmek ve yürütülmesini sağlamak, f) Tanımlanan düzenlemelerin ilgililer tarafından yerine getirilmesini sağlamak üzere gerekli iç denetimleri yürütmek, g) Denetim sırasında yetkililere gereken bilgi ve belgeleri sunmak ve denetime yardımcı olmak, h) Atıkların usulüne uygun olarak imha edilmesini sağlamak, i) İşyerinde bulundurulması zorunlu malzemeleri kontrol ve temin etmek, j) Çalışan personelin gerekli görülen tetkiklerini ve muayenelerini periyodik olarak yaptırmak, k) Sağlık mevzuatında belirtilen ve yetkililerce tanımlanacak diğer görevleri yerine getirmek. Mesûl müdür, işyerinin işleyişi ve denetimi ile ilgili her türlü işleminde Müdürlük ve Bakanlığın birinci derecede muhatabıdır. Mesûl müdür, işyerindeki görevini sona erdirmek istediğinde veya mesûl müdürün görevine son verilmek istendiğinde, bu durumun işyeri sahibi veya mesûl müdürü tarafından Müdürlüğe bir hafta öncesinden bildirilmesi şarttır. Ekip sorumluları Madde 9- İlaçlama faaliyetini yürütecek ekipte sorumlu olarak en az bir Tıbbi Teknolog, Sağlık Memuru (Çevre Sağlığı veya Toplum Sağlığı), Hemşire, kimya teknisyeni veya ziraat teknisyeni bulunması zorunludur. Ekip sorumlusu, ilaçlama faaliyeti için gerekli hazırlıkların yapılması ve her türlü güvenlik tedbirinin alınmasından, atıkların düzenli toplanmasından sorumludur. Yapılan her ilaçlama için Ek-1 deki formu tanzim ederek bir nüshasını ilaçlama yapılan yerin sahibi/yetkilisine verilmesinden sorumludur. İşleyişte görülen aksaklıkları ve uygulamada oluşabilecek kazaları, zehirlenmeleri mesûl müdüre ve en yakın sağlık kuruluşuna bildirmekten sorumludur. Diğer personel Madde 10- İlaçlama işlerinde çalıştırılacak diğer personel, bu Yönetmeliğin 17 nci maddesinde belirtilen hususlara aykırı olmayan ve 18 inci maddede belirtilen sağlık raporuna sahip kişilerden oluşur. Bu Yönetmelikte belirtilen kıyafet ve donanımı çalışan bütün personel iş esnasında amacına ve talimatlara uygun olarak kullanmak zorundadır. Bina durumu Madde 11- İşyeri, betonarme binalarda kurulur, ahşap ise müstakil bina olması zorunludur. İşyeri zemini düz, pürüzsüz, dezenfeksiyona uygun ve kolayca temizlenebilir/yıkanabilir özellikte döşenmiş olmalıdır. Odalar arasındaki bölümler tabandan tavana kadar beton, alçıpan, sunta-lam ve benzeri malzemelerle yapılmış olmalıdır. İşyeri binasında ilgili mevzuat uyarınca yangına karşı güvenlik önlemleri alınır. Mesken olarak kullanılan binaların bir bölümünde kurulmak istenmesi durumunda, ilgili mevzuat hükümlerindeki düzenlemelerin yerine getirilmesi sorumluluğu işyeri sahip ve mesûl müdürüne aittir. İşyerinin bürosu ayrı yerde olabilir. Bu durumda, büroda ilaç ve ilaçlama ile ilgili araç gereç ve malzeme bulundurulamaz. İşyerinde şebekeye bağlı akar su bulunur. İşyeri, en az atık bırakan yakıt kullanılarak, uygun bir sistemle ısıtılır, ancak kimyasalların bulunduğu oda ve depo ısıtılmaz. İşyerinde pis su tesisatı bulunmalı, zeminde kanalizasyona, fosseptiğe veya arıtım sistemine bağlı ızgaralı ve sifonlu yer süzgeci bulunur. İşyeri tabii olarak sürekli havalandırıla bilinmeli; pencereler zeminden yüksekte planlanmalı ve demir parmaklıkla korunmuş olmalı, tabii havalandırmanın mümkün olmadığı durumlarda mekanik havalandırma sistemi bulunur. İşyerinin tüm mekanları amacına uygun aydınlatılır. Bulundurulması zorunlu asgari birimler Madde 12- İşyerinde aşağıda belirtilen nitelikleri haiz bölümler bulunur. a) Büro, (ayrı yerde olabilir-aynı yerde ise ilaç hazırlama odasından uzakta olmalıdır.) b) İlaç ve malzeme deposu, c) Çalışanlar için soyunma odası, d) Yeterli sayıda tuvalet ve duş, e) Malzeme temizleme ve hazırlık odası. İzin belgesi alındıktan sonra binada yapılan esasa ilişkin değişiklikler Müdürlüğe bildirilir. Alet, cihaz ve gereçler Madde 13- İlaçlama izni verilebilmesi için, bir işyerinde Ek-4’de belirtilen alet, cihaz ve gereçlerin bulunması zorunludur. DÖRDÜNCÜ BÖLÜM Çalışma Usul ve Esasları Her ekip için ilkyardım çantası zorunluluğu Madde 14-Kaza ve zehirlenmelere karşı kullanılmak üzere her ekibe, ekibin kullandığı ilaçlara göre spesifik antidotları ile gerekli diğer ilkyardım malzemesi bulunan ilkyardım çantasını temin etmekten, kullanılan veya miadı dolanların ikmalini yapmaktan ve bu malzemelerin kullanımına ait detaylı talimatların hazırlanarak ekiplere dağıtımından mesul müdür ve işyeri sahibi ayrı ayrı sorumludur. Kaza ve zehirlenmelerde sorumluluk Madde 15-Her ekip göreve giderken, kaza ve zehirlenmelerde kullanılmak üzere ilkyardım çantasını beraberinde götürmek zorundadır. Kaza ve zehirlenmelere karşı gerekli tedbirlerin aldırılmasından herhangi bir kaza ve zehirlenme halinde ilkyardımın yaptırılmasından ve bir tedavi kuruluşuna sevkinden ekip sorumlusu, mesûl müdür ve işyeri sahibi ayrı ayrı sorumludur. Ruhsatlı ilaçların kullanılması Madde 16-Halk sağlığını ve huzurunu bozan zararlılara karşı kullanılacak ilaçların Bakanlıktan imal veya ithal izninin alınmış olması zorunludur. Her ne suretle olursa olsun izinsiz ürünler veya diğer kimyasal maddeler bu amaçla kullanılamaz. İlaçların muhafazasında ve taşınmasında beşeri ilaç veya zirai mücadele ilaçlarının kapları ve ambalajları kullanılamaz. Çalışma süresi ve şartları Madde 17- İlaç hazırlama ve ilaçlama işlerinde; hamile kadınlar, 18 yaşından küçük çocuklar, hasta ve hastalıklı olanlar ile alkolikler çalıştırılamaz. Fiilen ilaç hazırlama ve ilaçlama işlerinde çalışanlar günde devamlı olarak 3, toplam 6 saatten fazla çalıştırılamazlar. Çalışma esnasında iş kıyafetlerinin ve koruyucu malzemelerin amacına ve talimatına uygun olarak kullanılması zorunludur. İlaç hazırlama ve ilaçlama anında herhangi bir şey yenilmesi ve içilmesi yasaktır. Çalışanların sağlık kontrolleri Madde 18- İlaç hazırlama ve ilaçlama işlerinde fiilen çalışacak olanlar işe başlamadan önce bir sağlık raporu alırlar. Bu raporda; kronik solunum yolu rahatsızlıkları (astım gibi), alerjik rahatsızlıklar, cilt hastalıkları ve nörolojik rahatsızlıklarının bulunup bulunmadığı ile kanda cholinesteras enzim seviyesinin ölçülmesi ve sağlık kontrollerinin yapılarak bu işi yapmaya uygun olduklarının belirlenmesi zorunludur. İşçilerin bu işte çalışmaları süresince de 3 ayda bir genel sağlık kontrolünden geçirilerek nörolojik muayenelerinin yapılması ve kanlarında cholinesteras enzim seviyelerinin ölçülmesi gerekir. Yapılan muayene ve ölçümler sonucunda sağlığının bozuk olduğu tespit edilenler ile bozulma eğilimi gösterenler, gerekli tedavileri yapılıp sağlıklarına kavuşuncaya kadar ilaç hazırlama ve ilaçlama işlerinde çalıştırılamazlar. İşyerinde tutulacak kayıt ve raporlar Madde 19- İşyerinde, mesûl müdür, ekip sorumlusu ile ilaç hazırlama ve ilaçlama işlerinde çalışan işçiler için ayrı ayrı birer dosya tutulur. Bu dosyalarda sözleşmeli personel için sözleşme sureti ve unvanlarını gösterir belge ile dosya sahiplerinin fotoğraflı nüfus cüzdanı sureti, işçilerin göreve başlarken bu işte çalışmasında sakınca olmadığını gösterir sağlık raporu ve periyodik sağlık kontrollerine ait raporlar muhafaza edilecektir. Ayrıca ilaçlama yapılan yerler, ilaçlama tarihleri, kullanılan ilaçlar, ilaçlamayı yapanlar, varsa meydana gelen kaza ve zehirlenmeler ile ilgili Ek-1 de belirtilen formun doldurularak ayrı bir dosyada muhafaza edilir ve istenildiğinde denetim elemanlarının incelenmesine açık tutulur. İşi bırakanların durumu bildirmesi Madde 20-İlaçlama izni alıp da herhangi bir nedenle işi bırakan işyeri sahibi 15 gün içinde durumu Müdürlüğe bildirmekle yükümlüdür. Bu iş yerinin izni iptal edilir ve Bakanlığa bilgi verilir. Havadan ilaçlama Madde 21-Meskun mahallerin zararlılara karşı havadan ilaçlanması yasaktır. Ancak afet gibi gerekli durumlarda Bakanlıktan izin alınması kaydıyla havadan ilaçlama yapılabilir. BEŞİNCİ BÖLÜM Çeşitli Hükümler İznin geçerliliğini kaybetmesi Madde 22-Verilen izin belgesi; üzerinde yazılı işyeri, şahıs ve ilaçlama şekli için geçerlidir. Bunlardan herhangi birinin değişmesi halinde geçerliliğini kaybeder. Bu durumlarda; a) İşyerinin değişmesi halinde yeni işyeri için gayrı sıhhi müessese ruhsatının alınarak izin belgesinde gerekli düzeltmenin yaptırılması için müdürlüğe başvurulur. b) İzin belgesinde yazılı şahsın aynı yerde, aynı işi yapmak ve aynı personelle çalışmak üzere işi devretmesi halinde, işi devir alan şahıs devir işlemine ait belgeler ve taahhütname ile beraber Müdürlüğe müracaat ederek izin belgesinde gerekli düzeltmenin yapılmasını talep eder. c) İşçi ve işyerini devir alan kişi yeni bir ekiple faaliyetini sürdürmek isterse, devir işlemine ait belge ve taahhütnameye ilave olarak mesûl müdür sözleşmesi ile diplomasının veya yerine geçebilecek belgenin noter tasdikli birer örneği, sağlık veya yardımcı sağlık personeli sözleşmesi ile diplomasının veya yerine geçebilecek belgenin noter tasdikli birer örneği ile müdürlüğe başvurur. d) İlaçlama şeklinde değişiklik yapılmak istenmesi halinde ise tatbik edilecek ilaçlama yöntemleri, ilaçlamada kullanılacak alet, cihaz ve gereçlerin cins ve sayıları, ilaçlama anında alınacak önlemler kullanılacak ilaçlar konusunda bilgiler ve taahhütname ile müdürlüğe başvurulur. e) İşyerinin konumu, sahibi, yapılan iş ve kullanılan ilaçlama şeklinde bir değişiklik olmamakla birlikte, cadde veya sokak isminin veya bina numarasının değişmesi gibi nedenlerle adresinde bir değişiklik olması halinde değişikliklerle ilgili bilgi ve belgeler ile beraber, gerekli düzeltmeyi yaptırmak üzere müdürlüğe başvurulur. Değişiklik tarihinden itibaren en geç 15 gün içinde bu başvuruların dilekçe ile yapılması, değişikliklerle ilgili bilgi ve belgelerin 6’ncı maddeye uygun olması ve izin belgesinin aslının da dilekçeye eklenmesi gerekir. İzin belgesinin kaybolması veya tahrip olması Madde 23-İzin belgesinin herhangi bir nedenle kaybolması veya okunmayacak ve yanlış anlamalara neden olacak şekilde tahrip olması halinde yeniden izin belgesi alınması gerekir. Bunun için izin belgesinin kaybolması halinde kayıp ilanı verilmiş gazetenin, tahrip olması halinde ise bozulan izin belgesinin bir dilekçeye eklenerek müdürlüğe başvurulması gerekir. Bu durumda müdürlükçe yeniden, eski tarih ve sayısı ile, gerekli açıklama da yapılarak izin belgesi tanzim edilir. İznin iptal edilmesi Madde 24-Verilen iznin dışında faaliyet gösteren, bu Yönetmelik hükümlerine veya sağlık teşkilatının düzenleme ve yasaklarının aksine hareket edenler yazılı olarak ikaz edilir. İkaza rağmen durumunu düzeltmeyen veya direktiflere uymamakta ısrar edenlerin izinleri, müdürlük tarafından en az 6 ay olmak üzere geçici veya kesin olarak iptal edilir. Ayrıca sorumlular hakkında yasal işlem yapılır. İznin iptal edilmesi durumunda Bakanlığa bilgi verilir. İzinsiz olarak faaliyet gösterenler Madde 25-Bu Yönetmelik hükümlerine göre gerekli izni almadan faaliyet gösterenler veya 22 inci maddede belirtilen nedenlerle, iznin geçerliliğini kaybettiği halde süresi içinde müracaatlarını yaparak izin belgesinde gerekli düzeltmeyi yaptırmayanların işyerleri kapatılarak faaliyetleri durdurulur. Aynı zamanda sorumlular hakkında genel hükümlere göre yasal işlem yapılır. Denetim Madde 26- İlaçlama izni alanların işyerleri, ilaçlama ekipleri sağlık teşkilatının daimi denetimi altındadır. Sağlık teşkilatınca görevlendirilen ekipler işyerini, ekipleri, kullandıkları alet, cihaz ve gereçleri, ilaçlama işlemlerini denetleyebilir, gerekli gördüklerinde kullanılan ilaçlardan numune alabilirler. İş sahibi, mesûl müdür ve ekip sorumluları denetimlerde gerekli kolaylığı göstermek ve yapılan uyarılara uymak zorundadırlar. Yapılan denetimde, verilen izin dışında faaliyet gösterildiğinin veya usulüne uygun ilaçlama yapılmadığının tespiti veya yapılan uyarılara uyulmaması halinde görevli ekip ilaçlama faaliyetini anında ve en çok 48 saat süre ile durdurmaya yetkilidir. Ancak bu kararın en geç 48 saat içinde müdürlük tarafından onaylanması gerekmektedir. Müdürlüğün onayı ile faaliyeti durdurma süresi, eksikliklerin tamamlanıp halk sağlığına zararsız hale getirilinceye kadar uzatılabilir. İstisnalar Madde 27- Belediyeler dahil olmak üzere kamu kurum ve kuruluşları sadece kendi işyerlerinin ilaçlama faaliyetleri için bu Yönetmelikte öngörülen izin işlemlerinden müstesnadır. Ancak bu Yönetmelikte belirtilen diğer hükümlere uymak ve her ilaçlama işleminden önce kullanılacak ilaçların isimleri ve ilaçlama tarihlerini Müdürlüğe bildirmek zorundadırlar. Düzenleme yetkisi Madde 28- Bakanlık bu Yönetmelik hükümlerinin uygulamasına yönelik alt düzenlemeleri yapmaya yetkilidir. Bu Yönetmelik doğrultusunda; Uluslararası giriş çıkış yapan hava, kara ve deniz araçlarının gümrük alanlarında alınacak tedbirler ve işlemlerin usul ve esasları Hudut ve Sahiller Genel Müdürlüğünün çıkaracağı yönerge ile belirlenir. Cezai hükümler Madde 29-Bu Yönetmelik hükümlerine uymayanlar hakkında, Türk Ceza Kanunu’ nun ilgili hükümlerine göre işlem yapılır. ALTINCI BÖLÜM Geçici ve Son Hükümler Geçici Madde 1- Bu Yönetmeliğin yayımından önce faaliyete geçmiş ilaçlama işyerleri; 6 ay içinde işyerlerini bu Yönetmeliğe uygun hale getirmek zorundadırlar. Yürürlük Madde 30- Bu Yönetmelik Resmi Gazete’de yayımı tarihinde yürürlüğe girer. Yürütme Madde 31- Bu Yönetmelik hükümlerini Sağlık Bakanı yürütür. EK-1. HALK SAĞLIĞI ALANINDA HAŞERELERLE MÜCADELE İŞLEM FORMU İLAÇLAMAYI YAPANA AİT BİLGİLER -İlaçlamayı yapan firma adı : -Açık adresi : -Mesûl müdür : -Telefon/faks numarası : -Müdürlük izin tarih ve sayısı : -İlaçlama yapan ekip sorumlusu : KULLANILAN İLACA AİT BİLGİLER: -Kullanılan ilacın ticari adı : -İlacın temin edildiği yer : -İlacın uygulama şekli : -İlacın aktif maddesi : -İlacın antidotu : -İlaç ambalajının miktarı (kg/litre) : İLAÇLAMA YAPILAN YER HAKKINDA BİLGİLER -İlaçlama yapılan yerin açık adresi : -İlaçlama yapılan haşere türü/adı : -Uygulama tarihi ve saati : -Mesken/işyeri vb. : -İşyeri ise çalışan sayısı : -Mesken ise daire sayısı : -İlaçlama yapılan yerin alanı : Ekip Sorumlusu İlaçlama Yapılan Yerin İmza Sorumlusu/Yetkilisi-İmza Not: ZEHİRLENME DURUMLARINDA GEREKTİĞİNDE ZEHİR DANIŞMA MERKEZİNİN ÜCRETSİZ 0 800 314 79 00 NOLU TELEFONUNU ARAYINIZ. Bu form iki nüsha olarak hazırlanır ve bir nüshası ilaçlama yapılan yerin yetkililerine/sahibine verilmesi zorunludur. EK - 2 T.C. ................................... VALİLİĞİ İL SAĞLIK MÜDÜRLÜĞÜ Belge No: Tarih: HALK SAĞLIĞI ALANINDA HAŞERELERE KARŞI İLAÇ UYGULAMA İZİN BELGESİ İLAÇLAMA KURULUŞUNUN ADI : TÜRÜ : ADRESİ ve TEL : SAHİBİ (SAHİPLERİ) ADI ve SOYADI : ÇALIŞMA SAATLERİ : EKİP SAYISI : Yukarıda adı ve adresi belirtilen İlaçlama kuruluşunun Mesûl Müdür ...................................................... sorumluluğunda faaliyet göstermesi İl Sağlık Müdürlüğünce uygun görülmüştür. VALİ veya adına İL SAĞLIK MÜDÜRÜ EK - 3 T.C. ................................... VALİLİĞİ İL SAĞLIK MÜDÜRLÜĞÜ Belge No: Tarih: MESÛL MÜDÜRLÜK BELGESİ MESÛL MÜDÜRÜN ADI ve SOYADI : UNVANI : Foto BABA ADI : DOĞUM YERİ : DOĞUM TARİHİ : Mezun Olduğu Fakülte : Mezuniyet Tarihi : Diploma No : Uzmanlık Diploması No (var ise) : GÖREV YAPACAĞI KURULUŞUN ADI : ADRESİ : Yukarıda açık kimliği ve mesleği yazılı olan şahıs ..................................................... isimli ilaçlama kuruluşunda mesûl müdürlük görevini yürütmesi İl Sağlık Müdürlüğünce uygun görülmüştür. İL SAĞLIK MÜDÜRÜ EK - 4 İLAÇ UYGULAMA İŞYERLERİNDE BULUNDURULMASI ZORUNLU EKİPMAN LİSTESİ 1-İşyerinde Asgari Bulundurulması Gerekli Alet ve Cihaz a) Pulverizatör (sırt tipi) 2 adet b) ULV cihazı 1 adet c) FOG cihazı 1 adet d) Sıcak su sistemi (Banyo bölümüne bağlı) 1 adet e) Çamaşır makinası 1 adet f) Kilitli dolap 1 adet g) Telefon 1 adet 2-İşyerlerinde Asgari Bulundurulması Gerekli Malzeme a) Ecza dolabı komple b) İlk yardım çantası 1 adet c) Gaz maskesi 2 adet d) Yangın söndürücüsü 1 adet e) Antidotlar- Atropin f) Eldiven 3 çift g) Baret 2 adet h) Çizme 2 çift ı) Koruyucu gözlük 5 adet i) Terazi 1 adet j) Toz maskesi 2 çift k) El feneri 1 adet l) Mezür ölçülü silindir 2 adet m) Malzeme çantası 1 adet n) Kova 2 adet o) İşçi elbisesi 2 adet p) Süzgeç 1 adet r) Sıvı deterjan 5 lt. s) Dezenfektan 2 lt.      

http://www.biyologlar.com/halk-sagligi-alaninda-haserelere-karsi-ilaclama-usul-ve-esaslari-hakkinda-yonetmelik

Darwinin Canlılar Teorisi nedir ?

