Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 2774 kayıt bulundu.

Biyolojik terorizm ve Biyolojik terör hakkında bilgi

Biyolojik Terör (Biyoterörizm) Nedir? Biyoterörizm; kişiler, gruplar veya hükümetler tarafından gerek ideolojik, gerekse politik veya finansal kazanç sağlamak amacıyla hastalık yaratıcı patojenlerin açık veya gizli şekilde yayılmasıdır. Biyolojik silahlar nelerdir? Biyolojik silahlar, başkalarına zarar vermek amacıyla maksatlı olarak kullanılan bakteri veya virüs gibi enfeksiyöz ajanlardır. Bu tanım sıklıkla biyolojik olarak oluşan toksin ve zehirleri de kapsar. Biyolojik savaş ajanları hem canlı mikroorganizmaları (bakteriler , protozoalar, ricketsia, virüsler ve mantarlar); hem de mikroorganizmalar, bitkiler veya hayvanlarca üretilen toksinleri ( kimyasal maddeleri ) içerir. Bu ajanların bazıları yüksek derecede öldürücüdür. Diğerleri de daha çok güçsüz bırakıcı rol oynar. Bazı yazarlar geleneksel tedavi metotlarını yanıltacak veya spesifik bir etnik grubu hedef alacak yeni, genetik mühendisliği ile elde edilmiş ajanların muhtemel kullanımından da bahsetmektedir. Biyolojik Silahlar Tehlikeli midir? Biyolojik silahlar yüksek düzeyde harabiyet vericidir. Uygun ortamlarda kendilerini çoğaltır, kalıcı hale getirebilir. Tüm koruyucu önlemleri etkisiz kılacak şekilde kendilerini mutasyona uğratabilirler. Kimyasal silahlar , tüm şiddetlerine karşın dağıldıklarında veya sulandırıldıklarında daha az öldürücüdür. Fakat biyolojik silah olarak kullanılan hastalık yapıcı mikroorganizmaların en ufak miktarı bile öldürücü olabilir. Örneğin; Botulinum toksininin kimyasal bir sinir ajanı olan Sarin 'den 3 milyon kat daha güçlü olduğu belirtilmiştir. Biyolojik Silahlar Bugüne Kadar Bir Savaşta veya Terörist Eylemde Kullanıldı mı? Evet, kullanılmışlardır. M.Ö. 6. yüz yıldaki Persler 'den, yakın geçmişteki İran - Irak savaşına kadar birçok kez kullanılmıştır. Hatta sivil toplum kesiminde de bu olayın bir örneği 1984 Eylülünde yaşanmıştır. Amerika Birleşik Devletlerinde Dallas Oregon'da bir yerel seçimin sonuçlarını etkilemek amacıyla bir grup tarafından bölgede restoranlarda ki salata barlarına salmonella typhi karıştırılmak suretiyle 750 kişinin zehirlenmiştir. Nisan 1979'da Sverthlovsk (Rusya) şehrinde çıkan 64 kişinin ölümüyle sonuçlanan, 96 kişiyi kapsayan şarbon salgını, biyolojik silah etkeni olarak çalışılan bir laboratuardan kaza sonucu ortaya çıktığı tahmin edilmektedir. Bu tahmin Ruslar tarafında doğrulanmamıştır. Bir Biyoterörist Saldırı ile Doğal Bir Salgını Nasıl Ayırmalı? Biyolojik bir silah ajanı ile yapılan saldırı genellikle gizlidir. Bu yüzden böyle bir saldırının tespit edilebilmesi için değişik biyolojik silah ajanları ile ilgili klinik sendromların tanınması gerekir. Hekimler ilk kurbanları belirleyebilmeli ve hastalık şekillerini tanıyabilmeli. Bu da koruyucu sağlık sisteminin değişik kademelerinde bilgi paylaşımı ile entegre eş zamanlı epidemiyolojik izlem sistemlerini gerektirir.Biyolojik silah saldırısını düşündüren şüpheli salgınların birincil kriterleri şunlar olabilir; Daha önce bölgede görülmeyen hastalık (mikrobu) Alışılmadık antibiyotik direnci Tipik olmayan klinik görünüm. Vaka dağılımının coğrafi ve/veya zamansal olarak tutarsız olması. (Örneğin; kısalmış zaman seyri) Diğer tutarsız elemanlar ise şunlardır; - Vaka Sayısı - Hastalanma veya ölüm oranları - Hastalık görülme sıklığından sapmalar Bu Patojenler Ne Kadar Bulaşıcıdır? Potansiyel Biyolojik Silah Ajanlarından sadece veba, çiçek ve viral hemorajik ateş insandan insana damlacık enfeksiyonu ile bulaşır ve bunlar standart enfeksiyon kontrol önlemlerinden (özel giysiler, göz korumalı maske, eldiven) fazlasını gerektirir. Hangi ajan kullanıldığına bakılmaksızın tüm potansiyel biyolojik silah kurbanları izole edilmelidir. Bu hastalarla ilgilenen sağlık personeli standart korunma yöntemlerinin yanı sıra HEPA Maskesi (yüksek hava filtre özellikli maske) kullanmalıdır.Biyolojik Terör AjanlarıŞarbon Şarbon, Bacillus anthracis adlı spor oluşturan bir bakteri tarafından meydana getirilen akut bir hastalıktır. Şarbon çoğunlukla çift tırnaklı memelilerde görülür. İnsanları da enfekte edebilir. Hastalığın semptomları nasıl alındığına göre değişmekle birlikte genellikle temastan sonra 7 gün içerisinde görülür. İnsandaki şarbonun en ciddi formları akciğer şarbonu, cilt şarbonu ve barsak şarbonudur.Akciğer şarbonunun başlangıç belirtileri soğuk algınlığına benzer. Birkaç gün içerisinde ciddi solunum problemleri ve şoka kadar ilerler. Akciğer şarbonu sıklıkla öldürücüdür.Barsak şarbonu basille kirlenmiş yiyeceklerin alımını takiben başlar ve sindirim sisteminin akut bir enflamasyonu şeklindedir. Başlangıçta bulantı , iştah kaybı , kusma ve ateş ile başlayan belirtileri , karın ağrısı , kan kusma ve şiddetli ishal takip eder.Şarbonun insandan insana direkt bulaşımı görülebilirse de çok nadirdir. Bu yüzden aynı bulaş kaynağıyla temas etmediği sürece hastayla teması olan arkadaş, eş, çocuk gibi kişilerin bağışıklanmasına gerek yoktur.Şarbonla karşılaşmış kişilerde enfeksiyon antibiyotik tedavisi ile engellenebilir. Şarbonda erken antibiyotik tedavisi esas olup, gecikme yaşam şansını azaltır. Şarbon genellikle penisiline, doksisikline ve florakinolonlara duyarlıdır. Çiçek Çiçek hastalığı 1977 yılında tüm dünyada yok edilmiş bir hastalıktır. Çiçek hastalığının sebebi variola virüsüdür. Kuluçka süresi virüsle karşılaşılmasını takiben 12 gündür. ( 7- 17 gün )Başlangıç belirtileri yüksek ateş, bitkinlik, baş ve sırt ağrısıdır. 2-3 gün içerisinde yüzde , kolda ve bacakta daha belirgin olan karakteristik döküntüler başlar. Bütün bölgelerde aynı anda başlayan döküntüler aynı fazda olup, yassı kırmızı lezyonlar şeklindedir. Lezyonlar iltihapla doludur ve ülserleşirler. 2. haftanın başlarında kabuklanırlar. Ülserli yaraların kabukları 3-4 hafta sonra dökülür.Çiçek hastalarının çoğunluğu iyileşirken vakaların % 30'unda ölüm görülür. Hastalık şüphesi bulunan kişinin tükürük ve benzeri salgılarıyla yüz yüze teması bulunan kişilere bulaşır. Çiçek hastaları hastalığın birinci haftası sırasında en bulaştırıcı dönemdedirler. Çünkü bu dönem salyada en çok virüsünün bulunduğu dönemdir. Bununla birlikte bulaştırma riski tüm kabuklar dökülene kadar devam edebilir.Çiçek hastalığına karşı rutin aşılama Amerika'da 1972 yılında sona ermiştir. 1972'den önce aşılanmış olan kişilerdeki bağışıklık düzeyi kaldıysa bile şüphelidir. Bu yüzden bu kişiler hassas olarak değerlendirilmelidir. Toplumda hastalığı önlemek için aşı tatbiki önerilmemektedir. Çiçek virüsüyle karşılaşmış kişilerde 4 gün içerisinde uygulandığı takdirde aşılama hastalığın şiddetini azaltabilir hatta engelleyebilir. Çiçek hastalığına karşı uygulanan aşı yine başka bir canlı virüs olan "vaccinia" yı içerir. Aşıda çiçek virüsü yoktur.Çiçeğe karşı etkinliği kanıtlanmış bir tedavi yoktur. Ancak yeni antiviral ajanlar geliştirme yönünde çalışmalar devam etmektedir. Çiçek hastalarında sekonder bakteriyel enfeksiyonların önlenmesinde destekleyici tedavi (damar içi sıvılar, ateş düşürücü ve ağrı kesiciler, vb.) ve antibiyotikler faydalıdır. Akciğer tipi Veba Veba, insan ve hayvanda Yersinia pestis adlı bakteri tarafından oluşturulan bir enfeksiyon hastalığıdır. Y.Pestis dünya üzerinde birçok bölgede kemirgenler ve bunlarda konaklayan pirelerde bulunur. Akciğer tipi veba, Y.Pestis'in akciğerleri enfekte etmesi ile meydana gelir.Akciğer tipi vebanın ilk belirtileri ateş, baş ağrısı, zayıflık, kanlı veya sulu balgam üreten öksürüktür. Hastalık 2 - 4 günde gelişerek septik şoka neden olur ve tedavi edilmezse ölüm gerçekleşebilir.Hastalık yüz yüze teması olan kişiler arasında damlacık enfeksiyonuyla yayılır. Akciğer vebasının erken tedavisi esastır. streptomisin, tetrasiklin ve kloramfenikol gibi birkaç antibiyotik etkilidir. Vebaya karşı aşı yoktur. Hastayla yüz yüze teması olan kişilerde 7 günlük koruyucu antibiyotik tedavisi faydalıdır. Botulism Botulism, Clostridium botulinum isimli bakteri tarafından oluşturulan toksinin meydana getirdiği ve kas felci yaratan bir hastalıktır. Botulism'in 3 ana tipi vardır. Gıda kaynaklı Botulism; toksin içeren gıdayı alan kişilerde görülür ve 1-2 gün içerisinde hastalığa neden olur. Gıda kaynaklı Botulism halk sağlığı açısından acil bir durumdur. Zira toksinle bulaşmış olan gıda hastanın yanı sıra diğer kişilerin de tüketimine hala açık olabilir. 1-Çocuk Botulismi; barsak kanalında Colostridium Botulinum bulunan az sayıdaki hassas çocukta görülür. 2-Yara Botulismi; Yaraların toksin salgılayan Colostridium Botulinum ile enfekte olması sonucu görülür. 3-Gıda botulisminde semptomlar toksin içeren gıdanın alımını takiben 6 saat ila 2 hafta (çoğunlukla 12-36 saat ) arasında başlar.Botulism semptomları arasında çift görme, bulanık görme, göz kapaklarında sarkma, kelimeleri yuvarlayarak konuşma, yutma güçlüğü, ağız kuruluğu, kaslarda güçsüzlük (önce omuzlar daha sonra üst kollar, ön kollar, uyluklar, baldır) sayılabilir. Solunum kaslarının felci, mekanik solunum yardımı yapılmadığı takdirde solunumun durmasına ve ölüme neden olur.Botulism insandan insana bulaşmaz. Gıda Botulism'i her yaş grubunda görülebilir. Botulisme karşı geliştirilen antitoksin hastalığın erken dönemlerinde uygulandığında belirtilerin şiddetini azaltmada etkilidir. Hastaların çoğunluğu destekleyici tedaviyi takiben haftalar veya aylar sonra iyileşirler. CDC* Resmi Sağlık Önerileri(*) Centers for Desease Control and Prevention12 Ekim 2001 tarihinde Health Alert Network yoluyla dağıtılan resmi bildiridir ŞARBON (ANTRAKS) VE DİĞER BİYOLOJİK AJANLARLA GERÇEKLEŞTİRİLEN TEHDİTLER KARŞISINDA ÖNERİLEN TEDBİRLER;Amerika Birleşik Devletlerinde birçok topluluk ve kurumda şarbon basili içeren mektuplarla yapılan tehditler meydana gelmektedir. Bunlardan birçoğu boş zarf iken, bazılarında tozlu materyaller mevcuttu. Bu kılavuzun amacı bu tip olayların nasıl ele alınacağı konusunda tavsiyelerde bulunmaktır. PANİĞE KAPILMAYIN1-Şarbon organizmaları deride, Mide-barsak sisteminde veya akciğerlerde enfeksiyon oluşturabilirler. Bunun oluşabilmesi için organizmanın hasarlı deriye temas etmesi, yutulması veya solunum yoluyla ince partiküller halinde alınması gereklidir. Hastalık şarbon sporlarıyla karşılaşılmasından hemen sonra uygun antibiyotiklerle yapılacak bir tedaviyle önlenebilir. Şarbonun bir kişiden diğerine bulaşımı yoktur. 2-Şarbonun gizli bir saldırı ajanı olabilmesi için çok ince partiküller halinde havayla karışması gerekir. Bunu yapmak oldukça zordur. Çok büyük teknik yetenek ve özel ekipman gerektirir. Eğer bu küçük partiküller solunduğunda hayatı tehdit eden akciğer hastalıklarına neden olabilir. Ancak erken tanı ve tedavi etkilidir. ÜZERİNDE ŞARBON TEHDİTİ YAZILI ŞÜPHELİ PAKET VEYA MEKTUP ALINDIĞINDA ;1-Zarfı sallamayın ve şüpheli mektubun içeriğini dökmeyin. 2-Zarfı veya paketin içindeki içeriğin sızıntısını engellemek için plastik bir torbaya veya benzer bir kaba koyun 3-Eğer içine koyacak bir şey yoksa , zarfı veya paketi giysi, kağıt, veya çöp bidonu gibi bir şeyle kapatın ve bunu açmayın. 4-Odayı terk edin ve kapıyı kapatın. Hiç kimsenin buraya girmemesi için bölgeyi boşaltın. 5-Tozun veya şüpheli içeriğin yüzünüze bulaşmasını engellemek için, ellerinizi sabun ve suyla yıkayın. 6-Daha sonra Evdeyseniz olayı derhal polise bildirin. İşteyseniz olayı yine derhal polise bildirin ve varsa bina güvenlik görevlisini ve en yakın amirinizi bilgilendirin. 7-Bu şüpheli mektup yada paket ilk fark edildiğinde odada bulunan herkesin bir listesini yapın. Bu listeyi hem bölgenizdeki sağlık yetkililerine, hem de soruşturmayı yönetecek olan güvenlik ekiplerine veriniz. İÇİNDE TOZ OLAN BİR ZARF VARSA VE BU TOZ YÜZEYE DÖKÜLMÜŞSE;1-Tozu temizlemeye çalışmayın. Dökülen içeriği derhal elbise , kağıt, veya çöp bidonu gibi bir şeyle kapatın ve bunu açmayın. 2-Odayı terk edin ve kapıyı kapatın. Hiç kimsenin buraya girmemesi için bölgeyi boşaltın. 3-Tozun veya şüpheli içeriğin yüzünüze bulaşmasını engellemek için, ellerinizi sabun ve suyla yıkayın. 4-Daha sonra Evdeyseniz olayı derhal polise bildirin. İşteyseniz olayı yine derhal polise bildirin ve varsa bina güvenlik görevlisini ve en yakın amirinizi bilgilendirin 5-Bu toz ile kirlenmiş olan giysilerinizi mümkün olduğu kadar çabuk çıkartın, plastik bir torbaya veya ağzı mühürlenebilecek bir kaba koyun. Giysinin konduğu bu torba veya kap olaya müdahale eden birimlere verilmelidir. 6-Sabun ve suyla mümkün olduğu kadar çabuk bir duş alın. Çamaşır suyu veya benzer maddeleri derinize tatbik etmeyin. 7-Eğer mümkünse odada veya bölgede olup, toz ile temas eden herkesi n bir listesini yapın. Bu listeyi daha sonraki tıbbi takip de kullanılmak üzere yerel sağlık ekibine ve soruşturmayı yürütecek olan güvenlik güçlerine iletin. ŞÜPHELİ MADDENİN HAVA İLE TEMASI DURUMUNDA;1-Bölgede ki vantilatörleri veya havalandırma birimlerini kapatınız. 2-Derhal bölgeyi terk ediniz. 3-Diğerlerini bu bölgeden uzak tutmak için kapıyı kapatın. 4-Daha sonra; Eğer evdeyseniz 112 ve 155'i arayınız. İşteyseniz yine 112 ve 155'i arayınız. Durumdan bina güvenlik görevlinizi ve amirlerinizi haberdar ediniz. 5-Mümkünse binanın tüm havalandırma sistemini kapatın. 6-Mümkünse kirlenmenin olduğu bölgede bulunan herkesin bir listesini yapın. Bu listeyi daha sonraki tıbbi takip de kullanılmak üzere yerel sağlık ekibine ve soruşturmayı yürütecek olan güvenlik güçlerine iletin.

http://www.biyologlar.com/biyolojik-terorizm-ve-biyolojik-teror-hakkinda-bilgi

Organik Evrimin Ana Ilkeleri

Organik evrim konusunda ana ilkelerin açiga çikarilmasi ve ögretilmesi toplumlarin düsünce sistemlerinde büyük yansimalara neden oldugu ve olacagi için, sadece doganin temel yasalarini açiklamaya dönük olan böyle bir bilimsel alan, ne yazik ki, belirli çevrelerde tehlikeli bidir gelisim olarak degerlendirilmektedir. Çünkü evrim kavrami, zaman süreci içerisinde bir degismeyi açiklar; sonsuzluk ve degismemezlik evrimin ilkelerine aykiridir. Dolaysiyla evrim kavrami. dogmatik düsünceye, yani herseyin oldugu gibi benimsenmesine izin vermeyen bir bilim dalidir. Bu ise, belirli kosullara ve düsüncelere, oldugu gibi, yüz yillardir, düsünmeden uymus toplumlari; keza bunun yanisira toplumlarin bu uyumundan çikarlari için yeterince yararlanan çevreleri rahatsiz etmektedir. Evrim kavraminin kendisi de sabit degildir, zaman süreci içerisinde yeni bilimsel çalismalarin isigi altinda degismek zorundadir.Çünkü kendini zaman süreci içerisinde degistiremeyen, yeni bilgilerin ve gelisimlerin etkisi altinda yenileyemeyen her sey ve her kavram yok olmak zorundadir. Bu yasa, tüm canlilar ve kavramlar için geçerli görünmektedir. Evrim kavrami özünde üç alt kavrami içine alir: 1. Anorganik evrim: Cansizlarin degisimini inceler; özellikle evrenin olusumundan, canlilarin temel maddelerini olusturan cansiz maddelerin olusumuna kadar ortaya çikan olaylari kapsar. 2. Organik evrim: Canlilarin degisimini inceler. 3. Sosyal evrim: Toplumlarin degisimini inceler. Biyioloji bilimi, özellikle organik evrimi tapsar. Organik evrim bugün de devam etmektedir.; hatta bugün tarihin birçok devrelerinden daha hizli olmaktadir. Son binkaç yüzbin senede yüzlerce yeni bitki ve hayvan türü meydana gelirken, yüzlercesi de yeni tür olusumlari için ayrilmaya baslamistir.Fakat bu ayrilma ve türlesme o kadar yavas yürümektedir ki, gözlemek yalniz tarihpsel belgelerin bir araya getirilmeleriyle ve karsilastirilmalariyla mümkün olacaktir. Biyilojik evrimin olustuguna iliskin kanitlayici tipik örnek,15. yüzyilin baslarinda Madeira yakininda, Porta Santo denen küçük bir adaya birakilan tavsanlarda gözlenmistir. Tavsanlar, Avrupa’danh getiriymisti. Adada dger bir tavsan türü ve getirilen tavsanlarin düsmanlari olmadigi için getirilen tavsanlar anormal derecede çogaldilar ve sonuçta 400 yil sonra,Avrupa’daki anaçlarindan tamamen farkli yapilar kazandilar. Öyle ki, büyüklükleri, Avrupadakilerin yarisi kadar oldu; renklenmeleri tamamen degisti ve daha gececi hayvanlar oldular.En önemlisi, atalariyla biraraya geldiklerinde, artik çiftlesip yeni bir döl meydana getiremiyorlardi. Yani yeni bir tür özelligi kazanmistilar. Canlilar arasinda benzerliklerin ve farkliliklarin nasil ortaya çiktigi, bilimsel olarak ilk defa, Charles Darwin’in gözlemleriyle gün isigina çiktigi ve açiklandigi için, evrim kavrami ile Darwin’in ismi ve kisiligi özdeslestirilerek “Darwinizm” denir. Evrim Konusundaki Düsüncelerin Gelisimi Canillarin birbirinden belirli derecelerde farkliliklar gösterdigine ve aralarinda belirli derecelerde akrabaliklar olduguna iliskin gözlemler, düsünce tarihi kadar eski olmalidir. Yavrulari atalarindan, kardeslerin birbirinden belirli ölçülerde farkli oldugu çok eskiden gözlenmisti. Bitkilerin ve hayvanlarin benzerlik derecelerine göre, türden baslayarak belirli gruhlar olusturdulari saptanmisti. Fakat kalitim konusunda bilgiler yeterli olmadigi ve özellikle bir türün binlerce yillik gelisimi düsünür bir birey tarafindan izlenemedigi için, çesitlenme ve akrabalik baglari tam olarak açiklanamamistir. Bazi bireylerin yasam savasinda üstün niütelikler tasidigi, dolaysiyla ‘dogal seçme’ eskiden de bilinçsiz olarak gözlenmisti. Fakat evrim konusundaki bilimsel düsüncelerin tarihi, diger bilim dallarina göre çok yenidir. Evrim Konusunda ilk Düsünceler Dini Düsünceler: Düsünebilen insanin, dogadaki çesitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düsünceler baslamis demektir. Ilk yaygin düsünceler, Asur ve Babil yazitlarinda; daha sonra bunlardan köken alan Ortadogu kökenli dinlerde görülmüstür. Hemen hepsinde insanin özel olarak yaratildigi ve evrende özel bir yere sahip oldugu vurgulanmis; türlerin degismezligine ve sabitligine inanilmis ve diger canlilar konusunda herhangi bir yoruma yer verilmemistir. Bununla beraber Kuran’da yaratilisin kademeli oldugu vurgulanmistir. Yalniz bir Türk din adami, astronomu ve filozofu olan Hasankale’li Ibrahim Hakki(1703-1780), insanlarin degisik bitkilerden ve hayvanlardan köken aldigini belirtmistir. 17. yüzyila kadar, piskopos Ussher’in ve digerlerinin savundugu ‘türlerin oldugu gibi yaratildigi ve degismeden kaldigi fikri’ yani ‘Genesis’ genis halk kitleleri tarafindan benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya IÖ 4040 yilinda, Ekim ayinin 4'ünde sabah saat 9.00'da yaratilmisti. Bu düsünce Ussher tarafindan Incil’e eklenmistir. Daha sonra yine Hiristiyan din adamlari olan Augustin (IS 354-430) ve Aquinas (IS 1225-1274) tarafindan canlilarin basit olarak tanri tarafindan yaratildigi ve daha sonra degiserek çesitlendigi savunulmustu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlasilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden olustugu ileri sürülerek, yaratilisin ilk olark inorganik kökenli oldugu ve daha sonra eseylerin ortaya çiktigi savunulmustur. Yunanlilardaki ve Ortaçagdaki Düsünceler: Yunan filozoflarindan Empedocles, IÖ 500 yillarinda bitkilerin tomurcuklanma ile çesitli hayvan kisimlarini, bu kisimlarin da birlesmesiyle hayvanlarin olustugunu savunmustu. Thales(IÖ 624-548), Ege Denizindeki canlilari çalismis ve denizlerin canliligin anasi oldugunu ileri sürmüstür. Aristo (IÖ 384-322) bitkiler ve hayvanlar konusunda oldukça genis bilgiye sahipti. Onlarin dogruya yakin tanimlarini vermis ve gelismisliklerine göre siniflandirmistir. Canlilarin metabiyolojik olarak degiserek birbirlerinden olustuklarina ve her birinin tanrilarin yeryüzündeki ilahi taslaklari olduklarina inanmistir. Daha sonra, canlilarin kökenini Der Rerum Natura adli siirinde veren Lucretius (IÖ 99-55) u anmadan ortaçaga geçemeyecegiz. Yeni Çagdaki ve Yakin Çagdaki düsünceler: Rönesans ile canlilar konusundaki bilgilerin, en önemlisi evrim konusundaki düsürnürlerin sayisi artmistir. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarinin, dislerinin, kemiklerinin ve diger parçalarinin bugünkü canlilarin benzer taraflari ve farklari saptanmistir.Ayrica yüksek daglarin basinda bulunan fosillerin, yasayanlarla olan akrabaliklyari gözlenmistir. Bu gözlemlerin isigi altinda, her konuda çalismis, düsünür ve sanatçi olan Leonardo da Vinci, canlilarin tümünün bir defada yaratildigini ve zamanla bazilarinin ortadan kalktigini savunmustur. Buna karsilik birçok doga ibilimcisi, canlilarin zaman zaman olustuklarini dogal afetlerle tamamen ortadan kalktiklarini ve yeniden baska sekillerde yaratildiklarini ileri sürmüstür. Bu sekilde farkli devirlerde 2arkli canlilarin yasamasi kolaylikla açiklanabiliyordu. Her dogal yikimdan sonra, olusan canlilarin, organizasyon bakimindan biraz daha gelismis olduklarina inaniliyordu. Bu kurama “Tufan Kurami” denir. Bu yikimin yedi defa oldugu varayilmistir. Cuvier, 1812 yilinda, fosiller üzerinde ünlü kitabini yanilayarak fosillerin, kesik, kesik degil, birbirlerinin devami olacak sekilde olduklarini bilimsel olarak açiklamistir. 18. yüzyilin sonu ile 19. yüzyilin baslangicinda, üç Ingiliz jeologun çalismalariyla katstrofizm kurami yerine ‘Uniformizmi’ kurami getirildi. Hutton 1785'te geçmiste de bugünkü gibi jeolojik kuvvetlerin rol oynadigini, yükselmelerin ve alçalmalarin, keza erozyonlalarin belki de daha kuvvetli olurak meydene galdigini ve yüksek daglarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yailabilecegini buldu. John Playfair’in yapiti 1802'de yayinlandi. Üçüncü arastirici, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanisira, canlilarin büyük afetlerle degil, çevre kosullarinin uzun sürede etki etmesiyle degistigini savundu. Kitabinin bir yerinde ‘geçmisteki güçler bugünkünden hiç de çok farkli degildi’ diye yazmistir. Bu yaklasim, Nuh Tufani’nin gerçeküstü oldugunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemistir. Lamarck’in Düsünceleri Organik evrimi konusunda ilk kapsamli kuram 1809 yilinda ‘Philosophie Zoologique’ adli yapitiyla, Fransiz zoologu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamaninin meslektaslari gibi, tüm canlilarin, gelisimlerini ve islevlerini denetleyen bir canlilik gücüyle donatildigina ve degisen çevre kosullarina karsi bir savasim gücünün olmadigina inaniyordu. Kitabinda, hayvanlari, karmiasikyiklarina göre düzenlemeye çalisirken, yanlisligi daha sonra kesin olarak saptanan bir varsayimi ileri sürdü: “ Eger bir onrgan fazla kullaniliyorsa, o organ gelismesini sürdürerek, daha etkin bir yapi kazanir”. Bu varsayima ‘lamarkizm’ denir. Ayrica canlinin yasami boyunca kazanmis oldugu herhangi bir özelligin, gelecek döllere geçtigine de inanmisti. Örnegin demircinin oglunun kol kaslari digerlerine göre daha iyi gelisir. Zürafalirin atasi kisa boyunlu olmaliran karsin, yasadiklari ortamin bir zaman sonra kuraklasarak, dibi çiplak ve çayirsiz agaçlarin bulundugu ortama dönüsmesi sonucu, zürafalar agaçlarin yapraklariyla beslenmek zorunda kaylmislar ve böylece boyunlari dölden döle uzamistir. Körfarelerin gözlerini, karincaayisinin dislerini yitirmesini; su kuslarinin perde ayaklari kazanmasini bu sekilrde açiklamistir. Bu üaçiklamalar,kalitimin yasalari ortaya çikarilmadan önce, çok iyi bir açiklama sekli olarak benimsendi. Fakat kalitim konusunda bilgiler gelisince, özellikle Weismann tarafindan somatoplazma ile germplazma arasindaki kuramsal farklar bulununca, evrimsel degismenin, vücut hücrelerinde olmadigi, sadece eseysel hücrelerdeki kalitsal materyalin etkisi ile yürütüldügü anlasildi. Böylece Lamarck’in varsayimi tümüyle geçerliligini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre kosullarina uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, dogdugu zaman tasidigi kalitim materyalinin izin verdigi ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüsler, fakat inandirici olamamislardir. Charles Darwin ve Alfred Wallace’in Görüsleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkida bulundu. Birincisi, organik evrim düsüncesini destekleyen zengin bir kanitlar dizisini toplayarak ve derleyerek bilim dünyasina sundu. Ikincisi, evrim mekanizmasinin esasini olusturan ‘Dogal Seçilim’ ya da diger bir deyimle ‘Dogal Seçim’ kuraminin ilkelerini ortaya çikardi.Evrim Kurami, bilimsel anlamda 19. yy kuramidir; ama bu kuram 20. yy’da büyük bir kuram niteligini aldi. Bu nedenle Darwin’ i biraz daha yakindan tanimaliyiz: Darwin, 1809'da Ingitere’de dogdu. Babas, onun hekim olmasini istiyordu; 16 yasinda Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak basladigi hekimlik egitimini ve daha sonra basladigi hukuk egitimini sikici bularak her ikisini de birakti. Sonunda Cambridge Üniversitesi’ne bagli Christ Kolejinde teoloji (= dinibilimler) ögrenimi yapti. Fakat Edinburg’daki arkadaslarinin çogu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kirkanatlilari toplayan bir grupla iliski kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanidi ve onun önerileri ile dünya çevresinde bes sene sürecek bir geziye katilmaya karar verdi. Beagle, 1831 yilinda Devonport limanindan denize açildi. Lyell’in kitabini gezisi sirasinda okudu ve dünya yüzünün devamli degistigini savunan düsüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanlari inceliyor; sayisiz gözlem yapiyor ve dikkatlice notlar aliyordu. Gemi, ilk olarak Güney Amerika’nin dogu sahilleri boyunca güneye inip, daha sonra bati kiyilarindan kuzeye dogru yol aldi. Bu arada Arjantin’in Pampas’larinda soyu tükenmis birçok hayvanin fosilini buldu ve yine jelojik aktmanlardaki fosillerin degisimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratildigina iliskin düsüncelere olan inancini yitirmeye basladi. Yine insan da dahil, çesitli bitki ve hayvan türlerinin degisik ortamylara yaptiklari uyumlari, bu arada yasadigi bir deprem olayi ile yeryüzünün nasil degisebilecegini gözledi. Beagle, 1835 yilinda, Güney Amerika kitasinin bati kiyisina yaklasik 1000 km kadar uzak olar Galapagos adalarina ulasti. Bu adalarda yaptigi gözlemlerde, büyük bir olasilikla ayni kökenden gelmis birçok canlinin cografik yalitim nedeniyle, birbirlerinden nasil farklilastiklarini ve her canlinin bulundugu ortamdaki kosullara nasil uyum yaptigini bizzat gözledi. Örnegin ispinoz kuslarinin, dev kaplumbagalarin, dev kertenkelelerin, adalara ve her adanin degisik kosullari tasiyan bölgeliren göre çesitlenmelerini, yapisal uyumlarini, varyasyonlarini ve sonuç olarak uyumsal açilimlarini gördü. Buradaki bitkilerin ve hayvanlarin hemen hepsi, Amerika kitasinin güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzakligi oraninda farklilasmalar gösteriyordu. Daha sonra arastirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu arastirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulasti. Darwin, ileri sürecegi fikrin yanki uyandiracagini, dolaysiyla yeterince kanit toplamasi gerekecegini biliyordu. Kanitlar evrimsel dallanmayi göstermekle birlikte, bunun nasil oldugunu açiklamaya yetmiyordu. Ingiltere’ye varisindan itibaren 20 yil boyunca biyolojinin çesitli kollarindaki gelismeleri de dikkatlice inceleyerek, gözlemlerini ve notlarini biraraya getirip dogal seçilim konusundaki düsüncesini ana hatlariyla hazirladi. 1857 yilinda düsüncelerini kabataslak arkadaslarinin görüsüne sundu. Bu sirada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yil Malaya’da ve Dogu Hindistan’da dört yil Amazon ormanlarinda bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanlarin dallanmalarindaki ve yayilislarindaki özelikleri görmüs ve dogal seçilim ilkesine ulasmis, bir doga bilimcisi olan Alfred Russel Wallace’in hazirlamis oldugu bilimsel kitabin taslagini aldi. Wallace, Darwin’e yazdigi mektupta eger çalismasini ilginç bulursa, onu, Linnean Society kurumuna sunmasini diliyordu. Çalismasinin adi “ Orjinal Tipten Belirsiz Olarak Ayrilan Varyetelerin Egilimi ” idi. Darwin’in yillarini vererek buldugu sonuç, yani canlilarin yavas yavas degismesine iliskin görüs, Wallace’in çalismalarinda yer almaktaydi. Durum, Darwin için üzücüydü. Fakat arkadaslarinin büyük baskisiyla, kendi çalismasini, Wallace’inkiyle birlikte basilmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basilmadan duyulan bu düsünceler 24 Kasim 1859'da “Dogal Seçilim ya da Yasam Savasinda Basarili Irklarin Korunmasiyla Türlerin Kökeni” kisaltilmis adiyla Türlerin Kökeni yayinlandi. Ilk gün kitaplarin hepsi satildi. Herkes, organik evrim konusunda yeni düsünceler getiren bu kitabi okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazirladi. Çünkü jeolojide, paleontolojide, embriyolojide, karsilastirmali anatomide birçok asama yapilmis ve birden yaratilmanin olanaksizligi ortaya konmustu. Darwin, uysal bir adam oldugundan, bir tepki yaratmamak için, eserinin son kismini tanrisal bir yaratilis fikrini benimsedigini yazarak bitirmisti. Buna ragmen, basta din adamlari ve bazi bilim adamlari dini inançlara karsi geliniyor diye bu çalismaya karsi büyük bir tepki baslattilar. Hatta eseriyle Darwin’e çok büyük yardimlarda bulunan Lyell ve gezisi sirasinda geminin kaptanligini yapan Fitzroy , bu karsi akimin öncüleri oldular. Bu arada Huxley, çok etkin bir sekilde Darwin’e destek oldu. Darwin, çalismalarina devam etti, birinci eserinde deginmedigi insanin evrimiyle ilgili düsüncelerini Insanin Olusumu ve Eseye Bagli Seçilim adli eseriyle yayimladi. Bu eserde insanin daha önceki inançlarda benimsenen özel yaratilisi ve yeri reddeliyor, diger memelilerin yapisal ve fizyolojik özelliklerine sahip oldugu ve iyne diger çcanlilar gibi ayni evrimsel yasalara baglioldugu savunuluyordu. Ayrica eseyseyl seçmenin, türlerin olusumundaki önemi belirtiliyordu. Darwin’in “Insanin Olusumu ” adli eseri, baslangiçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelismeler ve bulgular, özellikle kalitim konusundaki bilgilerin birdikmesi, Darwin’in görüsünün ana hatlariyla dogru oldugunu kanitlamistir.

http://www.biyologlar.com/organik-evrimin-ana-ilkeleri

BİTKİLERDE AZOT KAPSAMAYAN ORGANİK BİLEŞİKLER

1)Karbonhidratlar 2)Lipitler Bunlar da karbonhidratlar,bitkide kuru maddenin yaklaşık %50-80’ini oluşturur.Kimi karbonhidratlar yaygın bulunmalarına rağmen,kimileri daha özeldir(Zarda olanlar).Yani türe özel,zar ve sitoplazmaya özel veya serbest ve depo maddesi şeklinde faaliyet göstermekte olan özel karbonhidratlar vardır.Karbonhidratların en ilginç yönü moleküllerin hızlı ve sürekli olarak birinin diğerine dönüşmesidir.Fizyolojik olarak aktif hücrelerde görülen bu dönüşüm ve parçalanma sonucu açığa çıkan enerji bitki hücrelerinde çeşitli sentez olaylarında kullanılır.Bitkilerde karbonhidrat dönüşümünü çok sayıda faktör etkiler: a) Sıcaklık:Düşük sıcaklık bitki hücrelerinde nişastanın şekere dönüşmesi için uygun bir ortamdır. Örneğin tüm yıl yeşil kalan bitkilerin yapraklarında soğuk aylarda çözünebilir karbonhidratlar birikirken,sıcak aylarda ise nişasta biriktirmektedir.Çok düşük sıcaklıklarda (donma noktasının biraz üstünde -2oC) saklanan patates yumrularında nişasta miktarı azalırken şeker miktarı (asal olarak sakaroz) artmaktadır.İşte kışın pazarlanan patateste görülen tatlı lezzetin nedeni bu açıklamadır.Yapılan araştırmaya göre patates yumrularında nişastanın şekere dönüşümü esasen fosforilizasyon sonucu ortaya çıkar.Düşük sıcaklıklarda saklanan patates yumrularında glikoz-1-fosfat yüksek iken normal şartlarda saklananlarda yok denecek kadar azdır.Bunlarda ise glikoz-6-fosfat fruktoz-6-fosfat bulunmaktadır.Nişastanın sentezi ve hidrolizi üzerine sıcaklığın etkisi bitki türüne göre önemli değişiklik gösterir.Olgunlaşan muz meyvelerinde nişastanın hidrolizi 21-26 oC’de hızlanırken 10 oC’de pratik olarak durmaktadır. b) Su:Solma noktasında su kapsayan bitki yapraklarında hemen hemen nişastanın tamamı şekere dönüşür. Genellikle bitkilerde suyun yeterli düzeyde bulunması ise nişasta sentezini olumlu yönde etkiler.O nedenle büyüme ve gelişme için bütün bitkilerde su muhteviyatı daima solma nokatsının üzerinde olmalıdır. c) Hidrojen iyonu konsantrasyonu (pH):Ortamın pH’sı enzimlerin faaliyetleri üzerine etkili olmak suretiyle karbonhidratların dönüşümlerini dolaylı olarak etkiler.Kuşkusuz ortamın pH’sı sadece enzimatik tepkimeler üzerinde değil,aynı zamanda da tepkimenin yönü üzerinde de etkili olmaktadır.Geri dönüşü olan karbonhidrat dönüşüm reaksiyonları daha çok stoma hücrelerinde görülmektedir. d) Şeker konsantrasyonu:Bitki hücrelerinde şeker konsantrasyonunun yüksek olması kural olarak nişasta sentezinin fazla olmasını,az olmasını da nişasta sentezinin yavaş olması sağlar.Fotosentezin yüksek düzeyde olduğu ve dolayısıyla bitkide fazla miktarda şekerin oluştuğu şartlarda artmaktadır.karşıt durumda azalmaktadır.Karanlık ortamda bırakılan bitkilerde nişasta miktarı süratle azalır.Çünkü fotosentez yapamadığı için su alıp nişastayı glikoza çevirip harcar.

http://www.biyologlar.com/bitkilerde-azot-kapsamayan-organik-bilesikler-1

Doğurganlık - Fertilite Nedir

Kadında Doğurganlık Kadınlarda doğurganlık, gebe kalabilme ve bebek sahibi olabilmektir. Bir kadında doğurganlık13 yaş civarında adetlerin başlamasıyla başlar ve genellikle bu 45 yaş civarında sonlanır. Fakat potansiyel olarak doğurganlık yaklaşık 51 yaş civarına dek yani menapoza kadar sürer. Kız çocuğunun anne karnında 5 aylıkken sahip olduğu yumurta sayısı yaklaşık 6-7 milyondur, bu sayı doğumda 1-2 milyona düşer, çocukluk çağında yavaş yavaş azalarak ergenlik döneminden itibaren ayda bir yumurta yumurtlamak suretiyle bu azalma menopoza kadar aylık ortalama 350-400 yumurta harcayarak devam eder. Bu yumurtalar yumurtalıklar içerisinde follikül denen içi sıvı ile dolu boşluklarda saklanırlar. Küçük kız doğurganlık çağına girdiğinde aylık menstrual sikluslar (adet) başlar. Her siklus sırasında yumurtalık bir yumurta geliştirir. Nadiren birden çokta olabilir. Bu yumurta erkekten gelen sperm hücresi ile birleşirse gebelik oluşur. Yumurta hücresinin gelişimi beyinde hipotalamus ve hipofiz denen bölgelerden ve yumurtalıklardan salgılanan bazı hormonların ve kimyasalların ince dengesine bağlıdır. Erkekte Doğurganlık Erkekte doğurganlık. Kadını hamile bırakabilme yetisi anlamına gelir. Bunu sağlayabilmek için. Erkeğin üreme sisteminin sperm üretebilme ve depolayabilmesi ayrıca depolanan bu spermlerin vucut dışına taşınabilmesi gereklidir. Kadının hayatı boyunca üreteceği yumurta hücreleriyle doğmasına karşın erkek hayatı boyunca sürekli yeni sperm üretebilme yeteneğine sahiptir. Erkek. Puberteye eriştikten sonra . sperm depoları yaklaşık her 72 günde bir yenilenmektedir. Doğurganlık (fertilite) Terimleri: Fertilizasyon: Sperm ve ovumun birleşmek üzere biraraya gelmesi Konsepsiyon: Gebeliğin oluşması (döllenme) Gebelik: Ovum ve spermin birleşmesinden sonra. Kadın üreme sisteminde embriyo veya fetusun gelişmesi. Hayatın Temeli İnsanlar hayata tek bir hücre, döllenmiş yumurta ya da zigot olarak başlarlar. Bu hücrelerin herbirinin çekirdekciklerinde DNA denilen (deoxyribonucleic acid) ve biraraya gelerek genleri oluşturan bilgi kodları vardır. Bu genler'de kromozomlar olarak adlandırılan yapıları oluştururlar. Bir insan zigotu 23 çiftten oluşan 46 adet kromozom içerir. Bunların yarısı babadan diğer yarısı ise anneden gelir. DNA bilgi ile depolu olması yanında kendini kopyalama yeteneğine de sahiptir. Bu kopyalama yeteneği olmaksızın hücreler çoğalamazlar ve bilgileri kuşaklar boyunca iletemezler. Gebelik Şansını (Doğurganlığı) Artırmak İçin Neler Yapılabilir? Sigara Sigara kadınlarda fertiliteyi düşürebilir. Pasif içicilik de aynı şekilde etki eder. Sigara içimi ile alınan nikotin, yumurtalıklardaki hücreleri etkileyerek, kadının yumurtasının genetik anomalilere daha fazla eğilimli olmasına neden oluyor. Nikotin, yumurta hücrelerini bozmasının yanında menopozun beklenenden erken gelmesine de yol açabiliyor. Menopoz öncesinde de sigara içen kadınların yumurtalıkları sağlıklı yumurtalar üretmeye direnç gösterir hale gelir. Sigara kullanımı doğal gebe kalmayı zorlaştırırken, düşükleri hızlandırır. Gebelikte sigara ve alkol kullanan kadınlarda düşük oranının yüksek olduğu bildiriliyor. Erkeklerde de sigara içmekle sperm kalitesinin düşüşü arasindaki bağ gösterilmiş olup bunun fertilite üzerindeki etkisi henüz çok açık değildir. Sigaranin bırakılmasının genel olarak sağlık kalitesini yükselteceği açıktır. Eğer sigara kullanıyorsanız, tüm yaşantınız ve üreme sağlığınız için bırakmanızı öneririz. Stres Stresin infertilite üzerine etkisi belirgindir. Örneğin stres nedeniyle kadında anovulasyon (yumurtlamanın oluşmaması) olabilir. Çok açıktır ki Kısırlık tedavisi, ister klasik ister tüp bebek yöntemleri ile olsun, çiftler üzerinde büyük stres, kaygı, gerginlik, korku, uykusuzluk, iç sıkıntısı, depresyon gibi değişik derecelerde psikolojik baskılara neden olabilmektedir. Bazı kısırlık vakalarında çok kısa tedavi süresi veya ilk denemede gebe kalma gerçekleştiğinde bu tür psikolojik sıkıntılar daha hafif atlatılabiliyor. Diğer taraftan, uzun süredir tedavi görmelerine rağmen gebe kalamayan çiftlerde sorunlar daha ağır hale gelebiliyor. Tedavi süresince merkezimizde psikoloğumuzdan bu konuda destek almanız bu stresi yenmekte önemli katkı sağlayacaktır. Yapılan çalışmalar, stresi azaltmanın başarı şansınızı artırabileceğini göstermiştir. Kafein Yapılan çalışmalar günlük kafein alımının günde 50mg’ın altında tutulması gerektiğini göstermiştir. Böylece kafeinin gebelik şansını düşürücü etkisinden kaçınılabilir. Kafein, kahve, kola. çay ve çikolatada değişik miktarlarda bulunmaktadır. Kilo Kadının kilosunun boyu ile uyumlu olup olmadığını belirlemek için ‘vücut kitle indeksi (BMI)’ kullanılır. Bir kadının BMI’sı 20-24 arasındaysa normal, 25-29 arasındaysa kilolu, 30-39 arasındaysa yüksek kilolu, 40 ve üzerindeyse aşırı kilolu olarak değerlendirilir. Vücut-kütle indeksi (BMI) 30’un üzerinde olan bayanlara kilo vermeleri gebelik şansını artıracağı gibi gebe kalınması durumunda oluşacak aşırı kiloların sebep olduğu kilolu bebek doğurma, zor doğum ve sezeryanla doğuma gerek duyulma eğilimi gibi olumsuzluklar da önlenmektedir. Bunun yanısıra kilonun aşırı düşük oluşu da doğurganlığı olumsuz etkileyen faktörlerdendir. BMI’I 20nin altında olan bayanlarda menstrual siklus bozulabilmekte hatta bazı beslenme bozuklukları ve aşırı egzersiz ile oluşan ileri derecede kilo kayıplarında adetler tamamıyla kaybolmaktadır. Yapılan çalışmalar, düşük kilolu kadınların, ortalama 2.700 ila 3.600 kg aldıktan sonra yarısından fazlasınınkendiliğinden gebe kaldıklarını göstermiştir. Vitamin Desteği Yapılan çalışmalar, gebelik oluşmadan önce folik asit kullanımının, bebeklerde nöral tüp defekti görülme olasılığını neredeyse %50 azalttığını göstermiştir. Bu nedenle Gebe kalmayı planlayan kadınların Gebelikten 1-2 ay önce her gün en az 0.4 mg folik asit almalarını tavsiye ediyoruz. Marul, avocado. dere otu, ceviz, badem, brokoli, bezelye, ıspanak, kavun, , muz, portakal, lahana, yeşil biber, unlu mamuller ve ekmek çok iyi birer folik asit kaynağıdır. Yeterli folik asit alındığından emin olamıyorsanız, folik asit içeren multivitamin preparatlarını kullanabilirsiniz. Cinsel İlişki Planı Yirmisekiz günde adet gören bir hasta için ortalama yumurtlama günü 14. gün, 30 günde bir adet gören hasta için 16. gündür. Yani yumurtlama sonrası dönem sabit olup, genellikle 14 gündür. Bu nedenle yumurtlama dönemi düzenli adet gören hastalarda iki adet arası dönemden 14 çıkarılarak bulunabilir. Ancak yumurtlama günü +/- 3 gün değişiklik gösterebilir. Bu nedenle gebelik şansını artırmak için aktif cinsel ilişki dönemi uzatılmalıdır. Düzenli ve 28 günde bir adet gören hastalarda adetin 10-17 günlerinde (kanamanın 1.gününden saymak gerekir) iki günde bir ilişkide bulunulduğu takdirde sorun yoksa 6 ayın sonuunda çiftlerin %75’i gebe kalır.

http://www.biyologlar.com/dogurganlik-fertilite-nedir

BİTKİSEL DOKULAR

Bir hücreli canlılarda hayatsal olayların sürdürülmesinde, organel adı verilen yapılar görev alır.Çok hücreli canlılarda ise belirli görevleri yapmak üzere özelleşmiş hücre toplulukları vardır.Organizmada belirli görevlerini yapan özelleşmiş hücre topluluklarına doku denir.Dokularda özelleşme çok özelleşmiştir.Dokuları inceleyen bilim dalına doku bilimi (Histoloji) denir. Dokular, bitkisel ve hayvansal olmak üzere iki bölümde incelenir. 1.Bitkisel Dokular: Bitkisel dokular bölünür (Sürgen-meristem) doku ve bölünmez (değişmez) doku olarak iki bölümde incelenir.Bununla birlikte bazı bölünmez dokular belirli koşullar altında tekrar bölünme özelliği kazana bilirler. Birincil bölünür doku ve ikincil bölünür dokudan , bölünmez doku oluşur. Bölünmez doku ise değişime uğrayarak ikincil (meristem dokuyu oluşturabilir. A.Bölünür (Sürgen-Meristem) Doku * Meristem doku hücreleri , canlı, ince zarlı, bol sitoplazmalı, büyük çekirdeklidir.Kofulları küçük ya da yoktur.Hücre çeperleri incedir.Hücre arası boşlukları yoktur.Metabolizmaları hızlıdır. * Meristem hücreleri sürekli mitoz bölünmeyle çoğalır. * Bitkilerde gelişme ve farklılaşmayı sağlar.Boyca uzamayı ve enine büyümeyi meydana getirir. * Hormon üretirler. * Meristem doku bitkide kök, gövde, yaprak ve yan sürgün uçlarında bulunur. * Bölünür doku kökenine göre birincil meristem ve ikincil meristem olmak üzere ikiye ayrılır. * Sürgen doku hücrelerinde koful bulunmaz. 1.Birincil Meristem Doku: * Bitkinin ömrü boşunca bölünme özelliğine sahip hücrelerin oluşturduğu dokudur. * Bitkinin kök ve gövde ucunda bulunur.Bitkinin boyuna uzamasını sağlar.Bu bölgeye büyüme noktası (büyüme konisi) denir.Uçtaki büyüme konileri sayesinde bitkide büyüme sınırsızdır.Büyüme noktaları, kökte kaliptra (yüksük), gövde de ise genç yapraklar tarafından korunur.Kaliptra zedelendiğinde, içteki bölünür doku çoğalarak kaliptrayı onarır. * Kök ve gövde büyüme bölgelerinde dıştan içe doğru dermatojen, periblem ve plerom olmak üzere üç farklı tabaka bulunur.Bu tabakaların faaliyeti sonucu, bitkinin farklı olan değişmez dokuları meydana gelir.Dermatojen epidermisi, periblem kabuk bölgesini,plerom da merkezi silindiri oluşturur. 2.İkinci Meristem Doku: * Değişmez doku hücrelerinin sonradan mitoz bölünme kazanması ile meydana gelir.Böylece iç kambiyum ve dış kambiyum (mantar kambiyumu*fellojen) oluşur. * İç kambiyum, kök ve gövdede odun ve soymuk boruları meydana getirerek enine büyümeyi sağlar.Mantar kambiyumu mantar dokuyu oluşturur.Bu doku, bitkide mantarlaşma oluşturarak bitkinin dış etkenlerinden korunmasını sağlar. * Ilıman bölgelerdeki çok yıllık iki çenekli bitkilerde , iç kambiyum dan ilk baharda büyük hücreler, sonbaharda küçük hücreler oluşur.Her yıl tekrarlanan bu yapılar bitkinin yaşının hesaplanmasını sağlar.Bunlara yıllık halkalar denir. B.Bölünmez Doku * Birincil veya ikincil meristem doku hücrelerinin gelişme ve farklılaşmasından oluşur. * Değişmez dokuları meydana getiren hücreler bölünebilme özelliğini kaybederler. * Hücreleri, çoğunlukla meristem hücrelerinden daha büyüktür ve stoplazmaları az olup, kofulları çok sayıdadır.Çekirdekleri küçüktür.Hücreler arasında boşluk bulunur. * Bazılarının hücre duvarına odun (lignin) ve mantar özü (süberin) gibi maddeler birikerek kalınlaşmaya sebep olur.Odun borularında olduğu gibi, bazı hücreler ölü olabilir. * Bölünmez dokular yapı ve görevlerine göre; parankima dokusu, koruyucu doku,iletken doku, destek doku ve salgı doku olmak üzere beş gruba ayrılır. 1.Parankima (Temel) Doku: * Parankima kök ve gövdenin korteksinde,yaprağın mezofil tabakasında ve diğer dokuların etrafında bulunur.Bu nedenle temel doku adını alır. * Hücreleri canlı , ince zarlı, bol sitoplazmalı,kofulları küçük ve az sayıdadır. Ancak odun borusu ve öz bölgesi parankimasında ölü parankima hücrelerine de rastlanır. * Yaptıkları görevlere göre dörde ayrılır. a.Özümleme parankiması: Yeşil bitkilerin yapraklarında ( palizat ve sünger parankiması), genç gövde ve dalların da bulunur. Hücrelerinde bol kloroplast vardır.Fotosentez ile organik besin yaparlar. b.İletim parankiması: Özümleme yani foto sentez yapan dokularla iletim demetleri arasında bulunur.İletim parankiması bu iki doku arasında su ve besin taşınmasını sağlar. kloroplast yoktur. c.Depo parankiması: Bitkinin kök,gövde,meyve ve tohum gibi organlarında bulunur.Su ve besin depolar.Depo parankiması örneğin patates yumrunda nişasta depolar. d.Havalandırma parankiması Oksijen temininde güçlükle karşılaşan bataklık ve su bitkilerinin kök ve gövdelerinde bulunur.Hücre arasında biriken hava solunumda kullanılır. 2.Koruyucu Doku: * Kök,gövde,yaprak ve meyvelerin üzerine örter. * Bitkileri dış etkilerden korur. * Bitkilerin su ve besin kaybını önler. * Tek ya da çok sıralı hücrelerden oluşur.Hücreleri kalın çeperli olup,alt kısmındaki ince çeperli hücreleri korurlar.Sık dizilişli ve klorofilsizdirler. * Koruyucu dokular,epidermis ve mantar doku (periderm) olmak üzere ikiye ayrılır. a.Epidermis * Otsu bitkilerde odunsu bitkilerin kök, genç dal ve yapraklarının üzerini örten bir dokudur. * Dermatojen hücrelerinin farklılaşmasıyla meydana gelir. * Hücreleri canlı,az sitoplazmalı,büyük kofullu ,klofilsiz,çoğunlukla tek tabaka halinde bulunur.Epidermisteki hücreler güneş ışığının yaprağın alt kısımlarına iletilmesini sağlar. * Epidermis hücrelerinden bazıları farklılaşarak çeşitli şekil ve görevleri olan tüyleri ve stoma (gözenek) yı oluşturur.Tüyler çeşitli şekillerde olup farklı görevler yapar.Tek hücreli olanlara basit,çok hücreli olanlara bileşik tüy denir. * Stoma, epidermis hücreleri arasındaki bol kloroplastlı hücrelerdir.Stomalar çoğunlukla yaprakların alt yüzeyinde bulunup bitkinin gaz alış verişini ve terleme ile bitki de su miktarını düzenler.Dikodiledon bitkilerde stomalar fasulye tanesi şeklinde,monokotiledon bitkilerde stomalar kol kemiği şeklindedir * Bazı epidermis hücrelerinin dış çeperleri kalınlaşarak, kutikula adı verilen koruyucu bir tabaka oluşturur.Kutikula,bitkinin su kaybını azaltır.Su bitkileri dışındaki bitkilerin epidermis hücreleri daima kutikula ile örtülüdür.Bazı bitkilerde kutikulanın üzeri mumsu maddelerden oluşmuş tabaka ile örtülerek bitkinin su kaybı en aza indirilir.Bu tabaka nemli bölgelerde yaşayanlarda ince , kurak bölgelerde yaşayanlarda kalındır. b.Mantar (Periderm) Doku: * Mantar doku çok yıllık bitkilerin kök ve gövdelerinin üzerinde bulunur. * Bitki yaşlandıkça ölen epidermisin yerini mantar doku alır. * Mantar hücreleri , mantar kambiyumu (fellojen) tarafında meydana getirilir. * Hücreleri ölü olup,çeperlerinde süberin denilen su geçirmeyen madde birikir. * Stomaların yerini kovucuk (lentisel) denilen yapılar alır.Gaz alış verişini sağlar. * Mantar doku,yaprak sapı ile gövde arasında oluştuğunda su ve besinin yaprağa geçişine engel olur.Bu yaprak dökümüne neden olur. Stoma açılıp kapanabilir, kovucuk ise devamlı açıktır.Stoma hücreleri kloroplastlıdır, bu nedenle fotosentez yaparlar.Kovucuk yapısında ise kloroplast yoktur. 3.Destek Doku: * Bitkilere şekil ve desteklik sağlar. * Hücrelerde selüloz çeper desteklik görevi yapar. * Otsu ve büyümekte olan bitkilerde dayanıklılık hücrelerin turgor durumu ile sağlanır. * Çok yıllık odunsu bitkilerde iletim demetleri da desteklik işine yardımcı olur. * Çok yıllık bitkilerde ; pek doku (Kollenkima) ve sert doku (Sklerankima) olmak üzere iki destek doku vardır. a.Pek Doku(Kollenkima) * Bitkinin gövde,yaprak ve sapında görülür. * Hücreleri canlıdır.Çekirdek ve sitoplazmaları vardır. * Hücre çeperleri selüloz ve pektin birikmesi ile kalınlaşmıştır. * Kalınlaşma hücre çeperlerinin köşelerinde olursa köşe kollenkiması hücre çeperinin her tarafında olursa levha kollenkiması adını alır. b.Sert Doku(Sklerankima) * Hücreleri cansızdır.Sitoplazma ve çekirdekleri kaybolmuştur. * Çeperleri selüloz ve lignin birikmesiyle kalınlaşmıştır. * Keten,kenevir, sarımsak gibi bitkilerde mekik şeklinde sklerankima lifleri halinde bulunur. * Armut ve ayva da çekirdeğe yakın taş hücrelerinden oluşan sert doku bulunur.Fındık ve ceviz kabuğun dada bulunur. 4.İletim Doku: * Damarsız bitkiler dışında,karada yaşayan tüm bitkilerde bulunur. * Bitkilerde su ve organik maddelerin taşınmasını sağlar. * Büyüme bölgesindeki plerom hücrelerinin değişmesiyle meydana gelir. * Yapısı ve taşıdığı maddelere göre odun boruları(Ksilem) ve soymuk(floem) olmak üzere ikiye ayrılır. a.Odun boruları (Ksilem): * Bölünür doku hücreleri üst üste gelerek zamanla çekirdek ve sitoplazmalarını kaybeder.Hücrelerin kenarlarında odun özü birikerek kalınlaşmalar oluşur.Hücreler arasındaki enine zarlar eriyerek kaybolur.Böylece , ince bir boru şeklindeki odun boruları oluşur.Odun boruları demetler halinde bulunur. * Olgun bir ağaç gövdesinde odun borularını meydana getiren hücreler cansızdır.Çapı geniş olanlarına trake,ince olanlarına trakeit adı verilir. * Odun borularının çeperlerinde nokta,basamak, sarmal ve halka şekilli lignin (odun özü) birikir.Lignin odun borularını kalınlaştırır ve sağlamlığını artırır. * Köklerle alınan su ve suda erimiş madensel tuzları bitkinin gövde,dal,yaprak gibi organlarına taşırlar. * Odun borularında taşınma aşağından yukarıya doğrudur. * Taşınma hızı hızlıdır. b.Soymuk boruları(Floem) * Tek sıra halindeki üst üstte dizilmiş canlı hücrelerden oluşur. * Canlı meristem hücrelerinin boyu uzar ve içinde kofullar meydana gelir.Sitoplazma ve çekirdek çeperlere çekilir.Hücre arasında zarlar kalburlu bir görünüm alır.Bu hücreler canlılıklarını kaybetmezler. * Fotosentezle meydana gelen organik bileşikleri yapraklardan diğer organlara taşır. * Bazı bitkilerin köklerinde sentezlenen amino asitlerde yaprak ve diğer organlara taşınır. * Soymuk borularında madde taşınması çift yönlüdür. * Soymuk boru hücreleri canlı olduğundan, taşınma hızı yavaştır. Gövdesi odunsu olan tohumlu bitkilerde ksilem ve floem arasında kambiyum vardır.Kambiyum devamlı bölünerek içe doğru ksilem , dışa doğru floem hücrelerini verir.Bir çenekli bitkilerde kambiyum yoktur.Gövde enine büyümez . İletim demetleri dağınık yerleşmiştir. 5.Salgı Doku * Hücreleri canlı olup, bol sitoplazmalı , büyük çekirdekli ve küçük kofulludur. * Hücreler tek tek ya da gruplar halinde diğer dokular arasına dağılmıştır. * Salgılar işlevlerine göre ikiye ayrılır. a.Hücre içi salgılar:Salgı maddeleri hücre içinde depo edilir. Salgı hücreleri:Gül,defne yapraklarında bulunur. Süt boruları : Sütleğen, incirde görülür.Süt boruları içinde nişasta tanecikleri vardır. b.Hücre dışı salgılar:Salgı maddeleri hücre çeperlerinden dışarıya atılır. Salgı cepleri:Portakal ve limonda bulunur. Salgı kanalları:Çamlarda reçine kanalları şeklindedir.Reçine,tanin gibi antiseptik içeren salgılar,bitkiyi zararlı hayvanlardan ve çürümekten korur. Salgı tüyleri:Sardunya bitkisinde bulunur. Bal özü:Tozlaşma ve döllenmenin olması için böcekleri çeker. Sindirim bezleri:Böcekçil bitkilerde sindirim enzimi böcek hücre dışı sindirime uğrar. Su savakları(hidatot):Suyun damla halinde bitkiden çıkmasını sağlar.

