Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 471 kayıt bulundu.

Mantarlar ( Fungi)

Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır.

http://www.biyologlar.com/mantarlar-fungi

Köpek Balıkları

Köpek Balıkları

Köpek balığı (Selachimorpha), kıkırdaklı balıklar (Chondrichthyes) sınıfının Elasmobranchii alt sınıfını oluşturan iki üst takımdan biri olan Selachimorpha (diğeri, Batoidea) içinde sınıflanan canlı türlerinin ortak adıdır.Beslenmelerine göre üç gruba ayrılırlar.Serbest yüzen deniz canlılarıyla beslenenler: Hexanchus, Lamnidae, Alopias, Carcharhinidae, Squalidae, SomniosusTabanda yaşayan deniz canlılarıyla beslenenler: Heterodontida, Scyliorhinidae, Triakidae, Oxynotidae, Echinorhinidae, Pristiophoridae, SquatinoideiPlanktonla beslenenler: Dev köpek balığı (Cetorhinus maximus), balina köpekbalığı (Rhincodontidae)Vatozlar gibi köpekbalıklarının kanında da diğer canlılara nazaran daha fazla üre bulunur (% 05 - 8). Bu oran Teleostei balıklarınkinden yaklaşık yüz misli daha fazladır.Birim hacimdeki alyuvar sayısı Teleostei balıklarınkine göre yaklaşık 5-8 misli daha azdır. Bu eksiklik her alyuvarın yüzeyinin yaklaşık 5 defa daha büyütülmesi ile giderilmiştir. Sınıflandırma  Takımlar Üst alem:     Eukaryota - ÖkaryotlarAlem:     Animalia - Hayvanlar (Hayvanlar)Alt alem:     Eumetazoa - Gerçek dokulular(Grup)     Bilateria - Bilateral simetrililerÜst şube:     Deuterostomia - İkincil ağızlılarŞube:     Chordata - Kordalılar (Kordalılar)Alt şube:     Vertebrata - Omurgalılar (Omurgalılar)İnfa şube:     Gnathostomata - GerçekçenelilerSınıf:     Chondrichthyes - Kıkırdaklı balıklarAlt sınıf:     Elasmobranchii - YassısolungaçlılarÜst takım:     Selachimorpha- Köpekbalıkları    Carcharhiniformes    Heterodontiformes    Hexanchiformes    Lamniformes    Orectolobiformes    Pristiophoriformes    Squaliformes    Squatiniformes    Xenacanthida (soyu tükenmiş)  

http://www.biyologlar.com/kopek-baliklari


Kloroplast’ın Kökeni

Kloroplast’ın Kökeni

Bristol Üniversitesi liderliğindeki yeni bir araştırma. Kloroplastın ilk geliştiği kökenine, zamanlama ve yaşam alanına ışık tuttu. Gösel: Patricia Sanchez-Baracaldo

http://www.biyologlar.com/kloroplastin-kokeni

CANLILAR NASIL OLUŞTU VE GELİŞTİ

Yakın geçmişteki atalarımız acaba nasıl bir canlıydı?Daha önce neydik? Oksijenli ortamdaki yaşam nasıl bir canlıyla başladı? Bilim çevrelerinde, insanların ve hayvanların atasının, bir barsak paraziti (giardia)ne benzer bir canlıdan türediği görüşü ağırlıkta. Dünya var olduğundan beri üzerinde milyarlarca canlı, yaşam sürdü. Bu gün de en az 30 milyon tür yaşamını sürdürüyor. Elbette tüm canlıları birer birer sayma ve sınıflandırma olanağı yok. 18. yüzyılda Linnaeus, 10 000 canlıyı sınıflayabilmişti. Daha sonraları canlıların nasıl sınıflandırılacağı konusu gündeme geldi. Bir yol, organizmaları gözle görülebilir özelliklerine göre sınıflamaktı( Taksonomi). Darwin' le birlikte bu bakış açısı değişti. Canlılar soy ağaçlarına göre sınıflandırılmaya başlandı. Bu sınıflandırma, evrimsel ortaya çıkışın izini sürer. Güneş Sistemi' nin yaşi yaklaşik 4.5 milyar yil. İlk canlıların oksijensiz ortamda, 4.5 milyar yıl önce türediklerini biliyoruz. O zamanlarda atmosfer, büyük oranda azot ve daha az oranlarda karbon dioksit, metan, amonyak gazlarıyla ve az miktarda su buharından oluşmuştu. Oksijen yoktu. Ozon da yoktu. Ozon tabakası olmayınca Güneş' ten gelen morötesi ışınlar, yeryüzünü tüm şiddetiyle bombalıyordu. Bu morötesi ışınlar, yüksek enerjili ışınlardı. Moleküllerin Yaşam Savaşi Morötesi ışınlar, bol miktarda çakan şimşek ve yıldırımlar, milyonlarca yıl boyunca, mevcut basit molekülleri parçaladı. Parça birimler, birleşerek yeni moleküller oluşturdu. Bazı moleküller, başka moleküllerin oluşmasını kolaylaştırdı. Böylesi maddelere katalizör diyoruz. Bazı moleküller, kendinin aynısı olan moleküllerin oluşmasını da kolaylaştırır ( kendi kendinin katalizörü, otokatalizör). " Bugün artık kopyalama (çoğalma) işleminde belli protein ve enzimler aracı oluyor. İkinci olarak, "kendinin tıpkısı" bir molekül yaratmak, özelliklerini "yeni kuşak" moleküle aktarmak demek oluyor ki, bu da "kalıtım" mekanizmasının müjdecisidir. Kopyalama işlemi sırasında arada bir hatalar oluyordu. Yeni yaratılan moleküllerin büyük bölümü, bu hatadan ötürü bulundukları ortama uyamıyor, hemen parçalanıyordu; ya da ortama uysa bile çoğalabilme özlelliğini kaybediyor ve çoğalamıyordu. Ancak, çok nadiren de olsa, bazı hatalı moleküller hem ortama uyabiliyor hem de çoğalma yeteneğini kaybetmiyordu. Ortalığı dolduran bu değişik moleküller yeni bir tür oluşturuyorlardı. Bu da canlıların çeşitliliğini sağlayan" mütayon" mkanizmasının başlangıcını oluşturdu." Bu değişik moleküller, canlı çeşitliliğinin başlangıcıydı. Bazı moleküller sıcağa, yüksek enerjiye dayanıklıydı; onlar "hayatta" kalıyordu. Bunlar diğerlerinin dayanamayacağı ortamlarda çoğalabiliyordu. Kimileri sıcaktan parçalanıyor ve "ölüyor" du.(Prof. Dr. Orhan Kural, Bilim ve Teknik 343. sayı) Sudan Doğan Yaşam Moleküllerin yaşam savaşi suda, deniz ve göllerde kök salmişti. Suyun dişindaki moleküller, morötesi işinlarin bombardimaniyla paramparça oluyordu. Su ise bu işinlarinin bombardiman ateşini kesiyordu. Denizlere ve göllere siginmiş moleküller, uzaylilarin saldirisina ugramiş dünyalilar gibi adeta bir siginaktaydilar. Su, sicakligi sabit bir ortamdi; ayrica moleküllere hareket ve yaşama olanagi taniyan iyi bir akişkandi."Yaşayan" moleküller, giderek daha karmaşik yapilar geliştirdi. teel yapilari, " çift sarmal" olarak bildigimiz DNA idi. Bu moleküller, çevrelerine bir zarf yaparak kendilerini diş etkilerden bir ölçüde korumayi başardilar ve böylece ilk bakteriler oluştu. Bu noktaya gelme, yaklaşik yarim milyar yil aldi. Bakteriyi Küçümsemeyelim! Bakteriler bir anlamda en ilkel canlılar. Ama bakterileri küçümsemeyelim. " Biz, her zamanki insan merkezli bakışımızla "en başarılı yaratık insandır" der ve bunu hiç sorgumlamayız. Oysa ki, bizim türümüz olan homo sapiens sapiens' in bilemediniz en fazla 100 bin yıllık bir geçmişi var, geleceği de pek parlak görünmüyor. Bakteriler 3.5 milyar yıldır var, heryere yayıldılar, değil insan, başka hiçbir canlının yaşayamayacağı koşullar altında dahi yaşamaya uyum sağladılar ve insanlar yok olduktan sonra da, hiçbir şey olmamışçasına varlıklarını sürdürecekleri kesin. Üstelik bakterilerin olmadığı bir dünyada başka hayatın olması da pek düşünülemez. şimdi siz söyleyin, gerçek başarı kiminki? Bir süre sonra bazı bakteriler, işbirliğine giderek yeteneklerinde özdeşleştiler, bu küçük bakteriler toplumu da ilk hücrelerei yarattı. Bu hücrelerin bazıları çoğalma sırasında bölünürken birbirinden ayrılmadılar ve zamanla çok hücreli organizmalar oluştu. Bu da yaklaşık olarak 3 milyar yıl önce oldu....." "Derken, yaklaşik 2 milyar yil önce, doga en büyük keşfini yapti: Cinsiyet.... O zamana kadar, bakteriler ve hücreler tek başlarina bölünerek çogaliyorlardi. Bölünme sirasinda kendileri ile ilgili yapisal ve davranişsal her türlü bilgiyi (yani genetik kodu) taşiyan DNA' lar kopyalaniyor ve iki yeni varlik arasinda paylaşiliyordu. Bu temel işlem, hiç degişmemişti..... Derken, bazi hücreler çogalirken kendi DNA' larina bir başka hücrenin DNA' larini katarak genetik kodlari kariştirmayi keşfettiler. Sonuçta her iki hücreden farkli bir hücre meydana geliyordu. Birden bire, mütasyon çok büyük bir hiz kazandi ve çeşitlilikte bir patlama oldu. Bunun önemi şöyle anlaşilabilir: Ilk 2 milyar yilda evrim, ancak bazi basit organizmalar yaratabildi. Cinsiyetin keşfinden sonraki 2 milyar yilda ise bugün çeremizde gördügümüz bu inanilmaz çeşitliligi yaratti." Kendini, Türünü Koru ve Çoğal "Bu sıralarda orada bulunnsaydınız, deniz ve göllerin içindeki bakterileri, tek ve çok hücreli canlıları görebilseydiniz aklınıza gelecek cümlecik mutlaka şu olurdu: " Bir faaliyet, bir faaliyet...!" Gerçekten de bu canlı-ların adeta oraya buraya koştuklarını, hızla çoğaldiklarını, bazılarının diğerlerini yediğini, bazılarının ise ortaklıklar kurup bir takım üstünlükler sağladıklarını görecektiniz. Bütün bunlar taa başından beri süregelen 1 numaralı genitik emrin uygulanmaları idi : "Kendini, türünü koru ve çoğal ". Bunu yerine getirmek için bütün türler kendilerine uygun taktik ve stratejiler geliştiriyor, bunlardan en başarılı olanların sahipleri ortama egemen oluyor, diğerleri yok oluyordu. Bu amansız mücadele hiç dinmeden bugüne kadar geldi. Cinsiyetin keşfinden 500-600 milyon yil sonra önemli bir adim daha atildi. Bazi bakteriler atik olarak oksijen üretmeye başladilar. Başlangiçta, varolan canlilar için bir zehir olan bu yeni gazi kullanarak enerji üretmeyeyi ögrenen canililar büyük üstünlük sagladilar, çünkü yeni enerji üretim mekanizmasi eskiye göre çok daha verimli idi." ( Bilim ve Teknik,TÜBITAK, 343. sayi s: 29 ; Prof. Dr. Orhan Kural) “Atmosferdeki oksijen miktarının ancak % 1' e ulaşması yaklaşık 2 milyar yıl önce gerçekleşmiştir." Bugünkü yaşamın sürdüğü ortamın büyük bir kısmı oksijenli kara ortamı olduğu, ve insanoğlu da bu ortamın bir üyesi olduğu için, oksijensiz yaşamın önemi gözden kaçabilir. Oysa oksijensiz ortamın canlıları, yakından tanıdığımız gelişmiş, çok hücreli canlıları incelerken değerli açılımlar sunabilir. 3-4 milyar yıl öncesinin oksijensiz ortam canlılarının yaşadığı ortamda ancak iz miktarda oksijen vardı. Canlıların evriminde oksijenin rol oynamaya başlamasından çok önce, 500 milyon yıl boyunca, oksijensiz ortam canlılarının hükümranlığı sürmüştü. Bu sürecin ortalarında bir yerde, Güneş enerjisini kullanarak fotosentez yapan bir prokaryot türü; siyanobakteriler türemişti.... Büyük olasılıkla, bugün soluduğumuz oksijen moleküllerinin bir kısmı da, yaklaşık 2 milyar yıl önce, siyanobakterilerce üretilmiştir." Atmosferdeki oksijen miktarı arttıkça oksijene bağımlı bakteriler türedi. Bunlar, hücre zarı, hücre çekirdeği, bağımsız organeller gibi öğelerle donatılmış canlı türleriydi. Oksijen enerji metebolizmasında olağanüstü bir verimlilik artışı sağlamıştı. Öte yandan oksijenin zehir (toksik) özlelliğini gidermek için canlılar enzim (biyolojik katalizör) üretmeliydi Ayrıca oksijene dayanmayan fotosentez sistemlerinin, oksijen kullanan sistemlerden mekanik bakımdan çok daha basit oluşu, oksijenli fotosentezin evrim tarihinin ileri bir aşamasında ortaya çıktığını gösteriyor." Zamanla atmosferde çoğalan oksijen, ozon tabakasını yarattı, bu da morötesi ışınları önemli ölçüde kestiği için artık canlıların sudan çıkmalarına engel kalmadı. Sonuçta karalar, hızla artan bir bitki ve hayvan çeşitliliği ile doldu. Bitkiler oksijeni üretiyor, hayvanlar tüketiyor, hayvanlar karbon dioksit üretiyor, bitkiler tüketiyordu. Bitkiler enerjilerini Güneş' ten alıyor, hayvanların bazıları bitkilerin bu hazır enerjilerini, onları yiyerek alıyor, bazıları ise daha yoğun bir enerji almak için diğer hayvanları yiyorlardı.Daha sonra da ölen hayvanlar, yapı maddelerini, çürüyen vücutları ile toprağa geri veriyor, bu da bitkiler tarafından alınıyor, çıkar zinciri tamamlanıyordu. Herkes gül gibi geçiniyordu. Bu, o kadar iyi işleyen bir mekanizma idi ki günümze kadar değişmeden geldi. Bütün bu gelişmeler sırasında, her adımda genetik bilgilere sürekli yenileri ekleniyordu. Genellikle eski bilgiler kalıyor, yeni edinilenler ekleniyordu. Buna örnek olarak, virüslerin (yalnızca bir parazit olarak yaşayabilen en basit canlıdır) genetik kodunda yaklaşık 10 bin "bit" vardır (Buradaki "bit", parazit değil, "bilgi taneciği" diye tanımlanabilecek olan bilgi ölçüsü). Bir bakterininkinde 1 milyon, bir amibinkinde 400 milyon ve bir insanınkinde yaklaşık 5 milyar bit vardı. Hemen gözünüze çarpmıştır, bir amip ile bir insan arasında genetik bilgi olarak yalnızca 10 kadar bir katsayı var, bu çok aşağılayıcı değil mi? Değil aslında, o fazla bitlerin bir kısmı çok önemli bir gelişme için kullanılmış: Bir yazılım üretme ve depolama organı, yani beyni geliştirmeye." (Orhan Kural, Bilim ve Teknik 343. sayı) Fotosentez, yalnız oksijenle olmaz. Örneğin, elektron vericisi olarak su yerine hidrojen sülfürü kullanan fotosentez sistemleri, atık olarak oksijen yerine kükürt salar. Oksijensiz ortamın canlıları bu yolla yakıt olarak yalnız Güneş enerjisini kullanabilir. Tek hücreli bu ilk hayvanlar, giderek oksijen kullanmaya başladı. Organizmaların, oksijenli yaşama görece hızlı bir biçimde uyum sağladıkları düşünülüyor. Bu kurama göre, organizmalar oksijenle beslenen küçük organizmaları bünyelerine almıştı. Bu küçük organizmaların mitokondri organelinin atası olduğu düşünülüyor. Mitokondri, hem kendisi, hem de konakladığı hücre için oksijeni ATP enerjisine dönüştürüyordu. Buna karşılık büyük hücre de mitokondri için protein sentezliyordu. Günümüz hücrelerindeki mitokondri organeli, işte bu bakteri benzeri atadan türemiştir. mitokondriye bitki ve hayvan hücrelerinde, ayrıca bitkilerin kloroplastlarında rastlanır. Mitokondri, kendi DNA sına sahiptir ve hücre bölünürken bağımsız biçimde kendi kendini kopyalayabilir. Elde edilebilen en eski mitokondrili fosil 850 milyon yıl öncesine ait. ( Bilim ve Teknik 332. sayı, Özgür Kurtuluş)