Darwin'in canlılar hakkındaki görüşü ile ilgili teori nedir ? Canlılarla ilgili bu evrimsel görüşü geçersiz kılmak için geliştirilen bu taktiğin iki kusuru vardır.Birincisi Darwin'in iki iddaasını birbirinden ayırmayı başaramaktadır. Günümüzde yaşayan türler,atasal formlardan gelişmiştir ve doğal seçme,bu evrimleşme için ana mekanizmadır.Canlıların evrim geçirmiş olduğuna ilişkin karar,tarihsel kanıtlar üzerine dayandırlımıştır. O zaman,evrim hakkındaki teori nedir?Teoriler gerçekler, açıklamak ve onları bir araya getirerek bir görüş olarak taçlandırmak üzere yaptığımız girişimlerdir.Biyologlar için Darwin'in evrim teorisi,doğal seçmedir-doğal seçme,Darwin'in fosillerle,biyocoğrafya ile diğer kanıtlarla belgelediği,evrimin tarihsel olaylarını açıklamak için önerdiği bir mekanizmadır. Onun için "sadece bir teori" tartışması Darwin'in ikinci noktası ile,yani onun doğal seçme teorisiyle ilgilidir.Bu bizi "sadece bir teori" olayındaki ikinci kusura sevk eder. TeOrİ terimi,bilimde,günlük kullanımınkinden çok farklı anlama sahiptir.Teori kelimesinin kullanışı,bilim adamlarının hipotez olarak kastettiklerine yakın gelir.Bilimde teori hipotezden daha kapsamlıdır.Newton'un yer çekimi teorisi ya da Darwin'in doğal seçme teorisi gibi,bir teori,bir çok durumun sebebini açıklar ve çok büyük çeşitlilik gösteren doğa olayları açıklamaya girirşir.Böyle birleştirici bir teori,eğer teorilerin öngörüleri,yapılan gözlemlerle ve sürdürülen denemelerle ayakta kalmıyor ise bilimde geniş bir şekilde kabul edilmez.Hatta,iyi bilim adamları teorilerin dogma haline gelmesine izin vermez.Örneğin şimdi çok sayıda evrimle uğraşan biyolog,doğal seçmenin,fosil kayıtlarda gözlemlenen evrimsel tarihi,yalnız başına açıklayıp açıklamayacağı konusunda kuşku duymaktadır. Evrimi çalışmak,her zamankine göre şimdi daha canlıdır... Canlıların çeşitlenmesinidoğa üstü yaradılıştan ziyade,doğal nedenlere bağlamak suretiyle Darwin,biyolojiye(YAŞAMBİLİM) bir ses verdi.Bir bilimsel temel oluşturdu.Bununla birlikte,evrimin çok çeşitli ürünleri mükemmeldir ve ilham vermektedir.TüRLeRiN kÖkEnİ isimli eserinin kapanış paragrafında Darwin'in dediği gibi canlılığın bu görünümünde ihtişam vardır. Kaynak: CAMPBELL & REECE BİYOLOJİ 6. BASKI ÜNİTE 4. BÖLÜM 22. SAYFA 441-442 PALME YAYINCILIK www.genbilim.com

http://www.biyologlar.com/darwinin-canlilar-teorisi-nedir-

Bakterilerde Genetik Yapı

Çoğu bakteride tek bir dairesel kromozom bulunur, bunun büyüklüğü endosimbiyotik bir bakteri olan Candidatus Carsonella ruddii de 160.000 baz çiftinden, bir toprak bakterisi olan Sorangium cellulosumda 12,200,000 baz çiftine kadar uzanır. Borrelia cinsine ait spiroketler bu genel özelliğin bir istisnasıdır, Borrelia burgdorferi (Lyme hastalığı etmeni) gibi türlerde tek bir doğrusal kromozom bulunur. Bakteriyel kromozomlardaki genler genelde tek bir sürekli DNA parçasından oluşur, bazı bakterilerde intronlar bulunmuşsa da bunlar ökaryotlarda olduğundan çok daha enderdir. Bakteriler aynı zamanda plazmidler de bulunabilir, bunlar kromozomdan ayrı DNA parçalarıdır, antibiyotik direnç genleri veya virülans faktörleri içerebilirler. Bir diğer tip bakteriyel DNA, kromozoma entegre olmuş virüslere (bakteriyofajlara) aittir. Çeşitli bakteriyofaj türleri vardır, bazıları sadece konak bakterilerini enfekte edip onu parçalar, diğerleri ise hücre içine girdikten sonra DNA'larını bakteriyel kromozoma dahil ederler. Bir bakteriyofaj konak hücresinini fenotipine katkıda bulunan genler taşıyabilir: örneğin Escherichia coli O157:H7'nin evrimi sırasında entegre olmuş bir fajın toksin genleri, zararsız bir atasal bakteriyi ölümcül bir patojene dönüştürmüştür. Bakteriler, eşeysiz organizmalar olarak, ana hücrelerinin genlerinin kopyalarını devralırlar. Ancak tüm bakteriler, DNA'larındaki değişikliklerin (mutasyon ve genetik rekombinasyonun) seçilimi ile evrimleşir. Mutasyonlar DNA ikileşmesi sırasında meydana gelen hatalar veya mutajenlerden kaynaklanır. Mutasyon hızları farklı bakteri türleri ve hatta aynı bakterinin farklı suşları arasında büyük farklılıklar gösterir. Bazı bakteriler ayrıca genetik malzemelerini hücreler arasında aktarabilirler. Bu üç yolla meydana gelebilir. Birincisi, bakteriler ortamlarıdaki yabancı DNA'yı içlerine alabilirler, buna transformasyon denir. Genler ayrıca transdüksiyon yoluyla, bir bakteriyofajın yabancı bir DNA parçasını kromozomun içine yerleştirmesiyle aktarılabilir. Gen aktarımını üçüncü yolu bakteriyel konjügasyondur, bunda DNA doğrudan hücresel temas yoluyla aktarılır. Başka bakteri veya ortamdan gen edinimine yatay gen transferi denir ve doğal şartlarda bu yaygın olabilir. Gen transferi özellikle antibiyotik direncinin oluşmasında önemlidir, çünkü bu, farklı patojenler arasında direnç genlerinin transferini sağlar

http://www.biyologlar.com/bakterilerde-genetik-yapi

Preslenmiş Bitkinin Yapıştırılması

Presten alinan bitkiler, karton levhalar arasinda bir tabakaya yapistirilana kadar yeniden korunurlar. Yapistirilacak levha mümkün oldugunca sert kagittan olmalidir. Ince karton bu is için daha uygundur. Böylece bitki kirilmaktan korunmus olur. Levhanin ölçüleri presin ölçülerine uygun olmalidir. Pres ölçüsü 26 x 40 cm olmakla birlikte, levhanin bundan büyük olmasi daha uygundur. Levha ölçüsü genelde 29 x 42 cm, amatörler için ise yaklasik 22 x 34 cm.dir. Koleksiyonun masrafi ve yer ihtiyacinin artmamasi için karar kilinan levha büyüklügü sabit tutulmalidir. Bitki kartona yapistirilirken dikkat edilmesi gereken ilk sey sag alt kösede etiket için yeterli bir yer birakilmasidir. Böylece preslenmis bitki yüzeye düzenli sekilde yapistirilir Bitkinin sabitlestirilmesi için yapiskan bant kullanilmalidir. Burada genellikle 3 mm genislikte kesilen yapistirici bantlar kullanilir. Yapistirici bant bitkiyi sabit tutar ve ihtiyaca göre yeniden açilabilir. Sap ve yaprak, uygun olan ve az zarar görebilecek noktalarindan yapistirilir. Bant sapi iyi çevrelemelidir, aksi taktirde gevser. Köseli kalin saplar söz konusu oldugunda,önce kartonda bir yer açilarak sap buradan geçirilir ve karton ile birlikte yapistirilir. Yapistirici olarak kullanilan bandin seloteyp olmasi tavsiye edilmez, çünkü birkaç yil sonra rengi solar ve yapiskanligini kaybeder. Bu yüzden zamkli kagidi tercih etmek daha dogru olur. Bütün kisimlarin tutup tutmadigim kontrol için herbaryum levhasi dikkatlice ters çevrilir. Bitkinin bütününün levhaya yapistirilmasi iyi degildir. Çünkü daha sonraki arastirmalarda yeniden ayirmak gerekebilmektedir. Bununla birlikte, bu yöntemin kullanilmasi kirilma tehlikesini önemli ölçüde azaltmaktadir. Çünkü bütün kisimlar levha ile sabitlesmektedir. Bu yöntem, yumusak bitkilerde yararli olmaktadir. Laboratuar dersleri için yapilan toplamalarda da s nedeniyle arzu edilmektedir. Cam levha üzerine su ile inceltilmis elastik reçine ince bir tabaka halinde sürülür ve yapistirilmak istenen bitki cam üzerine yatirilir. Bundan sonra pens ile itinali bir sekilde kaldirilip, levha üzerine konulur. Daha sonra kum torbasi veya baska bir agirlikla desteklenmis olan sert lif levha ile 2 saat presleme yapilir. Herbaryumlar böylece kurumaya birakilir. Kalin agaç dallari, ne bandajla, ne de yapistirici ile levha üzerine sürekli olarak sabitlestirilemez. Bu nedenle ip kullanilarak levhaya dikilir. Bunun için levha ince kartondan olmamalidir. Çiçekli bitkilere ait gevsek tohum ve meyveler küçük bir kagit zarf ile uygun olan yerinden levhaya yapistirilir. Çiçekler parçalanarak preslenebilir. Daha sonra çanak, taç yapraklan vb. ayri ayri yapistirilir. Açik renkli çiçekler koyu kartona yapistirilmalidir. Son islem olarak, gerekli verilen içeren etiket sag alt kisma yapistirilir. Küçük olmayan ve ölçülere sahip etiketler kullanilmalidir. Bitki hakkindaki bütün materyaller, örnegin; literatür özeti, gazete kupürü, fotograflar veya yayilim bölgesinin küçük bir taslagi bu levhaya ilave edilebilir.

http://www.biyologlar.com/preslenmis-bitkinin-yapistirilmasi

ENDOKRİN SİSTEM VE HORMONLAR

...Denetleyici ve düzenleyici sistemlerden biri olan endokrin(iç salgı) sistem ,endokrin bezler denilen ve hormon üreten yapılardan meydana gelir. ...Hayvanlarda görevli olan hormonlar hedef dokularına kan yoluyla taşınırlar. ...Kanla her tarafa götürülseler de sadece hedef dokularını etkilerler. ...Hormonlar kanda çok az miktarda bile olsalar mutlaka etki gösterirler. ...Normalden az yada çok salınmaları durumunda çeşitli metabolik bozukluk ve hastalıkların oluşumuna neden olurlar. ...Hormonların büyük bir kısmı endokrin bezlerden salgılanırlar.Ancak sinir hücrelerinden ve bez olamayan dokulardan da hormon salınabilir. ...Örneğin; mideden salınan gastrin ve ince bağırsaktan salınan sekretin hormonları gibi. ...Hormon salgılanması sinir sisteminde bulunan merkezlerden kontrol edilir. ...Ancak hormonlar sinir sisteminin çalışmasında da etkilidirler. Hormonların yıkımları yavaş gerçekleşir. ...Bu nedenle iki sistem birbiriyle mükemmel bir uyum içinde çalışarak organizmadaki denetim ve düzenleme faaliyetlerini yerine getirirler. ...Hormonlar protein veya yağ gibi belirli bir gruba özgü olmayan moleküllerdir.Büyük bir kısmı protein yapıda olsa da bazı hormonlar aminoasit veya onların türevleri olan steroit,bazıları yağ asidi türevleri bazıları da pürin gibi azotlu organik bazlardan meydana gelebilir. ...Hormonlar endokrin bezlerden salgılandıktan sonra kana verilir ve hedef organlara kan aracılığıyla taşınır.Bu nedenle hormon miktarlarını belirlemek için kan incelenmelidir. ...Birdenbire karşısına çıkan yayaya çarpmamak için hemen fren yaparak aracını durduran sürücüde kalp atım hızının artması,tansiyon yükselmesi ,ağız kuruluğu gibi sinirsel ve hormonal olarak kontrol edilen tepkiler ortaya çıkar.Tehlikenin geçmesine karşın sürücüde bu tepkilerin bir süre daha aynı düzeyde kalması ve daha sonra bireyin eski haline dönmesinin sebebi hormonların yıkımının belirli bir zaman sonra başlamasından kaynaklanır. ...Hormonların sinirsel uyarıdan farklı bir etki mekanizması vardır.Hormonların neden olduğu tepkiler çabuk sonlandırılamaz.Çünkünü hormonların görevini tamamladıktan sonra yıkımı belirli bir zaman sonra başlar.

http://www.biyologlar.com/endokrin-sistem-ve-hormonlar

İnsanda görülen parazit türleri nelerdir?

Vücudumuza dışarıdan giren bazı canlıların bizde yarattığı rahatsızlıklardır. Genellikle ağır hastalığa yol açmazlar ama yaşam kalitesini bozarlar. .Kirli sulardan,bulaşmış sebzelerden,bulaşmış musluklardan,pişmemiş etten,parazit yumurtalarının döküldüğü çarşaf ve çamaşırlardan,topraktan,enfekte hayvanlardan geçebilir. Sık karın ağrısı-krampları(açlıkta daha fazla), şiddetli gaz, geçici ishaller, dışkıda yumuşama veya keçi pisliği gibi dışkılama, burun kaşıntısı, anüste (büyük abdestin yapıldığı yer) kaşıntı, yastığa salya akması, diş gıcırdatma, dil kenarında kabartılar, kilo alamama, sabah bulantıları, ağız kokusu, iştahsızlık veya aşırı yeme, vücutta kaşıntılar. (Hasta çoğunlukla gastrit,ülser zanneder, doktoruda bu yönde etkiler.)(Ağız bölgesine ait şikayetler diş ve dişetiylede ilgili olabilir.) Tenya(Şerit) gibi bazı parazitler anüsten dışarı dökülüp hasta tarafından görülebilirler. Parazitin cinsine bağlı olarak; uzun süreli parazite maruz kalınca; kansızlık, barsak tıkanması, büyümede gecikme, akciğer belirtileri, karaciğer-dalak büyümeleri, deri döküntüleri, hatta ağır organ hasarları bile olabilir. Yukarıdaki şikayetlerin birkaçı birlikte bulunan veya biri şiddetli şekilde bulunan bir kişide dışkıda parazit aranması, anüse bant uygulanarak yumurtaların aranması gibi tetkiklere başvurulur. Sonuç negatif çıksada, parazit olasılığı yüksek görülüyorsa tahlil defalarca (örneğin üç gün üstüste) tekrarlanabilir. (Paraziti yakalamak herzaman mümkün olmuyor.) Tedavide parazitine göre değişen ilaçlar vardır. Bazılarının karaciğere veya başka organlara etkisi, ciddi zararları olabileceğinden tam teşhis konduğu zaman, gerektiği gibi kullanılmalı, şikayetler sürsede kendi kendine tekrarlanmamalıdır. Bazı parazitlerde tüm aile aynı zamanda ilaç kullanmalıdır. Oksiyür(kıl kurdu) gibi bazı parazitlerde yumurtalar döküldüğünden çarşaf-çamaşırı kaynatmak (makinanın 90 derecesi yeterli değil, 100 derece olmalı), çok iyi ütülemekte tedavinin bir parçasıdır. Şüpheli sular içilmemeli, kaynatılmalı, iyi yıkandığı şüpheli salatalar, ıspanak vb., az pişmiş-pişmemiş et yenmemelidir. Çocukların toprakla oynadığında ellerini ağızlarına götürmeleri engellenmeli, tuvalet temizliğinde anüse dokunulmamalı, sadece tuvalet kağıdıyla temizlik yapılmalı, çocuklarada öğretilmelidir. Tırnaklar kısa tutulmalıdır. Musluklarla fazla temastan kaçınılmalı, toplu yerlerde de, evlerde de mümkün olduğunca az dokunulan tipte musluklar ve sabunluklar ve sıvı sabun tercih edilmelidir. (Sabundan çok üstündür ama sıvı sabunların kötü markaları ve fazla beklemişleride enfeksiyon kaynağı olabiliyor.) Uzm.Dr. Esra Özaydın İstanbul - 18.06.2002 TENYA (SERIT) Şerit hastalığı olarak da adlandırılabilecek olan taenia enfestasyonu parazit adı verilen küçük canlılarla meydana gelen ve genelde sindirim sistemini tutan bir durumdur. Tenyalar, az pişmiş veya çiğ et (tenya bulunan) yemekle bulaşır. Sığırlar genelde Taenia saginata bulaştırırken, domuzlar taenia solium taşıyıcısıdırlar. Tenyalar segmentli yani boğumludurlar. Her boğum yumurta üretebilme kapasitesine sahiptir. Dünya genelinde son derece yaygın bir durumdur. Sığır Tenyası (Taenia saginata) Etle alınan tenya larvaları (olgunlaşmamış tenyalar) insan barsaklarında olgun hale gelebilirler ve boyları 4-6 metreye ulaşabilir. Tenya hastalığı genelde her hangi bir belirtiye neden olmaz. Kişi kendisinde tenya olduğunu genelde dışkısında tenyaları görünce fark eder, özellikle de hareketli parçacıkları. Nadiren karın üst bölgesinde ağrı, ishal, bulantı, kilo kaybı görülebilir. Bazen apendiks, safra kanalları ve pankreas kanalında tıkanıklığa neden olabilirler. Dışkıda parazitin yumurta ve boğumlarının görülmesi ile tanı konur. Taenia saginata nın hareketli parçaları dışkıda görülebilir. Parazit yumurtalarını makat civarında toplayabilmek amacı ile kullanılan selofan bant yöntemi ile %85-95 hastada tanı konulabilir. Tenya hastalığı, ilaçlarla ve genelde tek doz kullanılarak tedavi edilebilir. En çok kullanılan ilaç niclosamide etken maddeli ilaçlardır. Domuz Tenyası (Taenia solium) Uzunluğu yaklaşık olarak 5 metre civarındadır. Ülkemizde yaygın olmamakla birlikte dünyada çok yaygındır. Sığır tenyasından farklı olarak beyin, kalp, göz, akciğer, cilt altı ve kaslarda kist oluşumuna neden olabilirler: Domuz tenyası bulunan yetişkinler ve çocuklar eğer yeter derecede hijyene dikkat etmezlerse, dışkılama sonrası elleri ile makattaki yumurtaları alarak yutarlar. Bu yumurtalar barsaklara ulaştığında içlerinden larvalar çıkar ve dokulara geçerek kister oluştururlar. Eğer larvalar beyne ulaşırsa epileptik ataklar (havale ?) ve diğer sinirsel problemlere neden olabilirler. Bu duruma cysticercosis adı verilir. Diğer belirtiler sığır tenyasında olduğu gibidir. Dışkıda yumurta ve larvaların görülmesi ile tanı konabilir. Ayrıca radyolojik incelemelerde kistler görülebilir. Cilt altındaki şişliklerden yapılan biyopsi ile de tanı konulabilir. Tedavide tek doz niclosamide kullanılır. Kist oluşan durumlarda tedavi cerrahidir. Balık Tenyası (Diphyllobothrium latum) Bazı tatlı su balıkları ve som balığı Diphyllobothrium latum adı verilen tenya bulaştırabilirler. Genelde tuzlanmış, çiğ veya iyi pişmemiş balık eti ile bulaşır. Bunların uzunlukları 3-10 metre uzunluğunda olabilir. Bu parazitler barsağa tutunurlar. Dişi parazit günde 1 milyondan fazla yumurta çıkarabilir. Karın ağrısı, karın krampları, kusma, kilo kaybı ve Vitamin B12 eksikliği ve makrositer anemi gelişebilir. Dışkıda bol miktarda bulunan yumurtaların saptanması ile tanı konur. Tedavide tek doz niclosamide kullanılır. Tenyalardan Korunma Etlerin yeterli miktarda pişirilmesi tenya larvalarını parçalar. Tuvaletten sonra yeterli el yıkama ve daima uygun hijyen hastalığın yayılmasını önler.

http://www.biyologlar.com/insanda-gorulen-parazit-turleri-nelerdir

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi

EPİTET İSİMLERİN OLUŞTURULMASI (TÜR İSİMLERİ)

Epitet ve alttür sıfat, şimdiki zaman ve geçmiş zaman fiilleri olabilir. İlk harfi daima küçük yazılır. Canlılara epitet isimleri çok değişik kriterlere göre verilir. 1. Canlılara coğrafik alanların isimlerinin verilmesi: Bazı durumlarda canlılara ilk kez bulunduğu ülke, il, ilçe, köy ve özel coğrafik alan isimleri verilebilir. Silene anatolica (Anadolu’ya ait Silene bitkisi), Silene sipylea (Sipil dağına ait), Silene caramanica (Karaman şehrine ait). 2. Canlılara kişi (=patronomik) isimlerin verilmesi: Kişi isimleri, yeni bir canlıyı bulan veya orjinal deskripsiyonu yapan taksonomistin istediği kişinin adı verilerek elde edilir. Özel isim olmaları nedeniyle kişi isimleri önceleri ilk harfi büyük harf olacak şekilde yazılmaktaydı. Fakat 1948 Paris Uluslararası Zooloji Kongresinde alınan bir kararla tür isimlerinin ister kişi, ister ülke ve isterse il, ilçe, köy vb. ismi olsun daima küçük harfle yazılması gerekir. Bu türlü yazılmamış isimlerin mutlaka yeni yayınlarda düzeltilmesi gerekir. Örneğin: Silene Gaubae’nın Silene gaubae olarak düzeltilmesi gerekir. 3. Canlılara üzerinde yaşadığı bitki veya hayvana göre isim verilmesi: Canlılara üzerinde yaşadığı bitki veya hayvanın bilimsel ismine göre isim verilir. 4.Tautonimi’ye göre isim verme: Cins ismiyle epitet isminin aynı olması durumuna “Tautonimi” adı verilir. Özellikle 18. ve 19.yüzyılda yaşayan biyologlar çok sayıda tautonimi oluştumuşlardır. Engrolis engrolis gibi. 5. Hiçbir anlamı almayan sözcüklerden isim yapma: Bazı yazarlar zaman zaman hiç bir anlamı olmayan sözcükleri tür ismi olarak kullanmaktadır. 6. Anagram yaparak isim yapma: Bir ismin tersten yazılışı ile sözcük üretmeye “anagram” adı verilir. Bazı yazarlar tür isimlerini oluşturmada bu yöntemi uygulamaktadır. Örneğin: Cicada lodosi isimli bir tür isminden anagram yaparak bir diğer türe Cicada isodol ismi oluşturulmuştur. 7. Canlılara ekolojik ve habitat özelliklerine uygun isim verme: Bazı canlılara, ekolojik isteklerine ve habitat özelliklerini belirtmek amacıyla tür isimleri verilebilir. 8. Canlılara morfolojik yapılarına uygun olarak isim verme: Türlere morfolojik özelliklerine göre isim verilebilir. Canlıların isimlerine bakar bakmaz bazı özelliklerinin bilinmesine olanak tanıdığı için büyük yararlar sağlar. Örneğin, Pinus nigra denildiği zaman ele alınan örneğin siyah renkli olduğu hemen anlaşılır. Morfolojik özellikleri aşağıdaki karekterleri ele alınarak ortaya konur. a. Sayılar, b. Büyüklük, küçüklük terimleri, c. Renkler, d. Vücut kısımları, e. Sıfatlar.

http://www.biyologlar.com/epitet-isimlerin-olusturulmasi-tur-isimleri

Caretta caretta ( Deniz Kaplumbağaları)

Caretta caretta ( Deniz Kaplumbağaları)