http://www.biyologlar.com/bitkisel-dokular-3

Hayvanların Organizma Alemindeki Yeri

Organizma alemi içinde hayvanların morfolojik ve ekolojik olarak ayrı bir yeri vardır. Hayvanlar diğer canlılardan kendilerine özgü karakterleri, yaşam biçimleri ile sıyrılırlar.

http://www.biyologlar.com/hayvanlarin-organizma-alemindeki-yeri

Tavuklar sperm üretir mi

YUMURTANIN OLUŞUMU Tavuklarda üreme sistemi yumurtalık, yumurta kanalı ve kloaka’dan ibarettir. Yumurtalıklar çift olup; böbreklerin önü, akciğerlerin arkası ve vücut boşluğunun sırt tarafına yerleşmişlerdir. Embriyonun ilk gelişimi safhasında sağlı sollu iki yumurtalık ve yumurta kanalı gelişir. Ancak daha sonra sağ kısmı körelir ve civciv kuluçkadan çıktığında sadece sol yumurtalık ve sol yumurta kanalı fonksiyoneldir. Yumurta verimi başlamadan yumurtalık, içinde oosit ihtiva eden küçük foliküller yığınıdır. Bazıları görünebilecek büyüklükte olup, diğerleri mikroskobik yapıdadır. Tavuğun yumurta kanalı karın boşluğunun sol tarafında bulunur ve karın boşluğunun önemli bir kısmını kaplar. Yumurta kanalı, sarının geçtiği ve yumurtanın diğer kısımlarının salgılandığı kıvrımlı ve uzun bir kanal (boru) şeklindedir. Yumurta kanalı belirgin bir şekilde farklılaşmış beş ayrı bölgeye ayrılır. Bunlar İnfindibulum, magnum, isthmus, uterus ve vaginadır. 1. OVULASYON Her ovum, gelişmesi için kan yoluyla besin maddeleri sağlayan bir folikül sapı ile yumurtalığa tutunmuş ve foliküler membran denen bir zarla sarılmıştır. Yumurtalığa bağlı ovum olgunlaştığında yumurtalıktan salgılanan progesteron hormonu, LH hormonu salgılanmasına neden olan hipotalamusu uyarır. LH hormonu da yumurtalıktan ovumun serbest bırakılması için olgun folikülün stigma yerinden kopmasına veya folikülün yırtılmasına neden olur. Böylece ovum yumurtalıktan serbest bırakılır. Bu olay ovulasyon olarak bilinir.Yumurta sarısı daha sonra vitellin zarı ile sarılır. 2. İNFİNDİBULUMDAN GEÇİŞ Ovulasyondan sonra vücut boşluğuna düşen ovum, yumurta kanalının ilk kısmı olan huni şeklindeki infindibulum da yakalanır. Ovum burada 20 dakika kaldıktan sonra ardı ardına seri kontraksiyonlarla yumurta kanalından ilerlemeye zorlanır. Döllenmenin meydana geldiği yer infindibulumdur. Yumurta, infindubulumu geçtikten ve sarı üzerine ak tabakaları oluşmaya başladıktan sonra yumurtanın döllenmesi mümkün değildir. 3. MAGNUMDAN GEÇİŞ Magnum 33 cm ile yumurta kanalının en uzun kısmıdır. Yumurtanın magnumdan geçmesi yaklaşık 3 saat alır. Yumurta akının önemli bir kısmı magnumda oluşmaktadır. Bir yumurta akı 4 ayrı tabakadan oluşur. İçten dışa doğru bu tabakalar ve yüzdesi şöyledir: · Sarıyı saran (Çok ince koyu ak) şalaz tabakası % 2.7 · İç sulu ak %17.3 · Koyu ak %57 · Dış sulu ak %23 Albumenin önemli kısmı magnum da meydana getirilir ancak albumenin dış sulu ak kısmı uterusta salgılanan sıvı albumen veya sulu uterin sıvısı daha önce isthmusta oluşan kabuk altı zarlarında geçerek yumurta içine girer ve albumenin dış sulu ak kısmının oluşumu burada tamamlanmış olur. 4. KABUK ALTI ZARLARININ OLUŞUMU Kabuk altı zarları isthmusta yumurtaya eklenir. Zarlar ağ şeklinde örülmüş protein liftlerinden oluşur ve kağıt gibi ince yapılıdır. Önce kabuk iç zarı ve daha sonra kabuk dış zarı oluşur. Kabuk zarları hava ve suyu geçirme özelliğine sahiptirler. Ancak bakteri ve organizmaların geçişlerine engel olurlar. Ayrıca yumurta içeriğinin hızlı nem kaybını önlerler. 5. HAVA KESESİNİN OLUŞMASI Yumurta yumurtlamadan önce iç ve dış kabuk altı zarları birbirine yapışıktır. Yumurta yumurtlandığı anda vücut sıcaklığında yani 41 C° ‘dir. Çevre sıcaklığının daha düşük olması sebebiyle kısa zamanda soğur. Bu durum yumurta kabuğu içindeki kısımların büzülmesine yol açar. Bu sırada porların (bir yumurtada yaklaşık 7000-17000 adet por bulunur.) yoğun olduğu kısımdan, yani küt uçtan, içeri doğru hava girer ve iki zar tabakası arasında küçük bir hava kesesi oluşturur. Genellikle hava kesesi yaz aylarında kış aylarındakinden daha küçüktür. Yumurta soğudukça, su kaybı arttıkça veya yumurta bayatladıkça hava kesesi büyür. Hava kesesi lamba yardımıyla kontrol edilebilir. 6. UTERUSTAN GEÇİŞ VE YUMURTA KABUĞUNUN OLUŞMASI Uterus kabuk bezi olarak ta bilinir. Yumurta tavuklarında yaklaşık 10 -13 cm uzunluğundadır. Yumurta kabuğunun oluştuğu yerdir. Yumurta kanalında 18 – 20 saat ile en uzun süre burada kalır. Yumurta kabuğunun kalsifikasyonu yumurta uterusa girmeden önce başlar. Yumurta henüz isthmusu terk etmeden önce dış kabuk zarı üzerinde küçük kalsiyum zerrecikleri görülür. Kabuğa kalsiyum depolama hızı yumurtanı uterustaki ilk üç saatinde yavaştır, sonra süratle artar. Yumurta kabuğunun oluşturulması uterustaki kalsiyum iyonlarının ve kan metabolik karbondioksit konsantrasyonun yeterli düzeyde olmasına bağlıdır. 7. VAGİNADAN GEÇİŞ Yumurta kanalının uterustan sonraki bölümü vajinadır. Verim dönemindeki bir tavukta 12 cm uzunluktadır. Vajinanın yumurta oluşumunda herhangi bir fonksiyonu yoktur. Yumurta vajinada birkaç dakika kalabilir ve kabukta gözenekleri örten bloom veya kütikül olarak bilenen bir materyal ile kaplanır. 8. KLOAKADAN GEÇİŞ VE YUMURTLAMA Normal oluşmuş yumurta, yumurta kanalı boyunca sivri uç önde olacak şekilde ilerler ve yumurtlama öncesi yön değiştirerek küt uç öne geçer yumurtanın kolayca yumurtlanması gerçekleştirilir. Özet olarak; tavuklarda sadece sol yumurtalık faaliyettedir. Yumurta 25 saatte oluşur. 30 dakika sonra, yeniden ovulasyon şekillenebilir. Ovaryum: Yumurta sarısının folliküllerde gelişmesini sağlar, İnfindibulum: Ovulasyon sonucu olgunlaşmış, zarla kaplı sarıyı yakalar, peristaltik hareketlerle oviduktun diğer kısımlarına (Magnuma) gönderir. Ayrıca sperm deposu, döllenme burada olur. Magnum: Ovomucin sekresyonu ile yumurta akının oluşumuna yardım eder, şalazalar oluşur. İsthmus: Yumurtaya su ve mineral maddelerin ilavesiyle iki kabuk zarı oluşur. Uterus: Yumurta akı tamamlanıp, kireçli sıvı ile kabuktaki pigmentler oluşur. Vajina: Yumurta, kütikül ile örtülür. Kloaka: Olgunlaşmış yumurta vajinadan gelip kloakadan çıkar (1,5,15).   TAVUKLARDA EMBRİYO GELİŞİMİ VE KULUÇKA Embriyoloji canlı organizmaların oluşumu ve ilk gelişmelerini inceleyen bir bilimdir. Döllenmeden itibaren doğum veya kuluçka arasında meydana gelen biyolojik olayları ve gelişmeyi konu alır. Bir tek mikroskobik hücrenin (döllenmiş yumurta veya zigot) gelişimini ve tam olarak yaşayabilen bir canlı oluşumuna kadar geçen safhayı inceler. Kanatlılarda embriyoloji kapsamında döllenme, hücre bölünmesi, farklılaşma, gelişme ve kuluçka olayları yer alır. Döllenme ve Civciv Embriyosunun Gelişimi Tavuklarda normal kuluçka dönemi 21 gündür. Ancak bu sürede bazı farklılıklar görülebilir. Irk, cinsiyet, mevsim, yumurtanın bekleme süresi, büyüklüğü ve kabuk kalitesi ile kuluçkada uygulanan koşullara bağlı olarak kuluçka süresi değişebilmektedir. Örneğin Leghorn ve diğer hafif ırklarda, diğer ağır ırklara nazaran kuluçka süresi birkaç saat daha kısadır. Tablo 5. bazı kanatlılar için kuluçka süreleri verilmiştir. Döllenme Döllenme, normal olarak tabii bir işlemdir. Ancak, yapay yolla horozlardan ejekulat alınarak tavukların yapay döllenmesi de bugün uygulanan bir yöntemdir. Yapay tohumlamadan hemen sonra, sperm hücreleri tavuğun yumurta kanalının üst kısmında (infundibulum) bulunan uterovaginal bölgeye ve infundibular spermatozoa depo bezlerine inerler. Yumurta kanalında yumurta yok ise, bu ilerleme veya yolculuk 30 dakika sürer. Döllenme, sperm hücresinin (erkek gamet) ovuma (dişi gamet) girmesi ve bir tek hücre (zigot) içerisinde çekirdeklerin birleşmesi ve kromozomların çiftleşmesi işlemidir. Ovulasyondan sonra, ovum hücresi serbest bırakıldıktan sonra, 15 dakika içerisinde kendisine ulaşabilen yüzlerce sperm hücresinden birisiyle birleşir. Bu sperm hücresi vitellin zarından geçerek ovuma girer ve çekirdekler birleşir. Döllenen ovum, zigot olarak ifade edilir. Döllenme olayı infundibulumda gerçekleşir. Bir çiftleşmeden yaklaşık 23-26 saat sonra döllü yumurta alınabilir. Ancak sürüde maksimum döllülüğe ulaşılabilmesi veya bütün tavuklardan döllü yumurta alınabilmesi sürüye horoz katımından yaklaşık 3 gün sonra mümkün olabilecektir. Düşük kümes sıcaklığı horoz testislerinin aktivitesini azaltır. Bu bakımdan horoz ve tavuklar için optimum çevre sıcaklığı 19°C’ dir. Sürüde çiftleşme programının bitimiyle horozlar, tavuklar arasından alındıktan sonra yaklaşık 4 hafta süreyle döllü yumurta alınabilir. Ancak horozların sürüden ayrılmasını izleyen 4-5 günden sonra döllü yumurtaların yüzdesi süratle düşmektedir. Yumurta Yumurtlanmadan Önceki Embriyo Gelişimi Embriyonik gelişmenin ilk safhası 40.6-41.7°C arasında değişen vücut sıcaklığında, tavuk vücudunda olmaktadır. Bu safha ise döllenme ile başlar. Embriyonik gelişmenin toplam süresinin yaklaşık %4.5’i yumurta kanalında olmaktadır. Ortalama olarak kuluçka süresi 22 gün olup bunun bir günü tavuk vücudunda, 21 günü de tavuk dışında, genellikle kuluçka makinesinde geçmektedir. Ancak tavuklarda kuluçka süresi dendiğinde kuluçka makinesinde veya gurk tavuğun altında geçen 21 günlük süre anlaşılır. Yumurtlanmadan önceki embriyonik gelişim, ovulasyondan sonraki 15 dakika içerisinde zigotun oluşumu ile infundibulumda başlatılır. Döllenmeden yaklaşık 3 saat sonra, yumurta istmusa girdiğinde ilk hücre bölünmesi ile 2 hücre meydana gelir. Bunu izleyen 20 dakika içerisinde 2. hücre bölünmesi meydana gelir ve 4 hücre oluşur. Uterusa girişte 16 hücre oluşur ve uterustaki ilk 4 saat içerisinde gelişen embriyodaki hücre sayısı, aynı şekilde geometrik bölünmeler sonucu 256’yı bulur. Yumurta henüz yumurta kanalında iken disk şeklinde bir hücre tabakası oluşur. Biastodermin merkezinde bulunan hücreler blastocoele olarak adlandırılan bir boşluk oluşturmak üzere sarının yüzeyinden ayrılırlar. Embriyonik gelişmenin gerçekleştiği yer bunun merkezidir. Blastodermin bu merkez kısmı saydamdır. Sarı ile temas halinde kalan saydam olmayan dış kısma nazaran daha koyu renklidir. Bu satha döllenmeden sonraki yaklaşık 24 saat sonra ve yumurta yumurtlamadan hemen önce meydana gelir. İlk hücre farklılaşması uterusta yumurta yumurtlanmadan hemen önce meydana gelir. Yani blastoderm iki hücre tabakası halinde farklılaşır. İç tabaka endoderm, dış tabaka ise ektoderm olarak adlandırılır. Yumurta Yumurtlandıktan Sonraki Embriyo Gelişimi Yumurta kuluçka makinesine konuncaya kadar embriyo bir uyku devresindedir. Embriyonik gelişmenin kuluçka makinesinde ihtiyaç duyduğu optimum sıcaklık 37.5°C’ dir. Ancak 24°C üzerindeki sıcaklıklarda da embriyo gelişebilecektir. Yumurtlama sonrasında embriyonik gelişmeyi tam olarak durdurmak için 15-18°C’ler arasında bir çevre sıcaklığı sağlanmalıdır. Bu amaçla kuluçkalık yumurtaların kuluçka makinesine konmadan önce muhafaza edildikleri yerin sıcaklığının bu optimum sınırlar içerisinde olmasına dikkat edilmelidir. Kuluçkanın birinci gününde embriyonun uzun ekseni boyunca oluşan yapılardan endoderm, ektoderm ve mesoderm adı verilen hücre tabakaları farklılaşarak gelişmeye başlar. Vücudun bütün organ ve kısımları bu üç hücre tabakasından meydana gelir. Bu üç tabakanın herbirinden oluşan organ ve kısımlar şöyledir: Ektodermden deri, tüyler, gaga, tırnaklar, sinir sistemi, gözün mercek ve retina tabakası, ağız mukozası ve geri gibi vücudun dış kısımları; mesodermden iskelet, kaslar, dolaşım sistemi, üreme, boşaltım organları gibi vücudun orta dokuları; endodermden ise sindirim kanalının mukozası, solunum ve salgı sistemleri gibi vücudun iç kısımları meydana gelir. Embriyonik Zarlar Civciv embriyosunun ananın vücudu ile herhangi bir anatomik-organik bağlılığı olmadığından doğal olarak yumurtanın kapsadığı besin maddelerini kullanabilmek için bazı membranlara (zar kese) sahiptir. Embriyonun büyümesinde fonksiyonel olan 4 embriyonik zar veya kese vardır. •Amnion kesesi: Kuluçkanın ikinci gününde oluşmaya başlar. Ektoderm tabakasının altında, mezoderm tabakasından ibaret kan damarları olmayan, içi saydam bir sıvı ile dolu bir kesedir. Embriyonun gelişmesine yardım eder ve onu mekanik şoklardan korur. •Allantois Kesesi: Kuluçkanın ikinci gününde, ektoderm ve mesoderm tabakasından ibaret bir kıvrımdan chorion ile amnion oluşur. Kuluçkanın üçüncü gününde chorion ve amnion arasında kan damarları ile kaplı allantois kesesi gelişir. Allantoisin şu önemli fonksiyonları vardır. •Fonksiyonel akciğer gelişinceye kadar allantois geçici embriyonik solunum organıdır. Allantois, chorion vasıtasıyla oksijeni absorbe eder ve karbondioksiti vererek gaz değişimini sağlar. •Boşaltım görevini görür. Allantois böbreklerde oluşan metabolizma artıklarını alarak onları allantoik boşlukta depolar. •Allantoic membran, yumurta akınının sindirilmesini sağlayan enzimleri salgılar. Yumurta akından sindirilen besinler ve yumurta kabuğundan da kalsiyum, allantois tarafından absorbe edilir ve gelişen embriyoya transfer edilir. •Chorion: Bu membran veya kese, allantois ile birlikte kabuk altı zarları ile kaynaşır ve metabolik fonksiyonların tamamlanmasında rol oynar. •Yumurta Sarısı Kesesi: Endoderm tabakası üzerinde bir mesoderm tabakasından ibaret ve vitellin zarı ile temas ederek bütün sarıyı çevreleyen, kan damarlarıyla kaplanmış bir kesedir. Yumurta sarısı kesesi civciv kuluçkadan çıktıktan sonra besin kaynağı olarak kullanılmak üzere karın boşluğuna çekilir. Embriyonik Gelişme Döneminde Meydana Gelen Değişmeler Hava Boşluğu: Kuluçka döneminde kabuk yüzeyindeki gözenekler vasıtasıyla su kaybı olur. Bu su kaybı, yumurta içeriğinin büyüklüğünün azalmasına ve hava boşluğunun büyümesine neden olur. Kuluçkanın 19. gününden sonra hava boşluğu genellikle yumurtanın 1/3’ünü kaplamaktadır. Civcivin Yumurta İçindeki Konumu: Embriyo yaklaşık 17.günde yumurta içinde çıkış pozisyonunu alır. Bu durumda, boyun hava boşluğuna yönelir ve baş öne doğru, gaga sağ kanadın altında, ayaklar vücudun iki yanındadır ve çoğu kez ayaklar başa değerler. Embriyonun Ağırlığı: Kuluçka döneminde embriyonun ağırlığında değişme görülür. 60 g ağırlığındaki bir yumurtada kuluçka döneminde embriyo ağırlığında görülen değişim şöyledir: Civciv Embriyosunun Gelişme Dönemleri: Yumurta yumurtlandıktan sonra kuluçka devresinde embriyonik gelişme 4 dönemde tamamlanır. •Birinci Dönem: 1-5. günler (İç organların gelişmeye başlaması). •İkinci Dönem: 6-14. günler (Dış organların gelişmeye başlaması). •Üçüncü dönem: 15-20. günler (Embriyonun büyümesi) •Dördüncü dönem: 21. gün (Civcivin çıkışı). Bu dönemlerin dışında embriyo gelişiminde önemli dört safha ve kritik iki dönem vardır. •Kalp atışlarının başladığı ve kan dolaşım sisteminin yeterli düzeye ulaştığı 1. gün ile 3. günler arasındaki dönem. (1. kritik dönem). •16-18. günler: Amnion sıvısı ve amnion tamamen biter. •19. gün: Yumurta sarısı kesesi, göbekten vücut boşluğuna çekilir. •19-21. günler: Civciv, üst gagasında bulunan ve daha sonra düşen yumurta dişi denen sert bir oluşumla yumurta kabuğunu kırmaya başlar. Bu işlem bir saat sürer. Bu işlemin tamamlanmasıyla yaklaşık 20+1/2 günlük kuluçka dönemi sona erer. Ancak yarım gün de civcivin, kuluçkahane şartlarında kuruma ihtiyacı göz önüne alınırsa kuluçka süresi 21 gün olur. Gaganın yumurtayı ilk kırdığı dönemden civcivin tamamen yumurtadan çıkışına kadar yaklaşık 10-12 saatlik bir süre geçmektedir. Civciv kabuğu delmeden önce kabuk altı zarını delerek gagasını hava boşluğuna uzatır ve akciğer solunumu başlar (2. kritik dönem). Kuluçka sürelerinde yukarıda belirtilen faktörler nedeniyle farklılıklar olmasına rağmen, kuluçka makinesi içerisinde embriyolar arası ses yoluyla gerçekleşen haberleşme nedeniyle civcivler aynı sürelerde kuluçkadan çıkma eğilimi gösterirler. Sesin hızı embriyo gelişmesini yavaşlatmak veya hızlandırmak içindir. Sesin yavaş olması gelişmeyi hızlandırırken, hızlı olması gelişmeyi yavaşlatmaktadır.

http://www.biyologlar.com/tavuklar-sperm-uretir-mi

Uluslararası Müzeler Konseyi(Icom)

Konsey1946 yılında Paris’te farklı müzelerden uzmanlar tarafından kuruldu ve başkanlığa Chauncey  Hamlin  getirildi.  Hemen  ertesi  yıl  ise  Meksika’da  ilk  genel  kurullarının gerçekleştirdiler. 1965 yılına kadar geçen süreçte büyümeye başlayan konsey bu süreçte yedi konferans gerçekleştirdi. Bu konferanslarında ele alınan üç temel madde; müzelerin eğitici rolleri, sergiler ve kültürel maddelerin uluslararası dolaşımı ile bu maddelerinkorunmasıydı. Konsey70li yıllarında sonlarında gelişmekte olan ülkelerde de faaliyet göstermeye başladı. 1977 yılında Asya, Afrika ve Latin Amerika ülkelerinde müzeciliğin gelişmesine yardım etme ve müze uzmanları yetiştirme kararı alındı. Bu yıldan 1986 yılına kadar geçen süreçte konsey 2  temel  madde üzerinde yoğunlaştı. Bunlar; müzelerin toplumların gelişmesine olan katkıları politikasının sonuca varması ve müzecilik için mesleki ahlak kurallarının belirlenmesiydi. 90 lı yılların sonunda  kültürel  maddeleri  yasadışı  yollardan  ele  geçirilmesi  ve  kaçırılmasına  karşı çalışmalar başlatıldı. Konseyinmerkezi Paris’te olup 14 farklı ülkeden toplam 16 komite üyesinden oluşan bir heyet tarafından yönetilmektedir. Her sene genel kurul yapılırken, üç senede bir de müze uzmanlarının katılımı ile büyük bir konferans düzenlenir.Konsey birçok farklı disiplinde uzmanın bir arada çalıştığı 31 uluslararası komite ile çalışmalar yapar.Bu komiteler  ile  birlikte konseyin amacı; soyut  ve somut kültürel varlıkları korumak, müzecilik standartlarını  belirlemek,  bilimsel  bilgiyi  yaymak, kültürel  maddelerin  kaçakçılığı  ile savaşmak, diğer  birlikler  ile  işbirliği  yapmak  ve konsey üyeleri  için  geliştirici  tavsiyeler hazırlamaktır.  Ayrıca birliğe bağlı 117 ulusal komite de kendi bölgeleri ile ilgili çalışmalar yürütürler.Bu komiteler ayrıca birliğin strateji planlarını da hazırlarlar. Örneğin birliğin 2011 -2013 yılları için hazırladığı plana göre birliğin hedefleri; konsey üyeleri için üyelik değerini ve şeffaflığını arttırmak, kültürel miras ve müze uzmanlıkları geliştirmek, kültürel miras alanında birliğin  liderliğini  güçlendirmek ve  bu  stratejik  planın  hayata  geçirilmesini  sağlayacak kaynakları bulmak ve yönetmek olarak belirlenmiştir.Konsey1986 yılında müzecilik mesleği için ahlak kuralları belirlemiş ve 2004 bunlar günün şartlarına göre gözden geçirilerek düzenlenmiştir.Bu kurallar üye müzelerin uygulaması gereken minimum standartları belirlemiştir. Bunlar:1.Müzeler insanlığın kültürel ve doğal mirasını korur, yorumlarve tanıtımını yapar2.Müzeler koleksiyonları toplumun yararı ve gelişmesi için muhafaza ederler3.Müzeler birincil kanıtları bilgi elde etmek ve bilgiyi arttırmak için korur4.Müzeler doğal ve kültürel mirasın değerlendirilmesi, anlaşılması ve yönetilmesini sağlayacak imkânlar sağlarlar5.Müzeler kaynaklarından diğer kamu hizmetlerin yararlanmasıiçin imkânlar sağlarlar6.Müzeler koleksiyonlarının kökeni olan ve hizmet ettikleri toplumlar ile yakın bir işbirliği içinde olurlar7.Müzeler yasal çerçeve içinde çalışırlar8.Müzeler profesyonelce yönetilirlerBirliğin üye sayısı yaklaşık 30.000 olup birliğe üye müze sayısı 20.000 civarındadır. İngilizce, İspanyolca ve Fransızca birliğin resmi dilleri olarak kabul edilmiştir.Ayrıca 18 Mayıs her sene müzeler günü olarak kutlanmaktadır.Türkiye’de bu konseye üye olarak bir ulusal komite oluşturmuştur. Bu komitenin yönetmeliği ‘Milletler  arası  Müzeler  Konseyi  (ICOM)  Türkiye  Milli  Komitesi  Yönetmeliği’  olarak hazırlanmış ve Milli Eğitim Bakanlığı’nın 26.10.1970 tarih ve 7349 sayılı yazısı uyarınca 16.11.1970 yılında bakanlar kurulu tarafından onaylanarak yürürlüğe girmiştir. Burada önce çıkan maddelere baktığımızda; 4. madde müzeyi ‘Kültür eserlerini koruyan ve bu eserleri etüd, eğitim ve bedii zevki yükseltme amacıyla toplu halde teşhir eden kamu yararına çalışan, sanata, ilme, sağlığa, teknolojiye, ait koleksiyonları bulunan müesseselere müze adı verilir’ şeklinde  tanımlamıştır.  5.  madde  müzenin  kapsamını;  ‘Daimi  teşhir  bölümü  bulunan kütüp haneler ve arşiv merkezleri resmi şekilde halkın ziyaretine açık bulunan tarihi anıtlar tarihi anıtlara ait binaların kısım ve müştemilatı, tarihi, arkeolojik tabii önemi haiz mevkiler ve parklar, nebabat ve hayvanat bahçeleri, akvaryumlar ve benzeri teşekküller bu tarife girer’ şeklide açıklamıştır. 6. maddede amaçlar; (1) Türkiye müzelerini ve müzecilik mesleğini milletlerarası seviyeye yükseltmek ve temsil etmek,(2) Müzeleri ve müzecilik mesleğini korumak ve geliştirmek ve (3) Toplum hizmetine, bilgilerin yayılmasına ve milletlerarası karşılıklı  münasebetlerin  gelişmesine faydalı  olmak ‘ şeklinde belirtilmiştir. 6.  maddede belirtilen amaçların gerçekleştirilmesi için izlenecek yol ise 7. maddede; ’(1) ICOM Türkiye Milli Komitesi, Milletlerarası Müzeler Konseyi (ICOM) ve bu konseye bağlı Milli Komiteler ve ihtisas teşekkülleri ile temas ve münasebetler kurar, imkânlarına göre onlarla işbirliği yapar, (2) Türkiye’deki her çeşit müze faaliyetlerini dışarıdaki milli komitelere aksettirir ve çeşitli müze mensuplarının yabancı ülkelerdeki müzelerde yetişmeleri için imkanlar arar.  ICOM  ve ona  bağlı  milli  komiteler  arasında  mesleki  eleman  ve  teknik  malzeme  bakımlarından ihtiyaçlara uygun gelişmeyi sağlamak üzere karşılıklı tedbirler alınır. Bu alanda girişilecek her türlü işbirliği hususundaki teşebbüslerin gerçekleşmesine çalışır ve (3) Müze ve müzecilikle ilgili yayınlar yapar’ şeklinde kararlaştırılmıştır.   Hazırlayan: Ahmet İhsan Aytek   Kaynaklar:   Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/

http://www.biyologlar.com/uluslararasi-muzeler-konseyiicom

Dünya’da Organik Yaşamın Başlangıcı

Unlu bilim dergisi SCIENCE, 25 Haziran 1999 tarihli sayisini, “Evrim Kuramina ve Evrim Kuraminin Gercekligine” ayirdi (1). Bu sayi icin giris yazisi yazan unlu evrimci Stephen Jay Gould soyle demekte: “Evrim bir gercektir ve ancak gercek bizi bagimsizliga kavusturabilir!” ve Gould eklemekte, “Darwin’in ilk teorileri aciklandigi zaman, aristokrat bir soylu ‘Darwin’in soylediklerinin dogru olmadigini umalim; ama tutun ki dogru, o zaman tum dunyaya yayilmamasi icin dua edelim!’ demisti; ne yazik ki, 21. Yuzyila girerken, bu sahisin soyledikleri cikti: Evrim Kurami dogru, ama dunyanin cogunlugu, en azindan ABD ulusunun buyuk kismi tarafindan bilinmiyor ” (2). Gercekten de, 21. Yuzyila girerken, Evrim Kuraminin gercekligi hakkinda onca yayin yapilmasina, onca kanit bulunmasina karsin, bilim insanlari ile halk arasinda Evrim Kuramini degerlendiris acisindan ucurumlar mevcut. Bu konudaki en buyuk zorluk, oncelikle, Evrim Kurami ile ilgili bazi biyolojik, kimyasal, fizyolojik, paleontolojik bilgilerin anlasilabilmesi icin yogun bir bilim egitimine, detayli anlasilmis bazi kavramlara gereksinim duyulmasi. Ikinci onemli zorluk ise, Evrim Kuramini aciklarken ifade edilen bazi kavramlarin (ornegin milyon yillarda gelisen evrim, dogal seleksiyon, biyokimyasal protobiogenesis vb) gunluk hayatin mantigi ve yasantisi acisindan pek de kolay anlasilamamasi. Bu konuda Amerikan Ulusal Bilimler Akademisinin (National Academy of Sciences) son yayinladigi halk kitabi “Science and Creationism” (Bilim ve Yaratiliscilik), bu konudaki en yetkili agiz tarafindan son noktayi koyuyor ve Evrim Kuraminin bir gercek oldugunu savunuyor (3, 4). Turkiye’de de “Islamci Bilimsel Yaratiliscilarin aktivitelerine ” karsi TUBA ve bir grup bilim insani da bazi aciklamalar yapmisti (5, 6, 7). ABD’de ve diger Hristiyan ulkelerde oldugu gibi, Turkiye’de de ortaya cikan “Bilimsel Yaratiliscilik” akimlari, bilim ile yaratilisciligi birbirine bagdastirmaya calisiyordu (8); ustelik Evrim Kuramini savunan bilim insanlarina karsi dev bir karalama kampanyasina giriserek, bilim insanlarini sindirmeyi amacliyordu. Bu konuda yazdigim yazilar nedeniyle ben de, diger bilim insanlari gibi buyuk saldirilara maruz kaldim (4, 9, 10). Turk bilim insanlari olarak, gerek halki gerekse diger bilim insanlarini ve aydinlari bu konuda bilgilendirmek konusunda cok ciddi sorumluluklar tasidigimiza inaniyorum. Bu sorumluluklardan birisi, “kendini bilimsel elit zumreolarak gorup, bilimsel yaratiliscilari yanit verilmeyecek kadar kucumsemek yerine”, onlari iddia ettikleri her hipotezde curutmek ve yapmakta olduklari carpitmalari ve bilimsel sahtekarliklari, halkin onunde anlasilir bir dille ve bilimsel kaynaklarla yuzlerine vurmak! Dunya’da yasamin baslamasi ile ilgili en onemli sorulardan ve problemlerden birisi, primordial (ilk) kosullarda canlilarin ana yapi taslari olan organik molekullerin nasil meydana gelebilecekleri konusuydu. Bilimsel yaratiliscilarin hipotezlerine gore, tum organik madde ve biyolojik yasam bir anda, dogaustu bir gucun “OL!” demesiyle belirli bir hedefe ve cok akilli bir dizayna gore yaratildi. Bilim ise bu konuda farkli bir goruse sahip, ozellikle son yillarda yapilan calismalar dunya’da ilk organik maddenin olusumu konusunda yeni bir bakis acisi getirdi (11, 12, 13, 14, 15). STANLEY MILLER DENEYINDEN GUNUMUZE Dunya’da yasamin baslamasi icin, yasamin temel taslari olan organik maddelerin, amino asitlerin ve DNA ile RNA’nin yapisinda var olan nukleik asitlerin bir sekilde dunya ortaminda (okyanuslarda, gollerde, sicak su kaynaklarinin aktigi yerlerde) bol miktarda var olmasi gerekmekteydi. Bu konuda dogru fikir yurutebilmek icin, 4.5 milyar yil once soguyarak, var olan dunya gezegeninin atmosferi ve icerdigi elementler konusunda dogru tahmin yapmak gerekliydi. Bu konudaki ilk tahminleri Oparin (16 ), Haldane (17), Urey (18) yapmislardi. Onlara gore ilk dunya atmosferi metan (CH4 ), amonyak (NH3), su buhari (H2O) ve molekuler hidrojenden (H2) olusmaktaydi. Ilk atmosferde oksijen (O2) bulunmadigi pek cok arastirici tarafindan fikir birligi ile kabul edilmistir. Ama en onemli sorun dunyanin genclik gunlerine ait bilgi alinamamasidir. Bilinen en yasli kayalar olan Gronland’daki Isua kayalari bile 3.8 milyar yil yasindadir. Yaklasik 700 milyon yil- 1 milyar yillik doneme ait hic bir iz, kanit ve bilgi yoktur; bu da ilk atmosfer veya ortam konusunda tahmin yapmayi cok guclestirmektedir. Tahminler, olasi modellere gore yapilmaktadirlar ve spekulasyonlardan ibarettirler. William Rubey (19 ), Holland (20 ), Walker (24) ve Kasting’e (25) gore ise, baslangicta cok az miktarda amonyak mevcuttu; atmosferde baslica karbon dioksit (CO2), nitrojen (N2), su buhari (H2O), biraz da karbon monoksit (CO) ve hidrojen gazi (H2) vardi. Son yillarda bu gorusun bilim ortamlarina hakim olmasina ragmen, kimse 4 milyar yil oncesine gidip, ortamda amonyak olup, olmadigini gozlemlememistir. Ayrica, uzaydan her yil 40 000 ton toz yeryuzune dusmektedir, gerek bu tozda, gerekse uzaydan gelen meteoritlerde HCN (hidrojen siyanit), CO2, Formaldehid, CO (karbon monoksit), amino asitler ve organik maddeler bulunmustur; gunde uzaydan dunyaya 1999 verilerine gore dokulen tozla birlikte 30 ton organik madde dusmektedir (13, 21, 22, 23). Dunya kosullarinda amonyakin ve organik madde sentezinin cok az olmasi durumunda bile organik maddeleri olusturan bilesenlerin ve bizzat organik maddelerin uzaydan yeterli miktarda gelme olasiliklari her zaman vardir. Ilk atmosfer kosullarinda hemen hemen hic oksijen olmadigi hesaba katilirsa, organik maddenin”yaratilmadan” dunya ortaminda ilk gazlar ve cozunmus iyonlardan sentezlenmesi de mumkundur. Oksijensiz donem 2-2.5 milyar yil kadar surmus, siyanobakterilerin atmosfere verdikleri oksijen sayesinde atmosferde ilk dunya canlilari icin bir zehir olan oksijen miktari mavi gezegende artmistir (9). Chicago Universitesinde, Harold Urey’in ogrencisi Stanley Miller 1953′te dunyayi yerinden sarsan unlu deneyini gerceklestirdi 26. Urey’in varsayimina uyan (metan, amonyak, hidrojen ve su) gaz kosullarinda, 150-200 bin voltluk akimi gazlarin bulundugu ozel aparattaki karisimdan gecirdi, sonuc cok sasirticiydi pek cok temel organik madde bu enerjinin verdigi etki sonucunda gazlari bir reaksiyonla birlestirmis, Glisin, Alanin, Aspartik asit, Glutamik asit (bu dordu temel amino asitler), Formik asit, Asetik asit, Propionik asit, Ure, laktik asit, ve diger yag asitlerini olusturmustu (26, 27). Deney Pavlovskaia ve Peynskii tarafindan Rusya’da; Heyns, Walter, Meyer tarafindan Almanya’da; Abelson tarafindan ABD’de, cok farkli bilesikler ve gaz ortamlarinda tekrarlandi; oksidasyonun engellendigi ve metan, amonyak ve su buharinin oldugu kosullarda hep amino asitler ve organik maddeler olustu (28); Gabel ve Ponnamperuma, cok farkli enerji ortamlarinda (isi, radyasyon, lineer akseleratorden cikan parcaciklar, mikrodalgalar vb) benzer sonuclar buldular, ayrica bazi seker molekullerini de primordial ortamda sentezlemeyi basardilar (28). Genetik materyeli tasiyan DNA ve RNA’nin temel taslari olan nukleik asitlerin bazilari da ilk atmosfer sartlarinin farkli bicimlerde ele alindigi kosullarda kimyasal olarak sentezlendi ve nukleik asitlerin temel yapi taslarinin primordial ortamda yeterli temel madde ve enerji sonucunda kendiliginden olusabilecegi gosterildi (9, 11, 12, 13, 14, 28, 29, 30). Yaratiliscilar, ilk dunya kosullarinda amonyak olmadigini, Miller’in ise soguk tuzak denilen bir yontemle amino asitleri elde ettigini, Miller’in kosullarinin bilincli olarak cok yapay hazirlandigini ve sonuclarin bilimsel bir sahtekarlik oldugunu soylemektedirler. Oncelikle Miller’in duzenegi tabii ki yapaydir; ama biyokimya’da yapay olmayan kosullarda kontrollu deney yapilamaz ki; soguk tuzak denilen ve reaksiyon urunlerini sogutan bir duzenek kullanilmis olabilir; ama doga’da bunun bir benzerinin var olmadigini soylemek, ustelik de 3.5-4.5 milyar yil oncesinde gelisen olaylardan cok emin ifadelerle bahsetmek ancak, Yaratiliscilar gibi bilimi ayaklar altina alan, cikaracaklari sonuclara onceden fikse olmus insanlarda gorulebilen bir dusunce hatasidir. Ornegin okyanuslarin tabanlarindaki sicak su kaynaklarinin birden soguyarak okyanusa karismasi bahsedilen “soguk tuzagi” dogal kosullarda olusturabilir; dogadaki bugun tahmin edilemeyen pek cok yapi bunu meydana getirebilir. Nitekim, sadece sicak su kaynaklarinda mevcut bu isinin bile sig okyanus sahillerinde suda cozunmus amonyum (NH4), metan (CH4), karbon dioksiti (CO2) (veya su yuzeyindeki atmosferdeki gazlari da katarak) reaksiyona sokabilecegini gosterir. Organik maddelerin ve ilk yasamin denizlerdeki, gollerdeki, volkanik ortamlardaki sicak su kaynaklarinin bulundugu yerde olustugu konusunda pek cok fikir de ortaya surulmustur (12, 21, 30 ). Ortamda amonyakin cok az olmasi kosullarini Miller tekrar irdelemistir (21). Primordial kosullarda, atmosferin redukleyici (elektron kazandirma) ozellikte oldugu dusunulmektedir, ama kesinlesmis bir bulgu yoktur. Atmosferde varolan amonyak’in bir kisminin amonyum (NH4 ) iyonu olarak okyanuslarda cozunecegi bilinmektedir (29); atmosferde cok az miktarda amonyak olmasi kosullarinda bile, su ortamlarinda ya da sicak su kaynaklarinin oldugu, okyanusun sig ve atmosferle bulustugu sahillerde amonyum iyonu, atmosferde cok az miktarda bulunan amonyak, metan gazi ve karbon dioksitle reaksiyona girecek ve organik bilesikleri olusturacaktir (21) . Miller, eser miktarda amonyakin bulundugu ortamlarda yaptigi deneylerde bile organik maddelerin ve amino asitlerin sentezlenebildigini gormustur (21). Yaratiliscilarin baska bir iddiasi, Miller deneyinde sag elli (D-dextro izomeri) ve sol elli (L-levo izomeri) amino asitlerin esit miktarlarda sentezlendigi, halbuki yasamda gorulen 20 cesit amino asitin tumunun sol elli oldugu, oyleyse organik maddenin ve canli yasamin belli bir amacla ve dizaynla yaratilmis olmasi gerektigidir. Oncelikle, 1993′te Arizona State Universitesinden John R. Cronin uzaydan gelen meteoritlerde ve donmus tozda daha fazla L-aminoasitlerine rastlandigini ispatlamistir 13; bu, dunyada varolan ve amino asitlerle reaksiyona giren maddelerin zamanla sol elli amino asitleri tercih etmesini saglayabilir (13). Ikincisi, molekuler yapilardaki zayif kuvvet(weak force) birbirinin ayna goruntusu olan molekullerde (yani izomerlerde) farklidir. Bu bir molekul icin cok ufak bir farktir, ama molekuller bir araya gelince etki buyur. Yani bir molekulun reaksiyona girerken veya suda cozunmus bulunurken icinde bulunan molekuler bag yapma yetenekleri ve belli bir konfigurasyonda dururken gereksimleri olan enerji onlarin doga tarafindan secilmelerini saglamaktadir. Doga tasarruf etmekten yanadir ve genelde en az enerji formunu tercih eder; L ve D formlari arasindaki enerji farki cok az da olsa, yapilan hesaplara gore en az enerji ile durabilen izomer, yaklasik 100 bin yilda dogada % 98 olasilikla baskin bulunan izomer formunu olusturacaktir (31). Ucuncu ve guclu bir olasilik, primordial kosullarda, su anda bilmedigimiz ve ilk dunya kosullarinda var olan ve sol elli amino asitlere baglanamayan bir X maddesinin ozellikle D-(sag elli) amino asitlerle birleserek kelat (cozunmeyen bilesik) olusturmasi ve onlari gol veya okyanus dibine cokertmesidir. Bu ise sol elli amino asitlerin bir anda dogal seleksiyonla artmasini ve dogada daha fazla kullanilabilir hale gelmesini cok kolay saglayabilir. Fakat kimse 4 milyar yil onceye gitmemistir; o gunden bu gune de tek iz kalmamistir; bilimsel yaratiliscilar ne soylerlerse soylesinler, 4 milyar yil onceye ait kesin kanitlarla Evrimcilerin karsisina gelmeden Evrimcilerin hic bir soyledigini curutmus sayilamazlar; ustelik, bilimsel yaratiliscilarin buyuk bir cogunlugu, binlerce kanita ragmen, dunyanin 4.5 milyar yasinda degil, cok daha genc olduguna inanmaktadir (10 bin yil gibi)… Son bulgular, pek cok organik maddenin uzaydan gelen tozda, meteorlarda bulundugunu ispatlamistir. Dunya’da okyanuslarda ve atmosferde amonyum, metan, karbon dioksit, amonyak’tan sentezlenebilen organik maddenin, uzaydan da gelebilecegi NASA’nin arastirmalarinin kesin bir sonucudur (13). Eger gunde 30 ton organik madde uzaydan dusen tozla dunyaya karismaktaysa (kuyruklu yildizlarla, meteorlarla gelenleri saymiyoruz) yilda, (10 4) ton (10000 ton) cesitli organik madde dunyada okyanuslara karisir. Bu ilk bir milyar yil icin 10 9 x 10 4= 1013 ton (10′un yaninda 13 sifir) ya da 10 000 000 000 000 ton organik madde eder. Bu miktarda organik madde, dunyada girdikleri reaksiyonlar da isin icine katilirsa, kesinlikle ilk yasamin tohumlarini atabilir. Halley, Hale-Bopp, Hyakutake isimli kuyruklu yildizlarda pek cok organik madde oldugu kanitlanmistir (13). Bir kuyruklu yildiz, gunes sisteminin sicak bolgelerinden gecerken, bir kismi erir, gaz ve toz olarak dunyanin (veya basak gezegenlerin) cekimine kapilip, zamanla dunyaya duser. NASA’daki bilim adamlari, ER2 tipi ucakla, yaklasik 62 000 feet yukseklikte bu tozlari toplayabilmektedirler. Scott Sandford, bu partikulleri analiz ettiginde % 50′den fazla organik kokenli karbona rastlamistir (13). Meteoritlerde ise, ketonlara, nukleobazlara, quinonlara (klorofil benzeri yapilarda yer alir), karboksilik asitlere, ve 70 farkli cesit amino asite rastlanmistir. Dunya’daki yasantida kullanilan amino asit sayisi ise sadece 20′dir, yani uzay bize ihtiyacimiz olandan cok daha fazlasini hediye etmektedir ! (13) DUNYADA ORGANIK YASAMIN BASLAMASI / UZAYDAN GELEN ORGANIK MADDE Son bulgular, pek cok organik maddenin uzaydan gelen tozda, meteorlarda bulundugunu ispatlamistir. Dunya’da okyanuslarda ve atmosferde amonyum, metan, karbon dioksit, amonyak’tan sentezlenebilen organik maddenin, uzaydan da gelebilecegi NASA’nin arastirmalarinin kesin bir sonucudur (13). Eger gunde 30 ton organik madde uzaydan dusen tozla dunyaya karismaktaysa (kuyruklu yildizlarla, meteorlarla gelenleri saymiyoruz) yilda, (10 4) ton (10000 ton) cesitli organik madde dunyada okyanuslara karisir. Bu ilk bir milyar yil icin 10 9 x 10 4= 10 13 ton (10′un yaninda 13 sifir) ya da 10 000 000 000 000 ton organik madde eder. Bu miktarda organik madde, dunyada girdikleri reaksiyonlar da isin icine katilirsa, kesinlikle ilk yasamin tohumlarini atabilir. Halley, Hale-Bopp, Hyakutake isimli kuyruklu yildizlarda pek cok organik madde oldugu kanitlanmistir 13. Bir kuyruklu yildiz, gunes sisteminin sicak bolgelerinden gecerken, bir kismi erir, gaz ve toz olarak dunyanin (veya basak gezegenlerin) cekimine kapilip, zamanla dunyaya duser. NASA’daki bilim adamlari, ER2 tipi ucakla, yaklasik 62 000 feet yukseklikte bu tozlari toplayabilmektedirler. Scott Sandford, bu partikulleri analiz ettiginde % 50′den fazla organik kokenli karbona rastlamistir (13). Meteoritlerde ise, ketonlara, nukleobazlara, quinonlara (klorofil benzeri yapilarda yer alir), karboksilik asitlere, ve 70 farkli cesit amino asite rastlanmistir. Dunya’daki yasantida kullanilan amino asit sayisi ise sadece 20′dir, yani uzay bize ihtiyacimiz olandan cok daha fazlasini hediye etmektedir ! (13) Daha ilginc bir bulgu ise Louis Allomandola’nin uzay kosullarinin simulasyonunu yaptigi deneylerden gelmistir (13, Bununla ilgili Scientific American’daki Temmuz 1999, resimleri kullanabilirsiniz). Bu deneyler cok dusuk isilarda ve sicakliklarda, ultraviyole radyasyonunun kimyasal baglari yikabilecegini; hatta icinde donmus metanol ve amonyak (uzayda bulundugu oranda) bulunan buzlasmis toz kitlelerinde, ultraviyole isinlarinin ketonlari, nitrilleri, eterleri, alkolleri, hatta heksametilentetramini (HMT) olusturabilecegini gostermistir. HMT asidik ve ilik ortamda amino asitleri olusturur. Bu deneyler son yillarda gerek NASA, gerekse universitelerdeki bilim insanlari tarafindan tekrarlanmis benzer sonuclar bulunmustur (13). Bu su demektir: uzayda donmus buz kitleleri olarak seyahat eden molekuller statik degillerdir; uzaydaki farkli isinlarin ve ultraviyole enerjisinin etkisiyle surekli iclerindeki kimyasal yapi degisime ugramaktadir, bu degisim, ozellikle daha yuksek isili, isinli ve enerjili gunes sistemi bolgelerine girince artmaktadir. Yani gerek uzaya dagilan tozlar, gerek meteorlar, iclerinde dunya gibi uygun kosullara sahip gezegene ulasinca yasamin temel taslarini olusturacak tum bilesenleri, organik maddeleri fazlasiyla tasimaktadirlar. Ustelik 4.5 milyar yillik dunya tarihini, kolay anlayabilmek icin, 1 saatlik bir zaman dilimi olarak alirsaniz, doga ilk 55 dakikayi, bu temel yapi taslarini ve tek hucreli yasami olusturmak icin harcamis, geri kalan bes dakikada da diger tum bitkileri, cok hucreli organizmalari meydana getirmistir. SONUC: Dunya’da organik yasamin baslamasi icin, buyuk olasilikla temel yapi taslari hem uzaydan gelmis hem de milyarlarca yilda, uzaydan gelenlerin de etkisiyle dunyada okyanuslarda, sicak su kaynaklarinin okyanusa karistigi yerlerde, batakliklarda, volkanik yapilarin okyanusla birlestigi yerlerde vb. ortamdaki serbest enerji sayesinde sentezlenmislerdir. Amino asitler, nukleik asitlerin yogunlastigi ortamlarda thermal proteinler ve RNA, oto-katalitik RNA buyuk olasilikla ilk genetik bilginin sekillenmesinde rol oynamislardir (11, 12, 14, 30) . Burada su temel unsurlar unutulmamalidir: 1. Bahsedilen sureler insan zekasinin kavrayabilecegi surelerin cok otesindedir. Bahsedilen sureler, milyon degil, milyar yillardir. Dort milyar yil, 50 yillik bir insan jenerasyonu goz onune alinirsa yaklasik 80-100 milyon jenerasyon demektir. Homo sapiensinortaya cikisindan beri ise sadece yaklasik 500 jenerasyon gecmisti. 2. Dogada kararli yapilarin olusmasi cok zordur. Belki bir tek kararli yapinin olusmasina karsi, binlerce katrilyon kararsiz yapi bozunup gitmektedir; biz bilgiyi bu gune kadar gelebilen kararli yapidan alabilmekteyiz; kararli yapilarin gelismesini saglayan reaksiyon ve biyolojik olay sayisi ise neredeyse sonsuzdur . Dr. Umit Sayın Cumhuriyet Bilim ve Teknik Dergisi Kaynakça: 1) Science, 25 Haziran, 1999, 284 (5423):2045-2220. 2) Ibid., pp: 2087. 3) NAS, “Science and Creationism: A view from the National Academy of Sciences”, 1999, National Academy Press. 4) Umit Sayin, “ABD’de Bilimsel Yaratiliscilibgin Coküsü”, Bilim ve Ütopya, Aralik 1998. 5) TUBA bülteni, 10:2, 1998. Ayrica TUBA’nin web sayfasina (www.tuba.org.tr) bakabilirsiniz. 6) “Kamoyuna Duyuru” (Birinci Bildiri), Cumhuriyet Bilim ve Teknik, 7 Kasim 1998. 7) “Bilime Gerici Saldiri” (Ikinci Bildiri), Cumhuriyet Bilim ve Teknik, 30 Ocak 1999. 8 ) Harun Yahya, “Evrim Aldatmacasi”, Vural Yayincilik, 1997. 9) Ümit Sayin, “Yaratilmayis: Yasam Nasil Basladi”, Bilim ve Ütopya, Ekim 1998. 10) Ümit Sayin, “Uctu Uctu Dinozor Uctu”, Bilim ve Utopya Kasim 1998. 11) Albert Eschenmoser, “Chemical Ethiology of Nucleic Acid Structure”, Science, 25 Haziran, 1999, 284 (5423):2118-2123. 12) Andre Brack, editor, “The Molecular Origins of Life”, Cambridge University Press, 1998. 13) Max P. Berstein, Scott A. Sandford, Louis J. Allamandola, ” Life’s Far-Flung Raw Materials”Scientific American, Temmuz 1999, 281:42-49. 14) Leslie E. Orgel, “The Origin of Life on Earth”, Scientific American, Ekim 1994, 271:76-83. 15) Gerald F. Joyce, “Directed Molecular Evolution” Scientific American, Aralik 1992, 267:90-97. 16) A.I. Oparin, “Origin of Life”, Mc Millen, New York.1938 17) J.B.S. Haldane. “Origin of life”, Rationalist Annual, 1929 18) H.C. Urey. “On the early chemical history of the earth and the origin of life”, Proc. Natl. Acad. Sci., 1952. 19) W.W. Rubey, “Development of the hydrosphere and atmosphere, with specail reference to probable composition of the early atmosphere”. In Crust of the Earth, ed. A. Poldervaart HDpp:631-650,1955. 20) H.D. Holland, “The chemical evolution of the atmosphere and oceans”. Princeton University Press, 1984. 21) Stanley Miller, ” The Endogenous Synthesis of Organic Compounds”, [ Andre Brack, editor, "The Molecular Origins of Life", Cambridge University Press, 1998.] isimli kitapta. sayfa: 59-85 22) C.F. Cyba, C. Sagan, ” Endogenous production , exogenous delivery and impact-shock synthesis of organic molecules: an inventry for the origins of life”, Nature, 355:125-132, 1992. 23) C.F. Cyba, P.J. Thomas, L., L. Brookshaw, and C. Sagan. ” Cometary delivery of organic molecules to the early Earth”, Science, 249:366-373, 1990 24) J.C.G. Walker , “Evolution of atmosphere”, Macmillen: New york, 1977 25) J.F. Kasting. ” Earth early atmosphere” Science, 259:920-926, 1993.. 26) S.L. Miller, “Production of amino acids under possible primitive Earth conditions” Science, 117:528-529, 1953. 27) S.L. Miller, and H. C. Urey, “Organic compound synthesis on the primitive Earth”, Science, 130:245-251, 1959. 28) Cyril Ponnamperuma, “The Origins of Life”, Thames and Hudson, 1972. 29) J.L. Bada and S.L. Miller, “Ammonium ion concentration in the primitive ocean” Science, 159:423-425, 1968. 30) Richard Montanesky, “The Rise of Life on Earth”, National Geographic, Mart 1998. S: 54-81. 31) Ian Stewart, “Nature’s Numbers”, Basic Books, New York, 1995. www.uzelgi.com