http://www.biyologlar.com/canlilar-nasil-olustu-ve-gelisti

Ökaryotik Kromatinin Fonksiyonu

Ökaryotik Kromatinin Fonksiyonu

Vücudunda belirgin bulan genetik özellikler uzak atalarınızdan miras alınmıştır; milyonlarca yıl geriye uzanan kesintisiz bir nesil kuşağından gelmektedir.

http://www.biyologlar.com/okaryotik-kromatinin-fonksiyonu

Kambriyen Öncesi

"Kambriyen öncesi" yeryüzünün oluşumundan Kambriyene kadar geçen dört milyar yıllık zaman dilimidir. Yeryüzü tarihinin 7/8'lik bölümü, Kambriyen öncesinde geçer. Dünyanın yüzeyinin soğuyup, katılaşması, kıtasal levhaların, atmosferin ve okyanusların oluşması. Yaşamın jeobiyokimyasal süreçler sonucu ortaya çıkması, bakterilerin evrimi, atmosferin oksijence zenginleşmesi, ökaryotların evrimi ve ilk hayvanların ortaya çıkması hep Kambriyen öncesinde gerçekleşir. Ne var ki Kambriyen öncesine ait bilgileriniz son derece sınırlı ve tartışmalı. Yeryüzünde bilinen en eski kayaçlar 3.8 milyar yıl öncesine ait. Bu zamandan önceki kayaçlar jeolojik olaylar sırasında aşınarak ya da yeniden magmaya karışarak yok olmuş. Dünyanın 4,5 milyar yıl olarak biçilen yaşı, jeolojik etkinliğin olmadığı Ay'dan getirilen taşların ve yeryüzüne düşen meteorlar üzerinde yapılan çalışmalarla bulunmuştur. Dünyanın ilk oluşumu sırasında (Hadeyan) ilk atmosfer ve okyanuslar oluşmuştur. Bu dönemde yeryuvarı çok sayıda meteor düşmesine hedef olmaktaydı ve volkanik etkinlik çok yüksekti. Dünyamız, volkanların püskürttüğü metan, amonyak, su buharı, hidrojen sülfür, karbon mono ve dioksit, azot, fosfor ve kükürt gibi gazlardan oluşan ilkel ve bugünkü canlılar için zehirli bir atmosferle çevriliydi. Henüz ozon tabakası oluşmadığından güneşin mor ötesi ışınları yeryüzüne kolaylıkla ulaşıyordu. Maddelerin yüksek enerji altında sentezlenmesi sonucu yeni moleküller oluştu ve okyanusların korunaklı yerlerinde birikti. Bu şekilde başlayan ve uzun süre devam eden kimyasal evrim süreci ile moleküllerden bir kısmı değişime uğradı ve canlılığın temel maddesi olan DNA ve RNA molekülleri haline geldi. Daha sonraki dönem (Arkeyan) Biyolojik evrimin başlangıcı kabul edilmekte ve ilkel oksijensiz yaşamın ortaya çıktığı varsayılmaktadır. Bu devirdeki ilk okyanuslarda oksijen yoktu. Daha önceki devirde oluşan DNA molekülleri, canlılığın çeşitlenmesinde "protein sentezinin denetlenmesi" gibi önemli bir rol üstlendi. Böylelikle, yaklaşık 3-4 milyar yıl önce "bir gen + bir enzim" şeklinde ya da 1989 ‘da Sidney Altman ve Thomas Cech tarafından keşfedilen RNA’dan yapılmış enzim (Ribozim) benzeri bir molekülün oluştuğu ve bunlarında kendi eşitini yapabilen ilk canlı moleküller meydana geldiği öne sürülmüştür. Bu ilk hücreydi ve biyolojik evrim süreci başlamış oluyordu. Oksijensiz solunum yapabilen ilk canlılar (protobiyota) çevrelerinde birikmiş besin maddelerini kullanarak kendi enerjilerini ürettiler. İlkel hücrelerin çekirdekleri, hücre zarları ve özelleşmiş aygıtları (organelleri) yoktu. Hücre proteinden yapılmış bir zar ile çevriliydi ve içinde genetik kodun bulunduğu DNA zinciri (kromozom) yer alıyordu. Prokaryotik bakteriler adı verilen bu canlılar, yaklaşık 3.3 milyar yıl önce güneş enerjisini kullanarak "fotosentez yapma" özelliği kazandılar. Fotosentez yapabilen yeni tip bakteriler (siyanobakteriler), o zamana kadar oksijensiz olan okyanuslara oksijen aktarmaya başladılar. Kambriyen öncesi dönenim son zamanlarında (Proterozoyik) kompleks çok hücreliler ortaya çıkmıştır. Bunun dışında oksijenli atmosfer oluşmuş, bakteriler yaygınlaşmış,çekirdekli hücreler (ökaryotların) gelişmiş ve nihayetinde çok hücreli bir fauna (edikara faunası= yaklaşık 700 milyon önce ortaya çıkan hayvan faunası) oluşmuştur. Dünyanın ilk oluşumu sırasında dünya coğrafyasına daha çok denizler denizler ve ufak kara parçaları egemendi. Ancak, yaklaşık 3.5 - 3 milyar yıl önce bu levhacıklar konveksiyon akımları nedeniyle süratle çarpışarak birbirine eklendi ve yeryuvarının ilk kıtaları oluşmaya başladı. Proterozoyik sırasında devam eden kıtasal hareketlerle dev boyutlu kıta "Rodinia" oluşmuştur.

http://www.biyologlar.com/kambriyen-oncesi

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

Kıkırdaklı balıkların özellikleri

Üst alem: Eukaryota - Ökaryotlar Alem: Animalia - Hayvanlar Alt alem: Eumetazoa - Gerçek dokulular (Grup) Bilateria - Bilateral simetrililer Üst şube: Deuterostomia - İkincil ağızlılar Şube: Chordata - Kordalılar Alt şube: Vertebrata - Omurgalılar İnfa şube: Gnathostomata-Gerçekçeneliler Sınıf: Chondrichthyes - Kıkırdaklı balıklar (Huxley, 1880) Kıkırdaklı balıklar ya da Chondrichthyes; karmaşık yapılı çiftleşme organları ve pulları olan balıklardır. İskelet birbiriyle birleşmiş omurlara sahiptir. Vücutları su damlası/füze (fusiform) şeklinde ya da yanlardan basık (dorso-ventral) şekilde yassılaşmış balıklardır. Vücut sıcaklıkları çevreye bağlı olarak değişen (poikloterm) canlılardır. Deri sert, plakoid pullarla kaplı ve bol miktarda mukus bezi içermektedir. Tek ve çift yüzgeçleri var olup, ventral yüzgeçler erkeklerde değişikliğe uğrayarak, kopulasyon organına dönüşmüştür. Kuyruk (kaudal) yüzgeci çatallı biçimdedir. Kalpleri bir kulakçık ve karıncık olmak üzere iki gözlüdür. Alyuvarları çekirdekli ve oval yapıdadır. Solungaçları 5-7 çifttir. Hava keseleri bulunmaz. Ağızlarında çok sayıda diş vardır. Ayrı eşeylidirler. Çiftleşme sırasında erkekler spermaların bir kopulasyon organı yardımıyla dişinin kloakına verir. Büyük yapılı yumurtalar segmentasyondan sonra yavaş yavaş gelişir. Bu gelişme süresi 9-25 ay arasında değişir. Alt sınıf Elasmobranchii - Yassısolungaçlılar Üst takım Batoidea - Vatozlar ve tırpana balıkları Takım : Myliobatiformes - Takım : Pristiformes - Takım : Rajiformes - Takım : Torpediniformes Üst takım Selachimorpha - Köpekbalıkları Takım : Hexanchiformes - Takım : Squaliformes - Takım : Pristiophoriformes - Takım : Squatiniformes - Takım : Heterodontiformes - Takım : Orectolobiformes - Takım : Carcharhiniformes - Takım : Lamniformes - Takım : †Xenacanthida - Takım : †Symmoriida - Takım : †Cladoselachiformes - Takım : †Eugeneodontida Alt sınıf Holocephali - Tümbaşlılar Takım : Chimaeriformes - Familya: Chimaeridae - Denizkedisigiller.

http://www.biyologlar.com/kikirdakli-baliklarin-ozellikleri

Tıbbi Mantarlar

Canlı bilimi olarak adlandırılan ve canlılarla uğraş alanı bulan bilim dalına biyoloji adı verilmektedir.Biyoloji bilimi tarih içerisinde çok çeşitli ve ilkelden modern düzeye doğru bir gelişme gösteren bilimler toplamından oluşmuştur.Çok çeşitli diyorum,sadece sistematik bile kendi içerisinde taksonomik inceleme alanları ile birçok alt dala ayrılmış;olay sadece taksonomi ile bitmemiş,farmakoloji,embriyoloji,mikrobiyoloji,genetik vb Bu bilim dalları gibi bir çok alt dala ayrılmış ve bunların inceleme alanları ilkelden modern düzeye doğru olmuştur. İlkelden modern düzeye olmak zorunda zaten…Öyle değil mi?Bir çok aletin gelişimi 16. yy dan itibaren olmamış mıdır?Teknik cihazların olmadığı yada ilkel sayılabilecek aletlerle ne yapılabilir?Bunlar sorgulandığı zaman sorunun cevabı kendiliğinden ortaya çıkmaktadır.İlkel olduğu bilim tarihi incelendiğinde de daha belirgin bir şekilde ortaya çıkmaktadır. Yukarıda belirttiğim gibi,aletlerin gelişimi ile beraber,biyoloji bilimi de daha modern manada gelişim sahası içerisine girmiştir.Peki bu aletler sadece biyoloji bilimi ile meydana getirilmiş aletler midir?Tabi ki hayır…Bu aletlerin geliştirilme safhası içerisinde fizik,kimya,matematik gibi bir çok bilim dalından da istifade edilmiştir.Bu duruma göre “biyoloji bilimi diğer bilim dalları ile de iç içedir” diyebiliriz.Aslında doğru ama bir o kadar dar kapsamlı olan bu söylemi genişletmek istiyorum;”bütün bilim dalları bir biri ile iç içedir” deme ihtiyacını kendi içimde hissediyorum… Biyoloji biliminin alt dalları olduğunu ifade etmiştim…Bu alt dallardan birisi de mikrobiyoloji adı verilen bilim dalıdır.Basit bir tanımlama ile ifade edersek,”mikrobiyoloji, canlı organizmalarda parazit olarak yaşayan canlıların ve bu canlılar ile konak olan canlıların birbiri ile olan etkileşimlerini inceler” diyebiliriz… Mikrobiyoloji,parazit olarak yaşayan ve göz ile görülen bitten pireden tutunda;bakteri,virüs gibi gözle görülemeyen parazitler üzerinde de inceleme yapmaktadır.Bu incelemeyi yaparken,sadece bu canlılar değil,bu canlıların konakçı ile yani üzerinde yaşadığı canlılar ile olan ilişkilerine de eğilmektedir. Mikrobiyolojinin incelediği bir sınıf ise mantarlar olup,bu mantarlar genel olarak gözle görülemeyen ve canlı organizmaya zarar veren tipte mantarlardır.Mantarların gözle görülenleri genel olarak hastalık yapmamakta,ancak amanita gibi mantarların yenmesi sonucu zehirlenmeler meydana gelmektedir ki;bu duruma “misetismus” adı verilmektedir. Mantarlar ökaryotik canlılar olup eşeyli veya eşeysiz üreyen türleri mevcuttur.Hücre duvarları vardır.Cryptococcus neoformans gibi mantarlarda ise kapsül bulunmaktadır.Hücre duvarlarının yapısında kitin,glukan ve manan yer almaktadır. Bazı mantarlar oda ısısında küf şeklinde,insan vücudunda ise maya şeklinde çoğalmaktadır.Bu tip mantarlara dimorfik mantarlar adı verilmektedir. Mantarların neden olduğu rahatsızlıklardan bir kısmını da irdelemeden edemiyeceğim…Bunlardan ilki nezle benzeri reaksiyona neden olmalarıdır.Bazı mantarların neden olduğu bu reaksiyonlar virüslerin neden olduğu nezleden daha uzun süreli ve daha ağırdır. Bazı mantarlar deri dışı yerlerde,örneğin saç,kıllar vb yerlerde rahatsızlıklara neden olur.Bu tip mantarlara örnek olarak Malassezia furfur (yaptığı hastalık;pityriasis versicolor),Exophiala werneckii(yaptığı hastalık;tinea nigra) verilebilinir. Bazı mantarlar deride rahatsılıklara neden olabilir.Bu tip mantarlara örnek olarak Microsporum canis(yaptığı hastalık;tinea capitis) verilebilinir. Bu tip mantarların yanı sıra iç organlarda rahatsızlık veren mantarlarda vardır.Menenjit gibi rahatsızlıklara neden olabilen bu tip mantarlar ise daha çok vücudun zayıf kaldığı durumlarda etkilidirler. Mantarlardan korunmak için bazı tedbirler mevcuttur.Vücut hatlarının kuru tutlması,ayağın koruyucu bir ayakkabı ile kapatılması ve alerjen olunan şeylerden kaçınılması söylenebilir…

http://www.biyologlar.com/tibbi-mantarlar

Gen transferi

Genelde organizmalar genleri iki yoldan kalıt alabilirler: dikey gen transferi ve yatay gen transferi/ Dikey gen transferi genlerin ebeveynden yavruya aktarımıdır; yatay gen transferi ise birbiriyle ilişkisiz organizmalar arasında genlerin geçmesi ile meydana gelir. Yatay gen transferi prokaryotlarda sık rastlanan bir olgudur. Yatay gen transferi organizmaların filogenisinin belirlenmesini karmaşıklaştırmıştır. Belli organizma gruplarında filogenetik ağacı çizmek için hangi gene bakıldığına bağlı olarak farklı filogenilerin elde edildiği rapor edilmiştir. Carl Woese, ribozomal RNA'yı kodlayan genlerin evrimsel anlamda çok eski oldukları ve yatay gen transferi göstermeden (veya çok az göstererek) tüm canlı soylarında bulunduklarını keşfetmiştir. Bu bulgusuna dayanarak Woese canlılarda üç saha (üst-alem) teorisini ortaya atmıştır. Filogenileri oluşturmak için ribozomal RNA dizilerin moleküler saat olarak kullanılması yaygın bir yöntemdir. Bu yöntem özellikle mikroorganizmaların filogenisi için özellikle faydalı olmuştur çünkü mikroorganzimalar fenotipik özelliklerine dayanarak sınıflandırılamayacak kadar birbirlerine benzerler. Ayrıca biyolojik türlere hakkındaki geleneksel kavramlar mikroorganizmalara uygulanamaktadır.