Sistematiği Filum: Chordata Altfilum: Vertebrata Üst sınıf: Tetrapoda Sınıf: Reptilia Altsınıf: Anapsida Ordo: Testudines Altardo: Cryptodira Üst familia: Chelonioidae Familia: Cheloniidae Cins: Caretta Tür: Caretta Caretta Coğrafi Yayılışı Caretta Caretta Atlantik, Pasifik ve Hint Okyanusu’nun ılıman ve subtropikal sularındaki estuarin, lagün, koy ve denizlerin kıyıya yakın kesimlerinde dağılım gösterir. C.C.’lar Atlantik Okyanusu’nda Arjantin’den Nova Scotia’ya kadar bulunur. Kuzey Amerika’daki en büyük popülasyonu Kuzey Carolina’dan Florida kıyılarına kadar olan adalarda bulunur. Bu C.C.’ler kışları Bahama Adaları’na göç ederler. Kuzey Amerika’daki diğer küçük popülasyonlar ise Texas kıyılarında bulunur. Caretta Caretta ların en büyük yuvalama alanları Umman’ın Masirah Adası’dır. Akdeniz’deki önemli yuvalama alanları Yunanistan ve Türkiye sahillerindedir. Bunlara oranla çok daha düşük ancak önemli bir popülasyona ise Kıbrıs’ta rastlanmaktadır. Tunus’ta yuvalama çok nadir, İsrail’de ise daha da azdır. Zaman zaman Campedusa (İtalya), Sicilya ve hatta Sardunya’da da yuvalama olmaktadır. Mısır ve Libya için ise veriler yetersizdir. Türkiye’de ki yuvalama alanları; Ekincik, Dalyan, Dalaman, Fethiye, Patara, Kumluca, Belek, Kızılot, Demirtaş, Gazipaşa, Anamur ve Göksu Deltası’dır. Fiziksel Özellikleri Ergin bireylerde karapaks (sırt kabuğu) oval şekilli ve arkaya doğru daralmış 70–75 cm boyunda ve 50–55 cm genişliğindedir (Türkiye için). Boş oldukça büyük ve üçgenimsidir. Ancak bu büyük beyinleri olduğunu göstermez; aksine bu boşluk çeneleri kapsayan kaslar tarafından kullanılır. C.C.’ların iki alt–türü (sub–species) vardır. Bunlardan C.C. gigas Pasifik ve Hint Okyanusu’nda bulunur. Genel renklenme dorsalde kırmızımsı kahverengi, ventralde kremsi sarı şeklindedir. Diğer deniz kaplumbağalarından sağlam bir kabuk, gözleri ile burun delikleri arasında kalmış iki çift prefrontal plak (bazı bireylerde bu plakların ortasında beşinci bir plak olabilir), karapaksta beş çift kotsal plak, plastronda keropakla bağlantılı ve geniş üç çift inframarjinal plak, her bir üyede iki tırnak ve tipik olarak kahverengimsi–kırmızı renklenme gibi özelliklerle farklılaşır. Beslenme Alışkanlıkları Yavru ve genç Caretta caretta bireyleri, yüzeyde akıntı çizgilerinde toplanan makroplanktonik av üzerinde beslenir. Ergin bireyler özellikle yumuşakçalar üzerinden beslenen karnivorlardır. Etoburdurlar ve sünger, deniz anası, at nalı yengeçler ve istiridye yerler. Kurbanlarının sert kabuklarını kolayca parçalayabilmelerini sağlayan çok güçlü çeneleri vardır. Geniş bir kafa, oldukça gelişmiş çene kasları ve kuvvetli gaga, sert kabuklu avlarını parçalayabilmek için meydana gelmiş adaptasyonlardır. Biyo– Ekolojileri Caretta caretta’lar ayrı eşeylidir ve eşeysel dimorfizm erginlerde görülür. Eşeyler arasındaki büyüklük dimorfizmi hakkında çelişkili bilgiler mevcuttur. Ancak ergin erkekler dişilerden daha uzun kuyruğa ve geriye doğru kıvrılmış tırnaklara sahiptir. Yavru, genç ve ergin öncesi bireylerde eşey ayrımı yapılamaz. Caldwel (1962) ve Uchida (1967)’ya göre esaret altında yetiştirilen Caretta caretta ’nın eşeysel olgunluğa ulaşması 6–7 yıl olarak tahmin edilmektedir. Serbest olarak doğada yaşayan bireyler içinse eşeysel olgunluk yaşı; Mendonca (1981)’ya göre 10–15 yıl, Zug (1983)’e göre 14–19 yıl, Frazer (1983)’e göre 22 yıl, Frazer ve Ehrhart (1985)’a göre sırtındaki eğrilerden edinilen bilgilerle 12–30 yıl olarak tahmin edilmektedir. Üreme Caretta caretta’lar kabukları 50 cm’yi geçmeden cinsel olgunluğa erişirler. Diametre cinsinden 40–42 mm olan yumurtalar med zamanı bırakılır. Yumurtalar kirletilmemiş ve iyi süzülmüş kumullardaki ya da otlu bitki örtülerindeki yuvalara bırakılır. Dişi kıyıya gelir ve gelgitin oluşturduğu yükseltiye tırmanıp orada durur, daha sonra sığ bir çukur açmak için burnunu toprağa sürter. Çukur kazılıp yumurtalar çukura bırakılınca, kaplumbağa arka ayağının tırnaklarıyla yuvayı kumla örter. Kuluçkaya yatma 31–65 gün arası sürer. Genellikle yuva başına 120 yumurta vardır ve dişi 13 günlük aralarla kuluçkaya yatar. Dişi kıyıdaki yuvaya sadece bahar ve yazları geceleyin gelir. Dişi genellikle her yıl mevsim başına 3–4 kere yuva yapar. Yuvadaki yavrular genellikle bu zamanlarda yumurtadan çıkar ve yavrular yaşamlarındaki tek karasal yaşamı bırakıp hep birlikte çabucak denize giderler. Günlük Aktiviteleri Caretta caretta’ların olağan bir gününün beslenme ve dinlenme ile geçtiği bilinmektedir. Kuluçka sezonunda güneydoğu ABD’de yapılan araştırmalar Caretta caretta’ların yuva bulunan kumsal, kıyıdaki resifler ve diğer kayalıklarda düzenli davranışlar sergilediğini göstermiştir. Çiftleşme ve /veya beslenmenin bu bölgelerde gerleşleştirildiği tahmin edilmektedir. Kuluçka dönemi dışında, kaplumbağalar yüzlerce, hatta binlerce mil öteye göç edebilmektedir. Caretta caretta’lar derin sularda yüzeydeyken ya da kıyı yakınlarındaki sularda dipte uyuyabilmektedir. Birçok dalgıç kayalıklarda kaya altında uyuyan kaplumbağa görmüştür. Yumurtadan yeni çıkan kaplumbağaların ise tipik olarak yüzeyde süzülerek uyudukları ve bu sırada ön ayaklarının sırtlarının üstüne doğru kıvrıldığı kaydedilmiştir. Kur Yapma ve Çiftleşme Caretta caretta’ların çiftleşmesi yuvalama başlangıcından birkaç hafta önce yuvalama plajı yakınları veya özel toplanma alanlarında meydana gelebilir. Birbirlerine sıkıca sarılmış çiftler çoğunlukla yüzeyde görünmekle birlikte su altında birleşmeler de rapor edilmiştir. Caretta carettalar için kur yapma ve çiftleşme dişinin ilk yumurtlama döneminden önceki kısıtlı bir zamanda gerçekleştiğine inanılmaktadır. Daha sonra yalnızca dişiler kıyıya gelir, erkekler karayı terk edince bir daha asla geri dönmez çiftleşme mevsiminde erkekler bir dişinin kafasına burnunu sürterek ya da boynunun arkasını hafifçe ısırarak ve paletlerini dikerek kur yaparlar. Eğer dişi kaçmazsa, erkek ön paletlerindeki tırnakların yardımıyla dişinin kabuğunun üstüne çıkar. Daha sonra çiftleşmek için kuyruğunu dişinin kabuğunun altına sokar. Genellikle dişilerin çiftleşmesinin gerçekleştiği kumsalda kuluçkaya yattığı ve erkeğin asıldığı kabuğundaki tırnak izlerinin kanayabildiği gözlemlenmiştir. Çiftleşme su yüzeyi ya da altında gerçekleşebilir. Bazen erkeklerin aynı dişi için kavga ettiği gözlemlenebilmektedir. Caretta caretta’ların çiftleşmelerini gözlemleyenler hem erkeklerin, hem de dişilerin agresif bir tutum sergilediğini gözlemlemiştir. Dişi yumurtlama döneminden önce bir çok erkek ile birlikte olup birkaç ay için sperm biriktirebilir. Nihayetinde yumurtalarını bıraktığında bunlar bir çok erkek tarafından döllenmiş olur. Bu davranış popülasyonda genetik çeşitliliğin devamını sağlamaya yardımcı olur. Yuva Yapma, Kuluçkalama ve Dağılım Caretta caretta’ların neden bazı kumsallara yuva yapıp diğerlerine yapmadığı bilinmemektedir. Florida’da binlerce yuva varken, kuzeydeki tıpa tıp kumsallarda çok az kaplumbağa vardır. Bu yuva dağılımı yüzyıllar önce var olan ısı, kumsal görünümü ya da saldırının az olması gibi tercih nedenlerinin durumunu ortaya koyabilir. Bugün, insanlar Caretta carettaların yuva yaptığı yerlere etki etmektedir.sahilde dalma, deniz koyları, suni aydınlatma ve beslenmenin oluşturduğu kumsal erozyonu bir zamanların taze ve temiz kumsallarını etkilemektedir. Bu durumun gelecek yuvaları da etkileyeceği kesindir. Caretta carettaların nasıl, nerede ve ne zaman yuva yaptığını daha iyi anladıkça, yuva habitatları daha iyi korunmuş olacak. Kumsal Seçimi Çoğu dişi genellikle her seferinde daha önce yuva yaptıkları kumsala geri dönmektedir. Sadece aynı kumsalda görünmekle kalmayıp, daha önceki yuvalarının çok yakınlarına yuva yaparlar. Yuva Yapma Davranışları Sadece dişiler yuva yapar ve bunu genellikle geceleri yaparlar. Dişi okyanustan çıkar ve ara sıra duraksayarak yuva yapacağı yere doğru ilerler. Bazen okyanustan çıkacak, ancak bilinmeyen nedenlerle yuva yapmayacaktır. Buna “sahte çıkış” denir ve bu bazen doğal olarak, bazen ise kumsaldaki suni aydınlatma veya insanların varlığından kaynaklanmaktadır. Bazı türlerin bireylerinin sadece bir kere, bazılarının ondan daha fazla yapmasına rağmen çoğu dişi yuva yapma mevsiminde en az iki kere yuva yapar. Yuvayı İnşa Etmek Yuvalama sezonu genellikle Kuzey yarım kürede Mayıs–Ağustos, güney yarım kürede ise Ekim– Mart ayları arasındadır. Yumurtlama genellikle gece meydana gelir. Nadiren günüz yumurtlama da görülür. Yumurtlamak için kıyıya gelen dişi zaman zaman başını kaldırır ve kumsalı gözetler. Dişi bu dönemde dışarıdan gelecek uyarılara karşı çok hassastır ve rahatsız edildiğinde geri döner. Daha sonra kumsala doğru tırmanan dişi yumurtlayabileceği bir alan aramaya başlar. Bazı durumlarda yuvalamadan veya denize dönmeden önce önemli mesafeleri kat edebilir, karapakslarını gizleyebilecekleri sığ ve geri tarafta daha derin olan bir gövde çukuru açabilirler. Ön üyeler yuva açma olayında pek görev yapmazken arka üyeler karşılıklı iş görür. Yumurta Bırakma ve Gömme Yumurta oyuğu açılınca, dişi kaplumbağa yumurtaları bırakmaya başlar. Yumurta bırakma sırasında salgılanan mukusla birlikte aynı anda iki–üç yumurta bırakılır. Bu yuva yaklaşık 80–120 yuva alır. Caretta caretta yumurtaları genellikle küresel, beyaz, mukusla kaplı ve ping–pong topu büyüklüğündedir (yaklaşık 40 mm çapında ve 40 gr ağırlığında). Yumurtalar arasında küçük oval şekilli veya ikili yumurtalara da rastlanabilir. Caretta caretta yumurtaları esnektir ve deliğe düşerken kırılmazlar. Bu esneklik hem dişiye hem de yuvaya daha fazla yumurta sığmasını sağlar. Yuva yapan Caretta caretta’ların ağladıkları görülür, ancak bu sadece vücudun salgıladığı salgının atılmasıdır. Birçok insan yumurta bırakan kaplumbağanın transa geçtiniği ve rahatsız edilmemesi gerektiğini düşünür. Bu tamamen doğru değildir. Bir Caretta caretta’nın yumurta bırakırken yuvayı terk etmesi pek olası değildir, ancak bazıları rahatsız edilir ya da kendilerini tehlikede hissederlerse bunu etkileyebilir. Bu sebeple, bu işlem sırasında C.C.’lar rahatsız edilmemelidir. Yumurtaların hepsi bırakıldıktan sonra, dişi arka üyeleriyle ana çukuru kapatır ve yuvayı düzler. Kumu farklı taraflara da atarak yumurtaların avcılar tarafından bulunmasını engellemeye çalışır. Yuva kapandıktan sonra, kaplumbağa denize yönelir ve bir sonraki yuva yapma ya da göç zamanına kadar dinlenir. Dişi yuvayı bir kez terk etimi tekrar geri dönmez. Kuluçka Caretta caretta’ların kuluçkalama süresi yaklaşık 45–60 gündür. Ancak embriyoların gelişme hızını etkileyen kum sıcaklığı bunu kısaltabilir ya da uzatabilir. Serin kumların erkek, sıcak kumların dişi üretme eğilimi vardır. Yuvayı Terk Etme Yuvadan anneleri tarafından çıkarılan timsahların aksine, Caretta caretta’lar yuvadan kendi başına çıkmak zorundadır. Yumurtayı kırmak için yavrular, “caruncle” adı verilen geçici, sivri yumurta dişlerini kullanırlar. Bu diş yuvadan çıktıktan hemen sonra düşer. Yavrular, yumurta kabuklarını kırdıktan sonra karapakslarının düzelmesi için yuva içinde 26 saate kadar hareketsiz kalırlar, yuvayı terk etme ise yumurtadan çıktıktan 1–7 gün (ortalama 2,5 gün) sonra yavruların birbirlerine yardımıyla yüzeye doğru tırmanma şeklinde gerçekleşir. Yavrular yuvadan havanın serin olduğu geceleri ya da yağmur fırtınaları sırasında çıkmayı tercih ederler. Bunun nedeni bu havalarda kum sıcaklığının düşüklüğüdür. Yuvadaki bütün yavrular aynı zamanda yuvadan çıkmayabilir, bu durumda takip eden gecelerde gruplar halinde yavru çıkışı devam eder. Yuvadan çıkan yavrular ufuk aydınlığını kullanarak denize doğru yönelirler. Bu sırada kumsal gerisinde bulunan herhangi bir ışık kaynağı, yavruların yönlerini şaşırmalarına ve bu nedenle ölümlerine neden olabilir. Eğer hemen denize ulaşmazlarsa, güneşte kalmaktan, su kaybından, ya da yengeçler, tilkiler, köpekler, rakunlar yakın balıkları ve köpek balıkları gibi nedenlerle öleceklerdir. Denize ulaşan yavrular “yüzme çılgınlığı” denen ve yaklaşık 20 saat süren bir dönemde durmaksızın yüzerler. Ancak yavru Caretta caretta için o kadar çok tehlike vardır ki her 1000 yavrudan ancak biri gençliğe kadar hayatta kalabilir. Doğal ortam yaşayan Caretta carettalar için belgelenmiş ömür uzunluğu tahmini yoktur. Ancak ergin dişilerin üretimsel hayat süreleri 32 yıl, eşeysel olgunluğa ulaşma süresi 15–30 yıl olarak tahmin edilmiştir. Bu şartlarda maksimum ömür uzunluğunun 47–62 yıl olabileceği belirtilmiştir. Göç ve Yön Duyguları Göç: Deniz kaplumbağalarının beslenme alanından, yuva yaptıkları alana olan yüzlerce binlerce millik göçü hayvanlar aleminin en dikkate değer özelliklerindendir. Erişkin dişilerin kendi doğdukları bölgeye yuva yapmak için dönmeleri bu özelliği daha da çekici yapar. Deniz kaplumbağalarının nasıl ve nereye göç ettikleri onlarca yıldır bilim adamlarının odaklandığı bir noktadır. Elde edilecek bilgiler türlerin korunma stratejileri için çok büyük önem taşımaktadır. Bugün biliyoruz ki, deniz kaplumbağaları yaşamları boyu sürecek bu göçe yuvadan ilk çıkışlarıyla başlarlar. İlk kritik 48 saat içinde yavru kumsaldan okyanusa yürümek ve orada kendine avcılardan korunup yiyecek bulabileceği bir yer bulmalıdır. Atlantik ve Caribbean’da bir çok yavru körfez akıntılarına kapılır. Burada genç kaplumbağalar yeterli bir besin kaynağı ve az sayıda avcı bulurlar. Yıllarca Atlantik etrafında yüzüp durduktan sonra, bu genç kaplumbağalar kıyı kenarındaki sığ sulara dönecek kadar büyümüşlerdir. “Tüm Floride loggerheadlerinin birkaç yıllarını kıyı yakını habitatlarda beslenip büyüyerek geçirirler. Ergenliğe ve cinsel olgunluğa erişir erişmez, bir iki beslenme alanına göç ettikleri bilinir. Ergen kaplumbağaların üreme mevsimi hariç ömürleri boyunca kalacakları yer bu ilk beslenme alanıdır. Çiftleşme ve yuva yapma dönemine gelindiğinde hem dişi hem de erkek yuva yapılan kumsallara doğru göçe başlar. Bu olağan güç hayatları boyunca sürecektir. Yön: Açık okyanuslarda deniz kaplumbağaları güçü akıntılara maruz kalırlar, kısıtlı bir görüş açıları vardır; kafalarını suyun üstüne yalnızca birkaç santim çıkartabilir. Bu kısıtlamalara rağmen, deniz kaplumbağaları aynı yuva yapılan kumsalı bulmak için uzun mesafelere göç ederler. Bunu nasıl yaptıkları hayvanlar aleminin en gizemli sorularından biridir ve buna cevap bulabilmek bir çok araştırmacının odak noktası olmuştur. Umut verici yeni bir teori kaplumbağaların dünyanın manyetik alanının açı ve yoğunluğunu bulabildiğini iddia eder. Bu iki özelliği kullanarak kaplumbağa istediği yere gitmesini sağlayacak olan bulunduğu yerin enlem ve boylamını bulabilmektedir. Daha önceki araştırmalar da deniz kaplumbağalarının manyetik alanı belirleme yeteneğinin var olduğunu ispatlamıştır. Göç incelemeleri: Deniz kaplumbağalarının göçebe doğaları, onları anlama ve korumayı zorlaştırmaktadır. Özellikle kaplumbağaları kendi habitatları içinde korumak için, bu habitatların nerelerde olduğunu, kaplumbağaların orada nasıl davrandığını ve hangi yönlere doğru göç ettiğini bilmemiz gerekir. Bir çok araştırma yuva yerlerinde yapılmıştır ve bunun çok mantıklı sebepleri vardır. Araştırmacılar için bu bölgeler daha kolayca ulaşılabilirdir, ayrıca yeni deniz kaplumbağalarının üremesi soyun devamı için çok önemlidir. Koruma çalışmaları da en kolay yuva bulunan kumsallarda yönetilmektedir. Ancak, hayat döngüleri içinde deniz kaplumbağalarının gittiği bölgelerden, en az zaman harcananı yuva yapılan kumsallardır. Bir deniz kaplumbağasının hayatının % 90’ından fazlası suda–beslenerek, çiftleşerek, göç ederek ve kimse izlemediğinde deniz kaplumbağaları ne yaparsa onu yaparak geçer. Sonuç olarak, korumacılar için en büyük tehlikenin olduğu bölge en çok sorunla karşılaşılan okyanuslardır. Yaşamları boyunca onları tam olarak koruyabilmemiz için, kaplumbağaların göçebe motiflerinin ve sudaki davranışlarının tam olarak bilinmesi gerekir. Deniz kaplumbağalarının nereye gittiklerini belirlemek için bir çok metot uygulanır. Bunların en basitlerinden biri yuva yapmaya kumsala geldiğinde ayaklarından birine küçük, zararsız bir metal parçası takmaktır. Her parça kodlanmış bir numaraya sahiptir ve insanlara bulunduğu taktirde geri gönderilmesi için gerekli olan bir adres vardır. İnsanlar bu kimliği geri döndüklerinde, küçük bir ödül kazanırlar ve bu şekilde kaplumbağaların bulundukları, uğradıkları yerler bulunmuş olur. Populasyon: C. caretta’nın erkekleri hakkındaki bilgilerine azlığından dolayı populasyonlarının cinsiyet oranı tam olarak bilinmemektedir. Populasyonların yaş ve boyut kompozisyonları hakkında da kapsamlı bir bilgi yoktur. Ayrıca Henwood (1987), populasyonda kompozisyonların her sezonda değiştiğini ve böylece populasyonun büyüklüğü hakkında bilgi edinmenin karmaşık hale geldiğini belirtmiştir. Populasyon yapısı ve cinsiyet oranı hakkındaki eksik bilgiler ve deniz kaplumbağalarının yaşadığı biyolojik populasyonun sınırlarının tam olarak bilinmemesinden dolayı, populasyon bolluğu ve yoğunluğu hakkında tahmin yapabilmek zorlaşmaktadır. Bununla birlikte yuvalama kumsallarına gelen dişilerin direk sayımı veya yuva sayılarıyla ilgili bazı tahminler yapılmaktadır. C. caretta’nın üretkenlik organlarına etki eden faktörler bölgesel olarak değişkenlik göstermektedir ve populasyon içinde önemli oranlarda varyasyonlar söz konusudur. Bu varyasyonlar, belirli sahillerdeki üretkenlik durumunun belirlenmesini engeller. Aşırı yağmurlar, rüzgar erozyonu, dalga erozyonu ve sıcaklık gibi baskın genel çevresel faktörler üretkenliği etkiler. Yumurtlama sahillerindeki insanların varlığı, ziyaretçilerin olması ve çevredeki ışık kaynakları yuvalama yapmak için kumsala çıkmış dişileri rahatsız ederek denize dönmelerine neden olabilir. C. caretta yavruları, kum yengeçleri, köpek balıkları, predatör kemikli balıklar ile tilki, köpek, rukan gibi memelilere yem olmaktadır. Çeşitli kuşlar da gündüz saatlerinde yavruları avlarlar. Hastalık, şiddetli açlık ve soğuk sersemliği de ölümlere sebep olabilmektedir. Ancak belirli populasyonlar üzerindeki etkileri bilinmemektedir. Katran, yağ artığı ve plastik atıklarının yutulmasından ölümler meydana gelebilmektedir. Genç ergin öncesi ve ergin bireyler ise özellikle köpek balıkları tarafından avlanırlar. Ayrıca bu gruplar, katran veya plastik yutarak ölebilir veya yaralanabilirler. Ayrıca bot çarpmaları bilinçli avlanmalar ve çeşitli ağlara takılmalar da ölüme neden olan diğer faktörlerdir. C. caretta Avustralya, Güney Afrika ve ABD’de korunmaktadır. Balıkçılık endüstrisinin öncelikli avı olmasa da görüldükleri yerde avlanırlar. İnsanların çoğu iddia edilen beğenilmemiş tadından dolayı etini yemezler. Ancak Hindistan, Madagaskar ve Mozambik kıyılarında yaşayan insanlar tarafından hala tüketilmektedir. Her ne kadar C. caretta’nın eti, kabuğu ve derisi Cheloma mydas, Eretmochelys imbricata, Lepidchelys kempii ve Lepidochelys olivacea’ya göre değerli olmasa da yumurtaları dünyanın bir çok yerinde tüketilir. Mozambik, Madagaskar ve Umman kıyı şeritlerinde olduğu gibi C. caretta yumurtalarının protein amaçlı kullanılması, populasyonlarının gerilemesine neden olmuştur. Çoğunlukla ılık ve subtropikal bölgelerde yuvaladıklarından, C. caretta’nın üreme habitatları ve kışlama alanları arasında göç ettikleri sanılır, erkek göçleri hakkında ise çok az şey bilinmektedir. C.Caretta’nın grup göçü bilinmemektedir. Yıl boyunca açık deniz sularında kalabilirler. Florida’da bazı bireylerin, dipleri çamurlu kanallara girdikleri belirlenmiştir. Bazı populasyonlar ise yıl boyunca yuvalama kumsallarının yakınında yaşarlar ve yuvalama dönemleri arasında çatlak ve delikleri mesken edinebilirler. C. caretta’nın klasik anlamda “sürüler” oluşturduğuna dair herhangi bir gösterge yoktur. Bununla beraber, denizde ya da yuvalama kumsallarının yakınında lokal yoğunlaşmalar oluşturabilirler (Dodd, 1988). Koruma ve Yönetim C. caretta’nın da içinde bulunduğu deniz kaplumbağaları, bu türlerin durumları ve önemi kavrandıkça yakalanmalarını ve satışlarını yasaklayan, habitatlarının korunmasını da sağlayacak kanunlarla korunmaya çalışılmıştır. C. caretta, Uluslararası Tehlike Altındaki Türler Kongresinde (CITES) Ek 1’de listelenmiştir. Aralarında Türkiye’nin de bulunduğu bir çok ülke bu antlaşmayı imzalamıştır. Bu listede yar alan türlerin herhangi bir şekilde gelir amaçlı satışı yasaklanmıştır. Göç eden türler konferansı hazırlıklarında uluslararası korumanın şart olduğu Ek 2 listesinde yer almışlardır. Her ne kadar bazı düzenleyici kanunlarla koruma altına alınmış olsalar da bazı bölgelerdeki yetersiz veya isteksiz güvenlik güçleri ve ülkelerin ekonomik seviyelerindeki farklılıklar C. caretta ve diğer deniz kaplumbağalarının korunmasında yeterli olmamakta ve tedbirlerin uygulanmasını güçleştirmektedir. C. caretta’nın neslini devam ettirebilmesi için bütün önemli yuvalama, beslenme, göç ve kışlama habitatlarının üzerinde önemle durulması ve biyolojik verilere dayalı korumalarının uygulanması zorunlu olmuştur. Deniz kaplumbağalarının korunması için farklı bölgelerde, farklı koruma ve yönetim alternatifleri uygulanmaktadır. C. caretta’nın derisi ve kabuğu için fazla talep yoktur ve bu nedenle uluslararası ticareti de çok iyi değildir. Yumurta ve eti ise genellikle lokal olarak tüketilmektedir. CITES uygulamaları uluslararası ticareti engellemede başarılı olabilecektir. Uluslararası ticaret, yasalar tarafından değişik derecelerde başarıyla durdurulmuştur. Örneğin, ABD ve Avustralya’da yumurta tüketimi bu sayede durmuştur. Fakat kaçak avlanma devam etmektedir. Koruma kanunlarının olmadığı bölgelerde ise kanunların çıkarılması ve uygulanması türün devamlılığı için zorunlu görünmektedir. Dişilerin üretkenlikteki önemi ve yumurtlama anlarında çok hassas olmaları nedeniyle plaja gelen dişilerin rahatsız edilmemeleri gerekmektedir. Bu, yumurtlama mevsiminde insan aktivitesinin en aza indirilmesi ve yavruların yollarını bulabilmeleri için yapay ışıklandırmaların minimuma çekilmesiyle gerçekleşebilir. Yuvalar ve dişiler sahillere giren araçlardan korunmalıdır. Çünkü bunlar kumu sıkıştırabilir veya yavruların içinden çıkamayacakları izler bırakabilirler. Ayrıca bu araçların gece kullanılması da dişilerin bu sahillere gelmesini engelleyebilir. Plaj temizlemede kullanılan ağır mekanize temizleme araçları, yumurtlama mevsiminde yumurtlama plajlarında kullanılmamalı veya zarar vermeyecek boyutlarda işletilmelidir. Yumurtalar üzerindeki kaçak avcılığın, predosyonun ve erozyonun yüksek oldu bölgelerde yeni yapılanmış yuvalar, korunmuş kuluçkalıklara taşınabilir buralarda acilen yuvalara tekrar gömülür ya da nemli plaj kumu ile doldurulmuş kutularda inkübasyona bırakılabilir. Bu tip uygulamaların yaratacağı durumlarda, yöntemin taşıdığı bazı risklerden dolayı dikkatli planlama yapılması ve yürütülmesi zorunluluğu vardır. Deniz kaplumbağalarının korunmasında kullanılan bir başka metot da yavruları ilk dönemlerinde yüksek olan predasyonlardan korunabilecekleri büyüklüğe kadar ulaştırmaktadır. Konu ile ilgili araştırmacılar tarafından habitat korunmasından sonra bu metodun kullanılması gerektiği savunulmaktadır. Bu yöntem özellikle Chelonie mydas, Eretmochelys imbricata, Lepidochelys kempii populasyonlarını arttırmak için dünyanın değişik yerlerinde kullanılmıştır. Yavru kaplumbağaların korunması için, yavru kaplumbağalar üzerindeki predasyonun azaltılması, plaj ışıklandırmalarından kaynaklanan yanlış yönelmelerin önlenmesi, kirleticilerin ve besin olarak nitelendirebilecekleri plastiklerin denize ulaşmasının engellenmesi gerekmektedir. Balıkçılıkta kullanılan ağlarla rasgele yakalanmaların ve ölümlerin yüksek olduğu bölgelerde “Kaplumbağa Dışlayıcı Aygıt (TED)”ların kullanılması balıkçılıktan kaynaklanan ölümleri azaltacak bir yöndemdir. Bu yöntem özellikle ABD’de balıkçılıktan kaynaklanan ölümlerin yüksek olduğu bölgelerde kullanılmış, ergin ve ergin öncesi kaplumbağaların kurtulmasını sağlamıştır. Kaplumbağa yaşamını tehdit eden faktörler: Deniz kaplumbağaları yaşamlarının büyük bölümünü denizde geçirmekle birlikte, nesillerini devam ettirebilmek için üreme kumsallarına son derece bağımlı olan canlılardır. Bu tip kumsalların insan eliyle farklı amaçlar için işgal edilmesi ( turizm amaçlı faaliyetler, kum alımı, otlatma, tarım için kumsalların toprak ile örtülmesi vs. ) ve artık Türkiye , Yunanistan ve Kıbrıs gibi birkaç ülkede sınırlı kalması bu bölgelere yumurta bırakan kaplumbağaların nasıl yavaş yavaş yok olmaya mahkum edildiklerini ortaya koymaktadır. Ayrıca, deniz ortamında gerek ergin, gerekse yavrularını trol vb. ağlarla balıkçılar tarafından tesadüfi yakalanmaları da kaplumbağa yaşamını tehdit eden önemli bir sorundur. Çözüm ve Öneriler: Yüksek yuva yoğunluğuna sahip üreme kumsallarını olumsuz yönde etkileyecek yatırımlardan kaçınılmalıdır. Gerek turizm amaçlı gerekse bu amaç dışı yapılanmalarda, özellikle deniz kaplumbağası üreme mevsimi olan Mayıs-Ekim aylarında aydınlatma ve gürültü ile ilgili tedbirlere önem verilmelidir. ( Karayolları aydınlatması, çadır ve karavan kampingleri, otel, ev vb. ) Kumsallarda, doğal yapıyı bozucu her türlü kum ve çakıl alımı önlenmelidir. Üreme kumsallarına büfe, restoran vs. sabit tesisler kurulmamalıdır. Gece kumsallar insanlar tarafından kullanılmamalı, araba, motor, bisiklet vs. araçların üreme kumsallarına girmesi engellenmelidir. Plaj şemsiyeleri toprağa gömülmeyen türden olup yumurtlama bandının gerisinde kullanılmalıdır. Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar Ülkemizin taraf olduğu Uluslararası Sözleşmeler (Bern, Barselona Sözleşmeleri) çerçevesinde nesli tehlikede olan ve Türkiye sahillerini üreme alanı olarak kullanan deniz kaplumbağalarının korunması yönünde çalışmalar yapılmaktadır. Bu amaçla, Bakanlığımız koordinatörlüğünde ilgili Bakanlıklar, üniversiteler ve gönüllü kuruluşlardan oluşan “ Deniz Kaplumbağaları İzleme-Değerlendirme Komisyonu ” kurulmuştur. İzleme-Değerlendirme Komisyonu Akdeniz’ de önemli deniz kaplumbağası üreme alanı olarak belirlenmiş 17 alanda ( Ekincik, Dalyan, Fethiye-Çalış, Dalaman, Patara, Kale (Demre), Kumluca, Tekirova, Kızılot, Belek, Gazipaşa, Demirtaş, Göksu Deltası, Kazanlı, Anamur, Akyatan, Samandağ ) incelemelerde bulunarak, sorunları tespit etmekte ve bu sorunların giderilmesi yönünde çalışmalar gerçekleştirmektedir. KAYNAKÇA: 1- Sınıflandırma, coğrafi dağılışı, fiziksel özellikleri, beslenme alışkanlıkları, üreme, davranış özellikleri, habitatı: 2- Biyo-Ekolojileri, populasyonu: 3- Kaplumbağa yaşamını tehdit eden faktörler, Çözüm ve Öneriler, Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar    