http://www.biyologlar.com/dunyada-organik-yasamin-baslangici

HÜCRE ZARINDAN MADDE GEÇİŞİ

Hücre zarı,seçici geçirgen bir yapıya sahiptir.Molekülün büyüklüğüne,yağda veya suda çözünmesine,polaritesine, ortamdaki yoğunluğuna veya türüne göre zar üzerinden madde taşınmasını dört farklı şekilde gerçekleştirir. Hücre zarından madde geçişi • Pasif Taşıma • Difüzyon • Kolaylaştırılmış Difüzyon • Osmoz • Plazmoliz • Deplazmoliz • Diyaliz • Aktif taşıma • Endositoz • Fagositoz • Pinositoz • Ekzositoz Pasif taşıma Maddelerin enerji harcanmadan,yoğunluk farkından dolayı hücre zarındaki porlardan veya fosfolipid tabakadan doğrudan geçmesidir.Hücrelerde pasif taşıma üç şekilde görülür. Difüzyon Difüzyon,bir maddenin konsantrasyonunun yüksek olduğu yerden düşük olduğu yere doğru hareketine denir.Örnek olarak bir kokunun bütün odaya yayılması veya bir damla mürekkebin bir bardak suya atılınca bütün bardağı boyaması gibi.Aynı kural hücre için de geçerlidir.Örneğin sitoplazmada glikoz sürekli olarak tüketilmekte ve artık maddelerin yoğunluğu artmaktadır.Dış ortamda glikoz arttığında,iç ve dış ortam arasındaki yoğunluk farkı glikozun enerji harcamaksızın çok olduğu yerden az olduğu yere doğru hareketine sebep olur.Bu hareket her iki taraftaki glikoz yoğunluğu dengeleninceye kadar devam eder.Bir tarafta artı veya eksi yöndekibir değişiklik difüzyonu yeniden başlatır. Por içinden difüzyonla taşınacak maddenin porlardan geçecek kadar küçük olması ve suda çözünebilir olması gerekir.Büyük moleküller pordan geçemezler.Örneğin glikoz difüzyonla taşınırken,nişasta taşınamaz.Por sayısının fazla olması difüzyon hızını artırır.Yağda çözülen maddelerin difüzyonla taşınması için büyüklük sınırı veya por kullanma gereği yoktur.Hücre zarı lipid (yağ) yapısında olduğundan,bu maddeler zarın herhangi bir yerinden geçebilirler. Kolaylaştırılmış Difüzyon Su ve yağda erimeyen maddelerin (klor iyonları) ve glikoz,galaktoz,fruktoz gibi şekerlerin zardan geçişi,kolaylaştırılmış difüzyon denilen bir yolla olur. Taşınacak madde zarda bulunan taşıyıcı proteinle birleşir.Madde,birleştiği taşıyıcı proteinle “substrat-enzim” gibi yüzey uygunluğu gösterir (taşıyıcı protein taşınacak maddelerin yapısına göre şeklini değiştirir).Madde geçişi gerçekleştikten sonra taşıyıcı protein tekrar önceki orijinal şeklini alır.Geçişme yüksek konsantrasyonlu ortamdan düşük konsantrasyonlu ortama doğru olur.Por sayısındaki artış kolaylaştırılmış difüzyonu hızlandırır. Kolaylaşırılmış difüzyon,taşıyıcı sistemden ötürü aktif taşımaya benzerse de ikisi arasındaki en büyük fark;difüzyonda enerji kullanılmaması ve yüksek konsantrasyondan düşük konsantrasyona doğru olmasıdır. Osmoz Osmozu tanımlamadan önce yoğunluk kavramını iyi bilmek gerekir. Bir maddenin yoğunluğu, birim hacimde bulunan çözücü içindeki madde miktarıdır. Çözünenin çok olması durumunda ortam çok yoğun, az olması durumunda ise az yoğun olur. Ortamın yoğunluğu çözücünün miktarı ile ters orantılıdır. Yani çok yoğun ortamdaki çözücünün oranı,az yoğun ortamdaki çözücü oranından daha düşüktür. Örneğin, yarı geçirgen bir zarla ayrılmış iki ortamdaki nişasta çözeltilerini ele alalım. A kolunda, nişasta çok yoğun ise, birim hacimdeki su miktarı daha azdır. B kolunda, birim hacimdeki nişasta daha az, su ise daha fazladır. Doğal olarak bu konsantrasyon farkının dengelenmesi gerekir. Nişasta porlardan geçemeyecek kadar büyük olduğundan, su molekülleri nişastanın çok, suyun az olduğu ortama doğru geçer. A kolundaki toplam hacim koluna göre daha fazladır. Buna göre suyun, yarı geçirgen bir zar üzerinde çok olduğu ortamdan, az olduğu ortama doğru geçişine osmoz denir. Bu olayı canlılarda görmek de mümkündür.canlılarda,kapalı ortam,hücre zarıyla sınırlandırılmış olan sitoplazmadır.Sitoplazma içerisinde organik asitler, şekerler,organik ve inorganik tuzlar gibi maddeler bulunur(bu maddelerin potansiyel değerine osmotik değer denmektedir).Sitoplazma ve dış ortamın yoğunluğuna göre her iki ortam arasında su geçişi olur. Osmoz sonucu iki değişik olay gözlenir: • Plazmoliz:Hücre kendisinden yoğun (hipertonik) bir ortama konduğunda, yoğun ortama su vererek zarın her iki tarafındaki yoğunluğu dengelemek ister.Dolayısıyla su kaybederek büzülür.hücrenin daha yoğun bir ortama konulduğunda büzülmesine plazmoliz denir.bitki hücreleri hücre çeperleri bulunduğu için hayvan hücrelerine göre daha yavaş su kaybederler.deniz suyu içildiğinde dokular su kaybederek ölür.bunun nedeni deniz suyunun tuz oranının dokulardakine oranla çok daha fazla olmasıdır. • Deplazmoliz:Hücre kendisinden daha az yoğun (hipotonik) bir ortama konulursa ortamdan hücreye su girişi olur.dolayısıyla su alarak şişer.hücrenin ortamdan su alarak şişmesine deplazmoliz denir. Osmotik kuvvetler:plazmoliz ve deplazmoliz esnasında osmotik basınç ve turgor basıncı ortaya çıkar: • Osmotik Basınç:hücre içindeki maddelerin yoğunluğundan dolayı sıvıların hücreye girerken zara dıştan yaptıkları basınç şeklinde tanımlanır.Osmotik basıncı oluşturan maddeler çeşitli şekerler, organik asitler, organik ve inorganik tuzlardır.Dolayısıyla hücre içinde bu maddelerin yoğunluğuyla hücrenin osmotik basıncı doğru orantılıdır. Örneğin bitkinin köklerindeki emici tüylerde osmotik basınç yüksek olduğundan su topraktan kök hücrelerine geçer. Osmotik basınç atmosfer birimi ile ifade edilir.Osmotik basınç, plazmoliz halindeki hücrelerde yüksek deplazmoliz halindeki hücrelerde düşüktür.Hücrenin kendisi ile aynı yoğunlukta (izotonik) ortama konulduğunda osmotik basınç, iç basınçla denge halinde olur. • Turgor basıncı:Deplazmoliz esnasında sitoplazma sıvısının zara yaptığı basınçtır (iç basınç) . Hayvan hücreleri bu yüksek basınca dayanamaz, parçalanır. Mesela alyuvarlar kendilerinde daha az yoğun bir ortama konulursa, ortamdan alyuvar hücrelerine su girişi olur:daha sonra zarları parçalanır, hücre ölür (hemoliz). Bitki hücrelerinde selüloz çeper olduğundan turgor basıncından hayvan hücrelerine göre daha az etkilenirler.Ayrıca turgor basıncının bitkilere sağladığı bazı avantajlar da vardır.Bu avantajları; • Otsu bitkilerde destekliği, • Stomaların açılıp kapanması, • Küstüm otu gibi bitkilerde hareketi sağlaması şeklinde sıralayabiliriz. Emme Basıncı, Turgor Basıncı ve Osmotik Basınç Arasındaki İlişki Emme basıncı hücrenin osmotik basıncının oluşturduğu bir çekici kuvvettir.Diğer bir deyişle emme basıncı osmotik basıncın iç basınca üstün olduğu sürece hücreye su girişini sağlayan bir kuvvettir.Osmotik değer, osmotik basıncı meydana getiren eriyiğin çekim gücüne denir.Böyle bir değer her hücrenin kofulunda gizli olarak bulunur. Genel olarak emme basıncı (EB) bir hücre için, hücrenin osmotik değeri (OD) ile iç (turgor) basıncın (TB)arasıdaki farka eşittir. EB=OD-TB Diyaliz Diyaliz, çözünmüş maddelerin seçici geçirgen zardan difüzyonudur. Örneğin içi glikoz molekülleri ile dolu bir bağırsak saf su içerisine konursa glikoz molekülleri, zardan su içerisine iki tarafta da yoğunluk eşit oluncaya kadar geçer. * Bu prensip, suni böbrek aletinde (diyaliz kullanılır.Hastanın her seferinde 500ml kadar kanı bir diyaliz tüpünden geçirilir.Diyaliz tüpünün dışında, kanda bulunan ve difüzyon olabilen aynı yoğunlukta maddeleri taşıyan bir sıvı bulunur. Bu sıvı sadece uzaklaştırılacak maddeyi taşımamaktadır. Böylece kana gerekli olan maddeler dıştaki sıvıya geçmez.Uzaklaştırılması istenen madde (üre gibi) dış sıvıda bulunmadığı için,bu madde kandan dış sıvıya difüzyonla geçer ve kan bu maddeden temizlenmiş olur. Moleküllerin Pasif Olarak Taşınmasını Etkileyen Faktörler: Canlı hücrelerde hücre zarının her iki yönünde devamlı bir molekül hareketi gözlenir.Bu moleküller hücre zarından doğrudan veya porlar yardımıyla geçerler.Geçiş türü veya hızı aşağıdaki faktörlere göre değişmektedir. • Moleküllerin Büyüklüğü:Oksijen, su, iyot, karbondioksit gibi küçük moleküller hücre zarından rahatlıkla geçebilir.Mesela 6 karbonlu glikoz;oksijen, su ve karbondioksitten daha zor geçer. • Moleküllerin elektrik yükü:Hücre zarının iyonik yapısından dolayı, nötr moleküller iyonlardan daha kolay geçer. • Yağda çözünen maddeler:Hücre zarının yapısında yağ olduğu için yağda çözünen maddeler hücre zarından rahatlıkla geçebilir. • Yağı eriten maddeler:Yağı eriten maddeler de hücre zarından rahatlıkla geçebilir. • Zardaki por sayısı:hücre zarında por sayısı ne kadar fazla olursa madde girişi o kadar hızlı olur. • Konsantrasyon farkı:Yüksek konsantrasyonlu ortamdaki moleküllerin birbirine çarpma hızı, düşük konsantrasyonlu ortamlara göre daha hızlıdır.Bu ortamdaki potansiyel enerji, yüksek konsantrasyonlu ortamdan düşük konsantrasyonlu ortama madde geçişini hızlandırır. • Sıcaklık:Moleküller sıcak ortamda daha hızlı hareket ederler. Dolayısıyla yüksek sıcaklıkta difüzyon hızlıdır. • Hücre zarının deformasyonu:Hücre zarı alkol, eter, çeşitli zehirler ve kloroform gibi maddelere karşı aşırı duyarlıdır.Bu maddeler hücre zarına girerken veya çıkarken hücre zarını tahrip ederler. AKTİF TAŞIMA Bir maddenin konsantrasyonun düşük olduğu yerden yüksek olduğu yere doğru, enerji (ATP) harcanarak taşınmasına aktif taşıma denir.Bir başka ifade ile;aktif taşıma maddelerin yokuş yukarı hareketidir. Aktif taşıma, canlı zarlar üzerinde enzim ve taşıyıcı proteinlerle gerçekleştirilir. Aktif taşımada mutlaka enerji harcanır.Enerji yetersizliğinde aktif taşıma durur, pasif taşıma devam eder.Bu durumda bazı maddelerin hücre içi ve hücre dışı yoğunluk farkları ortadan kalkar ve bunun sonucu hücrede hayatsal faaliyetler durur,yani hücre ölür.Örneğin; büyüme ve protein sentezi için mutlaka gerekli olan potasyum hücre içinde hücre dışına göre 40 misli daha fazla bulunmak zorundadır.Eğer bu miktar azalacak olursa, hücre yeterli şekilde fonksiyonlarını gerçekleştiremez. Aktif taşımaya en güzel örnek,çeşitli hücrelerde görülen ”Sodyum-Potasyum Pompası”dır. Normal şartlarda sodyum hücre dışında,potasyum da hücre içinde yoğundur.Sodyum-potasyum pompası ile yoğunluk farkından dolayı hücre dışına çıkan potasyum hücre içine, hücre içine sızan sodyum da hücre dışına ATP enerjisi kullanılarak pompalanır. ENDOSİTOZ Pasif taşıma ve aktif taşıma ile taşınan moleküller doğrudan hücre zarından veya porlardan geçerken, büyük moleküllerden olan yağ,, nişasta, glikojen, protein vs geçemezler.Bu moleküller zarın değişikliğe uğraması ile enerji harcanarak hücre içine alınırlar.Bu olaya “endositoz” denir. Endositozla hücre içme alınan besinler, sitoplazmada besin kofulu şeklinde bulunurlar. Hücrelerde endositozla besin alınımı fagositoz ve pinositozla sağlanır. Fagositoz Endositozla katı yapıların hücre içine besin kofulu şeklinde alınmasıdır. Katı madde yalancı ayak yardımıyla oluşturulan cep içerisine alınır. Daha sonra içeri çekilen besin kofulu lizozomla birleşerek sindirilir. Akyuvarların mikropları yemesi, amiplerin beslenmesi buna örnektir. Pinositoz Sıvı maddelerin besin kofulu şeklinde hücreye alınmasına denir. Pinositoz olayında, sıvı maddelerin hücre zarına değmeleri sonucunda, sitoplazma içine doğru cep ya da kanal şeklinde yapılar oluşur.bu yapılardan pinositoz keseleri meydana gelir.Bu şekilde hücre içine alınan sıvı maddeler lizozomla birleşerek sindirilir. Fagositoz ve pinositoz genellikle hayvan hücrelerinde görülür. EKZOSİTOZ Daha önce de açıklandığı gibi hücrelere endositozla alınan maddeler lizozom enzimleri ile küçük moleküllere parçalanır (hücre içi sindirim). Kesecik içerisinde sindirim sonucu oluşan artık maddeler ve dışarı salgılanması gereken bazı metabolik ürünler hücreden dışarıya atılır.Bu olaya “ekzositoz” denir. Ekzositozda kesecik hücre zarına tutunur ve tutunan kısımları içeriğini dışarı boşaltır. Endositozda olduğu gibi ekzositozda da enerji harcanır. HÜCRE YÜZEYİNDE FARKLILAŞMALAR Hücrenin Serbest Yüzeyindeki Farklılaşmalar:Bu tür farklılaşmalara örnek olarak mikrovillus, oyuklar, silleri örnek verebiliriz. Mikrovillus Özellikle emme görevi fazla olan hücrelerde, örneğin bağırsak epitelinde, hücre dış yüzeyini artırmak için, hücre zarının bir miktar sitoplazma ile beraber dışarıya doğru meydana getirdiği, parmak şeklinde 0.6-0.8 mikron uzunluğunda 0.08-0.1 mikron kalınlığındaki çıkıntılardır, ince bağırsakta her bir hücrede aşağı yukarı 3000-4000 mikrovillus bulunmaktadır. Bu mikrovilluslar (çoğulu mikrovilli) makromolekülleri parçalayan ve hücre içine taşıyan enzimleri taşır. Sıvı geçirimine (alışverişine) kuvvetlice özelleşmiş (ozmoregülasyon yapan) hücrelerin taban kısımları (böbrek Malpiki tüplerinin epitel hücreleri) kaide labirenti denen birçok kıvrım ve girinti taşır. Epitel hücrelerinin alt kısmındaki "Kaide Zarı" hücre dışı bir yapı ve salgıdır; epitel hücrelerini alttaki bağ dokudan ayırmaya yarar. Oyuklar Oyuklar,mikrovilluslar arasında hücre zarının, hücre içine doğru torba şeklinde mağaramsı girintiler yapmasıyla oluşur.Bu oyuklar, hücre yüzeyini artırarak hücre içerisine büyük miktarda sıvı girişini sağlar (pinositoz); daha büyük oyuklara fagositik hücreler (makrofajlar) ve bazı salgı yapan hücrelerde rastlanabilir. Siller Bazı hücrelerin yüzeyinde sil (kirpik) ve kamçı olarak isimlendirilen yapılar vardır. Hareketli olanlara "Kinetosilia", hareketsiz olanlara "Stereosilia" denir. Stereosiller, kinetositlerden uzundur ve kinetozom (dip taneciği) taşımazlar. Sillerin uzunluğu 5-10, kalınlıkları 0.2-0.25 mikrondur. Bulundukları hücrede sayıları çok fazladır. Flagellumlar (kamçılar) bulundukları hücrede ya bir ya da birkaç tanedir; uzunluğu 150 mikrona ulaşır, insandaki spermanın kuyruğu kamçı yapısındadır; uzunluğu 40-50 mikrondur. Çok sayılı kamçıya ependym (omurgalı hayvanların merkezi sinir sistemini örten epitel) hücrelerinde rastlanır. Bütün titrek siller ve kamçılar hemen hemen aynı yapıya sahiptir. Enine kesitte 11 adet boyuna uzanan mikrotubulustan meydana geldiği görülmüştür. Bunlardan iki tanesi ortada yer alır (Diplomikrotobulus Sentralis), diğer 9 tanesi 2'li mikrotubuluslar halinde çevreye sıralanmıştır (Diplomikrotubulus Periferiki). Ayrıca bir üçüncü mikrotubulusa ait olduğu sanılan ve belirli yönde yer almış çıkıntılar vardır. Kamçı ve Şiilerin enine kesitinde, ortadaki filamentum aksiyaleyi oluşturan kısım bu fibrillerdir. Bunun etrafında bir matriks kısmı ve en dışta da plazmalemma bulunur. Gerek siller gerekse kamçılar hücre dışında (Pars Ekstrasellularis) ve hücre içinde (Pars interselularis = Korpuskulum Bazale) kalan iki kısıma ayrılmıştır. Hepsi bir taban taneciğinden çıkmıştır (Bazal Granula). Bu taneciğe sinilerde Kinetozoma, kamçılılarda Blefaroplast ve çok hücrelilerin spermasında (kuyruk taneciğinde) Proksimal Sentriyol denir. Sillerin ve kamçıların bu taban taneciği ile bağlantıları kesilirse, hareket yeteneklerinin yitirildiği görülür. Siller arasındaki eşgüdüm ilginçtir. Bir sildeki impuls diğer bütün Sillere, hatta komşu hücrelerdekine kadar geçerek, hepsinin belirli bir düzen içerisinde hareket etmesini sağlar. Kendi başlarına (otonom) hareket etme yetenekleri vardır, örneğin, ölen bir insanın, burun mukozasındaki ve böbrek kanallarındaki siller öldükten 2-3 gün sonra dahi hareketlidir. Kurbağaların, memelilerin ve yumuşakçaların ışığa karşı duyarlı hücreleri (çomakçılar ve koniler), sölenterlerdeki knidositler değişikliğe uğramış bir sildir. Hücreler Arası Bağlantılar (Juncturae Cellularum) İki hücrenin birbirine bağlanmasını ve haberleşmesini sağlayan özel bölgeler olarak tanımlanır. Bu bağlanma çeşitli dokularda çeşitli şekillerde bulunur. Sinir, duyu ve bazı kas hücrelerinde sinapsis adım alır. Hücreler arasındaki bağlanmayı şu gruplara ayırabiliriz Sıkı Bağlantı: Dış etkilerden vücudu koruyan hücrelerde bulunur. Epitel hücreleri arasındaki kuvvetli bağlantı bu tiptir. Hücreler arasında aralık yok gibidir. Yalıtma özelliği genellikle fazladır. Desmozomlar: Aynı işlevi yürüten hücrelerin ortak hareket etmelerini ve birbirine yapışmalarını sağlayan sitoplazmik uzantılardır. Çoğunluk simetriktirler. Bu uzantılar küçük bölgeler halinde olabilir (düğme desmozom) ya da hücrenin etrafını çepeçevre sarar (kemer desmozom). Mekanik etki altında kalan hücrelerde düğme desmozom daha fazladır. Esasında hücre bağlantıları, hücrelerin serbest yüzünden derinlere doğru farklı bölgeler gösterir. Geçit Bölgeleri: Bir zigotun (çok hücrelide) gelişerek, aralarında düzenleme ve işbölümü oluşmuş, yapısal olarak farklılaşmış hücreleri meydana getirmesi, hücreler arasındaki bilgi iletimi ile mümkün olmaktadır. Bu iletişim madde ve elektrik iletimi şeklinde olabilir. Nitekim 1000 dalton büyüklüğündeki moleküllerin, hücreler arasında bulunan 10-20 A° çapındaki geçit bölgelerinden iletildikleri saptanmıştır. Bu geçitler iki hücrenin birbirine yaklaştıkları bölgelerde oluşan borucuklardır. Boruculardan, iyonların, şekerlerin, amino asitlerin, nükleotitlerin, vitaminlerin, steroyit hormonların ve siklik adenozin mono fosfatın geçtiği saptanmıştır. Keza elektriksel uyarımlar da diğer hücrelere bu geçit bölgelerinden iletilir, iyonların geçiş sırasında dış ortama sızmaması için geçiş borucuklarının geçirgenliği normal hücre zarına göre 1000-10.000 defa azaltılmıştır, iki canlı hücre yapay bir ortamda yan yana getirilirse, çok kısa bir sürede (saniyeler içinde) hücreler arası ulaşım bölgelerini oluştururlar. Hücre zarının üzerindeki özel almaçlar, aynı kökenden gelen diğer hücrelerin tanınmasını sağlarlar, örneğin embriyonik evrede karmakarışık edilen hücreler, geldikleri doku çeşidine göre birbirlerini tanıyarak bir araya gelebilirler. Hücreler arası ulaşım bölgelerinin oluşumunun ve geçirgenliğinin miktarı Ca + + iyonlarının hücre içindeki azlığına (normal olarak hücre içindeki derişimi düşüktür) ve hücre yüzeyindeki glikoproteinlerin fazlalığına bağlıdır. Hücreler arası bölgede Ca + + ve Mg + + derişiminin fazla olması, geçit tüpcüklerinin yalıtılmasına, bu da hücreler arası geçirgenliğin artmasına neden olur. Ca + + iyonları hücre zarına tutunarak belirli iyonların taşınımını önler, iki hücre arasında bağ meydana gelince, borucuğun açıldığı yerdeki Ca + + iyonları (borucuk içinde kalan ) hücre zarından aynlarak sitoplazma içine girer ve çoğunlukla da aktif pompalanma ile dışarıya atılır (ATP kullanılarak). ATP sentezi önlendiğinde, hücreler arasındaki bağ yerlerine tutunmuş Ca4' + iyonları atılmadığı için hücreler arasındaki geçirgenlik (bağ yapma gücü) azalacak ve hücreler birbirinden ayrılacaktır. Hücre arası geçitlerin en önemli görevi, embriyonik gelişim sırasında, bazı maddelerin hücreden hücreye bu yolla geçerek, doku ve hücre farklılaşmasını sağlamasıdır. Hücre çoğalmasının da bu yolla sınırlandığına ilişkin gözlemler vardır. Kanser hücresinde bu bilgi iletimi olmadığı için (büyük bir olasılıkla hücreler arası bağlantılar yok edildiği ya da oluşmadığı için), komşu hücrelerin durdurucu etkisini alamamakta ve sınırsız çoğalma sürecine girerek kötü huylu tümörleri yapmaktadır. Nitekim kanser hücreleri birbirine ya da normal hücrelere temas etse dahi bölünmesine devam eder; buna karşın normal hücreler komşu hücrelere ya da kanserli hücrelere temas ederse, bölünmesini durdurur ya da sınırlar. Hücrelerin Taban Yüzeylerindeki Farklılaşmalar Bazı hücrelerin tabanında plazma zarı birçok katlanmalar meydana getirerek yüzey genişletirler.Bu oluşumlar, kan damarı olmayan çok katlı hücre tabakalarının beslenmesini sağlar. SİTOPLAZMA Sitoplazma; hücre zarı ile çekirdek zarı arasıda bulunan, hücre iskeleti, organeller ve sitozol adı verilen sıvıdan oluşan kısımdır.Sitoplazmadaki canlı yapıyı organeller, cansız yapıyı ise organik ve inorganik bileşikler oluşturur.Cansız yapı;katı sıvı arası yarı akışkan bir özellik gösterir. Sitoplazma,Ektoplazma ve endoplazmadan oluşur.Hücre zarının hemen altındaki yoğun kısma ektoplazma, ektoplazmayla çekirdek arasındaki daha az yoğun kısma endoplazma denir.Hücre organellerinin çoğu endoplazmada yer alır. HÜCRE İSKELETİ Bütün yüksek yapılı organizmalarda olduğu gibi hücrenin de bir iskeleti vardır.Bu iskelet hücrenin belirli bir şekle sahip olmasını ve hücre organellerinin gerekli olduğu bölümlerde bulunmasını sağlar.Aynı zamanda hücrenin değişik şekillerdeki hareketini, iğ iplikçiklerinin oluşturulmasını ve sitoplazma hareketini hücre iskeleti sağlar. Hücre sitoplazması , mikrotübül ve mikrofilamentlerden meydana gelmiş ağsı bir yapıyla doludur.Bu ağsı yapı hücrenin iskeletini meydana getirir. Aktin, miyozin ve tropomiyzinden meydana gelen mikrofilamentler, kasılıp gevşeyerek hücre hareketini sağlarlar. Hücre iskeletinin arası sitoplazma sıvısı (sitozol) ile doludur.Bu kısım özellikle glikoz enzimlerini taşır ve protein sentezinin basamakları bu kısımda gerçekleşir. Sitoplazma Hareketleri Sitoplazma durgun bir yapı göstermeyip canlı hücrelerde hareket halinde bulunur.Bu hareketleri iki şekilde ortaya çıkar: Rotasyon Hareketi:Rotasyon hareketi genellikle su bitkilerinde görülür.Örnek, elodea, nitella bitkilerindeki sitoplazma hareketleri.Bu harekette sitoplazma, hücre çeperine paralel olarak hareket eder.Sitoplazma ile birlikte çekirdek ve kloroplastlar da hareket edebilir. Sirkülasyon Hareketi:Genellikle kara bitkilerinde, özellikle tüy hücrelerinde kolaylıkla görülebilir.Sitoplazma hareketi çeşitli yönlerde olur. Hücre çeperine paralel olduğu gibi,düzensiz olarak çeşitli yönlere doğru da olabilir. Bu hareketler sitoplazmadaki yüzey gerilimi veya yoğunluğundaki değişiklikler sonucu ortaya çıkar sitoplazma hareketlerinde mikrotübül ve mikrofilamentlerin de rol oynadığı belirtilmiştir.sitoplazma hareketleri sonucu hücrenin belli bölgelerinde meydana gelen metabolik ürün ve artıklar hücrenin her tarafına dağılır.Böylece hücrenin belli bir bölgesinde oluşan artık maddelerden zarar görmesi engellenir. SİTOZOL (SİTOPLAZMA SIVISI) Sitozolun büyük kısmını (%90) su oluşturur.Bu oran bazı canlılarda %98’e kadar yükselebileceği gibi, sporlarda ve tohumlarda %5-15’e kadar düşebilir.Sitozolda organik ve inorganik (kuru madde) maddelerin oranı %10-40 arasında değişir.Kuru maddelerin %90’ını organik,%10’unu da inorganik maddeler oluşturur.Sitozolda en çok bulunan kuru madde protein molekülleridir.Bitki hücrelerinde ise karbonhidratlar daha çok bulunur.Ayrıca sitozolda; yağ, vitamin, hormon, organik ve inorganik asitler bulunur. Sitozolda bulunan önemli inorganik maddeler Na, Ca, K, P, Mg Fe’dir.Bu elementlerin hücredeki fonksiyonlarını şöyle özetleyebiliriz: • Bazı moleküllerin yapısına girerler.Örneğin Mg klorofilin, Fe hemoglobinin yapısına katılır. • Osmotik basıncın oluşmasını yani hücrede belli bir yoğunluk oluşturarak, suyun hücreye girmesini sağlar. • Düzenleyici olarak görev yaparlar. Sitoplazma yukarıda söylendiği gibi yarı akışkan,yoğun bir maddedir. Hücre sudan yoğun olup suyun içine atıldığında dibe çöker.

http://www.biyologlar.com/hucre-zarindan-madde-gecisi

Parazitliğe uyum nedir

Parazitlerde parazitlik ile ilgili bazı adaptasyonlar görülür. Bu adaptasyonların derecesi parazitliğin tipi ile ilgilidir. Bu adaptasyonların en ileri şekillerinin zorunlu parazitlerde rastlanır. Protozoonların Apicomplexa şubesinde belirgin bir hareket organelin bulunmaması solucanlardan Cestoda’ların sindirim sisteminin olmaması gibi. Bazı parazit gruplarında da özgür yaşayan akrabalarına kıyasla uzamıştır. Örneğin özgür yaşayan yuvarlak solucanlar (nematodlar) çıplak gözde zor görülebilen uzunlukta iken Ascaris lumbricoides de 35 cm hatta 50 cm’ye kadar, Dracunculus medinensis te ise 1 m’ye erişebilmektedir. Parazitik yaşamam uyumun temelinde biyokimyasal değişiklikler görülür. Parazit metabolizması yönünden az veya çok derecede konağına bağımlı olan bir canlıdır. Bu da en azından belli metabolik faaliyetlerin kaybı ve bu kayıpların konak tarafından karşılanması demektir. Aslında bu metabolik farklılık paraziter hastalıkların tedavisinde insan yönünden büyük bir avantajdır. Parazitlerin bir çoğu belli salgılarının yardımıyla konak vücuduna girebilirler. Bu tip kimyasallar parazit tarafından konak vücudunda yayılmak amacıyla da kullanılabilir. Proteolitik enzimler denilen bu kimyasallara bir örnek Entamoeba histolytica’nın hiyalüronidaz enzimidir. Bazı parazitler ise konağın savunma mekanizması karşısında antijenik yapılarının devamlı olarak değiştirebilme yeteneğindedir. Trypanosoma spp. türleri buna örnektir. Bir kısmı da Schistosoma türlerinde görüldüğü gibi vücut yüzeylerinde konağa ait antijenler bulundurarak konağın savunma mekanizmasından kaçarlar.

http://www.biyologlar.com/parazitlige-uyum-nedir

Metazoa’ nın Yapı Planı ve Ortaya Çıkışı

Çok hücreli hayvanlarda hücreler görecekleri işe göre farklılaşarak dokuları, dokuların bir araya gelmeleri ile de belli bir işi yapmaktan sorumlu organlar oluşur Bu da hayvan gruplarında farklı yapı planlarının ortaya çıkmasına neden olur. Yapı planları her hayvan grubunda farklı olmasına karşın belli hayvanları bünyesinde barındıran hayvan gruplarında ise temel bir yapı vardır Bu filum içine giren hayvan alt kategorilerinde yapı, bu ana yapıdan az farklar içerir. Burada sorun böylesine yapı farklılığının ortaya çıkışının nedenidir. Bunun için konuyu iki yönden ele almak gerekir. Bunlardan birincisi olayın filogenetik yönü, diğeri de ontogenetik tarafıdır. Ontogenezi takip ederken canlının bugünkü oluşumunu görürüz. Ancak bu gelişim sırasında özünde anlam verilemeyen bir takım değişiklikler kısa da olsa ontogenez sırasında gözlenebilmektedir Bunlar araştırıldığında filogenezin bir parçası olarak karşımıza çıkmaktadırlar. Hayvan türü ortaya başka bir şekilde çıkmış, günümüze kadar değişerek ve bazen çatallanmalar göstererek gelmiştir. Eksik parçalar yerine konulduğunda bu hayvanın ortaya çıkışından günümüze kadar geçirdiği yaşam öyküsü (filogenezi) ortaya çıkmaktadır. Burada daha çok günümüzdeki yapıyı; oluşturan ontogenez öncelikle ele alınacak ama yeri geldiğinde filogeneze de değinilecektir. Üreme Çok uzun yaşayan bitkiler ve bazı hayvanlar da dahil hiçbir canlı ölümsüz değildir. Ölüm ile o organizmanın varlığı da sona erecektir. Ancak organizmanın ölümü bile onun devamını engellememelidir. Bunu sağlayan da üreme olayıdır Özünde üremeyi çoğalma gibi ele almamak gerekir. Burada esas amaç, canlının üzerinde taşı­dığı kalıtsal materyalin daha sonraki döllere aktarılmasıdır. Bunun için de üreme gibi^ bir olay gerçekleşir. Burada asıl olan populasyonun sahip olduğu genlerin bireysel ölümlerle yok olmaması, bir başka canlı bünyeye aktarılarak devamının sağlanmasıdır. Metazoa’ da biri eşeyli diğeri eşeysiz olmak üzre 2 tip üreme görülür. Metazoa da en yaygın üreme şekli eşeyli ya da seksüel üremedir. Burada farklı tipte eşey hücreleri gelişir. Gamet adı verilen bu hücrelerin diğer hücrelerden farkı, kalıtım materyalinin yarısına sahip olmalarıdır. Normalde her hücre biri anne diğeri babadan olmak üzere 2 kromozom takımına (2n, diploid) sahiptir. Normal diplo­id bir hücre meiosis (mayoz, redüksiyon) denilen hücre bölünmesi ile kromozom sayı­sını takım halinde yarıya (n) indirir ve gamet oluşur. Ancak olay bu kadar basit değildir. Özünde meiosis olan bu olay birbirini takip eden iki bölünme (oogenez ve spermatogenez gibi) şeklindedir Bunun için ayrıntılı bilgiler genel biyoloji ve diğer ilgili derslerde verilecektir. Gamet oluşumu kısaca gametogami olarak bilinir. Gametler oluştukları eşey bezlerine göre erkek ya da dişi gamet şeklinde farklılaşırlar. Bu da iki farklı kavram ortaya çıkarır. Biri her iki çeşit gameti üzerinde toplayan, diğeri de her birinden sadece birini üzerinde bulunduran bireyler. Erkek gametleri bulunduran erkek birey ile dişi gametleri üzerinde bulunduran dişi birey gibi iki farklı eşeyde aynı türe ait bir eşey farklılaşması olur. Bu ayrı eşeylilik ya da gonokorizm olarak bilinir. Gonokorizm büyük bir olasılıkla Metazoa’nın ilkin bir özelliğidir Burada şöyle bir soru akla gelebilir: Kromozom sayısı niçin yarıya indirilir? Kromozom sayısı yarıya indirilmezse, hücre bölündüğü zaman yavru hücreler­deki kromozom sayısı da yarıya inecektir. Bu da o türe ait özelliklerin yeni bireyde görülmemesine, belki de bu yeni yavrunun hiç yaşamamasına ya da çok ayrı bir formun ortaya çıkmasına neden olacaktır. Bu durumda mitoz aklımıza gelebilir. Hücre kromozom sayısını önce ikiye katlar sonra da bölünür ve yeni yavrular ilk hücrenin aynısı olur. Fakat burada tıpa tıp aynılık söz konusudur. Yani yeni yavrular birbirinin aynıdır. Buna klon adı verilir ve bu eşeysiz üremedir. Burada amaç kromozom sayısını yarıya indirdikten sonra tekrar birleştirilirken yeni yeni kombinasyonlara olanak sağlamaktır. Bunun sonunda da aynı anne babanın yavruları birbirinden farklılıklar gösterir. Varyasyon denilen bu olay sayesinde hayvanlarda böylesine bol bir çeşitlilik görülür. O halde önce yarıya indirilen kromozom sayısı, sonra bu yarımların birleşmesi (döllenme) olayı gerçekleşir. Böylece başlangıçtaki gibi yine 2 takım kromozoma sahip ancak farklı gen kombinasyonlarıyla bir döllenmiş hücre (zigot) oluşur. Döllenmenin özü iki aynı türe ait ve kromozom sayısı yarıya inmiş eşey hücre­sinin çekirdeklerinin birleşmesidir. O halde bu olayın iki aşaması vardır. Birinci aşama iki eşey hücresinin birbirini bulrVıası, diğeri de iki çekirdeğin birleşmesi ve 2n kromo- zomlu bir çekirdek (synkarion) oluşturmasıdır. Dişi eşey hücrelerinin Gynogamon adı verilen ve spermleri kendilerine çeken kimyasal salgıları, erkek eşey hücrelerinin androgamon adı verilen salgıları ile etkileşirler. Bu döllenmeyi hızlandırıcı rol oynar. Bu olay ilk kez deniz kestanesi yumurtasında Oskar Hertwig ve Richard Hertwig (1875) tarafından gözlenmiştir. Döllenme süreci ilk olarak su içinde ve vücut dışında, aynı anda suya bırakılan yumurta ve spermlerin birbirini bulması şeklinde olmaktaydı. Bunun en güzel örneğini çok sayıda deniz omurgasızlarında (özellikle Echinodermata da) ve balıklarda görmek­teyiz. Bu şekilde döllenmenin bir bedeli vardır. Bu bir risktir ve birçok yumurtanın döllenememesi ile eş anlamlıdır. Bu da kayıp demektir. Bunun için de daha çok sayıda yumurta ve sperm üretilmesi gerekir. Birçok organizma bu gibi durumlarda kayıpları azaltıcı önlemler alırlar. Böylece olay daha ekonomik duruma getirilir. Önlemlerin başında kuluçkayı koruma ve bakma davranışları gelir. Bazılarında kuluçka ve yavru bakımı çok kısa sürer. Bu ne kadar uzun sürerse, verim de o denli fazla olur. Bundan daha önemli bir durum erkek ve dişi hayvanın çift oluşturmasıdır. Bu­rada döllenme dişi hayvanın içinde olur. Bunun için spermlerin transferi gerekir ve birçok mekanizmalar gelişmiştir. Bunlardan biri erkek hayvanın sperma paketi (spermatofor) oluşturmasıdır. Birçok erkek hayvan sperma paketini dişinin belirli bir yerine bırakır. Dişi bu spermatofor içindeki spermlerden döllenebilir. Bazı türlerde ise sperm­ler direkt olarak dişi hayvanın eşeysel açıklığına bırakılır. Döllenme ovidukt ya da direkt olarak ovaryum içinde (iç döllenme) olur. Dişi ve erkeğin bu amaçla birleşmesi olayına kopulasyon adı verilir. Bazı türlerde saniyelerle ölçülen böyle kopulasyon olayları bazılarında saatlerce sürebilir. Bu tip kopulasyon olayı kural olarak daha çok kara hayvanlarında görülür. Başka türlere ait bireylerle kopulasyon bazı morfolojik farklılıklarla önlenmiştir. Erkeklerde dişiyi tutmak için birçok organ gelişmiştir. Örneğin makas, çengel, kıl grupları, vücut uzantıları, yakalama ve tutma organları gibi. Bu yapılar nedeniyle erkek ve dişi bireyler arasında morfolojik farklılıklar ortaya çıkar. Seksüel dimorfizm denilen bu olay sadece morfolojik farklılıklarla sınırlı kalmaz, değişik renklenme ve farklı vücut büyüklüğü gibi daha değişik özelliklerde de farklılıklara neden olur. Örneğin Bonelia viridis isimli deniz solucanının erkeği dişinin yanında adeta nokta gibi kalır (cüce erkek). Eklembacaklılarda genellikle kopulasyon aparatı geli­şir. Bununla spermler dişinin eşeysel açıklığına bırakılır. Bu aparat bazen oldukça komplike bir yapıda olur. Dişi ve erkek üreme organları genellikle bir anahtar kilit gibi birbirine uyumludur. Böylece başka türlerle döl alış verişi de önlenmiş olur. Bazen erkek organı dişinin negatifi gibi onunla uyumludur. Böylesine özel olan bu organlar türe özgü oldukları için çoğu kez tür ayırımında taksonomistler tarafından kullanılır. Örneğin çekirgelerin erkek kopulasyon organı olan aedeguslar. Eşeyli üremede normal olarak erkek ve dişi gametler ayrı ayrı bireylerde bulunur. Bu gibi durumlar için gonoko- rismustan söz edilir. Ama bazı durumlarda her iki gamet aynı birey üzerinde bulunur. Böyle bireylere erselik ya da hermafrodit denir. Bunlarda genel olarak erkek ve dişi gonadlar birbirinden ayrıdır ve olgunlaşma zamanları da farklıdır. Bireyde önce erkek daha sonra da dişi gonad olgun­laşır. Böylece birey, önce erkek sonra da dişi görevi (protandrik erselik) görür. Ender olarak aksi olur. Böylece bireyin kendini döllemesi olanaksız olur. ender olarak örneğin, kara salyangozlarında gonadlar aynı bez içinde olgunlaşırlar. Aynı anda olgunlaşan gonadlar, ürünlerini iki bireyin karşı karşıya gelmesiyle birbirlerine aktarırlar. Bunun en güzel örneğini toprak solucanlarında görmek olasıdır. İki toprak solucanı klitellum adı verilen yüksük gibi ve birkaç segmenti kapsayan vücut kısımları birbirine değecek hatta birbiri ile kaynaşacak şekilde, birinin ön ucu diğerinin aksi yönüne gelecek şekilde karşı karşıya gelir. Böylece her ikisinin farklı eşey bezlerinin açıklığı (dişi açıklığın karşısında diğerinin erkek eşey açıklığı gelir) karşı karşıya gelir. Böylece birbirlerini döllerler. Burada her birey diğeri için farklı eşey rolünü üstlenmiştir. Yumurtanın döllenmeden de geliştiği görülür. Partenogenez (yunanca parthe- nos=bakire, bakirenin döl vermesi anlamında kullanılır) adı verilen bu üreme birçok hayvanda (Rotatoria, Cladocera, Aphidina vs.) görülür. Bazılarında sadece bu tür üre­me görülürken, bazılarında eşeyli üreme zaman zaman yerini bu tür üremeye bırakır. Genellikle uygun olmayan koşullarda görülen bu olay döl değişimine neden olur. Böyle eşeyli partenogenetik üreme şekline heterogoni denir. Bunlarda parte- nogenetik evre kural olarak meiosis (redüksiyon) bölünmesi görülmez. Güney Avrupa’da yaşayan hayvanların bazılarında daha değişik bir durum görülür. Bu hayvanlar normalde eşeyli olarak ürerler. Ancak kuzeye doğru gidildikçe erkeklerin populasyondaki sayısı giderek azalır. Bu durumda dişiler partenogenetik olarak üremeye başlarlar. Ama aynı populasyon, aynı zamanda güney de ayrı eşeyli olarak üremeye devam eder. Şekil : Toprak solucanında eşeyli Ureme a-Şematik. b-Klitellumlardan birbiri ile kaynaşmış iki toprak solucanı. Köprü kurulan bölgelerden birbirine döl alışverişi yapılmakta At erkek eşey alıklığı (penis ve atrium) Dp salgı pupilleri, Hp temporer deri papilleri. Pr reccptaculum semınıs poru Hymenoptera ve bazı diğer hayvan gruplarında ise d rıh a değişik bir partenogenez görülür. Bu haploid partenogenezdır. Bunlarda normal olarak mayoz bölünmede haploid gametler oluşur. Haploid yumurtaların döllenmesi ile diplioid zigot oluşur, kraliçe arı ile işçi arılar böyledir. Burada isteğe bağlı bir durum da söz konusu olur, kraliçe arı erkekten aldığı spermleri sperm kesesinde (receptaculum seminis) toplar, bu kesenin ağzı kapalı olduğu sıralar yaptığı yumurtalar döllenmemiş olur. Bunlar erkek arılardır ve haploiddirler. Kraliçe yeni kraliçe ve işçi gereksiniminde kesenin ağzını açar ve bazı yumurtaların döllenmesine olanak sağlar Partenogenezin çok özel bir şekli de pâdogenez (yunanca paidos=çocuk, amos=düğün) olarak bilinir. Burada henüz (döllenmemiş) larva halinde iken üreme öz konusudur. Gal sinekleri buna iyi örnektir. Eşeysiz üreme ya da aseksüel üreme ana hücrenin özellikle tüm protozoonlarda boyuna ve enine olarak 2 ya da daha fazla sayıda bölünmesi şeklinde olur, letazoonlarda ana hücreden büyük ya da küçük hücre kompleksleri şeklindeki ayrılmalarla olur Daha sonra bu hücre kompleksleri yem bir birey oluşturur. Bu bir vejetatif üreme olarak ta ele alınabilir. Bu hayvanlar aleminde sık görülen ve ikincil bir üreme şeklidir Ekstrem durumlarda enine ya da boyuna bölünmelerle (bazı Actinaria e Turbellarıa da) de yeni bireyler oluşabilir. Sık görülen bir üreme şekli de tomurcuklanmadır. Genelde ana hayvanın vücudundan dışa doğru bir çıkıntı (tomurcuk) olur, bu çıkıntının ana hayvandan ayrılmasıyla yeni bir birey oluşur. Bu yolla çok sayıda eni birey meydana gelir. Bu yeni bireyler daha sonra vejetatif olarak üreyebilirler. Birçok türde örneğin tatlı su poliplerinde ve Actinia’larda tomurcuklar ana hayvandan ayrılarak tamamen serbest bir yaşama geçebilirler. Bir başka tür hayvanlarda ise tamamen aksine ana hayvandan ayrılmayan tomurcuklar adeta bir hayvan kolonisi oluştururlar. Koloni olarak genelde bir araya toplanmış hayvanlar akla gelir. Burada vejetatif olarak değil eşeysel olarak üremiş hayvanlar akla gelir, örneğin , Cirripedia (Crustacea) larvaları deniz kenarlarında yan yana durarak öylesine sıkı bir doku oluştururlar ti, daha sonra burada sadece onların erginlerini görmek olası olur. Kolonilere daha çok sayıda, değişik örnekler vermek olasıdır. Vejetatif çoğalmada da tomurcukların ana hayvanla birlikte kalarak onunla morfolojik ve fizyolojik birlikteliklerini sürdürdükleri görülebilir. Böylece bir hayvan stoğu oluşur. Bu yolla binlerce hayvan bir araya toplanabilir. Hayvan stoklarına sifonlu hayvanlar (Siphonophora), taş mercanlar (Madreporaria) ile diğer Anthozoa ve yosun hayvancıkları (Bryozoa) en tanınmış örnek olarak verilebilir. Bu oluşuklarda çok değişik yapıda hayvan bir araya geldikleri için bir polymorfizm den söz edilir. Eşeyli ve eşeysiz üreme birbiri ardı sıra da gerçekleşebilir. Döl değişimi ya da metagenez adı verilen bu olay en güzel örneğini Hydrozoada verir. Eşeysiz üremede bazen embriyo erken evrelerde dağılarak ikincil embriyoları onlar da üçüncül embriyoları meydana getirir. Buna polyembriyoni denir. Hymenopte­ra, Strepsiptera, Bryozoa da sık görülen bu olay bazen insanlarda da ikiz, üçüz (ya da daha fazla) olaylarında da görülür. Gelişim Süreci Çok hücreli hayvanların yaşamları çeşitli evrelerden oluşur Bunlar genellikle embriyonal, larval, gençlik ve ergin evrelerdir Bu 4 evreli gelişim şekli indirekt gelişim olarak nitelendirilir. Çünkü larval evre bazen birden çok sayıda basamaklarda gerçekleşir Bu evre genelde ilkin olarak özellikle denizel yaşam formlarında görülür Bazılarında larval evre olmayabilir. Bu durumda ise direkt gelişimden söz edilir. Bilindiği gibi organizmanın bireysel gelişimi, başından (zigottan) ergin hale ge­lene kadar ontogenez olarak isimlendirilir. Bu filogenetik gelişim ile birlikte ilişkilendirilerek, karşılaştırmalı gelişim süreci adı altında araştırılır. Özel zooloji ile çalışanlar için bu konudaki bulgular çok ayrı bir öneme sahiptir. Ontogenezin ilk basamağı embriyonal evredir. Bu evre zigotun bölünerek, serbest yaşayan form haline gelene kadar (bazılarında doğuma kadar) geçirdiği evredir Bu yumurtanın döllendiği yere bağlıdır. Dişi hayvan içinde döllenmiş ve embriyonal gelişimini orada tamamlamışsa sonuçta doğum söz konusudur. Döllenme vücut dışında olmuş ise, yumurta içinde tamamlanan gelişme yumurtadan çıkınca sona erecektir. Ontogenez, henüz bitmemiştir. Yeni yavru ergin hale gelip kendisi gibi bir yavru üretebilecek duruma geldiğinde ya da diğer bir anlatımla eşeysel olgunluğa eriştiğinde, ontogenez de son bulacaktır. Bu sırada olası larva ve genç evreler bazen anne hayvan (bazen vücut içinde) bazen de baba tarafından bir süre bakılır (yavru bakımı). Larval evre, kural olarak başkalaşım (metamorfoz) olayının bir parçasıdır, ergin hayvan ile larva arasında sadece morfolojik farklar değil, yaşam biçimi ve beslenme şekli bakımından da farklılıklar vardır. Çoğu kez yaşam alanları da farklıdır Gençlik evresi, indirekt gelişimde metamorfozun sona ermesiyle başlar Direkt gelişim ise embriyonal gelişim ile bu noktada birleşir ve bundan sonra devam eder. Bu her şeyden önce bir büyüme evresidir, özünde gençler ergin bireylerin adeta birer küçültülmüş kopyalarıdır Bazı hayvan gruplarında bu evre nymph olarak adlandırılır (örneğin Ephemeroptera). Larval ve genç evreler birlikte postembriyonal gelişim olarak isimlendirilir. Ergin evre, tüm organ sistemlerinin gelişmesi ve eşeysel olgunluğa erişilmesi ile başlar. Bir çok eklembacaklı hayvanda (Arthropoda) bu evreler değişik zamanlar­daki deri değişimleri ile kendini gösterir. Tüm hayvanlarda bu evre ölüm ile son bulur. Çok hücreli hayvanlarda gelişim, tek bir hücrenin arkası arkasına bölünmeleri ve sonuçta çok hücreli oluncaya kadar devamı ile olasıdır. Bu olay özünde tek aşamalı gibi görünse de kendi arasında 3 ayrı evre görülür. Bunlar seri bölünmeleri içine alan segmentasyon, deri tabakalarının oluşumu (gastrulasyon) ve doku, organ oluşumu (histogenez ve organogenez). Döllenme ve Segmentasyon Yumurta döllenir döllenmez bölünmeye başlar (yumurta bir de büyüdüğü .-.iman yüzeyin hacme oranı küçüldüğü için bölünür ve böylece yüzey genişletilmiş olur). Bölünme sonunda meydana gelen yavru hücreler, blastomer adını alır. Metazoa için tipik olan bu bölünmeler (segmentasyon) her hayvan turu icin farklı şekilde olur ve blastomerler yan yana kalırlar. Blastomerlerin çeperde dizilmeleri ile ortası boş bir küre oluşur. Bu blastuladır. Ancak her türlü yumurtada blastula böyle oluşmayabilir. Bölünme süreci, yumurtanın içindeki yedek besin (yumurta sarısı, vitellüs) miktarına, kalitesine ve yumurta içindeki dağılımına bağlıdır Bu durum da farklı yumurta tiplerinin ortaya çıkmasına neden olur Her yumurta tıpı ise farklı segmentasyon şekli gösterir. Yumurta sarısı az olan yumurtalara oligolesital, fazla olanlara da polylesital yumurta denir. Bu arada ne az ne de çok denilebilecek durumda olanları da vardır. Bunlar da mesolesital yumurta adını alırlar Yumurta sarısının miktarı dışında yumurta içindeki dağılımı da önemlidir demiştik. Yumurta içindeki homojen dağılım isolesital yumurtalarda görülür. Bu tip yumurtalarda sarı azdır ve hücre çekirdeği de ortadadır. Çekirdek adeta yumurtaya küsmüş gibi etrafında konsantre olmuş plazma ile bir köşeye çekilmiş durumda ise perilesital yumurta, çekirdek ortada ve etrafında yoğun plazma (Hpl) ve yumurtayı çepeçevre saran ayrı ve yoğun bir plazma (Ppl) var ise Centrolesital yumurta olarak adlandırılır. Besin maddesinin çok birikmesi halinde yumurta sarısı vejetatif kutupta toplanır, böylece çekirdek ve protoplazma animal kutupta yoğunlaşır. Bu durumda telolesital yumurta adını alır. Zayıf telolesital yumurtada protoplazma daha fazladır ancak kuvvetli telolesital de ise oldukça azdır.