http://www.biyologlar.com/gen-transferi

Tatlı Su Protozoonları ve Önemi

Protozoa tek hücreli, ökaryotik mikroorganizmalardır. Özellikle bakteri, tek hücreli alg ve diğer protistler üzerinden beslenirler. 80.000’in üzerinde protozoon türü tanımlanmıştır. Bunların yarıdan fazlası fosil, yaklaşık 10.000 kadarı da simbiyonttur [1]. Protozoon türleri uzun yıllar sadece insanlara verdikleri zarar düşünülerek, parazitolojik açıdan ele alınmış, serbest yaşayan protozoonlar ihmal edilmiştir. Gerçekte çok sayıda parazit protozoon olmasına rağmen, daha da fazla sayıda hem sucul hem de karasal habitatlarda yaşayan serbest protozoon türü bulunmaktadır. Serbest yaşayan protozoonların bulundukları ortamdaki önemlerinin anlaşılmasından sonra, araştırmacılar dikkatlerini tıbbi protozoolojiden, serbest yaşayan protozoonların ekolojisine çevirmişlerdir. Genel limnolojik çalışmalarda heterotrofik protozoa uzun bir süre dikkate alınmamıştır. Kesin olarak ortaya koymak güç olmakla birlikte, bu ihmalin sebebi, muhtemelen uzman eksikliği veya daha büyük olan metazoonlara göre preparasyon işlemlerinin zor ve zaman alıcı olması gösterilebilir [2]. Protozoonların mikrobiyal besin ağında ve organik kirlilik yükü yüksek suların arıtılmasında önemli rolleri bulunmaktadır. Bunların yanı sıra atık su arıtma sistemlerinin performans göstergesi ve doğal suların kirlilik ve ötrofikasyon indikatörü olarak da kullanılmaktadırlar [3-9]. Protozoon türlerinin planktonik besin ağının önemli bir parçası olduğu ve sucul habitatlarda toplam zooplankton biyoması içerisinde önemli bir yere sahip olduğunun anlaşılmasından sonra göl, gölet, akarsu, rezervuar, kaynak suları ve sulak alanlar gibi tatlı su ekosistemlerinde, protozoon biyomas ve tür çeşitliliğinde meydana gelen mevsimsel değişimler, komünite yapıları çeşitli çalışmalarda ele alınmıştır. Ülkemizde değişik ekosistemlerde bulunan farklı organizma gruplarına ait çalışmalarda büyük aşamalar kaydedilmiş olmasına karşın, protozoonlar ile ilgili çalışmalar yeterli ölçüde değildir. Türkiye tatlı su protozoonları ile ilgili bilgiler yeni, az ve eksiktir. Bu çalışmanın bu alanda yapılacak olan araştırmalara temel bilgi sağlaması beklenmektedir. Protısta Alemi ve Protozoonlar Önceleri tüm canlılar iki alemli sınıflandırma sistemi (Kingdom: Plantae, Kingdom: Animalia) içerisinde ya bitki ya da hayvan olarak kabul edilmişler ve protozoonlar hayvanlar alemine dahil edilmişlerdir. Uzun bir zamandır kullanılmakta olan Whittaker’in beş-alemli sınıflandırma sisteminde bitki, mantar ya da hayvan tanımına uymayan tüm ökaryotik hücre organizasyonu gösteren tek hücreli canlılar Protista alemini oluşturmaktadır. Moleküler tekniklerin gelişmesi sonucunda canlı türleri arasındaki filogenetik ilişkiler ortaya çıkarılmış ve üç domain (süperkingdom) sistemi (Bacteria-Archaea-Eukarya) bilim dünyasına girmiştir. Bu sınıflandırma sisteminde bütün ökaryotik canlılar üçüncü domain olan Eukarya’ya dahil edilmiş ve domain Eukarya dört aleme (Protista-Plantae-Fungi-Animalia) bölünmüştür. Son zamanlarda bilim adamları bugün yaşayan türler arasındaki filogenetik ilişkilere dayanan sekiz alemden (Archaebacteria-Eubacteria-Archaezoa-Protista-Chromista-Plantae-Fungi-Animalia) oluşan yeni bir sınıflandırma sistemini teklif etmişlerdir [10,11]. Archaezoa olarak sınıflandırılan bir hücreli organizmalar (Archaeamoebae-Metamonada-Microsporidia) gerçek bir çekirdeğe sahiptirler, ancak mitokondri, endoplazmik retikulum ve Golgi aygıtından yoksundurlar. Moleküler verilere göre, Archaezoa üyeleri en eski ökaryotik hücreler olup, anaerobik periyodda, Golgi ve endoplazmik retikulumun gelişimi ve mitokondriyal simbiyontların hücreye dahil olmasından önce, ökaryotik evrim hattından ayrılmışlardır. Kahverengi algler ile klorofil c içeren diğer tek hücreli ökaryotlar Chromista adı altında ayrı bir alem içerisinde toplanmış, geriye kalan bir hücreli ökaryotlar, Protista alemine dahil edilmişlerdir [10-13] . Protista üyeleri yapı ve işlev bakımından çok çeşitlidir ve sınıflandırılması güçlüklerle dolu bir geçmişe sahiptir. Bu alemin sınırı değişik sınıflandırmalar arasında büyük farklılıklar göstermektedir [12, 14-16]. Çoğunluğu tek hücreli ve mikroskobik ökaryot canlılar olmasına karşın, aynı zamanda daha basit çok hücrelileri ve hatta deniz yosunları gibi karmaşık yapılı iri organizmaları da kapsar. Bunları bir araya toplayan asıl faktör hayvan, mantar ya da gerçek bitki olmamalarıdır. Protista aleminin, geleneksel bir yaklaşımla hayvan benzeri (Mastigophora-Sarcodina-Ciliata), mantar benzeri (Sporozoa-Mycetozoa-Gymnomycota), bitki benzeri (Euglenoidea-Dinoflagellata) gruplar şeklinde düzenlenmesi kabul görmektedir. Hayvan benzeri bir hücreliler olarak “Protozoa”, evrimsel ya da sistematik bir anlam ifade etmediğinden, takson olarak kabul edilmez. Protozoa kavramı, fonksiyonel anlamda bir organizasyon düzeyini ifade etmek için kullanılır. Bu grubu oluşturan organizmalar, hayvanlarla aynı tip beslenme stratejisini kullanırlar. Hayvan benzeri bir hücreliler enerji ve besinlerini heterotrofi yoluyla (osmotrofi-fagotrofi) elde ederler. Çok sayıda flagellat miksotrofiktir ve her iki beslenme stratejisini de (heterotrofi-ototrofi) kullanırlar. Bir çok heterotrofik protozoa da sitoplazmalarında fotosentez yapabilen endosimbiyontlar içerirler. Protozoanın olağanüstü çeşitliliğini içeren bir sınıflandırma sistemi düzenlemek oldukça zordur. Finlay ve Esteban [17] belirleyici karakter olarak fagotrofinin önemini vurgulayarak, tatlı suda yaygın olarak bulunan serbest yaşayan protozoonları aşağıda belirtildiği gibi 16 şubeye ayırmışlardır. Bu sınıflandırmada protozoa kavramı, eski sınıflandırmalarda tanımlanan Kingdom Protozoa’yı ve geleneksel bir şekilde protozoon olarak kabul edilen ancak şimdi Archaezoa ve Chromista’ya (esas olarak fototrofik protistler ya da alglerdir) dahil edilen organizmaları içermektedir. ARCHAEAMOEBAE: Mitokondriden yoksun, tek-kamçılı ameboyit hücreler olup, “pelobiont”lar da denir (örneğin Mastigamoeba, Mastiginella, Pelomyxa). Kamçı Pelomyxa cinsinde güçlükle gözlenir, bu nedenle amip olarak da tanımlanmaktadır. Organik madde bakımından zengin, anoksik sedimentlerde yaygın olarak bulunurlar. Özel bir besin tercihleri yoktur; bakteri, alg, detritus vs. üzerinden beslenirler. METAMONADA: Mitokondriden yoksun anaerobik kamçılı protistlerdir. İki, dört, sekiz (ya da bazen daha fazla) kamçı taşırlar. Çoğunluğu endokommensal olmasına karşın, parazit türler ve serbest yaşayan diplomonad türleri de (örneğin Hexamita, Trepomonas) içerir. Organik olarak zengin, anoksik sedimentlerde yaygın olarak bulunurlar, bakteri üzerinden osmotrofik ve fagotrofik olarak beslenirler. PERCOLOZOA: Genellikle 1-4 (bazen daha fazla) arasında değişen kamçı taşıyan flagellatları (örneğin ameboyit olmayan dört kamçılı Percolomonas, çok kamçılı pseudosiliyatlar), geçici kamçılı safhaları bulunan ameboyit flagellatları (örneğin iki kamçılı Naeglaria, dört kamçılı Tetramitus), kamçılı safha bulunmayan ameboyit formları (örneğin Vahlkampfia) ve modifiye olmuş mitokondri (hidrogenozom) içeren anaerobik flagellatları (örneğin Psalteriomonas) içeren karışık bir gruptur. Bazıları fakültatif patojendirler. Tümü sedimentlerde yaşar ve esas olarak bakteri üzerinden beslenirler. PARABASALA: Çok sayıda kamçıya sahip hidrogenozom içeren anaerobik, heterotrofik flagellatlardır. Karakteristik olarak parabasal cisimcik (modifiye olmuş Golgi) içerirler. Muhtemelen Ditrichomonas, Pseudotrichomonas hariç, hemen hemen tümü endosimbiyotiktir. İyi bilinmemekle beraber, bakteri üzerinden beslendikleri tahmin edilmektedir. Bazı araştırıcılar Parabasala’yı Archaezoa alemine dahil ederler. EUGLENOZOA: Genellikle iki (nadiren daha fazla) kamçı taşıyan flagellatlardır. Kamçılardan biri ya da her ikisi de anteriyör bir çöküntüden çıkar. Çoğu fagotrofiktir (örneğin Rhyhchomonas, Bodo, Astasia, Paranema, Entosiphon, Anisonema). Fagotrofik türler esas olarak sedimentlerde yaşarlar ve buraya tutunmuş bakteriler ya da su sütununda asılı duran bakteriler üzerinden beslenirler. Entosiphon gibi daha büyük öglenoyitler büyük partiküllerle beslenirler. Kinetoplastid içeren biflagellat bodonidleri de içerir. Serbest yaşayanlara ilaveten simbiyotik olan üyeleri de vardır. Ichthyobodo necator tatlı su balıklarının solungaçlarında ektoparazit olarak yaşar. OPALOZOA: Çoğu biflagellat protistlerdir (Anisomonas, Apusomonas, Cercomonas, Heteromita). Esas olarak bakteri üzerinden beslenirler. Kathalepharis türleri planktonda küçük algler üzerinden, bazıları ise (örneğin Cercomonas) pseudopod oluşturarak bakteri üzerinden beslenirler. Cyathobodo kendini zemine tespit etmek için sap oluşturur. Bu takson endokommensal olarak yaşayan opalinidleri de kapsar. CHOANOZOA: Serbest yaşayan, tek kamçılı, renksiz flagellatlardır. Hücrelerin apikal yüzeyinde bulunan çok sayıda ince sitoplazmik uzantı, kamçının etrafında yaka benzeri bir yapı oluşturur. Çoğunlukla sesildirler. Soliter ya da koloniyal, çıplak ya da lorikalı olabilirler. Sadece fagotrofik formları içerir, tatlı sudaki süspanse bakteri ve diğer küçük partiküller üzerinden beslenirler (örneğin Codonosiga, Diploeca, Diplosigopsis, Monosiga, Sphaeroeca). DINOZOA: Ekolojik bakımdan önemli olan bir şubedir. Deniz ve tatlı sularda serbest, bir kısmı da diğer protistler veya metazoonlarda simbiyont olarak yaşayan, iki heterodinamik kamçı taşıyan flagellatlardır. Renksiz türler osmotrofiktirler, detritus ya da diğer protistler üzerinden beslenirler. Katadinium, Peridinium, Gymnodium ve Ceratium cinslerinde fagotrofik tatlı su türleri bulunur. CILIOPHORA: Protista içerisinde yer alan şubeler arasında en homojen gruplardan biridir. Nüklear dualizm (makro- ve mikronükleus) göstermeleri, hareket ve beslenme için sil veya bileşik sil yapıları (sir, membranel vs.) taşımaları, homothetogenik (enine) bölünmenin görülmesi (flagellatlarda symmetrogenik bölünme görülür) diagnostik özellikleridir. Bir çoğu kompleks ağız siliyatürüne sahiptir. Çoğu aerobiktir, anaerobik türlerde mitokondri yoktur ya da hidrogenozom bulunur. Siliyatlarda beslenme heterotrofiktir, fakat bazı türler fotosentetik algal protistler içerirler. Çoğunluğu serbest yaşar, çok sayıda türü kommensal veya nadiren de parazit olarak yaşayan simbiyontlardır. Ichthyopthyrius multifiliis balıklarda beyaz benek hastalığı etkenidir. Yumuşak zeminlerde geniş populasyonlar oluştururlar (örneğin Loxodes, Spirostomum, Caenomorpha, Aspidisca, Acineta, Nassula, Cyclidium, Vorticella, Frontonia, Paremecium, Prorodon, Lacrymaria, Actinobolina). Bir çok siliyat serbest, fakat bazı peritrich ve suktorlar sesil yaşarlar. Vorticella soliterdir, fakat Epistylis, Carchesium, Zoothamnium ve Operculaia koloniyaldir. Küçük türler bakteri üzerinden, büyük türler ise büyük tek hücreli algler, flamentöz siyanobakteri, diğer protozoonlar ve nadiren rotifer ve diğer mikrozooplankton üzerinden beslenirler. Halteria viridis gibi miksotrofik türlerin metalimniyonda aşırı çoğalması primer üretim bakımından önemli olabilir. RHIZOPODA: Beslenme ve hareket için pseudopod oluşturan, kamçısız amiplerdir. Yalancı ayaklar lobsu (lopopod), ipliksi (filopod) ya da ağsı (retikulopod) olabilir. Çıplak amipler lobsu (örneğin Amoeba, Acanthamoeba) ya da ipliksi (örneğin Vampyrella) yalancı ayaklara, kabuklu amipler ya lobsu (örneğin Arcella) ya da ipliksi (örneğin Euglypha) yalancı ayaklara sahiptirler. Foraminiferlerin (Granuloreticulosa) tümü hemen hemen denizeldir, kabuk yüzeyindeki deliklerden yalancı ayaklar ipliksi şekilde çıkarlar ve ağsı bir yapı şekillendirirler. Taksonun üyeleri esas olarak serbest yaşarlar, fakat endosimbiyont olarak yaşayanları da vardır (örneğin Entamoeba). Serbest yaşayanların tümü fagotrofik heterotroflardır. Alg, detritus, bakteri vs. üzerinden beslenirler. Vampyrella flamentöz yeşil algler üzerinde parazit yaşarlar. Bazı kabuklular planktoniktirler (örneğin Difflugia). HELIOZOA: Aksopodlu fagotrofik hücrelerdir. Sert, mikrotübüler aksonem içeren aksopodlar hücrenin etrafından ışınsal olarak çıkar. Güneş hayvancıkları da denir. Esas olarak tatlı sularda yaşarlar (örneğin Actinosphaerium, Actinophrys, Clathrulina). Bazıları denizeldir. Alg, protozoa ve rotiferler üzerinden beslenirler. Aksopodlar diffüzyonla beslenmede kullanılır. Esas olarak planktonik protistlerdir ve sap ya da aksopodlar aracılığı ile yüzeye tutunabilirler. BICOSOECA, DICTYOCHAE, PHAEOPHYTA, HAPTOMONADA ve CRYPTOMONADA : Kingdom Chromista’ya ait şubelerdir. Çoğunluğu fototrof olduğu halde, fagotrofik türler de içerirler. Tatlısu formlarında miksotrofi ve fagotrofi özellikle chrysomonadlarda yaygındır. Chrysomonadlar iki kamçılı, sesil ya da hareketli ve soliter ya da koloniyal olabilirler (örneğin Spumella, Uroglena, Dinobryon). Beslenme ile ilgili organelleri başta olmak üzere, protozoon morfolojisi ve fonksiyonel rolleri arasında yakın bir ilişki vardır. Bulundukları habitatlarda fonksiyonel rolleri dikkate alındığında, serbest protozoonlar siliyatlar, sarkodinler (kök bacaklılar) ve heterotrofik flagellatlar olmak üzere üç büyük gruba ayrılırlar. Fonksiyonel gruplar aynı yerde, bir arada yaşadıkları halde, besin yakalama mekanizmaları farklıdır. Flagellatlar genellikle 20μm’den, amipler 50 μm’den, siliyatlar 200 μm’den daha küçüktürler. Ancak bazı amip ve siliyatların büyüklükleri 2 mm’ye kadar ulaşabilir (örneğin Pelomyxa, Actinosphaerium, Stentor). Protozoonlar kendi büyüklüklerine uygun besini tercih ederek, mikrobiyal populasyonları kontrol altında tutarlar. Fonksiyonel özellikler dikkate alındığında, siliyatlar (besin yakalamada sil kullanırlar) yırtıcı beslenenler (örneğin Prorodon, Monodinium, Didinium, Dileptus, Chidonella, Nassula), süzerek beslenenler (Cyclidium, Colpidium, Vorticella, Aspidisca, Eupletes, Strombidium, Strobilidium) ve difüzyon ile beslenenler (Suctoria) olarak ayrılabilirler. Sarkodinler kendi içinde üç fonksiyonel gruba ayrılır: çıplak amipler, kabuklu amipler ve heliozoonlar. Bu protistler gruplara göre çeşitlilik gösteren pseudopodlarla, protistin büyüklüğüne uygun olarak alg yada bakteriler üzerinden, Pelomyxa türleri canlı olmayan organik partiküller üzerinden beslenirler. Heterotrofik flagellatlar diğer gruplara göre daha küçüktürler. Bu nedenle sucul ortamlarda, yüzey ve dipte önemli bakteri tüketicileridir. Yırtıcı beslenme (örneğin chrysomonadlar), süzerek beslenme (örneğin choanoflagellatlar) ve difüzyonla beslenme (örneğin Ciliophrys ve helioflagellatlar) bu grupta da görülür. Taksonomik gruplar ile fonksiyonel gruplar arasında yakın bir ilişki yoktur. Farklı türler, benzer ekolojik fonksiyonları olmasına karşın, farklı taksonomik gruplarda yer alabilirler. Heliozoonlar ve helioflagellatlar morfolojik olarak birbirlerine benzedikleri halde, farklı şubelerde yer alırlar. Bu iki şube benzer beslenme stratejisine sahiptirler. Benzer şekilde farklı beslenme stratejisi geliştiren bir hücrelilere çeşitli taksonomik gruplarda rastlanmaktadır. Örneğin değişik pek çok bir hücreli grubunda fotosentez yapan türler vardır. Bir grup fotosentez yapan türleri, heterotrofik türleri ve miksotrofik türleri içerebilir. Protist çeşitliliği ile ilgili iki farklı görüş bulunmaktadır. Mikrobiyal çeşitliliğin, makroskobik hayvan ve bitki çeşitliliği ile ayırt edici bazı özelliklere sahip olduğunu vurgulayan Finlay ve Esteban [17], tatlı su protozoon türlerinin az sayıda bireyle ya da kist olarak temsil edilse bile, tüm nemli habitatlarda her zaman bulunduklarını ve muhtemelen hiçbir zaman da yok olmadıklarını ifade etmişlerdir. Lokal olarak, birçok tür nadir ya da kriptiktir (gizli türler, kist halinde olanlar). Çevresel koşulların onların tercih ettikleri yönde gelişmesini beklerler. Uzun süre “aktif” durumdan çok “potansiyel” durumda kalırlar. Bundan dolayı aktif biyoçeşitlilikten çok, potansiyel biyoçeşitlilikten söz edilir. Boyutlarının küçük olması, dirençli kistler oluşturmaları ve bir yerden bir yere kolay bir şekilde taşınmalarından dolayı kozmopolit türler olarak kabul edilirler. Mikrobiyal ökaryot türlerin dağılışı nadir olarak coğrafik bariyerlerle sınırlanmıştır. Bu nedenle spesifik coğrafik dağılımları hakkında bilgi vermek oldukça zordur. Endemizm nadirdir,global tür çeşitliliği azdır ve en azından siliyatların çoğu halihazırda tanımlanmıştır [18-21]. Siliyat türlerinin çoğunun kozmopolit olduğu konusunda Finlay ve Fenchel’in görüşlerine katılan Foissner [22] önceki araştırıcıların aksine tür çeşitliliğinin çok fazla olduğunu, halen tanımlanmamış çok sayıda türün olduğunu, endemizmin yaygın olduğu ve spesifik coğrafik dağılış gösterdiklerini ileri sürmüştür. Yüksek yapılı hayvan ve bitkilerle karşılaştırıldığında, küçük oldukları ve yaşamlarının çoğunu kist safhasında geçirdikleri için protistleri tanımlamanın güç olduğunu ifade eden Foissner [23], sadece uygun koşullar oluştuğunda kistten çıktıklarını, birkaç tane her zaman mevcut ve sayısal olarak dominant tür tarafından gizlendiğini ve bu nedenle nadir türlerin gözden kaçırılabileceğini açıklamıştır.