http://www.biyologlar.com/caretta-caretta-deniz-kaplumbagalari

Böceklerin İnsanlarla Olan İlişkileri

Dünya üzerinde yayilis alanlari çok genis olan böceklerin insanlarla olan iliskileri, faydalari ve zararlari nedeniyle insan tarihi kadar eskidir. Böceklerin çogu bitki ile beslendiklerinden yasam sekilleri bakimindan zararli olmaktadir. Insan hayvan ve bitkilere zarari inanilmayacak kadar çoktur. HOWARD' a göre "insanlar, ancak hastalik ve zararlilardan arta kalan mahsulü elde eder, fakat bunun bir kismini da gene onlara kaptirir. Dünyadaki mahsulün 1/3'ü böcekler tarafindan yokedilmektedir. Genel olarak ürün kaybina sebep olan çesitli faktörler ( iklim, iç hastaliklar, bakteriler, parazit mantarlar, zararli hayvanlar gibi) varsa da bunlar arasinda en önemli olani böceklerdir. Örnegin insanin yakindan tanidigi hamamböcekleri, yarim kanatlilar, güveler, karincalar, termitler, bitler, çekirgeler, pireler, tahta kurulari, sinekler gibi toplam l0 000 tür, tam anlamiyla bir sorun halindedir. Mesela bir çekirge sürüsü 2 milyon bireyden olusabilir ve ortalama agirligi 50 000 ton olabilir. Yine böceklerin çogalma gücü oldukça fazladir. Bir çekirge günde l 000, termit 15 000 yumurta birakabilir.

http://www.biyologlar.com/boceklerin-insanlarla-olan-iliskileri

SKLEREA

Nem miktarı, özellikle subtropik ve ılıman enlemlerin kurak bölgelerinde, örneğin Akdeniz Bölgesi'ndeki makilerde olduğu gibi sert yapraklı çalı vejetasyonu ile seyrek ve gevşek yapılı kurak ormanların oluşumuna izin verir. Bitki türlerindeki bu çeşitlilik azalmasına uygun olarak, hayvan dünyasında da tür sayısı bakımından belirgin bir azalma ortaya çıkmıştır. Komşu bölgelerin (silvea ve stepler) faunasına geçiş bölgeleri mevcuttur. Sklereanın bulunduğu yerler çoğunlukla parça parça küçük alanlardır ve bunlar da diğer biyocoğrafik bölgelerin içine ekstrem koşullar gösteren adalar gibi dağılmışlardır. Sklereadaki ormanların odun değerinin düşük olması, buralarda daha çok zeytin, hurma gibi yararlı bitkilerin yetiştirilmesine olanak tanımıştır. Sklereada narenciye yetiştirilmesi, yoğun yerleşim ve toprakların sulanması, buradaki faunayı belirgin bir şekilde değiştirmiştir. Havanın az nemli olması kuru ormanlardaki yangınların genişlemesini hızlandırır (örneğin Akdeniz kıyılarında ve Tasmanya'da olduğu gibi). Bu durum faunanın büyük bir şekilde zarar görmesi anlamına gelir. Güney Yarımküresi'nin nüfusun az olduğu bölgelerinde, sklereanm henüz tahrip edilmemiş doğal yapısını görmek olasıdır.

http://www.biyologlar.com/sklerea

HERBARYUM ÖRNEKLERİNİN ETİKETLENMESİ

Toplanip preslenmis materyalin devamli kullanilabilmesi için etiketlenmesi sarttir. Burada bilimsel isimleri kullanmak gerekir. Zorunlu olmamakla birlikte Autor (Yazar) isimlerinin etikete konulmasi önerilir. Örnegin; Bellis perennis L. (Koyun gözü) ‘deki L.: Linne'nin bas harfinde oldugu gibi Autor ismi de bitkinin ilmi isminin yaninda verilir. Eger bir bitki için iki isim geçiyorsa geçerli olan isimden sonra basa Sinonim yazilip parantez içerisinde verilir. Örnegin Cirsium arvense (L.) Scop. (Köygöçüren)'un Sinonimi Serratula arvensis L.'dir (Davis, 1975). Etikette mümkün oldugunca bitkinin toplandigi yer hakkinda bilgi verilmelidir. Cam tüplerdeki tohum koleksiyonlarinda etiket çok küçük tutulmalidir. Sadece bilimsel isim ve düzenleme numarasi yazilabilir. Etiketler için beyaz ve iyi bir kagit seçilmelidir. Okunakli bir yazi, koleksiyona dis görünüs itibariyle iyi not verir. Yazimda uygun bir daktilo da kullanila bilinir. Tükenmez kalem kesinlikle kullanilmamalidir. Çünkü zamanla yazilar silinir. Yazim isinde yazi sablonu da kullanila bilinir. Etiketi yapistirmak için reçine yapistirici kullanilmalidir. Zamk veya kola kullanilmamalidir. Akici preparatlarda etiket, kaplama koruyucu bir yapistirici ile korunmalidir. Bitki örnekleri kartonlara tutturulup, kaydedilen bilgiler etikete yazilir ve sonra kartonun sag alt kösesine yapistirilir. Etiketler değişik ölçülerde olmakla birlikte en çok kullanilanlar 5 x 8; 7.5 x 12.5 ve 11 x 13 cm ölçülerinde olanlarıdır. Etiket Üzerinde Bulunmasi Gereken Bilgiler 1. Etiketin üst kisminda herbaryumun uluslararasi adi bulunmalidir. Sayet bitki bir bölge veya ülke florasi çalismasi için toplanmissa,çalisilan bölge veya ülkenin adi etiketin en üstüne yazilabilir, 2. Bitkinin türü, 3. Familyasi, 4. Mahalli adi (yöresel ismi), 5. Toplandigi yer, ekolojisi (bulundugu çevre ve toprak özellikleri), 6. Toplanma tarihi, 7. Yükseklik (bitkinin yetistigi yerin denizden yüksekligi), 8. Toplayanin adi, 9. Teshis edenin adi, 10. Toplayicinin verdigi arazi numarasi (Davis'in Türkiye haritasina hangi karede oldugunu belirten numara). Herbaryum örneklerinin toplanma yeri hakkindaki bilgiler ve örneklerin adlari bir herbaryum listesi haline getirile bilinir. Gelismis bir herbaryumda örnekler hakkindaki bilgiler bir kartoteks sistemine geçirilir. Kartoteks sistemi; toplama tarihi, alfabetik familya, cins veya tür sirasina göre düzenlene bilinir. Bu is için özel olarak kesilmis kartonlar (10x15 cm boyutlarinda) kullanilir. Bu kartonlarin üzerine bitkinin numarasi, bitkinin familya, cins ve tür adi, Türkiye florasinda uygulanan kare nosu, toplandigi yer, yetisme yeri, denizden yüksekligi, toplama tarihi, toplayanin adi ve soyadi, teshis edenin adi ve soyadi ile teshis tarihini yazmak gerekir (Saya ve Misirdali,1982). Kare Sistemi: 36°-42° enlem ve 26° boylamlari arasinda yer al Türkiye, her iki enlem ve boylamdan bir çizgi geçirilerek toplam 27 kare bölünmüstür (Davis,1965). Enlem çizgilerinin arasi A, B, C olar adlandirilirken, boylam çizgilerinin arasi 1, 2, 3.. .9 olarak numaralandirilmistir Dolayisiyla enlem ve boylam çizgilerinin çakismasi ile olusan her kare kendine özgü bir adi vardir. Örnegin C.2 karesi harita üzerinde 1 olarak adlandirilan Mugla, Denizli, Burdur ve Antalya illerinin bir kismini kapsayan karedir. A.6 ise, (2) Samsun, Amasya, Tokat, Sivas ve Ordu illerinin bir kismini kapsamaktadir.

http://www.biyologlar.com/herbaryum-orneklerinin-etiketlenmesi

İNSANDA ENDOKRİN SİSTEM

...İnsanlarda ve diğer hayvanlarda endokrin bezlerin salgıları(hormonlar) doğrudan kana verilir ve sadece hedef dokuda etkilidir. ...Çünkü her hormon için hücre zarları üzerinde seçici ve alıcı reseptörler (glikoproteinler ve glikolipitler) bulunur. ...Vücudumuzdaki bir çok olayın gerçekleşmesi birden fazla hormon çeşidiyle sağlanır. ...Örneğin kan şekerinin ayarlanması,pankreastan ve böbrek üstü bezlerinden salgılanan dört ayrı hormonla sağlanır. Hormonlar zar proteinleri uyararak ve zarın geçirgenliğini değiştirerek DNA yı etki edebilirler. ...Hormonların salgısı,sinirlerin veya başka bir endokrin bezin uyarısıyla yapılır.Çoğunda buna ek olarak geri besleme mekanizması vardır.Yani bir bezin salgıladığı kandaki hormonun miktarı arttıkça,o bezi uyaran hormonun salgısı azaltılır. ...İnsan vücudunda endokrin sistemi oluşturan iç salgı bezleri hipofiz bezi,tiroit ve paratiroit bezleri,böbrek üstü bezleri,eşeysel bezler ve pankreas olarak sıralanabilir. ...Endokrin sistemi oluşturan bu bezlerden hipofiz,tiroit,paratiroit ve böbrek üstü bezleri sadece iç salgı bezi olarak görev yapar.Pankreas ve eşeysel bezler karma bezlerdir.