http://www.biyologlar.com/metazoa-nin-yapi-plani-ve-ortaya-cikisi

Kuş Gözleminde Kullanılan Malzemeler

Kuş Gözleminde Kullanılan Malzemeler

Dürbün ve Teleskop Dürbün kuş gözlemcisinin ayrılmaz parçasıdır. Kullandığımız dürbün ne kadar kaliteli olursa yapacağımız gözlemde o kadar zevkli olur. Gözlemci, dürbününü seçerken bazı noktaları göz önünde bulundurmalıdır. Sonuçta her dürbün ile kuş gözlemi yapılmaz. Eğer bir dürbünümüz yoksa, yapacağımız ilk iş bir dürbün almak olacaktır. Dürbünümüzü, konusunda uzman ve daha sonra bize teknik destek sağlayabilecek yerlerden almalıyız. Aksi takdirde, bir arıza durumda sorun yaşayabiliriz. Satın alacağımız ya da gözleme götüreceğimiz dürbünü seçmeden önce gözlem için en ideal dürbün nasıldır bunu belirleyelim. Gözlem yapacağımız dürbünde arayacağımız ilk özellik görüntü kalitesidir. Peki bir dürbünün kaliteli görüntü verdiğini nasıl anlarız? Bütün dürbünlerin üzerinde bazı sayılar vardır. Örneğin:6x42, 10x50 gibi. Buradaki sayılardan ilki (örneğin 6x42 büyütmedeki 6 rakamı) dürbünün Okülerinin, diğer sayı ise (42) dürbünün Objektif lensinin mm değerinden çapını ifade eder. Bu sayılar kuş gözlem için iyi bir dürbün almamızda bize yardımcı olurlar. Bir dürbünün kuş gözlem için uygun olup olmadığını anlamak için o dürbünün “Büyütme Değeri”ne bakarı. Dürbünün büyütme değerini, Objektif lens çapını Oküler Çapına bölerek bulabiliriz. Büyütme değeri 5-7 arasında olan dürbünler kuş gözlem için idealdir. Yukarıda ki örnek için Büyütme değeri 42/6=7’dir. Objektif lens çapı ne kadar büyük olursa dürbün o kadar çok ışık toplar. Büyük lense sahip dürbünler iyi ışık topladığından güzel görüntü verir. Bu tip dürbünler ışık şiddetinin düşük olduğunu, sabaha karşı, akşama doğru gibi kapalı havalarda gözlem yapmak için idealdir. Büyük mercekli dürbünlerin dezavantajı ise, büyük merceğe sahip oldukları için boyutları büyük ve ağırlıkları fazladır. Bu dürbünler uzun süreli yapılan gözlemlerde, gözlemciyi yorabilir. Eğer ışık şiddetinin düşük olduğu zamanlarda ve yerlerde gözlem yapmayacaksak mercek çapı küçük olan dürbünleri tercih etmeliyiz. Dürbünümüzde arayacağımız diğer özellikler ise şöyle olmalıdır; -Dürbünümüz demir ya da benzeri malzemelerden değil, plastik gibi hafif ve herhangi bir darbe anında merceğe zarar vermeyecek malzemeden yapılmış olmalıdır. Bu tür dürbünler ayrıca hafif oldukları için fazla ağırlık yapmazlar. -Dürbünümüz, elimizin büyüklüğüne uygun olmalı ve parmaklarımız ayar vidalarına rahatlıkla yetişebilmelidir. -Dürbünle baktığımızda nesneleri normal şekillerinde görmeliyiz. Ayrıca dürbünün ışığı halkalar biçiminde gösterip göstermediğine de dikkat etmeliyiz. Teleskoplar dürbünlere göre daha büyük, ağır ve kullanması deneyim isteyen aletlerdir. Teleskopların büyütme gücü x20 ve üzeridir. Bu büyütmeye sahip aletlerin gözlem esnasında titremesi görüntüyü bozar, bunun için teleskoplar, üçayakla (tripod) birlikte kullanılırlar. Bilimsel bir çalışma yapmıyor ve sürekli yerimizi değiştiriyorsak, gözlemimize teleskop götürmeye gerek yoktur. Çünkü bir teleskopu arazide saatlerce taşımak oldukça zordur ve gözlem açısından pratik değildir. Eğer teleskop alacaksak dikkat etmemiz gereken bazı noktalar vardır. Bunları kısaca şöyle özetleyebiliriz: -Teleskopumuz plastik malzemeden yapılmış olmalıdır. -Gözü yoran düz teleskoplar yerine üstten bakmalı teleskopları tercih etmeliyiz.

http://www.biyologlar.com/kus-gozleminde-kullanilan-malzemeler

ARKELERİN SİSTEMATİĞİ HAKKINDA BİLGİ

ARKELERİN SİSTEMATİĞİ HAKKINDA BİLGİ

Arkeler, Arkea ( Yunanca αρχαία, "eskiler" 'den türetme; tekil olarak Arkaeum, Arkaean, veya Arkaeon), veya Arkebakteriler, canlı organizmaların bir ana bölümüdür. Yabancı literatürde bu gruptaki canlılar Archaea veya Archaebacteria, grubun tek bir üyesi ise tekil olarak Archaeum, Archaean, veya Archaeon olarak adlandırılır Arkeler, Ökaryotlar ve Bakteriler, üç-saha sisteminin ( İngilizce three domain system) temel gruplarıdır. Bakteriler gibi arkaeler de çekirdeği olmayan tek hücreli canlılardır, yani prokaryotlardır (prokaryotlar altı- alemli sınıflandırmada Monera olarak adlandırılırlar). İlk tanımlanan arkaeler aşırı ortamlarda bulunmuş olmalarına rağmen sonradan hemen her habitatta raslanmışlardır. Bu üst krallığa ait tek bir organizma "arkeli" (Arkea'ye ait anlamında; İngilizce archaean) olarak adlandırılır, bu sözcük sıfat olarak da kullanılır. Tarihçe 1977'de Carl Woese ve George Fox, prokaryotları 16S rRNA dizinlerine göre sınıflandırdıkları filojenetik ağaçdaki diğer bakterilerden ayrı kümelenmelerinden dolayı arkaeleri tanımlanmışlardır. Bu iki canlı grubu başlangıçta birer âlem veya alt âlem olarak görülmüş, Arkaebakteriler ve Öbakteriler olarak adlandırılmışlardır. Woese bu grupların canlıların temel düzeyde birbirinden farklı birer kolu sayılması gerektiğini savunmuştur. Daha sonra bu kavramı daha belirginleştirmek için grupları Arkeler ve Bakteriler olarak yeniden adlandırmış ve bunların, Ökarya ile beraber canlıların üç bölgesini oluşturduğunu öne sürmüştür. (Woese'nin bu gruplara İngilizce 'bölge' anlamında domain olarak adlandırmıştır; Türkçe üst-âlem olarak da adlandırılırlar.) Biyolojik bir terim olarak Arkea ile jeolojideki Arkean veya Arkeozoik dönemin bir ilişkisi yoktur. Arkeozoik dönem, Yer tarihinde Arke ve Bakterilerin gezegende yaşayan tek canlılar olduğu bir dönemin ismidir. Bu canlılara ait muhtemel fosiller 3,8 milyar yıl öncesine tarihlenmişlerdir. Moleküler biyolojide temel rolü olan genetik transkripsiyon ve translasyon mekanizmaları bakterilere pek benzemeyip, çoğu bakımdan ökaryotlara benzemektedir. Örneğin arke translasyonu ökaryotik-benzeri başlatma (initiation) ve uzatma (elongasyon) faktörleri kullanır, trankripsiyonda ökaryotlardaki gibi TATA-bağlanma proteinleri ve TFIIB rol oynar. Çoğu arke tRNA ve rRNA genlerinde arkelere has intronlar bulunur ki bunlar ve ökaryotik intronlara, ne de bakteryel intronlara benz farklı kılan çeşitli başka özellikler vardır. Bakteri ve ökaryotlarda olduğu gibi arkaelerde de gliserollu fosfolipitlere sahiptirler. Ancak arke lipitlerinin üç özelliği değişiktir: Arke lipitlerindeki gliserolun stereokimyası bakteri ve ökaryotlardakinin tersidir. Bu, farklı bir biyosentetik yol olduğuna işarettir. Çoğu bakteri ve ökaryotun hücre zarları gliserol-lipit esterlerinden oluşur, oysa arkelerin zarları gliserol-lipit eterlerinden oluşur. Bakterilerde eter bağlantılı lipitler olsa dahi bunlardaki gliserol sterokimyası bakteriyel biçimdedir. Arke lipitleri izoprenoid birimlerden. Bu beş karbonlu bileşik bakteri ve ökaryotlardaki bazı vitaminlerde yer almasına rağmen, yalnızca arkeler onu lipitlerinin inşasında kullanırlar. Çoğunlukla bu lipitler 20 karbonlu (4 monomerden oluşmuş) veya 40 karbonlu (8 monomer) olurlar. Kırk karbonlu lipitlerin uzunluğu hücre zarının kalınlığı kadar olduğu için bazı arkelerin hücre zarında bu lipit zincirinin iki ucunda gliserol fosfat grupları bağlıdır, zar başka canlı türlerinde olduğu gibi iki lipit tabakasından değil, tek bir tabakadan oluşur. Tek tabakalı zar özellikle ısısever (termofilik) arkelerde yaygındır. Arke hücre duvarları da bakteri ve ökaryotlarda ender görülen özelliklere sahiptir. Örneğin, çoğu arkenin hücre duvarı S-tabakası olarak adlandırılan yüzey proteinlerinden oluşur. S-tabakası bakterilerde de görülür, bazı canlılarda hücre duvarının tek bileşenidir (örneğin Planctomyces) veya peptidoglikanlı canlılarda bir dış tabaka oluşturur. Metanojenlerin bir grubu haricinde arkelerde peptidoglikan duvar yoktur. Metanojenlerde olan peptidoglikan dahi bakterilerdekinden çok farklıdır. Arkelerin flagellası, bakteri flagellasına yüzeysel olarak benze#redirect Habitatları Çoğu arke, aşırıseverdir ( ekstremofil). Bazısı yüksek sıcaklıklarda, geyzerlerde veya deniz dibi sıcak su kaynaklarında oluğu gibi, çoğu zaman 100 °C'nin üstünde yaşarlar. Diğerleri çok soğuk ortamlarda, veya aşırı tuzlu, asit veya alkali ortamlarda bulunurlar. Buna karşın başka arkeler ılıman şartlarda yaşarlar (mezofil), bataklık, deniz suyu, toprak ve atık sularda bulunmuşlardır. Çoğu metanojenik bakteri geviş getiren hayvanların, insanların ve termitlerin sindirim sisteminde bulunur. Arkeler genelde diğer organizmalar için zararsızdır ve hastalık etmeni olarak bilineni yoktur. Arkeler tercih ettikleri habitatlarına göre üç gruba ayrılırlar. Bunlar tuzsevenler ( halofiller), metanojenler ve ısısevenlerdir ( termofiller). Halofiller aşırı tuzlu ortamlarda yaşar. Metanojenler anaerobik ortamda yaşarlar ve metan üretirler. Bunlar tortu tabakalarında ve hayvanların bağırsaklarında bulunurlar. Termofiller sıcak su kaynakları gibi yüksek sıcaklıklı yerlerde yaşarlar. Bu gruplar mutlaka moleküler genetik yöntemlerle belirlenmiş filojenilere uymayabilirler, tüm arkeleri kapsamayabilirler ve birbirlerini dışlamayabilirler. Gene de, daha ayrıntılı çalışmalara başlangıç olarak faydalı sayılırlar. Şekil Arke hücrelerin çapları 0.1 μm ila 15 μm'nin üstü arasında değişir. Bazıları öbekleşir veya 200 μm'ye varan iplikçikler oluşturabilir. Çok çeşitli şekillere sahip olabilirler, küresel, çubuk, spiral, yumrulu, yassı kare şekilli veya dikdörtgen olabilirler. Metabolizma Metabolizmaları çok çeşitlidir. Halobakteriler ATP üretmek için ışık kullanırlar. Ama başka gruplar gibi, elektron taşıma zinciri kullanarak fotosentez yapan bir arkae yoktur. Evrim ve sınıflandırma Arkeler rRNA filojenetik ağaçlarına göre iki ana gruba ayrılırlar, Euryarchaeota ve Crenarchaeota. Ancak yakın yıllarda bu iki gruba ait olmayan bazı başka türler de keşfedilmiştir. Woese, arke, bakteri ve ökaryotların ortak bir atadan (progenot) türemiş farklı evrimsel sülaleler olduğunu öne sürmüştür. Yunanca archae veya 'eski' anlamında Arke isminin seçiminin arkasında bu hipotez yatmaktadır. Daha sonra bu grupları, her biri bir çok âlem içeren, bölge (domain) veya üst-âlem olarak tanımlamıştır. Bu gruplandırma sistemi çok popüler olmuş, ancak progenot fikri genel destek görmemektedir. Bazı biyologlar arkaebakteri ve ökaryotların özelleşmiş öbakterilerden türediğini öne sürmüşlerdir. Arkea ve Ökarya arasındaki ilişki biyolojide önemli bir problem olarak sürmektedir. Yukarda belirtilen benzerlikler bir yana, birçok filogenetik ağaç bu ikisini beraber gruplandırır. Bazıları ökaryotları Crenarchaeota'lardan ziyade Euryarchaeota'lara yakın yerleştirir, hücre zarı biyokimyası aksini göstermesine rağmen. Thermatoga gibi bazı bakterilerde arke-benzeri genlerin keşfi aradaki ilişkinin tanımlanmasını zorlaştırmaktadır, çünkü yatay gen transferi olmuş olması muhtemel görünmektedir. Bazıları ökaryotların bir arkeli ile bir öbakterinin kaynaşmasıyla meydana geldiğini öne sürmüşlerdir, öyle ki birinci çekirdek, ikincisi ise sitoplazmayı oluşturmuştur. Bu hipotez genetik benzerlikleri açıklayabilmekte, ama hücre yapısını açıklamakta zorluklarla karşılaşmaktadır. Arkelerin bakterilerden farklılıkları rRNA gen dizinlerinin karşılıştırılması sonucu ortaya çıkmıştı. Yukarıda belirtilen problemlerin bazıları, gen dizinlerine tek başına bakmak yerine artık organizmaların bütün genomlarının karşılıştırılması yoluyla çözülmeye çalışılmaktadır. 2006 Eylül ayı itibariyle 28 arke genom dizini tamamlanmış, 28'i ise kısmen tamamlanmıştır. Üst alem: Archaea Woese, Kandler & Wheelis, 1990 Bölüm / Sınıf Bölüm Crenarchaeota Bölüm Euryarchaeota Halobacteria Methanobacteria Methanococci Methanopyri Archaeoglobi Thermoplasmata Thermococci Bölüm Korarchaeota Bölüm Nanoarchaeota Arkeler üzerinde çalışmış biyologlar Aled Edwards, Ph.D., University of Toronto Carl Woese, Ph.D., University of Illinois at Urbana-Champaign Karl Stetter, Ph.D., University of Regensburg, Germany John N. Reeve, Ph.D., Ohio State University Kaynaklar Howland, John L. (2000). The Surprising Archaea: Discovering Another Domain of Life. Oxford: Oxford University Press. ISBN 0-19-511183-4}} Giovannoni, S.J. and Stingl, U. (2005). Molecular diversity and ecology of microbial plankton. Nature 437: 343-348. Könneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B. and Stahl, D.A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546. Lake, J.A. (1988). Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331: 184–186. Woese, Carl R.; Fox, George E. (1977). Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74 (11): 5088–5090. Woese, Carl R., Kandler, Otto, Wheelis, Mark L (1990). Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and

http://www.biyologlar.com/arkelerin-sistematigi-hakkinda-bilgi

Kloroplast Nerede Bulunur?

Bitki hücrelerinde, endoplazma içerisinde bulunur Kloroplast. Bitki hücrelerinin birer organeli olan plastidlerin birbirlerine dönüşebildiklerini, ancak bu plastid tiplerinden sadece kloroplast içerisinde genetik materyal bulunduğunu biliyoruz. Peki biyolojik açıdan bu kadar farklı olan bir yapı nasıl oluyor da diğer plastidlere dönüşebiliyor? Bu değişim sırasında kloroplastın sahip olduğu genetik materyale ne oluyor? Benzer şekilde, bir leukoplast kloroplasta dönüşürken genetik materyali nasıl oluşturuyor? Bu şekilde sonradan oluşan kloroplastlar ile, herhangi bir yeşil yaprakta bulunan kloroplast birbirinden farklı mıdır? İsim: chloropl.jpg Görüntüleme: 1993 Büyüklük: 42,7 KB (Kilobyte) Bitki hücrelerinde, endoplazma içerisinde bulunan ve çeşitli metabolik görevler üstlenmiş olan organellere plastid adını veriyoruz. Renk maddesi taşıyıp taşımamalarına göre gruplandırılan plastidler, daha sonra da klorofil içeriklerine gruplandırılırlar. Buna göre: 1. Renk maddesi taşıyanlar a) Klorofil içerenler (kloroplast) b) Klorofil içermeyenler (kromoplast) 2. Renk maddesi taşımayanlar (leukoplast), şeklinde sınıflandırılırlar. Kloroplastlar içerisinde bitkiye farklı renkleri veren klorofil (yeşil), karotin (turuncu), ksantofil (sarı) ve likopin (kırmızı) gibi renk pigmentleri bulunur. Kromoplastlarda ise farklı olarak klorofil pigmenti bulunmamaktadır. Tüm plastidler, genç hücrelerin sitoplazmasında bulunan ve proplastid olarak bilinen küçük cisimlerden meydana gelirler. Proplastidler, tıpkı kök hücreler gibi işlev görürler ve ergin hücrenin yerine ve görevine göre ilgili plastid tipine farklılaşırlar. Ancak belirli koşullar altında, hücrenin ve organizmanın ihtiyacına göre, ergin haldeki plastidler de birbirlerine dönüşebilirler. Kloroplastlar, aktif halde genetik materyal (DNA ve RNA) içerirler. Diğer plastidler de, aynı ilkin hücrelerden geliştikleri için, sitoplazmalarında genetik materyal oluşumu için gerekli olan potansiyele sahiptirler. Aynı şekilde, klorofil taşımayan tüm diğer plastid tipleri de, belli koşullar altında klorofil sentezleyebilmek için gerekli olan potansiyele sahiptirler. Bu değişimlere birkaç örnek vermemiz gerekirse; Biber ve domates gibi çeşitli bitkilerde, meyve olgunlaşması sırasında kloroplastlar, klorofillerini kaybederek kromoplastlara dönüşebilirler. Kloroplastlar, hücre içeriğindeki nişastanın fazladan depo edilmesi gerektiğinde klorofillerini kaybederek eoplastlara, sonra da yedek nişasta deposu olan amilopastlara dönüşebilirler. Renk maddesi içermeyen, nişasta, yağ ve protein depolayan plastidler olan leukoplastlar, ışık etkisi altında klorofil sentezleyerek kloroplastlara dönüşebilirler. Kloroplastlar, kromoplast, eoplast ve etiyoplastlara; kromoplastlar, eoplast ve kloroplastlara; eoplastlar da amiloplastlara dönüşebilir. Sonbaharda ağaçların yapraklarında gördüğümüz renk değişimleri de; hava sıcaklığı, günlük alınan güneş ışığı miktarı ve daha biçok faktörün etkisiyle, plastidlerin birbirlerine dönüşmeleri ile ilişkilidir. Fotomorfogenez adını verdiğimiz reaksiyonda, “fitoen sintaz (PSY)” adı verilen bir enzim işlev görür. Işık etkisi altında devreye giren bu enzim, hücrede klorofil ve karotenoid miktarını arttırarak, fotosentez görevi görebilecek bir organelin (kloroplast) oluşmasını kontrol eder. Karotenoid biyosentez mekanizmasının ilk enzimi olan PSY, çoğunlukla enzim reaksiyonlarını da arttırır. Belli ışık miktarlarında ise, enzim reaksiyonlarında bir artış görülmez. PSY’nin bu şekilde ışığa bağımlı oluşu, klorofil biyosentezinde görevli olan “protoklorofillid oksiredüktaz (POR)” enziminde de görülür. Karotenoid biyosentezinde görev alan diğer enzimler ise GGPS (mekanizmada anahtar görevinde olan bir enzim kodlar) ve PDS’dir. PDS, biyosentezin ileri aşamalarında PSY ile birlikte katalizör görevindedir. Hiçbir hücre, potansiyel olarak içermediği bir özelliği, normal şartlar altında bir anda göstermeye başlayamaz. Ancak bir mutasyon durumu istisna oluşturabilir. Örneğin hücre bölünmesinde iğ iplikçiklerinin oluşmasından sorumlu organel olan sentrozomlar da bitki hücrelerinde bulunmamaktadır. Ancak sentrozom içeriğindeki maddeler endoplazma içerisinde potansiyel olarak bulunmaktadır ve bölünme esnasında da hücrede bu sayede iğ iplikçikleri oluşturulabilir. Aynı şekilde, organizma tarafından gerekli görülen durumda, belirli enzimlerin etkisi altında plastidler de birbirlerine dönüştürülebilirler. Bir dönüşüm sonucu olan kloroplastın, proplastidden farklılaşarak gelişmiş olan kloroplasttan hiçbir farkı yoktur.

http://www.biyologlar.com/kloroplast-nerede-bulunur

Bitki ekolojisi

Doğal sistemler, kendi kendilerini denetleyebilme özelliğine sahiptir, tabiattaki her canlının birbiriyle dengeli yaşaması olayına “eksilten geri bildirim” "negative feedback" olarak adlandırılır. Dünyadaki oksijen üretim ve tüketiminin denge halinde olması ve bu dengenin yapay veya doğal afetlerle bozulması sonucu çevrenin ekolojik yapısı ve sisteminde değişimler baş gösterir. Örneğin; bir orman yangınından sonra, ormanın tekrar oluşması için, çeşitli bitki türleri, belli bir süreç içinde birbirlerini izleyerek ortaya çıkarlar. Buna ekolojide “sıralı değişim” ya da “süksesyon” denir. Sistem tamamlanıp düzgün bir orman haline gelince, bu yerleşik sisteme ekolojik dilde “Klimaks” adı verilir.

http://www.biyologlar.com/bitki-ekolojisi

Parazitlerde evrim ve çoğalma

Parazitlerin evriminde konak zinciri, toprakta evrim geçirme dönemlerin olup olmaması, konağa ulaşma yolları ve konak vücudunda yerleşim yerleri önem taşımaktadır. Belli başlı parazit gruplarında görülen evrim dönemleri şöyle özetlenebilir: Protozoonlarda; Trofozit à Prekistik kist à Trofozoit veya sadece trofozoit evresi mevcut. Helminthlerde; Erişkin à yumurta à larva à Erişkin Eklembacaklılarda (farklı olabiliyor); Erişkin à yumurta à Larva à Nimf à Erişkin veya; Erişkin à yumurta à Nimf à Erişkin veya; Erişkin à yumurta à Larva à pupa à Erişkin dönemleri vardır. Parazitlerde parazitlik ile ilgili değişimlerde bazı sistemler körelir ya da tümüyle kaybolurken üreme sistemi çok gelişmiştir. Bunun nedeni; genel olarak hayvanlarda görülen yavru bakımı dölün yaşam şansını arttırır. Halbuki; parazitlerde böyle bir döl bakımı yoktur. Parazite göre konak vücudu mikroçevre, konağın içinde bulunduğu ortam ise makroçevredir. Parazit bir mikroçevreden (konaktan) çıkıp ikinci mikroçevreye (diğer konağa) ulaşmaya çalışırken ve neslinin devamını sağlamak için parazitin döl verme (üreme potansiyeli) çok artmıştır. Parazitler üreme potansiyellerini arttırmak için birkaç yol kullanmaktadır: 1) Poliembriyoni: Neslin devamını garanti altına almak için tek bir zigotun birden fazla döl vermesi durumudur. Poliembriyoni protozoonlarda eşeysiz çoğalma helmintlerde ise tomurcuklanma şeklinde kendini gösterir. Protozoonlarda bir zigottan birçok sporozoidin oluşması ve şizogonik çoğalma poliembriyonin örnekleridir. Tomurcuklanma ise Cestoda’ların erişkin dönemlerinde boyun bölgesinden halkaların oluşmasında ve trematod ile cestoda larvalarının ara konak vücudundaki gelişmesinde görülür. 2) Hermafroditizm: Bazı parazit gruplarında canlı hem erkek hem de dişilik organlarına sahiptir. Bu şekilde de gerektiğinde kendi içinde döllenme işlemini gerçekleştirerek neslin devamını sağlar. Cestodlarda ve trematodlarda görülür. 3) Yumurta sayısını arttırma: Bazı helmintler makroçevredeki kayıpları önlemek için yumurta sayısında çok büyük bir artış geliştirmiştir. Bu durum Ascaris türlerinde doruğa çıkmıştır. Çünkü bir Ascaris dişisi günde 200 binden fazla yumurta bırakabilir. 4) Erkek ve dişi bireylerin birbirini bulmalarını kolaylaştırması: Özellikle, dolaşım sistemi gibi, sıvı ve çok geniş bir alana yayılmış ortamlarda yaşayan parazitlerde görülen bir durumdur. Örneğin dişi Schistosoma’nın erkeğin Gnekoforik kanalında yaşaması gibi.(Bu cinste erkek bireyin vücudu yanlardan kıvrılarak içinde dişi parazitin yerleştiği bir kanal oluşur. Buna canalis gynecophorus denir.) 5) Partenogenetik çoğalma: Bazı parazitlerin yumurtaları döllenme olmadan da gelişim sağlayarak yeni nesiller verebilir. Strongyloides stercoralis böyle bir türdür.

http://www.biyologlar.com/parazitlerde-evrim-ve-cogalma

BÖCEKLERIN KÖKENLERI VE EVRIMSEL GELIŞMELERI

Böceklerin Soyağacı (Mandibulata, Tracheata, Myriapoda ile Olan İlişkisi): Paleozoyik’ten beri, yani yaklaşık 400 milyon yıldan beri mevcut olan böceklere ait ilk belirgin fosillere, Amerika’da Karbonifer’in Pennsylvanien katmanında (yaklaşık 300 milyon’yıl öncesine ait), Avrupa’da İskoçya’nın Orta Devon katmanlarında (vücut ve çene kalıntıları olarak) rastlanmıştır (Rhyniella ve Rhyniognatha). Büyük bir olasılıkla Prekambriyum’dan önce Mandibulata ile Tracheata monofiletik ikiz grup oluşturuyordu. Prekambriyum’da bu iki grup yani Crustacea (kabuklular) ile Tracheata (Myriapoda ve Insecta) birbirinden ayrılmıştır. Çünkü Alt Kabriyum’da karapakslı ve bileşik gözlü gerçek yengeçler görülmeye başlamaktadır. Arthropoda’nın homonom segmentli formlardan (Articulata) monofiletik dallanması yeterince açık kanıtlarla gösterilememiştir. Mandibulata’nın ana kökü büyük bir olasılıkla suda yaşıyordu ve bugünkü yengeçlerin taşıdığı gibi yarık üyelere sahipti. Yani, bacağın üçüncü segmentinin epipoditi (basipoditi), bacak şeklinde segmentli eksopodite dönüşmesine karşın, her iki kaide segmenti (1. ve 2. segmentler), yani prekoksopodit ve koksopodit yaprak şeklinde kalarak solunum işlevini yürütmekteydi, ilk üç bacak çifti besin alınımına ayrılmıştır. Bu ana kökte, büyük bir olasılıkla, spermalar bir spermatofor içinde toplanmaktaydı. Ana kök daha sonra ikiye ayrılmıştır; bir grubu sularda kalarak Crustacea’yı (kabukluları), ikinci grubu karaya çıkarak Tracheata’yı (trakeli hayvanları) meydana getirmiştir. Bu geçiş sırasında ikinci maksil, labium halinde kaynaşarak bir ağız önboşluğu meydana gelmiştir, ikinci eksopodit ve ikinci antenler yitirilmiş, buna karşın her bacağın iki kaide segmentinin epipoditi dışarıya doğru pörtleyen bir koksa keseciğine dönüşmüştür (bugünkü Symphyla ve Apterygota’da görüldüğü gibi). Bu kesecikler bugün artık solunum işlevlerini yürütmez, bunun yerine yerin yüzünde içilemeyecek kadar ince bir tabaka halinde olabilen su filminden su kazanılmasını sağlar. Gövde segmentlerinin sayısı, telsonsuz, 14 kadar olabilir. Sırt tarafındaki kaslarını yitirmiş olan pretarsusta, bu aşamada tırnakların oluşup oluşmadığı bilinmemektedir. Gövde segmentlerinin çoğunda, birer çift stigma ile birlikte trake sistemi oluşmuştur (tamamen yeni oluşum). Spermatoforun yardımı ile iç döllenme, yani spermaların dişi eşey deliğine akıtılması, yeni bir işlev olarak ortaya çıkmıştır. Spermaların dışarıya akmaması için, dişinin genital açıklığı çiftleşmeden hemen sonra kapanma özelliği kazanmıştır. Boşaltım organlarında değişiklik meydana gelerek nefridiyumlara geri dönüş olmuş, anten ve kabuk bezleri körelmiş, onların yerine bağırsak çıkıntılarından oluşan Malpiki tüpleri meydana gelmiştir. Tracheata için özgül olan yağ cisimciği hücreleri (özünde boşaltım atıklarını biriktiren depolayıcı böbreklere dönüşmüş) bir zamanların nefridiyumlarından başka birşey değildir. Her iki kardeş grup (Myripoda ve Insecta) ayrıldıklarında, başlangıçtaki temel yapılarını hâlâ büyük ölçüde göstermekteydiler (mandibul eklemleri, labialbez, bacak segmentleşme- si, abdominal üye kalıntıları, trake sistemi). Nitekim bir tarafta Symphyla (Myriapoda) diğer taraftan Diplura ve Thysanura (Apterygota) bu ortak özellikleri göstermektedir. bu ayrılmadan kısa bir süre sonra, hızla, saklanarak yaşamaya uyum yaptığı için, bileşik gözlerini yitirmeye başlamış ve keza saklanmaya uyum yapacak yassı vücut şeklini kazanmıştır. Daha sonraki aşamada, vücut segment sayısı artmış ve büyük bir olasılıkla bu artış Opisthogoneata ve Progoneata da konverjent olarak ortaya çıkmıştır. Buna karşın böcekler serbest yaşamaya uyum yapmış ve böylece Tracheata’daki birçok temel yapıyı yitirmiştir; örneğin bileşik gözlerini (böceklerdeki bileşik, yani faset gözden farklı yapı ve anlamda kullanılan). Diğer önemli sapmalar, gövdenin, üç göğüs, 11 abdomen (artı telson) segmentinden meydana gelmiş olması, göğüsteki kasların harekete, abdomendekilerin sindirime hizmet verecek şekilde yoğunlaşmasıdır. Göğüsteki paranotal loblardan kanat oluşmuştur. Abdomen bacakları körelmiştir. Bu körelme sırasında, bacaklar, büyük bir olasılıkla, ilk olarak, abdomen segmentlerini, yere sürtünmeden koruyacak stiyluslar haline dönüşmüş; daha sonra da 11. abdominal segmentteki çok segmentli serkuslar hariç tamamen körelmiştir. Sekizinci ve dokuzuncu abdominal segmentlerdeki eşey organlarının bunlardan türeyip türemedikleri çok kesin olarak bilinmemektedir. Bu durumda, büyük bir olasılıkla, ilkin böcekler, Chilopoda benzeri bir atadan türemiştir. Myriopoda ile birlikte Tracheata monofiletik bir grup altında toplanmıştır. Üç çift göğüs segmenti ve yine bu bölgede üç çift göğüs üyesi vardır; abdomen üyeleri muhtemelen yoktu ya da körelmişti. Bu evrede kanatlar oluşmamıştı. Birincil olarak kanadı olmayan bu gruplar (bugün dört takım altında toplanmış) Apterygota altsınıfını oluşturmuş­tur. En ilkel takımı Diplura’dır; Collembola ve Protura da bunlarla ortak atadan türemiş olabilir. Bu takımların tibia ve tarsusları kaynaşmış, stigmaları körelmiştir. Ortak özellikleri olmasına karşın, Collembola ve Protura farklı yönlerde gelişmişlerdir. Protura’da anten körelmiş, ön bacaklar bir çift anten şeklinde gelişmiştir. Collembola- ‘da ise abdomen segmentleri sayıca dumura uğramıştır ve 4. abdomen segmentine ait bacak zıplama organı şeklinde gelişmiştir. Bu üç takımda da ağız çukurunun yanları kaynaşarak gelişmiş ve ağız parçalarının etrafını çeviren bir boşluk meydana getirmiştir. Diğer iki Apterygota takımı, yani, Microcoryphia ve Thysanura daha basit olmalarına karşın, kanatlı böceklerin atasını oluşturmuş olabilirler. Microcoryphia, abdomen segmentlerinin tümünde stilus taşımasına karşın, Thysanura’da ilk 6 abdomen segmentin- de körelmiştir. Tentoriyumları gelişmiş olan Thysanura’ya yakın bir atadan (zaman zaman değişik şekillerde, genişlemiş notum uzantıları ile uçma denemesi yapan) kanatlı böcekler türemiştir. Yelpaze gibi katlanabilir alt ve sert üst kanatlara sahip bu böcekler, bugünkü hamamböceklerine benzeyen “Paleoptera” grubudur.

http://www.biyologlar.com/boceklerin-kokenleri-ve-evrimsel-gelismeleri

Ornitoloji arazi rehberi

Ornitoloji arazi rehberi

Arazi Rehberi, dürbün ve not defteri ile birlikte kuş gözlemcisinin ayrılmaz parçasıdır. Eğer uzman bir ornitolog değilseniz yanınızda mutlaka iyi bir Arazi Rehberi bulundurmanız gerekir. İyi bir Arazi Rehberi nasıl olmalıdır? Arazi Rehberi içinde, kendisine konu edindiği bölgenin kuş türlerine ait resim, fotoğraf, dağılım haritası, boy, kilo gibi özellikleri anlatır. Türkiye, Batı Palearktik Bölge olarak adlandırdığımız Kuzey Afrika’yı, Avrupa’nın tamamını, Asya’nın Batısını ve Ortadoğu’yu içine alan bölgede yer alır. Bir Arazi Rehberi alırken önce bu özelliğe dikkat etmeliyiz. Arazi rehberlerinde kuşların isimleri, Latince ve kitabın yayınlandığı dilde olarak yazılı olmalıdır. Kitap kaliteli fotoğraf ve resimlerle her kuş türünün çeşitlenmesini, yavru, erişkin birey, dişi ve erkekteki tüy dimorfizmini, kuşun uçuş şeklini varsa albino bireyleri ve kuşun doğal ortamını göstermelidir. Bunların dışında kuş türünün çok karakteristik bir özelliği varsa bunu fotoğraf ya da resimle göstermelidir. İyi bir Arazi Rehberi kuşun bulunduğu tehlike statüsünü, türü tehdit eden unsurları da içine alan kısa bir açıklama yapmalıdır. Arazi Rehberleri kuşları familyalar halinde (ya da fiziksel büyüklük sırasına göre) gösterir, çok iyi bir Arazi Rehberi alıp hangi familyanın hangi sayfalarda bulunduğu ve kuş familyalarının özelliklerini iyi biliyorsak yeni gördüğümüz bir kuşu teşhis etmemiz kolaylaşır. Arazi rehberlerinde ayrıca her türün dağılımını gösteren haritalar bulunur. Bu haritalar kuş türünün; -Göç Yolunu -Yerli Olduğu Bölgeyi -Kışı Geçirdiği Bölgeyi -Yazı Geçirdiği Bölgeyi -Populasyonun Tehlikede Olduğu Bölgeyi -Çok Seyrek Uğradı Bölgeyi gösterir. Bu bilgiler harita üzerinde genelde her bilgi bir renk veya şekille ifade edilmiş biçimde gösterir. Bu harita “Dağılım Haritası” olarak adlandırılır ve haritalarla ilgili bilgi kitabın en başında aşağıdaki şekilde olduğu gibi verilir. Resim-2:Bir Dağılım Haritası’nın Açıklaması Arazi rehber kitabımızı çok iyi bir şekilde ciltlemeli ve dış etkilerden korumak için özel bir çanta içerisinde saklamalıyız. Arazide Arazi Rehberimıza çok dikkat etmeliyiz. Yeni gördüğümüz bir türü hemen Arazi Rehberindan bulmaya kalkışmamalı ilk önce türün özelliklerini not defterimize not etmeli gözlem bitince ya da bir boşluk anında Arazi Rehberindan gördüğümüz kuşun hangi tür olduğuna bakmalıyız. Batı Palearktik bölgenin ve Türkiye’nin kuşlarını konu edinen en iyi birkaç Arazi Rehberi şunlardır: -Collins Bird Guide -Parey Vogelbuch -The Raptor of Europe and The Middle East -Türkiye Kuşları -İ.Kiziroğlu III.Elbise Gözlem alanına gitmeden önce, gözlem alanının bulunduğu bölge ile ilgili bilgiler edinmeliyiz. Bu bilgiler gözlememiz öncesinde ve sonrasında çok işe yarayacaktır. Gözlem bölgesi ile ilgili edindiğimiz arazi yapısı ve hava durumu bilgileri elbise seçimimizde bize yardımcı olacaktır. Hava durumu ve arazi yapısı ne olursa olsun, elbiselerimizle ilgili unutmayacağımız temel kurallar şunlardır; -Elbiselerimiz koyu renk tonlarında olmalıdır. Örneğin; koyu yeşil, kahverengi, gri gibi. Çünkü doğadaki birçok hayvan açık ve canlı renklerden ürker. Birçok kuş türünün de gözlerinin çok iyi gördüğünü düşünürsek, açık renkli kıyafetlerimizle kuşlar tarafından hemen fark ediliriz ve biz çok uzakta olsak bile ürküp kaçarlar. Bu durum bizim sağlıklı gözlem yapmamızı engelleyecektir. Ayrıca kuşların bizi fark etmemesi için doğada kamufle olmamız gerekmektedir. Bu sebeplerden dolayı koyu renkli kıyafetler giymeye özen göstermeliyiz. -Elbiselerimizle ilgili ikinci temel ilke ise ayakkabımızdır, seçtiğimiz ayakkabı mutlaka ayağımızı bileklerimizden sarmalı ve tabanı kalın olmalıdır. Terlik, sandalet ve bileğimizi sarmayan ayakkabılar arazi koşullarına ve gözlemin hareketliliğine göre her an ayağımızdan çıkabilir ve yaralanmalara sebep olabilirler. Bu iki temel kural dışında seçim yaparken gözlem alanımızın arazi ve hava şartlarını göz önünde bulundurmalıyız. Hava şartlarını önceden öğrendiğimiz için elbisemizi ona göre ayarlamalıyız. Hava şartları ne olursa olsun seçtiğimiz elbisenin kollarımızı ve bacaklarımızı tamamen örtmesine özen göstermeliyiz. Aksi taktirde gözlem alanında ki böceklerden hastalık kapabiliriz, otlardan ve ağaçlardan kollarımız ve bacaklarımız yaralanabilir. Seçtiğimiz kıyafetlerin bol cepli olması, not defteri ve kalemimizi koyacağımız yerlerin olması arazide bize fayda sağlar. Kayalık alanlarda ve dik yamaçlarda gözlem yapacaksak ayakkabımızın ayağımızı bileğimizden sarması, tabanının kalın ve dişli olmasına özen göstermeliyiz. Gözlemimizi sulak ve çamurlu alanlar da yapacaksak ayakkabımız bir bot olmalıdır ve ayağımızı sıkıca sarmalıdır. Yanımıza bizi yormayacak ve eşyalarımızı koyabileceğimiz küçük bir sırt çantası ile birlikte susuz kalma ihtimaline karşı su ihtiyacımızı karşılayabilecek birde matara almalıyız. Çantamız sağlam ve sırtımızı terletemeyecek şekilde olmalıdır. Sıcak ve yağmurlu havalara karşı şapka olmayı da ihmal etmemeliyiz. Fotoğraf-3: Donanımlı Bir Kuş Gözlemcisi IV.Not Defteri Arazide gözlem yaparken elde ettiğimiz verileri kaydetmemiz gerekir, bunun için iyi ve kaplı bir not defteri kullanmalıyız. Not defterimizi yeni gördüğümüz kuş türlerinin çizimini, gözlemlediğimiz türlerin kaydını yapmak ve gözlem raporlarımızı yazmak için kullanırız. V.Ölçüm ve Araştırma Malzemeleri Gözlem yaptığımız bölgede materyal toplamak ve basit ölçümler yapmak için bazı aletlere ihtiyacımız olabilir. Gerekli gördüğümüz bu malzemeleri de almalıyız. Bu malzemelerden pens ve saklama kutuları arazide çok işimize yarayabilir. VI.İlk Yardım Malzemesi Gözlem yapmak için gittiğimiz yerler çoğunlukla doğal hayatın bozulmadan korunduğu yerler olduğu için, çok küçükte olsa bazı tehlikeleri içinde barındırmaktadır. Bu tehlikeler günlük hayatta karşılaşabileceğimiz tehlikeler gibide olabilir ya da ilk defa karşılaşacağımız durumlarda olabilir. Bütün bunlar için önlemimizi önceden almalıyız. Arazide en sık karşılaşılan olaylar; -Hafif yaralanmalar, sıyrıklar -Böcek sokmaları -Eklem incinmeleri -Sıcak havalarda burun kanaması ve tansiyon düşmesi Olarak sıralayabiliriz. Önceliği bu durumlara vererek, gözleme çıkmadan bir ilk yardım çantası hazırlamalıyız. Böcek sokmalarına karşı hassasiyeti fazla olan kişiler gözleme çıkmadan önce mutlaka yanlarına gerekli ilaçlarını da almalılar. Kaynaklar Kiziroğlu, İ, Ekolojik Potpuri Parey Naturführer Plus

http://www.biyologlar.com/ornitoloji-arazi-rehberi

EKOSİSTEM ÖĞELERİ

Ekolojik sistemler, değişik çeşit organizmalarla, onların cansız çevrelerinin oluşturduğu ve bir bütün olarak ele alınabilen birimlerdir. Ekolojik sistemlere kısaca ekosistem denir. Doğada ekosistem örnekleri son derece çeşitlidir. Örneğin, Beyşehir Gölü, İç Anadolu, İzlanda, Karadeniz, Kapıdağ Yarımadası, Kıbrıs, Borneo, Adası gibi geniş alanları kaplayan birimler ekosistem sayılabilecekleri gibi; içinde bitkileri, salyangozu, balığıyla kendi kendine yeterli bir ufak akvaryum da, bir ekosistem örneği sayılabilir. Bu çeşitliliğe karşın, tüm ekosistemler temelde aynı öğeleri ve işlevleri paylaşırlar. Yani aynı temel özellikler gösterirler. Ekosistemin bir bütün olarak işleyişini incelemeden önse, ekosistemi oluşturan öğeleri tanımak gerekir. Büyük, küçük tüm ekosistemler şu temel öğelerden oluşurlar: 1. Canlı Öğeler (Biyotik öğeler) a) Üreticiler b) Tüketiciler c) Ayrıştırıcılar 2. Cansız Öğeler (Abiyotik öğeler) a) İnorganik maddeler b) Organik maddeler c) Fiziksel koşullar Üreticiler Ekosistemin canlı öğeleri arasında en önemlilerinden biri, üreticilerdir. Bunlara temel (birincil) üreticiler de denir. Tüm ekosistemlerde temel üreticiler yeşil bitkilerden oluşur. Ayrıca, bazı bakteri türleri de üreticilerden sayılır. Ancak, bakterilerin başlıca üretici olarak katkıda bulundukları ekosistem örnekleri çok enderdir. Bütün biyolojik sistemler gibi, ekosistemler de açık sistemlerdir. Nasıl bir makine işleyebilmek için dışardan bir enerji girdisine ihtiyaç duyarsa, ekosistem de işleyebilmek için, kendi dışından enerji sağlamak zorundadır. Tüm ekosistemler için bu dış enerji kaynağı güneştir. Ancak, güneş ışığı enerjisi bu şekilde ekosistemler tarafından kullanılamaz. Temel üreticiler olan yeşil bitkiler, bu noktada devreye girer ve ışık enerjisini fotosentez yoluyla kimyasal enerjiye çevirirler. Böylelikle, güneşten gelen enerji, karbonhidratlar ve diğer organik moleküller halinde bitkilerin bünyesinde birikir. Enerji ancak bu yeni şekliyle sistemin diğer canlı öğeleri tarafından kullanılır. Klorofilli yeşil bitkiler, üretici olarak adlandırıldıkları halde, aslında sistemin işlemesi için gerekli enerjiyi sıfırdan üretemezler. Güneşten gelen bu enerjiyi, sistem tarafından kullanılabilir şekle çevirirler. Bir ekosistemde ışık enerjisini fotosentez yoluyla sürekli olarak kimyasal enerjiye dönüştüren yeşil bitkiler yoksa, böyle bir sistem uzun bir süre bağımsız olarak varlığını sürdüremez, zamanla ortadan kalkar. Tüketiciler Ekosistemlerde tüketiciler büyük çoğunlukla hayvan türlerinden oluşur. Tüketiciler genellikle birincil ve ikincil olmak üzere iki gruba ayrılır. Birincil tüketiciler enerji kaynağı olarak yeşil bitkilerin yapısında biriken organik maddeleri kullanırlar. Doğrudan doğruya bitkilerle beslendikleri için bunlara otobur hayvanlar da denir. Birincil tüketiciler çok çeşitli cins ve boylarda olabilirler. Genellikle çok değişik hayvan gruplarını temsil ederler. Otların özünü emen bir bitki biti ile at, aralarındaki büyük boy farkına karşın ve hiçbir biyolojik akrabalık olmadığı halde, bir kır ekosisteminde aynı gruba, birincil tüketici grubuna girer. Yaşamlarını birincil tüketicileri yiyerek sürdüren etobur hayvanlara ikincil tüketici adı verilir. Bir ekosistemdeki ikincil tüketiciler de (örneğin akrep ve aslan gibi) çok ayrı cins ve büyüklükteki hayvanlardan oluşabilir. Bazı ekosistemlerde küçük etobur hayvanlarla beslenen yırtıcı hayvanlara da üçüncül tüketiciler denir. Ayrıştırıcılar Ayrıştırıcılar her ekosistemin çok önemli bir öğesini oluştururlar ve genellikle bakteri ve fungus türlerinden oluşurlar. Ayrıştırıcı organizmaların ekosistemlerdeki görevi, canlı dokularında biriken çeşitli kimyasal maddeleri yeniden canlılar tarafından kullanılabilir hale getirmektedir. Ayrıştırıcı organizmalar ölen bitki ve hayvan dokularını parçalayarak yaşamlarını sürdürürler ve bu işlemden elde ettikleri enerjiyi yaşam işlevleri için kullanırlar. İnorganik Maddeler Ortamdaki değişik inorganik madde ya da bileşikler ekosistemin cansız öğelerinin önemli bir kısmını oluşturur. Bunların arasında karbon, hidrojen, fosfor, nitrojen, potasyum, kalsiyum, magnezyum gibi bir kısım inorganik maddeler, canlıların yaşamı için büyük önem taşır. Canlılar tarafından büyük miktarlarda kullanıldıkları için makro-besleyiciler diye adlandırılan bu maddeler, çoğunlukla su, karbondioksit, nitratlar gibi basit bileşikler oluştururlar. Mikro-besleyici kimyasallar arasında mangan, çinko, kobalt, boron, silikon sayılabilir. Mikro-besleyici tuzlar eser miktarlarda kullanılmaları ve hayati değer taşımaları yönünden vitaminlere benzetilirler. Organik Maddeler Cansız ortamda inorganik maddelerden başka, bol miktarlarda organik bileşikler bulunur. Karbonhidratlar, protein, lipit ve türevleri gruplarından olan bu organik moleküllerin kökeni canlılardır. Ölü organizmaların ayrıştırıcılar tarafından parçalanması, ya da canlıların yaşam işlevleri sonucu (salgılar, atıklar) ortama eklenirler. Çeşitli büyüklüklerde olan bu moleküller, birçok mikroorganizma için bir enerji kaynağı oluştururlar. Ayrışan (çürüyen) organizma atıkları "organik detritus" diye adlandırılır. Selüloz ve lignin gibi bitki dokuları, şeker, yağ, protein, gibi hayvansal dokulardan daha yavaş ayrıştığı için, organik detritus genellikle bitki kökenlidir. Ayrışan organik maddelerin ayrışmaya en dayanıklı kısımları, ekosistemde "humus" adı verilen ve oldukça uzun bir zaman ayrışmadan sistemde kalabilen bir maddeyi oluştururlar. Fiziksel Koşullar Cansız ortamdaki ısı, ışık, nem miktarı, hava ve su kütlelerinin hareketleri, canlıların yaşamlarını geniş ölçüde etkiler. Her organizma için, yaşamını başarıyla sürdüreceği kimyasal ve fiziksel koşullar bellidir. Cansız ortam koşulları bir arada nerelerde, hangi tür organizmaların yaşayacağını ve o bölgedeki ekolojik üretimi belirler. Fiziksel parametreler, canlıların ekosferdeki coğrafi dağılımlarını ve miktarlarını çok geniş ölçüde etkilemektedir. Organizmalar, uyum yaptıkları koşullardaki belli miktardaki değişikliklere dayanıklılık gösterebilirler. Ancak her organizmanın dayanıklılık (tolerans) derecesi değişiktir. Dayanıklılık derecesi yüksek olan organizma türleri ekosferde çok geniş alanlara yayılmışlardır. Buna karşın, koşulların değişimine az dayanıklık gösteren bir organizmanın ekosferde dağılımı, bu koşulların karşılandığı bölgelerle kısıtlanmıştır. Ekosistemlerde, birçok abiyotik öğe tek tek değil, birlikte etkindir. Örneğin ışık miktarının mevsimsel değişimi ısı, nem, yağış gibi fiziksel parametreler bir arada "iklim" birleşiğini oluştururlar.