http://www.biyologlar.com/tatli-su-protozoonlari-ve-onemi

Bakteriyofaj Nedir ?

Bakteri yiyen canlı bakterilerin büyümesine engel olan onları eriten ve ancak elektron mikroskopla görülebilen bir ültravirüs. Süzgeçlerden geçen ve kültürden kültüre nakledilmesi mümkün olan bu ultra- virüs bakteri kolonilerinde görülebilen değişiklikler yapabilmekte ve bakteri hücrelerini hiç bir artık bırakmadan eritebilmektedir. bakteriyofajlar ın bilhassa zararlı bakterilerden meydana gelen çeşitli salgınlarda bakterileri yok etmek suretiyle önemli rolleri vardır Synechococcus bakterisinin fajı S-PM2 elektron mikroskobu fotoğrafı Bakteriyofaj bakteri ve Yunanca phagein yemek fiilinden tÜretme bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları hayvan bitki ve mantarları enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitl ilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme dna veya RNA olabilir ama genelde 5 – 500 kilo baz çifti uzunluğunda çift sarmallı dnadan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda örneğin Toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği virion bulunmuştur ve deniz bakterilerinin %70i fajlar tarafından enfekte olmuş olabilirler Tarihçe 1913te Britan yalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla ta kip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix dHérelle 3 eylül 1917de dizanteri basilinin düşmanının görünmez bir mikrobunu keşfettiğini açıklayıp ona bakteryofaj adını verdi Çoğalması bakteriyofajların, litik veya lizogenik hayat döngüleri olabilir bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizo genik döngü buna tezat olarak konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar temperate phage denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür ama konağın şartları bozulursa örneğin besin kaynaklarının tükenmesi durumunda endojen fajlar profaj olarak adlandırılırlar etkinleşirler. Bir çoğalma süreci başlar sonucunda konak hücre parçalanır. ilginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar bu olguya lizogenik dönüşüm lysogenic conversion denir. Bunun iyi bilinen bir örneği Vibrio cholera nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve giriş T4 bakteriyofajının yapısı. 1. baş 2. Kuyruk 3. Nükleik asit 4. Kapsit 5. Yaka 6. Kın 7. Kuyruk lifleri 8. Ekserler 9. Taban plakası.Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki öz gül reseptörlere bağlanırlar bunlar arasında lipoPolisakkaritler teikoik asitler proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluş up bağlanırlar. Karmaşık bakteryofajlar örneğin T-çift fajları genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. iyice bağlandıktan sonra kuyruk büzülür bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. protein ve Nükleik asit sentezi Kısa süre bazen Dakikalar içinde bakteri ribozomları viral mrnanın Proteine çevirimine translasyonuna başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mrnayı tercihen çevirmesine neden olabilirler. Konağın kendi Protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur kuyruk onun üzerinde büyür. kafa kapsidi ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde dna kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların salınımı Fajlar ya hücre parçalanması lizis veya salgılanma yoluyla salınırlar. T4 fajları durumunda hücre içine girmelerinden 20 Dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300ü bulabilen faj salınır. Bunun gerçekleşmesi hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj terapisi Bir bakteriyi enfekte etmek üzere ona bağlanmakta olan bakterilerin şematik gösterimiKeşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batıda faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliğinde 1940lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar milyonlarca yıldır süregeldiği gibi bakterilerle beraber evrimleştikleri için sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca etkili bir faj özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir bakteri tipinin doğru tanımlandığından emin olmak gerekebilir bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak sıkça olduğu gibi birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler onun için açık bir yaraya uygulanmaları en iyi Sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006da ABD gıda ve ilaç idaresi Food and Drug Administration bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır.  

http://www.biyologlar.com/bakteriyofaj-nedir-

PROTOZOONLARIN SUCUL EKOSİSTEMLERDEKİ GÖREVLERİ

Protozoonlar sucul ekosistemlerde madde ve enerji döngüsünün önemli organizma grubunu oluşturur. Hızlı büyüme yetenekleri, alg, bakteri ve çözünmüş besin kaynaklarını kullanabilmeleri, kendilerinden daha büyük diğer yaşam formlarına av oluşturmaları nedeni ile sucul besin ağında anahtar role sahiptirler. Bazı üyeleri fotosentetik yolla besinlerinin bir kısmını sentezleme yeteneğine sahip olmakla birlikte, serbest yaşayan formların tamamı kendilerinden daha küçük mikroorganizmaları besin olarak kullanırlar. Çoğu kez üzerinden beslendikleri avları ile eş büyüme potansiyeline sahip olduklarından büyük populasyonlar meydana getirirler ve diğer mikrobiyal populasyonların gelişimini kontrol ederler. Protozoon predasyonu sucul ekosistemlerdeki bakteriyel ölümün en büyük kaynağını oluşturur. Tek hücreli veya filametöz alglerin en önemli tüketicileridir. Aynı zamanda diğer protozoonları hatta metazoon yumurtaları ve küçük krustaseleri besin olarak kullanabilirler. Bununla birlikte, metazooplanktonlar gibi küçük omurgasız canlılar ile bazı balık larvaları gibi daha büyük canlılar için da besin oluştururlar [17, 24-26]. Yakın zamanlara kadar sucul habitatlardaki besin ve enerji akışının, diyatom ve dinoflagellatlar gibi büyük fitoplanktonlar üzerinden beslenen zooplanktonlar aracılığıyla, balıklar gibi daha büyük organizmalara doğru olduğu düşünülmekteydi. Son zamanlarda bu görüş değişmiştir. Sucul primer üretimin büyük bir kısmının küçük ökaryotik algler ve siyanobakteriler tarafından üretildiği ve bu üretimin önemli bir miktarının protozoonlar tarafından tüketildiği bilinmektedir. Aynı zamanda primer üretimin önemli bir kısmı çözünmüş organik madde olarak ortama salınmakta ve bu maddeler bakteriler tarafından kullanılmaktadır. Bakteriler diğer organizmaların ölmesinden ve salgılarından oluşan organik maddeleri de besin olarak kullanırlar [27]. Protozoonlar, bakteriler üzerinden beslenerek bu kaynakları da zooplanktonlar aracılığı ile besin ağının daha ileri kısımlarına pompalayan anahtar organizmalar olarak karşımıza çıkarlar Protozoon kommuniteleri dinamik yapılar olup, ortamın fiziksel ve kimyasal koşullarında meydana gelen değişikliklere duyarlıdır. Çevresel koşullarda meydana gelen değişikliklere hücre bölünmesi, kist oluşturma ve kistten çıkma şeklinde hızla cevap verirler. Bundan dolayı, protozoon çeşitliliği ve spesifik türler, ekosistemdeki değişikliklerin indikatörü olarak kullanılabilir [5, 28]. Protozoa organik olarak kirletilmiş suların doğal arıtım sürecinde de rol alır. Ortamdaki çözünmüş ve partiküler organik materyali besin olarak kullanarak bu maddelerin ortamdan uzaklaştırılmasını sağladıkları gibi, bunların üzerinden beslenen bakterileri tüketerek onların aktivitelerini de uyarır. Sucul habitatlarda bulunan protozoonların tümü faydalı organizmalar değildirler. Bazıları halk sağlığında ciddi problemlere neden olan insan bağırsak parazitleridir. Bunların kistleri ile kontamine olmuş sular aracılığıyla, bir konaktan diğerine geçerler: Giardia lamblia (flagellat), Entamoeba histolytica (amip), Cryptosporidium spp. (sporozoon). Parazitik E. histolytica dışında insan bağırsağında yaşayan diğer amip türleri (E. hartmanni, E. coli, Endolimax nana, Iodamoeba buetschlii) zararsız kommensaller olup, patojen değildirler. Bazı küçük amip türleri doğal olarak sularda ya da nemli topraklarda serbest yaşarlar, ancak insana ve diğer memelilere bulaştıklarında patojen özellik kazanırlar. Naegleria fowleri ve çeşitli Acanthamoeba türleri öldürücü amibik meningoensefalite neden olurlar. Bazı serbest yaşayan tek hücreli formlar da patojenik bakteri taşırlar ve hastalık reservuarları olarak fonksiyon görürler. Bakteriler tek hücreli sitoplazmasında sadece yaşamlarını devam ettirmezler, aynı zamanda çoğalarak sitoplazmayı doğal habitat olarak kullanırlar [5]. Fotosentetik dinoflagellatların ekzotoksinleri, balık ve denizel omurgasızlar tarafından alınarak besin zinciri vasıtasıyla insana kadar taşınırlar. Bu ekzotoksinler birikim sonucunda öldürücü olabilirler. Bazı protozoon türleri ise tatlı su balıklarında ekto- (örneğin Icthyophthirus multifilis, Tetrahymena corlissi, Trichodina spp., Chilodonella piscicola, Icthyobodo necator, Piscinoodinium sp., Epistylis spp.) ve endoparazit (örneğin Octomitus salmonis, Trypanoplasma borreli) olarak yaşarlar ve kültür balıkçılığında önemli zararlara neden olurlar.