http://www.biyologlar.com/insanda-endokrin-sistem

MEMELİ HAYVANLAR

Memeliler ya da Mammalia, hayvanlar aleminin insanların da dahil olduğu, omurgalıların en evrimleşmiş grubudur. Dünya üzerinde yaklaşık 4500 memeli türü bulunur. Bunların 200 kadarı Avrupa’da görülebilir, Türkiye ise tek başına yaklaşık 170 memeli türü barındırmaktadır. Çift ve karmaşık dolaşım sistemine sahip, sabit vücut sıcaklıklı hayvanlardır. Vücutları genellikle kıllarla örtülüdür. Genç bireyler anne sütü ile beslenirler. Genellikle bacak şeklinde oluşmuş dört üyeleri vardır. Solunumda diyafram kullanırlar. Alt çeneleri bir çift kemikten oluşmuştur; orta kulaktaki kemikler üç parçalı olup kulak zarı ve iç kulakla bağıntılıdır. Hemen hepsinde yedi boyun omuru vardır. Memeliler, sıcak kanlı yaratıklardır. Yani vücut sıcaklıkları genel olarak çevre koşullarından bağımsızdır. Vücutları tüylerle kaplıdır ki, bu doku bazı türlerde dikenli bir hal alabilir (örneğin kirpi) ya da azalıp neredeyse pürüzsüz hale gelebilir; insan, yunus ve balinalarda olduğu gibi. Doğurarak çoğalırlar. Yavru memeliler, genel olarak belirli bir gelişim evresini tamamlayıncaya kadar annelerinin karnında taşınır. Doğum sırasında yavrunun gelişmişliği memeli türüne göre değişkenlik gösterir. Kör (ve genelde çıplak) doğan ve bazen yıllarca annesi tarafından yetiştirilen memeli türleri olduğu gibi, doğumun ardından kısa süre içinde koşmaya ya da yüzmeye başlayan memeli türleri de vardır. Ancak genel olarak memelilerde, yavruların belirli bir süre anne tarafından bakımı zorunludur. Dişi memeli, yavrusunu bebeğin gelişimi için gerekli bileşenleri içeren zengin içerikli sütü ile besler. Memelilerin vücut büyüklükleri değişkendir. En küçük memeli, bir böcekçil olan Cüce fare (Suncus etruscus - ortalama 6 cm, 2 gr); en büyük memeli ise Mavi balina'dır (Balaenoptera musculus - ortalama 35 m, 120 ton). Memeli vücudu, sıcak veya soğuk iklim koşulları ile mücadele için de farklı özelliklere sahiptir. Karasal memeliler için kalın bir kış kürkü, deniz memelileri için deri altında kalın bir yağ tabakası veya yağlanmış bir kürk bu mücadelenin silahlarıdır. Bazı memeliler de kış uykusuna yatarak, bu dönemi enerjiden tasarruf ederek geçirir. Yiyeceğin bol olduğu dönemde vücudunda depoladığı fazladan kalorileri, yiyeceğin kıt olduğu bu dönemde ‘uyku’ durumunda iken yakar. (Sincaplar, ayılar ve porsuklarda olduğu gibi.) Bu durum gerçek bir kış uykusu halini de alabilir (yediuyurlar ya da yarasalarda olduğu gibi) yani bu süre içinde canlılar, yaşamsal faaliyetlerini ve vücut sıcaklıklarını minimuma indirirler. Bazı memeli türleri insanlar tarafından evcilleştirilmiştir ve yabani türleri ortadan kalkmış ya da çok az kalmıştır. (İnek, at, koyun gibi.) Bilimsel sınıflandırma Alem: Animalia Hayvanlar Şube: Chordata Kordalılar Alt şube: Vertebrata (Omurgalılar) İnfa şube: Gnathostomata (Gerçekçeneliler) Üst sınıf: Tetrapoda Sınıf: Mammalia (Memeliler) Linnaeus, 1758 Yavrularını süt salgılayan göğüs bezleriyle beslediklerinden bu hayvanlara Mammalia adı verilmiştir. Bu hayvanlar Jura'da memeli benzeri sürüngenlerden (Synapsida alt sınıfının Therapsida takımından) ayrı bir dal şeklinde meydana gelmişlerdir. Bu gruptaki hayvanların temel özelliklerinden birisi de tümünün vücudunda az yada çok sayıda kılın bulunmasıdır. Memeliler üç ana gruba ayrılır. Bunların arasında tekdelikliler yada yumurtlayan memeliler olarak tanınan grup ornitorenk ve ekidnelerden oluşur. Bu ilginç hayvanların yavruları, kışlar gibi yumurtadan çıkar, ama sonra anne sütüyle beslenir. İkinci grupta keseliler yer alır. Keselilerin yavruları çok az gelişmiş olarak doğar. Yeni doğanların uzunluğu genellikle 6 santimetreyi aşmaz. Başlıca keseliler arasında opossum, tasmanyaşeytanı, bandikut, kuskus ve kangru sayılabilir. Eteneli memeliler en geniş memeliler grubunu oluşturur. Plasenta adıyla da tanınan etene, annenin içinde gelişen ve yavru ile anne arasında köprü kurarak doğana kadar yavruyu besleyen bir organdır. Eteneli memeliler başlıca 10 grup altına toplanabilir: Böcekçiller (Insectivora) en çok eski dünyada bulunmakla birlikte bir ölçüde Kuzey Amerika’ya da yayılmıştır. Köstebekler, kirpiler ve sivrifareler en bilinen üyeleridir. Yarasalar (Chiroptera), uçan memelileri kapsar. Hemen hemen bütün iri yarasalar meyveyle beslenirken, küçüklerinin çoğu böcekleri avlar. Primatlar (Primates) maymunlar ve insanlardan oluşur. Gelişmiş beyinleri ve el becerileriyle dikkat çekerler. Dişsizler (Edentata) ya dişten tümüyle yoksundurlar yada ağızlarında basit yapılı birkaç diş taşırlar. Armadillo, karıncayiyen ve tembelhayvan bu grubun üyeleridir. Kemiriciler (Rodentia) tür ve birey sayısı en çok olan memelilerdir. Tür sayısı 4000’i aşan memelilerin yarısından çoğunu kemiriciler oluşturur. Kobay, fare ve sıçanın yanı sıra oklukirpi, kunduz ve sincap da kemiriciler arasında yer alır. Etçiller (Carnivora) aslan, kaplan, pars, sırtlan, sansar, ayı, kedi, ve köpeği de içeren yırtıcı hayvanlardır. Denizde yaşamaya büyük bir uyum gösteren foklar ve morslar ise genellikle yüzgeçayaklılar (Pinnipedia) adıyla ayrı bir grupta toplanır. Balinalar (Cetaca) hemen hemen tümüyle kılsız, balık biçimdeki memelilerdir. Suyun dışında yaşayamazlar. Gerçek balinaların yanı sıra yunuslar ve musurlar da bu grupta yer alır. Mavi balina yaşayan en iri hayvandır. Filler (Proboscidea) günümüze yalnız iki türüyle ulaşabilmiş kara hayvanlardır. Tektoynaklılar (Perissodactyla) at, eşek, zebra, tapir ve gergedandan oluşurlar. Toynaklar, bu ve sonraki grubun ayak parmaklarını çevreleyen, kalınlaşarak başkalaşıma uğramış tırnaklarıdır. Çifttoynaklılar (Artiodactyla) deve, geyik, zürafa, sığır, antilop, keçi ve koyun gibi gevişgetirenlerin yanı sıra domuz, pekari ve suaygırı gibi gevişgetirme özelliği bulunmayan hayvanları da kapsar. KARAKTERİSTİK ÖZELLİKLERİ 1. Vücutları genel olarak belirli zaman aralıklarında dökülen kıllarla kaplıdır. Derilerinde ter, yağ, koku ve süt bezleri gibi çeşitli salgı bezleri bulunur. Bazı memelilerin vücut ve kuyruk kısımlarında sürüngenlerinkine benzeyen pullar vardır. 2. Balinalar (Cetacea) ve Deniz inekleri (Sirenia) gibi deniz memelileri dışında kalanlarda dört üye vardır. Bu deniz memelilerinde arka üyeler kaybolmuştur. Her bir üyede 5 veya daha az sayıda parmak bulunur. Gerek üyeler ve gerekse parmaklar çeşitli yaşam biçimlerine göre, örneğin, yürümek, koşmak, tırmanmak, yüzmek, uçmak ve kaçmak gibi görevleri yerine getirecek şekiller kazanmışlardır. Parmak uçlarında boynuz yapısında tırnak ve toynaklar, parmak altlarında ise etli yastıklar mevcuttur. 3. İskelet iyi bir şekilde kemikleşmiştir. Kafataslarında 2 oksipital kondil, boyunlarında 7 tane omur bulunur. Kuyrukları uzun ve hareketlidir. 4. Her iki çenede de mevcut olan dişlerin kök kısımları çukurluklar içerisine gömülüdür. Dişler beslenme durumlarına göre çeşitli şekiller gösterir. Bazılarında dişler bulunmaz. Dilleri çoğunlukla hareketlidir. Gözlerinde hareketli göz kapakları, kulaklarında etli bir dış kulak kısmı bulunur. 5. Kalpleri 2 kulakçık ve 2 karıncık olmak üzere 4 odacıklıdır. Kuşların tersine bunlarda yalnız sol aort kökü bulunmaktadır. alyuvarları yuvarlak ve çekirdeksizdir. 6. Solunumları yalnız akciğerlerle olur. Larinkste ses çıkarmaya yarayan ses telleri bulunur. Kalp ve akciğerlerin yer aldığı göğüs boşluğunu karın boşluğundan ayıran ve diyafram adı verilen kaslı bir bölme vardır. Böyle bir yapı memeliler dışında hiç bir hayvan grubunda görülmez (kuşlardaki bölme kaslı değildir). 7. Vücut sıcaklığı sabittir ve çevre koşularına bağlı olarak değişiklik göstermez (Homoiothermus). Vücut sıcaklığı metabolizma sonucunda sağlanır (endeterm). Vücut üzerinde bir kıl örtüsünün varlığı, deri altında vücudu saran bir yağ tabakasının bulunması ve kirli kan ile temiz kan dolaşımının birbirlerinden tümüyle ayrılmış olması, vücut sıcaklığının değişmezliğini sağlayan özelliklerinden bazılarıdır. 8. Sidik keseleri vardır ve boşaltım maddesi sıvı haldedir. 9. Beyinleri gelişmiş, cerebrum ve cerebellum kısımları oldukça büyüktür. Beyinden 12 çift sinir çıkar. 10. Erkeklerinde bir kopulasyon organı (penis) mevcuttur. Testisleri genellikle karın boşluğu dışında yer alan ve scrotum adı verilen torbalar içerisinde bulunur. Yumurtaları küçük ve kabuksuzdur. Yumurtanın gelişmesi yumurta kanalı (ovidukt)'nın değişmesiyle meydana gelen döl yatağında (uterus) tamamlanır. Amnion, korion ve allantois gibi embriyonik zarlar mevcuttur. Genellikle embriyoyu uterusa bağlayarak onun beslenmesini ve solunumunu sağlayan bir plasenta bulunmaktadır. yavrular doğumdan sonra dişi hayvanın süt bezlerinden salgılanan süt ile beslenir. - Memeliler sürüngenlerden meydana gelmiş olmalarına karşın onlardan bir çok yapısal farklılıklar gösterirler. Bu farklılıkların en önemlileri şunlardır: 11. Memelilerde vücut örtüsü olarak pullar yerine kıllar bulunur. Yalnız bazı memelilerin vücutlarında ve kuyruk bölgelerinde sürüngenlerden kalma bir özellik olarak hala pullar mevcuttur. 12. Memelilerin kafatasında iki oksipital kondil bulunur (sürüngenlerde bir tane) ve beyin kutusu daha büyüktür. 13. Memelilerde göğüs boşluğu ile karın boşluğunu birbirinden ayıran kaslı bir diyafram vardır 14. Memelilerde alt çene kemiği bir parça halindedir (sürüngenlerde çok sayıda). 15. Memelilerde alt çene kemiği doğrudan kafatası ile eklem yapmaktadır (sürüngenlerde quadratum ile eklem yapar). 16. Memelilerin orta kulağında incus, malleus ve stapes olmak üzere üçlü bir kemik zinciri vardır (sürüngenlerde yalnız stapes karşılığı olan Columella iç kulakta bulunur, diğer iki kemik çene ile birleşmiştir). 17. Memelilerde belirli zamanlarda dökülen dişler bulunur (sürüngenlerde dişler belirli zamanlarda değiştirilmez). 18. Memelilerde kalp dört odacıklıdır ve yalnız sol aort kökü mevcuttur. 19. Memelilerde ses kutusu çok iyi gelişmiştir (sürüngenlerde körelmiştir). 20. Memeliler yavrularını salgıladıkları süt ile beslerler. 21. Vücutlarında kılların bulunması, görme, işitme ve koku alma duyularının çok gelişmiş olması, beyinlerindeki cerebrum ve cerebellum kısımlarının gelişmişliğine bağlı olarak tüm faaliyetleri iyi bir şekilde koordine edebilmesi, öğrenme ve öğrenilen şeylerin hatırda tutulmasına yarayan bir bellek oluşumu ise memelilerin kuşlardan daha evrim geçirmiş olduklarını kanıtlayan özelliklerdir.

http://www.biyologlar.com/memeli-hayvanlar

Histolojide Kullanılan Yöntemler

1-Preparasyon Yöntemleri Taze hücre ve dokular: Kan ve lenf gibi sıvısal örnek hücreleri, derialtı bağ dokusu hücreler direkt olarak incelenebilir. Doku kalın veya katı bir organ halindeyse tuz çözeltisi içinde diderek veya ayırarak hücrelerin birbirinden ayrılması sağlanır. Taze preparatlarda hücreler gerçek morfolojilerini yitirmeden incelenir. Ancak kontrast azlığından dolayı vital boyama uygulanmalı ya da faz-kontrast mikroskop kullanarak incelenmelidir.Canlı ve taze materyelin çalışılması için lam ve lameller temiz olmalı. Canlı numuneler için kullanılan pipetler, cam eşyalar ve aletler kimyasal maddeler için kullanılanlar ile asla karıştırılmamalıdır. Herbir kültürden alınacak küçük organizmalar için ayrı bir pipet kullanılır. Her kimyasal madde için de ayrı pipet kullanılmalıdır. Saf kültür için çalışmaya başlanmadan önce cam eşyayı ve ortamı sterilize etmek gereklidir. Canlı ve taze materyel için bright-Field illumination- ışıklandırma dikkatli kontrol edilmeli, çünkü canlı hücrenin birçok yapısı refraktif indeks veya renkte çok az fark ile ayırt edilir. Küçük ve şeffaf organizmalar, serbest yaşayan protozoalar, küçük sölenteratlar, rotiferler, ectoproct lar, yassı kurtlar, nematod lar snnelidler, krustaseler ve omurgasızların ve aşağı omurgalıların larvaları, embriyoları ve yumurtaları bir iki damla su içinde incelenebilir. Tatlı su ve toprakta yaşayanlar tatlı suda ve deniz suyu veya tuzlu ve acı suda yaşıyanlar uygun tuzluluktaki suda incelenirler. Ancak su metaller, chlorine veya diğer zehirler ile kirlenmemiş olmamalıdır.Tatlı su organizmaları için havuz veya kültür kabından alınan su yeterlidir. Deniz suyu yalnız cam, porselen, toksik tipte olmayan bazı plastik ile temasta olmalı, metal borular birçok organizma için toksiktir. Vital boyama ile hücrelerin sitoplazmasına renk ve kontrast kazandırılır. Vital boyama 2 şekilde uygulanır. Canlı hücreler boya solusyonunda ayrılarak (supra-vital boyama ) veya canlı organizmaya boyanın injeksiyonu ile (intra-vital) boyanabilirler. Canlı hücre kısımları gösterildiğinden bu yöntemler idealdir. Vital boyama ile sitoplazmik yapılar gösterilir. Çekirdek zarı vital boyalara dirençlidir. Çekirdek zarının boyalara geçirgenleşmesi hücre ölümünün ifadesidir. 2-Sitolojik Yöntemler Hücre içeren sıvılar, aspire kemik iliği gibi ince doku parçaları lam üzerine alınır ve hücrelerin görünüşlerini koruyabilmeleri için tespit edilir. Organlar ve dokular da lama sürülerek ve smearler hücre yapısını göstermek için boyanırlar. Boyanmış smearlerin incelenmesi eksfolyatif sitolojide standart bir yöntemdir. Atipik hücrelerin bulunuşu malignite hakkında fikir verir. Diagnostik sitolojideki gelişmeler Beale (1860) ‘nin karsinoma hücreleri için vücut sıvılarını incelemesi ile başlamış ve Papanicolaou (1943) yöntemi ile ilerlemeler kaydetmiştir. Dalak ve kemik iliği gibi organlarının kesi yüzeyine veya organın bir parçasına lam değdirilerek uygulanan impression yöntemi ile dokunun küçük bir artitektürel düzeni hakkında fikir edinilebilir. Yumuşak tümörlerde malignite bu teknikle hızla çalışılabilir. Smearlerde hücreler yassıldıkları, dokulardan hazırlanan kesitlerdeki hücrelerden daha geniş olduklarından ve dokunun artitektürünü koruduklarından hücresel ayrıntılar daha kolaylıkla izlenir. Kesitsel tekniklere ek olarak smearler kullanılabilir. 3-Kesitsel Yöntemler Doku parçalarından alınan örnekler yaklaşık olarak 1 hücre kalınlığında dilimlere ayrılırlar. Hücresel yapıyı görmek için bu kesitler değişik tekniklerle boyanırlar. Kesitlerin yorumu, kesitler dikey ya da yatay konumda alınmamışsa tecrübe gerektirir. Histolojide doğru sonuç veren birçok kesitsel yöntem vardır. Seri kesitlerin alınması ile küçük bir dokunun rekontriksüyonu yapılabilir. Tüm örneklerden numaralandırılarak kesitler alınır, boyanır ve incelenir. Doku büyük ise belirli aralıklarla alınan kesitler örneğin tüm yapısını kapsamlı olarak açıklayabilir. Bu yöntem basamaklı kesit alma (step-sectioning) olarak bilinir. Taze veya tespit edilmiş dokulardan jilet ile mikrotomsuz kesit alınabilir. Sadece yüzey boyanacağından histolojik yapı iyi gözlenemez. Bu yöntem hala dokuları tanımanın hızlı ve kolay yoludur. Mikrotom kullanarak uygulanan kesitsel yöntemlerin çoğunda doku uygun bir kıvama getirilir, parafin, selloidin veya sentetik resinlere gömülür ya da dondurma (freezing) yapılabilir. Frozen kesitler taze dokulardan alındığı için tespite gerek duyulmaz. Diğerleri için tespit gereklidir. Histolojik kesitler genellikle 4-7 mm kalınlığında alınır. Yağ damlacıkları, sinir fibrilleri ve kan damarları gibi geniş yapılar için 10-25 mm daha uygundur. Sentetik rezinlere gömülen dokulardan 1 mm’luk kesitler alınabilir. Doğal olarak hücresel ayrıntı daha iyi olacaktır. Elektronmikrospobik gözlemler için ultratom ile 50-100 nm’ lik kesitler alınır. Genellikle gösterim ve eğitim için çıplak gözle incelemek üzere 300-400 mm’ luk kesitler alınabilir. Bu amaçla jelatine gömülmüş organlardan geniş bir mikrotom ile kesitler alınarak incelenir. Dokuların çoğu yumuşaktır. Dişler, kemik gibi bazı dokular ise çok serttir. Bu nedenle kesitten önce dekalsifikasyona gereksinim vardır. Matriksin kalsifikasyonun normal olup olmadığı ise dekalsifiye edilmemiş örneklerde araştırılır. Bu amaçla dens gömme ortamları ve ağır mikrotomların kullanılması gereklidir. Mikroskobik inceleme için dokuların renge ve kontrasta gereksinimi olduğundan kesitlerin boyanması yapılır. Preperatların uygun bir kırma indisi olmalıdır. Boyama; renkli olan veya floresansı artıran boyalarla, renkli son ürünler oluşturan kimyasal reaksiyonlarla veya metalik çöktürme ile doku bileşenleri opaklaştırılarak yapılabilmektedir. Geleneksel boyama yöntemlerine ek olarak boyama-olmayan teknikler de kullanılabilir. Histolojide floresans immünolojik yöntemler, otoradyografi, mikroinkrinasyon ve mikroradyografik yöntemler de kullanılmaktadır. Floresans immüno-histolojik yöntemler: Florokromla işaretlenmiş antikorların kullanımına dayanmaktadır. Çok spesifik bir yöntemdir. İmmün kompleksleri ve dokulardaki yapıları göstermek için kullanılır. Floresans mikroskopta incelenen preparatlar az miktardaki florokromu gösterme yeteneğindedir. Otoradyografi: İşaretlenmiş bir radyoaktif element dokuya verilimini takiben dokudaki hücrelerle birleşebilir. Otoradyografi bir fotografik emülsiyondaki gümüş tuzlarını indirgeme yetenekleri ile radyoaktif izotop alanlarını gösterecektir. Fotografik emülsiyon özel plaklardan çıkarılır ve kesitlere uygulanır. Çalışanlar, radyoaktivitenin zararları konusunda uyarılmalıdır. Biyolojik kullanımdaki radyoaktif izotopların yarı-ömrü birkaç saatten yıllara kadar değişebilir. Mikroinkrenasyon (yakıp kül etme ): Lam üzerine alınan kesitler elektrikli fırında ısı yavaş yavaş artırılarak ısıtılır. Organik maddelerin tümü uzaklaştığından geriye dokunun mineral iskeleti kalır. Yansıyan ışık ve karanlık saha mikroskobu ile inkrenasyon yapılmamış kontrol kesitle karşılaştırılarak incelenir. Histospektrografik yöntemle minerallerin kantitatif ölçümü de yapılabilir. Mikroradyografi: X-ışınlarının absorbsiyonu ile dokunun kimyasal yapısı hakkında bilgi edinilir. X-ışınlarını absorbe eden kemik, kıkırdak, enamel ve dentin gibi hidroksi-apatit kristallerini içeren kalsifiye dokular ince taneli fotografik emülsiyon ile yakın temasa tutularak yumuşak bir X-ışını verilir. Elde edilen fotograf mineralin dağılımını gösterir ve kontakt mikroradyograf olarak adlandırılır. Klasik ışık mikroskobu ile incelenebileceği gibi projeksiyon mikrografi için geliştirilen aletlerle de incelenebilir. Kesitin alanlarında mineral miktarları da ölçülebilir. Kemik örnekleri metil metakrilata gömüldükten sonra öğütülür ve parlatılır. 20 kV X-ışını ile ışınlanır. Çok ince taneli özel fotografik emülsiyonundan geçirilir. 5-10 kV’ lik çok yumuşak X-ışınları kullanılırsa yumuşak doku kesitlerinin mikroradyografları dokuların protein içeriği ve hücrelerin kuru kütlesi hakkında bilgi elde edilebilir. Mikroradyografi, bazen radyoopak maddenin injeksiyonu sonunda kan damarlarının düzenini göstermek için kullanılır. Dondurup Kırma (Cryofracture=freeze–fracture–etching): Fiksasyon yapılmaz ya da çok hafif yapılır. Dokular, gliserol ile muamele edilerek likit nitrojende dondurulur. 10-18 mm Hg ile vakumlanır. Isıtılan metalden çıkan buharla kaplanır. Oda ısısında asit ile tahrip edilir. Böylece geriye metal ile kaplı bir kalıp kalır. TEM’de boyamadan incelenir. En az artifakt oluşturan bir yöntemdir.

http://www.biyologlar.com/histolojide-kullanilan-yontemler

Çekirdekçik (nukleolus)

Çekirdek içinde sayıları bir veya bir kaç tanedir. Protein sentezinde görevli ribozomal RNA'nın yapım yeridir. Çekirdekçiğin çevresinde zar bulunmaz. Çok ve çabuk protein üreten hücrelerde gelişmiş olarak gözlenir. Bazik boyanma özelliğindedir. Kromatin ağı başlıca DNA (dezoksiribonükleik asit) dan oluşur. DNA protamin ve histon gibi proteinlerle ince uzun kromatin iplikçiklerini oluşturur. Işık mikroskobunda kromatin iplikçiklerinin yaptıkları ağ, çok koyu (heterokromatin) ya da çok açık gözlenebilir (ökromatin). Elektron mikroskobunda kromatin düzenli dağılmış tanecikler olarak belirir. Ayrıntılı incelemelerde ökromatinin, kromatin tanecikleri seyrek dağıldıkları için açık renkte, heterokromatinin ise kromatin taneciklerinin bir arada olması nedeniyle koyu renkle görülmektedir. Metabolizma işlevinin çok hızlı olduğu hücrelerde örneğin sinir hücrelerinin çekirdeklerinde ökromatin alanları fazla gözlenir.