http://www.biyologlar.com/ekosistem-ogeleri

Toprak Enzimleri

Çok sayıda bitkisel ve hayvansal organizmaları barındıran toprak, farklı miktarlarda pek çok ölü biyolojik maddeleri de içerir. Toprak mikroorganizmaları kendileri için lüzumlu besin maddelerinin çevrelerindeki biyolojik maddelerden sağlarlar. Mikroorganizmaların en önemli faaliyetlerinden biri organik maddenin mineralizasyonu yani kompleks organik maddeleri basit inorganik bileşiklere veya besin iyonlarına kadar parçalamalarıdır. Toprağa düşen bitkisel ve hayvansal artıklardaki besin elementleri yüksek polimer bileşikler halinde kaldıkları sürece, yüksek bitkiler ve mikroorganizmalar bunlardan doğrudan doğruya yararlanamazlar. Topraktaki organik maddeleri çoğu örneğin lignin, proteinler, protein karakterinde olmayan azotlu bileşikler, pektin maddeleri, selüloz ve diğer polisakkaritler mikroorganizmaların doğrudan doğruya absorbe edemeyecekleri kadar büyük moleküllü bileşiklerdir. Mikroorganizmaların bunlardan faydalanabilmeleri için enzimler salarak bu bileşikleri alabilecekleri büyüklükte basit bileşiklere parçalamaları gerekir. Toprakta bulunan enzimlerin büyük bir kısmı bu maksatla mikroorganizmaların dışarı saldıkları ektoenzimlerle, mikroorganizmaların ölümünden sonra otoliz ile kısmen ya da tamamen serbest hale gelerek toprağa karışmış enzimlerdir. Bu enzimler toprağın inorganik ve organik kolloidleri (kil ve humin maddeleri) tarafından absorbe edilir. Absorbe edilmiş enzimler dış etkilere karşı diğer enzimlerden daha dayanıklıdır. Aktivitelerini uzun süre koruyabilirler. Böylece enzimlerin etkileriyle çoğu bitkisel olan organik atıklar bir seri enzimatik reaksiyondan sonra küçük moleküllü basit bileşiklere parçalanır. Örn: Karbohidraz enzimleri selüloz, nişasta ve benzeri polisakkaritleri disakkaritlere ve nihayet monosakkaritlere kadar parçalarlar. Proteazlar, proteinli maddeleri polipeptid, dipeptid, oligopeptid ve nihayet aminoasitlere kadar hidrolize eder. Pektin parçalayıcı enzimler de pektin maddelerini basit ürünlere ayrıştırırlar. Fosfataz, lipaz sülfataz gibi esteraz enzimleri nükleik asitleri ve diğer fosfat esterlerini fosfat anyonlarına kadar hidroliz ederler. Bu enzimlerin faaliyeti sonucu açığa çıkan parçalanma ürünlerinin bir kısmı mikroorganizmalara yem olur. Büyük bir kısmını bitkiler kullanırlar yine bir kısmı da yine enzimlerle çeşitli reaksiyonlara girerek daha büyük moleküllü ve daha dayanıklı humin maddelere dönüşürler. Bitki artıklarından toprağa geçen enzimler ortam şartlarına karşı dayanıksız olduklarından hemen parçalanarak aktivitelerini kaybederler. Bu nedenle topraktaki bitkisel enzimlerin herhangi bir nedenle miktarlarının artması toprak enzim aktivitesi üzerinde önemli etki yaratır. Topraktaki aktif enzimlerin kökeni mikrobiyal olmasına rağmen kültür topraklarında bu aktivite hasat olayları ve gübreleme gibi nedenlerle farklılık gösterir. Mikrobiyal etkileşimler (interaksiyonlar) Toprakta yaşayan çeşitli bireyler veya populasyonlar arasındaki etkileşimler (interaksiyon) organizmalardan birinin veya her ikisinin uyarılması (stimulation) veya engellenmesine (inhibition) bağlı olarak olumlu veya olumsuz olabilir. Olumsuz etkileşimler: • Rekabet (competition) • Zıt etkileşim (Antagonizm) • Mantar gelişmesinin engellenmesi (Fungistasis) • Avcılık (predasyon) • Parazitlik Olumlu etkileşimler: • Birlikte bulunma (Kommensalizm) • Zorunlu olmayan karşılıklı yararlanma (Protocooperation) • Karşılıklı zorunlu yararlanma (Mutualizm) Rekabet Tüm canlılar arasında mevcut olan bu ilişki toprak mikroorganizmaları arasında da mevcuttur. Mikroorganizmalar arasındaki rekabet esas olarak substrat yani enerji sağlamak için gerçekleşir. (diğer canlılarda ışık, su, besin ve yaşam alanı için de rekabet oluşur). Su, besin elementleri ve gelişme alanı mikroorganizmaların rekabeti için çok fazla önemli değildir. Gelişme ortamında su mikrobiyal aktivite için önemli olmasına rağmen miktoorganizmalar metabolik faaliyetleri esnasında su üretirler. Bu nedenle su, toprak mikroorganizmalarının aktivite ve yaşamını sağlayan temel faktörlerden olmakla birlikte, rekabet edilen bir madde değildir. Mikroorganizmaların substrat için rekabetleri inter ya da intra-spesifik olabilir. Toprak ekosistemi içinde bulunan organizmalar substrat niteliğindeki çok çeşitli maddelerle temastadırlar. Toprağın organik maddesi toprak organizmalarının kullanabileceği çok farklı kimyasal bileşikler içerir. Toprak mikroorganizmaları organik maddelerin ayrışmasında farklı ekolojik nişe sahip olduğundan doğrudan bir rekabete girmezler. Örn: Nitrifikasyon bakterileri olan Nitrosomonas’lar tarafından amonyağın oksidasyonu ile üretilen nitrit, Nitrobacter türleri tarafından substrat olarak değerlendirilir ve nitrata oksitlenir. Rhizobium türlerinin toprakta yaşayan doğal formları ile kültüre aşılanan soyları arasında nodül oluşturma bakımından rekabet gerçekleşebilir. Doğal soylar, azot fiksasyon özellikleri zayıf dahi olsa nodül oluşturmuşlarsa kültürle toprağa Rhizobium eklemenin bir değeri kalmaz. Parmecium örneği Gaussen eğrisi Zıt Etkileşim (Antogonizm) Mikroorganizmaların salgıladıkları metabolitlerle bir türün diğer bir türün gelişimini engellemesi ile sonuçlanan etkileşime amensalizm denir. Etkileşim her iki tür organizmayı da olumsuz etkiliyorsa antogonizm olarak tanımlanır. Antibiyotik üretimi ile oluşturulan etkileşim bazen Antibiyosiz olarak ta tanımlanmaktadır. Antibiyotikler bir organizma tarafından üretilen ve düşük konsantrasyonlarda diğer organizmaların gelişmelerini engelleyen maddelerdir. Mikroorganizmalar toprak çevresine çeşitli metabolitler salgılarlar. Bazı mikrobiyal salgılar diğer organizmalarca gelişim faktörü veya enerji sağlayıcı substrat ve besin maddesi olarak kullanılabilir. Antibiyotik üretimi ise bu konuda özelleşmiş organizma gruplarınca oluşturulan ve rekabetle işleyen en önemli mekanizmalardan biridir. Ancak toprakta gerçekleşen her zıt etki antibiyozisle ilgili olmayabilir. Topraklarda yüksek konsantrasyonlarda bazı mikroorganizmalara toksik etki yapan biyolojik orijinli pek çok bileşik bulunmaktadır. Örn: Mikrobiyal metabolizma sırasında oluşan bazı organik asitler gibi ara ürünler veya oluşan CO2’nin lokal etkileri. Yine alkali topraklarda mineralizasyon sonucu oluşan amonyak Nitrobacter’leri önemli ölçüde engeller. Bunun sonucu oluşan nitrit birikimi diğer bakteri ve bitki gelişimini olumsuz etkileyebilir. Bazı bitki dokularının ayrışma ürünü olarak ortaya çıkan reçineler, tanenler ve fenol bileşikleri de mikroorganizmalara toksik etki yaparlar. Bu metabolik ürün ve yan ürünlerin antibiyotiklerden farklı etki gösterebilmeleri için ortamda yüksek konsantrasyonlarda bulunmaları gerekir. Topraktan izole edilen organizmalarda laboratuar koşularında antibiyotik oluşturmaktadır. Aktinomisetler, özellikle Streptomiset’ler önemli antibiyotik üreticisidirler. Streptomisin, kloramfenikol, sikloheksimid bileşikleri aktinomisetler tarafından oluşturulmaktadır. Antibiyotik üreten bakteriler arasında Bacillus türleri ve Pseudomonas suşları sayılabilir. Bunlar pycocyanin ve ilgili bileşikleri salgılar. Mantarlar içerisinde Penicillum, Trichoderma, Aspergillus ve Fusarium önemli antibiyotik üreten örneklerdir. Alg ve protozoalarda antibiyozis olayı gözlenmemiştir. Antibiyotikler, duyarlı mantarları, bakteri ve aktinomisetleri engelleme veya öldürmede etkilidir. Bazı antibiyotikler özel bir etki gücüne sahiptir. Bazıları geniş spektrumlu olabilir. Örn: Streptomycin gram + ve gram – bakterilerle aktinomisetlere karşı etkilidir. Bazıları sınırlı bir spektrum gösterir. Örn: Viomycin esas olarak Mycobacterium türlerine karşı aktiftir. Antibiyotikler aktif organizmalarca küçük bir alanda kullanılan güç olup, salındıklarından bir süre sonra hızlı bir şeklide kimyasal ve biyolojik aktiviteleri kaybedebilirler. Çeşitli antibiyotikler: Organizma Antibiyotik Streptomyces antibioticus Actinomycin S. erythraeus Erythromycin S. fradie Neomycin S. griseus Streptomycin S. niveus Novobiocin Bacillus polymyxa Polymixin Penicillum chrysogenum Penicilin Gönderi; Zahide

http://www.biyologlar.com/toprak-enzimleri

Doğa ve Canlı Hayat İçin Doğa Tarihi Müzelerinin Önemi

Adından da anlaşılacağı gibi ‘doğa’ genel anlamda doğa tarihi müzelerinin temel konusudur. Bu anlamda doğal hayatın korunması ve sürdürülebilirliği noktasında doğa tarihi müzelerine çok iş düşer. Doğal hayatın ve canlılığın korunması ve sürdürülebilirliği ancak bilinçli bir toplum  oluşturma  ile sağlanabilir  ki  bilinçli  bir  toplum  oluşturmada  müzelerin  önemi büyüktür. Zira müzeler bilimsel bilgiler ışığında, insanları bilimin getirebileceği ağır anlam karmaşalarına sokmadan, yalın ve aydınlatıcı bir şekilde sıkmadan bilinçlendirebilen yerlerdir.Doğa tarihi müzeleri toplumun ‘canlı çevreyi’ tanımaları için en uygun ortamlardan birisidir, hatta bazı durumlarda en uygun ortamdır. Hayvanat bahçesi veya botanik parklar gibi yerler de bu amaca hizmet etseler de, doğa tarihi müzelerinin sağlayacağı bir canlılık çeşidini sağlayamazlar. Özellikle nesli tükenmiş canlılar söz konusu olduğunu doğa tarihi müzelerinin rolü çok daha önem kazanır. İçerdiği çeşitlilik ve fiziksel ortamın uygunluğu bakımından baktığımızda  hiçbir  kurum  veya  yapı,  canlılık  ve  doğal  hayat  konusunda  toplumu bilinçlendirmede doğa tarihi müzeleri kadar etkili olamaz. Doğa tarihi müzeleridünyanın geçirdiği jeolojik ve biyolojik değişimleri zaman uyumu içerisinde anlatarak insanlarındoğal hayatın oluşumu anlamasının sağlarlar. Yine aynı şekilde iklimsel değişimler, yer altı ve üstü kaynakları, biyoçeşitlilik ve ekoloji gibi doğal hayatın oluşması ve devamının sağlanmasını belirleyen  faktörlerin  de  toplum  tarafından  anlaşılması  doğa  tarihi  müzelerine  özgü faaliyetlerdendir. Çevreyi bilmeyen bir insanın çevrenin korunması anlamında da fikir sahibi olamayacağını düşündüğümüzde bu müzelerin önemi bir kez daha ortaya çıkar.Her ne kadar üniversiteler, sivil toplum kuruluşları, devlet kurumları veya özel yapılanmalar da toplumu bu  konularda bilinçlendirmeye  çalışsalar  da, doğa  tarihi müzeleri  süreklilik bakımından diğerlerinden öne çıkar. Bu noktada müzeler sadece bir sergi veya bilimsel araştırma  merkezi  olarak  faaliyet  göstermekle  kalmayıp,  toplumu  bilinçlendirmedeki önemlerinin de bilinci ile yönetim prensiplerini belirlemelidirler. Dünyanın  önde  gelen  doğa  tarihi  müzelerine  baktığımızda  bilimsel  araştırmalarının ve bununla doğru orantılı olarak müzecilik faaliyetlerinin kapsamında biyolojik çeşitliliğin önemli bir  yeri  olduğunu görüyoruz.  Bu  çalışmalar  bölgesel  olduğu  gibi  genel  anlamda  da olabilmektedir. Örneğin; Smithsonian Ulusal Doğa Tarihi Müzesi Fransız Guyanası bölgesinde bir  koruma  programı başlatmış ve bu program çerçevesinde bölgenin biyolojik çeşitliliğinin belirlenmesi, anlaşılması ve korunması hedeflenmiştir. Bu proje bağlamında toplanılan tüm örnekler  sınıflandırılmış,  tanımlandırılmış  ve  etiketlendirilmişlerdir.  Daha  sonra  300  ün üzerinde bilim adamı ile işbirliği yapılarak bu bilimsel süreç pekiştirilmiş ve bilimsel makaleler hazırlanmıştır. Programın ilk ayağı olan bilimsel çalışma kısmı bittikten sonra asıl önemli olan kısım başlamaktadır. Program neticesinde elde edilen bilgiler toplumun anlayacağı düzeyde eğitim materyallerine dönüştürülmüş ve bölgedeki görevlilere ve öğrencilere bu konu ile ilgili eğitimler verilmiştir. Bu ve bunun gibi diğer programlarda, programın bilimsel kısmının önemi yadsınamaz. Ancak elde edilen bilimsel bilgileri uygulamaya dökemediğimiz takdirde bilimin önemi kalmaz. Bu noktada bilgiyi elde etmekten ziyade bilgiyi topluma anlatabilme gücü de ön plana çıkmaktadır. Bu da doğa tarihi müzelerinin önemli görevlerindendir. Amerikan Doğa Tarihi Müzesi bünyesinde bulunan Biyoçeşitlilik ve Koruma Merkezibölgesel değil dünya çapında bir çalışmayı hedef almıştır. Bu noktada amacını; değişik ekosistemlerde bilimsel araştırma yapmak, bilimsel çalışmaların koruma politikasına uygulanabilirliğini güçlendirmek, profesyonel, kurumsal ve toplumsal kapasiteyi arttırmak ve halkın biyolojik çeşitliliği ve onu korumanın önemini anlaması ve bu korumaya yardım etmesi konusunda müzenin çabalarının arttırmak olarak belirlenmiştir.Düzenledikleri çalışma grupları, konferanslar, sempozyumlar, halk  programları  ve  sergiler  ile  halkı  bilinçlendirmektedirler.Buradaki  maddelerden  de anlaşılacağı  üzere  Amerikan  Doğa  Tarihi  Müzesi  politikalarını  halkın  bilinçlendirilmesi üzerinde yoğunlaştırmıştır. Bu örneklerden de anlaşılacağı üzere dünya çapında büyük doğa tarihi müzeleri, doğal hayatın  ve  canlılığın  korunması  ve  sürdürülebilirliği  konusunda  halkın  bilinçlendirilmesi açısından  kendilerine  düşen  görevi  anlamış  ve  müze  politikalarını  ve  programlarının belirlerken bu esasları da göz önünde bulundurmuşlardır.     Hazırlayan: Ahmet İhsan Aytek   Kaynaklar:   Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/  

http://www.biyologlar.com/doga-ve-canli-hayat-icin-doga-tarihi-muzelerinin-onemi

EVRİM VE HAYATIN BAŞLANGICI İLE İLGİLİ GÖRÜŞLER

1.Hayatın başlangıcı ile ilgili görüşler: İlk canlının oluşumu ve beslenmesi ile ilgili görüşler kendiliğinden oluş,pans permia ototrof ve hetetrof görüşleridir. A.Kendiliğinden oluş(Abiyogenez) hipotezi : Aristo canlının,cansız maddelerden kendiliğinden oluştuğuna inanmaktaydı .Bu görüşe göre döllenmiş yumurtada ,kum tanelerinde,çamurda,havada kısaca her yerde canlılığı ve çeşitliliği sağlayan aktif öz (aktif prensip) bulunmaktaydı. Bu aktif öz hava ile etkileşime girerek uygun koşullarda canlıyı meydana getiriyordu. Yani canlı,cansız maddelerden birden bire,her an meydana gelebiliyordu.İlk canlı basit veya kompleks yapılı olabilirdi. Cansız madde + aktif öz + Hava Canlı (Basit veya Kompleks) B.Biyongenez görüşü: Bir canlının kendinden önceki bir canlıdan üreyerek meydana geldiğini ileri süren bir görüştür.Pastör kendiliğinden oluş hipotezini yaptığı deneyler ile çürütmüştür.Pasör’ün deneyinin hem kontrollü olması,hem dünyanın her tarafında yapılacak kadar basit ve tekrarlanabilir olması,önemli bir özelliğidir. C.Panspermia görüşü: Bu görüşe göre ilk canlı dünya dışında,yani başka bir gezegende oluşmuştur.Daha sonra bu canlıların spor yada tohumları göktaşları ile dünyaya taşınmış ve canlılık başlamıştır. D.Ototrof görüşü: Bu görüşe göre,ilk canlı kendi besinini üreten ototrof bir canlıdır.Bunlardan da diğer canlılar meydana gelmiştirler.Ototroflar yapısal bileşikleri ve enerji gereksinimleri için fotosentez veya kemosentez yolu ile inorganik moleküllerden organik moleküller üretirler. Buna göre ototroflar gelişmiş canlılardır.Gelişmiş enzim sistemleri olması gerekir.Ancak bu durum evrime terstir. Cansız Basit ortamda oluşmuş Canlı(Ototrof-Kompleks) E.Heterotrof görüşü: İlk canlının cansız maddelerden uzun süren kimyasal evrim sonrasında özel çevre koşullarında oluştuğunu ve kendi besinini kendisini yapamayan basit bir canlı olduğunu kabul eder.İlk canlı,enerji gereksinimlerini karşılamak için gerekli organik molekülleri dış çevreden hazır alan,tüketici bir canlıdır. Cansız Kompleks ortamda bir defada oluşmuş Canlı(Hetetrof-Basit) Evrim geçirmiş Aminoasit Protein Koaservat Kloroplast Mitokondri Oksijensiz solunum Fotosentez Oksijenli solunum Hetetrof görüşüne göre,ilk canlı oluşmadan önce milyarlarca yıl süren kimyasal evrim olmuştur.Bunu biyolojik evrim olan canlıların oluşumu ve değişimi dönemi izlemiştir Hetetrof görüşü evrim teorisine uygundur.Bu teoriye göre ;Proteinlerin bir kısmı enzim olarak iş görmüş ve oluşan enzimler diğer moleküllerin oluşumunu hızlandırmıştır.Bu ortamda oluşan nükleik asitler proteinler ile kümeler oluşturarak nükleoproteinleri oluşturmuştur.Nükleoproteinlerde önce koaservat adı verilen ön hücrelere ,sonrada kendi kopyalarını yapabilen basit canlılara dönüşmüştürler.Hetetroflar dan otoroflar gelişmiştir.Fotosentez sonucu atmosferde oksijen birikmesi ile oksijenli solunum yapan canlılar oluşmuştur. Canlı oluşmadan önce inorganik maddelerden organik maddeler evrimleşmiştir. İlk atmosferde serbest oksijen gazı yoktu.Oksijen,su ve diğer oksitlere bağlı durumda idi.Canlılar enerjiyi organik maddelerden oksijensiz solunum (Fermantasyon) yaparak elde etmiştirlerdir. Bugün ki atmosferde %78 azot,%21 oksijen,%1 çeşitli gazlar bulunur. Koaservet:İyonlaşan protein veya proteine benzeyen maddelerin su moleküllerini çekerek dış ortamdan bir zarla ayrılmaları sonucu oluşan kümelerdir.Muhtemelen ilk canlı koaservatlardan oluşmuştur. Bu hipotezi desteklemek için Millerin yaptığı deney sonucunda Ortama konulan amonyak,metan,hidrojen ve su moleküllerinden,elektrik ile; amino asit,üre,asetik asit,laktikasit gibi organik maddeleri oluştuğunu laboratuar ortamında görmüştür.Bu deney ilk canlı nasıl oluştu sorusuna cevap vermez;Ancak canlı oluşmadan önce inorganik maddelerden organik maddelerin nasıl oluştuğuna cevap verir. F.Yaratılış görüşü: Bu görüşe göre bütün canlı türleri ayrı ayrı yaratılmıştır.Küçük değişiklikler olmasına rağmen tamamen başka türlere dönüşmemişlerdir. 2.Canlıların Evrimi ile ilgili kanıtlar Evrim,canlılar arasında zaman içerisinde görülen değişikliklerin nasıl olduğunu açıklamaya çalışan bir görüştür.Bu değişmeler bazı kanıtlar ile desteklenmiştir. Paleontolojik(Fosil) kanıtlar: Paleontoloji;eski çağlarda yaşayan canlıların kalıntılarının bulunması, sınıflandırılması, dağılımı ve yaşamlarıyla ilgilenen bilim dalıdır.Canlılar ile ilgili kalıntılara fosil denir.Fosillerde yaş saptanmasında en çok kullanılan C14’dür(Yarılanma ömrü 5600 yıldır). Yer kabuğunun en alt katmandaki canlıların basit yapıda olduğu,üst katmanlara doğru çıkıldıkça canlıların gelişmiş yapıda olduğu,fosil araştırmalar sonucu kanıtlanmıştır. Embriyolojiden sağlanan kanıtlar: Birçok türün embriyonik gelişmelerinde birbirine benzeyen evreler görülür. Çeşitli omurgalı embriyoları karşılaştırıldığında hepsinden ortak kabul edilen solungaç yarıklarının bulunması yaşamın ortak bir kökene dayandığının kanıtıdır.Ayrıca blastula ve gastrula gibi evrelerin ortak olması da bir kanıttır. Her canlının gelişimi sırasında evrimsel kademelerini kısa periyotlar ile göstermesine filogeni(evrimin tekrarı) denir. Not:Embriyo ilk olarak şube,daha sonra sınıf,takım,familya,cins ve en son olarak tür özelliği kazanır. Biyokimya ve Fizyolojiden elde edilen Kanıtlar: Evrim acısından birbirine yakın türler arasında protein yapılarının benzer oduğu; uzak olanların ise,protein yapılarının çok farklı olduğu gözlenmiştir. Bu durum kandaki antijen-antikor ilişkisi ile ortaya çıkar.Yakın akrabalar arasında antijen-antikor birleşmesi daha az olur.Uzak akrabalar arasında daha fazladır.Yakın akraba türlerdeki benzerlikler çok daha fazladır.Bu nedenle pıhtılaşma en azdır. Morfolojiden elde edilen kanıtlar: Canlıların homolog organlarından elde edilen kanıtlardır.Örneğin:Balıktan insana kadar bütün omurgalılar sırtta bir omur dizisi,onun karın tarafında sindirim kanalı,yerleri ve bir noktada yapılışları aynı olan böbrek, pankreas, dalak,kalp,beyin vb gibi organları taşır. Körelmiş yapılar evrimin bir kanıtıdır.İnsanda 100’den fazla bu şekilde körelmiş yapı vardır.Örneğin,apandiks(Kör bağırsak).İnsan besininin farklı olduğu evrelerde görev yapardı. Sistematik(Sınıflandırmadan)’ten Elde edilen kanıtlar: Bugünkü sınıflandırma akrabalık,gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır.Bu karşılaştırma her zaman homolog organlar arasında gerçekleşir.Bu hiyerarşik diziliş evrimin belirli kanıtlarından biridir. Evcilleştirme yolu ile elde edilen kanıtlar: Binlerce yıldan beri biz insanlar çeşitli hayvan ve bitkileri seçmiş ve beslemişizdir.Bu şekilde çeşitli adaptasyonlardan dolayı birçok varyasyonlar meydana gelmiştir. Parazit enfeksiyonlarından elde edilen kanıtlar: Parazitler fizyolojik olarak çok özeleşmiş ortamlarda yaşarlar.Dolayısıyla farklı kimyasal organizasyona sahip hayvanlarda farklı parazitler yaşar.Örneğin: Askarislerin birçok çeşidi birçok farklı canlıda yaşar.Buda askarislerin aynı atadan farklılaştıklarını kanıtlar.Ortama uymak amacı ile uyumlar göstermişlerdir. Sitoloji ve genetikten elde edilen kanıtlar: İster bitki ister hayvan olsun,bütün organizmalar yapıları yönünden birbirine benzeyen hücrelerden oluşmuşturlar. Organizmaların coğrafi dağılımından elde edilen kanıtlar: Populasyon büyüme baskısı ile genişlemeye başlar ve bir engelle sınırlanıncaya kadar devam eder.Farklı iklim ve coğrafik koşullarda farklı türler bulunur. Allen kuralı:Soğuk iklimde yaşayan memeli ve kuşların üyeleri,vücut çıkıntıları,Sıçak iklimde yaşayan akrabalarına göre daha küçüktür.Örneğin kutup tilkileri;Daha küçük kulaklara sahiptirler. Bergman kuralı:Soğuk bölgelerde yaşayan memeli ve kuşların vücutları, Sıçak iklimde yaşayan akrabalarına göre daha büyüktür.Vücut büyüdükçe yüzey hacim orantısı küçülür.Büyük vücut oransal olarak daha küçük yüzeye sahip olacağından iç vücut sıcaklığını korumada daha başarılı olur.Örnek:Kral penguen. Dollo kuralı:Evrim,bazı geri mutasyonların olmasına karşılık geriye dönük değildir.İleriye giden sistemler topluluğudur. Coppe kuralı:Evrimsel gelişim sırasında yok oluncaya kadar,hayvanlar vücutlarını büyütme eğilimindedir.Çünkü vücut büyüdükçe çevre şartlarına bağımlılık azalmakta ve daha çok besin depo edilmektedir. Gloger kuralı:Kuzey yarım küresindeki kuş ve memeliler açık renkli, iklimin daha nemli ve Sıçak olan güney bölgelerine yani ekvatora gittikçe koyu renkli olmaya başlar. Lamarck’ın Evrim ile ilgili görüşleri Lamarck,doğada türlerin değişebileceğini ileri sürerek çevre şartlarının türleri etkilediğini bu nedenle oluşan türlerdeki değişikliklerin yeni bireylere aktarıldığını savunur.Lamarck canlıların oluşumu ile ilgili iki varsayım oluşturmuştur.Lamarck’a göre çevre değişirse canlı içten duygularla çevresine uyar ve yaşar. 1.Kullanma ve kullanmama Lamarck’a göre canlının kullandığı organlar gelişir;Kullanmadığı organlar küçülür ve körelir.Zürafaların boyunlarını çok uzatmaktan böyle uzadığını ileri sürer. 2.Kazanılan özelliklerin kalıtımı Kullanma ve kullanmama ile kazanılan bu özelliklerin yavrulara geçtiğini savunur.Ancak kullanılan organın gelişmesi bir modifikasyondur ve süreklilik göstermez.Değişmenin olabilmesi için üreme hücrelerini etkilemesi gerekir.Lamarck’ın bu varsayımı ispatlanamamıştır.Çünkü modifikasyonlar kalıtsal değildir.

http://www.biyologlar.com/evrim-ve-hayatin-baslangici-ile-ilgili-gorusler

Titicaca Gölü

Titicaca, çölde bir vaha misali And Dağları ile çevrili alanda binlerce yıldır insanlara hayat ve onun ötesinde çeşitli uygarlıklar bahşeden bir önemli coğrafya. Göl çevresinde ve üzerindeki yüzen adaları sayesinde yaşam yüzyıllardır hiç değişmeden sürüyorKıvrımlı yollardan aheste aheste çıkarak uydukent El Alto`dan geniş bir kevgirin içinde bulunan la Paz`a dönüp, bana bir haftadır yaşattığı inanılmaz anlar için son bir kez el sallayarak başkente veda ettim. Şimdi artık Everest, Büyük Sahra ve henüz görmediğim Kutuplar`dan sonra yeryüzünde beni en çok heyecanlandıran ve görmek için can attığım Titicaca`ya gidebilirim. Pazar yerini de geride bırakıp Titicaca`ya doğru yol alıyorduk ki; içinden geçtiğimiz bir köy meydanındaki renkli bir düğün alayı biz gezginleri hemen minibüsten indirmeye yetti. Bolivya`da geziyorsanız diğer Latin Amerika ülkelerinin aksine her an böyle ilgi çekici bir görüntüyle karşılaşabilirsiniz. Düğünün yapıldığı meydana geldiğimizde yerliler inanılmaz renkli kostümler giymiş, orkestranın çaldığı müzikler eşliğinde kendilerinden geçerek eğleniyorlardı. Bütün erkeklerin giydiği birbirinden farklı kostümler ve ortaya koyduğu oyunlar And Dağları`nın yüksek irtifalarında yaşayan Aymara kültürünün bir yansımasıydı. Çiftlere mutluluklar dileyip yeniden yola koyularak Titicaca Gölü`nün Bolivya tarafındaki en önemli yerleşim yeri olan Copacabana`ya ulaştık. İsrail`deki Lut Gölü, tuzluluk özelliği dışında dünyanın deniz seviyesinden 395 metre altında olması ile dünyanın diğer bütün göllerinden ayrılıyor. Titicaca Gölü ise Lut Gölü`nün aksine 3,810 metre yüksekliği ile dünyanın en yüksek gölü. Yani Lut Gölü`nden 4,205 metre daha yüksekte yer alıyor. ESKİ ALIŞKANLIKLARI KORUYORLAR Titicaca, çölde bir vaha misali And Dağları ile çevrili alanda binlerce yıldır insanlara hayat ve onun ötesinde çeşitli uygarlıklar bahşeden bir önemli coğrafya. Göl çevresinde ve üzerindeki yüzen adaları sayesinde yaşam yüzyıllardır hiç değişmeden devam ediyor. Peru ve Bolivya`yı birbirinden ayıran sınır gölün ortasından geçip yerlileri birbirinden ayırsa da İnka İmparatorluğu çatısı altında Keçhua ve Aymara yerlileri yüzyıllarca birarada yaşamışlar. Şimdilerde gölün Peru tarafında daha çok Keçhualar, Bolivya tarafında ise Aymaralar yaşamlarını eski alışkanlıklarını koruyarak sürdürüyorlar. Daha doğrusu sürdürmeye çalışıyorlar. Modern dünyadan gelen turist grupları işgalci İspanyol Pizzaro`dan sonra ikinci kez bu insanların yaşam ritimlerini bozuyorlar. Hal böyle olunca Andlar`ın yüksek irtifalarında olsalar da onların yaşamları eskisi gibi gözden ırak değil. 8.288 kilometrekarelik alanıyla Van Gölü`nden kat be kat büyük olan Titicaca`nın Batı kıyısı Peru`ya, doğu kıyısı ise Bolivya`ya ait. Titicaca adının nereden geldiği kesin olarak bilinmemekle birlikte Aymara dilinde `Puma Kayası` Keçhua dilinde ise `kurşun renkli kaya` anlamına geliyor. Gölün bugünkü yerlier için mistik bir önemi var. Çünkü burada yaşayan halk, ataları olan İnkaların gökyüzünden bu göldeki bir adaya indiğine inanıyorlar. İnka mitolojisine göre Güneş Tanrısı İnti çocukları ilk İnka Kralı olan Manco Capac ve karısı Mama Ocllo`yu Titicaca Gölü üzerindeki Güneş Adası`nda (İsla del Sol) kedi başını andıran bir kaya üzerine bırakmış. Bu yüzden gölün kutsal olduğunu kabul eden yerliler her yıl bir lamayı Titicaca`nın derin sularına kurban ediyorlar... Gölün etrafında birçok yerleşim merkezi var ancak bunların en büyüğü Peru tarafındaki Puno kenti. Bolivya tarafında ise daha küçük olan Copacabana bululunuyor. Günümüzde gölün yabancılar tarafından en dikkat çekici yanı dünyanın en yüksek gölü olması değil göl üzerinde bulunan onlarca yüzen ada ve o adaların üzerindeki geleneksel yaşam. Bu yüzen adaların çoğu gölün Peru tarafında yer alıyor. İşte o adalara genellikle Puno kentinden binilen teknelerle ulaşılıyor. Bu adacıklarda yaşayanlara `Uroslar` deniliyor. Uros yüzen adacıklarının ilk olarak istilacı İspanyol generali Pizzaro`nun gazabından korunup saklanmak amacıyla yapıldığı tahmin ediliyor. Efsaneye göre gerçek Uros kanı taşıyan yerliler, suyun dondurucu soğuğundan etkilenmez ve asla boğulmazlarmış. Karaya çıkmayı sonraki yüzyıllarda reddeden gerçek Urosluların 1959 yılında son bir yaşlı kadınının ölmesiyle tarihten silindikleri belirtiliyor. Elişçiliğiyle ünlü Uroslar`ın yerinde, bugün yüzen adalarda Aymara ve Keçhua yerlileri yaşıyor. Biz yeniden dönelim gölün Bolivya tarafındaki Copacabana kentine. Göle birkaç metre uzaklığındaki birkaç Bolivyanos`a kaldığım mütevazı otelimden çıkıp Güney Amerika`yı baştan başa gezme niyetinde olan Overland gezginlerinin mutlak uğrak yerlerinden biri olan bu küçük ama çok sevimli kasabayı gezmeye başlıyorum. PAZARLARIN HÂKİMİ KADINLAR Aymara yerlilerinin yaşadığı Copacabana kenti yüzyıllar boyu yerliler için çok önemli bir yerleşim merkezi olmuş. Bu nedenle İspanyolların istila dönemlerindeki baskıları bile yerli halkı bu bölgeden bütünüyle söküp atamamış. Ancak İspanyollar da bu kutsal topraklara kendi inançlarını getirmeyi ihmal etmemiş ve kasabanın tam ortasına yerlilere inat koca bir Katolik kilisesi inşa etmişler. Şimdilerde kavgalar sona ermiş ve göçmenlerle yerli kültürleri özellikle bu bölgelerde iyice birbirine karışmış durumda. Bunun en güzel örneği olarak meydandaki bembeyaz badanalı kilisenin önünde tezgâh açıp tarlasından getirdiği sebze ve meyveleri satan Aymara kadınlarını görüyorsunuz. Kasabanın en ilgi çekici yeri hiç kuşkusuz her türlü yerel yiyecek ve el örgüsü giyeceklerle çeşitli eşyaların satıldığı pazarı. Tabii bu pazarın hâkimleri de yine Aymara kadınları. Özellikle lama ve onların bir türü olan Alpaka derisi ve yünlerinden yaptıkları eşyalar daha çok müşteri topluyor. Copacabana`nın kendine özgü sakin bir yanı var. Sanki burada zaman çok yavaş ilerliyor. Uzun soluklu Overland Güney Amerika yolculukları sırasında gezginlerin birkaç gün dinlenmeleri için çok ideal bir yer. Gündüzleri otelin bahçesine oturup bir taraftan gölden çıkarılan balık siparişinizi verip, diğer taraftan yan masanızdaki bir gezginle karşılıklı rotalarınız hakkında sohbet edebilirsiniz. Akşamları ise çakıl taşlı göl kıyısında volta atıp küçük teknelerin muazzam siluetlerinin göle yansımasıyla oluşan muhteşem günbatımı manzarasını doya doya seyredebilirsiniz. Ertesi gün İnka kültürünün izlerini taşıyan Güneş Adası`na (İsla del Sol) gitmek için kıyıda bizleri bekleyen teknelerdeki yerimizi alıyoruz. Bir saati aşan tekne yolculuğundan sonra nihayet İnka İmparatorluğu`nun temellerinin atıldığı kutsal Güneş Adası`na ayak basıyoruz. İnka imparatoru yüce Manco Capak`ın 127. kuşaktan torunuyla karşılaşacağımızı düşünürken kıyıya çıkar çıkmaz, modern hayata ayak uydurmuş küçük kız çocuklarının ellerindeki hediyelik eşyaları elimize tutuşturup `Diez Bolivyanos por favor` nidalarıyla karşılaştık. Adadaki İnka kalıntılarını ve Güneş Tapınağı`nı görebilmek için yüzlerce basamaktan oluşan merdivenleri bir bir tırmanmak gerekiyor. Burada yaşayan iki yüz kadar yerli için bu kutsal adada doğmak bir övünç kaynağı. Adadaki yerliler evlerinin küçük bahçelerinde az da olsa sebze yetiştiriyorlar. Kerpiçten yapılma evlerin kenarlarına yapılmış avlularda lamaları bulunuyor. Kadınlar lama yünlerinden örgüler örüp küçük bahçelerinde mısır yetiştiriyor, erkekler ise eskiden balık avlarken şimdilerde bu kutsal adaya gelen turistlere hizmet veriyorlar. Köylü kıyafeti giymiş yerli kadınların fotograflarını çektiğinizde birkaç Bolivyanos vermezseniz zılgıtı yiyorsunuz. Anlaşılan modern dünyanın kuralları yerel gelenekleri derinden etkilemeye başlamış bu kutsal topraklarda. Kutsal ada gezimizi tamamlayıp tekrar tekneyle Copacabana`ya dönerken kaptanımıza rica edip bir iki dakika durmasını söyledikten sonra teknedeki herkesin şaşkın bakışları arasında bu sıvı coğrafyayla bütünleşmek için kendimi Titicaca`nın soğuk ve derin sularına atıverdim. Birkaç temsili kulaçtan sonra soğuktan taş gibi olmuş bedenimi teknenin güvertesine atıp ısıtmaya çalıştım. Dünya`nın bu en yüksekteki gölünü başka türlü belleğime nasıl bu kadar derin kazıyabilirdim ki... SIRT ÇANTAMDA DÜNYA KÜLTÜRLERİ MUSTAFA ANDIÇ mustafa.andic@eyuboglu.com

http://www.biyologlar.com/titicaca-golu

Mantar gelişiminin engellenmesi (Fungistasis)

Mantar gelişiminin engellenmesi (Fungistasis)

Antibiyosis mikro ölçekli ve geçici bir etkileşim olduğu halde, toptaklarda çok daha geniş kapsamlı ve daha sürekli olan bir etki de mycostasis veya fungistasis olarak bilinen mantar inhibe edici özelliktir.

http://www.biyologlar.com/mantar-gelisiminin-engellenmesi-fungistasis

Sivrisinek türleri ( Culicidae )

Sivrisinek türleri ( Culicidae )

Bilimsel sınıflandırma Alem: Animalia Şube: Arthropoda Sınıf: Insecta Takım: Diptera Alt takım: Eudiptera Familya: Culicidae Sivrisinek, (Culicidae) familyasından dişileri kan emerek yavrularını besleyen böcek türlerine verilen ad. Bir sivrisinek basitçe, baş, gögüs, ve karın kısmından oluşur. Başının iki yanında antenleri vardır. Erkek sivrisinekler, dişileri kanat çırpma seslerinden tanıyabilirler. Göğüs kısmında kanatları ve 3 çift ayakları bulunur. Karınları ise onlara kendi ağırlıklarından fazla kan emme şansı tanıyacak biçimde esnek bir deriye sahiptir. Böylece şişerler ama patlamazlar. Kan emerek beslenen "sivrisinek" çok mükemmel bir pompalama mekanizması kullanır: Başının içi, tümüyle kaslarla kaplı boşluklar şeklinde dizayn edilmiştir. Buradaki kaslar kasılıp gevşediklerinde sineğin borusunun iki ucu arasında 1-2 atmosferlik basınç farkı oluşur ve kan saniyede 5 metrelik bir hızla yükselmeye başlar. Bu yüksek akış hızına rağmen sivrisineğin ne borusunda ne de başka herhangi bir dokusunda tahribat ve çatlama olmaz. Çünkü kanın geçiş yaptığı tüm dokular kanın bu hızı ve basıncına dayanabilecek yapıdadır. "sivrisinekler" vücutlarının altı katı kan emerler; bu 15 dakikada 300 mikrolitre kan demektir. Bu bir insanın aynı süre içinde 200 kilo su içmesine denktir. Tüm kan emiciler gibi, ne zaman kan emmeyi durduracaklarını söyleyen, sinir sistemine bağlı gerginlik algılayıcılarına sahiptirler. Sivrisineklerin yaşamak için şekere, protein'e ihtiyaçları vardır. Bunu da bitki ve meyve sularından elde ederler. Kana ise yalnız dişi sivrisinekler muhtaçdırlar, çünkü dişiler yumurta üretirler ve bunun için kana ihtiyaç duyarlar. Sivrisinek cilde en yakın olan damarı tespit ettikten sonra alt ve üst çene yardımıyla altı bıçaktan oluşan kesme sistemiyle deriyi derinlemesine keserler. Bu bıçaklardan birinden akıtılan sıvı dokuları uyuştururken aynı zamanda kanın pıhtılaşmasını engelleyerek kanın dişi sivrisineğin karnına doluşunu devam ettirir. Sivrisinekler kan taşıdıkları için hastalık bulaştırma riskleri vardır. Örneğin sarı humma, fil hastalığı ya da sıtma gibi parazit hastalıklarını taşıyabilirler. AIDS'e sebep olan HIV virüsü ise bu canlılarda gelişme ortamı bulamaz. Virüsler sivrisinekler tarafından taşınmaz. Sivrisinekler yaşamlarını dört evrede tamamlarlar. Yumurta, larva, pupa ve ergin dönem. Bunlardan ilk 3 dönem suda tamamlanır. Sivrisinekler doğru bilinenin aksine kışın da hangi evrede olursa olsun yaşayabilir. Yumurtadan çıkan sivrisinek yavrularının (pulpa), büyüme evrelerini tamamlayabilmeleri için küçük bir su birikintisine ihtiyaç duyar. Bu, çamurlu bir yağmur suyu, bataklık, çeltik, havuz suyu ya da teneke kapta birikmiş bir su olabilir. Ancak durgun sular sivrisineklerin tercih sebebidir. Çünkü bu sular, içerdikleri fotosentez yapabilen bitki öbekleri sayesinde, oksijence zengindirler. Sivrisinek yumurtaları su bulunan her ortamda gelişebilirler, ancak bazı şartların sağlanması gerekir: Yumurtadan çıkacak olan larva, yetişkin bir sinek oluncaya kadar farklı evreler geçirecektir. Her evrede de yavru sineğin farklı ihtiyaçları olacaktır. Kuraklık ve aşırı sıcak da yumurtaların gelişimini engelleyebilir. Bu yüzden anne sivrisinek doğacak yavruların tüm gelişme evrelerini rahatça tamamlayabilecekleri bir ortam bulmak zorundadır. Dişi sivrisinek, karnının altında bulunan alıcı bir anten sayesinde, toprağın nem ve sıcaklık bakımından yumurtalarını bırakmaya uygun olup olmadığını tespit edebilir. Sivrisineklerin çiftleşmesi havada uçarken gerçekleşir. Erkeğin dişisini havada tutmak için kullandığı kıskaçları vardır. Fakat erkekler erişkin bir sivrisinek olana kadar, yani kısa yaşamlarının ilk 24 saati boyunca çiftleşemezler. Çünkü bu süre içinde antenleri henüz kurumadığından sağırdırlar. Bu yüzden dişilerin kanat seslerini -yani çiftleşme çağrılarını duyamazlar. Sivrisineklerde işitme yeteneği çok gelişmiştir. Erkeğin kafasından çıkan 2 tane küçük ve tüylü antende bulunan çok sayıda duyu hücresinden meydana gelmiş "Johnston organı", ses dalgalarının titreşimlerini alır ve ayırt eder. Bu tüylü duyargalar yalnızca dik durumdayken ses titreşimlerine karşı duyarlıdırlar. Dişi sivrisineğin kanatlarından çıkan ses erkek sivrisineği etkileyen en önemli faktördür. Dişinin kanat sesleri, erkeğin antenindeki reseptör hücreleri titreştirir ve sivrisineğin beynine elektrik sinyallerini gönderir. Dişiler kanatlarını erkeklerden daha hızlı çırparlar ve dişinin kanatlarından çıkan titreşimler erkeklerde çiftleşme isteğini artırır. Sivrisinek sürüsünün içine düşen bir dişi, erkeklerden biri tarafından farkedildiğinde, erkek sivrisineğin cinsel organının yanında bulunan özel kıskaçlarla tutulur ve çiftleşme genellikle havada bazen de yerde gerçekleşir. Çiftleşmeden sonra erkek, sürüsüne geri döner ve bir süre sonra da ölür. Çiftleşme gerçekleştikten sonra dişi sivrisinek, erkeğin spermlerini özel bir kesede muhafaza ederek, haftalar boyu döllenmiş yumurta yumurtlayabilir. Bir dişi bir defada 200-400 arası yumurta yumurtlar. Dişi sivrisinek çiftleşme anından itibaren kan emmeye başlar, çünkü yumurtalarının gelişebilmesi için kana ihtiyacı vardır. Larva döneminde bir kurtçuk şeklindeki canlı,pupa döneminde koza şeklini alır. Ilık, durgun ve 60 cm'den sığ sularda gelişebilir. Ergin hale geldikten sonra 2-3 km.uçarak ortalama 2 ay kadar hayatta kalabilir. İçinde su olan lastik, kova,boru,inşaatlar, havuzlar ve lağımlar gelişmek için uygun ortamlardır. Akşam üstü görülern sivrisinek sürüleri erkeklerden oluşmaktadır. Sivrisinekler genelde alacakaranlık zamanlarında uçarlar. Pek çok doğal düşmanları vardır. Kurbağalar, balıklar, kertenkeleler, bukalemunlar, kuşlar, yarasalar ve böcek larvaları sivrisinek ve larvalarıyla beslenirler. Günümüzde sivrisineklerle mücadele için kimyasal ve fiziksel pek çok metod kullanılmaktadır. Ancak çok basit ve hızlı üremeleri nedeniyle etkin bir mücadele ile lokal temizliği mümkündür. Sınıflandırma Alt familya: *Anophelinae Cins Anopheles Cins Bironella Cins Chagasia Alt familya: *Culicinae Oymak: Aedeomyiini Cins: Aedeomyia Oymak: Aedini Cins: Aedes Cins: Armigeres Cins: Ayurakitia Cins: Eretmapodites Cins: Haemagogus Cins: Heizmannia Cins: Opifex Cins: Psorophora Cins: Tanakaius Cins: Udaya Cins: Verrallina Cins: Zeugnomyia Oymak: Culicini Cins: Culex Cins: Deinocerites Cins: Galindomyia Cins: Lutzia Oymak: Culisetini Cins: Culiseta Oymak: Ficalbiini Cins: Ficalbia Cins: Mimomyia Oymak: Hodgesiini Cins: Hodgesia Oymak: Mansoniini Cins: Coquillettidia Cins: Mansonia Oymak: Orthopodomyiini Cins: Orthopodomyia Oymak: Sabethini Cins: Isostomyia Cins: Johnbelkinia Cins: Limatus Cins: Malaya Cins: Maorigoeldia Cins: Onirion Cins: Runchomyia Cins: Sabethes Cins: Shannoniana Cins: Topomyia Cins: Trichoprosopon Cins: Tripteroides Cins: Wyeomyia Oymak: Toxorhynchitini Cins: Toxorhynchites Oymak: Uranotaeniini Cins: Uranotaenia

http://www.biyologlar.com/sivrisinek-turleri-culicidae-

ENERJETİK VE BİYOENERJETİK NEDİR

Adından anlaşılacağı üzere enerji bilimi olan enerjetiğin temel dalı olan termodinamik ısı, sıcaklık, iş enerji dönüşümleri ve türleri arasındaki ilişkileri, bu arada meydana gelen yan olayları inceler. Fiziğin bir anadalı olan termodinamiğin fiziksel özellikler ile enerji arasındaki ilişkiler de konusudur. Kimyasal termodinamik ise fiziksel özellik değişimleri yanında meydana gelen kimyasal dönüşüm ve değişimleri inceler. Termodinamik olgu ve olayları makro ölçekte inceler, yani olayın gelişme şekli, yolu neolursaolsun başlangıç ve bitiş noktalarındaki durumları ile ilgilenir. Örneğin çekirdek enerjisinin nükleer bombanın patlatılması veya bir santralda kontrollu olarak uzun sürede tüketilerek açığa çıkarılan miktarı aynı olduğundan termodinamik açıdan aynı olaydır. Termodinamiğin birinci yasası da bu örnekte belirtilen şekildeki kütle - enerji arası dönüşüm olaylarının tümüyledönüşümden ibaret olduğunu, kütle ve enerji toplamının sabit kaldığını belirtir. Yani bu dönüşümlerde kütle + enerji toplamında artış veya kayıp söz konusu olamaz. Yasanın tanımladığı kütle + enerji kavramının anlaşılır olması için madde ve enerjinin ölçülebililir büyüklükler olması gerekir. Bunu sağlayan da enerji ve kütlesi tanımlanmış olan sistem kavramıdır. Termodinamikte inceleme konusu olarak seçilen, ilk ve son enerji + kütle miktarı bilinen, ölçülen ve değerlendirilen sistem, onun dışında kalan tüm varlıklar ve boşluk ise çevredir. Örneğin güneş sisteminin termodinamiği incelenmek istenirse uzay çevredir. Güneşin termodinamik açıdan incelenmesinde ise gezegenlerle uydular da çevre içinde kalır. Evren sistem olarak ele alındığında ise çevre olarak değerlendirilebilecek bir şey kalmadığından evrende enerji + madde toplamı sabittir, enerji veya madde yoktan var edilemez ancak enerji - madde dönüşümü olabilir. Burdan çıkan sonuç da maddenin yoğunlaşmış olan enerji olduğudur. Enerjiyi ancak maddeye veya işe dönüştüğü zaman algılayabildiğimiz, gözlemleyebildiğimiz için maddedeki gizli enerjiyi ölçemeyiz. İkinci yasa bütün enerjetik olayların kendiliğinden başlaması ve sürmesinin ancak sistemdeki toplam maddenin en az ve enerjinin en üst düzeyde olacağı yönde olabileceğini belirtir. Bu durum sağlandığında sistem dengeye varır, entropisi - düzensizliği - başıboşluğu (S) maksimum olur. Bunun tersi yönünde gelişen olaylar ise reverzibl - tersinir olaylardır. Örneğin canlının bir termodinamik sistem olarak oluşması ve büyüyüp gelişmesi tersinir, ölmesi ise irreverzibl - tersinmez olaylardır. Canlı sistemde ölüm termodinamik denge halidir. Aynı şey kimyasal tepkimeler içinde geçerlidir, dışarıdan enerji alarak başlayan ve yürüyen endotermik tepkimeler kendiliğinden başlayamaz ve süremez, birim sürede çevreden aldığı ve verdiği enerjinin eşitlendiği, enerji alışverişinin net değerinin sıfır olduğu denge durumunda durur, kinetik dengeye ulaşır. Ancak eksotermik, enerji açığaçıkarantepkimelerkendiliğinden yürüyebilir. Canlılığın oluşumu ve sürmesini sağlayan biyokimyasal sentez tepkimeleri de dengeye ulaşan reverzibl tepkimelerdir ve ancek ürünlerinin tepkime ortamından uzaklaşmasını sağlayan zincirleme tepkime sayesinde termodinamik dengenin kurulamaması ile sürebilir. Üçüncü yasa termodinamik bir sistemde entropinin, yani madde halinde yoğuşmamış olan enerjinin sıfır olacağı -273 derece sıcaklığa ulaşılamayacağını belirtir. Bitkilerdeki biyoenerjetik olayların anlaşılması açısından önemli olan diğer enerjetik kavramları ise entalpi, ve serbest enerji ile görelilik kuramının ışık kuantı ile ilgili sonucudur. Termodinamik incelemenin başlangıç ve bitim noktalarında ölçülen entalpi - toplam enerji farkı (DH) olay sonundaki madde kaybı veya kazancının da bir ölçüsü olur. Canlılarda çevreden alınan enerjinin azalmasına neden olan koşullarda bu etkiye karşı iç enerji kaynaklarından yararlanma yolu ile etkinin azaltılmasına çalışan mekanizmalar harekete geçer. Evrimin üst düzeyindeki sıcak kanlılarda vücut sıcaklığını sabit tutan bir enerji dengesinin oluşu çok zorlayıcı koşulların etkili olmasına kadar entalpi farkını önler. Entropinin ölçümü çok zor olduğundan sistemdeki düzensizlik enerjisi yerine entropi artışı ile ters orantılı olarak azalan iş için kullanılabilir, işe çevirilebilir serbest enerji (G) ölçülür. Serbest enerji sistem dengeye varıncaya kadarki entalpi farkının bir bölümünü oluşturur. Entalpi farkının entropi enerjisine dönüşmeyen, yani atom ve moleküllerin termik hareketliliklerinin artışına harcanmayan kısmıdır. Termik hareketlilik doğal olarak sıcaklığa, atom ve moleküllerin çevrelerinden aldıkları enerji düzeyine ve hareketliliklerine,hareket yeteneklerine bağlıdır; atom veya molekül ağırlığı, aralarındaki çekim kuvvetlerinin artışı hareketliliklerini azaltır. Bir sistemde serbest enerji artışı entropi enerjisi azalırsa da çevrenin entropi enerjisi artışı daha fazla olur ve 2. yasada belirtildiği şekilde sistem + doğanın entropisi sürekli artar. Canlı sistem ele alındığında canlının oluşup, büyümesi ile sürekli artan serbest enerji karşılığında çevreye verilen entropi enerjisinin daha fazla olmasını sağlayan canlının çevresine aktardığı gaz moleküllerinin termik hareketlilik enerjisi gibi enerji formlarıdır. Einstein’ın E = m . c 2 fomülü ile açıkladığı enerji - kütle ilişkisi sonucunda astronomların güneşe yakın geçen kozmik ışınların güneşin kütle çekimi etkisiyle bükülmeleri gözlemleriyle dahi desteklenen ışığın tanecikli, kuant şeklinde adlandırılan kesikli dalga yapısı fotosentez olayının mekanizmasının anlaşılmasını sağlamıştır. Kimyasal termodinamikte yararlanılan temel kavramlardan olan kimyasal potansiyel fizyoloji ve biyokimyada da kullanılan ve birçok canlılık olayının anlaşılmasını sağlayan bir kavramdır. Bir sistemdeki kimyasal komponentlerin her bir molünün serbest enerjisini tanımlar. Sistemde bir değişim olabilmesi, iş yapılabilmesi için bir komponentinin kullanacağı enerji düzeyini belirtir. Eğer değişim, dönüşüm sırasında bir komponentin serbest enerjisi artıyorsa bir diğer komponentinki daha yüksek oranda azalıyor demektir. İki sistem arasında kimyasal potansiyel farkı varsa bu fark oranında kendiliğinden yürüyen bir değişme olur ve iletim görülür. Bu suda çözünen katı maddelerin - solutların, pasif - edilgen şekildeki hareketini açıklamakta da kullanılan bir terimdir. Bu terimin su komponenti için kullanılan şekli su potansiyelidir. Kimyasal potansiyel basınç değişimi ile ilgili olayları da içerdiğinden su basıncı - hidrostatik basınç tanımı da kullanılır. Elektriksel potansiyel farkı da kimyasal potansiyelin bir şekli olduğundan sulu iyonik çözeltilerde katyonların katod durumundaki, anyonların da anod durumundaki sabit ve yüklü kutuplara doğru hareketine neden olur. Söz konusu potansiyellerin mutlak değerleri değil aralarındaki fark itici güçtür. İki nokta arasındaki basınç, derişim, elektriksel yük, serbest enerji farkı gibi farklılıkların tümü canlılıkta rol oynar ve karmaşık dengeleri yürümesini sağlar. Bu denge birarada bulunan komponentlerin birbirleri ile etkileşmelerinden etkileneceğinden etkileşim potansiyelinin de değerlendirilmesi gerekir. Bunun için kullanılan terimler ise aktiflik - etkinlik sabiti ve efektiv - etkin derişimdir. Etkin derişim, etkinlik sabiti yüksek maddenin veya maddelerin derişim farkına dayanarak sistemdeki değişim potansiyelini değerlendirir. Sistemin değişim potansiyelini ortaya çıkarır. Bu çerçevede su potansiyeli sistemdeki bir mol suyun sabit basınç altında ve sabit sıcaklıkta yer çekiminin etkisi sıfır kabul edilerek sistemdeki saf su ortamından etkin derişimin daha düşük olduğu yere gitme potansiyelidir. Yani hidrostatik basınç artışına paralel olarak su potansiyeli artar. Daha önceleri Difüzyon basıncı eksikliği ve emme basıncı, emme kuvveti şeklinde tanımlanmış olan su potansiyeli günümüzde en geçerli olarak benimsenen, kuramsal temelleri sağlam olan terimdir.