http://www.biyologlar.com/protozoonlarin-sucul-ekosistemlerdeki-gorevleri

Yatay gen transferi

Yatay gen transferi, bir organizmanın, ikinci bir organizmadan türemeden, o ikinci organizmaya ait genetik malzeme edinmesini sağlayan herhangi bir süreçtir. Buna karşın, dikey transfer bir organizmanın kendi atalarından (yani ebeveynlerinden) genetik malzeme edinmesidir. Genetik bilmi bu iki transfer biçiminden daha yaygını olan dikey transfere odaklanmış olmakla beraber, yakın zamanda yatay transferin de anlamlı bir olgu olduğu bilincine varılmıştır. Yatay gen transferinin yapay biçimi bir genetik mühendislik şeklidir. Yatay gene transferi ilk defa 1959'da, farklı bakteri türleri arasında antibiyotik direncinin aktarılabildiğinin gösterilmesi ile keşfedilmiştir. Japon araştırmacılar tarafından yapılan bu buluşunun ne anlama geldiği Batı bilimcileri tarafından anlaşılması için bir 10 yıl geçti. Michael Syvanen bu konuda çalışmış ilk batılı araştırmacılardandır. Syvanen, 1984'ten itibaren yatay gen transferi üzerine bir dizi makale yayınlamış, yatay gen trasnferinin olduğunu öngörmüş, yeryüzünde yaşamın başlangıcından itibaren evrim tarihini etkilemiş olan bir süreç olduğunu belirtmiştir. Gen ve genom çalışmaları prokaryotlar arasında önemli miktarda yatay gen transferi olduğunu göstermekteler. Bu olgunun tek hücreli ökaryotlar için de anlamlı olduğu görülmektedir. Bulgular, protistaların evriminde de yatay gen transferinin önemli bir rol oynadığını göstermektedir. Bitki ve hayvanların da bu olgudan etkilendiğine dair belirtiler vardır, ama bunun ne derece önemli olduğu açık değildir Virüsler Mimivirüs adı verilen virüs, sputnik adlı uydu virüs tarafından enfekte edilebilir. Sputnik virüsünün genlerinde 13'ü herhangi başka hiçbir gene benzemekle beraber, 3 tanesi mimivirüs ve mamavirüs genleriyle yakın ilişkilidir. Bu genlerin mimivirüsün kendini paketlemesi sırasında edinilmiş olduğu tahmin edilmektedir. Bu bulgular, bazı uydu virüslerin, virüsler arasında yatay gen transferi yapabileceğini göstermektedir. Bakteriyofajların bakteriler arasında gen taşıması da buna benzetilebilir. Prokaryotlar Yatay gen transferi birbirine uzak akraba olan bakteriler arasında dahi yaygındır. Bu süreç, antibiyotik direncinin baçlıca nedeni olarak sayılmaktadır; bir bakteri direnç edinince, direnç genini kısa sürede başka türlere de aktarabilmektedir. Enterik bakteriler, içinde bulundukları bağırsaktaki diğer bakterilerle genetik alışverişte bulunurlar. Yatay gen transferi için başlıca üç mekanizma vardır: Transformasyon, hücre içine yabancı genetik malzeme (DNA veya RNA) girmesi sonucu hücrenin kalıtsal değişime uğramasıdır. Bu süreç bakterilerden göreceli olarak yaygındır, ama ökaryotlarda daha enderdir. Transformasyon, deneysel, endüstriyel amaçlar için bakterilere yeni genlerin sokulması için sıkça kullanılır. Bakınız moleküler biyoloji ve biyoteknoloji maddeleri. Transdüksiyon (genetik), bakteri DNA'sının bir virüs (bakteriyofaj, veya kısaca faj) aracılığıyla bir bakteriden diğerine taşınması. Bakteriyel konjugasyon, bir bakterinin hücresel temas yoluyla DNA'sını bir diğer bakteriye aktarması. Ökaryotlar DNA dizilerinin analizi ökaryotların içinde, mitokondri ve kloroplast genomlarından çekirdek genomuna, yatay gen transferinin olmuş olduğuna işaret etmektedir. Endosimbiyoz teorisinde belirtildiği gibi, kloroplast ve mitokondrilerin kaynağı, ökaryotik hücrelerin atası bir hücrenin içindeki bakteriyel endosimbiyontlardı. DNA dizi karşılaştırmaları farklı türler arasında pek çok genin yatay transferini göstermiştir, bu transferlerin bazıları farklı üst-alemler arasında dahi gerçekleşmiştir. Bakterilerden bazı mantarlara, özellikle Saccharomyces cerevisiae mayasına yatay gen transferi iyi belgelenmiştir. Aduki fasulya kınkanatlısının kendi endosimbiyontu Wolbachia 'dan genetik malzeme edindiğine dair de kanıtlar vardır. Wolbachia bakterilerini artropod ve filaria nematodlarında önemli bir genetik malzeme kaynağı olduğu gösterilmiştir Rafflesiaceae bitki ailesinin parazitlerinin, konak bitkiden bazı mitokondri genlerini yatay transfer yapmış olduğu da gösterilmiştir. Ayrıca, henüz kimliği bilinmeyen bir bitkinin kloroplastından Phaseolus fasulyasının mitokondrisine transfer olduğu gösterilmiştir.  

http://www.biyologlar.com/yatay-gen-transferi

Virüsler Hakkında Bilgi

Virüsler Hakkında Bilgi

Virüs, canlı hücreleri enfekte edebilen mikroskopik taneciktir. Virüsler ancak bir konak hücreyi enfekte ederek çoğalabilirler.

http://www.biyologlar.com/virusler-hakkinda-bilgi

Lichenes, Lichenophyta

Likenler (Osmanlıca: şeybiye) ya da likenleşmiş mantarlar (lichenized fungi), mantar (mikobiyont) ve suyosunlarından (fotobiyont) kurulu kararlı ve sürekli ototrofik mutualistik (ya da daha çok kontrollü parazitik) simbiyotik organizma birlikteliği olup görünüşçe nispeten karayosunlarına benzer ve Türk halk dilinde (ve diğer birçok dilin halk ağzında) daha çok yosun adıyla anlırlar. Likenler, teknik olarak taksonomik açıdan «yosun mantarı» olsalar da pratikte görünüm açısından «mantar yosunu» olarak algılanırlar. Mikobiyontların (mycobiont) % 98'ini asklı mantarlar (Ascomycota), % 2'sini de bazitli mantarlar (Basidiomycota) oluşturur. Fotobiyont ya da fikobiyontların (photobiont, phycobiont) % 90'ı bitkiler (dar anlamıyla) içinde değerlendirilen ökaryotik yeşil suyosunlarından (Chlorophyta) oluşurken geriye kalan % 10'u bitkiler dışında tutulan ökaryotik sarı-yeşil suyosunları (Xanthophyta) ile eski adları mavi-yeşil suyosunları olan prokaryotik siyanobakterilerdir (Cyanobacteria). Liken oluşturan yeşil suyosunlarının % 40'ını Trebouxia cinsi oluştururken bunu ikinci sırada Trentepohlia cinsi izler. Siyanobakteriler içinde daha çok Nostoc cinsi liken oluşumuna katılır. Mantarların yaklaşık beşte biri likenleşmiş (lichenized) hâldedir ve karbon kaynağı elde etme bakımından likenleşme (lichenisation) iyi bir beslenme stratejisidir. Liken birlikteliğinde mantarların çıkarı suyosunlarına göre daha fazladır. Likenler oldukça yavaş büyürler (yılda birkaç milimden bir iki santime kadar). Görünümüne göre kabuksu, yapraksı ya da dalsı olabilen likenlerin yaklaşık dörtte üçü kabuksu görünümlü kayacıl likenlerdir. Likenler laboratuvar ortamında bileşen organizmalarına (mantar ve suyosunu) ayrılabilmektedir. Taksonomik incelemesi ilk olarak İsveçli botanikçi ve «liken biliminin babası» (father of lichenology) Erik Acharius (1757-1819) tarafından yapılan likenleri araştıran bilim dalına liken bilimi ya da likenoloji (lichenology) adı verilir. 1897 yılında yayımlanan kitabında Albert Schneider, zamanına göre likenolojiyi yedi döneme ayırmıştır: (< Schneider 1897) I. Period: from Theophrastus (371-286 B. C.) to Tournefort (1694) II. Period: from Tournefort (1694) to Micheli (1729) III. Period: from Micheli (1729) to Weber (1779) IV. Period : from Weber (1779) to Wallroth and Meyer (1825) V. Period: from Wallroth and Meyer (1825) to Schwendener (1868) VI. Period: from Schwendener (1868) to Reinke (1894) VII. Period: feginning with Reinke (1894) Bütün dünyada yaklaşık 25.000 liken türü vardır. Türkiye'den kaydedilen takson sayısı 2.000 (< Çobanoğlu & Sevgi & Tecimen & Yılmaz & Açıkgöz 2011) olmasına rağmen Türkiye Liken Florası henüz yazılmamıştır

http://www.biyologlar.com/lichenes-lichenophyta

Canlıların sınıflandırılmasında temel alınan bazı özellikler

•Hücre tipi ve sayısı (Ökaryot – Prokaryot) (Hücresel organizasyon) •Embriyo tabakalarının sayısı (Endoderm – Mezoderm – Ektoderm) •Embriyonik örtülerin bulunuşu (Vitellus – Koryon – Amniyon – Allontois) •Vücut boşluğu tipleri (Gastrovasküler – Sölom) •Simetri şekilleri (Bileteral – Işınsal) •Vücutta segmentlerin bulunuşu (Benzer parça) •İskeletin bulunuşu (varsa kıkırdak veya kemik) •Azotlu boşaltım maddelerinin benzerliği (NH3 – Üre – Ürik Asit) •DNA’ daki baz dizilişi •Sistemlerin varlığı (Sindirim, solunum, dolaşım)

http://www.biyologlar.com/canlilarin-siniflandirilmasinda-temel-alinan-bazi-ozellikler

MİKROBİYOLOJİ PREPARATLARIN HAZIRLAMASI VE İNCELENMESİ

İyi boyanmış bir  preparat usulune uygun olarak hazırlanan boya çözeltilerinin kullanılması ile mümkün olabilmektedir. İyi bir boya çözeltisi elde edebilmek için dikkat edilmesi gereken bir takım hususlar söz konusudur. 1-Toz boyayı havanda çok iyi ezmek gerekir. 2-Boya hazırlanınca renkli şişelerde ve karanlıkta saklanmalıdır. 3-Boyalar hazırlanınca en az 24 saat oda ısısında bekletilmelidir. 4-Filtreden süzülerek kullanılmalıdır. Preparatların hazırlanması: Preparatlar doğrudan hasta örneklerinden, kültürlerden ya da deney hayvanlarındaki patolojik lezyonlardan hazırlanırlar.Kültür katı veya sıvı olabilir; sıvı kültür ise tüp önce çalkalanmalı, sonra uygun temizlenmiş bir lam üzerine bakteri süspansiyonundan bir damla konulmalıdır. Katı besiyeri ise serum fizyolojik veya distile su kullanılabilir. Bakteri sıvıda homojen hale getirilir ve preparat kurumaya bırakılır. Etüvde kurutma yapılabilir. Direkt hastadan alınan örneklerde önce ekim yaptıktan sonra eğer materyal sıvı ise santrifüj edilir. Elde edilen çökeltiden preparat hazırlanır. Eğer örnek doku parçası ise preparat hazırlamak için anaerop enfeksiyon şüphesinde doku steril olarak kesilir, orta kısmından preparat hazırlanır. Aerop mikroorganizmalar için doku homojen hale getirilir. Bu steril petri kutusunda küçük küçük parçalara ayırma ile yapılabilir. Daha sonra preparat hazırlanır. Tesbit Yöntemleri: Preparatların tespit edilmesindeki amaç onların lama yapışmalarını sağlayarak tutturmaktır. Bu suretle üzerlerine uygulanacak sıvılarla lamdan ayrılmazlar. 1- Fiziksel tesbit: a)- Alevden geçirme b)- 18-24 saat oda ısısında bekletme 2- Kimyasal tesbit: Bu tespit yöntemi direkt dokudan hazırlanan preparatlarda ökaryotik hücre yapısının bozulmasını önlemek için yapılır. a)- Alkol eter karışımı b)- Metanol ile 3-5 dakika tesbit c)-Aseton: Özellikle floresan mikroskopisi için hazırlanan preparatlar asetonda 5 dakika tutularak tesbit edilirler. d)- Absolu alkol ile 8-10 dakika da tesbit yapılabilir.Ayrıca  alkol+aseton karışımı ve başka kimyasal maddelerle tesbit işlemleri yapılabilir.