http://www.biyologlar.com/cekirdekcik-nukleolus

Fosil Nedir

Fosilleri inceleyen bilim dalına paleontoloji, fosil toplayıp bunlar üzerinde çalışma yapan kişilere de paleontollog denir. Fosiller bir polen tanesi küçüklüğünde ya da dev bir dinazorun kemiği büyüklüğünde olabilir. Bir hayvan ya da bitkinin fosilleşmesi için milyonlarca yıl devam eden bir süreç gerekmektedir. Genellikle hayvan ya da bitkilerin sert kısımları bu uzun süreç boyunca dayanıklılık gösterebilir. Jeolojik zamanlarda yaşamış olan canlıların tortul kayaçlar içinde taşlaşmış olarak bulunan her çeşit kalıntı ve izine FOSİL adı verilir. Fosiller, bugün yaşayan bir çok grubu temsil ettikleri gibi, soyları tümüyle ortadan kalkmış grupları da tanımamıza yardımcı olurlar. Bilinen en eski fosiller günümüzden 3.6 milyar yıl önce yaşamış olan fotosentetik siyanobakterilerdir (mavi-yeşil algler). Fosiller Nerelerde Bulunur? Fosiller karasal ve denizel ortamlarda yaşamış hayvan ve bitkiler ile onların izlerine aittir. Daha çok kumtaşı, kireçtaşı, çamurtaşı ve şeyl gibi tortul kayaçlarda bulunurlar. Grönland'dan Antartika' ya, okyanus tabanlarından dağların en yüksek zirvelerine kadar dünyanın her tarafında dağılım gösterirler. Fosillerin dünya coğrafyası üzerindeki geniş dağılımı, yerküre yüzeyinin jeolojik zamanlar boyunca sürekli değiştiğini kanıtlar   En genel anlamıyla fosil, uzun zaman önce yaşamış canlıların yapılarının, doğal koşullar altında korunarak günümüze kadar ulaşan izidir. Fosiller, kimi zaman organizmanın bir parçasının kimi zaman da canlının hayattayken bıraktığı izlerin (bunlara iz fosil denir) günümüze kadar gelmesidir. Ölen hayvan ve bitkilerin, çürümeden korunarak, yer kabuğunun bir parçası haline gelmesiyle fosil oluşur. Fosilleşmenin meydana gelebilmesi için, hayvanın veya bitkinin -üzerini çoğunlukla bir çamur katmanının örtmesiyle- ani ve hızlı bir şekilde gömülmesi gerekir. Bu gömülmeyi genellikle kimyasal bir süreç takip eder. Bu süreçte yaşanan mineral değişimleriyle de koruma sağlanmış olur. Fosiller, canlılık tarihinin en önemli delilleridir. Dünyanın çeşitli bölgelerinde elde edilmiş yüz milyonlarca fosil bulunmaktadır. Fosillerin sağladığı temel bilgi, canlılığın tarihi ve yapısı hakkındadır. Milyonlarca fosil, canlılığın aniden, kompleks yapısıyla, eksiksiz olarak ortaya çıktığını ve milyonlarca yıl boyunca hiçbir değişikliğe uğramadığını göstermektedir. Bu da canlılığın yoktan var edildiğinin yani yaratıldığının önemli bir delilidir. Canlıların aşama aşama oluştuğunu, yani evrim geçirdiğini gösteren ise tek bir fosil dahi yoktur. Evrimcilerin ara fosil olduğunu iddia ettikleri fosil örnekleri yalnızca birkaç tanedir ve bunların geçersizliği de bilimsel olarak ispatlanmış durumdadır. Aynı zamanda yine Darwinistlerin ara fosil olarak dünyaya tanıttıkları bazı örneklerin sahte çıkması da, bu konuda sahtekarlık yapacak kadar çaresiz olduklarını gözler önüne sermektedir. 150 yılı aşkın süredir, dünyanın dört bir yanında yapılan kazılarda elde edilen fosil kayıtları, balıkların hep balık, böceklerin hep böcek, kuşların hep kuş, sürüngenlerin hep sürüngen olduğunu ispatlamıştır. Canlı türleri arasında bir geçiş olduğunu -yani balıkların sürüngenlere, sürüngenlerin kuşlara dönüştüğü gibi- gösteren tek bir tane bile fosil görülmemiştir. Kısaca, fosil kayıtları, evrim teorisinin temel iddiası olan, türlerin uzun süreçler içinde değişimlere uğrayarak birbirinden türediği iddiasını kesin olarak çürütmüştür. Fosiller canlılık hakkında verdikleri bilginin yanı sıra, kıta tabakalarının hareketlerinin yeryüzü yüzeyini nasıl değiştirdiği, Dünya tarihinde yaşanan iklimsel değişikliklerin neler olduğu gibi yeryüzünün geçmişiyle ilgili de önemli bilgiler sunarlar. Fosiller, antik Yunan döneminden beri araştırmacıların ilgisini çekmiş, ancak 17. yüzyıl ortalarından itibaren fosillerin incelenmesi bir bilim dalı olarak gelişmeye başlamıştır. Araştırmacı Robert Hooke'un eserlerini (Micrographia (Mikrografi), 1665; Discourse of Earthquakes (Deprem Konuşmaları), 1668), Niels Stensen'in (Nicolai Steno ismiyle bilinir) çalışmaları takip etmiştir. Hooke ve Steno'nun fosiller üzerinde çalışma yaptıkları dönemlerde, düşünürlerin büyük bir kısmı fosillerin gerçekten yaşamış canlıların izleri olduğuna inanmıyorlar, doğanın bir şekilde canlıları taklit ettiğini iddia ediyorlardı. Fosillerin gerçek canlıların izi olup olmadığı yönündeki tartışmanın temelinde, fosillerin bulunduğu yerlerin dönemin jeolojik bilgileriyle açıklanamaması vardı. Fosiller genelde dağlık bölgelerde bulunuyor, ancak örneğin bir balığın nasıl olup da su seviyesinden bu kadar yüksek bir mekanda fosilleşmiş olabileceği teknik olarak açıklanamıyordu. Steno, tıpkı geçmişte Leonardo Da Vinci'nin öne sürdüğü gibi, tarih boyunca su seviyesinde geri çekilmeler olduğunu iddia ediyordu. Hooke ise, dağların okyanus tabanlarındaki depremler ve iç ısınma nedeniyle oluştuğunu söylüyordu. Hooke ve Steno'nun, fosillerin geçmişte yaşamış canlıların izleri olduğunu ortaya koyan açıklamalarının ardından, 18. ve 19. yüzyılda jeolojinin de gelişmesiyle, fosil toplama ve araştırma sistemli bir bilim dalına dönüşmeye başladı. Fosillerin sınıflandırılması ve yorumlanmasında, Steno'nun belirlediği prensipler izlendi. Özellikle 18. yüzyıl itibariyle madenciliğin gelişmesi ve demiryolları inşaatlarının artması, yer altının daha çok ve daha detaylı incelenmesine imkan tanıdı. Modern jeoloji, yeryüzü yüzeyinin "tabaka" adı verilen katmanlardan oluştuğunu, bu tabakaların, kıtaları ve okyanus tabanını taşıyarak Dünya üzerinde hareket ettiğini, tabakalar hareket ettikçe Dünya coğrafyasında değişiklikler olduğunu, dağların da büyük tabakaların hareketleri ve çarpışmaları sonucunda meydana geldiğini ortaya koydu. Dünya coğrafyasında uzun zaman dilimleri içinde meydana gelen değişimler, şimdi dağlık olan bazı bölgelerin bir zamanlar sularla kaplı olduğunu da gösteriyordu. Böylece kaya katmanlarında bulunan fosillerin, yeryüzünün farklı dönemleri hakkında bilgi edinmenin önemli yollarından biri olduğu ortaya çıktı. Jeolojik bilgiler, öldükten sonra çökeltiler içinde korunan canlı izlerinin yani fosillerin, çok uzun dönemler içinde, kayaların oluşumu sırasında yeryüzünün kabuğuna doğru yükseldiklerini gösteriyordu. Fosillerin bulunduğu kayaların bazıları, yüz milyonlarca yıl öncesine aitti. Yapılan araştırmalarda, belli fosil türlerinin yalnızca belli katmanlarda ve belli kaya tiplerinde bulunduğu gözlemlendi. Üst üste gelen kaya katmanlarının her birinde kendisine has, o katmanın bir tür imzası olarak nitelenebilecek fosil grupları olduğu görüldü. Bu "imza fosiller", hem zaman dilimlerine göre hem de mekana göre farklılık gösterebiliyordu. Örneğin, aynı döneme ait bir fosil yatağında, biri eski bir göl yatağı diğeri de mercan kayalığı olan iki farklı çevre koşulu ve tortuyla karşılaşılabiliyordu. Ya da bunun tam tersine, birbirinden kilometrelerce uzakta iki farklı kayalıkta, aynı fosil "imzasıyla" karşılaşmak mümkündü. Bu izlerin sağladığı bilgilerle, günümüzde halen kullanılmakta olan jeolojik zaman çizelgesi tespit edildi.

http://www.biyologlar.com/fosil-nedir

Evrimleşmeyi Sağlayan Düzenekler

Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, meydana gelen mutasyonlarla, populasyondaki gen havuzuna (türün üreme yeteneğine sahip tüm bireylerinin oluşturduğu genler) yeni özellikler verebilecek genler eklenir. Bunun yanısıra mayoz sırasında oluşan Krossing-Over'lar (Mayoz bölünmede gen parça değişimi) ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşulları her yerde ve her zaman (özellikle jeolojik devirleri düşünürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına karşın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döllenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerinde, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanlarının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Bu çevre koşulları belirli bir süre (genellikle uzun bir süre) etkilerini sürdürürse, belirli özelliklere (gen yapısına) ahip bireyler devamlı ayıklanacak ve taşıdıkları genlerin gen havuzundan eksilmesiyle, gen frekanslarında (bir özelliğin, bireylerde ortaya çıkış sıklığı) değişmeler ortaya çıkacaktır. Bu seçilim, çoğunluk döller boyunca sürer. Bir zaman sonra da bu gen bileşimindeki bireyler topluluğu tamamen ortadan kalkmış olur. (jeolojik devirlerdeki birçok canlının çevre koşulları nedeniyle soyunun tükenmesi) Buna karşın, başlangıçtaki populasyonlarda bu çevre koşullarına uyum yapabilecek özelliklere (gen bileşimlerine) sahip bireyler korunduğu için sayıları ve dolayısıyla taşıdıkları genlerin frekansı gen havuzunda sürekli artar. Böylece, bir zaman sonra, yeni mutasyonların ve rekombinasyonların meydana gelip, uygun olanlarının ayıklanmasıyla da, başlangıçtaki populasyona benzemeyen, tamamen ya da kısmen değişmiş populasyonlar ortaya çıkar. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalarda, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yoksunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirilemez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerinden daha iyi uyum yapmanın yanısra, daha fazla sayıda yumurta ya da yavru meydana getirmek gerekir. Doğal Seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir; 1.Yönlendirilmiş seçilim 2.Dengelenmiş Seçilim 3.Dallanan Seçilim Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevreye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşullarının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği saptayan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçilim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar ingiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betularia) meydana gelmesi evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma kolleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafından görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacalarından çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellikle kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur. ''Sanayi Melanizmi''. Günümüzde alınan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar artmaya başlamıştır. Yönlendirilmiş doğal seçilime, diğer bir ismiyle ''Orthogenezis'' e en iyi örneklerden biri de atın evrimidir. birçok yan dal (cins ve tür düzeyinde) ortama daha az uyum yaptığı için ortadan kalkmış, bugünkü Equus'u yapacak kol başarılı uyumu ile günümüze kadar gelmiştir. Birçok durumda, bazı yapıların gelişmesindeki yönlendirme, yararlı noktadan öteye geçebilir. Örneğin İrlanda geyiğinin boynuzları, kama dişli kaplanın üst kesici dişleri o kadar fazla büyümüştür ki, bir zaman sonra bu türlerin ortadan kalkmalarına neden olmuştur. işte, çok defa bir canlının organları arasında belirli bir oranın bulunması, bu seçilimle düzenlenir ve buna ''Allometrik İlişki'' denir. Yani organlar arasındaki oran her türde kendine özgü ölçüler içinde bulunur. Bu özellikler, daha doğrusu oranlar, sistematikte(Canlıların Sınıflandırılması) ölçü olarak alınır. Yapay Seçme ile çok kuvvetli bir yönlendirme sağlanabilir. islah edilmiş birçok hayvan ırkında bunu açıkça görmek mümkündür. İnsanların gereksinmeleri için yararlı özellikleri bakımından sürekli olarak seçilen bu hayvanlar, bir zaman sonra doğada serbest yaşayamayacak duruma gelmiştir. Nitekim sütü ve eti için ıslah edilen birçok inek ve koyun türü, yumurtası için ıslah edilen birçok tavuk türü, süs hayvanı olarak ıslah edilen birçok kuş, köpek, kedi vs. türü, artık bugün doğada serbest olarak yaşayamayacak kadar değişikliğe uğramıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır. Örneğin, eskiden, kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezlemede ya da hücre içine alma yeteneğini yitirmiş olan, kan şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusurlarla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşamasını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etkisinden büyük ölçüde kurtulmayı başarmıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10-15bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden bir olan ''Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmalarının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır.'' Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur. Örneğin, keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. Dengeli seçilimde, üstteki ve alttaki değerleri (aşırı özellikleri) taşıyan bireyler sürekli elendiği için, populasyon dengedeymiş gibi gözükür, Örneğin, bebeklerde kafatasının, dolayısıyla beynin ve keza vücudun büyüklüğü dengeli seçilimin etkisi altındadır. Belirli bir kafatası ve vücut büyüklüğünün üstünde olanlar, doğum sırasında ananın çatı kemiğinden geçemedikleri için elenirler; çok küçük olanları da uyum yeteneklerini yitirdikleri için elenirler. Böylece, örneğin bebeklerde beyin ve vücut büyüklüğü belirli sınırların içinde kalır. Keza serçelerde de kanat uzunluğu/ vücut ağırlığı oranı, belirli bir sayının altında ve üstünde olanlar yönünde seçilime uğradığı saptanmıştır. Bu nedenle serçelerin belirli bir büyüklükte kalmaları sağlanır. Birçok hayvan grubu için (özellikle vücutlarının ve organlarının büyüklükleri için) bu işleyiş geçerlidir. Bu nedenle bazı hayvan gruplarının kalıtsal olarak neden büyük, bazılarının neden küçük olduğu kısmen açıklanabilir. Doğal seçilim, etkisini üç farklı şekilde gösterir: Koşullara uyum gösteren fenotipler kararlı kalır (dengelenmiş seçilim), değişik uyuma sahip olanlar arasında sadece başarılı olanlar seçilir (yönlendirilmiş seçilim); değişik uyuma sahip olanlar arasında, iki ya da daha fazla başarılı fenotip seçilir (dallanan seçilim). Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman sonra, iki ya da daha fazla sayıda birbirinden farklılaşmış canlı gurubu oluşur (ırk--alttür--tür--vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekilde bir seçilim ''Uyumsal Açılımı'' meydana getirecektir. Dallanan seçilim, keza benzer özellikli bireylerin, çiftleşmek için birbirini tercih etmesiyle de ortaya çıkar. Bunun tipik örneğini insanlarda verebiliriz. Yapısal olarak farklı birçok insan ırkı biraraya getirildiğinde, bireyler genellikle kendi ırkından olanlarla evlenmeyi tercih ederler (hatta dil, din, kültür benzerliği ve parasal bakımdan zenginlik bu seçimi daha da kuvvetlendirir.) Üreme Yeteneğine Ve Eeşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda HARDY - WEINBERG Eşitliği uygula¬namaz. Bireylerin çiftleşmek için birbirlerini rastgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca bir¬kaç defa çiftleşenlerde (insan da dahil), erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (pey¬gamberdevelerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir. Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (tavuskuşunda ve cennetkuşların¬da vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Birçok canlı grubunda bu arzu farklı şekilde geliştiği için, farklı yapılar ortaya çıkmıştır. Örneğin birbirine çok yakın adalar¬da yaşayan Japon ırkı ile Ainu ırkı arasında vücut kılı yönünden büyük farklar vardır. Ainu kadınları çiftleşmek için kıllı erkekleri, buna karşın Japon kadınları kılsız erkek¬leri tercih ettikleri için, Ainu ırkı dünyanın en kıllı, Japon ırkı ise en kılsız erkeklerine sahip olmuştur. Çünkü eşeysel seçim zıt özelliklerin tercihi şeklinde olmuştur. Keza siyah ırklar kalın dudağı, beyaz ırklar ince dudağı daha çekici bulduğu için, seçilim bugünkü siyah ırkıarın kalın dudaklı, beyaz ırkıarın ise ince dudaklı olmasını sağlaya¬cak şekilde olmuştur. Bu arada eşemlerin birbirlerini karşılıklı uyarabileceği birtakım davranış şekilleri (kur, dans, gösteri vs.) gelişmiştir. Özellikle bu davranışları en iyi şekilde yapan erkekler, dişileri tarafından tercih edilir. Davranışların değişmesini sağlayacak etkili bir mutasyon, çok defa, meydana geldiği bireyin eş bulamamasına neden olacağı için, populasyondan elenir. Bu davranış şekillerine, yine genellikle ve çoğunluk erkeklerde eşeysel çiftleşmeden belirli bir süre önce, vücuttaki renklerin değişmesi, özellikle parlaklaşması (kuşları ve memelileri anımsayınız!), değişik kokuların ve fero¬menlerin salgılanması (tekelerin zaman zaman çok keskin olarak koktuğunu anımsa¬yınız!) eşlik eder. Parlak renkler ve keskin kokular dişiyi daha etkili bir şekilde uyara¬cağı için seçim bu özelliklerin kuvvetlendirilmesi yönünde olmuştur. Işte, DARWIN, dişinin erkeği, erkeğin dişiyi uyarabildiği bu özelliklerin seçimine Eşeysel Seçilim = Seksüel seleksiyon ismini verdi. Erkeklerin, erkekliklerini simgeleyen özelliklerine göre seçilimleri, onların, bu özellikleri bakımından, yaşam savaşında etkinlik kazandırmasa dahi kuvvetlenme¬sine neden olmuştur. Nitekim erkeklerin çok daha renkli olması bu nedene dayanır. Ayrıca kuşlarda kuluçkaya yatan dişiler üstten belirgin olarak görünmesin diye, çoğunluk yaşadığı ortamın rengine uyum yapmıştır. Yalnız erkekleri kuluçkaya yatan bir kuş türünde, bu durum tersinedir; bunlarda dişiler parlak renkli, erkekler toprak rengindedir. En güçlü erkeğin, dişileri dölleyebilmesini sağlamak için, evrimsel olarak bir yarışma oluşmuştur ''Erkek Kavgaları'', Bu nedenle geyiklerde, dağ keçilerinde vs.'de kuvvetli boynuz oluşumları meydana gelmiştir. Seçilim her zaman saldırgan ve kuvvetli erkekler yönünde olur. Dişiler, kavgaya katılmadığı için, boynuzları küçük kalmıştır. Çünkü büyük boynuz yönünden herhangi bir seçilim baskısı yoktur. Daha önce öğrendiğimiz gibi bir özelliğin gelişebilmesi için seçilim baskısının sürekli etki etmesi gerekir. Bu arada, güçlerine göre, erkeklerin belirli alanları etkinlikleri altına alma eğilimleri; bir territoryum davranış zincirinin oluşmasına neden olmuştur. Tüm bu eşeysel seçilim etkileri, dişiler ve erkekler arasında belirgin bir yapı ve davranış farklılaşmasına neden olmuştur. Bu farklılaşmaya ''Eşeysel Farklılaşma = Seksüel Dimorfizm" denir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen bavuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl Meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırlır. Canlıların çok büyük bir kısmında, canlılığın mayasını oluşturan eşeysel hücre¬lerdeki DNA'nın taşınması, bireylere verilmiş bir görevdir. Tek bir üreme dönemi olan canlılarda, döllenmeden hemen sonra erkekler (birgünsineklerini hatırlayınız!), yumurta bıraktıktan ya da yavru doğurduktan sonra da dişiler ölür. Birçok üreme dönemi olan canlılarda, her iki eşemin de ömrü uzamıştır. Bu sonucu grupta, erkek¬ler, çoğunlukla döllenme sonrası yavru bakımında belirli görevler yüklenmiştir (hatta denizatlarında döllenmiş yumurtayı ortamdan özel keselerine alan erkekler hamile olur). Hemen hemen tüm canlı gruplarında ve ilkel insan topluluklarında, bireyin ya¬şı, eşeysel etkinliğinin süresine denktir. Yalnız gelişmiş insan toplumlarında, kazanıl¬mış deneyimlerin genç kuşaklara aktarılması için, yaşlılar özenle korunur; bu nedenle ömür uzunluğu, eşeysel aktiflik dönemini oldukça aşmıştır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının değişimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. Farklı üreme yeteneği, meydana getirilen gamet (genellikle yumurta) sayısı de¬ğildir; üreyebilecek olgunluğa ulaşan yayruların sayısıdır. Değişik gametlerin birleş¬mesiyle, gen bileşimi bakımından, daha iyi embriyolojik gelişim (embriyo, larva, pup vs.) yapabilen, daha başarılı uyum sağlayabilen yavruların seçimi yapılır. Bu nedenle fazla sayıda yumurta meydana getiren canlılarda, bu seçilim, çok sayıdaki zigot ara¬sından yapılacağı için, başlangıçta başarılı bir seçim olacaktır ve ayrıca fazla sayıda embriyo ya da yavru ile yaşam kavgasına gireceği için, sonuçta büyük sayılardaki yu¬murtadan, belirli bir sayıda erginleşmiş yavru ortaya çıkabilecektir. Örneğin alabalık¬larda meydana getirilen 1.000.000 yumurtadan, en fazla 20'sinin üreyebilecek yaşa ulaştığı bilinmektedir. Çok yumurta oluşturan canlılarda, yumurtanın korunmuş yer¬lere bırakılması ve embriyoya ya da yavrulara bakım gelişmemiştir (birçok balıkta, parazitte, amfibide, sürüngende vs. 'de). Bu nedenle büyük kayıplar verirler. Halbuki yumurtaya, embriyoya ve yavruya bakımın gelişmesi oranında, yumurta sayısında azalma görülür. Bu sayı, gelişmiş memelilerde bire düşmüştür. Çünkü özenli bir ba¬kımla yavruların olgunluğa ulaşma olasılığı çok yükseltilmiştir. Memelilerde ve kuş¬larda, yavru ve yumurta sayısı optimal sayıda tutulur. Fazla yumurtanın kuluçkada embriyonik olarak gelişmesi ve gelişse de yavruların ana tarafından beslenmesi zor olur. Bu nedenle yumurta sayısı sabit sınırlar içerisinde kalacak şekilde evrimsel seçi¬lim olmuştur. Bunun yanısıra bir canlının diğer yırtıcı hayvanlar tarafından sürekli yenmesi (bunlarda fazla yumurta meydana getirilir) ya da düşmanlarının az olması (bunlarda az yumurta meydana getirilir) yumurta sayısını saptayan faktörlerden biri¬dir. Yalıtımın (=İzolosayonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı devam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği ka¬zanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. Coğrafik YaIıtım (= Allopatrik YaIıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli,döl meydana getiremeyecek kadar farklılaşırlar. Karalar, özellikle çöller, tuz bileşimi ve derişimi farklı sular, buz setleri su hay¬vanları için; denizler, nehirler, yüksek dağlar, büyük sıcaklık farkları, buzlar, kara hayvanları için yalıtım nedenleridir. En iyi coğrafik yalıtım adalarda görülür. Çok yakın bölgelerde yaşayan bazı akraba hayvan gruplarında da bu yalıtım görülebilir. Örneğin suda yaşayan bazı türlerin çok yakın akrabaları, su kenarlarındaki yaprakların altlarında bulunan nemli yerlerde; keza iki yakın akraba populasyondan biri toprak diğeri ağaçlar üzerinde yaşayabilir (Ekolojik Yalıtım). Bu populasyonların birbirleriyle teması çok az olacağından ve her birine farklı evrimsel güçler etki edece¬ğinden, bir zaman sonra aralarında daha büyük farklılaşmalar meydana gelir. Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadoluyla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayıımıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erezyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç türü olarak giren bu hayvanların 50'de fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşulları, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Coğrafik yalıtım populasyonlar arasındaki kalıtsal yalıtımı ve üreme davranışla¬rındaki yalıtımı tam sağlayamamışsa (populasyonlar arasında kısırlık tam oluşmamış¬sa) , bir zaman sonra biraraya gelen bu populasyonlarda, aralarındaki gen akımından dolayı, tekrar bir karışma ve bir çeşit homojenleşme oluşabilir. insan ırkıarı sürekli; ama belirli ölçülerde birbirleriyle temasta bulunduğu için, aralarındaki gen akımı tü¬müyle kesilmemiş, dolayısıyla melezlenme kısırlığı oluşmamış ve böylece ayrı tür özellikleri kazanamamıştır. Bununla beraber gen akımının sınırlı olması ırk özellikleri¬nin kısmen korunmasını sağlamıştır. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür. Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır... Üreme işlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa¬mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının hem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populas¬yon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine ben¬zeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'İkiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu popu¬lasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: iki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücreIilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana gelecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akraba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farkIılaşması gamet yalıtımına götürür. Melez Yalıtım: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurt ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embriyonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların ortaya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılanmalar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps (gen alışveriş yapıları) yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.. Kalıtsal Sürüklenme Küçük populasyonlarda eşlerin seçimi ve çiftleşme, büyük ölçüde şansa daya¬nır. Böylece gen havuzlarındaki denge, doğal seçilimden ziyade, şansla meydana ge¬len olaylarla değişir. İşte küçük populasyonlarda, şansa bağlı olarak meydana gelen üreme olaylarının evrimsel gelişmelerdeki etkisi, SEWALL WRIGHT tarafmdan 'Genetik Drift = Kahtsal Sürüklenme' olarak adlandırılmıştır. Küçük populasyonlarda, ben¬zer bireyler kendi aralarında çiftleştikleri için, allel genlerden birçoğunun, doğal seçi¬limden ziyade, şansla, heterozigot(karma) halden homozigot(saf) hale geçme eğilimleri vardır. Bu arılaşma, belirli zararlı ya da yararlı özelliklerin fenotipte kendilerini göstermeleri¬ne ve bir zaman sonra da doğal seçilimle o populasyondan elenmelerine ya da korun¬malarına neden olabilir. Bu homozigotlaşma, birçok türde, uyumsal değer gösterme¬mesine karşın, birçok anormal ve anlaşılmaz yapıların nasıl kazanıldığını açıklayabilir. Genetik sürüklenme, HARDY -WEINBERG eşitliğine aykırı bir durumu (HARDY ¬WEINBERG eşitliğinde homozigotların oranı sabitti) yani, homozigot birey sayısının de¬ğişimini ifade eder. Evrimleşmede ne ölçüde önemli rol oynadığı, birçok bilim adamı arasında hala tartışmalıdır. Bununla beraber birçok bitki ve hayvan grubunun, doğa¬da, kalıtsal sürüklenme ile, yani şansa bağlı olaylarla çeşitlendiği ve geliştiği bilin¬mektedir. Öyleki, evrimsel çizgi boyunca, özel koşullara uyum yapmak için izlenen birçok yol, şansa bağlı olarak seçilmiştir. Her kademesinde çatallaşan bir yol gibi. In¬san oluşuncaya kadar, sayısız çatallanmış yoldan şansa bağlı olarak geçilmiş ve bu¬güne gelinmiştir. Koşullar tamamen aynı olsa da, başlangıçtan, hatta bir primat evre¬sinden, tekrar bugünkü insana benzer bir canlının gelişmesi, kural olarak olanaksız¬dır. Çünkü her çatallanmış kavşakta, insana götüren yolun, doğrulukla tekrar seçilmesi çok az bir olasılıkla olabilir. Bunun için çok tipik birkaç örnek verelim: a) Birçok bitki, geçmişte, gerekli olmadığı için petallerini yitirmiştir (örneğin böcekler yerine rüzgarla tozlaşmaya başladıkları için). Bir zaman sonra tekrar bö¬ceklerle tozlaşma zorunluluğunu duyunca, petallerini aynı şekilde oluşturamamış, bunun yerine, üreme zamanlarında çiçeklerine yakın yapraklarını renklendirecek özellikleri kazanmıştır (Atatürk Çiçeğinin kırmızı yapraklarımanımsayınız!). b) Birincil su hayvanları (balık gibi) oldukça etkin bir solunumu yürütebilecek solungaç sistemlerini, karmaşık bir yol izleyerek geliştirmiştir. Kara yaşamına uyum yaptıktan sonra, bir kısım canlı, tekrar suya dönmüştür (balinalar, yunuslar vs.); fa¬kat hiçbiri, embriyonik gelişimlerinde kalıntı halinde solungaç yapısını gösterdikleri halde, tekrar solungaç yapısını geliştirememiştir. Hemen hepsi yine akciğeriyle so¬lunuma devam eder. Fakat bunun yanısıra oksijeni uzun süre tutabilecek ya da depo¬layabilecek yapıları geliştirmişlerdir. Keza hiçbiri balıklardaki gibi yanlardan basılmış kuyruk yüzgecini geliştirememiş; bunun yerine üstten basık kuyruk yüzgeçlerini ge¬liştirebilmişlerdir. Evrimde bir yapının tekrar ortaya çıkma olasılığı yok denecek kadar azdır. Örneğin balıkların kuyruk yüzgeci yanlardan basılmıştır. Kara yaşamından tekrar su yaşamına dönmüş hayvanlar (şekilde yunus) ancak üstten basık kuyruk yüzgecini geliştirebilmişlerdir (Kosswig'den) Ön bacakları kürek şekline dönüşmüştür; fakat hiçbir zaman balık yüzgeçlerine benzemez. Çünkü evrimsel olarak bir kere yitirilen bir yapı¬mn tekrar kazanılması hemen hemen olanaksızdır. ya da çok küçük olasılıklarla tekrar¬lanabilir. Burada yönlendirici unsur çevre koşullarının farklılığı değil, şansa bağlı seçi¬limlerin etkisidir. Mutasyonların bir kısmı dönüşlüdür. (Geri Mutasyonlar); bununla beraber ev¬rimsel gelişmeler geriye dönük değildir (Dollo Yasası). Örneğin bir kuşun, tekrar sü¬rüngene; bir balinanın karada yaşayan atasına dönüşmesi; parazitlerin serbest yaşa¬ması; atın tekrar beş parmaklı olması olanaksızdır. Çünkü gerekli tüm geri mutasyon¬ların şansa bağlı olarak elde edilmesi, olasılık açısından hemen hemen sıfırdır. Keza aynı nedenle, körelmiş organların ve yapıların da tekrar işlev görebilecek eski halleri¬ne dönmesi olanaksızdır. Kalıtsal Sürüklenmenin işleyişi Eğer bir populasyon HARDY - WEİNBERG eşitliğini gösteremeyecek kadar küçük¬se, ya da köken aldığı populasyondan küçük gruplar halinde ayrılmışsa, şansa bağlı döllenmeler sonucu bir zaman sonra köken aldığı populasyonun yapısından belirgin olarak farklılaşır. Kalıtsal sürüklenmeyi sağlayan olayları kısaca görelim. Göç ya da Sürüklenme: Oldukça büyük olan bir populasyondan, küçük bir grup koparak ayrılırsa, bu küçük grubun ileride meydana getireceği yeni populasyo¬nun gen havuzu köken aldığı populasyonunkinden farklı olur. Çünkü bu küçük grup ayrılırken bu grubun gen havuzu, ana populasyonun gen havuzundan belirli bir fark¬lılık gösterir. Örneğin Anadolu'da yaşayan insanlarda mavi göz geni frekansının orta¬lama % 10 olduğunu varsayalım. Mavi göz geni frekansı % 30 olan bir ailenin ya da aşiretin Anadolu'dan Mısır'a göç ettiğini ve orada yıllarca kendi içerisinde çoğaldığını düşünelim. Bir zaman sonra oluşacak bu yeni populasyonda mavi göz geninin fre¬kansı % 30 olmakla ana populasyondan farklılık gösterecektir. Çünkü başlangıç gen frekansı farklıdır. Özellikle insan populasyonlarında bu sürüklenmeler çok görülür. Çünkü göç eden toplumlar uzun yıllar kendi içlerinde evlendikleri için, başlangıçta taşıdıkları gen bileşimlerini koruma ve yaygınlaştırma eğilimi gösterirler. Bir zaman sonra içine göç ettikleri toplumlarla karışmaya, başlangıçta taşıdıkları gen bileşimIe¬rini yitirmeye ve belirli bir derecede göç ettikleri toplumun gen bileşimini değiştirme¬ye başlarlar. Anadolu'ya büyük ve küçük birçok göçün olduğu ve bunların uzun yıllar kendi içlerinde evlendikieri bilinmektedir. Bu nedenle insan toplumuna ilişkin kalıtsal sürüklenmenin en iyi örneklerini Anadolu'da görmek mümkündür. Keza adalara göç etmiş insanlarda da bu kalıtsal sürüklenmeler çok belirgin olarak görülür. Kan grup¬ları üzerinde doğal seçilimin çok büyük etkisi olmadığından, göç eden toplulukların kan grupları incelenmekle koptukları populasyonlar tahmin edilebilir. Eğer bir populasyon sürekli olarak genişliyorsa, bir zaman sonra populasyonun kenarındaki gen bileşimleri, merkezdekilerden daha farklı olmaya başlar ve bu fark gittikçe artabilir. Birçok canlı grubu, küçük populasyonlar halinde yeni ortamları işgal ederek, ana populasyona bağımlı olmadan çoğalabilir ve yeni özellikli populasyonlar oluştu¬rabilir. Küçük populasyonların kendi içinde çiftleşmesiyle meydana gelen evrimsel değişiklikler, doğal seçilimden ziyade şansa dayanır.Bir populasyondan bir parça koptuğunda, o parça, populasyonun gen ortala¬masına etki edecek bir miktar geni de beraberinde götürmüşse, ana populasyonun gen bileşimi bir miktar bozulabilir (ana populasyon çok büyük olmamak koşuluyla). Örneğin demin verdiğimiz misalde, % 30'luk mavi gen göçü, ana populasyonun ortalamasının (% 10) bir miktardüşmesine neden olabilir. Bu nedenle, bir populas¬yondan dışa göç de HARDY - WEiNBERG eşitliğini bozabilir. Afetlerin ve Sığınmaların Etkinliği: Herhangi bir zamanda meydana gelecek bir afet, populasyonun büyük bir kısmını ortadan kaldırabilir ve arta kalan pek az bir kısmından sonunda yeniden bir toplum oluşabilir. Fakat arta kalan küçük parça, eğer önceki toplumun tam özelliğini taşımayan bir gen havuzuna sahipse, yeni meydana gelen toplumun yapısı öncekinden çok farklı olur. Özellikle yangın, fırtına, su bas¬kını, deprem, hatta savaş, bu yeni özellikleri ortaya çıkarabilir. Sığınma: Çoğunlukla kışı saklanarak geçiren canlılarda, bir sonraki yazda yine küçük populasyonların etkisi görülür. Örneğin soğuk bir kış, saklanan bireylerin büyük bir kısmını yok ederken, iyi saklanmış küçük bir grup, bu yıkımdan kurtulur ve ger havuzunu, yazın oluşacak tüm populasyona verir. Bazı böceklerde, bazı özelliklerin en azından bazı yıllarda neden yaygın olduğu bu yolla açıklanabilir. Diğer Sürüklenme Şekilleri Doğal seçilimde ve uyumda başarılı olmasa dahi bazı özelliklerin dölden döle aktarılma olasılığı vardır. Bunu sağlayan kalıtsal mekanizmalar şunlardır. Pleiotropik Sürüklenme (= Özellik Sürüklenmesi): Doğal seçilim, genelolarak tek bir genin fenotipi üzerinde değil, tüm genomun fenotipi üzerinde etkisini gösterir.(yani tek bir geni seçmekten çok o geni bulunduran DNA'yı -yani bireyi- seçer) Bu nedenle bazı özellikler uyumsal değer göstermemesine ve yarar sağla¬mamasına karşın yine de varlığını devam ettirir. Çünkü bu özellikler, bireye çok yarar sağlayan özelliklerle birlikte aynı bireyde bulunur. Yararlı özellikler seçilirken, zararı olanlar da beraberce kalıtılır. Bu tip özelliklerin sürüklenmesinde pleiotropi çok önemlidir. Bilindiği gibi bir gen birden fazla özelliği denetliyorsa, pleiotropik etki gösteriyor demektir. Özelliğin biri canlıya yarar sağlıyorsa ve canlının uyum yeteneğini artırıyorsa, sürekli seçilir, buna bağlı olarak yararsız ve uyum yeteneği olmayan özellik de kalıtılır. Örneğin kır¬mızı renkli soğan insanlar tarafından tercih edilmez ve dikilirken ayıklanır. Fakat kırmızı rengi meydana getiren gen, aynı zamanda mantarlara karşı fungusit bir madde de salgıladığı için, bulunduğu bireylere yaşamsal uyum yeteneği verir; bu nedenle, kırmızı renkli soğanlar, beyaz renkli soğanların arasında varlığını sürekli koruyabilir. Gen Sürüklenmesi (= Kalıp İlkesi): Birçok gen yakınlıklarından dolayı bera¬berce kalıtılma eğilimi gösterir. iki gen birbirine çok yakın ise, parça değişimiyle bir¬birlerinden çok zor ayrılırlar. Işte bu genlerden biri yararlı, diğeri zararlı özellik sağlar¬sa ve yararlı genin özelliği, zararlı genin özelliğinden çok daha fazla öneme sahipse, zararlı özellik meydana getiren gen de yararlı özellik meydana getiren genle birlikte sürekli kalıtılır ve korunur. Buna 'Kalıp İlkesi' denir. Prof.Dr.Ali Demirsoy Kaynak: www.istanbul.edu.tr