http://www.biyologlar.com/enerjetik-ve-biyoenerjetik-nedir-1

BÖCEKLERDE TRAKE SOLUNUMU

Stigma dudağının hemen altında trake sitemi başlar. Filogenetik olarak her segment kendi otonom stigmasına sahiptir. Bununla beraber bazı ilkel böceklerde ve gelişmiş böceklerin çoğunda, her segment bir çift stigma taşımaz. Ektodermin, stigmaların bulunduğu yerden içeriye çökmesiyle oluşurlar. Şekil 28.47/a’da basit ilkel bir trake sistemi şematize edilmiştir. Her stigmadan uzanan kısa bir dal yatay olarak vücut içerisine girerek bir dorsal, bir visceral ve bir de ventral dalcığa ayrılır. Dorsal daldan vücudun sırt kısmındaki kaslar ve integüment; visceralden bağırsak, malpiki tüpü, eşeysel bezler, yağ cisimcikleri; ventral daldan ise, karın kasları, sinir ve karın derisi yararlanır. Yalnız mezotorakstan öne doğru protoraksı ve başı besleyebilmek için bir ventral bir de dorsal kol çıkarak uzanır. Öne doğru uzanan dorsal koldan beyine, göze, üst dudak bölgesine ve antenlere kollar uzanır. Ventral koldan ise, tüm protoraksa, ilk bacak çiftine, alt dudak bölgesine ve ağız üyelerine kollar gönderilir. Stigma taşıyan her iki göğüs segmentinde, ventral koldan bir dal çıkarak bacak trakesini yapar. Böceklerin Hava Keseleri Metamerlere göre ayrı ayrı olan bu sistem diğer tüm böceklerde ikincil olarak değişikliğe uğrayarak daha karmaşık bir durum kazanmıştır. Segmentlerdeki trakelerin tümü enine boyuna birbirine bağlanarak anatomik ve işlevsel bir solunum birliği meydana getirir. Bu bağlantılara “Anastomos” denir. Enine bağlantılar vücudun karın tarafında, boyuna bağlantılar ise sırt kısmında sıktır. Stigmaların hemen iç kısmında tüm vücudu yandan boyuna kateden birleşik bir boru bulunur. Daha az olarak sırt kolunda, en az anastomoz ise visceral ve ventral kollarda görülür. Kanatlı böceklerin tümünde ilaveten kanat trakeleri görülür. Kanatlara giden kollar, mezo- ve metatoraksta, bacaklara giden trake kollarından ayrılarak bir yay yapar ve tekrar karın trake borusuna bağlanır. Özellikle iyi uçan böceklerin trake sisteminde ilave gelişmeler görülür (trake kollarında çoğalmalar ve dallanmalar). En çok görülen şekli ana trake kollarının genişlemesiyle meydana gelen trake keseleri ya da hava keseleridir. Bu kesecikler, mayısböceklerinde olduğu gibi, fazla sayıda; fakat küçük olabilir . Diğer taraftan halanlarında olduğu gibi birçok küçük hava kesesinin kaynaşmasıyla az sayıda; fakat büyük yapıda hava keseleri ortaya çıkar Hava keselerinin tümü havanın depo edilmesi için kullanılır. Keselerden çıkan ince dallar ve borular dokulara kadar uzanır. Ayrıca bu keseler miksosölü sıkıştırmak suretiyle dolaşımı hızlandırır ve dokulara besin ulaşımının daha etkin olmasını sağlar. Her trake, böceğin dış derisinin yani integümentinin özel bir amaç için içeriye çökmesiyle oluşur. Bunu de görmek olasıdır. Trake, “Matrix” ya da “Trake Epiteli” olarak adlandırılan bir tabakalı epitel ile en dışta örtülmüştür (buradaki dış tarifinden kasıt borunun lümeni değil, vücut içindeki tarafıdır). Eğer trake izole edilmiş bir boru halinde düşünülürse; en dışta kaide zarı, onun altında trake epiteli ve en içte de ekso- pro- ve epikutikuladan oluşmuş, vücudun tümünü dıştan örten tabakanın “Intima” denen iç çöküntüsünü görürüz. Intima, trake borusunun iç lümen kısmını astarlar. Intima ne kadar kalınsa, trake içe doğru o kadar fazla olarak uzanır. Bu kitin kılıf, öncelikle, trake borucukuların büzülmesini önler. Borucukların daha sağlam olabilmesi için kitin kılıfın üzerinde “Taenidium” denen özel spiral kitin kalınlaşmalar görülür. Trake intimasında prokutikula sklerotize olmadığından, sağlamlaştırma, taenidium ile, yani, eksokutikulanın yiv şeklinde kalınlaşmasıyla olur. Bazen bu yiv şeklindeki çıkıntılar, bir ağ görünümünde ya da parmakçalık gibi olabilir. Her deri değişiminde intima yenilenir. Büyük hava keselerinde, esnekliği korumak amacıyla, bu şekilde, duvarı sağlamlaştıracak kabarıklıklar ve keza kitinleşme yoktur. Epikutikula, her zaman trake lümenini kesiksiz astarlar. Trakenin içe doğru uçtaki ince dallarında ise, epikutikula basitleşerek sadece dolgun bir tabaka ile kutikula tabakasından oluşur. Trake borucukları son kısmına doğru 2-5 fi çapında çok ince borucuklarla trake uç hücrelerinin içinde son bulur . Burada epikutikula tamamen kaybolur; sadece gaz geçiren ince epitel tabakası kalır. Trake Uç hücreleri ve trakeoller Trake uç hücreleri matriks hücrelerinin değişmiş bir şeklidir. Bu hücreler yıldız şeklini almış ve üst düzeyi diğer matriks hücrelerinden daha değişik yüksekliktedir. Birçok uç hücresinin parmak şeklindeki uzantıları birbirleriyle ilişkide olabilir ve bu şekilde komşu hücre ve organın civarında bir ağ meydana getirirler. Bazen oksijene büyük gereksinme gösteren kas hücreleri gibi hücrelere, bu borucuklar, doğrudan bağlanırlar . Uç uzantıların içerisine kadar uzanan trake borucuklarının çapı 1 /cm’den daha küçük olabilir. Trake kılcallarına “Tracheol” denir. Kural olarak bunların iç çeperi kitin taşımaz. Işık mikroskobunda ancak 250 Â genişliğindeki trakeollerin kör ucu görülebilir. Havanın oksijeni öncelikle bu trakeollerr- saran dokulara diffüzyonla girer, ince trake borucuklarının duvarlarının da gazlar için geçirimli olduğu bilinmektedir. Fakat bu yolla vücudun ne kadar oksijen aldığı saptanamamıştır. Birçok araştırıcıya göre oksijenin geçişi sadece fiziksel bir diffüzyona dayanmamakta, matriks hücreleri, özellikle trake son hücreleri aktif rol oynamaktadır. Belki adı geçen yerlerde birikmiş olan pigment granülleri oksidasyon işlevinde ya da oksijen depolanmasında önemli görevler almaktadır. Deri değişiminde trakeollerin iç çeperi derinin diğer kısımları gibi değişmez; fakat, tamamen çözünür. Bu çözünen kısım “Trachein” denen kolloyidal bir materyalden yapılmıştır. Bu madde, kuru ortamda büzülür, sulu ortamda gevşeyerek açılır. Bu özellik, havanın, trakeollerin son kısmına ulaşmasında büyük öneme sahiptir. Gaz Değişimi: Uzun zamandan beri trakeollerin son kısmının hava ile değil, 0.2-0.3 \jım çapındaki bir sıvı sütunu ile dolu olduğu bilinmektedir. Kılcal kuvvetinden dolayı, trakeollerin son kısmını çeviren dokulardan, sıvıların, bu kılcal boru içerisine akma eğilimi vardır. Bu nedenle trakeollerin iç çeperleri genellikle sıvı (su) ile kaplıdır. Sıvıyı doku içerisinde tutabilmek için de bir zıt etkinin olması gereklidir.” Büyük bir olasılıkla bunu sağlayan da trakenin kolloyidal sıvı içeriğinin özelliğidir. Trake kılcallarının su tutma (eyleme)kuvveti, etrafını çeviren hemolenfin ozmotik basıncına bağlıdır. Dokudaki oksijen azaldığı zaman yadımlama ürünlerinin artmasından dolayı hemolenfin ozmotik basıncı yükselir. Bunun neticesi olarak trakeollerin uç kısmındaki su, dokular içine emilir ve bu arada temiz hava boşalan kılcallara doğru ilerler. Yeterince oksijen alındıktan sonra, ozmotik basıncın yükselmesine neden olan yadımlama son ürünlerinin oksitlenmesiyle ya da yıkılarak ortadan kaldırılmasıyla, ozmotik basınç düşer. Bunun neticesi olarak su, dokulardan kılcal borular içine geçmeye başlar ve hava dışarıya doğru itilir. Sıvının kılcal borular içinde gidip gelmesiyle oksijen içeren hava ritmik olarak trakeoller içerisine pompalanır. Trakeoller Havanın geniş lümenli trakelere ve hava keselerine pompalanmasında başka etkenler rol oynar. Vücut duvarının kaslar aracılığıyla hacimce genişleyip daralması suretiyle hava içeriye ve dışarıya pompalanır. Birçok böcekte abdomenin sırt karın yönünde açılıp kapanmasıyla, ya da dürbün gibi, segmentlerin boyuna birbirinin içerisine girmesiyle havalandırma meydana gelir. Bu tipik hareketleri birçok böcekte çıplak gözle izlemek olasıdır. Ayrıca göğüs birçok böcekte aktif olarak havalandırmaya katılır. Göğüste meydana gelen hacim değişmeleriyle hava stigmalardan içeriye ve dışarıya pompalanır. Dokularda CO2 miktarı çoğalınca, karın gangliyonundaki otonom merkez uyanlarak, solunumdan sorumlu olan kaslar harekete geçirilir. Böylece giren hava miktarı artırılır. Solunumun her stigmada aynı etkinlikle yapıldığı söylenemez. Bazen yönlendirme görülebilir. Dokuiara’a oluşan C02′in bir kısmı trakeollerin uç kısmındaki sıvının içerisine geçer (karbonik asit haline geçerek) ve yine buradan trake yolunu izleyerek dışarıya atılır. Karbondioksit, oksijene göre çok daha kolay olarak dokulara girebilir. Dolayısıyla kutikulanın arasındaki geçitlerden (pasajlardan) ve geniş lümenli trakelerden CCVin büyük bir kısmı dışarıya atılabilir (oksijen hemen hemen hiç geçmediği halde). Çalıçekirgelerinde dışarıya atılan CC^’in % 25′i integümentten sızar (diffüzyon yapar). Trake duvarlarından kan sıvısına sızan oksijen, kısmen erimiş durumda bu sıvıda taşınabilir. Fakat hemen hemen (örneğin Chironomi- dae larvaları hariç) solunum pigmenti taşımadığından, kanın, solunumda önemli bir rolü yoktur. Sıcaklık yükseldiğinde, hareket halinde ve gelişme evrelerinde oksijene gereksinim artar.

http://www.biyologlar.com/boceklerde-trake-solunumu

BALIKLARDA ÜREME SİSTEMİ

Balıkların üreme organları genellikle gonadlar olup, bunlar dişide ovaryum, erkekte ise testis adını alırlar. Ovaryumlar (dişi üreme organları) genellikle bir çifttir. Büyüklük ve ağırlıkları türlere göre değişmekle beraber, olgun oldukları zaman balık ağırlığının % 25’i kadar olabilirler. Genellikle üreme mevsimi yaklaşmış ergin bir balıkta ovaryumlar açık sarı veya kahverengimsi bir renk alır, daneli bir görünüş kazanır ve yüzeyinde bol miktarda kılcal kan damarları bulunur. Ovaryumda gelişen yumurtalar genellikle oviduct (yumurta kanalı) denilen bir boru ile vücut dışına atılırlarsa da bazı balıklarda (örneğin, Anguillidae ve Salmonidae familyalarında ve Cyclostomata grubunda) yumurta kanalı tamamen körelmiş olup, yumurtalar ve spermler sadece bir delikle dışarı atılabilirler. Testisler ise erkek üreme organları olup, genellikle bütün tatlı su balıklarında çifttir. Büyüklükleri üreme mevsimiyle ilgili olarak çok değişir. Ergin haldeki bir balıkta, üreme mevsiminde testislerin rengi beyazımsı olur, lekesiz düz bir görünüş arz eder ve üzerinde kılcal kan damarları da görülmez. Ağırlıkları da ovaryuma nazaran daha az olup, ergin halde iken en çok vücut ağırlığının %12’si kadar olabilirler. Tatlısu balıklarının çoğu ovipar (yumurta ile çoğalan) karakterli oldukları halde, bazılarında (Gambusia affinis) ovovivipar bir durum görülmektedir. Ovipar olanlarda döllenme haricidir. Yani dişinin ve erkeğin suya bıraktığı yumurta ve spermler su içerisinde döllenirler, bunun için de böyle formlarda çiftleşme organları gelişmemiştir. Balıklarda spermler çeşitli şekillerde olabilirlerse de genel yapıları diğer omurgalılarınkine çok benzer. Nadir bir olay olmakla beraber, Gambusia cinsinde döllenme dahili olduğundan, özellikle erkek bireylerinde, çiftleşme organı olarak anal yüzgeç modifiye olmuştur ve adeta yüzgecin bir kısmı penis görevi yapmaktadır. Gambusia’da görülen bu yarı doğurma hali, hiçbir zaman memelilerdeki doğurmaya benzemez. Zira memelilerde yavru, ana rahmindeki gelişimi esnasında plasenta denilen bir göbek bağı ile annenin dolaşım sistemine doğrudan bağlanmış olup, beslenmesi anadan gelen kan içindeki besinler ile olur. Halbuki Gambusia’da plasenta mevcut değildir. İç döllenme ile meydana gelen zigot, yumurtanın vitellüs maddesi ile beslenir. Fakat yumurtanın açılması, embriyonun açılması, balığın vücudu içerisinde olduğu için, yavrular kloak boşluğundan dışarı atılırlar. Bu nedenedir ki, Gambusia’da görülen üreme tarzına viviparlık değil fakat ovoviviparlık diyebiliriz. Genellike bir çift bez halinde olan ovaryumlar, granüllü bir görüntüde olup, hava kesesi bulunan balıklarda bu keseye yapışık vaziyette yer alırlar. Yumurtlama mevsimi yaklaştığında ovaryumların büyüklüğü giderek artar ve visceral boşluğu doldururlar. Olgunlaşmış olan yumurtalar gözle ayırt edilebilecek kadar birbirlerinden ayrılmış olurlar. Yumurtanın büyüklüğü tiplere göre çok değişik olup, balığın büyüklüğü ile ilgili değildir. Bununla beraber, yumurta büyüklüğü yumurta sayısı ile alakalı olup yumurta ne kadar küçük ise sayısı o nisbette fazla olur. Örneğin Dere Kayası olarak bilinen Çöpçü balığı, Nemacheilus yumurtalarının büyüklüğü, Cyprinus carpio gibi çok iri vücutlu balıklarınkinden bile büyüktür. Döllenmesi harici olan balıklarda, döllenmiş yumurtanın gelişmesi su içinde ve bırakıldığı yerde gerçekleşir. Embriyonik gelişim sırasında genellikle şeffaf olan yumurtanın içindeki yavrular, dışarıdan rahatlıkla izlenebilirler. Yumurta sayısı da balık türüne göre oldukça değişmektedir. Örneğin, tatlı su formlarından acı balık (Rhodeus)’ta yumurta sayısı 40-100 arasında iken, bir Mersin Balığı olan Acipenser sturio’da bir defada 3 milyondan fazla ymurta bırakılmaktadır. Balıkların bu kadar fazla yumurta bırakmaları kendi nesillerinin sürdürülmesi için gereklidir. Zira dişi balığın bıraktığı yumurtaların büyük bir kısmı diğer karnivor hayvanlar tarafından yenilir, bir kısmı da suların içinde döllenmeyerek çürüyüp kaybolur. Hal böyle olunca, bırakılan yumurtanın durumuna göre % 60-70’i telef olur, ancak %30 kadarı açılarak yavruları meydana getirir. Yumurtadan yeni çıkmış yavrular vitellüs keselerini absorbe etmeden önce, oldukça pasif davranışlı ve kendilerini korumaktan aciz olduklarından bu safhada iken de büyük bir kısmı diğer yırtıcılara yem olmaktan kendilerini kurtaramazlar. Ancak %10-20 civarında yeni neslin ebeveynlere ilavesi mümkün olur. Yukarıda verilen değerlerden de anlaşılacağı gibi bırakılan her bir yumurtanın yavru verebilmesi, dolayısıyla ebeveynlerin yaşamlarını sürdürebilme oranı oldukça düşüktür. Bu nedenledir ki balıkların yumurta ve sperm verimleri diğer hayvanlara nazaran çok daha fazla olmaktadır. Zira birkaç cins hariç (Gobius, Gambusia), balıklarda döllenme haricidir. Bu sebepten balıkların meydana gelmesinden evvel, yumurta ve yavru balıkların telef olma sebepleri dikkate alınacak boyuttadır. Bir türün yumurtaları ne kadar çok döllenir ve açılırsa kuşkusuz o nispette yavru balık gelişir. Bunların da gelişerek ergin boya ulaşabilmeleri ve düşmanlarının az olması için çevre şartlarının uygun olması söz konusudur. Balıklar yumurtalarını genellikle ya dişi tarafından hazırlanan bir yuvaya veya sadece çukur bir zemin üzerine veya su yosunları ve köklü su bitkileri üzerine veyahut da çıplak taşlar üzerine bırakırlar. Tatlı su balıklarının çoğu, yumurtlamak için daima az derin suları tercih ederler. Yumurtlama yerleri ya hızlı akıntılı taşlık bir zon olabilir (Lampiridler, Salmonidler, Barbuslar, Aspiuslar, Chondrostomlar, Phoxinuslar vb.) yahut da vejetasyonca zengin durgun bir su olabilir (Cyprinus, Abramis, Cobitidler, Percidler vb.) Tatlı su balıklarında olgunlaşan yumurtaların tümü bazı türlerde bir defada bırakılırken (Esox, Perca ve Rutilus’ta ); diğerlerinde birkaç gün aralıklarla iki veya daha çok defada bırakılırlar (Tinca, Cyprinus, Alburnus, Blicca, Leuciscus vb.) Çok zaman şeffaf ve biraz da vizkoz karakterli olan balık yumurtaları şayet sudan daha ağır iseler, mukus maddesi sayesinde taşlar veya bitkiler üzerine yapıştırırlar. Bazı formlarda ise (Alosa ve Lota gibi) tamamen serbest ve hafif olan yumurtalar, açılıncaya kadar su üzerinde yüzerler, bu nedenlerle balıkların bıraktıkları yumurtalar genel olarak 5 grup altında toplanabilirler. 1- Yüzücü yumurtalar 2- Yarı yüzücü yumurtalar 3- Hafif ve yapışkan olan yumurtalar 4- Ağır fakat yapışkan olan yumurtalar 5- Ağır fakat yapışkan olmayan yumurtalar Balıkların çoğu yumurtalarını gelişi güzel suyun içine bıraktıkları halde bazı formlar yumurtalarının başka balıklar ve diğer su hayvanları tarafından yenmelerini önlemek amacıyla özel olarak yaptıkları yuvalara bırakırlar. Balık yuvaları ya hayvanın tercih ettiği bir barınaktan ibaret olabilir veyahut da Dikence balığında (Gasterosteus aculeatus) olduğu gibi yosun ve bitki kırıntıları ile kendilerine özgü yuva kurarlar. Hakiki yuva kurma içgüdüsü olan bu balıkların büyük bir gayretle kurdukları yuvaya dişi tarafından bırakılan yumurtalar, erkek balık tarafından yavrular çıkıncaya kadar (yaklaşık 15 gün) dikkatlice korunurlar. Erkek bu bekçiliği esnasında yuvanın içindeki suyu sirkülasyon yaptırmak amacıyla yüzgeçlerini de devamlı olarak hareket ettirir. Buna benzer şekilde yumurtaların erkek bireyler tarafından korunma içgüdüsü Gobiidae ve Cichlidae temsilcilerinde de vardır. Diğer taraftan acı balık (Rhodeus) cinsinde az sayıda olan yumurtaların açılıncaya kadar emniyet altında bulundurulmaları için tedbir alınmaktadır. Şöyle ki dişi balık olgunlaşan yumurtalarını uzunca bir ovipozitörü sayesinde bir tatlı su midyesi olan Anadonta ve Unio’ların solungaç-manto boşluğu arasına bırakırlar. Çok az miktarda albümine karşı bol miktarda vitellüs içeren ve etrafı ince ve şeffaf bir zarla çevrili bulunan balık yumurtaları çeşitli şekillerde ve değişik ortamlarda suya bırakılmalarını müteakip erkeğin aynı suya bıraktığı çok daha fazla sayıda sperm hücreleri tarafından döllenirler. Kısa bir süre sonra (5-10 dak.) döllenen yumurtalar üzerinde döllenme lekesi adı verilen küçük bir iz büyümeye başlar ve bu kısım bir müddet sonra daha da ilerlemiş bir değişmenin merkezi haline gelir. Bu gelişmeyi zarın şeffaflığı nedeniyle çıplak gözle dahi takip etmek mümkündür. Yumurtalarını döken balıklar genellikle gıda almak üzere avlanmazlar, çünkü yumurtalarını döktükten sonra halsiz, bitkin bir duruma düşerler. Hatta bazı türlerde bu haldeki balıklara hasta balık nazarıyla bakılır. Örneğin Onchorhynchus adı verilen pasifik alası denizden tatlı su göllerine yumurta bırakmak üzere göç ettikleri zaman yuurtalarını orada döktükten sonra sahile çekilip ölürler. Bu meyanda yılan balıkları da Meksika körfezinde bin metre derinliğe yumurta bıraktıktan sonra ölüme giderler. Kuşkusuz bu özellik tüm balıklarla ilgili olmayıp, istisnai bir durumdur. Balıklarda kuluçka süresi türden türe çok değişik olur. Bu süre genellikle suyun sıcaklığı ile çok yakından ilgili olup, suyun ısınmasıyla (belli sınırları aşmamak şartıyla) ters orantılıdır. Bu nedenledir ki suyun ısısını yükseltmek veya düşürmekle kuluçka müddetini kısaltmak veya uzatmak da mümkündür. Örneğin Salmo trutta’nın kuluçka süresi 5ºC de 82 gün iken 10ºC de 41 güne indirilebilmektedir. Demek oluyor ki döllenmiş olan yumurtaların açılabilmesi kuluçka süresince alacağı toplam ısı miktarına bağlıdır. Bu da Derece/gün orantısı olarak ifade edilmektedir. Örneğin bu değer alabalık için 410 ºC/gün olduğu halde, sazan balığı için 100 ºC/gün olarak hesap edilmiştir. Buna göre 20ºC de bırakılan sazan yumurtalarının kuluçka süresi 100/20 5 gün olacaktır. Yavru balıklar embriyonik gelişmeleri esnasında vitellüs kesesi içindeki besin maddesiyle beslenirler ve yumurtadan çıktıkları zaman da bu kesenin bir kısmını yine karınlarında taşırlar. Bu kese onlara doğumdan sonra bir müddet daha besleyici besin maddesi temin etme bakımından önemlidir. Belirli bir süre sonra bu kese kendi kendine absorbe edilerek kaybolur gider. Bu absorbsiyon müddeti balıklar için türlere göre değişmekte olup, sazanlar için 20 gün, alabalıklar için ise 40-50 gün devam eder, hatta deniz alası için (Salmo salar) bu süre daha da fazla olup, 70-120 gün kadardır. Vitellüs kesesinin absorbsiyonu tamamlandıktan sonra küçük yavrular kendi besinlerini kendileri aramaya başlarlar. Bu çağdaki balıklar özellikle su içinde bol miktarda bulunan bitkisel ve hayvansal planktonik organizmalarla beslenirler. Yumurtadan çıkmış yeni bir balık yavrusu aşağı yukarı yumurta çapının üç katı boyundadır ve türe göre değişen pasiflik devresini geçirdikten sonra (şayet hava kesesi bulunan bir balığın yavrusu ise) hava keselerini doldurmak için suyun yüzeyini doğru tırmanırlar. Balık yavruları gelişme esnasında genellikle büyük değişmelere uğramazlar (yılan balıkları, dil balıkları ve lampiridler hariç). Bu nedenle balık yavrularına larva demek pek doğru olmaz. Zira besin keseleri hariç şekil itibariyle tamamen ebeveynlerine benzerler. Fakat yukarıda da belirttiğimiz gibi Yılan balıkları (Anguilla anguilla) ile Lamprilerin (Lampetra fluviatilis) Leptocephalus adı verilen yavruları aşağı yukarı 3 yaşına kadar ebeveynlerinden çok farklı olan hakiki bir larva safhası geçirirler. Diğer taraftan bir tatlı su pisi balığı olan Pleuronectes flesus türünde ise yavrular başlangıçta bilateral simetri iken uzun bir gelişmeden sonra ebeveynlerde görülen asimetrik durum ortaya çıkar. Bundan dolayı yumurtadan çıktıktan sonra belli bie metamorfoz geçirerek ebeveynlerine benzeyen bu balıkların genç formları için larva tabiri kullanmak zorunlu olmaktadır. Aşağıda tatlısularımızda yaşayan bazı balık türlerinin üreme periyotları gösterimiştir. Latince İsmi Türkçe İsmi Üreme Periyotları Alburnus escherichi (Tatlı su sardalyası) Nisan-Mayıs Acipenser sturio (Mersin balığı) Mayıs-Temmuz Anguilla anguilla (Yılan balığı) Şubat-Nisan Abramis brama (Çiçek balığı) Mayıs-Haziran Vimba vimba (Aptalca balığı) Mart-Temmuz Barbus plebejus lacerta (Bıyıklı balık) Mart-Temmuz Carassius carassius (Sarı havuz balığı) Mayıs-Temmuz Carassius auratus (Kırmızı havuz balığı) Mayıs-Temmuz Chondrostoma nasus (Kababurun balığı) Nisan- Mayıs Cobitis taenia (Taş yiyen) Nisan-Mayıs Cyprinus carpio (Sazan balığı) Mayıs-Ağustos Esox lucius (Turna balığı) Şubat-Mart Gobio gobio (Dere kayası) Nisan-Temmuz Leuciscus cephalus (Tatlı su kefali) Nisan-Haziran Nemacheilus angorae (Çöpçü balığı) Nisan-Mayıs Perca fluviatilis (Tatlısu levreği) Şubat-Haziran Rutilus rutilus (Kızılgöz balığı) Nisan-Mayıs Phoximus phoximus (Ot balığı) Nisan-Temmuz Salmo trutta macrostigma (Dere alası) Kasım-Ocak Scardinius erythrophtalmus (Kızılkanat) Nisan-Ağustos Silurus glanis (Yayın balığı) Haziran-Ağustos Blicca björkna (Tahta balığı) Mayıs-Haziran Rhodeus cericeus amarus (Acı balık) Mart-Ağustos Tinca tinca (Yeşil sazan) Mayıs-Haziran Aspius aspius (Kurt balığı) Nisan-Mayıs Bütün bu anlatılanların yanı sıra görsel olarak dişi ve erkeklerin türlere göre kendine göre ayırt edici özellikleri mevcuttur. Örneğin Afrika bölgesinde Tanganyika ve malwi göllerinde yaşayan balıklarda genellikle erkeke bireyler dişilere göre renklidir. Diğer dere ve göllere yaşayan vatoz türlerinde ise erkek bireylerde boynuz adı verilen başın dorsal kısmında çıkıntılar ( dikensi ) yapılar mevcuttur. Bazı bireylerde ise dişi ve erkek ayrımı balığı elinize aldığınızda anlaşılabilir. ( Ergin Dişi bireylerin karnını bastırdığınızda ( sağdığınızda) yumurta dökerler. erkek bireylere aynı işlemi uyguladığınızda ise beyaz renkli sperm bırakırlar. Yayın balıklarında Üreme döneminden önce erkek ve dişiyi birbirinden ayırt etmek oldukça zordur. Üreme safhasının hemen öncesi dişilerin karınlarının şiş olmasıyla cinsiyet ayrımı daha kolay olur. Deniz baliklarinda genelde erkekler daha koyu renkli ve sirt alt ve kuyruk yuzgecleri daha sivri bir sekilde biter kafa yapilari disilere gore bazi turlerde daha kabarik siskin olur...ve genelde erkekler daha duz vucuda sahiptir.. disilerde ise renkler daha soluk olmakla beraber sirt,alt,ve kuyruk yuzgeci daha kisa duser...bazi turlerde arkeklerden daha iri ve bazi turlerde daha kucuk yapida olabilir disi baliklar daha genis karin kismina sahiptir ve anus bolgesi daha genis olur havyar doneminde olan balikta karin yanlarindan bir tombullasma gorulur ve anus disa yakindir.... Tatlı suda ise ureme zamanlarinda erkek baliklarda sazan familasi icindekilerde kafada beyaz benekler olusur bu baligin es zamaninda oladugu icin dir ve dolleme yapmaya hazir bir baliktir...ve erkek baliklar daha duzgun ve zayif bir vucuda sahiptir genelde... disi baliklar ise daha genis vucudlu ve ureme zamaninda unus disa cikar ve siskin bir karna sahipti..kafa altin anuse kadar oval bir gorunumu olur.. evet bazi balik turleri bellirli yas ve zamanlarda cinsiyet degistirme ozelligine sahiptir bildigim kadariyla denizde hanigiller familayasinda bazi turlerde ama tam hatirlamiyorum. BU BÖLÜM TAMAMEN KİŞİSEL TECRÜBELERİMLE KALEME ALINMIŞTIR... YAZILI BİR KAYNAK GÖSTERMEM MÜMKÜN DEĞİLDİR...İNŞALLAH İŞİNİZE YARAR

http://www.biyologlar.com/baliklarda-ureme-sistemi-1

Müzelerde Eğitim

Müzelerde Eğitim

Genel anlamda müzelerde eğitimi bilimsel eğitim ve toplumsal eğitim iki başlık altında incelemek gerekse de toplumsal anlamda sağlanan eğitim daha ön plana çıkar.

http://www.biyologlar.com/muzelerde-egitim

Darwin’in Evrim ile ilgili görüşleri

Darwin,türlerin birbirlerinden neden farklılık gösterdiğini,nasıl değiştiğini, bu farklılıkların oluşumunda nelerin etkili olduğunu doğal seleksiyon hipotezi ile açıklamıştır. Seleksiyon,gen frekansının değişmesinde bir etkendir. Gen frekansı:Bir populasyonun bütün genlerine gen havuzu denir.Bu gen havuzunda bir genin bulunma sıklığı(%’de oranı) o genin frekensını belirler. Örneğin:Hemofili hastalarının toplumda yaşama ve çocuk sahibi olma ihtimalleri azdır.Hemefoli geni seleksiyona uğrar.Ancak hemefili alelerinin frekansı hiçbir zaman sıfır olmaz. İzolasyon:En önemli izolasyon coğrafik izolasyondur.Sonuçta bu ayrılan populasyonlar birbiri ile çiftleşemeyecek hale gelir. Kalıtsal varyasyona sahip olan bireylerden ortam şartlarına uyanlar yaşar, ürer ve kalıtsal özelliklerini döllerine geçirir,diğerleri elenir.Buna doğal seleksiyon denir. Evrim zinciri ; Mutasyon ve Eşeyli üreme Kalıtsal varyasyon Doğal seleksiyon Adaptasyon Evrim Burada mutasyon ve eşeyli üreme evrimin nedenidir. Varyasyon:Her türün çeşitli fertleri arasında görülen değişiklikler veya farklılıklardır.Örnek:Eskimo ile zençi. Adaptasyon:Canlıların,belirli bir çevreye uyumlarını,yaşamalarını ve üreme şanslarını artıran kalıtsal özelliklerine uyumsal özellikler:bu olaya da adaptasyon (uyum) denir.Örnek,kutuplardaki ayıların beyaz renkli olması gibi. a.Çevresel Varyasyon(Modifikasyon) Dış etkilerle meydana gelen kalıtsal olmayan değişmelerdir.Vücut hücrelerinde görülür. b.Kalıtsal varyasyon İki şekilde görülür. 1-Eşeyli üreme: a.Krossing-over:Eşey hücrelerinin oluşumu sırasında kromozomlar arasında parça değişikliği. b.Mayoz bölünme:Eşey hücrelerinin meydana geldiği bölünme. c.Döllenme:Erkek ve dişi üreme hücrelerinin birleşmesi. 2-Mutasyon: Genlerde(DNA) meydana gelen kimyasal değişikliklerdir.Üreme hücrelerinde meydana gelen mutasyonlar kalıtsaldır.Buda evrim için önemlidir. Mutasyonu hızlandırıcı etmenler ışınlar,soğuk-sıcak farkları,kimyasal maddeler,pH değişimleridir.

http://www.biyologlar.com/darwinin-evrim-ile-ilgili-gorusleri

Parazitlerin ve parazitozların kaynağı

1. Toprak ve su: Parazitlerin tüm evrim dönemleri insan vücudunda yerleşmeye elverişli değildir. Bazı parazitlerin belli evrim dönemleri ancak toprak veya suda bir süre kalıp başkalaşım veya gelişme geçirdikten sonra insana, insanda enfektif hale geçmesidir. Bunun en güzel örneği, Ascaris ve Trichurus yumurtalarıdır. İçinde embriyo oluşmamış şekilde konak dışkısıyla dışarı atılan bu yumurtalar toprakta uygun ısı, nem ve oksijen varlığında gelişirler ve içlerinde embriyo (larva) oluşur. Böyle yumurtalar insan için enfektedir. Kedi dışkısıyla dışarı atılan Toxoplasma gondii ookistleri de toprakta belli bir süre geliştikten sonra infektif hale geçerler. İnfektif parazit yumurtalarını, kistlerini ya da ara konakları içeren sular ve topraklar insan parazitozları için birey kaynak oluştururlar. 2. Parazitlerin infektif şekillerini içeren besinler: Bu besinler genellikle parazitin ara veya son konağı rolünü oynayan canlının vücut parçalarıdır. Örneğin, Taenia saginata’nın infektif şeklini içeren sığ etleri bunlara örnektir. Taenia solium ve Toxoplasma gondii ‘nin infektif şekillerini bulunduran etler bunlara örnek olarak verilebilir. 3. Kan emen eklembacaklılar: Bu grup canlılar genelde parazitlerin vektörüdürler. Sıtma parazitlerinin şark çıbanı etkisi olan Leismaniaların kaynağı bu canlılardır. 4. Paraziti barındıran evcil ve/veya yabani hayvanlar: Toxocora canis gibi parazitlerin kaynakları köpek ve tilki gibi hayvanlardır. 5. Paraziti barındıran diğer bir insan ve onun giysileri ve bulaştırdığı yakın çevresi: Bu durum insan vücudunu terk ederken infektif evrim döneminde bulunan parazitler için söz konusudur. Örnek; Hymenolepis nana’dır 6. Kişinin kendisi: Herhangi bir parazit ve parazitoz için kişinin kendisi kaynak olabilir. Kişinin kendi vücudunda bulunan bir parazit ile kendine bulaştırması olayına otoinfeksiyon denir.

http://www.biyologlar.com/parazitlerin-ve-parazitozlarin-kaynagi

Toprak Faunası

Topraklarda mikroflora yanında zengin bir fauna’da bulunmaktadır. Toprak faunası kapsadığı canlıların boyutlarına ve hücre organizasyonuna göre mikro (200 µm’den küçük), meso (200 µm – 10 µm), makro (cm ile ölçülen hayvanlar) ve mega (memeliler) fauna olmak üzere çeşitli gruplara ayrılmaktadır. Yani toprak faunası ilkel tek hücreli canlılardan, gelişmiş çok hücreli varlıklara kadar çok değişik organizma gruplarını içerir. Protozoa’lar toprağın mikrofaunasının çeşit ve sayı bakımından en zengin gruplarından birini oluşturur. Protozoa grubunda yer alan tek hücreli çoğunluk fotosentetik olmayan canlılar yüksek protistler olarak tanımlanan ökaryotik hücreli organizmalardır. Protozoalar içinde hayvanlarda parazit olan (malarya) türler bulunduğu gibi yüksek organizmalarla mutualistik ilişki içinde yaşayan diğer çeşitler de bulunur. Örn: termitlerin sindirim sistemimde yaşayan odun dokularının sindirilmesinde rol oynayan bazı kamçılılar. Serbest yaşayan protozoa türleri toprak, tatlı su ve denizlerde yaygındır. Toprakta bu organizmalar toprak kümelerinin etrafındaki su filmi katmanında, kısmen suyla dolu gözeneklerde gelişirler. Olumsuz çevre koşullarında örneğin kuraklıkta kist denilen dayanıklı formlar oluştururlar. Protozoa’lar 4 grupta toplanır: • Amoebae (kök bacaklılar) (Sarcodina) • Flagellatlar (Kamçılılar) ( Mastigophora) (ikiye ayrılır; Phytofilagellat (ototrof) ve Zoofilagellat (heterotrof)) • Ciliata’lar (Kirpikliler) • Sporpzoa’lar (ozmotik beslenen canlılar) Protozoa’ların topraktaki sayıları mevsimlere hatta günlere göre azalıp çoğalabilir. İlkbaharda karlar eridikten sonra en yüksek düzeydedirler. Yaz ve sonbaharda yağışlardan sonra topraktaki sayıları artar. Protozoa’lar toprağın özellikle 15 cm’lik üst kısmında yaygın olmakla birlikte kurak bölgelerde, fakir kumlu topraklarda daha derinlerde bulunurlar. Toprak organik maddesi arttıkça protozoa’ların (özellikle amiplerin) sayıları artar. Çoğu heterotrof beslenir, alg, bakteri ve kendi cinsinden küçük formları besin olarak kullanırlar. Ototrof yeşil protozoa’lar (phytofilagellat’lar örneğin) yeşil alglerle simbiyoz oluşturabilir, saprofit gruplara da rastlanır. Bunlardan kamçılı olanlar çözülmüş organik maddelerle beslenirler. Protozoaların aktif olmadıkları dönemde dış kısımları kalın koruyucu bir doku ile sarılır, böylece olumsuz çevre koşullarına karşı direnç kazanırlar. Optimum sıcaklık istekleri 18-22 ºC ve nötral pH düzeyleridir. Protozoalardan özellikle Infusoria ciliata ve amipler bakterilerle beslendiklerinden topraktaki bakteri populasyonunu kontrol etmiş olurlar. Kapsül oluşturan bakteri formları diğerlerinden daha az yenilen organizmalardır. Toprak protozoaları populasyon yoğunlukları ve biyokütleleri ile toprağın önemli bir fraksiyonu olup organik madde döngüsüne dolaylı fakat önemli etkide bulunur. Bu organizmaların bakteriler üzerine olan predatör etkisi, bakteriyel biyokütlede, bağlı tutulan besin elementlerinin hızlı bir şekilde madde döngüsüne katılmasını sağlar. Örn: hafif bünyeli (kumlu) bir toprakta selülozun ayrışması sonrası yarayışlı azot formlarının biyokütlede tutularak yarayışsız duruma geçmesi ve kısa zaman sonra ise bu azot formlarının tekrar serbest kalması bu ortamdaki mikroflora ve mikrofauna faaliyetleriyle ilgilidir. Protozoa 1. Amobae Amoebina Testaceae (Heliozoa, Foraminiferler, Radiolaria) 2. Flagellatlar (Fito ve Zooflagellatlar) Monas vivipara Polytoma uvella toprakta en çok bulunanlar Bodo spp. Clamydomonas Euglenoida Astasia 3. Ciliata (Infusoria-Kirpikliler) Colpoda Stylonychia Mytilus 4. Sporozoa (Telospirina) Toprakta mikrobiyal süksesyon Bitkilerin ölmekte olan dokuları, onlar toprağa düşmeden önce zayıf parazitler tarafından kolonize edilmektedir. Yere düştükten sonra öncelikle saprofitik “şeker mantarları” şekerleri ve selülozdan daha basit karbonhidratları kullanırlar. Bu mantarlar tipik Phycomycetes ve Fungi imperfecti gruplarıdır (Deuteromycetes). Bu mantar türleri hızlı misel gelişimi ve spor oluşumu ile yavaş gelişen türlere karşı iyi bir rekabet avantajına sahip organizmalardır. Birincil şeker mantarlarını, ikincil şeker mantarları ve selüloz ayrıştırıcılar takip eder. Selüloz ayrıştırıcılar çoğunluk Ascomycetes, Fungi imperfecti ve Basidiomycetes grubundan mantarlardır. İkincil şeker mantarları ise yeni dökülmüş bitki dokularındaki şekerler için birincil şeker mantarlarıyla rekabet edemez. Bu organizmalar selüloz mantarlarının oluşturduğu ayrışma ürünlerinden yararlanırlar. Bu kuramsal süksesyon en zor ayrışan bitki doku maddesi olan lignin ayrıştıran Basidiomycetes ile son bulur. Topraktaki Organik Madde Ayrışması Toprak ekosisteminde fauna ve mikroflora tarafından ayrıştırılan organik bileşikler genel olarak karasal ekosistemin oluşturduğu primer üretim kalıntılarıdır. Bu organik bileşiklerin mineralizasyonunu gerçekleştiren mikroorganizmaların biyolojik kütlelerinden oluşan ölü dokularda daha sonra primer üretim kalıntıları gibi ayrıştırılır. Gönderi: Zahide

http://www.biyologlar.com/toprak-faunasi

Beynin Ters Çaba Kuralı

Beynin Ters Çaba Kuralı

Bilindiği üzere insan beyni çok karmaşık bir yapıya sahiptir. Teknoloji ne kadar gelişmiş olursa olsun bu karmaşıklık henüz tam anlamıyla keşfedilmemiştir. İnsanlarda kendi beyinlerinin fonksiyonlarını tam olarak bilmemektedirler. Bilinen şekli ile beyin sol lob ve sağ lob olmak üzere iki kategoride ele alınır.Sol lob mantığın merkezi, analitik düşünme ve ulaştırıcı sinyallerin taşındığı kısımdır. Bu lob’a “mantık küpü” adı da verilmektedir. İyi bir bilim adamı, matematikçi, araştırmacı gibi bilimsel yönü olan insanların sol lob’unun daha fazla geliştiği tespit edilmiştir.Sağ lob ise daha çok sanatçı ruhlu, ön sezileri kuvvetli olan kişilerin merkezi olmaktadır. Farkındalık özellikleri çok üst düzeyde olduğu için ayrıntıları ve bütünü iyi gözlemlerler. Esprili insanları da bu kategoride değerlendirmek mümkündür. Sıradan bir insanın bu iki kategoriden sadece birini daha iyi kullandığı beynin düz mantık olayı ile açıklanmaktadır. Ancak bazı insanlar iki lob’u da aynı derecede kullanmaktadırlar. İşte bu esnada beynin düz mantık çalışma hipotezi çürümektedir.Ters çaba kuralı da beynin en tehlikeli çalıştığı anlar olup, başınıza gelmesinden korktuğunuz bir olayın beyin tarafından size çekilmesidir. Beyin odaklanan hedef için çalışır, hedef olumsuz olsa bile onu gerçekleştirmek adına çalışmaktadır. Örneğin toplum önünde konuşurken heyecanlanacak mıyım diye korkmayın! çünkü heyecanlanacaksınız. Siz konunuza dönmeye çalışın, korkunuza değil konunuza odaklanın. Unutmayın ki beyninizde neyi en çok düşünürseniz hayatınızda onu çoğaltırsınız. Bu yüzden beynimizin ters çaba kuralı ile çalışmasını engellemek için korkularımızla değil, mutluluklarımızla yaşamalıyız.Yazar: Ramazan ZENGİNhttp://www.bilgiustam.com

http://www.biyologlar.com/beynin-ters-caba-kurali

Bitki Doku Kültürü

Bitki doku kültürü; aseptik şartlarda, yapay bir besin ortamında, bütün bir bitki, hücre (meristematik hücreler, süspansiyon veya kallus hücreleri), doku (çeşitli bitki kısımları=eksplant) veya organ (apikal meristem, kök vb.) gibi bitki kısımlarından yeni doku, bitki veya bitkisel ürünlerin (metabolitler gibi) üretilmesidir.Yeni çeşit geliştirmek ve mevcut çeşitlerde genetik varyabilite oluşturmak doku kültürünün temel amaçları arasında sayılabilir. Bu nedenle bitki doku kültürleri genetiksel iyileştirme çalışmalarında önemli bir rol oynamaktadır. Ayrıca kaybolmakta olan türlerin korunmasında ve çoğaltılması zor olan türlerin üretiminde, çeşitli doku kültürü yöntemleri rutin olarak uygulanmaktadır (Babaoğlu ve ark., 2001-Bitki Biyoteknolojisi Cilt I-Doku Kültürü ve Uygulamaları- Bölüm 1. Temel Laboratuvar Teknikleri). Bitki doku kültürü işlemlerinde ve genetik iyileştirmelerde kullanılan temel sistem bitki rejenerasyonu yani bitkinin hücre, doku ve organlarından klonlanmasıdır. Bitki rejenerasyonu, kültürü yapılan hücrelerin özellikleri itibariyle üç kısımda incelenebilir; 1) organize olmuş meristematik hücreleri ihtiva eden somatik dokulardan rejenerasyon, 2) meristematik olmayan somatik hücrelerden rejenerasyon ve 3) mayoz bölünme geçirmiş gametik hücrelerden rejenerasyon. Birinci tip rejenerasyonda uç ve yan meristemlerden bitkiler çoğaltılır. Buna meristem kültürü yoluyla klonal çoğaltım denilir. Elde edilen hücreler tamamen donör (verici) bitkiye benzerler. İkinci tip rejenerasyon; doğrudan bir bitki parçasının (eksplant denilir) kesilmiş yüzeylerindeki belirli somatik hücrelerin bir kısmının genellikle besin ortamına ilave edilen bitki büyüme düzenleyicilerinin (özellikle oksin ve sitokininler) etkisiyle bölünerek ve organize olarak, organları ve daha sonra da bitkiyi (direkt organogenesis) veya bir somatik hücrenin sürekli bölünerek embriyo ve daha sonra da tam bir bitkiyi oluşturması (direkt somatik embriyogenesis) şeklinde olabilir. Ayrıca her iki durum, belirli bir kallus, proto-kallus veya hücre süspansiyonu oluşumu devresinden sonra da ortaya çıkabilir (indirekt rejenerasyon). Ortaya çıkan bitkilerde bazı kalıtsal veya geçici varyasyonlar oluşabilir. Son olarak normal kromozom sayısının yarısını ihtiva eden hücrelerden de direkt veya dolaylı yollarla bitki rejenerasyonu olabilir. Bu durumda donör bitkinin kromozom sayısının yarısına sahip, genellikle steril olan haploid bitkiler elde edilebilir. Bu bitkicik, doku veya hücrelerde kromozom katlaması yoluyla fertil (dihaploid veya katlanmış haploid) bitkiler elde edilir. Bitki doku kültürlerinin bitki ıslahındaki uygulama alanları Türler arası melezlemelerden sonra embriyo kültürü: Zigot oluşumundan sonra ortaya çıkan (post-zigotik) uyuşmazlıklar in vivo melezlemelerde embriyo oluşumunu veya oluşan embriyoların yaşamalarını engellemektedir. Bu embriyolar özel besin ortamlarında doku kültürü ile geliştirilmekte ve yeni melez bitkiler elde edilebilmektedir. Bu tekniğe embriyo kurtarma tekniği denilmektedir (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 10). Haploid bitki üretiminde anter (polen) ve yumurtalık (ovül) kültürü: Özellikle kendine döllenen bitkilerde yapılan klasik bitki ıslahı melezlemeleri sonrası, hatların saflaştırılması (homozigotlaşması) uzun zaman almaktadır. Mayoz bölünme geçirmiş haploid sayıda kromozoma sahip hücrelerde (polen/mikrospor veya megaspor) veya bu hücreleri ihtiva eden bitki kısımlarının (anter veya yumurtalık) doku kültürü yoluyla elde edilen hücrelerinde veya rejenerantlarında yapılan kromozom katlanması sonucu %100 homozigot bitkiler elde edilebilmektedir. Bu tekniğe in vitro haploidi tekniği denir (Maheswari ve ark., 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 5). Somaklonal varyasyon: Kallus oluşturan veya totipotent olup yeni bitkiler meydana getirebilen hücreler uzun süreli kültürlerde veya kısa süreli de olsa yüksek bitki büyüme düzenleyicileri içeren ortamlarda bu yeteneklerini (kompotens) yitirebilmektedirler. Bu hücrelerden oluşan yeni bitkilerde gen veya kromozom bozuklukları sonucu kalıtsal ve fenotipik varyasyonlar (somaklonal varyasyon) ortaya çıkmaktadır. Bu varyasyonlar, yeni çeşit geliştirme ve iyileştirmelerde ıslahçılar tarafından kullanılmaktadır (Chrispeels ve Sadava, 1994). Somaklonal varyasyon sonucu ortaya çıkan değişiklikler arasında, bazı pigmentlerin yapısındaki farklılaşmalar sonucu çiçek renginin, yaprak ve çiçek morfolojisinin, tohum veriminin, bitki canlılığı ve iriliğinin, uçucu yağ kompozisyonu ve hastalıklara tolerans veya dayanıklılığın değişmesi sayılabilir (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 11). İn vitro seleksiyon: Tek hücre seviyesinde; tuz, herbisitler, patojenler vb. faktörlere karşı dayanıklılığa göre yapılan seleksiyonlar sonucu, bu hücrelerden elde edilen bitkilerde ilgili faktörlere dayanıklı veya toleranslı bitkiler ortaya çıkabilir. Bu tekniğe in vitro seleksiyon denilmektedir. İn vitro döllenme: Bazı durumlarda (özellikle dış ortama alıştırılamayan bitkilerden tohum almak için) doku kültürü ile elde edilen bitkiler laboratuvar şartlarında tozlaştırılmaktadır. Fakat bu uygulama çok sınırlı kalmıştır. İn vitro germplazm muhafazası: Totipotent hücrelerin in vitro kültürü, kallus veya süspansiyon hücreleri şeklinde uzun süreli olarak veya belirli aralıklarla yeniden oluşturularak saklanabilir ve ihtiyaç duyulduğunda bu hücrelerden yeni bitkiler oluşturulabilir. Alternatif olarak ilgili hücreler, meristemler veya elde edilen minyatür bitkiler düşük sıcaklıkta (4 0C), çok az besin maddesine ve alana ihtiyaç göstererek aseptik şartlarda saklanabilir (1-4 yıl). Benzer şekilde çok düşük sıcaklıklarda –196 0C), sıvı azot içinde doku ve hücreler hızlı bir şekilde dondurulup saklanabilirler. Bu doku kültürü teknikleri in vitro germplazm muhafazasında önemlidir ve gen ve tohum bankalarına alternatif oluşturmaktadır (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 9). Somatik hücre melezlemesi (protoplast füzyonu): Protoplast füzyonu ve somatik melezleme, pre-zigotik eşeysel uyuşmazlıklar nedeniyle, klasik melezleme ile elde edilemeyen hibritlerin elde edilmesinde kimyasal ve fiziksel metotlar kullanılarak uygulanan bir tekniktir. Elde edilen somatik melez hücreden (heterokaryon), kallus oluşumu ve bitki rejenerasyonu yoluyla yeni bitkilerin elde edilmesi sistemin en önemli ve en gerekli parçasıdır. Bu işlem genel anlamda genetik kopyalamadır ve bitkilerde yaklaşık 30 yıldan beri uygulanmakta olup en başarılı örneği tütün bitkisinde görülmüştür (Ochatt ve Power, 1992) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 4). Gen transferi: Doku kültürlerinin bitkileri iyileştirmede en önemli ve yaygın olarak kullanılan uygulamalarından birisi de, gen veya genlerin bitkilere aktarılmasıdır. Bunun için mutlaka tekrarlanabilir bir hücre-bitki rejenerasyonu (organogenesis ve somatik embriyogenesis) sistemine ihtiyaç vardır (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 2, 3 ve 4). Bitki doku kültürünün ticari ve ıslah dışı uygulamaları Hastalıksız bitki elde edilmesinde meristem kültürü: Tüm apikal meristem veya buradan alınan küçük embriyonik parçalar kültüre alınarak uygulanan tekniğe meristem kültürü denir. Çok az miktarlarda bitki büyüme düzenleyicileri ilave edildiğinde uç ve yan meristemlerden birçok yeni bitkicikler elde edilebilmektedir. Bu metotla elde edilen bitkiler her bakımdan birbirinin benzeridirler (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 6). Mikroçoğaltım: Organize meristemlerden, henüz olgunlaşmamış veya olgunlaşmasını tamamlamış somatik hücrelerden direkt (organogenesis veya somatik embriyogenesis) veya indirekt (kallus, protoplast vb.) yollarla bitkilerin çoğaltılması ve köklendirilmesi işlemine genel olarak mikroçoğaltım denilmektedir. ABD'de doku kültürünün ticari uygulaması 1970' de başlamış (orkidelerde ve süs bitkilerinde) ve bu yolla elde edilen ürünlerin pazar değeri bu gün yılda 15 milyar dolara ulaşmıştır. Daha az sürgün elde edilmesine rağmen uç ve yan meristemlerden kitle çoğaltım ticari olarak diğerlerinden daha fazla kullanılan bir metottur (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 8). Aşağıda bir videoda ticari doku kültürü üretim laboratuvarından görüntüler vardır. Benzer konularda diğer videolar da görülebilir. Tüm çalışmalar steril şartlarda laminar hava akışlı kabin içinde yapılmaktadır. Sentetik tohum üretimi (somatik embriyolar): Somatik embriyoların çeşitli metotlarla kaplanması sonucu sentetik (yapay) tohumlar elde edilmektedir. Sentetik tohumların, hibritlerin somatik çoğaltımında, erkısır ve ebeveyn hatların muhafazasında ve odunsu bitkilerin elit genotiplerinin elde tutulmasında kullanımı konusunda oldukça fazla çalışma yapılmaktadır. Sekonder metabolit üretimi (kallus-hücre süspansiyonları): İn vitro hücre kültürleri sekonder metabolit üretiminde de önemli bir kaynak olarak görülmektedir. Bitki sekonder metabolitleri, bitki büyüme ve gelişmesinde doğrudan kullanılmayan maddelerdir. Işık mikroskobu ile görülebilen sekonder metabolitlerin (tanenler, antosiyaninler, karetenoitler) yanında UV ışığı ile görülebilenleri (alkaloitler) de vardır. Son yıllarda sekonder metabolit üretimi için ot verimi yüksek, çok yıllık, geniş adaptasyon kabiliyetine sahip ve azotlu gübre kullanımı oldukça az olan yonca, alternatif bir bitki olarak gösterilmektedir. İlgili enzim alındıktan sonra yoncanın geriye kalan kısmı ot olarak kullanılabilir (Austin, 1997) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 7). Kimeralar: Doku kültüründe, özellikle süs bitkilerinde üzerinde önemle durulan konulardan birisi de kimeralardır. Kimerik bitkiler; farklı türlerin protoplastlarının karışık kültürü ve bitki rejenerasyonu, mutasyon uygulamaları sonucu bitki rejenerasyonu çalışmaları, apikal meristemle ilgili yapılan mikro-cerrahi çalışmaları ve gen transferi yapılması sırasında, bir bitkiyi oluşturan bütün hücrelerin ilgili gen veya genleri taşımaması durumlarında (özellikle partikül bombardımanı metodu ve apikal meristemler kullanıldığında) elde edilebilmektedir. Bitki doku kültürlerinin temel araştırmalardaki uygulamaları Doku kültürü, protoplast izolasyonu ve füzyonu, hücre, doku ve bitki beslenmesi, sitogenetik çalışmalar, morfogenesis çalışmaları ve biyolojik azot fiksasyonu gibi temel araştırmalarda da kullanılmaktadır. Bu tür araştırmalar genellikle sistem geliştirmede faydalı olmaktadır. Doku Kültüründe Temel Teknikler Doku kültürü işlemleri bir çok aşamadan oluşmaktadır. Bunlar: 1) Uygun bir laboratuvar düzeninin kurulması, 2) Kullanılacak bitki parçalarının (eksplant) ve besin ortamlarının seçimi, hazırlanması ve sterilizasyonu, 3) Kallus ve hücre süspansiyonlarının oluşturulması, 4) Kallus veya hücre süspansiyonlarından veya doğrudan somatik veya gametik hücrelerden bitki rejenerasyonunun uyarılması (organogenesis, somatik embriyogenesis veya meristem çoğaltımı yoluyla), 5) Oluşan sürgünlerin çoğaltılması ve boylarının uzatılması, somatik embriyoların olgunlaştırılması, 6) Uzayan sürgünlerin köklendirilmesi, 7) Köklenen bitkilerin dış ortama alıştırılması (aklimatizasyon). Bunlar arasında en önemlisi, uygun laboratuvar imkanlarının sağlanmasıdır. Doku Kültüründe en önemli konu steril işlemleri yapabilecek bazı temel alet ve ekipmanlara veya iyi bir laboratuvara sahip olmak gerekmektedir. Doku kültüründe en temel konular bitki parçaları ve kullanılacak alet ekipmanların iyice temizlenmesi (sterilizasyon), besin ortamlarının hazırlanması ve kültüre alınacak yerin belirlenmesidir.

http://www.biyologlar.com/bitki-doku-kulturu-3

Böceklerin İnsanlarla Olan İlişkileri

Dünya üzerinde yayilis alanlari çok genis olan böceklerin insanlarla olan iliskileri, faydalari ve zararlari nedeniyle insan tarihi kadar eskidir. Böceklerin çogu bitki ile beslendiklerinden yasam sekilleri bakimindan zararli olmaktadir. Insan hayvan ve bitkilere zarari inanilmayacak kadar çoktur. HOWARD' a göre "insanlar, ancak hastalik ve zararlilardan arta kalan mahsulü elde eder, fakat bunun bir kismini da gene onlara kaptirir. Dünyadaki mahsulün 1/3'ü böcekler tarafindan yokedilmektedir. Genel olarak ürün kaybina sebep olan çesitli faktörler ( iklim, iç hastaliklar, bakteriler, parazit mantarlar, zararli hayvanlar gibi) varsa da bunlar arasinda en önemli olani böceklerdir. Örnegin insanin yakindan tanidigi hamamböcekleri, yarim kanatlilar, güveler, karincalar, termitler, bitler, çekirgeler, pireler, tahta kurulari, sinekler gibi toplam l0 000 tür, tam anlamiyla bir sorun halindedir. Mesela bir çekirge sürüsü 2 milyon bireyden olusabilir ve ortalama agirligi 50 000 ton olabilir. Yine böceklerin çogalma gücü oldukça fazladir. Bir çekirge günde l 000, termit 15 000 yumurta birakabilir.

http://www.biyologlar.com/boceklerin-insanlarla-olan-iliskileri-1

Biyomalzeme: Vücutta Kullanılan Yapay Malzemeler

Biyomalzeme: Vücutta Kullanılan Yapay Malzemeler

Biyomalzeme; vücudun işleyişine yardımcı olmak üzere üretilen ve geliştirilen malzemelerdir. Yapısı itibariyle vücut ile sürekli temas halinde bulunmaktadır.Son zamanlarda özellikle tıp ve mühendislik alanında gelişmeler yaşanmaktadır.Bu gelişmelerden bir kısmı ise biyomalzeme alanında olmuştur. İnsan vücudundaki doku ya da organlar çeşitli sebeplerden dolayı işlevini yitirmesi sonucunda biyomazemelere ihtiyaç duyulmaktadır. Bu biyomalzemeler sayesinde insan yaşamı eskiye oranla daha kolaylaşmaktadır. Ortopedi alanında kullanılan protezler ve diş alanında kullanılan dolgular biyomalzeme olarak gösterilebilir.Biyomalzemelerin kullanımı eski çağlara kadar gitmektedir. Örneğin; eski zamanlarda altın ile hastaların dişleri kaplanıyordu. Bu uygulama ilk olarak eski Çin’de uygulanmıştır.Biyomalzeme türlerinden ilk metal protez 1938 yılında kullanılmıştır. Vitalyum içeren bu metal protez 1960 yılına kadar kullanılmıştır. Ancak sonrasında metal korozyona uğramaları sonucu insan vücudunda büyük tehlikelere yol açmıştır. Çünkü, vitalyum korozyona uğraması sonucu paslanmaktadır. Geliştirilen biyomalzemeleler ile 1950 li yıllarda kalp vanaları kullanılmaya başlanmıştır. 1960 Yılına gelindiğinde ise yapay kalça kemikleri kullanılmaya başlamıştır.1972 yılında ise alumina ve zirkonya seramikleri biyomalzeme olarak hastalarda kullanılmıştır. Ancak sonrasında vücut ile uyum sağlamadığı tespit edilmiştir. Bu yüzden yeni malzeme arayışı içine girilmiştir.Sonrasında kullanılan biyocam ve hidroksiapatit insanlar için daha yararlı olmuştur.Biyomalzeme kullanımı zaman geçtikçe artmıştır.Biyomalzeme vücutta yerine kullanılacağı organ ya da uzvun benze bur özelliklerine sahiptir. Bu şekilde işlevini kaybetmiş organ ya da uzuv gibi hareket etmektedir. Bir kemik yerine kullanılan protez, kemik ile benzer bir yapıya sahiptir. Kemik dokusu aslında karmaşık yapıya sahiptir. Bundan dolayı biyomalzemeler tam olarak gerçek organın işlevini yerine getiremez.Biyomalzemelerin Özellikleri Biyomalzemeler vücutta bulunan dokularla uyumlu bir yapıya sahiptir. Bu yapılarıyla vücuda zarar vermemektedir. Vücudumuz genellikle dışarıdan yapısına katılan yabancı unsurları kabul etmemektedir. Bu yüzden vücutta kullanılan malzemeler ilk başta tehtit olarak algılanmaktadır. İşte bu aşamada biyouyumluluk kavramı ortaya çıkmaktadır. Biyouyumluluk vücudumuzda kullanılan malzemelerin vücut tarafından yabancı tehdit kabul edilmemesidir. Yabancı kabul edilmeyen bu malzemeler vücut içinde uyumluluk sağlayarak işlevini yerine getirmektedir. Biyomalzemeler vücuda yerleştiğinde vücudun olağan reaksiyonları dışında bir çok reaksiyon daha meydana gelmektedir. Vücutta meydana gelebilecek başlıca reaksiyonlar; dokularımızdaki proteinler ile bioymalzeme arasındaki etkileşim, alyuvar sayısının artışı, tümör üretimi ve bağışıklık sistemindeki hareketlenme olarak gösterilebilir. Biyomalzemeler Ve Kullanım AlanlarıÖzellikle metal ve alaşımlar bir çok alanda biyomalzeme olarak kullanılmaktadır. Çünkü, mekanik ve kimyasal yapıları bu iş için uygundur. Metal ve alaşımlar; diş protezinde, kas iskelet sisteminde ve kalp kapakçıklarında sıklıkla kullanılmaktadır. Son zamanlarda biyomalzemelerde titanyum kullanım oranı artmıştır. Çünkü yapılan araştırmalarda titanyumun hafif olduğu, dokularla fazla reaksiyona girmediği ve vücuda karşı biyouyumluluğa sahip oluğu görülmüştür.Metalik biyomalzemelerde Nikel ve titanyum alaşıları kullanılmaktadır. Tıp da akıllı malzemeler olarak nitelendirilmektedir. Özellikle gözlük çerçeveleri, otomobil parçaları,diş telleri ve kap-damar hastalıklarında kullanılan malzemeler başlıca akıllı malzemelerdir. Akıllı malzemeler şekil bellekli alaşımlardır.Başka bir biyomalzeme türü ise biyosermiklerdir. İnsan vücudunda zarar görmüş ve işlevini yitirmiş olan uzvun yerine geçmektedirler. Günlük yaşamda diş tedavilerinde, kalça protezinde ve yüz kemiklerinde kullanılmaktadır. Kalsiyum eksikliğinde meydana gelen kemik erimesinde biyoseramiklere ihityaç duyulmaktadır. Ayrıca ileri yaşlarda meydana gelen kemik erimesi sonucunda da biyoseramiklere ihtiyaç duyulmaktadır.Biyomalzemelerin  Amaçlarını Maddeler Halinde Sayacak Olursak;- Vücutta hastalıklı ya da hasar görmüş organ ya da uzuvların yerine kullanılır.Örneğin; diyaliz ve protezler- Vücutta hasarlı organın fonksiyonelliğini arttırmak amacıyla kullanılır.Örneğin; lens, kalp pili, işitme cihazı ve benzeri- Kozmetik sıkıntıları gidermek amaçlı kullanılır.Örneğin; diş teli ve silikon yaptırma- Fonsiyon bozukluklarını gidermek amacıyla kullanılır. Örneğin ; omurgalardaki bozukluklar- Hasarlı bölgenin iyileşmesine yardımcı olur. Örneğin; Ameliyat iplikleri, cerrahi vida ve teller- Hastalığın teşhisine yardımcı olma amaçlı kullanılmaktadır. Örneğin; endoskopi makinesi ve enkektörBiyomalzemelerin yazdıklarımız dışında bir çok kullanım amacı bulunmaktadır.Sonuç olarak; Bilim adamlarının görevi insanlığa faydalı olmaktır. Bilim adamları çalışmalarında görevini yerine getiremeyen dokuları incelemişlerdir. Bunun sonucunda bir çok biyomalzeme türü ortaya çıkmıştır.Biyomalzeme alanındaki çalışmalar son hızıyla devam etmektedir.http://www.bilgiustam.com

http://www.biyologlar.com/biyomalzeme-vucutta-kullanilan-yapay-malzemeler

Laparoskopi Ne Zaman Yapılır?