http://www.biyologlar.com/mikrobiyoloji-preparatlarin-hazirlamasi-ve-incelenmesi

MAVİ YEŞİL ALGLER

Bakteriler, mavi-yeşil algler, rikestsiyalar, aktinomisetler, ve miykoplazmaların gruplarının dahil olduğu; gerçek çekirdek zarları ve membrana bağlı organelleri olmayan, fosfolipid barındıran hücre duvarı ve tek helezonlu DNA molekülü hücre içinde serbest halde bulunan mikroorganizmalardır. Organeller ve karmaşık sitoplazma yapısı bu canlılarda bulunmaz. Mavi-yeşil algler çekirdeksiz hücrelerin en gelişmiş kolunu oluşturur. Hemen hemen hepsi kromozom olarak proteinle çevrilmiş çember şeklinde bir DNA zinciri içerirken, mitoz bölünme yapmazlar. Her hücrede haploit olan tek kromozom, açılarak bir hücrenin bir ucundan diğer ucuna hareket ederek kendini eşlediğinde, hücre bölünür. Evrim sürecinde, 2,5-3 milyar yıl önce, kese şeklindeki ilk hücrelerden evrimleştikleri düşünülmektedir. Mavi yeşil alglerin, diğer alg türleri gibi, farklı bir dış görünümleri vardır. Bunlar, basit hücre yapısına sahiptir (prokaryot). Belirgin bir hücre çekirdeği bulunmaz. Mavi yeşil algler de diğer algler gibi sucul yaşamda, besin zincirinde ilk sırada yer alırlar. Yapılarında bulunan pigmentler sayesinde suyu ve bazı besin maddelerini (azot, fosfor), ışığın etkisiyle karbonhidratlara çevirirler. Böylece hem besin üretmiş, hem de suyun çözünmüş oksijen miktarını artırmış olurlar. Çoğalmalarını ışık, sıcaklık ve besine bağlı olarak belirlenir. Buraya kadar olan kısım dengeli bir ekosistemde gerçekleşen olayları kapsar. Ancak, ekosistem bozulduğunda alglerin üremesinde bir artış meydana gelir. Örneğin, evsel atıklar azot ve fosfor içerir. Bunlar arıtılmadan suya verildiğinde algler, bunları kullanarak aşırı miktarda üreyebilir. Fazla ürediğinde de suyun oksijenini azaltırlar, bulanıklığa neden olurlar ve ışığın derin sulara gitmesini engellerler. Bu durum derin su canlılarının da ölmesine neden olur. Zehirleyici özellik Dinoflagellata grubunda görülür Bu türler yapılarında zehir taşırlar ve sayıları arttığında etkileme alanları da artar. Mavi - yeşil algler de bakteriler kadar küçüktür. Ya tek tek hücre olarak ya da koloni halinde yaşarlar. Nemli topraklarda ve sularda yaşarlar. • Zarla çevrili organeller ve zarla çevrili çekirdekleri , yoktur. Sitoplazmalannda hem yeşil rengi veren l klorofil hem de mavi renk veren bir renk maddesi 1 vardır. | • Klorofilleri olduğu için fotosentez yapabilirier. • Sporla çoğalırlar. Eşeyli ve eşeysiz çoğalır. Algler, prokaryotik (basit yapılı canlılar) ve ökaryotik (gelişmiş canlılar) olmak üzere iki ayrı sınıfa dahil edilebilir. Prokaryotik algler, gerçek nükleusları (hücre çekirdeği), nükleolusları (çekirdekçik) ve bir zarla çevrili plastidleri olmadığından, ökaryotik alglerden ayrılırlar. Bu gruba dahil edilebilecek mavi-yeşil algler ipliksi yapı gösterirler, ya tek olarak veya koloni halinde yaşarlar. Bu alglerin arasında bakteriler kadar küçük olanları bulunmakla birlikte, çoğu bunlardan büyüktür. Yine, prokaryotik grupta yer alan algler, tatlı suların yüzeyinde diğer planktonlarla birlikte "su çiçeği" denen bir yapı oluşturmaktadırlar. Çoğunlukla nemli topraklarda, havuz kenarlarında, nemli kayalar üzerinde, kaplıca sularında yaşayabilirken, bir kısmı da mantarlar ile fizyolojik bir birlik oluşturarak likenleri meydana getirirler. Bu algler arasında yer alan Microcystis aeruginosa suya saldığı bir toksin ile zooplankton, balık ve su kuşlarının ölümüne yol açar. Algler, tüm ekosistemlerin bütünlüğünün muhafazası için hayati önem taşırlar. Okyanusların planktonlarında bulunan diyatomlar ve diğer mikroskobik algler, tüm dünyanın ihtiyacı olan fotosentetik karbon ihtiyacının üçte ikisini üretirler. Algler tarafından gerçekleştirilen fotosentez, tüm sularda oksijenli ortam oluşturur. Algler, bununla birlikte suda yaşayan canlıların gıda zincirlerinin en önemli üreticileridir. Bu besin maddeleri, örneğin depremler gibi yer hareketleriyle su yüzeyine çıkmaktadır. Bilinen tüm bitkiler içindeki en hızlı büyüme oranını gösteren Pasifik Denizi"nin dev su yosunu Macrocystis pyrifera"nın yaprakları, çelikleme sonrası haftada 3 ile 4.5 m arası boy vermektedir. Çok yıllık bu bitkiler yaklaşık 60 metre uzunlukta olabilirken, bazen 100 metre yüksekliğe kadar ulaşabilirler. Öte yandan bu yosunlar yaklaşık 100 kglık bir ağırlığa sahiptir 17. yüzyılın sonlarından beri, kahverengi deniz yosunları yakılarak, mineralce zengin küllerinden sabun ve cam yapımında kullanılan soda ve gübre yapımında kullanılan potas elde edilmektedir. Kimyasal maddeler arasında yer alan brom ve iyot ilk kez bu külden izole edilmiştir ve iyot hala Japonya"da deniz yosunlarından elde edilmektedir. Deniz yosunları yaygın bir şekilde gübre olarak kullanılmaya devam etmektedir. Dünyanın bazı kesimlerinde karın altında yaşayabilen algler, karı baharda kırmızı renge çevirirler. Yosunlarla birlikte likenler, dünyamızda yaşayan bitki grupları arasında en geniş dağılım gösteren bitki grubunu teşkil eder. Likenler, yüksek bitkilerin yetişmesi için toprağın elverişsiz olduğu alanlar başta olmak üzere, her şartta ve yerde yetişebilirler. Kurak habitatlarda, likenler kendilerine havada uçuşmaları ve rüzgarla dağılmalarına imkan tanıyan bir büyüme şekli gösterirler. Örneğin, bir ağacın gövdesinde, bir kaplumbağanın üst kabuğunda, hatta bir bostan korkuluğunun üzerindeki ceketde bile bulunabilirler.

http://www.biyologlar.com/mavi-yesil-algler

Bakteri

Bakteri

Üst âlem: Bacteria - Bakteriler Âlem ve şubeler - Âlem: Bacteria - Bakteriler - Şube: Acidobacteria - Şube: Actinobacteria - Şube: Aquificae - Şube: Bacteroidetes - Şube: Chlamydiae - Şube: Chlorobi - Şube: Chloroflexi - Şube: Chrysiogenetes - Şube: Cyanobacteria - Şube: Deferribacteres - Şube: Deinococcus-Thermus - Şube: Dictyoglomi - Şube: Fibrobacteres - Şube: Firmicutes - Şube: Fusobacteria - Şube: Gemmatimonadetes - Şube: Nitrospirae - Şube: Planctomycetes - Şube: Proteobacteria - Şube: Spirochaetes - Şube: Thermodesulfobacteria - Şube: Thermotogae - Şube: Verrucomicrobia Bakteriler tek hücreli mikroorganizma grubudur. Tipik olarak birkaç mikrometre uzunluğunda olan bakterilerin çeşitli şekilleri vardır, kimi küresel, kimi spiral şekilli, kimi çubuksu olabilir. Yeryüzündeki her ortamda bakteriler mevcuttur. Toprakta, deniz suyunda, okyanusun derinliklerinde, yer kabuğunda, deride, hayvanların bağırsaklarında, asitli sıcak su kaynaklarında, radyoaktif atıklarda büyüyebilen tipleri vardır. Tipik olarak bir gram toprakta bulunan bakteri hücrelerinin sayısı 40 milyon, bir mililitre tatlı suda ise bir milyondur; toplu olarak dünyada beş nonilyon (5×1030) bakteri bulunmaktadır, bunlar dünyadan biyokütlenin çoğunu oluşturur. Bakteriler gıdaların geri dönüşümü için hayati bir öneme sahiptirler ve gıda döngülerindeki çoğu önemli adım, atmosferden azot fiksasyonu gibi, bakterilere bağlıdır. Ancak bu bakterilerin çoğu henüz tanımlanmamıştır ve bakteri şubelerinin sadece yaklaşık yarısı laboratuvarda kültürlenebilen türlere sahiptir. Bakterilerin araştırıldığı bilim bakteriyolojidir, bu, mikrobiyolojinin bir dalıdır. İnsan vücudunda bulunan bakteri sayısı, insan hücresi sayısının on katı kadardır, özellikle deride ve sindirim yolu içinde çok sayıda bakteri bulunur. Bunların çok büyük bir çoğunluğu bağışıklık sisteminin koruyucu etkisisiyle zararsız kılınmış durumda olsalar, ayrıca bir kısmı da yararlı (probiyotik) olsalar da, bazıları patojen bakterilerdir ve enfeksiyöz hastalıklara neden olurlar; kolera, frengi, şarbon, cüzzam ve veba bu cins hastalıklara dahildir. En yaygın ölümcül bakteriyel hastalıklar solunum yolu enfeksiyonlarıdır, bunlardan verem tek başına yılda iki milyon kişi öldürür, bunların çoğu Sahra altı Afrika'da bulunur. Kalkınmış ülkelerde bakteriyel enfeksiyonların tedavisinde ve çeşitli hayvancılık faaliyetlerinde antibiyotikler kullanılır, bundan dolayı antibiyotik direnci yaygınlaşmaktadır. Endüstride bakteriler, atık su arıtması, peynir ve yoğurt üretimi, biyoteknoloji, antibiyotik ve diğer kimyasalların imalatında önemli rol oynarlar. Bir zamanlar bitkilerin Schizomycetes sınıfına ait sayılan bakteriler artık prokaryot olarak sınıflandırılırlar. ökaryotlardan farklı olarak bakteri hücreleri hücre çekirdeği içermez, membran kaplı organeller de ender olarak görülür. Gelenekesel olarak bakteri terimi tüm prokaryotları içermiş ancak, 1990'lı yıllarda yapılan keşiflerle prokaryotların iki farklı gruptan oluştuğu, bunların ortak bir atadan ayrı ayrı evrimleşmiş oldukları bulununca bilimsel sınıflandırma değişmiştir. Bu üst alemler Bacteria ve Archaea olarak adlandırılmıştır.

http://www.biyologlar.com/bakteri

Bakteriyolojinin tarihçesi

Bakteriler ilk defa 1676'da Antonie van Leeuwenhoek tarafından, kendi tasarımı olan tek mercekli bir mikroskopla gözlemlenmiştir. Onlara "animalcules" (hayvancık) adını takmış, gözlemlerini Kraliyet Derneği'ne (Royal Society'ye) yazılmış bir dizi mektupla yayımlamıştır. Bacterium adı çok daha sonra, 1838'de Christian Gottfried Ehrenberg tarafından kullanıma sokulmuş, eski Yunanca "küçük asa" anlamına gelen βακτήριον -α (bacterion -a)'dan türetilmiştir. Latince kullanımıyla Bacteria, bakteri sözcüğünün çoğulu, bacterium ise tekilidir. Louis Pasteur 1859'da fermantasyonun mikroorganizmaların büyümesi sonucu meydana geldiğini ve bu büyümenin yoktan varoluş yoluyla olmadığını gösterdi. (Genelde fermantasyon kavramıyla ilişkilendirilen maya ve küfler, bakteri değil, mantardır.) Kendisiyle ayni dönemde yaşamış olan Robert Koch ile birlikte Pasteur, hastalık-mikrop teorisi'nin erken bir savunucusu olmuştur. Robert Koch tıbbi mikrobiyolojide bir öncü olmuş, kolera, şarbon ve verem üzerinde çalışmıştır. Verem üzerindeki araştırmalarında Koch mikrop (germ) teorisini kanıtlamış, bundan dolayı da kendisine Nobel Ödülü verilmiştir. Koch postülatları'nda bir canlının bir hastalığın nedeni olduğunu belirlemek için gereken testleri ortaya koymuştur; bu postülatlar günümüzde hâlâ kullanılmaktadır. On dokuzuncu yüzyılda bakterilerin çoğu hastalığın nedeni olduğu bilinmesine rağmen, antibakteriyel bir tedavi mevcut değildi. 1910'da Paul Ehrlich Treponema pallidum 'u (frengiye neden olan spiroket) seçici olarak boyamaya yarayan boyaları değiştirerek bu patojeni seçici olarak öldüren bileşikler elde etti, böylece ilk antibiyotiği geliştirmiş oldu. Ehrlich, bağışıklık üzerine yaptığı çalışmasından dolayı 1908 Nobel ödülünü kazanmış, ayrıca bakterilerin kimliğini tespit etmek için boyaların kullanılmasına öncülük etmiştir; çalışmaları Gram boyası ve Ziehl-Neelsen boyasının temelini oluşturmuştur. Bakterilerin araştırılmasında büyük bir aşama, Arkelerin bakterilerden farklı bir evrimsel soya ait olduklarının 1977'de Carl Woese tarafından anlaşılmasıdır. Bu yeni filogenetik taksonomi, 16S ribozomal RNA'nın dizilenmesine dayandırılmış ve üç alanlı sistem'in parçası olarak prokaryot alemini iki evrimsel alana (üst âleme) bölmüştür