http://www.biyologlar.com/evrimlesmeyi-saglayan-duzenekler

Bakterilerde Sınıflandırma ve kimlik tespiti

Bakterilerde Sınıflandırma ve kimlik tespiti

Sınıflandırma, bakterileri benzerliklerine göre gruplandırıp adlandırarak onlardaki çeşitliliği betimlemeye yarar.

http://www.biyologlar.com/bakterilerde-siniflandirma-ve-kimlik-tespiti

Mikrobiyal Biyoteknoloji Bölüm 1

Biyoteknoloji Nedir ? - Biyolojik araç, sistem ve süreçlerin üretim ve hizmet endüstrilerine uygulanması - Endüstriyel uygulamalarda başarılı olabilmek için Biyokimya, Mikrobiyoloji ve Mühendislik bilimlerinin ortak kullanımı ile mikroorganizmaların, doku ve hücre kültürlerinin kapasitelerinin artırılması - Çeşitli yararlı maddelerin üretilmesi için biyolojik özellikleri kullanan bir teknoloji olması - Biyolojik araçlar tarafından üretilen materyallerin daha iyi ürün ve hizmet vermek üzere bilim ve mühendislik ilkelerinin uygulanması - Biyoteknoloji sadece teknik ve süreçlerin toplamına verilen bir addır. - Biyoteknoloji canlı organizmaları ve onların yapıtaşlarını tarım, gıda ve diğer endüstrilerde kullanan bir tekniktir. - Biyoteknoloji konu olarak “multidisipliner” yani bağımsız pek çok bilim dalını birarada barındırır. Eğer biyoteknoloji çalışması yapanları bir liste altında toplamak gerekirse Biyokimyacılar, Mikrobiyologlar,Genetikçiler, Moleküler biyologlar, Hücre biyologları, Botanikçiler, Ziraat mühendisleri, Virologlar, Analitik kimyacılar, Biyokimya mühendisleri, Kimya mühendisleri, Kontrol mühendisleri, Elektronik mühendisleri ve Bilgisayar mühendisleri bu liste içerisinde sayılabilir. BİYOTEKNOLOJİDE MİKROBİYAL SİSTEMLER 1-)Bakteriler ve Cyanobacteria (mavi-yeşil bakteriler) A-) Bakteriler: Toprak, hava, su, hayvan ve bitki yüzeylerinde bulunurlar. Bazıları hastalık etkeni olmakla beraber çoğu zararsız ve organik atıkların geri dönüşümü sırasındaki yararlı etkileri ve birçok faydalı ürünü üretmeleri nedeniyle biyoteknolojide oldukça önemli bir yere sahiptirler. Aynı genusa ait bazı türler endüstriyel açıdan faydalı özelliklere sahipken bazıları insanlar için zararlıdır. Örneğin Bacillus türleri toprakta yaşarlar ve aerop veya fakültatif anaerop metabolizmaya sahiptirler. § B. subtilis endüstride kullanılan amilaz enziminin kaynağıdır. § B. thruringiensis ise birçok bitki zararlısı böceğin patojenidir. Ve bu nedenle böceklere dirençli bitkilerin oluşturulmasında genetik mühendisliğinin önemli çalışma konularından birini oluşturur. § B.athracis ise insanlara patojen etkiye sahiptir ve şarbon hastalığının nedenidir. Prokaryotik biyolojik sistemler: § E.coli dışındaki diğer prokaryotlar § Acremonium chrysogenum § Bacillus brevis § Basillus subtilis, Basillus thuringiensis § Corynebacterium glutamicum § Erwinia herbicola § Peudomonas spp § Rhizobium spp § Streptomyces spp § Trichoderma resei § Xanthomonas campestris § Zymomonas mobilis Bu organizmalar iki grup altında toplanabilir. 1-) Özel bir fonksiyona sahip bir gen için konak olma. Ör: termofillerden izole edilen ve PCR teknolojisinde kullanılan ısıya dirençli DNA polimeraz enziminin E.coli’de klonlanması ve üretimin gerçekleşmesi. 2-)Belirli işleri çok daha etkin yapabilmek için genetik mühendisliği ile geliştirilme. Ör: Endüstriyel açıdan önemli amino asitlerin çok fazla üretilmesi için Corynebacterium glutamicum’un çeşitli türlerinin geliştirilmesi. 2-) Cyanobacteria (mavi-yeşil bakteriler): Mavi-yeşil bakteriler prokaryotlar sınıfına dahil olup fotosentez özelliğine sahiptir. Örnek olarak Anabaena cylindris, Nostok muskorum, Spirulina platensis türleri verilebilir. İlk kez varlıkları fosillerde saptanmıştır. Dünya oluşumunda belki de ilk canlı organizmalardır. Tatlı ve tuzlu suların yüzeylerinde bulunurlar. Karada ise ışığın ve nemin olduğu çamur ve kaya, tahta veya bazı canlı organizmaların yüzeylerinde bulunabilirler. Koyu yeşilimsi-mavi pigmentlerinden dolayı bu isimle adlandırılırlar. Sadece birkaç organizma atmosferik azotu amonyağa redüklemek yoluyla a.a. ve proteinleri üretmek üzere organik asitlere dönüştürülebilir. Azot fikse edebilen bakteriler gibi mavi-yeşil bakterilerde böyle bir yeteneğe sahiptir. Hücreler nitrogenaz enzimi ile bu reaksiyonu gerçekleştirirler. Bu enzim oksijen ile inaktive olur. Bu nedenle azot fikse eden hücrelerin içindeki koşullar anaerobik olmalıdır. Anabaena gibi bazı mavi-yeşil bakterler azot fiksasyonundan sorumlu heterosit adı verilen özel kalın duvarlı hücrelere sahiptirler Mavi-yeşil bakterilerin biyoteknolojik önemi: Mavi-yeşil bakteriler fotosentez yetenekleri, yüksek protein içerikleri ve basit besiyerlerinde hızlı çoğalmaları nedeniyle besin kaynağı olarak kullanım alanına sahiptir. Tek hücre proteini (THP) elde edilmesinde en çok denenen günümüzde insan ve hayvanların beslenmesinde geniş uygulama alanı olan mavi-yeşil bakteriler, diğer mikroorganizmalardan farklı olarak yeterli miktarda karbondioksit, belirli derecede aydınlatma, geniş üretim ortamı gibi özel koşullara gereksinim gösterirler. Sprilulina platensis Afrika ve güney Amerika’da ki sığ göllerde doğal olarak bulunur. Binlerce yıldan beri yöredeki insanlar tarafından toplanan bu algler kurutulduktan sonra besin kaynağı olarak çoğunlukla sos şeklinde veya çorba içinde kullanılmaktadır. Nostoc ise Peru ve Güney doğu Asya ‘da besin maddesi olarak kullanılan bir diğer siyanobakteridir. Gübre olarak kullanılmaları: Mavi-yeşil bakterilerin azot fiksasyon özelliği saptandıktan sonra kurutulmuş Tolypthrix tenuis pirinç tarlasına serpildiğinde azot fiksasyonunda ve verimde artış gözlenmiştir. M-Y bakterilerin Hindistan da pirinç tarlalarında gübre olarak kullanımıyla toprağın havalandırılması sonucunda su geçişi ve toprağın sıcaklığının daha homojen olması sağlanmaktadır. Azot fiksasyonu için M-Y bakterilerin Rhizobium’ların yerini almasının bazı avantajları vardır. Mavi-Yeşil bakteriler havadaki azotu amonyuma redüklerken fotosentez metabolik yolunu kullanırlar. Yani bir bitki ile simbiyotik bir yaşam ve enerji kaynağı olarak herhangi bir organik molekül ilavesi gerekmez. Tarımda azot fikse eden mavi-yeşil bakteriler organik gübre olarak kullanılabilir. Çin, Hindistan, Filipinler gibi pirinç tüketimi fazla olan bölgelerde büyük oranlarda ürerler. Pirincin büyüme sezonunun başında eğer suya siyanobakterlerin başlangıç kültürleri ekilirse pirinç veriminde %15-20 oranında artış olduğu bildirilmektedir. Mavi-Yeşil bakteriler antibiyotiklerin ve diğer biyolojik olarak aktif moleküllerin ticari boyutlardaki üretimi için büyük bir potansiyel oluştururlar. Çünkü Mavi-Yeşil bakteriler heterotrofturlar. Bu özellikleri de onların fermentasyon koşullarında üretilmelerine olanak sağlar. Henüz araştırma aşamasında olan Anacystis nidulans ile yapılan rekombinant DNA teknolojisi çalışmalarıyla nadir bileşiklerin üretiminde kullanımları amaçlanmaktadır. Araştırmalar Mavi-Yeşil bakterilerin güneş enerjisi dönüşüm sisteminde yer alması için devam etmektedir. Anabaena cylindrica heterocystleri vejatatif hücrelerde fotosentez yoluyla oluşturdukları oksijeni dışarı verirler. Azot yokluğunda ise heterositlerde nitrogenaz enzimi katalizörlüğünde elektronlar H+ iyonuna transfer edilerek Hidrojen gazı açığa çıkarırlar. Oksijen ve Hidrojen her ikisi de endüstride ihtiyaç duyulan gazlardır. Sonuç olarak; Fermentör koşullarında üreyebilirler, uzun süreli fizyolojik stabiliteye, basit besin gereksinimine, köpük oluşturmama özelliğine sahiptirler. Diğer alglerden farklı olarak azot fiksasyonu yapabilme farklılığına sahiptirler. Optimum sıcaklık 35oC dir. Karanlıkta veya gün ışığında heterotrofik olarak ürerler. 2-) MAYALAR: Tek hücreli tomurcuklanma veya bölünerek eşeysiz çoğalan ökaryotik mikroorganizmalardır. Mayaların tanımlanması maya biyoteknolojisi için oldukça önemlidir. Örneğin endüstriyel süreçlerde yabani ve kültüre edilmiş mayalar arasındaki farkı gösterebilmek esastır. Bira üretiminde üründe istenmeyen aroma oluşumuna neden olan yabani ırkın karışması veya ekmek mayası üretiminde şeker transport yeteneği daha fazla olan Candida utilis mayasının karışması ekmek mayası üretiminde kullanılan Saccharomyces cerevisiae mayasının üremesini engelleyecektir. Maya genuslarının ayrımında fizyolojik testlerle birlikte morfolojik testler de kullanılır. Günümüzde 700 civarında maya türü tanımlanmıştır. Fakat bu sayı maya çeşitliliğinde sadece çok küçük bir bölümü temsil etmektedir. Tanımlanmamış maya genus ve tür sayısı çok daha fazladır. Maya biyologları için maya çeşitliliğini tanımlamak kadar diğer önemli bir nokta özellikle biyoteknolojik öneme sahip türleri belirleyip saklamak ve koruyabilmektir. Moleküler biyoloji tekniklerinin yaklaşımıyla türler daha hızlı ve kolay bir şekilde karakterize edilebilmektedir. Günümüzde 6 mayanın genom projesi tamamlanmış ve işlevsel genomik çalışmaları ile genlerin işlevlerinin belirlenmesine devam edilmektedir. Maya hücreleri klorofil içermez ve zorunlu olarak kemoorganotrofiktirler. Üremek için organik karbona gerek duyarlar. Karbon metabolizmaları çok çeşitlidir. Örneğin basit şekerleri, polioller, organik ve yağ asitleri alifatik alkoller, hidrokarbonlar ve çeşitli heterosiklik ve polimerik bileşikleri karbon kaynağı olarak kullanabilirler. Bu özellikleri nedeniyle farklı habitatlar için özelleşmiş türler kolaylıkla saptanabilir. Mayalar toprak, hava ve sudan izole edilebilirler. Bazı mayalar ekstrem ortamlarda örneğin ozmofilik mayalar şeker bakımından zengin ortamlarda yaşayabilirler. Bu tür mayalar genellikle gıda bozucu olarak bilinir. Bunun dışında fırsatçı patojen olarak bazı maya türleride örneğin Candida albicans pek çok infeksiyondan sorumludur. Mayalar insanlar için; ekonomik, sosyal ve sağlık açısından oldukça önemli en eski evcilleştirilmiş organizmalardır. Alkollü içeçeklerin üretiminde, ekmek yapımında hamurun kabarması için binlerce yıl öncesinden beri kullanılmaktadırlar. Gerçekte bira yapımı belkide dünyanın ilk biyoteknolojisini temsil etmektedir. Günümüzde mayalar geleneksel gıda fermentasyonunun dışında çok çeşitli alanlarda da kullanılmaktadır. Özellikle genetik mühendisliğiyle geliştirilmiş mayalar hastalıkların önlenmesinde ve tedavisinde kullanılan pek çok farmasötik ajanın üretilmesinde yaygın bir şekilde kullanılmaktadır. Biyoteknolojik Öneme Sahip Bazı Mayalar - Axula adeninivorans: Nitrat ve aminleri asimile eder, 45 C üzerinde üreyebilir, pek çok hidrolaz salgılayabilir. - Candida türleri: C.albicans hidrokarbonlardan aminopenisillanik asit ve B6 vitamin üretimi, C.boidinii NAD, FAD metil ketonlar ve sitrik asit üretimi, C.famata riboflavin, C.maltosa biyokütle proteini için yağ asiti ve alkan kullanımı, C.tropicalis triptofan, C.pelliculosa selülozik materyalden biyokütle proteini, C.utilis, pek çok ürün eldesi, ksilozda üreyebilme, klonlama teknolojisinde kullanım, C.shehatae ksiloz fermentasyonu - Hansenula polymorpha: Heterolog gen anlatımı için kullanılabilen metilotrofik maya. - Kluyveromyces marxianus ve K.lactis: Laktoz ve polyfruktosanı fermente eder. Doğal kakao fermentayonu. Pek çok enzim için kaynak olabilir, klonlama teknolojisinde kullanılabilir. - Pachysolen tannophilus: Bitki lignoselülozik hidrolizatlarından kaynaklı pentoz şekerlerinin fermentasyonu. - Phaffia rhodozyma ve Pichia türleri: Gıda boyası olan astaksantin pigment üretimi. P.guilliermondii riboflavin sentezi ve hidrokarbonlardan biomas protein eldesi. P.methanolica etanol biosensörü olarak kullanılan alkol oksidaz üretimi.P.pastoris metanolden biomas protein eldesi, heterolog gen anlatımı ve insan terapötik proteinlerini üretebilen metilotrofik maya. - Rhodosporidium toruloides: Fenilketanüri tedavisinde kullanılan PAL enzim kaynağı. - Saccharomyces türleri: S.cerevisiae klasik gıda fermentasyonu. Bira, şarap, ekmek, rom, cin yapımı. Yakıt, alkol, gliserol, invertaz ve hayvan besini kaynağı.Rekombinant DNA teknolojisiyle sayısız protein üretimi. - Saccharomycopsis türleri: S.fibuligera amilolitik maya - Schizosaccharomyce pombe: Geleneksel Afrika alkollü bira yapımı. Şarapların deasidifikasyonu. Yüksek etanol ozmotik tolerans, biyokütle protein eldesi, heterolog gen anlatımı ve mutagenez testlerinde kullanım - Schwanniomyces türleri: S.castellii ve S.occidentalis amilolitik mayalar. Nişastanın ve inülinin etanole çevrimi ve heterolog gen anlatımında kullanılabilirler. - Trichosporon cutaneum: Fenol varlığına ilişkin bisensor olarak kullanılır. - Yarrowia lipolytica: Lipid ve hidrokarbonlardan biomas protein eldesi. Sitrik asit ve hücredışı enzim üretimi. Ø Zygosaccharomyces rouxii: Japon soya sosu karakteristik aromasını vermede kullanılan halofilik ve ozmotolerant maya türü. Alkollü içeçeklerin üretiminde mayalar Endüstriyel mayaların çoğu, özellikle de fermente içeçeklerin üretiminde kullanılanlar, genetik bakımından karmaşıktırlar ve stabil bir haploidi göstermezler. Örneğin bira yapımında kullanılan Sacchoromyces türleri poliploid veya anöpliod (diploid-heptaploid) ırklardır. Bu nedenle geliştirilmelerinde eşeyli üreme özelliklerinden yararlanılamaz. Bunun yerine klasik bira tadını veren organoleptik özellikleri iyi olan karakteristik fermentasyon yapan ırklardan doğal seçimle en iyi olan şeçilir. Bunun dışında endüstriyel mayaların geliştirilmesinde şüphesiz genetik mühendisliğinin önemi oldukça fazladır. Rekombinant DNA teknolojisi ile geliştirilen rekombinant mayalar tarafından üretilen biyolojik olarak aktif rekombinant proteinlerin veriminin arttırılmasında iki önemli yaklaşım vardır. Bunlar; moleküler genetik tekniklerin kullanımı ve fermentasyon teknolojisidir. Gıda tüzüğüne uygun olarak ekmek mayasının (glikoz baskısından kaçınmak ve hamurlaşmayı önlemek için) maltoz kullanım genleri değiştirilmiştir. Bira mayasında ise Maltodekstrinleri kısmi olarak parçalayan STA2 genini içeren plazmid bulunmaktadır. Genetik mühendisliği ile geliştirilmiş mayaların lignoselülozik (odunsu) atıkları substrat olarak kullanarak etanol üretmeleri yönünde yoğun çalışmalar yapılmaktadır. Etanol dışında mayaların ürettiği diğer biyoalkoller; gliserol ( alkollü içecekler için aroma katıcı, nitrogliserin türevli patlatıcılar yapımında), ksilitol (şeker yerine diyabetik ürünlerin yapımında), sorbitol, arabinitol (düşük şeker içerikli gıdaların yapımında; ilaçların kaplanmasında yenilebilir kaplama maddesi olarak) Etanolün yenilenebilir kaynaklardan mayalar kullanarak üretilmesi tüm dünyanın ilgisini çeken konulardan biridir. İlk üretim 1930’larda başlamıştır fakat petrol fiyatları düşürülünce teknoloji bırakılmıştır. 1970’deki petrol krizi ile birlikte yeniden gündeme gelmiştir. Brezilya, şeker kamışını ve melası substrat olarak kullanarak ürettiği petrolü yakıt amaçlı kullanmaktadır. Brezilya’da otomobillerin çoğu alkol veya alkol+benzin karışımı (gasohol) ile çalışmaktadır. KÜFLER Küfler hifli mantarlardır. Birçok organizma ve gıda maddesi ( ekmek, meyve, sebze.. vb) üzerinde oluşturdukları pamuk görüntüsündeki doku nedeniyle mayalardan çok daha önce keşfedilmişlerdir. Küfler, endüstride birçok ürünün eldesinde, atıklardan değerli ürünlerin oluşturulmasında kullanılan farklılaşma göstermeyen ve klorofil içermeyen mikroorganizmalardır. Doğada ve toprakta yaygın olarak bulunan küflerden endüstriyel mikrobiyoloji alanında önem taşıyanlar mikroskobik olanlardır. Küflerin üredikleri ortama proteaz, lipaz, karbonanhidrazlar gibi litik enzimleri salgılamaları ve küflerin ürettikleri çeşitli metabolitlerin birçok alanda kullanılabilir olması bu organizmaların endüstrideki önemini oldukça artırmaktadır. Ayrıca insan, hayvan ve bitkiler için patojen olan türleride bulunmaktadır. Küflerin Biyolojisi: Bir küf, protoplazma iplikleri veya uzantıları olan hiflerden ve sporlardan oluşur. Hiflerin yaptığı yumağı misel adı verilir. Hifler, bölmeli hifler ve bölmesiz hifler olarak ikiye ayrılır. Bölmeli hifler bölmeler ile hücrelere ayrılırlar ve her hücrede bir veya iki hücre çekirdeği bulunur. • Bölmesiz hiflere sönositik hif adı da verilir. • Bölme içermezler ve çok çekirdeklidirler. • Üreme hifleri genellikle koloninin yüzeyinde bulunan ve üreyen hücreleri veya sporları taşıyan hiflerdir. • Hifsel üreme ortamın besin koşulları ile yakından ilgilidir. • Beslenme hifleri ise koloniye besin sağlayan hiflerdir. Beslenme hifleri sayesinde hücrenin bulunduğu noktadan uzakta olan substratlara ulaşmaları sağlanır. • Küflerin hücre duvarı glukan, kitosan ve kitin gibi farklı glukoz polimerlerinden yapılabilir.