Aslında Laparoskopi genel cerrahide ve diğer bazı cerrahi branşlarda da kullanılmasına karşın burada verilecek olan bilgiler Kadın Hastalıklarını ilgilendirmektedir. Laparoskopi, jinekolojide, pek çok farklı amaçla yapılabilir. Hatta denilebilir ki kanser ameliyatları da dahil olmak üzere her türlü jinekolojik cerrahi girişimi yapma olanağı vardır. En sık olarak,jinekologlar tarafından gebe kalmada güçlük çeken infertil hastaların takip ve tedavileri esnasında gebe kalmalarına engel olacak bir problemin var olup olmadığını araştırmak amacıyla yapılır. Örneğin, karın içersinde oluşan ve kadının tüplerinin fonksiyon görmesine engel olan yapışıklıklar, önceki bir ameliyattan, geçirilmiş bir iltihabi hastalıktan veya endometriozis hastalığından kaynaklanmış olabilir. Yapışıklıklar, tüp-yumurtalık ilişkisini, tüpün rahat hareket ederek atılan yumurtayı yakalamasını engeller. Bu nedenle de tedavi edilmelidir. Bunun dışında karın içersinde yer aldığı düşünülen kist, myom, dış gebelik gibi değişik problemlerin kesin tanısında ve de tedavisinde rahatlıkla kullanılmaktadır. Yine ailesini tamamlamış ve başka gebelik arzulamayan bayanlarda tüplerin (kanalların) bağlanması amacıyla da sıklıkla uygulanmaktadır. Laparoskopi, genel anestezi altında ve ameliyathanede yapılır. Kullanılan aletler ise bu amaç için özel olarak hazırlanmış cihazlardır. Laparoskopik işlemlerin en büyük faydalarından birisi operasyon sonrası günlük yaşama kısa sürede dönebilmektir. Hasta genellikle aynı güntaburcu olur. Açık ameliyata kıyasla çok daha kısa sürede iyileşme, daha az ağrı ve daha az enfeksiyon (iltihaplanma) riski gibi avantajları vardır.

http://www.biyologlar.com/laparoskopi-ne-zaman-yapilir

NÜKLEER SANTRALLERİN ÖNEMİ,YARARLARI ve ZARARLARI

1)Santral Türleri Bir ülke Elektrik enerjisini hemen hemen her alanda kullanır.Bu elektrik enerjisini santrallerden sağlanır.Santraller üç gruba ayrılır. a)Hidroelektrik santralleri b)Termik santraller c)Nükleer santraller Hidroelektrik santrallerde Suyun potansiyel enerjisinden, termik santrallerde yakacaklar yakılmasından ve nükleeer santrallerde Atomun çekirdeğinin parçalanmasından açığa çıkan enerji kullanılılır. 2)Nükleer Santrallerde Enerji Üretimi Nükleer santralde enerji,istasyonun merkezindeki reaktörün içinde üretilen ısıyla sağlanır.Bu ısı,uranyum Atomunun zincirleme reaksiyonu sonucu elde edilir.Bu reaksiyon kontrollü bir şekilde yapılır.Nötronların sürati önce modülatörden geçirilerek yavaşlatılır ve böylece diğer çekirdekleri parçalamaları kolaylaştırır.Reaktörde açığa çıkan nötronlar emme yeteneği olan kontrol çubukları vardır.Buradan nötronları bırakarak veya çekerek reaksiyonlar kontrol Altına alınır.Bölünen uranyumatomları ısı verir. Kaynak: www.diyadinnet.com Çubuklardan çıkan bu ısı reaktörün çevresini saran Gaz tabakası tarafından emilir.Isınan gaz,ısı değiştiricisi de denilen ısı eşanjörüne alınır.Bunlara ısı değiştiricisi de denmesinin nedeni,gazda bulunan ısıyı ufak boruların içindeki suya vermeleridir.Isı eşanjörünün üstündeki su,aşırı ısınma sonucu buharlaştırılır.Bu şekilde oluşturulan buhar sadece yüksek bir ısıya değil,aynı zamanda yüksek bir Basınca da sahiptir.Bu yüksek Basınç ve Sıcak buhar kalın borular aracılığıyla türbinlere yollanıTürbin içinde bulunan pervane basınlı Gazla döner,türbin jeneratöre bağlıdır ve süratle dönünce enerji üretir.Oluşan buhar yeniden ısı haline gelir,su yine buharlaşır. Uranyum sadece Su üretmez,radyasyon da üretir ve radyasyon insan sağlığı için son derece zararlı ve tehlikelidir.Bu nedenle reaktör içindeki reakasiyonu dışarıya çıkaramayacak şekilde çelik ve çok kalın betonla örtülüdür.Kontrol odasında herşey büyük bir dikkatle monitörden izlenir.Burada çalışanlar oluşan elektrik enerjisinin büyük bir kentin enerji ihtiyacını karşılayacak kadar olmasını sürekli bir şekilde denetler. Atıkların Korunması ve Saklanması Sonunda reaktörün içinde yeterli ısıyı üretecek enerji kalmaz. Uranyum atomlarındaki enerji tükenmiştir.Bu çubuklar son derece sıcak hem de taşıdıkları radyasyon nedeniyle tehlikelidir. Bu nedenle özel,kalın muhafazalı yöntemlerle alınırlar. Uranyum çubukları soğuyuncaya,radyasyon normal seviyeye gelinceye kadar suyun altında muhafaza edilirler.Zamanı gelince de bunlar kalın muhafazalar içinde dikkatle analizlerinin yapılacağı istasyonlara nakledilirler.Burada yapılan analizler sonucu radyasyon seviyesi yüksek olanlar ayrılır. Radyasyonu normal düzeye inen katı cisimler toprağa gömü- lürken,sıvı denize verilir.Radyasyonu yüksek olanlar,bu amaçla yapılmış özel binalara alınır.Reaktörümüzde uranyum atomlarının bölünmesiyle elektrik üretmeye daha yıllarca devam eder. 1kg uranyumun vereceği enerjiyi ancak 25ton kömürün yanmasıyla elde edilir.Uranyum çok daha fazla enerji üretebilir ama işlem sırasında sadece %1'i kullanılır. Bugün İngiltere'nin elektrik enerjisinin %20'sini ve gelecekte daha çok bu enerjiyi karşılayacak olan uranyum sağlar. Nükleer Santrallerin Önemi ve Zararları Nükleer santrallerde Atom çekirdekleri parçalanarak enerji sağlanır.Atomun çıkardığ ısı enerjisi yüksektir,ama çıkardığı radyasyon ancak özel binalarda veya kurşun mezarlarda saklanır ve uzun yıllar radyasyon yayar. 1970'li yıllarda yaşanan petrol darboğazında Nükleer enerjiyle kurtulunmuş ama saklanması da çok pahalı olduğundan talep azalmıştır. Ayrıca santraldeki ufak bir sızıntı milyonlarca Canlının radyasyona maruz kalmasına sebep olacaktır.Örneğin;1986 yılında Rusya'da Çernobil Nükleet Santrali'ndeki sızıntıdan 3milyon insan radyasyona maruz kalmış,radyasyon,Karadeniz kıyılarına kadar ulaşmıştır. Türkiye'de de 1976'dan beri Akkuyu'da nükller santral kurulması gündeme gelmiştir ama çevre örgütlerinin baskılarıyla ertelenmiştir.Ayrıca 25km açığından geçen Ecemiş Fayı'da burayı tehdit etmektedir. ATOM ENERJİSİ İLE İLGİLİ KURULUŞLAR 1)Atom Enerjisi Ajansı(Uluslararası) Birleşmiş Milletlerin koruyuculuğu altında,özerk eğilimde hükümetler arası örgüt.957'de kuruldu,merkezi Viyana'dadır. Genel amacı,atom enerjisinin tüm dünyada barışa,sağlığa ve refaha katkılarını çabuklaştırmak ve arttırmaktır.5 Mart 1970'te yürürlüğe giren nükleer silahların yayılmasının önlenmesi Antlaşması ajansı,atom ve enerjisinin barışçı amaçlarla kullanılmasının nükleer silah üretimine yol açmaması için çalışmalar yapmakla görevlendirilmiştir.IAEA 110 üye devleti biraraya getirir.Türkiye, 14 Haziran 1957 tarihi ve 7015 yasa uyarınca ajansa üyedir. 2)Atom Enerjisi Kurumu(Türkiye) Türkiye'de,atom enerjisinin kalkınma planlarına uygun olarak,barışçı amaçlarla ve ülke yararına kullanılmasını sağlamak;temel ilke ve politikalar belirleyip önermek; bilimsel teknik ve idari çalışmalar yapmak, düzenlemek, desteklemek,kordine etmek ve denetlemek üzere yasayla kurulmuş bir kamu tüzel kişidir. 6821 sayılı yasayla 956'da kurulan Atom Enerjisi Komisyonu'nun yeniden örgütlenmesine ilişkin 2680 sayılı yasa uyarınca 1982'de faaliyete geçen Atom Enerjisi Kurumu(kısa adıTAEK)Atom Enerjisi Komisyonu,Danışma Kurulu,İhtisas Daireleri ve bağlı kuruluşlardan oluşur.TAEK başkanı,konusunda bilgi ve uzmanlık sahibi kişiler arasından başbakan tarafından seçilir ve ortak kararname ile atanır.Atom Enerjisi Komisyonu,TAEK başkanının başkanlığında Başkan yardımcıları,Milli savunma,dışişleri enerji ve tabi kaynaklar bakanlıklarından birer üye ile nükleer alanda eğitim,öğretim ve araştırma yapan dört öğretim üyesinden;Dannışma Kurulu da nükleer alanda çalışan öğreten üyeleri ile öteki ilgili kamu kurum ve kuruluşlarındaki uzmanlar arasından,Atom enerjisikomisyonu'nun önerisi ve başbakanın onayı ile görevlendirilen kişilerden oluşur.Kurumun başlıca ihtisas daireleri;Nükleer güvenlik dairesi;Radyasyon sağlığı ve güvenliği dairesi; Araştırma-geliştirme-koordinasyon dairesi ve Teknoloji dairesi'dir.Kurum,ayrıca nükleer alanda çalışmalar yapmak üzere,araştırma ve eğitim merkezleri,laboratuvarlar,deneme merkezleri ve güç üretimine dönük olmayan pilot tesisler gibi bağlı kuruluşlar oluşturulabilir.Halen kuruma bağlı olarak çalışan dört kuruluş bulunmaktadır: 1962'de İstanbul'da kurulan Çekmece nükleer araştırma ve eğitim merkezi, 1966'da Ankara'da çalışmaya başlayan Ankara nükleer araştırma ve eğitim merkezi,1981'de kurulanAnkara-Lalahan veteriner hekimlik hayvancılık nükleer araştırma enstitüsü,1986'da Karadeniz Üniversitesi'nde kurulan ve 1987 yılında çalışmaya başlayan Deniz ve çevre radyobiyolojisi araştırma enstitüsüdür. 3)Nükleer Bilimler Enstitüsü Ankara'da Hacettepe Ünüversitesi'ne bağlı olarak nükleer bilimler alanında lisansüstü eğitim ve araştırma yapan yükseköğretim kurumudur.1982'de kurulan enstitü, Türkiye'de nükleer teknoloji'nin kurulup geliştirilmesi için gerekli bilimadamlarını yetiştirmeyi amaçlar;nükleer reaktör tasarımı ile ilgili çeşitli düzeylerde araştırmalar yapar.Çalışmalar arasında nötronik alanındaki ve termikleşme hesapları ile ilgili kurumsal ve sayısal araştırmaların yanında,deneysel araştırmalar da yer alır;nötron etkinleştirme konusundaki çalışmalar sürdürülmektedir. 4)Nükleer Enerji Ajansı Ekonomik işbirliği ve kalkınma teşkilatı üyesi Avrupa ülkeleriyle Avust-ralya,ABD,Kanada ve Japonya'nın üyesi olduğu kuruluştur.Avrupa toplulukları komisyonudur. Nükleer enerji ajansı'nın çalışmalarına katılır.Kuruluşun merkezi Paris'tedir.Amacı,nükleer enerjinin barışçı amaçlarla kullanılmasını uyumlu bir biçimde geliştirmektedir. Öteki ululararası kuruluşlarla ve özellikle de Uluslararası atom enerjisi ajansı ile işbirliği yapar.

http://www.biyologlar.com/nukleer-santrallerin-onemiyararlari-ve-zararlari

Yayınım - Difüzyon ve Geçişme - Osmoz

Yayınım olayında ise olayın başladığı ve bittiği veya dengeye vardığında atom ve moleküller arası ilişkileri farklıllık gösterir. Uçucu maddelerin sıvı veya katı formdan gaz faza geçerek yayınması ve suyun buharlaşması buhar basıncı farkı sonucunda başlayıp yürüyen bir yayınım olayıdır ve DH = 0 olduğunda net, gözlenebilir, ölçülebilir yayınım durur. İki kapalı kap arasında yayınımı sağlayacak bir açıklık oluştuğunda gazların bağıl basınç oranları, yani herbirinin özgül toplam enerjileri arasındaki farka göre değişen şekillerde yayınım gösterirler. Kısmi, oransal gaz basıncı ile difüzyon basıncının doğrusal ilişkisi nedeniyle bir karışımda yer alan maddelerin yayınım oranları değişir. Ayrıca her birinin sıcaklık ve karşı basınç değişimlerine tepkileri de farklılık gösterir. Tüm bu farklılıkların temel nedeni atom ve moleküler yapılarının, ağırlıklarının yani özelliklerinin farkından doğan termik hareketlilik ve serbest enerji farklılığıdır. Bu da maddeye has bir özellik olduğundan yayınım - difüzyon sabitesi adını alır. Difüzyon hızı geçişi sağlayan açıklığın veya seçiciliği olmayan membranın alanı, yayınım konusu maddenin iki taraftaki derişim farkı ve yayınım sabitesine bağlıdır. Yayınımın da itici gücü ısıl hareketlilik olduğundan sıcaklık artışı ile hızı artar, daha kısa sürede dengeye ulaşır, fakat denge noktası sıcaklıktan bağımsızdır. Difüzyonu başlatan ve yürüten derişim farkı olduğundan yayınıma konu iki taraf arasındaki uzaklık artışı olayın yürüme hızını global olarak azaltır. Çünkü yayınım moleküler düzeyde derişim farkı dilimleri halinde yürür. Bu nedenle de hücre ve organel düzeyindeki hızı çok yüksektir. Üç gaz formundaki besin olan su buharı, O2 ve CO2 için 20 derece sıcaklıkta ölçülen yayınım sabiteleri saniyede yayınım alanı olarak sırası ile 0.25, 0.20 ve 0.16 cm2 dir, yani katıların sıvı ortamdaki yayınım sabitelerinden ortalama 10(4) kat fazladır. Bunun da nedeni gaz ortamında çok daha seyrek olan moleküllerin ısıl hareketle çarpışma nedeniyle zaman ve enerji kaybının çok daha az oluşudur. Bu tabloya karşın fotosentez hızının ışık ve sıcaklık tarafından sınırlanmadığı durumlarda karbon dioksidin kloroplastlara kadar yayınımı için geçen sürenin sınırlayıcı olduğu belirlenmiştir. Aynı şekilde terleme hızının hücre çeperlerinden su buharı yayınım hızı tarafından sınırlandığı ve bu şekilde de bitkilerin stomalarından gereksiz su kaybını önleyen bir mekanizma olarak yarar sağladığı saptanmıştır. Elektrostatik yüklü maddeler ile kolloidal maddelerin çözeltiler arasında yayınımları gazların ve gazlarla aynı davranışı gösteren yüksüz maddelerinkinden farklıdır. Çünkü hareketlilikleri zıt yüklü tanecikler arasındaki çekim kuvvetlerinin rastlantısal olarak değişen etki düzeyine bağlı olarak değişir. Canlılarda ise çözeltide serbest olarak bulunan ve yapısal, sabit durumda yüklü moleküller söz konusudur. Bu karmaşık ilişkiler de bitkilerde yayınım olayının orta lamel ve hücre çeperlerinin elektrostatik yapılarına bağlı değişimler göstermesine neden olur. Bu ilişkiler hücre veya doku düzeyinde hücre çeperlerinin permeabilitesi - geçirgenliği ölçülebilir terimiyle belirtilir. Yüklü madde yayınımı yük durumları ile sabit ve hareketli olan maddelerin yük durumu arasındaki denge nedeniyle miktar ve hız açısından belli bir seçicilikle karşılaşmış olur. Geçişme - Osmoz difüzyonun özel bir halidir. Yarıgeçirgen, seçici zar yanlızca çözgeni veya çözgenle birlikte çözeltideki bazı çözünmüş maddeleri geçirirken bazılarını geçirmemesinin sonucudur. Osmoza giren her bir madde kendi termodinamik sistemindeki entropiyi en üst düzeye çıkartacak şekilde hareket ettiğinden, membrandan geçemeyen molekülün yoğun olduğu tarafta geçebilen maddelerin derişimi artar. Bu birikme sonucunda toplam madde artışı ve sonucunda da membranın o yanında hacım artışı olur. Hücreler arası madde aktarımında da bu şekilde özsuda çözünmüş ve membrandan geçemeyen madde derişimi artışı çözgen olan suyun oransal derişiminin azalmasına neden olduğundan su alınmasına neden olur. Sonuç olarak kütle akışı ve difüzyonda maddelerin akışı birbirinden bağımsız başlar ve yürürken osmozda maddelerin bağıl oranı etkilidir. Canlı hücre membranı suya karşı geçirgen özellikte ve özsuda çözünmüş madde miktarı yüksek olduğunda su alımı kendiliğinden yürür. Canlılar bu mekanizma sayesinde su alımını ortamda su bulunduğu sürece garanti altına almış olur. Gözlenen hücreler ve organeller gibi canlı yapılarda net su alımının hücrenin çeperi, komşu hücrelerin veya dıştaki sıvı ortamın hücre üzerindeki karşı basıncının etkisi ile dengeye vardığında duruşudur, bu sayede yapının şişerek patlaması engellenmiş olur. Bu basınca da geçişme - osmoz basıncı, osmotik basınç denir. Çünkü büyüklüğü osmotik alımla sağlanan çözünmüş madde miktarı ile doğrudan ilişkilidir. Sonucu olarak da bir hücrenin hacminde değişime neden olan etkin osmotik basınç farkı yarı - geçirgenlik ve seçicilik sayesinde yayınımla sağlanabilecek olan madde hareketi miktarından çok daha yüksek olur. Temeldeki denge ise aynı türden iyonların membranın iki yüzü arasındaki kimyasal potansiyel farkının sıfır olmasıdır ve hidrostatik basınç farkının bu dengeye katkısı ihmal edilebilecek kadar küçüktür. Ana değişken ise membranın iki yüzü arasındaki elektriksel potansiyel farkıdır ve küçük bir orandaki değişimi bile çok daha büyük orandaki kimyasal potansiyel farkını, yani derişim farkını dengeleyebilir. Gene bu mekanizma canlı hücreye membrandaki iyonik madde kompozisyonunu düzenleyerek kolayca iyon alımı olayını denetleme olanağı verir. 20. yüzyılın başlarında Nernst başta olmak üzere araştırıcılar tarafından kuramsal temelleri atılarak asrın ortalarında kesinleşen bu bulgular 1967 yılında Vorobie tarafından Chara tatlısu alginin K iyonu alımı üzerindeki deneylerle kanıtlanmıştır. Hücre çeperi gibi hücrenin denetimi dışında kalan ve kütle akışı ile difüzyonun geçerli olduğu kısım için kullanılan terimlerden biri belirgin serbest alan (BSA) - “apparent free space”dir. Su alımı için iç osmotik basıncın dış ortamdan yüksek, hücre özsuyunun hipertonik olması gerekir. Yani toplam çözünmüş madde derişimi daha yüksek olmalıdır. Bu durumda herbir maddenin difüzyon basıncı farklı olacağından su moleküllerini geçiren zardan su kendi kinetik difüzyon dengesini sağlayıncaya kadar geçiş yapar. Hipertonik hücre turgor halindedir, sitoplazma çepere yapışık durumdadır. Çünkü osmotik basınç artışı çeperin karşı yöndeki basıncı ile dengelenmiştir. Hücre özsuyunun izotonik osmotik basınca sahip olması halinde bir kısım suyunu kaybeder ve sitoplazmanın çeperden ayrılmaya başladığı görülür. Bu duruma sınır plazmoliz adı verilir ve izotonik osmotik basıncın ölçümünde kullanılır. Hücrenin iç osmotik basıncının dış basınçtan daha düşük olduğu hipertonisite durumunda sitoplazma çeperden ayrılarak ortaya toplanmaya başlar, hücre plazmolize olur. Hücrede plazmoliz ilerledikçe klasik deyimi ile emme kuvveti artar, daha yeni terminolojideki karşılıkları ile difüzyon basıncı eksikliği -“diffusion pressure deficit” - DPD” (DBE), su potansiyeli artar. Bunun da nedeni serbest haldeki suyun serbest enerjisinin adsorpsiyon veya adezyon, kohezyon ile tutulmuş olan sudan az oluşudur. Hücrenin yeniden turgor haline geçme, deplazmolize olma, yani plazmoliz durumundan kurtulma eğiliminin sonucudur. Tam turgor halindeki hücrede ise iç ve dış basınçlar eşit olduğundan su potansiyeli, yani net su alımı sıfır olur. Burada devreye doğal olarak hücre çeperinin elastiklik derecesi de girer. Bu nedenle ve henüz alöronlar gibi susuz bir hacim oluşturan yapılar olmadığından hacme oranla su miktarı meristematik dokularda yüksektir. Plazmoliz sırasında protoplazmanın tümüyle küçüldüğü, büzüldüğü deplazmolizde ise şiştiği görülür. Hücre özsuyunda serbest çözücü durumundaki suyun kaybından sonra sitoplazmik proteinlerin hidratasyon kaybı - dehidratasyonu sitoplazma hacminin değişmesine neden olur. Difüzyon basıncı eksikliğinin en yüksek olduğu tohumlar, dehidrate likenler gibi yapılarda su alımı ile deplazmoliz sertleşmiş alçıyı parçalayabilecek oranda hidratasyona ve deplazmolize neden olur. Hidratasyon termik hareketliliğin ve entropinin artışına neden olarak yapısal protein, sellüloz gibi moleküllerin zincirlerininin gevşemesine ve daha kolay bozunur hale gelmesine neden olur. Bu yüzden bir süre ıslatılmış olan bakliyat daha kolay pişer. Hücreler arasında su alışverişinin debisi bu çerçevede çeper ve membranların geçirgenliği ile DBE farkına bağlıdır. Fakat izotonik çözeltiler arasında bile plazma membranları madde alışverişini sağlar. Su içinde yaşayan bitkilerde süreklilik gösteren bu durumda madde alışverişini sağlayan kütle akımı ve özellikle de elektroosmozdur. Elektroosmoz bir iyon iletimi mekanizması ise de polarite nedeniyle hidrate olan iyonların yani kinetik taneciklerin çevrelerindeki su moleküllerini sürüklemesi sayesinde suyun da taşınmasını sağlar. Kinetik tanecikler iyonlar ile onları çeviren dipol su moleküllerinden oluşan, yani birarada termik hareketliliği olan tanecikler olup toplam kütlelerinin daha yüksek oluşu ve elektrostatik bağların zayıf oluşu nedeniyle termik hareketlilikleri yüksek taneciklerdir. Membranlardaki porlar boyunca yaratılan elektrik alanları, yani endotermik olarak belli bir yönde kutuplandırılan polar molekül dizilişleri üzerinden kayarak iyonik maddelerin taşınması gerçekleştirilir. Bu konu mineral madde beslenmesi içinde ele alınacaktır. Su moleküllerinin iyonlara kendiliğinden yapışarak kinetik tanecikler halinde iletilmesi iyon kaynağı durumundaki hücrede serbest su derişimini azalttığından DBE artar. Bu tür enerji gerektiren iyon ve su beslenmesine aktif madde alımı adı verilir. Örneğin tuzcul bitkiler, halofitler osmotik basıncı yüksek tuzlu topraklarda dahi beslenmelerini sağlarlar. Kserofitler çok kurak koşullarda kuru topraklardan su alabilirler. Aktif iyon alımı yaygın görülen bir olaydır, buna karşılık aktif su alımı özel durumlarda görülür. Bu nedenle aktif iyon alımı bitki yaşamında daha önemli yer tutar.

http://www.biyologlar.com/yayinim-difuzyon-ve-gecisme-osmoz-2


Hızda görelilik

Galilei'ye göre sabit hızla giden bir gözlemci veya sabit duran gözlemci aynı fiziksel yasaları kullanmalıdır. Örneğin sabit hızla giden bir gemide yukarı doğru bir taş atarsanız aynı yere düşecektir - sabit durduğunuzda olduğu gibi. Bu anlayış Newton fiziğinde formülasyona dökülmüştür. Sabit hızla giden bir cisim veya sabit duran bir cisim için geçerli olan Newton denklemlerinin şekli aynıdır. Burada şunu belirtmekte fayda var. Sabit hızla giden bir cisim gözlemciye göre tanımlanmaktadır. Eğer bir cisimle beraber aynı sabit hızla gidiyorsanız sizin için cisim hareketsiz görünecektir. Fakat dışarıdan bakan bir gözlemci için cisim hareketli kabul edilir. Görelilik kelimesi burada ortaya çıkmaktadır. Bizim gözlemlediğimiz hızlar mutlak değildir. Ancak gözlemciye göre tanımlanmaktadır. Ama gözlemlenen olay için geçerli olan yasaların şekli aynıdır. Sabit hızla giden (ivmelenmeyen) referans sistemlerine eylemsiz referans sistemi denir. Bu kavramın özel görelilik kuramında çok önemli bir yeri vardır. Özel görelilik kuramına göre hiç bir eylemsiz referans sisteminin bir diğerine bir üstünlüğü yoktur ve hepsinde yapılan gözlemler aynı derecede geçerlidir. Düzgün-doğrusal hareketli cisimlerin elektrodinamiğinde Einstein şunları keşfetmişti: Bizler 3 uzay ve 1 zaman boyutunun meydana getirdiği, 4 boyutlu uzay-zaman evreninde yaşıyoruz. Zaman boyutu ve akışı, hareketli cisimlerin hızına bağlıdır. Kütle, hareketli cisimlerin hızına bağlıdır. Cismin hareket doğrultusundaki boyu, cismin hızına bağlıdır. 4 boyutlu evrende "aynı anda olma" kavramı da mutlak değildir, görelidir, yani aynı andalık gözlemciden gözlemciye değişir. Farklı hızda hareket eden cisimlerin uzay-zaman referansları birbirinden farklıdır. Işık hızı evrendeki üst hız limitidir. Özel görelilik kuramının gücü ve sağlamlığının en önemli nedeni,sadece iki kabullenim (postulate)üzerine inşa edilmiş olmasıdır. Bu kabullenimler: Fizik yasaları evrenin her yerinde ve bütün eylemsiz referans sistemlerinde aynı şekilde işler.(Bu kabüllenim evrensel bir referans sitemin yokluğundan kaynaklanmaktadır.Eğer fizik yasaları birbirine göre bağıl harekette bulunan farklı gözlemcilere göre farklı olsalardı ;gözlemciler,bu farklılıkları kullanarak uzayda hangisinin "durgun",hangisinin "hareketli" olduklarını bulabilirlerdi.Fakat böyle bir farklılık yoktur ve görelilik ilkesi bu gerçeğin ifadesidir.) Işığın hızı, bütün eylemsiz referans sistemlerinde aynı ve sabittir. Kuramın temel aldığı bu iki kabullenimden biri çürütülemediği sürece kuram doğruluğunu koruyacaktır.

http://www.biyologlar.com/hizda-gorelilik

IŞIK SOLUNUMU (FOTORESPİRASYON)

Kloroplastlarda CO2 RuBP karboksilaz enzimi katalizörlüğünde RuBP tarafından yakalanarak PGA oluşturulup C3 yoluna katılır. Ancak O2 yokluğunun çok fazla olması durumunda aynı enzim RuBP ile O2’in birleşmesini sağlar. Bu durumda enzime RuBP oksijenaz denir. Esasen RuBP oksijenaz ve karboksilaz aynı enzim olup Rubisko olarak adlandırılır. Böylece 1 molekül fosfoglikolik asit (P-glikolat) ile 1 molekül PGA meydana gelir. Glikolik asit, peroksizomlarda taşınır. Burada glikolik asit ile O2, glikolat oksidaz enzimi katalizörlüğünde birleştirilerek glioksilik asit oluşturulur. Dolayısıyla fotorespirasyona glikolik asit yolu da denir. Bu esnada oluşan hidrojenperoksit (H2O2) zehirli bir madde olduğundan peroksizomlarda katalaz enzimiyle suya parçalanır. Daha sonra da glioksilattan glisin ve serin gibi amino asitler sentezlenir ve CO2’in bir kısmı serbest bırakılır. Bu olay ışıkta meydana geldiği ve olayda O2 kullanıldığı için ışık solunumu denilmiştir. Burda amaç ATP sentezlemek olmadığından, bu gerçek bir solunum değildir. Işıklandırılmış bir yaprakta fotosentezin aleyhine çalışan bir olaydır. Bu olayın fotosentezin verimini yarı yarıya azalttığı tesbit edilmiştir. Ancak bu sırada bazı aminoasitlerin sentezlenmeside bir avantajdır. Bütün bitkiler ışık solunumu yapmazlar. C3 bitkilerinin tümü ışık solunumu yaparken C4 bitkileri ya hiç yapmazlar veya çok az yaparlar. Çünkü C4 bitkilerinde glikolat oksidaz enzimi ya hiç yok veya çok azdır. Bu da C4 bitkilerinde fotosentez veriminin yüksek olmasının bir diğer sebebidir. Işık solunumu sırasıyla kloroplast, peroksizom ve mitokondride gerçekleşir. Serin amino asitten gliserat ve PGA oluşarak C3 yoluna entegrasyon oluyorsa fotosentezin aleyhine bir durum meydana gelmez. Ancak bitkinin amino asitlere ihtiyacı varsa amino asitler sentezlenecektir ve C3 yolu ile entegrasyon geçişi olarak kalkacaktır. KEMOSENTEZ Ototrof yaşayan sadece yeşil bitkiler değiller bazı bakterilerde ototrofturlar. Ancak bu bakteriler ışığı kullanarak değil kimyasal maddeleri okside ederek açığa çıkardıkları enerji kullanılarak CO2’di karbonhidratlara indirgerler. Bu olaya kemosentez adı verilir. Kemosentez bakterileri bu yaşam biçimleriyle doğada madde döngüsüne katkı sağlarlar. Bir çok toksik maddeyi etkisiz hale getirirler ve erimeyen bazı maddeleri eriterek kullanılır hale koyarlar. Başlıca kemosentez tipleri: Azot oksidasyonu : Toprakta bitki ve hayvan kalıntılarından oluşan NH (amonyak) Nitrosomans cinsi bakteriler tarafından nitrite (NO) çevrilir. Bu reaksiyonda açığa çıkan enerji nitrosomanslarca kemosentezde kullanılır. Ortaya çıkan HNO’lerde diğer bir bakteri grubu olan Nitrobakteriler tarafından nitrata dönüştürülürler ve bitkilere azot sağlamış olurlar. Kükürt oksidasyonu : Beggiatoa, Thiospirillum gibi kükürt bakterileri HS ve S okside ederek enerji sağlarlar ve kemosentez yaparlar. Demir oksidasyonu: Leptotrhrix, spirophyllum gibi bakterileri iki değerli demiri (Fe)üç değerli demire (Fe) demire okside ederek kemosentez yaparlar(PAS). Kemosentezde KH sentezinin nasıl seyrettiği pek bilinmemektedir. SOLUNUM Tüm canlı hücrelerin yapmak zorunda olduğu bir yıkım olayıdır. Amaç hücrenin kendine yetecek enerjiyi temin etme isteğidir. Bu enerji bilindiği gibi sentez ürünlerinde ki kimyasal bağlarda saklıdır. Karbonhidratlar, yağlar ve proteinler başlangıçta güneşten aldıkları enerjiyi solunum reaksiyonlarıyla ATP olarak dışarı vererek canlıların metabolik, büyüme, gelişme, vücut ısısı ayarlama ve eylemlerini gerçekleştirme gibi aktivitelerde kullanmalarında olanak sağlar . Temel organik maddelerin solunum reaksiyonları yolunda parçalanıp kimyasal bağ enerjilerini ATP’ ye dönüştürmeleri için öncelikle yapı taşlarına ayrışmaları gerekmektedir. Örneğin; Nişatanın → glikoza yağ moleküllerinin → yağ asitleri ve gliserol’a proteinlerin → amino asitler’e hidroliz olmaları ve hücrelere kadar taşınmaları şarttır. Solunum sistemli bir yanma olayıdır. Organik moleküller, başta şeker olmak üzere hücrelerde kademe kademe yıkılarak, karbon iskeletlerindeki bağlardan çıkan enerji mitokondri kristalarında yerleşmiş ETS (Elektron Taşıma Sistemi) vasıtasıyla ATP’ye dönüştürülür. Buna oksidatif fosforilasyon yada biyolojik yanma denir. Petrol, odun, kömür gibi fosil yolla organik yakacakların yanması durumunda ise C iskeletlerdeki bağlardan hızla salınan enerjide ısı, ışık olarak etrafa yayılır. Bu bir kimyasal yanmadır. Solunumdaki yanmadan farklıdır. Solunumda esas amaç enerji temini yani ATP üretimi olsada, bu sırada metabolizma için gerekli bir çok yan üründe meydana gelmektedir. Örneğin; çeşitli organik asitler, amino asitler, nükleotidler, pigmentler v.s. oluşmaktadır. Solunum için kullanılan öncelikli molekül glukoz’dur. Glukoz un bulunduğu hücrede daima yıkıma uğrayan bu 6 C’lu molekül olmaktadır. Solunum sitoplazmada başlayıp mitokondride devam eden bir çok biyokimyasal olayın ard arda seyrettiği bir döngüdür. Bütün yüksek bitkiler ve organizmalar solunum (aerobik solunum) yaparlar ama bazı mikroorganizmalar oksijen kullanmadan Enzimleri sayesinde oksijensiz olarak solunum(anaerobik solunum) yaparlar, buna fermentasyon denir. Oksijenli solunum glukoz kullanıldığında başlıca üç aşamada gerçekleşir. 1 - Glikoliz Safhası (sitoplazmada gerçekleşir) 2 - Krebs Döngüsü (mitokondri matriksinde gerçekleşir) 3 - Elektron Taşınım Sistemi (mitokondri kristalarında gerçekleşir) GLİKOLİZ Hücre sitoplazmasında glukozun oksijene gereksinim duyulmadan iki pirüvik asite (pirüvat) kadar parçalanması olayıdır. Bu reaksiyon zincirinde öncelikle 2 ATP kullanılır Bu reaksiyon zincirinde öncelikle 2 ATP kullanılır. Bu ATP’ler ve enzimler sayesinde öncelikle iki 3C’lu aldehite dönüşen glikoz molekülü bir inorganik fosfat (Pi) girişi, 2 H+ ve 4 ATP çıkışı sağlayan bir dizi reaksiyondan sonra 2PA’ te dönüşür ve bu pirüvik asitler normal yolda mitokondrilere taşınırlar. Olağan dışı durumlarda ise Laktik Asit (LE)’e dönüşmek suretiyle 4ATP çıkışının devam etmesini sağlar (anaerobik solunum). KREBS ÇEMBERİ Mitokondri matriksinde PA (3C) ’ tin Asetil CoA (2C)’ya dönüşmesiyle başlayan bu reaksiyonlar döngüsünde 3C’lu molekülün tüm karbonları CO2’te dönüşür. Sonuçta 4 NADH2, bir FADH2 ve substrat reaksiyonu ile bir ATP ortaya çıkmaktadır. 1 glukoz molekülü için bu çıktılar ikiye katlanacaktır. Bu çemberde meydana gelen organik asitler üç karboksil grubu ihtiva ettiği için bu çembere Trikarboksilik Asit Çemberi (TCA)’de denir ELEKTRON TAŞINIM SİSTEMİ Bu sistem mitokondri kristalarında bulunur. ETS’de elektron ve hidrojen taşıyan özel maddeler vardır. Elektron taşınırken ATP sentaz (moleküler değirmen) enziminin aktivasyonuyla ATP sentezi olur. Buna oksidatif fosforilasyon adı verilir. Taşınan elektronlar en son akseptorden (sitokrom a3) ayrılınca matriksteki 2H+ ve O2 ile birleşerek H2O teşkil eder. Buna da terminal oksidasyon denir. Mitokondride cereyan eden bütün bu olaylar (TCA, oksidatif fosforilasyon ve terminal oksidasyon) için O2 gereklidir. O2 yokluğunda meydana gelmezler. ETS’de ATP sentezi, kemiozmotik teoriye göre , oksidatif fosforilasyon ile şöyle olmaktadır; ETS’de yeralan bazı akseptörler H+ ve elektron alarak indirgenir. Bunlar, flavinmononükleotid (FMN) ve ubikinon (UQ) dur. Bunlar hidrojenleri zarlar arası boşluğa pompalarken elektronları elektron akseptörlerine (sitokromlar ve Fe-S proteinleri) verirler. Elektronlar bu şekilde H2O’a kadar taşınırlar. Matriksdeki TCA’dan veya sitoplazmadaki glikolizden gelen hidrojenler bu şekilde zarlar arası boşluğa bırakıldıkça burası asitleşir ve zar potansiyeli oluşur. Bu durumda ATP sentaz enzimi aktive olarak hidrojenleri matrikse geçirir. Bu sırada enzimin katalizörlüğünde ATP sentezi olur. Hidrojen ve elektronlar krista zarındaki ETS’ye NADH2 veya FADH2 halinde getirilerek ETS’ye katılırlar. TCA’nın NADH2’leri ETS’nin başından itibaren zincire katıldığından ve üç yerde hidrojen pompalanması olduğundan NADH2 başına 3 ATP sentezlenir. Oysa TCA’nın FADH2’leri ve glikoliz NADH2’leri ETS’ye UQ’dan itibaren katıldıklarından iki yerde hidrojen pompalanması olur ve 2 ATP sentezlenir. Glikolizden gelen NADH2’ler başına 2ATP sentezlendiğinin sebebi şudur; sitoplazmadan mitokondriye geçişte mitokondri zarında bulunan ve gliserol fosfat mekiği denilen özel bir transport sistemiyle NADH2’lerin H+’leri mitokondri içine geçirilir ve bir flavoprotein (FAD) üzerinden UQ’a aktarılır. Yani sitoplazmadan gelen H+’ler ETS’ye ortadan katıldığı için iki yerde H+ pompalanmasına ve dolayısıyla 2ATP sentezine sebep olur. SOLUNUMDA ENERJİ BİLANÇOSU Glikoliz ve TCA’dan ayrılan Hidrojenleri NAD veya FAD yakalar ve NADH2 veya FADH2 halinde ETS’ ye getirirler. Yapılarındaki hidrojen ve elektronları ETS’ye verip tekrar iş başına dönerler. Şekil’de NADH2 ve FADH2’lerin hangi reaksiyonlardan kaynaklandığı ve her birisi için kaç ATP sentezlendiği belirtildi. Bunları toplarsak 16 ATP eder. Fakat bu reaksiyonlar iki defa meydana geldiğinden 16 x 2 = 32 ATP yapar. Şu halde oksidatif fosforilasyon yoluyla solunumda 32 ATP sentezlenir. Bir de 2 tane glikolizden 2 tane de TCA’dan fosforilatif yolla direkt ATP sentezi vardı. Bunları da eklersek 36 ATP eder. Yani glikoz molekülünün solunuma girip okside olmasıyla 36 ATP sentezlenir. Yapılan hesaplamalarda bir glikozun yıkımıyla esasında 686 Kkal’lik bir enerji çıkmaktadır. Oysa bir ATP’nin hidroliziyle 7,4 Kkal’lik bir enerji açığa çıkar ve 36 x 7,4 = 266,4 Kkal’lik bir enerji solunumda ATP halinde tutulmuş olur. Geriye kalan 420 Kkal2lil enerji ısı olarak yayılır. Yani glikozdan açığa çıkarılan enerjinin % 40 kadarı ATP halinde tutulabilmektedir. SOLUNUM SIRASINDA MEYDANA GELEN YAN ÜRÜNLER Solunumun esas amacı ATP sentezi yapmaktır. Fakat bu esnada değişik basmaklardan kaynaklanan çeşitli organik maddelerin sentezi de yapılır. Bu yüzden solunum bir taraftan yıkılma ve parçalanma iken diğer taraftan organiklerin sentezine sebep olan bir merkezdir. SOLUNUM KATSAYISI Solunumun ölçülmesi, bitkilerin solunumla tükettiği O2’nin ve dışarı verdiği CO2’nin ölçülmesine dayanır. Bu bakımdan solunumda oluşan CO2’in tüketilen O2’e oranı solunum katsayısı olarak adlandırılır ve RQ sembölü ile gösterilir. Solunumda KH’ların kullanılması durumunda bu katsayı 1’dir. Yani KH’ların solunumunda verilen CO2 alınan O2’e eşittir. Mesela; Solunumda yağlar gibi oksijence fakir organik maddeler okside edildiğinde oksidasyon için daha çok O2’e ihtiyaç olduğudan CO2 / O2 oranı düşük olacağından solunum katsayısıda 1’den azdır. Mesela; Yapısında bol oksijen ihtiva eden organik maddelerin oksidasyonu için az oksijen gerekli olduğundan bunların solunum katsayıları 1’den büyüktür. Mesala organik asitler bu şekilde oksijence zengindir. Oksijence fakir olan proteinlerinde solunum katsayıları 1’den azdır. Görüldüğü gibi, solunum yapan bir bitki dokusunda solunum katsayısını ölçerek o dokunun solunumda kullandığı organik madde grubunun ne olduğu hakkında genel bir bilgi sahibi olabiliriz. Normal koşullarda bitkiler ve hayvanlar solunumda öncelikle KH’ları kullanırlar. Ancak depo maddeleri tükenince diğer indirgenmiş maddeleri (yağlar, proteinler gibi) solunum substratı olarak kullanmaya başlarlar. Yağların ve proteinlerin solunuma katkısı KH’ın katkısından farklıdır. Bu maddelerin yıkımında glikoliz safhası yoktur. FERMANTASYON Oksijen olmaksızın besinler nasıl okside edilir? Oksidasyon, elektronların sadece oksijene değil, elektronların herhangi bir elektron alıcısına verilmesidir. Glikoliz, gulukozu iki molekül pirüvata oksitler. Glikolizin oksitleyici ajanı oksijen değil, NAD+’dır. Özet olarak, glikoliz ekzergonik olup, açığa çıkan enerjinin bir kısmı substrat – seviyesinde fosforilasyon ile net olarak 2 ATP üretmek için kullanılır. Eğer oksijen varsa, gulukozdan uzaklaştırılan elektronları taşıyan NADH bu elektronları elektron taşıma zincirine verdiğinde, oksidatif fosforilasyon ile ek ATPler üretilir. Ancak oksijen olsa da olmasa da, yani koşullar aerobik de anaerobik de olsa glikoliz 2 ATP üretir. (aer hava ve bios canlılık demektir; “an” olumsuzluk belirtir) Organik besinlerin anaerobik yıkımı, fermantasyon ile gerçekleşir. Fermantasyon glikolizin uzantısı olup, glikolizin oksidasyon basamağında ortaya çıkan elektronları kabul edecek yeterli NAD+ sağlandığı sürece, substrat seviyesinde ATP üretebilir. NADH dan NAD+ oluşturacak bir mekanizma olmaksızın, hücrenin NAD+ havuzu glikoliz sırasında tükenir ve oksitleyici bir ajan olmadığı için glikoliz durur. Aerobik koşullarda elektronların elektron taşıma zincirine aktarılmasıyla, NADH dan NAD+ oluşturulması sürer. Bu işlemin anaerobik alternatifi, NADH dan glikolizin son ürünü olan pirüvata elektron aktarımıdır. Fermantasyon, glikoliz ile elektronların NADH’dan pirüvata ya da pirüvat türevlerine aktarılmasıyla yeniden NAD+ üreten tepkimeleri kapsar. Bu NAD+ glikoliz ile şekerin okside edilmesi için tekrar kullanılır ve substrat seviyesinde fosforilasyon aracılığı ile net olarak 2 ATP üretilir. Pirüvattan oluşturulan son ürünlere göre bir çok fermantasyon tipi vardır. Alkolik Fermantasyonda pirüvat 2 basamakta etanole dönüştürülür. İlk basamakta pirüvattan CO2 uzaklaştırılır ve 2 karbonlu bir bileşik olan asetaldehit oluşur. İkinci basmakta ise, asetaldehit NADH ile etanole redüklenir. Böylece glikoliz için gerekli olan NAD+ yenilenmiş olur. Laktik Asit Fermantasyonu sırasında pirüvat NADH tarafından doğrudan doğruya redüklenir. Bu sırada CO2 salınmaz. Genelde mikroorganizmalar fermantasyon yapar. Ancak oksijen yetersizliğinde, su stresinde (fizyolojik kuraklık) yüksek bitkilerde biraz yapar. Fazlası bitkiler için toksiktir. Bazı tohumlarda tohum çimlenmesinin ilk basamaklarında da olabilir. Fermantasyon yapan bakterilerin bazısı oksijensiz ortamda yaşar (obligat anaeroblar). Mesela, Basillus botilinus. Bazı mikroorganizmalar ise hem oksijenli hem de oksijensiz ortamda yaşayabilirler (fakültatif anaeroblar). Mesela, Saccharomyces cerevisia mantarı. PENTOZ FOSFAT YOLU Yaşlı ve hasta bitkilerde görülen bu yolda genellikle 5C’lu şekerler sentezlendiği için bu yola pentoz fosfat yolu adı verilir. Pentoz fosfat yolu sitoplazmada cereyan eder ancak karanlıkta kloroplastlarda da meydana gelir. Bu yol glikolizden ayrılıp tekrar ona bağlanan bir yan yoldur. Glikoz-6-Fosfat tan itibaren başlar ve riboz gibi 5 C’lu şekerler sentezlenir. İki önemli ürün nükleik asitlerin yapısında bulunan 5C’lu şekerler ve indirgenme reaksiyonlarının vazgeçilmezi olan NADPH2 sentezlenir. Bu yol bitki hücrelerinde glikoliz ve TCA reaksiyonları ile birlikte yürür. Dışarı verilen CO2’in ¼ nin bu yolla sentezlendiği hesaplanmıştır. GLİOKSİLAT YOLU: Bitkilerde yağlar şekerlere dönüştürülemez. Ancak endospermlerinde yağ depolayan tohumlarda (ay çiçeği, hint yağı, soya gibi) çimlenme sırasında yağlar şekere dönüştürülebilmektedir. Çimlenme sonucu meydana gelen plumula, radikula gibi organalara besin gerektiğinde, endospermadan yağ taşınımı mümkün olmadığı için bu sırada yağlar şekere çevrilerek bu organlara taşınmaktadır. Bu yola glioksilat yolu denir. Reaksiyonlar endosperm hücrelerinde buluna glioksizom adı veilen organellerde gerçekleşmektedir. Bu reaksiyonların yürümesini sağlayan malat sentataz ve izositraz enzimleri sadece glioksizomlarda bulunur. Glioksizomlarda sadece yağ depolayan endosperm hücrelerinde bulunduğu için bu olay başka dokularda görülmez. Glioksilat yolu hem mitokondrideki TCA çemberiyle hem de sitoplazmadaki glikoneogenaz youluyla irtibatlı olarak çalışır. ALTERNATİF SOLUNUM YOLU Siyanür (CN-), azid (N3-) ve karbon monoksit (CO) gibi inhibitörler şekilde gösterilen solunumun ETS safhasını inhibe ederek solunumu engeller. Bu inhibisyon, ETS’nin son basamağında görev yapan sitokrom oksidaz enziminin bloke olmasıyla meydana gelir. Bitkilerde siyanüre dirençli bir alternatif solunum yolu bulunduğu anlaşılmış ancak henüz detaylı bilgi elde edilememiştir. Mevcut bilgilere göre, normal solunumda elektron taşınımı elektronlar 1. ubikinon ’dan sitokrom b ’ye değil kısa yoldan henüz mahiyeti tam bilinmeyen ve terminal oksidaz adı verilen siyanüre dirençli bir enzim üzerinden oksijene taşınır. Dolayısıyla alternatif solunum yolunda ATP sentezi ya hiç olmaz ya da çok az olur. Çünkü ETS’de elektron akışı sağlanamadığı için yeterli bir H+ pompalanması ve zar potansiyeli oluşmaz. Dolayısıyla solunumda açığa çıkan enerji ortama ısı enerjisi olarak dağılır.