http://www.biyologlar.com/bakteriyolojinin-tarihcesi

Alglerin Ekolojik Önemi

Algler, gerek yapisal olarak gerekse de dis görünüsleri bakimindan oldukça farkli görünümdedirler. Yapisal olarak eukaryotik (gelismis hücre tipi) ve prokaryotik (basit yapili hücre tipi) olmak üzere iki büyük gruba ayrilirlar. Buna göre Mavi-Yesil algler göstermis olduklari hücre organizasyonlari bakimindan prokaryot hücre özelligi tasimaktadirlar. Belirgin bir hücre çekirdeginin olmamasi ve çok basit olan kromatofor yapisindaki pigmentlerin dagilimi ve prokaryotik hücre özellikleri bakimindan diger alglerden ayrilirlar. Dis görünümleri bakimindan tek hücreli ve ipliksi formlardan karisik olarak gelismis bireylere kadar degisik biçimlerde gözlenebilmektedirler. Her canli gibi, algler de nesillerini devam ettirebilmek için çogalmak zorundadirlar. Algler üç farkli üreme sistemine sahiptirler. Bunlar; vejatatif üreme, eseyli ve eseysiz üremelerdir. Alglerde vejatatif üreme yaygin bir durum göstermektedir. Bazi türlerde hücrelerin büyüyerek koloni olusturmasina ve bunlarin daha sonra normal büyüme sonucu bölünmesine dayanir. Diger bazi türlerde ise tallusun büyümesi ya da ana bitkinin büyümesinin sürmesiyle gerçeklesmektedir. Genellikle alglerin ilkel gruplarinda görülen eseysiz üreme çok degisik biçimlerde ortaya çikmaktadir. Kamçili alglerin bazi gruplarinda vejatatif üreme ile eseysiz üreme arasinda büyük benzerlikler bulunmaktadir. Bu tip bir üremeye sahip alg hücrelerinden bazi tiplerin farklilasmasi ve sonuçta bunlarin birer birey olusturarak ana hücreden ayrilmalariyla gerçeklesmektedir. Son üreme sekli olan eseyli üreme ise alglerin genel bir özelligi degildir. Bu tip üreme genellikle gelismis organizmalarda görülmektedir. Alglerde eseyli üreme çogunlukla ayni tür iki organizmanin plazmalarinin ve çekirdeklerinin birlesmesiyle gerçeklesmektedir. Bu durum çok basit olarak morfolojik yapilari ayni olan 2 gametin birlesmesiyle olmaktadir. Gametler flagellatlara benzerler ve hareketlidirler. Bazi türlerde gametler yapilarina göre büyük ve küçük olarak ayrilabilirler. Algler, her ne kadar ekstrem olarak morfolojik, sitolojik ve üreme varyasyonlari bakimindan diger bitkilerle farklilik gösterse de, basit biyokimyasal mekanizmalarinin benzer oldugu görülmektedir. Örnegin, klorofil-a yapilari ve bu pigmentler yoluyla çalisan fotosentetik sistemleri, basit besin ihtiyaçlari ve asimilasyonun son ürünleri olan karbonhidrat ve proteinler, yüksek bitkiler ile benzerlik göstermektedir. Ekolojik olarak algler, karli alanlar, tamamen buzla kapli alanlar da bulunabilirler. Fakat % 70'nin dagildigi asil yayilim alani sulardir. Bu ortamlarda organik karbon bileseklerinin major primer üreticisidirler. Mikroskobik fitoplankton formunda meydana gelebilirler. Makroskobik ve mikroskobik formlarin her ikisi de kara ve su hatti boyunca ve bu ortamlarin her ikisinde meydana gelir. Gövde ya da benzer islevlere sahip yapilari ile derelerin alt kisimlari ve sedimenlere, toprak partiküllerine ya da kayalara tutunurlar. Yukarida da belirtildigi gibi buzla kapli alanlarda bulunduklari gibi 70 0C ya da daha yüksek sicakliktaki kaynak sularinda da yasayabilirler. Bazilari çok tuzlu su ortamlarinda bile gelisebilirler. Göllerde ve denizlerde yüzeyden 100 m asagida ya da daha düsük isik yogunlugu ve yüksek basinç altinda yasayabilirler. Denizlerde yüzeyden 1 km asagida da yasayabildikleri görülmüstür. Algler ile ilgili ekolojik çalismalarin ana hedefleri asagidaki gibidir; alglerin yasadigi habitatlarin siniflandirilmasi, her bir habitat içindeki flora kompozisyonunun tanimlanmasi, floralar arasindaki iliskiler ve habitattaki biyolojik, fiziksel ve kimyasal faktörlerin direkt ya da indirekt etkileri, populasyon içindeki türlerin çalisilmasi ve onlarin üremelerini kontrol eden faktörler ekolojik çalismalarin kapsamini olusturmaktadir. Tüm bu yaklasimlar, çevrenin fiziksel ve kimyasal degisimlerine bagli olarak cografik bir dagilim göstermektedir. Algler su ortaminda primer üretici canlilardir. Yapilarindaki pigmentleri sayesinde karbondioksit ve suyu isigin etkisi ile karbonhidratlara çevirirler, böylece su ortamindaki besin degerinin ve çözünmüs oksijen oraninin artmasini saglarlar. Sonuçta kendi gelisimlerini saglayarak besin zincirinin ilk halkasini olustururlar. Bu sekilde üretime olan katkilari ve üst basamaktaki canlilarla olan iliskileri açisindan önem tasimaktadirlar. Alglerin üretimleri çevresel faktörlerle sinirlanmistir. Bunlar isik, sicaklik ve besindir. Bu sinirlayici faktörler iyilestirilirse, üretim düzeyi artar. Üretim artisinin belli bir düzeyi asmasinin dogal bir sonucu olarak da çevresel denge bozulur ve bu geliseme eutrofikasyon adi verilir. Eutrofik bir ortamda besin madde girdisinin fazlaligindan dolayi, (özellikle azotlu bilesikler ve fosfat gibi alglerin gelisimini arttiran bilesikler) alg ve bakteri faliyetleri ile bulaniklik artar ve isigin suyun alt kisimlarina geçmesi engellenir. Oksijen dip kisimlarda sinirlayici bir özellik kazanir. Bu da bentik bölgede yasayan canlilar için ölümle sonuçlanabilir. Insan faaliyetleri, evsel, endüstriyel ve tarimsal atiklar son yillarda ötrofikasyon direkt etkide bulunmaktadir. Bunun yanisira atmosferden difüzyon ile suya karisan azot, yagmur sularinin alici ortamlara tasidigi besin maddeleri, drenaj yoluyla ortama tasinan maddeler kirlenme sürecini hizlandiran dogal gelisimlerdir. Eutrofikasyonun sonuçlarindan birisi de asiri alg patlamalarinin görülmesidir. Bunun anlami, fitoplankton (alglerin serbest yüzen formlari) populasyonlarinin suyun rengini, kokusunu ve ekolojik dengesini bozacak yeterli yogunluga ulasmasidir. Bunun yani sira alglerin asiri gelismesi, sucul ortamdaki bir çok canli için toksik etkilere neden oldugu için ölümler görülebilmektedir. Örnegin, Dinoflagellatlardan Gymnodinium ve Gonyanlax'a ait türler asiri çogalma sonucu, hayvanlarin sinir sistemlerini etkileyen, yüksek oranda suda çözünebilen toksik madde üretirler (Elliot et. al., 1992). Diger patlamalara ise Mavi-Yesil alglerden Microcystis, Anabaena, Nostoc, Aphanizomenon, Gloeotrichia ve Oscillatoria, Chrysophyte'den Prymnesium parvum neden olmaktadir. Algleri bulunduklari sistem içerisindeki etkilerini bu sekilde belirttikten sonra insanlar için ekonomik anlamda sagladiklari katkilara kisaca deginmek gereklidir. Besin maddesi olarak: Çogunlugu Phaeophyceae ve Phodophycea olan 100'den fazla tür içerdikleri protein, karbonhidrat, vitamin ve minerallerin varligindan dolayi dünyanin çesitli yerlerinde insanlar tarafindan besin kaynagi olarak kullanilirlar. Agar: Kirmizi alglerin hücre duvarlarinda bulunan, jelimsi bir özellige sahip olan bir polisakkarittir. Bazi algler ve bakterilerle ve birçok fungus'un kültürü için laboratuarda hazirlanan farkli kültür ortamlarinda temel olarak kullanilir. Ayrica önceden hazirlanmis yiyeceklerin paketlenmesi, kabizligin tedavisi, kozmetik, deri, tekstil ve kagit endüstrilerinde kullanilmaktadir (Sharma, 1986). Carrageenin: Kirmizi alglerin hücre duvarlarindan elde edilen baska bir polisakkarittir. Bu madde mayalama, kozmatik, tekstil, boya, endüstrilerinde ve tip alaninda kan pihtilayicisi olarak kullanilmaktadir. Alginatlar: Alginat türevleri ve alginik asit, kahverengi alglerin hücre duvarlarindan extre edilen bir karbonhidrattir. Alginatlar kauçuk endüstrisi, boyalar, dondurma, plastik dondurucularda kullaniliyorlar. Ayrica kanamalari durdurmak için alginik asit kullaniliyor. Funori: Kirmizi alglerden elde edilir. Kagit ve elbiseler için yapistirici olarak kullanilir. Kimyasal olarak sülfat ester grubu'n içermesi disinda agar-agar'a benzemektedir. Mineral Kaynagi Olarak: Bazi yosunlar demir, bakir, manganez, çinko bakimindan zengin kaynaklardir. Hayvan Yemi Olarak: Phaeophyceae, Rhodophyceae ve bazi yesil algler besin kaynagi olarak bir çok hayvan yemi için kullanilir. Bunun yanisira Protozoa, Crustacea'ler, baliklar va diger sucul canlilarin en büyük besin kaynagi planktonik alglerdir. Diatomite: Diatomite, diatomlarin hücre duvari materyalidir. Diatom kabuklarinin üst üste birikmesiyle genis yüzey alanlari olustururlar. Diatomite'ler, seker rafinerisi ve bira sanayisi, isi yalitimi, temizleme sanayi, cam bardak fabrikalari'nda kullanilirlar. Gübre Olarak: Dünyanin birçok sahil yöresindeki yosunlar, fosfor, potasyum ve bazi iz elementlerin varligindan dolayi gübre olarak kullanilirlar. Antibiyotikler: Chlorellin adindaki bir antibiyotik, yesil alglereden olan Chlorella'dan elde edilir. Ayrica gram negatif ve gram pozitif bakterileri karsi efektif olan bazi antibakterial maddeler Ascophyllum nodosum, Rhodomela larix, Laminaria digitata, Pelvetia ve Polysiphonia'nin bazi türlerinden elde edilmektedir. Bunlarin yanisira kahverengi ve diger alglerden elde edilen bir çok ilaç tip alaninda kullanilmaktadir. Atiklarin Aritilmasinda: Evsel ve endüstriyel kaynaklardan gelen atiklar, çözünmüs ya da askidaki organik ve inorganik bilesikleri içerir. Bu atiklarin temizlenme prosesleri oksijenli bir ortamda gerçeklesir ve bu oksijenlendirme bazi algler tarafindan saglanir. Ayrica, temizlenmesi güç olan azot ve fosfor gibi bilesikler alglerin bulundugu tanklara alinarak, algler tarafindan besin kaynagi olarak kullanilmalari suretiyle ortamdan uzaklastirilabilmektedirler. Yunus Akbulut Kaynaklar: Güner, H., 1991, Tohumsuz Bitkiler Sistematigi, Sharma, O. P., Text Book of Algea, 395 s., New Delhi. Round, F. E., 1973, The Biology of Algea, 2 nd. Ed., Edward Arnold, London. Elliot. W., Stoching, C. R., Barbour, M. G., Rost, T. L., 1982, Botany, An Introduction to Plant Biology, 6 nd. Ed., John Wiley and Sons, Singapure.

http://www.biyologlar.com/alglerin-ekolojik-onemi-1

Bakterilerde Köken ve erken evrim

Modern bakterilerin ataları, yaklaşık 4 milyar yıl önce, dünyada gelişen ilk yaşam biçimi olan tek hücreli mikroorganizmalardı. Yaklaşık 3 milyar yıl boyunca tüm canlılar mikroskopiktiler, bakteri ve arkeler yaşamın başlıca biçimleriydi. Bakteri fosilleri, örneğin stromatolitler, mevcut olmakla beraber, bunların kendine has morfolojilerinin olmaması, bunlar kullanılarak bakteri evriminin anlaşılmasına veya belli bakteri türlerinini kökeninin belirlenmesini engellemektedir. Ancak gen dizileri bakteri filogenetiğinin inşası için kullanılabilir, bu çalışmalar bakterilerin arke/ökaryot soyundan ayrılmış evrimsel bir dal olduğunu göstermiştir. Bakteri ve arkelerin en yakın zamanlı ortak atası muhtemelen yaklaşık 2,5-3,2 milyar yıl önce yaşamış bir hipertemofil'di. Bakteriler, evrimdeki ikinci büyük ayrışmada, ökaryotların arkelerden oluşmasında da yer almışlardır. Bunda, eski bakteriler, ökaryotların ataları ile endosimbiyotik bir ilişki kurmuşlardır. Bu süreçte, proto-ökaryotik hücreler, alfa-proteobakteriyel hücreleri içlerine alıp mitokondri veya hidojenozomları oluşturdular. Bu organeller günümüz ökaryotlarının tümünde hala bulunmaktadır ("mitokondrisiz" protozoalarda dahi aslında son derece küçülmüş olarak mevcutturlar). Daha sonraki bir dönemde, farklı bir olay sonucu, bazı mitokondrili ökaryotların, siyanobakteri-benzeri canlıları içlerine alması sonucunda, bitki ve yosunlardaki kloroplastlar oluştu. Hatta bazı yosun gruplarında bu olayı izleyen başka içe almalar meydana gelmiş, bazı heterotrofik ökaryotik konak hücrelerin, ökaryotik bir alg hücresini içine alması sonucunda "ikinci kuşak" bir plastid oluşmuştur.