http://www.biyologlar.com/mikrobiyal-biyoteknoloji-bolum-1

SİNONİMLİK NEDİR

Sinonim, aynı taksona verilen farklı isimler demektir. Sinonim isimler içinde tarihi en eski olanı, öncelik prensibi gereği “senior sinonim”, tarih olarak en yenisine de “junior sinonim” adı verilir. Örneğin: Sinonimlik, geçtiğimiz yüzyıllarda iletişim araçlarının henüz yaygınlaşmadığı zamanlarda sık sık ortaya çıkan bir durumdu. Dünyanın farklı yerlerinde yaşayan araştırıcılar, buldukları aynı canlıya farklı isimler vermişler ve bu şekilde yayınlamışlardır. Böylece uzun yıllar literatürde aynı canlıya verilen farklı isimler ayrı ayrı birer tür ismiymiş gibi işlem görmüştür. Ancak özellikle içinde bulunduğumuz yüzyılda familya, altfamilya, cins vb. düzeylerinde revizyon yapan araştırıcılar, bu araştırmayı yaparken tüm türleri aynı anda inceleme olanağı bulmuşlar ve farklı tür olarak nitelenen ve isimlendirilen canlıların birbirinin aynısı olduğunu görmüşlerdir. Sinonim olarak saptanan isimlerden en eski tarihli olanı, o türün gerçek ismi olmakta, tarihi daha yeni olanlar ise sinonim olarak kabul edilmektedir. Sinonimlerin saptanması ve sıralanmasında öncelik prensibi uygulanır. Buna göre: • Yıl üstünlüğü, • Aynı yılda yayınlanmışsa ay üstünlüğü, • Aynı ayda yayınlanmışsa gün üstünlüğü, • Aynı dergide yayınlanmışsa sayfa üstünlüğü, • Aynı sayfada yayınlanmışsa satır üstünlüğü söz konusudur. Buna göre geçerli tür, senior ve junior sinonimler sıralanmış olur.

http://www.biyologlar.com/sinonimlik-nedir

CLASS - INSECTA

Bütün böcekler bu siniftadir. Thorax'larin 3 segmentli olmasi ve her birinde bir çift bacak bulunmasi ile taninir. Bu sebepten 6 bacakli anlamina gelmek üzere Hexapoda'da sinif adi olarak kullanilir. Özellikleri : Tipik bir ergin böcekte 3 vücut bölgesi ayird edilir. Ön kisimda, üzerinde göz, antenler ve 3 çift agiz parçasinin bulundugu bas bölgesi yer alir. Bunun 3 segmentten olusan ve her birinde 1 çift bacak bulunan thorax izler. Bu sinifin büyük bir kisminda 2. ve 3. segmentlerden birer çift kanat çikar. Vücudun son bölgesi abdomendir. Abdomen 11 segmentten olusur. Bu segmentlerde bacak yoktur. 8., 9. ve 10. segmentlerde sekil olarak çok degisik ve yumurta koymada ise yarayan ekstremiteler yer alir. Böceklerdeki dis iskelet diger arthropodlarda oldugu gibi hayati önemdeki organlari ve vücut seklini korumaya yarar. Böceklerdeki belli basli iç organlara gelince: 1. Boru seklindeki bir sindirim kanali, 2. Kan pompalamaya yarayan uzun ve kapakçikli bir kalp, 3. Borucuklar seklinde trakelerden olusan bir solunum sistemi, 4. Vücudun ard kisminda disa açilan bir çift üreme organi, 5. Karmasik bir kas sistemi, 6. Beyin, çift ve segmental olarak yerlesmis ganglion ve konnektiflerden olusan bir sinir sistemi (Annelid ve Arthropodlara özgü ip merdiven sinir sistemi), bulunmaktadir. Birkaç, canli yavru meydana getirebilen tür bir tarafa birakilacak olursa, genellikle böcekler yumurta birakir. Larvalar gelisimleri sirasinda zaman zaman deri degistirir. Her deri degistirmede vücut büyüklügü artar veya bazi özel kisimlarin olusumu gerçeklesir. Henüz ergin olmayan böceklerde kanat yoktur. Ancak Ephemeroptera (Birgünlükler), ergin öncesi son evrede kanatlara sahip olmalari nedeniyle istisna olusturur. Larvalar bazen bacaklarin olmayisi ve hatta Arhropodlara özgü tipik organlarin bulunmayisi sebebi ile erginlerden tamamen farkli olabilir. Taksonomik Çesitlilik ve Omurgasiz Bir Grup Olarak Basarilari: Böcekler, çok çesitli organizmalar halinde evrimlesmistir. Bugün yasayan formlar 28 ordo (32 ordo Demirsoy) halinde siniflandirilmistir. Böcekler 1 000 000 kadar yasayan 15 000 fosil. Toplam olarak muhtemelen 2 000 000 tür ile herhangi bir hayvan grubunun erisemedigi en fazla çesitlilige ulasmis basarili bir gruptur. Bugün Dünyada Yasamakta Oldugu Bilinen Hayvan Tür Sayisi Tablo Olarak Grup __________ Tür sayisi Chordata 60000 Arthropoda (böcek hariç) 73000 Insecta 900000 Mollusca 104000 Echinodermat 5000 Annelida 7000 Mollusca 2500 Platyhelminthes 6500 Nemathelminthes 3500 Trochelminthes 1500 Böcekler okyanus derinlikleri disinda yeryüzünde kutuptan ekvatora, yüksek daglardan denizlere kadar her alana yayilmislardir. Her türlü iklim kosuluna adapte olmuslardir. Genis alanlara yayilabildikleri gibi bir böcek bugday tanesi içinde bile hayat devrelerini tamamlayabilir. Bu derece basarili olmalarinda ki etken evrimsel gidislerinin büyük adaptasyon kabiliyetine imkan vermesidir. Bu doga üstü özellesmeyi söyle özetleyebiliriz: A- Dis Iskelet l. Kas baglantisi için genis alan, 2. Su kaybini kontrol için en uygun imkan, özellikle ufak vücutlu bireylerde, 3. Iç organlari dis zararlardan tam koruma durumu. B- Kanat: Şiddetli rüzgarlara açik olan adalar bir tarafa birakilacak olursa böceklerin uçma yetenegi, hayatta kalma ve dagilma (dispersal) oraninini çok arttirmistir. Uçma yetenegi, beslenme ve çogalma alanlarinin genislemesini ve düsmanlardan kaçma olanagini saglar. Besininin veya konaklarinin az ve seyrek bulundugu hallerde, bunlarin elde edilebilmesine yaramaktadir. Örnegin les üzerinde beslenen bir tür, kanatlari sayesinde civarda beslenmesine uygun ölü hayvanlari kisa bir zaman içinde bulabilir. C- Küçük Vücut: Böcek evrimi az sayida büyük fert yerine çok sayida küçük fert meydana gelmesini gerektirecek bir yol izlemistir. Bu sekilde hem az besinin yeterli olmasi hem de düsmanlardan kaçma ve gizlenme sansi artmistir. Vücudun küçük olmasi, hacme oranla yüzeyin fazla olmasini gerektirir. Böylece buharlasma katsayisi arttigi için vücut örtüsü ince olan türlerin karasal hayatta yasayabilme olanagi ortadan kalkabilir. Iste dis iskelet bu buharlasmayi kontrol eder. Dis iskelet, böceklerin küçük vücut olma olanagini saglayan en önemli etkenlerden birisidir. D- Organlarin Uyumu: Böceklerde vücut parçalarinin adaptasyon kabiliyeti, bir tek organin farkli görevleri yapabilecegi biçimde gelismistir. Örnegin Mantislerin ve bazi Hemipterlerin ön bacaklari, avini yakalamaya ve yeme sirasinda tutmaya yaramak suretiyle bir hareket organindan çok yardimci agiz parçasi gibi islev görür. Diger hallerde de ayni yapi farkli sartlarda is görecek sekilde uyum gösterir. Örnegin solunum sisteminde meydana gelen degisiklikler su ve karasal yasama sartlarina uymayi saglar. E- Tam Baskalasim: Tam baskalasim (Holometaboli) görülen böceklerde hayat döngüsü dört ayri bölüme ayrilir. l. Yumurta 2. Larva veya beslenme devresi 3. Pupa yani durgun sekil degistirme evresi 4. Ergin veya üreme evresi. Tam baskalasim kinkanatlilar (Coleoptera) ve sinekler (Diptera) gibi çok sayida evrimlesmis türü kapsayan böcek ordolarinda görülür. Bu tip hayat seklinde gelisme, larva evresindeki beslenmeye dayanir. Ergin evrede az çok durgun bir metabolik faaliyet vardir. Beslenme sperm veya yumurtalarin olgunlasmasi içindir. Buna göre larva ve ergin tamamen ayri habitat veya nis'lerde yasama durumunda kalir. Böylece larva gelisme için en uygun sartlari bulur. Diger taraftan ergin de döllenme, dagilma ve yumurta birakmak için en uygun ortami seçer. Tam baskalasim, bu gruba sinirsiz habitat çesidi ve besin olanaklari açmistir. Ayri ayri hayat tarzinin faydalarini birlestirme ve zararlarindan kaçinma olanagini vermistir. Bunlarin disinda büyük üreme yetenegi, bu grubun basarisinin büyük etkenidir. Böceklerin basarili bir grup olmasinda rol oynayan faktörler türün devamini saglar. Ancak hiçbiri için en önemlisi budur diyemeyiz. Bu faktörlerin hiçbirisi tek basina böceklerin bugünkü çesitlilik ve çokluklarina erismelerinde en önemli unsur olarak ele alinamaz. Olay oldukça karisiktir. Bu faktörlerin çogunun ortak etkisi ve diger etkenlerin birlikte etkisi bu sonucun meydana gelmesine sebep olabilir. Evrimsel teoriye göre su hususlarda bilhassa önemlidir. l. Uçma yetenekleri ve hava kitleleri araciligi ile de engelleri asabilmeleri ve yeni yerlere yerleserek fazla sayida yeni türlerin evrimlesmesi. 2. Çok sayida böcek grubunun kalitsal mekanizmasinda meydana gelen degismelerle izole populasyon tesekkülü. III. Böceklerin Dis Yapisi (Morfoloji) Embriyonik olarak iki tabakaya ayrilir; ektodermden meydana gelmis ve üstte kutikula; Içerisine birçok organik ve inorganik bilesigin katilmasi ile mekanik ve kimyasal etkenlere karsi olagan üstü dayanikli bir yapi kazanmistir. Suyu hemen hemen hiç geçirmediginden bu hayvanlarin kara hayatina mükemmel bir uyum yapmalarini saglamis olup gaz alis-verisi bazi eklem yerleri göz önüne alinmazsa yok gibidir. Prokutikula (ekzokutikula + endokutikula) ve epikutikula olmak üzere iki ana tabakadan olusur. Hypodermis ile epikutikula arasinda bulunan Prokutikulanin en taninmis temel bilesigi azot içeren bir polisakkarit olan ve dogada yalnizca kitinaz enzimi ile yikilabilen Kitin dir. Kitin zincirler sekonder baglarla baglanmak suretiyle, kuru agirliginin % 25-60 kadarini kitin'in ve daha çok da protein yapisinda olan, kaynar suda ve seyreltik alkolde çözünen Arthropodin denen bir maddeden olusan Miselleri meydana getirirler. Kutikulanin dis kismi, deri degistirdikten kisa bir süre sonra büyük ölçüde sertlesir buna sklerotizasyon denir. Bu sertlesmede deri degistirme hormonu olan Ektizon büyük öneme sahiptir. Vücut örtüsünün en üstteki tabakasi olan ve kitin içermeyen epikutikula, sert tabaka, kutikulin tabakasi, mum tabakasi ve dolgu tabakasi gibi kisimlardan olusmustur. altta ise kaide zarini salgilayan ve içerisinde yapisal ve islevsel olarak birbirinden farklilasmis: Örtü hücreleri (epidermis tabakasinin büyük bir kismini olustururlar ve esas görevleri örtü tabakasi olmalaridir), Salgi hücreleri (çogunlukla örtü hücrelerinin arasinda bulunurlar ve kutikula tabakasinin içerisine çikinti yaparak bir kanalla veya ortak bir kanalla disari açilirlar), Kil hücreleri (çesitli yapi ve kalinlikta olup, duyusal ve korunma olarak görev yaparlar), Duyu hücreleri ve Önositler (deri degistirmede kutikulayi yeniden salgilayan hücreler olup, erginde pigmentlerin bir çesit depo yeri olarak kullanildigi yerler olarak kabul edilirler. hücrelerin bulundugu Hypodermis ve onun altinda peritondan meydana gelmis Kutis yer alir. Kitin (C8 H13 O5 N)x formülünde nitrojenli bir polysakkarit olup çok dayanikli bir maddedir. Su, alkol, seyreltik asit ve bazlarda erimez. Memeli sindirim enzimleri kitine etki etmez. Ancak bakteriler ve kitinaz enzimi bu yapiya etkilidirler (alkali ile muamele sonucunda renk ve sertlestirici maddeler temizlenebilir. Fakat kütükülanin esas yapisinda belirgin degisme olmaz). Kütikülanin sertligi kitin olmayan maddelerden ileri gelir ki bu maddelerinde kimyasal yapisi tam olarak bilinmemektedir. Kütikülanin sertlesmesine sklerotizasyon denir ve bu sertlesmede deri degiestirme hormonu olan ektizon büyük öneme sahiptir; Skleritizasyon gömlek degistirmeyi takiben baslar (Böcek vücudunun yapisi türe göre degisir. Hamamböceginde % 37 su, % 44 protein, % 15 kitin, % 4 yag). Sertlesmis, sklerotize olmus plakalara sklerit denir. Bu plakalar birbirinden membran bölgeler olan sinir çizgileri yani sutur ile ayrilir. Skleritler arasinda kalan kisim esnek veya membran yapisinda oldugu için haraket saglanabilir (Bu yapinin isleyici basit bir sekildedir). Sivrisinek abdomeninde dorsal ve ventral plakalar, yanlarda akordion seklinde katlanan bir membran araciligi ile birlesmistir. Kanla beslenme sirasinda dorsal ve ventral plakalar birbirinden uzaklasir, abdomene pompalanan kan artikça uygun olarak yanlardaki membranin katlari açilir. Çok fazla genisleme halinde enine kesit az çok daire seklindedir. Plakalarin membranla birlesmesinin çok görülen diger bir seklide teleskop halkalari seklindeki baglantidir. Vücut büzülmüs halde iken halkalar birbiri üzerine oturmus, uzadigi durumda ise halkalar disariya dogru membranlarin sinirina kadar itilir.

http://www.biyologlar.com/class-insecta

Solunum Sistemi ve Organları

Solunum Sistemi ve Organları

Solunum sistemi organları nelerdir ? Solunum nasıl gerçekleşir, Solunum sistemi ve Karbon dioksit

http://www.biyologlar.com/solunum-sistemi-ve-organlari

 
3WTURK CMS v6.03WTURK CMS v6.0