http://www.biyologlar.com/isik-solunumu-fotorespirasyon

Kenelerin Sınıflandırılması ve Kene Türleri

Keneler Keneler zorunlu kan emici artropodlar olup, Dünya’nın her bölgesinde gözlenmektedirler. Ülkemizde halk arasında kene, sakırga, yavsı, kerni gibi isimlerle bilinmektedirler. Kenelerin sistematikteki yeri ve önemli türlerin isimleri aşağıda verilmiştir. Anaç: ARTHROPODA Anaç bölümü : CHELICERATA Sınıf altı: Acarina (Acari) Dizi: Metastigmata Aile: İxodidae Soy: İxodes Tür: İxodes ricinus Soy:Hyalomma Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Soy: Amblyomma (Türkiye’de yok) Tür: Amblyomma variegatum Soy: Haemaphysalis Tür: Haemaphysalis parva Tür: Haemaphysalis sulcata Tür: Haemaphysalis punctata Tür: Haemaphysalis inermis Soy: Dermacentor Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Tür: Rhipicephalus appendiculatus (Türkiye’de yok) Aile:Argasidae Soy: Ornithodorus Tür: Ornithodorus lahorensis Soy: Argas Tür: Argas reflexus Tür: Argas persicus Soy: Otobius Tür: Otobius megnini Günümüzde Argasidae ve Ixodidae ailelerine bağlı 850 türü bilinmektedir. Amblyomma soyu dışındaki soylara bağlı birçok kene türü, Türkiye’de yaygın olarak bulunmaktadır. Genel Morfolojik ve Biyolojik Özellikler Keneler morfolojik olarak diğer artropodlardan farklı olup, vücütları tek bir parçadan oluşmuştur. Vücudun ön tarafında ağız organelleri yer almktadır. 1.Aile: İxodidae (şekil 1) İxodidae ailesindeki türlere sert kene, mera kenesi veya yaz kenesi denir. Bu ailede bulunan türlerde caput, thorax ve abdomen tamamen birbirleriyle birleşmiştir. Olgunlarında ve nimflerinde 4 çift ayak , larvalarında ise 3 çift ayak vardır. Nimflerinde genital organlar henüz oluşmamıştır. Dorsalden bakılınca ağız organelleri görülebilir. Ağız organellerinin oturduğu kısıma basis caputili denir. Ağız organellerinin arkasında dişilerde vücudun önünde ve üst kısmında okul önlüğü yakası şeklinde kitini bir organ teşekkül ederki buna scutun denir. Erkeklerde bu oluşum dorsalde tüm vücudu kaplar, buna conscutum denir. Bu bakımdan erkekler kan emdiği zaman vücutlarında değişiklik olmaz. Buna karşılık dişiler kan emip doyunca normal büyüklüğünün 10 katı kadar genişleyebilir. Ağız organelleri 1 çift chelicer, chelicer kılıfı ve hipostom denilen delmeye ve kan emmeye yarayan organelden oluşur. Bu organellere rostellum denir. Rostellumun iki yanında bir çift palp bulunur. Ayrıca kenelerin dorsal kısmında, tür tayininde önemi olan, çukurluklar, feston, cervical oluklar ve noktalamalar bulunur. Ventralde ise anüs ile ikinci çift coxalar hizasında genital delik bulunur. Bu yüzde dişilerde anal oluk, erkeklerde ise kitini plaklar yer alır. Yine ventralde 4’üncü coxanın arkasında bir çift stigma bulunur. Ayaklarının sonunda bir çift tırnak ve tırnakların ventral yüzeyinde ise tutunmaya yarayan zar şeklinde pulvillum adı verilen organel vardır. (Argasidae’lerde bu organel yoktur). Önde birinci çift ayakta tarsuslar üzerinde Haller organeli denen bir çukurluk yer almıştır. Bu yapı duyu organelidir. Dişi kenelerde ovaryum ile barsak irtibat halindedir. Bu yüzden bazı keneler kan emerken parazitleri sindirim sisteminden ovaryumlarına geçirirler. Bu parazitler ovaryumdan yumurtaya geçerek, yumurtadan çıkan larvaları enfekte ederler. Bu larvalar kan emerken parazitleri de hayvanlara taşırlar (transovaryal nakil). Biyoloji Keneler kan emerek beslenir, ancak bu diğer kan emen artropodlardan farklıdır. Keneler konakların tutunup ağız organellerini deri içine sokarlar ve burada sabitlenip doyana kadar aynı yerden kan emerler. Argasidaeler çok kısa sürelerde çok miktarda kan emip doydukları halde, Ixodidae ailesindeki kenelerin doyması için birkaç gün ile birkaç hafta arasında süre gerekmekte, hata bu süre içinde bazı Ixodidae türleri gömlek değiştirip diğer gelişme dönemlerine geçmektedirler. İxodidae türleri, genellikle ilkbahar ve sonbahar mevsimleri arasında aktiftirler. Bunlar evcil hayvanların kulak kepçesi içinde ve dışında, boyun altında, karın, anal ve perianal bölgeler ile sırt ve kuyruk üzerinde bulunurlar. Dişi keneler, erkeklerden daha fazla kan emerler. Hayatları boyunca geçirdikleri her dönemde (larva-nimf-olgun ) mutlaka kan emmek zorundadırlar. Erkek ve dişiler kan emme esnasında çiftleşirler. Ovipardırlar. Dişi keneler yumurtalarını taş, toprak ve merada yaprakların altına, toplu ve birbirine yapışık şekilde bırakırlar.Yumurtlama süresi ve miktarı, dişi kenenin az veya çok kan emmesine ve diğer dış faktörlere bağlı olarak değişir. Ayrıca türlere göre de yumurta sayısı değişiklik gösterir. Ortalama 3.000-15.000 arasında yumurta yumurtlarlar. Dişiler yumurtladıktan sonra ölürler. (Argasidae türleri ölmez). Yumurtadan çıkan larvalar 3 çift bacaklıdır. Birinci çift ayak tarsuslarında bulunan Haller organı konak bulmaya yarar. Türlere göre farklı sürelerde konaklardan kan emerler ve kan emdikten sonra yine değişen sürede gömlek değiştirirerek. 4 çift ayaklı nimf olurlar. Nimflerde larvalar gibi henüz genital organlar gelişmemiştir. Aç olan nimfler kan emer doyar ve gömlek değiştirdikten sonra aç olgun hale gelir. Erkek ve dişi olgun keneler kan emerken çiftleşir ve doyduktan sonra dişi toprağa düşer ve yumurtlar. Bu siklus böyle devam eder. Biyolojik gelişmeye göre konak değiştirmeleri esas alınarak İxodidae ailesine bağlı türler 3 grupta toplanır. a-Bir konaklı kene: Merada yumurtadan çıkan larvalar konak hayvana hücum eder, ondan kan emip doyduktan sonra konak üzerinde gömlek değiştirip nimf olur. Aç nimf kan emip doydukyan sonra konak üzerinde gömlek değiştirir. Ortaya çıkan aç olgun kenenin erkek ve dişisi kan emdikten sonra çiftleşir, dişiler konak hayvanı terkedip toprağa düşer yumurtlar ve ölür. Yani larva-nimf ve olgun safhalar bir hayvanda geçer. Örneğin, Boophilus annulatus. b-İki konaklı kene: İki konaklı kenelerde, larva ve nimf dönemini bir konakda geçirir, nimfler kan emip doyduktan sonra konak hayvanı terkederler. Meskende veya merada gömlek değiştirip aç olgun hale gelirler. Aç olgun keneler ikinci bir hayvana hücum ederek ondan kan emer, çiftleşir ve doyar. Daha sonra dişi kene toprağa düşer, yumurtlar ve ölür. Yani larva-nimf bir hayvanda, olgunu ise başka bir hayvanda geçer. Örneğin, Hyalomma türleri ve Rhipicephalus bursa. c-Üç konaklı kene: Üç konaklı kenede larva bir hayvandan kan emip doyar ve toprağa düşer.Toprakta gömlek değiştirip aç nimf olur.Aç nimf’ler ikinci bir hayvana hücum ederler. Ondan kan emip doyduktan sonra toprağa düşerler ve gömlek değiştirip aç olgun kene haline gelirler. Aç olgun keneler üçüncü bir hayvana hücum eder, kan emer ve çiftleşirler. Doyduktan sonra dişiler konak hayvanı terkedip toprakta yumurtlar ve ölürler. Yani bu kene türleri, larva, nimf ve olgun dönemlerinde ayrı ayrı veya aynı hayvana 3 kez gelmek suretiyle kan emer, gömlek değiştirme dönemlerini ise toprakta geçirirler. Dişiler yine yumurtalarını tprağa bırakırlar. Örneğin, İxodes ricinus, Dermacentor marginatus ve Haemophysalis punctata. İxodidae ailesine bağlı soylar, kenelerin ağız organellerinin uzun yada kısa olmasına göre birbirinden ayırtedilebilir. Ayrıca anal oluğun anüsü önden ve arkadan çevirmesi de soy ayrımında kullanılır. Buna göre İxodidae ailelerinde 7 soy vardır Ağız organelleri uzun olanlar Soy: İxodes Sadece bu soyda anal oluk anüsü önden çevirir. Ayak çiftleri öne yakındır. Göz yoktur. Türkiye’de tek türü bulunur. Tür: İxodes ricinus Soy:Hyalomma Palplerin ikinci ekleminin boyu eninin 2 katıdır.Bacakları uzun yapılıdır (Şekil 3). Göz vardır. Bu soya bağlı 5 tür Türkiye’de bulunmaktadır. Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Şekil 3. Hyalomma sp. (erkek) Soy: Amblyomma Bu soya bağlı türler Afrika keneleridir. Ağız organelleri çok uzundur. Scutum üzerinde renkli alanlar mevcuttur.Göz vardır. Bir tür Türkiye’de Suriye sınırında bir vakada bildirilmişse de, ülkemizde olmadığı kabul edilmekltedir. Ağız organelleri kısa olanlar Soy: Haemophysalis Palplerin ikinci eklemi bazis caputuliyi yanlardan aşar. Göz yoktur. Daha çok Sonbahar ve Kış aylarında görülür. Bu soya bağlı 4 tür Türkiye’de bulumaktadır Tür: Haemophysalis parva Tür: Haemophysalis sulcata Tür: Haemophysalis punctata Tür: Haemophysalis inermis Soy: Dermacentor Bazis caputuli ağız organellerini yanlardan aşmıştır. Göz vardır. Scutum üzeri gri, açık kahverengi ve beyaz renklerde nakışlıdır. Daha çok Sonbahar aylarında aktiftirler ve konak hayvanların koyruk uçların bulunurlar. Türkiye’de 2 türü yaygındır. Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Ağız organelleri çok kısa olup, coxa 1’de yarık yoktur. Göz vardır. Türkiye’de bir türü bulunur. Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Coxa 1’de derin bir yarık olmasıyla Boophilus türlerinden ayrılır.Göz vardır. Bu soya bağlı 3 tür Türkiye’de yaygındır. Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Keneler, insan ve hayvan hastalıklarının naklinde rol oynayan en önemli vektörlerdendir ve diğer artropod gruplarının aksine bir çok çok farklı yapıdaki enfeksiyöz etkenleri (bakteri, virus, parazit, mantar) taşıyabilme yeteneğine sahiptirler. Kırım-Kongo Kanamalı Ateşi ve Keneler KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden askerlerde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda önem kazanmıştır. Ixodidae ve Argasidae ailesine bağlı 31 kene türünün virusun vektörü olabileceği bildirilmesine rağmen, bunların tümünün vektör potansiyeli gösterilememiştir. Kenenin tam anlamı ile vektör kabul edilebilmesi için, etken izolasyonu dışında, kenenin virusu duyarlı hayvanlara aktarabilme ve viremik hayvanlardan alabilme yeteneğinin de olması gerekmektedir. Bu kriterler yukarıda bildirilen 29 türden sadece bazılarında gözlenebilmiştir. Bunun yanında bazı türler virusu hem transovarial hem de transtadial olarak taşırken bazıları sadece transtadial olarak taşıyabilmektedir. Günümüzde hastalığın başlıca vektörlerinin Hyalomma marginatum marginatum, H.m.rufipes ve H.anatolicum anatolicum olduğu kabul edilmektedir. Ancak, Hyalomma türlerinin olmadığı bazı ülkelerde etkenin Ixodes ricinus, Dermacentor spp., Rhipicephalus spp. ve Boophilus annulatus gibi kenelerden izole edilmiş olması, diğer kenelerin de vektörlük potansiyelinin düşünülmesi gerektiğini göstermektedir. H.a.anatolicum ve H.m.marginatum genellikle iki konutlu gelişim gösterirler. H.a.anatolicum’un, gerek larva ve nimfleri, gerekse erişkinleri genellikle evcil ruminantları (özellikle sığırları) tercih etmesine karşı, H.m.marginatumun’un genç gelişme dönemleri (larva ve nimf) çoğunlukla küçük hayvanları (tavşan, kirpi, kanatlılar, fare, yabani memeliler) ve az olarak da büyük memeliler ve insanı tercih etmekte, erişkinleri ise ağırlıklı olarak evcil memeliler (sığır, at, koun, keçi, köpek) ve az olarak da küçük memeliler (tavşan, kirpi) ile insanı tercih etmektedir (Şekil 4). Göç eden kuşlar bu kenenin bölgeler arasında yayılışından büyük ölçüde sorumludur. H.marginatum, Güney Avrupa, Kuzey Afrika, Anadolu, Kafkaslar ve Eski Sovyet Cumhuriyet’lerini içine alan geniş bir yayılış alanına sahiptir. Bu keneler Şubat ile Aralık ayları arasında hayvanlar üzerinde görülebilse de, erişkinler Mart-Ağustos, larva ve nimfler ise Haziran-Kasım dönemlerinde aktif olarak kan emerler. Kışı, genellikle doymuş nimf veya aç erişkin şeklinde, ahırlardaki duvar çatlaklarında veya meralardaki (yarı-ormanlık alanlarda) kemirici yuvaları, toprak içinde veya ağaç kovuklarında geçirirler. Şekil 4. Hyalomma m.marginatum’un yaşam döngüsü. (Konak hayvanların büyüklükleri kenenin tercih sırasına göre orantılanmıştır). Kenelerle Mücadele Günümüze kadar kullanılan hiç bir mücadele yöntemi (bir kaç sınırlı alan hariç), tam bir kene eradikasyonu sağlayamamıştır. Hali hazırda kene eradikasyonunun neredeyse olanaksız olduğu kabul edilmektedir. Yapılan çalışmalar 2 temele dayanmaktadır: I. Kenelerle nakledilen hastalıkların ortadan kaldırılması veya azaltılması (aşı çalışmaları vs) II. İnsan ve hayvanlardan kan emen kenelerin sayısını düşük maliyetlerle kabul edilebilir sınırlara indirilmesi a. Akarisid kullanımı Kenelerle mücadele genellikle konak hayvanların ve çevrenin düzenli aralıklarla akarisid ilaçlarla ilaçlanması esasına dayanmaktadır. Bu konu üzerinde çok uzun yıllar boyunca durulmuş olmasına rağmen, bir türlü istenen düzeyde başarı sağlanamamıştır. Her ne kadar akarisid kullanımı gerekli olsa da, bu oldukça zahmetli ve masraflıdır. Kaldı ki, büyük çapta programlı uygulamaların yapılması oldukça zordur. Akarisid ile kene konrolünün başlıca 7 zorluğu vardır 1. Kenelerin yoğun biçimde tarım ve orman alanları içinde yayılmış olması, çevreye zarar verecek düzeyde akarisid kullanımını gerektirmektedir. 2. Akarisilerin kenelerin konakları üzerinde tutundukları bölgelere ulaşabilmesi ancak konağın tüm vüudunun yıkanmasını gerektirmektedir 3. Konak üzerinde bulunmadıkları süre içinde keneler akarisid ilaçların ulaşamayacağı yerlerde saklanmaktadır. 4. Kenelerin yüksek orandaki üreme yeteneği (3000-7000 yumurta) ilaçlamaların düzenli bir sıklıkta yapılmasını gerektirmktedir. 5. Kenelerin uygun olmayan çevre koşullarında çok uzun süreler boyunca canlı kalabilmeleri. 6. Kenelerin konak seçiminde çok alternatifinin olması 7. Akarisid direncinin oluşması b- Kenelerin yaşam alanlarının değişrtirilmesi 1- Herbisidal ilaç kullanımı 2- Arazi yakma 3- Arazinin sürülmesi 4- Kuru yaprak tabakasının hatta orman taban örtüsünün kaldırılması Ancak, bu gibi önlemlerin uygulanması sonucunda kene populasyonunda sağlanan azalma, kenelerin yok edilmesinden çok, konak hayvanların bu gibi elverişsiz hale gelmiş ortamlardan uzaklanmasına bağlanmaktadır c- Konak hayvanların ortadan kaldırılması Bu yöntem özellikle dar bölgelerde kısıtlı konak kullanan keneler için kullanılsa da (Amblyomma americanum’un eradikasyonu için belli bölgelerde geyik populasyonunu ortadan kaldırmak), bu yöntem çok miktarda konak alternatifi olan keneler için uygun değildir. d- Biyolojik kontrol Kenelerin doğal düşmanlarının ortama salınması üzerinde çalışmalar olsa da, çok pratik değeri yoktur e-Kendi kendini ilaçlama Bu yöntem özellikle yaban hayvanları üzerindeki keneleri de etkilediğinden oldukça umut vericidir. Hayvanların ilgisini çekecek çeşitli obejelerin (yemlik, içinde yem bulunan plastik boru, ilaçlı pamuk) üzerine uzun etkili akarisid salınımını sağlayan düzenekler kurularak hayvanların kendi kendilerini ilaçlaması sağlanmaktadır. Kene yaşam döngüsü nasıldır? KKKA sebep olan Hyalloma türü keneler çoğunlukla iki konakta gelişim ve yaşam döngülerini tamamlar. Larva ve nimfler küçük omurgalılarda (tavşan, kuş, fare. vb) erginler ise büyük omurgalı hayvanlarda (koyun, keçi, sığır, at, yabani gevişenler, insan, vb) konaklarlar.

http://www.biyologlar.com/kenelerin-siniflandirilmasi-ve-kene-turleri

Özel görelilik kuramı konusunda çok sık sorulan bazı soruları

Soru 1. : Camda ışık hızı düşüktür. Görelilik kuramı camda değişir mi? Bu türden sorular genel olarak ışığın görelilik kuramındaki rolünün abartılmasından kaynaklanıyor. Görelilik kuramında “ışıktan” ziyade “ışığın boşluktaki hızı” önemli. Kuram aslında uzay ve zaman hakkında. Fakat, uzunluk ve zamanı “metre” ve “saniye” olarak, farklı birimlerle ifade ediyoruz. Bu nedenle, bunların bir arada kullanabilmesi için hız birimine sahip bir sabit sayının kuramda belirmesi gayet doğal. Kısaca “ışık hızı” dediğimiz nicelik bu sabit sayı. Kuram ayrıca kütlesiz olarak nitelendirilen parçacıkların boşlukta sadece bu hızla yol alabileceği sonucunu içeriyor. Işık fotonları da kütlesiz olduğundan, ışığın boşlukta bu hızla yayıldığını söylüyoruz. Bunun dışında, ışığın bir ortam içinde yayılırken neler yaptığının kuram açısından hiçbir önemi yok. Dahası, böyle ortamlarda görelilik kuramındaki tipik sonuçlara benzemeyen durumlar oluşabiliyor. Örneğin çok hızlı parçacıklar su gibi bir ortama girdiğinde, ışığın o ortamdaki hızını geçebilir. Bu görelilik kuramına aykırı değil. Eğer parçacık yüklüyse, bu defa sesten hızlı giden uçakların yarattığı ses patlamasına benzer bir etki oluşur. Yani, parçacığı takip eden bir koni üzerinde yayılan güçlü bir ışıma meydana gelir. Çerenkov ışıması adı verilen bu ışıma, nükleer reaktörlerdeki tipik mavi ışığın temel nedeni. Üstelik bir ortamda yayılan ışığın hızı gözlemciden gözlemciye değişir. Yani, görelilik kuramının dayandığı temel varsayımlardan birincisi bu tip durumlarda sağlanmıyor. Hatta gözlemcinin bu ışıkla aynı hızda veya daha hızlı gitmesi de olası. İlk durumda gözlemci ışığın kendisine göre durduğunu, ikincisinde de geriye gittiğini görür. Bunlar da görelilik kuramı açısından sorun değil. Aslında bu sonuçlar, yani ışığın bize göre hareket eden ortamlardaki hızının değişiyor olması, 19. yüzyılın ortalarından beri biliniyordu. Soru 2. : Hızı 0,9c olan bir rokette yolculuk etmekteyken ileriye doğru 0,9c hızıyla bir taş fırlatıyorum. Taş ışıktan hızlı gitmez mi? Özetle, roketin yere göre hızı 0,9c; taşın rokete göre hızı da 0,9c. Öyleyse taşın yere göre hızı nedir? Cevap, beklendiği gibi 1,8c değil. Burada göz ardı edilen şey, roketteki ve yerdeki gözlemcilerin uzay ve zamanı algılayışlarındaki farklılık. Bu farklılıktan dolayı, taşın yere göre hızını 0,995c buluruz. Yani taş rokete göre çok hızlı gidiyor; ama buna karşın yerdeki gözlemci taşın roketten sadece biraz daha hızlı olduğunu görüyor. Hızların toplanması kuralı artık burada işlemiyor. Roketteki gözlemci taşı 0,9c hızıyla fırlatırken hiçbir zorluk hissetmez. Yani, bu gözlemci aynı taşı yerde fırlatırken ne kadar zorlanıyorsa, rokette de fırlatırken aynı derecede zorlanır. Görelilik ilkesi de zaten bunu gerektiriyor. Kısacası, roket ne kadar hızlı olursa olsun, rokete göre çok büyük hızlarla giden taşlar var. Ama bu taşlar hiçbir gözlemciye göre hız sınırını aşamaz. Soru 3. : Işık hızında gitsek dünya nasıl görünür? Işık hızına çok ama çok yaklaşabiliriz, fakat hiçbir zaman bu hıza tam olarak erişemeyiz. Dolayısıyla gerçekleşmeyecek bir durum hakkında yorum yapmak da anlamsız. Aslında, ışık hızında yol alan bir gözlemci fikri bir çok sorun içeriyor. Bunlardan birincisi, böyle bir gözlemciyi bu derece hızlandırmak için vermemiz gereken enerjiyle ilgili. Tam ışık hızına erişmek için sonsuz enerji gerekiyor. Buradaki “sonsuz” ifadesi “çok büyük” anlamında değil, tam olarak sonsuz anlamında. İçinde yaşadığımız enerji darboğazını biliyoruz. Buna ek olarak, Dünya’da, Samanayolu’nda hatta evrenin görünen kısımlarında bile sadece sonlu miktarda enerji var. Elimizde bulunan kaynaklarla, böyle bir işi başarmak için ihtiyacımız olan sonsuz enerjiyi hiçbir zaman denkleştiremeyiz. Buna ek olarak, uzunluk büzülmesi ve zaman genleşmesi etkileri de böyle bir gözlemci için sorun yaratıyor. Bu gözlemcinin hareket doğrultusundaki boyu tam olarak sıfır olmalı. Benzer şekilde gözlemcideki saat durarak hiç ilerlememeli. Bir bakıma, bu tip sorunlar, kuramı öngöremediği bir duruma uyarlamaya çalışmaktan kaynaklanıyor. Soru 4.: Işık hızıyla gitsem camdan geçebilir miyim? Işığın camdan geçebilmesi, ışığın bu malzemenin atomlarıyla etkileşmesi sonucunda meydana gelen özel bir durum. Bu özel etkileşme nedeniyle camdaki atomlar görünen ışığı soğurmuyor. Bu sonuç, malzemeye bağlı olduğu kadar, ışığın dalgaboyuna da bağlı. Örneğin, bazı kızılötesi ışıklar cam tarafından soğurulur. Bizse, atomlardan yapılmış olduğumuz için maddeyle daha farklı bir şekilde etkileşiriz. Yani camın bize verdiği tepki, ışığa verdiği tepkiden çok farklı. Bu etkileşim doğal olarak bizim hızımıza bağlı. Ama bu madde-madde ve madde-ışık etkileşmeleri arasındaki farklılığı ortadan kaldırmaz. “Çok hızlı gidersek, ışığa daha çok benzeriz” gibi yorumlar bu açıdan anlamsız. Sonuç olarak, ışık hızında zaten gidemeyiz. Bunun dışında, ne kadar hızlı gidersek gidelim, cama çarptığımızda camı deleriz. Çok hızlı giden parçacıklar cama girdiğinde, cam parçalanmaz; çünkü bunun için yeterli enerjileri yok. Ama, parçacığın hangi türden olduğuna bağlı olarak, bunlar camla özel bir etkileşime girer. Örneğin nötronlar çoğunlukla camdan geçip gider. Ama proton gibi yüklü parçacıklar, camdaki elektronlarla olan etkileşmeleri nedeniyle kısa sürede yavaşlar ve cama hapsolur. Soru 5. : Hızlandıkça kütle artıyorsa, fazladan eklenen madde nereden geliyor? Bir cisim hızlandırıldığında dışarıdan madde eklenmesi gibi bir şey söz konusu değil. Yani, cisimde en başta kaç tane proton, nötron ve elektron varsa, ne kadar hızlanmış olursa olsun bu parçacıkların sayısı yine aynı olur. Bu yanılgı, “hıza bağımlı kütle” kavramının yarattığı sorunlardan bir tanesi. Bilim insanları kütleyi değişmez bir nicelik olarak kullanmayı tercih ediyor. Yani, durağan haldeki kütlesi 1 kg olan bir cismin, ışık hızına çok yakın hızlarda hareket etse bile hala 1 kg kütlesi olduğunu söylüyoruz. Bu anlamda, kütle hıza bağımlı olarak değişmez. Fakat hız arttıkça, kütleyle ilişkili bir takım fiziksel niceliklerin değişmesi söz konusu. Örneğin ağırlık, kısaca Dünya’nın cisme uyguladığı çekim kuvveti. Veya (eylemsizlikle bağlantılı olarak) bir kuvvetin etkisi altında cismin ivmesi. Bu fiziksel nicelikler, cismin hızına bağlı olarak değişir. Ama bu etkileri sadece değişen bir kütle düşüncesiyle açıklamaya çalışmak pek mümkün değil. Çünkü bahsedilen etkiler yönlere bağlı olarak değişir. Örneğin cisim yere paralel hareket ediyorsa ağırlığı farklı, dik hareket ediyorsa farklıdır. Bu tip etkileri görelilik kuramını tam anlamıyla uygulayarak incelemek daha doğru. Kaynak: vergidunyasi.blogcu.com

http://www.biyologlar.com/ozel-gorelilik-kurami-konusunda-cok-sik-sorulan-bazi-sorulari

Ekosistemde Yaşayan Canlılar

Bütün ekosistemi özetlemek için ekolojik pramid yararlı bir yoldur. Piramit yaşayan canlıların enerjilerini nasıl elde ettiklerine göre yukarıdan aşağıya (yaklaşık olarak yediklerine göre) bir listedir. Piramid‘in her bir tabakasının (bölümden bölüme) genişliği yaşayan canlıların (bireyin sayısını, türün sayısını değil) nasıl çoğaldığını göstermektedir. Enerjiyi nasıl elde ettiklerine göre yaşayan tüm varlıklar katagorilerden birine girerler : Ekosistemi oluşturan öğeler, başlıca dört gurupta toplanır. 1-Cansız varlıklar. (inorganik ve organik maddeler) 2-Primer üreticiler. (yeşil bitkiler) 3-Tüketiciler (bitkisel ve hayvansal maddeleri yiyenler) 4-Ayrıştıcılar (bakteri ve mantarlar) Üreticiler, klorofil içeren yeşil yapraklı bitkilerdir. Bu klorofil ile havada ki CO2‘i ve su‘dan (şekerler) karbonhidratlar yapmak için ihtiyaçları olan güneşin enerjisini tutarlar. Bu üretim sürecine fotosentez denir. Bitkiler büyüme ve tüm diğer gelişme süreçleri için karbonhidrat temin eder. Bitkiler dışında yaşayan canlılardan hiç birinin gıdasını üretememesi önemli bir noktadır. Bu nedenle onlara üreticiler denir. Tüketiciler, direk veya indirek üreticilerin ürettiklerini (karbonhidratla) yiyerek yaşayan hayvanlardır. Tüketiciler daha fazla gruplara bölünebilirler: Birinci tür, ikinci tür, üçüncü tür vb. Birinci tür otçul hayvanları (bitki yiyenler) kapsar. İkinci tür et obur hayvanlardır, örümcekler, kurbağalar gibi, parazit (alsak böcekler) ki birinci türün tüketicilerini yerler. Üçüncü tür, yılanlar gibi et obur hayvanlardır ki ikinci türün tüketicilerini yerler. Tüketiciler grubunun son halkasını örneğin; kaplanlar kartallar veya insanlar oluşturur, yüksek tüketici sınıfı adını alırlar. Ayrıştırıcılar, bazı nematod ve böcekler gibi küçük hayvanlar ve bakteri ve mantarlar gibi mikroorganizmalardır ki tüketici ve üreticilerin (düşen yapraklar, ölü gövdeler, hayvanların gübresi vb.) atıklarını (organik materyali) yiyerek yaşarlar. Toprakta yaşayan ayrıştırıcıların sayısı çok büyüktür (verimli torağın 1 gramın da 1.000.000.000 dan daha çok) ayrıştırıcıların en önemli fonksiyonu organik materyalden bitkilerin kullanabileceği mineralleri yapmaktır. Sonra bu mineraller bitkiler tarafından absorbe edilebilir.

http://www.biyologlar.com/ekosistemde-yasayan-canlilar

Tüp Bebek ve Mikroenjeksiyon Hakkında Bilgi

Tüp Bebek Nedir? Yardımcı üreme teknikleri (YÜT) ya da ingilizce adıyla assiste reprodüktif teknikler (ART) kadın vücudunda üretilen yumurta hücrelerinin özeliğnelerle vücut dışına alınarak erkeğin spermi ile laboratuar ortamında döllenmesi ve elde edilen embriyo veya embriyoların kadın rahmi içine transfer edilmesimantığına dayalı işlemlerdir. Yardımcı üreme tekniklerinin kullanılmaya başlamasıyla bugün bir çok çift bebek sahibi olabilmektedir. Modern tıptaki yardımcı üreme teknikleri klasik tüp bebek ya da in-vitro fertilizasyon (IVF) ve mikroenjeksiyon ya da diğer adıyla intrasitoplazmik sperm enjeksiyonu (ICSI) dir. Modern tıptaki yardımcı üreme teknikleri klasik tüp bebek ya da in-vitro fertilizasyon (IVF) ve mikroenjeksiyon ya da diğer adıyla intrasitoplazmiksperm enjeksiyonu (ICSI) dir. Tüp bebek ve mikroenjeksiyon arasındaki tek fark döllenmenin şeklindedir. Mikroenjeksiyon ya da kısaca ICSI, yardımla üreme tekniklerinde gelinen en son noktalardan biridir. Bu yöntemle yumurtanın içine spermin direkt olarak girişi sağlanmaktadır. ICSI'in uygulamaya girmesi ile tüp bebek uygulamalarının ve özellikle de erkek problemlerine bağlı kısırlığın tedavi edilebilme şansı oldukça yükselmiş ve yeni ufuklar açılmıştır. TESE VE TESA olarak adlandırılan yöntemler ise semen örneğinde spermiolmayan ya da sperm üretimi olmasına karşılık dışarı atılamayan durumlar içinkullanılan tekniklerdir. Örneğin erkeğin kanallarının tıkalı olduğu ve testisindeki bol sayıdaki spermiboşalma ile çıkaramadığı durumlarda erkeğin testisinden iğne ile doku alınır,bunun içinden spermler bulunur ve elde edilen spermle döllenme sağlanır. Buişleme Testisden sperm aspirasyonu kısaca TESA denmektedir. Ya da testistendoğrudan parça/doku örneği alınır ve bu dokudan sperm elde edilir, buna datestiküler sperm ekstraksiyonu -çıkarılması (TESE) adı verilmektedir. TESE işlemi önceleri testisten kabaca bir iki doku parçası almak şeklindeykenşimdilerde operasyon mikroskobu kullanılarak işlem gerçekleştirilmektedir. Buişleme de mikroTESE denilmektedir. Klasik TESE uygulamasına göre hemsperm bulma şansı daha yüksek hem de testise zarar verme olasılığı dahadüşüktür. Testiküler sperm aspirasyonu (TESA) uygulamasında, kanalları tıkalı olanhastalarda sperm aspire edilerek yani negatif basınç ile çekilerek elde edilir. Tüm tüp bebek uygulamalarında, kullanılan değişik yumurtlama tedavilerininortak amacı fazla sayıda yumurta yapımını sağlamaktır. Bu tedaviye kontrollüyumurtalık uyarımı. More Sharing ServicesBu Sayfayı Paylaşın|Share on facebookShare on emailShare on favoritesShare on print Tüp Bebek Uygulamaları Hangi Durumlarda Yapılır? •Rahim kanalları (tüpleri) tıkalı olan kadınlarda •Sperm fonksiyonlarının ileri derecede bozuk olduğu durumlarda •Endometriozis hastalığı nedeniyle karın içinde yaygın yapışıklıkları olan ve tedavi ile gebelik elde edilemeyen kadınlarda •İmmünolojik (bağışıklık sistemini ilgilendiren) infertilitede •Bazı hormonal bozukluklarda •Diğer tedavi yöntemleri ile gebelik elde edilememesi durumlarında •Sebebi yapılan testlerle açıklanamayan infertilitede •Kalıtsal bazı hastalıkların embriyo aşamasında teşhis edilerek sağlıklı bir bebek elde etmek amacıyla (tutunma öncesi genetik tanı yöntemleri ile beraber) •Tekrarlayan düşükleri olan kadınlarda sağlıklı embriyoların genetik tanı yöntemi ile seçilebilmesi amacıyla •Aşılama yöntemi ile birkaç kez uygulanmasına rağmen gebelik elde edilememişse

http://www.biyologlar.com/tup-bebek-ve-mikroenjeksiyon-hakkinda-bilgi

Deniz timsahları

Her şey bundan tam 200 milyon yıl önce başlıyor. O tarihlerde de var olan timsah, henüz bir kara hayvanı... Ayakları üstünde yükselen gövdeleri ve gittikçe daralan yüz yapılarıyla, timsahtan çok yarış köpeklerini anımsatıyorlardı. Sadece içlerinden bir tanesi, bilinmeyen bir nedenle ayaklarından birini sudan hiç çıkarmıyordu. Bu türün su aşkı, aradan geçen 200 milyon yıla karşın hâlâ sürüyor. Dün, tek ayağını suya daldırmakla yetinen "Crocodylus porosus", bugün, tam 22 farklı timsah türü arasında, hem tatlı hem de tuzlu suda yaşayan tek örnek... Ancak hemen belirtelim, asıl tercihi Avustralya ve Hint Okyanusu'nun tuzlu suları... Deniz timsahları, pek aşina olmadıkları tuzlu sularda varlıklarını sürdürmek için bazı anatomik farklılıklar geliştirmişler. Ve bu farklılıkları ta atalarından beri korudukları ileri sürülüyor. En belirgin özellikleri, farklılaşmış tükürük bezleri... Hayvanın dilinin üstünde bulunan bu bezler, deniz suyunun içinde erimiş olan tuzun organizmaya girmesine engel oluyor. Böylece de, canlı bir salamuraya dönüşmesini engelliyor. Bütün dev görünüşüne karşın, deniz timsahları, türlerinin "XL" örneği değiller. En azından bazı organlarının yapısı nedeniyle... Örneğin, timsahtan çok kuşları anımsatıyorlar. Kalp sistemleri, onlar gibi dört bölmeli. Yine, kuşlar gibi çok gelişmiş bir işitme duyuları var. Oysa, diğer sürüngen türlerinin büyük çoğunluğu sağır yaratıklar... Son, ama tartışmalı bir nokta da, bu hayvanların bir görme yeteneğine sahip olup olmadıkları... Kimi araştırmacılara göre, böyle bir duyuları, özellikle de renkleri ayrıştırma yetileri var. Ancak henüz bilimsel olarak kanıtlanmış değil... Çünkü, bu oldukça iri ve vahşi hayvanlarla laboratuvar deneylerinin zorluğunu hemen hemen herkes kabul ediyor. . Suyun içindeyken, deniz timsahının gözleri bir üçüncü gözkapağı ile korunuyor. Deniz timsahları, kesinlikle aptal canlılar değil. Tam tersine, tüm sürüngenler arasında, ortalama zekâ düzeyinin üstüne çıkıyorlar. Bunun kanıtı olarak da, bilim adamları, bu hayvanlar arasında son derece gelişmiş bir hiyerarşi anlayışını gösteriyorlar. Gruplar halinde yaşayan deniz timsahları ailesinde, erkekler yaşam alanını kontrol ediyorlar. Dişilerin görevi ise, yavruların beslenmesi ve yetiştirilmesi... Bu minik grup içindeki tüm üyeler, özel sesler çıkararak birbirleriyle anlaşıyorlar. Deniz timsahlarının dilinde böğürme bir sevgi ve aşk gösterisi, homurdanma ise "dikkatli ol" mesajı... Eğer bir deniz timsahı çok koyu bir sessizliğe bürünmüşse, bu bir av peşinde olduğu anlamına geliyor. Bu deniz devleri, özellikle avlanma konusunda olağanüstü bir sabır örneği gösteriyorlar. Bir deniz timsahı, avının kendisine iyice yaklaşması için, tam 2 gün boyunca hiç kımıldamadan durabiliyor. Suyun içindeyken en tercih ettiği avlar, iri balıklar ve deniz yılanları... Yine içinde bulunduğu ortama göre avlanma stratejileri geliştiriyor. Denizdeyken açıktan açığa avlanan deniz timsahları, nehirlerde süper bir kamuflaj ustası kesiliyorlar. Suya yarı batmış olarak hareketsiz duruyorlar ve sadece gözlerini, kulaklarını ve burun deliklerini su üstünde bırakıyorlar. Deniz timsahı gerçek bir etobur... Üstelik, öyle özel bir tercihi de yok. Kendi cinsine yakın omurgasızlardan ördeklere, yılan balıklarından bufalolara kadar her hayvanın etiyle kendisine ziyafet çekebiliyor. Avını bir bütün olarak yuttuktan sonra, çok asitli özsuyu sayesinde, onları kemiklerine kadar sindirmeyi başarıyor. Enerji fazlasını ise, yağ biçiminde kuyruğunda ve sırt bölümünde depoluyor. Bu olağanüstü yağ depolarını kullanarak, yeni doğan bir deniz timsahı yavrusu 4 ay, bir ton ağırlığındaki yetişkin ise tam bir yıl boyunca yemek yemeden hayatta kalabiliyor. Vahşi, ama kesinlikle açgözlü olmayan deniz timsahları, kendi yavrularına karşı ola-ğanüstü şefkatliler... Yumurtalarını, humus (kara toprak) ve bitkilerden oluşturduğu yuvanın içine bırakan dişi deniz timsahı, iklim koşullarına bağlı olarak, 2-3 ay bunların üstünde kuluçkaya yatıyor. Bu dönemde çok sinirli olan dişi timsah, her türlü sese karşı duyarlı bir hale geliyor. Yavrularının ilk seslerini duyar duymaz, titizlikle yumurta kabuklarını kırıp parçalıyor. Böylece, yavrularının daha kolay biçimde dışarıya çıkmalarını sağlıyor. Bilindiği gibi, birçok timsah türü, yumurtaların kabuğunu kırmak için, onları ağızlarına alıp, dillerinden kaydırma yönteminden yararlanıyorlar. Deniz timsahlarının da bu şekilde davranıp davranmadıkları bilinmiyor. Ancak, ne biçimde olursa olsun yavrularına kavuşan dişi deniz timsahları, aylarca onların beslenmesini ve güvenliğini sağlıyorlar. Onları bir an bile yanlarından ayırmıyorlar. Küçük yavrular ısınmak için annelerinin sırtına çıkıyorlar. En küçük bir tehlike durumunda, anne timsah sırtında yavrularıyla suyun derinliklerine dalıyor. Annelerin yavrularını tehlikeye karşı uyarmak için kullandıkları bir yöntem de, kaslarını titretmek... Bu kas titreşimleri suyun içinde ses dalgalarına dönüşüyor ve çevredeki diğer annelerle yavruları tehlikeye karşı uyarıyor. Denizlerin bu ürkütücü yaratığının en büyük düşmanları yine kendi cinsleri. Zaman zaman, özellikle bölgesel egemenlik ve dişilere sahiplenme konularında aralarında ölümcül kavgalara tanık olunuyor. Bu hayvanların asıl düşmanı ise, insanoğlunun ta kendisi... 60'lı yıllarda, derilerinden hediyelik eşya, ayakkabı, çanta vb. yapmak için çok geniş kapsamlı bir deniz timsahı katliamı yaşandı. Bu hayvanların türü ciddi bir biçimde yok olma tehlikesiyle karşı karşıya geldi. Günümüzde, Avustralya'da "ulusal servet" olarak koruma altına alınan deniz timsahlarının sayısı her geçen gün artıyor. Bu artışın en büyük dinamiği ise, sayıları hızla çoğalan timsah çiftlikleri.

http://www.biyologlar.com/deniz-timsahlari

Donnan Dengesi

Benzer şekilde örneğin bitki hücre çeperindeki orta lamelde yer alan pektik asitlerin karboksil kökü, membran lipidleri arasındaki fosfolipidler gibi sabit iyonların yerleştiği iyon kanalları kütle akışı ile mineral iyonlarının ile geçişine elektrokimyasal direnç gösterir. Görünür serbest alanda dahi iyonların suyla birlikte hareketine engel olur. Sitoplazmik membranlardaki lipidlerin çok yüksek direncinin fosfolipidlerce dengelenmesinde olduğu gibi direnci amfoterik karakteri nedeniyle değişken olan proteinler seçici bir denetim sağlar. Protein helislerinin iyon kanalı görevi oluşturdukları porun girişinde serin gibi polar amino asitlerin bulunmasına bağlıdır. Bu ( - ) yüklü amino asitler katyon difüzyonunu destekleyerek seçicilik sağlar. Porların işleyişinin anlaşılması sayesinde porları kapayan maddelerin keşfi 1991 tıp nobelini alan ilaç grubunun bulunmasını sağlamıştır. Küçük mineral iyonlarını içeren çözeltiler membrandaki sabit iyonik moleküllerle aralarında Donnan potansiyeli denen elektriksel bir potansiyel farkının doğmasına ve Donnan dengesi adı verilen dengenin oluşmasına neden olur. Bu dengenin de sağlanması için zıt yüklü maddelerin ters yönde geçişi veya suda çözünmeyen formlarının çözünür hale dönüştürülmesi gerekir. Elektrostatik Donnan dengesinin çeşitli ölçeklerde oluşması hücre içi ve hücreler arası iyonik maddelerin taşınımında ve dağılımında önemli rol oynar. Bu terimle belirtilen olayın ayırt edici temel özelliği hareketi sağlayan difüzyon potansiyel farkının membranın bir tarafındaki sulu çözelti ile membranın diğer tarafta kalan yüzü arasında oluşmasıdır. Sitoplazmadaki nükleik asitler, fosfat grupları ile ve proteinler de karboksilleri ile Donnan fazları oluştururlar. Bu anyonik gruplar membranın her iki tarafındaki katyonları kendilerine çekerek yönlendirirler. Bu şekilde de net olarak bir geçişmenin görülmediği elektrostatik bir denge kurulur. Sıvı fazdaki katyonların membrana yönlenmesi anyonların da ters yönde artan bir derişim değişimi oluşturmalarına neden olur. Termik hareketliliğin artışı bu dengenin sarsılmasına ve hareketli iyonların elektriksel potansiyel farklılıkları yaratmasına, bu arada oluşan kimyasal potansiyel farklarını dengeleyecek şekilde de geçişme yapmalarına neden olur. Canlı hücre çözünmüş maddelerin derişimini ilgili maddeleri suda çözünmeyen bileşikleri haline dönüştürerek ortamdan uzaklaştırmak veya tersine tepkimeyle serbest hale geçirerek de denetim altında tutar. Çözünür maddelerin çözünmeyen bileşiklerine dönüştürülmesi entropi azalmasına neden olan kimyasal bağlanma ile sağlanabildiğinden endojen, enerji harcanarak yürütülen aktif bir olaydır. Ancak canlı hücrede gerçekleşebilir. Bu olayın temelinde iyon aktivitesi ve bu değerin özgüllüğünden doğan sabitesi yatar. İyon aktivitesi iyonun derişimine bağlı kimyasal ve yüküne bağlı elektriksel potansiyellerinin açıklayamadığı bazı konuları açıklamakta kullanılan bir terimdir. Yükleri eşit olan iki iyondan kütlesi küçük ve elektron sayısı az olanın yükünün dipol su moleküllerini çekerek çevresine toplama gücü daha fazladır. Çevresinde daha kalın bir su zarfı oluşturur. Sözü edilen denge, seçicilik sonucu bir taraftan diğerine geçişi kısıtlanan veya engellenen iyonik maddelerin birikmesine neden olur. Bu birikimin konusu olan yüklü maddeler serbest halde kalamadığından zıt yüklü iyonlarla birleşerek çözeltinin nötralizasyonununu sağlar. Bu nötralizasyon dengesi için gereken iyonik maddelerin çözünür hale geçmesi veya dışarıdan alınması gerekir. Örneğin Ca++ iyonu, iyonik yük / su zarfı oranı büyük olduğundan porlar üzerinde büzücü etki yaparak su zarfı büyük ve iyonik yükü küçük iyonların geçişini kısıtlar, K + iyonu ise tersine olarak şişirici etki yapar ve bu iyonların geçişini kolaylaştırır. Genelde bitki hücrelerinin yoğun şekilde K, Na ve Cl alış verişi yaptığı görülür. Bu iyonların hareketlilikleri de membranlarda potansiyel farklarının doğmasına neden olur ve Cl net yükün iki taraftaki dağılımının sıfıra eşitlenmesini sağlar. Goldmann denklemi ise K, Na ve Cl iyonu geçirgenliğinin büyük oranda K seçiciliği yönünde olduğunu göstermiştir. Elektroosmoz da membrandaki bir porun iç yüzeyinde sabit halde dizilmiş iyoniklerin yüklerinin tuttuğu su zarfları zıt yüklü iyonik maddelerin su zarflarını çekmesi sonucu yürüyen osmotik alımdır. Bu şekilde oluşan elektriksel alan membranın iki tarafında elektriksel yük farklılığı doğurur. Bu da sabitlenmemiş kinetik taneciklerin kütle akışı ile çekilerek ters yönlü bir alan oluşturmasına neden olur. Bu iki zıt yönlü alanın oluşumu sırasında doğan hareketlilik ile su molekülleri sürüklenir ve iletilir, elektroosmotik su alımı olur. Benzer şekilde membran veya çeperde pektik veya proteinik iyonlara zayıf -H bağları gibi bağlarla tutulmuş, adsorbe olmuş olan zıt yönlü yonlar yerlerini alabilecek başka iyonlarla yer değiştirerek serbest hale geçer ve iletilir. Bu olaya da iyon değişimi adı verilir. İyon değişiminde aynı yüklü iyonlar birbirini ittiğinden dengeye çabuk ulaşılır, yani az miktarda madde bu olaya girebilir. Bağlanmayı sağlayan kuvvet adsorpsiyon kuvvetinden daha yüksek enerjilidir, kopması daha zordur. Ancak iyonlaşmış asidik veya bazik maddelerin hidroksonyum ve hidroksil veya karboksil kökleri bağlanmış olan katyon veya anyonların yerini alabilir. Bu arada açığa çıkan hidroksonyum ve hidroksiller de su oluşturduğundan su iletimi de sağlanmış olur. Bu olayların tümünde hidroksonyum ve hidroksil iyonları önemli rol oynadığından membranların ve özsuyun pH değeri ve değişimleri önemli rol oynar. Hücre organik asit sentezi ile pH ve amfoterlik denetimi, sentez yolu ile özsudaki serbest maddeyi bağlama veya başka maddeye dönüştürme gibi yollarla kimyasal potansiyel artışı yönünde aktif alım yaparken solunum enerjisi kullanır ve solunumun hızlandığı görülür. Ayrıca osmotik basınç ölçümlerinin kriyoskopik yöntemle yapıldığında sınır plazmoliz yöntemiyle elde edilen değerlerlerden farklı değerler vermesi ek bir su potansiyelinin olduğunu göstermiştir. Birçok bitki türünde yerüstü organları kesilerek terlemenin emiş kuvveti ortadan kaldırıldığında da kök ksileminden su salgılanması, kış uykusu kırılan birçok odunlu türünde daha hiç yaprak oluşmamışken sürgünlere su yürümesi kök basıncı denen aktif su alımının ve pompalanmasının kanıtlarıdır. Bu basıncın gün içinde değişim göstermesi, solunum inhibitörleri ve bazı bitki hormonları gibi uygulamalarla durdurulabilmesi de göstergeleridir. Aktif alım ve iletimin önemli bir göstergesi iyonun içine girdiği membranın iç tarafında, yani sitoplazma veya organelin içinde elektrik yükü artışı olmasıdır. Pasif alımda elektriksel nötralliği sağlayacak şekilde zıt yüklü iyon alımı veya aynı yüklü iyonun boşaltımı söz konusudur. Aktif geçişde membranın iki yüzü arasında da membranın kapasitansı ile orantılı olarak belli miktar membran potansiyeli farkı oluşur. Bu fark kısa bir süre sonra boşalarak sıfırlanır ve sonra tekrar artar, bu mekanizmaya da iyon pompası adı verilir. İyon pompası çalışınca membrandaki pasif geçiş olayları da doğal bir şekilde etkilenir ve membrandaki değişimi dengeleyecek yönde farklılaşır, difüzyon potansiyeli artışı ile elektrik potansiyelinin düşmesi sağlanır. Bitki hücresi membranlarının kompozisyonuna göre elektriksel dirençleri 1 - 8 Kohm / cm2 arasında değiştiğinden pompaların etkinliği membran kompozisyonunun denetlenmesi yolu ile hücre tarafından denetlenebilir. Bu sayede de bitkiler tuzlu topraklara dahi adaptasyon sağlayabilir. Membran direncinin yüksek oluşu, pompanın etkili çalışması ile aktif iletimin neden olduğu potansiyel farkı da arttığından saniyede 20 pikomol / cm2 gibi yüksek bir debi ile iyon alınabilmektedir. Aktif iletimin bir özelliği de pasif olarak yürüyen diğer olaylara göre sıcaklık değişimlerinden çok daha büyük oranda etkilenmesidir. Pasif olayların Q10 değeri yaklaşık olarak 1 civarında iken aktif alım ve iletimde bu değer birçok enzimatik olayda olduğu gibi 2 civarındadır. Bunun da nedeni membranın yaptığı enerji bariyeri etkisidir. Tıpkı enzimatik tepkimelerin aktivasyon enerjisi gereksinimindeki gibi aktif alımın olabilmesi için bu enerji düzeyinin aşılması gerekir. Bu nedenle aktif iyon alımı mekanizması bir pompaya benzer şekilde çalışır. Gerekli enerji depolanıncaya kadar alım işlemi kesintiye uğrar. Sıcaklık artışı da bu mekanizma aracılığı ile etkili olur. Aktif iyon alımının enzim kinetiğindeki Michaelis-Menten denklemine uyan değişimleri enzimler aracılığı ile yürüyen bir olay olduğunu göstermiştir. Bu tür olaylara enerji sağlayan madde bekleneceği üzere ATP’dir ve ATPaz enzimi aktivitesi de olayın denetimini sağlar. ATP hidrolizi ile açığa çıkan hidroksonyum iyonları ise ters yönde hareket ederek elektrostatik dengeyi sağlar. En iyi bilinen Na+ / K+ ATPaz’dır. İki peptid çiftinden oluşur ve Mg++ tarafından katalizlenen ATP hidrolizine bağımlıdır. Çeşitli iyon pompaları olup belli iyonlar için seçici oldukları bilinmektedir. Aktif alımın iyon seçici özelliği vardır ve yukarıda anlatılan mekanizma bunu açıklamak için yeterli değildir. Bu nedenle 1930 larda seçiciliği olan aktif taşıyıcı moleküllerin varlığı fikri ortaya atılmıştır. Deneyler benzer K+, Rb+ iyonlarının ve Ca++ ile Sr++ iyonlarının aynı taşıyıcı için rekabet ettiğini, bazı hücrelerde K+ iyonunu alıp, Na+ iyonunu boşaltan ve aynı mekanizma ile Mg++ ve Mn++ için çalışan diğer bir pompanın olduğu, Cl-, B- ve I- taşıyan tek bir sistem olduğunu gösteren deneysel veriler elde edilmiştir. Bu kadar seçici maddelerin ancak proteinler olabileceği belirtilmiş ise de 50 yıl kadar uzun bir süre kesin kanıtlar ortaya konamamıştır. Aktif pompaların varlığının bir kanıtı da dıştaki iyon derişiminin artışı ile artan solunum ve iyon alımının belli bir derişime ulaşıldıktan sonra doygunluğa erişmesidir. Bitkilerde bu değer tipik olarak 1 - 10 mmol/ gr. taze ağırlık - saatdir. Aktif alım mekanizmalarının ortaya çıkarılıp genel çerçevesi ortaya çıkarıldıktan sonra iyon alımının büyük oranda pasif şekilde alındığı ve aktif alımın hücrenin gereksinim tablosuna göre belli iyonların seçici olarak alımında rol aldığı, tamamlayıcı olduğu anlaşılmıştır.

http://www.biyologlar.com/donnan-dengesi-1

Böceklerde Anatomik Yapı

A- Dis Iskelet l. Kas baglantisi için genis alan, 2. Su kaybini kontrol için en uygun imkan, özellikle ufak vücutlu bireylerde, 3. Iç organlari dis zararlardan tam koruma durumu. B- Kanat: Şiddetli rüzgarlara açik olan adalar bir tarafa birakilacak olursa böceklerin uçma yetenegi, hayatta kalma ve dagilma (dispersal) oraninini çok arttirmistir. Uçma yetenegi, beslenme ve çogalma alanlarinin genislemesini ve düsmanlardan kaçma olanagini saglar. Besininin veya konaklarinin az ve seyrek bulundugu hallerde, bunlarin elde edilebilmesine yaramaktadir. Örnegin les üzerinde beslenen bir tür, kanatlari sayesinde civarda beslenmesine uygun ölü hayvanlari kisa bir zaman içinde bulabilir. C- Küçük Vücut: Böcek evrimi az sayida büyük fert yerine çok sayida küçük fert meydana gelmesini gerektirecek bir yol izlemistir. Bu sekilde hem az besinin yeterli olmasi hem de düsmanlardan kaçma ve gizlenme sansi artmistir. Vücudun küçük olmasi, hacme oranla yüzeyin fazla olmasini gerektirir. Böylece buharlasma katsayisi arttigi için vücut örtüsü ince olan türlerin karasal hayatta yasayabilme olanagi ortadan kalkabilir. Iste dis iskelet bu buharlasmayi kontrol eder. Dis iskelet, böceklerin küçük vücut olma olanagini saglayan en önemli etkenlerden birisidir. D- Organlarin Uyumu: Böceklerde vücut parçalarinin adaptasyon kabiliyeti, bir tek organin farkli görevleri yapabilecegi biçimde gelismistir. Örnegin Mantislerin ve bazi Hemipterlerin ön bacaklari, avini yakalamaya ve yeme sirasinda tutmaya yaramak suretiyle bir hareket organindan çok yardimci agiz parçasi gibi islev görür. Diger hallerde de ayni yapi farkli sartlarda is görecek sekilde uyum gösterir. Örnegin solunum sisteminde meydana gelen degisiklikler su ve karasal yasama sartlarina uymayi saglar. E- Tam Baskalasim: Tam baskalasim (Holometaboli) görülen böceklerde hayat döngüsü dört ayri bölüme ayrilir. l. Yumurta 2. Larva veya beslenme devresi 3. Pupa yani durgun sekil degistirme evresi 4. Ergin veya üreme evresi. Tam baskalasim kinkanatlilar (Coleoptera) ve sinekler (Diptera) gibi çok sayida evrimlesmis türü kapsayan böcek ordolarinda görülür. Bu tip hayat seklinde gelisme, larva evresindeki beslenmeye dayanir. Ergin evrede az çok durgun bir metabolik faaliyet vardir. Beslenme sperm veya yumurtalarin olgunlasmasi içindir. Buna göre larva ve ergin tamamen ayri habitat veya nis'lerde yasama durumunda kalir. Böylece larva gelisme için en uygun sartlari bulur. Diger taraftan ergin de döllenme, dagilma ve yumurta birakmak için en uygun ortami seçer. Tam baskalasim, bu gruba sinirsiz habitat çesidi ve besin olanaklari açmistir. Ayri ayri hayat tarzinin faydalarini birlestirme ve zararlarindan kaçinma olanagini vermistir. Bunlarin disinda büyük üreme yetenegi, bu grubun basarisinin büyük etkenidir. Böceklerin basarili bir grup olmasinda rol oynayan faktörler türün devamini saglar. Ancak hiçbiri için en önemlisi budur diyemeyiz. Bu faktörlerin hiçbirisi tek basina böceklerin bugünkü çesitlilik ve çokluklarina erismelerinde en önemli unsur olarak ele alinamaz. Olay oldukça karisiktir. Bu faktörlerin çogunun ortak etkisi ve diger etkenlerin birlikte etkisi bu sonucun meydana gelmesine sebep olabilir. Evrimsel teoriye göre su hususlarda bilhassa önemlidir. l. Uçma yetenekleri ve hava kitleleri araciligi ile de engelleri asabilmeleri ve yeni yerlere yerleserek fazla sayida yeni türlerin evrimlesmesi. 2. Çok sayida böcek grubunun kalitsal mekanizmasinda meydana gelen degismelerle izole populasyon tesekkülü.

http://www.biyologlar.com/boceklerde-anatomik-yapi-1

 
3WTURK CMS v6.03WTURK CMS v6.0