http://www.biyologlar.com/bakterilerde-koken-ve-erken-evrim

ALGLERİN EKOLOJİK VE EKONOMİK ÖNEMLERİ

Algler, gerek yapısal olarak gerekse de dış görünüşleri bakımından oldukça farklı görünümdedirler. Yapısal olarak eukaryotik (gelişmiş hücre tipi) ve prokaryotik (basit yapılı hücre tipi) olmak üzere iki büyük gruba ayrılırlar. Buna göre Mavi-Yeşil algler göstermiş oldukları hücre organizasyonları bakımından prokaryot hücre özelliği taşımaktadırlar. Belirgin bir hücre çekirdeğinin olmaması ve çok basit olan kromatofor yapısındaki pigmentlerin dağılımı ve prokaryotik hücre özellikleri bakımından diğer alglerden ayrılırlar. Dış görünümleri bakımından tek hücreli ve ipliksi formlardan karışık olarak gelişmiş bireylere kadar değişik biçimlerde gözlenebilmektedirler (Round, 1973). Her canlı gibi, algler de nesillerini devam ettirebilmek için çoğalmak zorundadırlar. Algler üç farklı üreme sistemine sahiptirler. Bunlar; vejatatif üreme, eşeyli ve eşeysiz üremelerdir. Alglerde vejatatif üreme yaygın bir durum göstermektedir. Bazı türlerde hücrelerin büyüyerek koloni oluşturmasına ve bunların daha sonra normal büyüme sonucu bölünmesine dayanır. Diğer bazı türlerde ise tallusun büyümesi ya da ana bitkinin büyümesinin sürmesiyle gerçekleşmektedir. Genellikle alglerin ilkel gruplarında görülen eşeysiz üreme çok değişik biçimlerde ortaya çıkmaktadır. Kamçılı alglerin bazı gruplarında vejatatif üreme ile eşeysiz üreme arasında büyük benzerlikler bulunmaktadır. Bu tip bir üremeye sahip alg hücrelerinden bazı tiplerin farklılaşması ve sonuçta bunların birer birey oluşturarak ana hücreden ayrılmalarıyla gerçekleşmektedir. Son üreme şekli olan eşeyli üreme ise alglerin genel bir özelliği değildir. Bu tip üreme genellikle gelişmiş organizmalarda görülmektedir. Alglerde eşeyli üreme çoğunlukla aynı tür iki organizmanın plazmalarının ve çekirdeklerinin birleşmesiyle gerçekleşmektedir. Bu durum çok basit olarak morfolojik yapıları aynı olan 2 gametin birleşmesiyle olmaktadır. Gametler flagellatlara benzerler ve hareketlidirler. Bazı türlerde gametler yapılarına göre büyük ve küçük olarak ayrılabilirler (Güner, 1991). Algler, her ne kadar ekstrem olarak morfolojik, sitolojik ve üreme varyasyonları bakımından diğer bitkilerle farklılık gösterse de, basit biyokimyasal mekanizmalarının benzer olduğu görülmektedir. Örneğin, klorofil-a yapıları ve bu pigmentler yoluyla çalışan fotosentetik sistemleri, basit besin ihtiyaçları ve asimilasyonun son ürünleri olan karbonhidrat ve proteinler, yüksek bitkiler ile benzerlik göstermektedir. Ekolojik olarak algler, karlı alanlar, tamamen buzla kaplı alanlar da bulunabilirler. Fakat % 70'nin dağıldığı asıl yayılım alanı sulardır. Bu ortamlarda organik karbon bileşeklerinin major primer üreticisidirler. Mikroskobik fitoplankton formunda meydana gelebilirler. Makroskobik ve mikroskobik formların her ikisi de kara ve su hattı boyunca ve bu ortamların her ikisinde meydana gelir. Gövde ya da benzer işlevlere sahip yapıları ile derelerin alt kısımları ve sedimenlere, toprak partiküllerine ya da kayalara tutunurlar. Yukarıda da belirtildiği gibi buzla kaplı alanlarda bulundukları gibi 70 0C ya da daha yüksek sıcaklıktaki kaynak sularında da yaşayabilirler. Bazıları çok tuzlu su ortamlarında bile gelişebilirler. Göllerde ve denizlerde yüzeyden 100 m aşağıda ya da daha düşük ışık yoğunluğu ve yüksek basınç altında yaşayabilirler. Denizlerde yüzeyden 1 km aşağıda da yaşayabildikleri görülmüştür (Elliot et. al., 1992). Algler ile ilgili ekolojik çalışmaların ana hedefleri aşağıdaki gibidir; alglerin yaşadığı habitatların sınıflandırılması, her bir habitat içindeki flora kompozisyonunun tanımlanması, floralar arasındaki ilişkiler ve habitattaki biyolojik, fiziksel ve kimyasal faktörlerin direkt ya da indirekt etkileri, populasyon içindeki türlerin çalışılması ve onların üremelerini kontrol eden faktörler ekolojik çalışmaların kapsamını oluşturmaktadır. Tüm bu yaklaşımlar, çevrenin fiziksel ve kimyasal değişimlerine bağlı olarak coğrafik bir dağılım göstermektedir. Algler su ortamında primer üretici canlılardır. Yapılarındaki pigmentleri sayesinde karbondioksit ve suyu ışığın etkisi ile karbonhidratlara çevirirler, böylece su ortamındaki besin değerinin ve çözünmüş oksijen oranının artmasını sağlarlar. Sonuçta kendi gelişimlerini sağlayarak besin zincirinin ilk halkasını oluştururlar. Bu şekilde üretime olan katkıları ve üst basamaktaki canlılarla olan ilişkileri açısından önem taşımaktadırlar. Alglerin üretimleri çevresel faktörlerle sınırlanmıştır. Bunlar ışık, sıcaklık ve besindir. Bu sınırlayıcı faktörler iyileştirilirse, üretim düzeyi artar. Üretim artışının belli bir düzeyi aşmasının doğal bir sonucu olarak da çevresel denge bozulur ve bu gelişeme eutrofikasyon adı verilir. Eutrofik bir ortamda besin madde girdisinin fazlalığından dolayı, (özellikle azotlu bileşikler ve fosfat gibi alglerin gelişimini arttıran bileşikler) alg ve bakteri faliyetleri ile bulanıklık artar ve ışığın suyun alt kısımlarına geçmesi engellenir. Oksijen dip kısımlarda sınırlayıcı bir özellik kazanır. Bu da bentik bölgede yaşayan canlılar için ölümle sonuçlanabilir. İnsan faaliyetleri, evsel, endüstriyel ve tarımsal atıklar son yıllarda ötrofikasyon direkt etkide bulunmaktadır. Bunun yanısıra atmosferden difüzyon ile suya karışan azot, yağmur sularının alıcı ortamlara taşıdığı besin maddeleri, drenaj yoluyla ortama taşınan maddeler kirlenme sürecini hızlandıran doğal gelişimlerdir. Eutrofikasyonun sonuçlarından birisi de aşırı alg patlamalarının görülmesidir. Bunun anlamı, fitoplankton (alglerin serbest yüzen formları) populasyonlarının suyun rengini, kokusunu ve ekolojik dengesini bozacak yeterli yoğunluğa ulaşmasıdır. Bunun yanı sıra alglerin aşırı gelişmesi, sucul ortamdaki bir çok canlı için toksik etkilere neden olduğu için ölümler görülebilmektedir. Örneğin, Dinoflagellatlardan Gymnodinium ve Gonyanlax'a ait türler aşırı çoğalma sonucu, hayvanların sinir sistemlerini etkileyen, yüksek oranda suda çözünebilen toksik madde üretirler (Elliot et. al., 1992). Diğer patlamalara ise Mavi-Yeşil alglerden Microcystis, Anabaena, Nostoc, Aphanizomenon, Gloeotrichia ve Oscillatoria, Chrysophyte'den Prymnesium parvum neden olmaktadır. Algleri bulundukları sistem içerisindeki etkilerini bu şekilde belirttikten sonra insanlar için ekonomik anlamda sağladıkları katkılara kısaca değinmek gereklidir. Besin maddesi olarak: Çoğunluğu Phaeophyceae ve Phodophycea olan 100'den fazla tür içerdikleri protein, karbonhidrat, vitamin ve minerallerin varlığından dolayı dünyanın çeşitli yerlerinde insanlar tarafından besin kaynağı olarak kullanılırlar. Agar: Kırmızı alglerin hücre duvarlarında bulunan, jelimsi bir özelliğe sahip olan bir polisakkarittir. Bazı algler ve bakterilerle ve birçok fungus'un kültürü için laboratuarda hazırlanan farklı kültür ortamlarında temel olarak kullanılır. Ayrıca önceden hazırlanmış yiyeceklerin paketlenmesi, kabızlığın tedavisi, kozmetik, deri, tekstil ve kağıt endüstrilerinde kullanılmaktadır (Sharma, 1986). Carrageenin: Kırmızı alglerin hücre duvarlarından elde edilen başka bir polisakkarittir. Bu madde mayalama, kozmatik, tekstil, boya, endüstrilerinde ve tıp alanında kan pıhtılayıcısı olarak kullanılmaktadır. Alginatlar: Alginat türevleri ve alginik asit, kahverengi alglerin hücre duvarlarından extre edilen bir karbonhidrattır. Alginatlar kauçuk endüstrisi, boyalar, dondurma, plastik dondurucularda kullanılıyorlar. Ayrıca kanamaları durdurmak için alginik asit kullanılıyor. Funori: Kırmızı alglerden elde edilir. Kağıt ve elbiseler için yapıştırıcı olarak kullanılır. Kimyasal olarak sülfat ester grubu'n içermesi dışında agar-agar'a benzemektedir. Mineral Kaynağı Olarak: Bazı yosunlar demir, bakır, manganez, çinko bakımından zengin kaynaklardır. Hayvan Yemi Olarak: Phaeophyceae, Rhodophyceae ve bazı yeşil algler besin kaynağı olarak bir çok hayvan yemi için kullanılır. Bunun yanısıra Protozoa, Crustacea'ler, balıklar va diğer sucul canlıların en büyük besin kaynağı planktonik alglerdir. Diatomite: Diatomite, diatomların hücre duvarı materyalidir. Diatom kabuklarının üst üste birikmesiyle geniş yüzey alanları oluştururlar. Diatomite'ler, şeker rafinerisi ve bira sanayisi, ısı yalıtımı, temizleme sanayi, cam bardak fabrikaları'nda kullanılırlar. Gübre Olarak: Dünyanın birçok sahil yöresindeki yosunlar, fosfor, potasyum ve bazı iz elementlerin varlığından dolayı gübre olarak kullanılırlar. Antibiyotikler: Chlorellin adındaki bir antibiyotik, yeşil alglereden olan Chlorella'dan elde edilir. Ayrıca gram negatif ve gram pozitif bakterileri karşı efektif olan bazı antibakterial maddeler Ascophyllum nodosum, Rhodomela larix, Laminaria digitata, Pelvetia ve Polysiphonia'nın bazı türlerinden elde edilmektedir. Bunların yanısıra kahverengi ve diğer alglerden elde edilen bir çok ilaç tıp alanında kullanılmaktadır. Atıkların Arıtılmasında: Evsel ve endüstriyel kaynaklardan gelen atıklar, çözünmüş ya da askıdaki organik ve inorganik bileşikleri içerir. Bu atıkların temizlenme prosesleri oksijenli bir ortamda gerçekleşir ve bu oksijenlendirme bazı algler tarafından sağlanır. Ayrıca, temizlenmesi güç olan azot ve fosfor gibi bileşikler alglerin bulunduğu tanklara alınarak, algler tarafından besin kaynağı olarak kullanılmaları suretiyle ortamdan uzaklaştırılabilmektedirler. Kaynaklar: Güner, H., 1991, Tohumsuz Bitkiler Sistematiği, I. Cilt, Ege Üniversitesi Fen Fak. Kitaplar Serisi No:108, 251 s., İzmir Sharma, O. P., Text Book of Algea, 395 s., New Delhi. Round, F. E., 1973, The Biology of Algea, 2 nd. Ed., Edward Arnold, London. Elliot. W., Stoching, C. R., Barbour, M. G., Rost, T. L., 1982, Botany, An Introduction to Plant Biology, 6 nd. Ed., John Wiley and Sons, Singapure.

http://www.biyologlar.com/alglerin-ekolojik-ve-ekonomik-onemleri

Bakterilerin Morfolojik Yapısı

Bakterilerin Morfolojik Yapısı

Bakteriler, morfoloji olarak adlandırılan, şekil ve boyutları bakımından büyük bir çeşitlilik gösterir. Bakteriyel hücreler ökaryotik bir hücrenin yaklaşık onda biri boyundadır, tipik olarak 0,5-5,0 mikrometre uzunluktadırlar.

http://www.biyologlar.com/bakterilerin-morfolojik-yapisi

Bakterilerde Hücresel yapı

Bakterilerde Hücresel yapı

Bakteri hücresi hücre zarı olarak adlandırılan bir lipit zarla çevrilidir. Bu zar, hücrenin içindekiler içine alıp, besinler, protein ve sitoplazmanın diğer gerekli bileşenlerini hücrenin içinde tutar.

http://www.biyologlar.com/bakterilerde-hucresel-yapi

Bakerilerde Hücre dışı yapılar

Hücre zarının dışında bakteriyel hücre duvarı bulunur. Bakteriyel hücre duvarları peptidoglikan (eski metinlerde mürein olarak adlandırılırdı)'dan oluşur. Peptidoglikan, peptit zincirlerle birbirine çapraz bağlanmış polisakkarit zincirlerden oluşur, bu peptitler, hücredeki diğer protein ve peptitlerden farklı olarak, D-amino asitler içerir. Bakteri hücre duvarları bitki ve mantar hücre duvarlarından farklıdırlar; bitki hücre duvarları selülozdan, mantarlarınkiler ise kitinden oluşur. Bakteri hücre duvarları arkelerinkinden de farklıdır, bunlarda peptidoglikan bulunmaz. Hücre duvarı çoğu bakterinin varlığını sürdürmesi için gereklidir, bu yüzden bir antibiyotik olan penisilin tarafından peptidoglikan sentezinin engellemesi bakterilerin ölümüne neden olur. Bakterilerde başlıca iki tip hücre duvarı olduğu söylenebilir, bunlar Gram-negatif ve Gram-pozitif olarak adlandırılır. Bu adlar, hücrelerin Gram boyasıyla tepkimesinden kaynaklanır. Bu, bakterilerin sınıflandırılmasında çok eskiden beri kullanılan bir testtir. Gram-pozitif hücreler, pek çok peptidoglikan ve teikoik asit tabakasından oluşan kalın bir hücre duvarına sahiptir. Buna karşın, Gram-negatif bakteriler birkaç peptidoglikan tabakası bulunur, bunun etrafını ikinci bir hücre zarı sarar, bu zarda lipopolisakkaritler ve lipoproteinler bulunur. Çoğu bakteri Gram-negatif bir hücre duvarına sahiptir, sadece Firmicutes ve Actinobacteria'lar (bunlar daha evvel düşük G+C ve yüksek G+C Gram pozitif bakteriler diye bilinirdi) Gram-pozitif, düzene sahiptirler. Bu yapısal farklılık, antibiyotiklere duyarlılıkta farklılık yaratabilir; örneğin vankomisin Gram-pozitif bakterileri öldürmesine karşın, Haemophilus influenzae veya Pseudomonas aeruginosa gibi Gram-negatif patojenlere karşı etkisizdir. Çoğu bakteride hücrenin dışını proteinlerden oluşmuş sert bir bir S-tabakası kaplar. Bu tabaka, hücre yüzeyine kimyasal ve fiziksel bir koruma sağlar ve makromoleküllerin difüzyonuna karşı bir engel oluşturur. S-tabakalarının çeşitli ama az anlaşılmış işlevleri vardır. Kampilobakter'lerde virülans faktörü olarak etki ettikleri ve Bacillus stearothermophilus 'ta yüzey enzimleri içerdikleri bilinmektedir. Kamçılar (flagellum, çoğul hali flagella), sert protein yapılardır, çapları yaklaşık 20 nanometre olup uzunlukları 20 mikrometreyi bulabilir, hareket etmeye yararlar. Kamçının hareketi için gereken enerji, hücre zarının iki yanı arasındaki bir elektrokimyasal gradyan boyunca iyonların taşınması sonucu elde edilir. Fimbrialar ince protein iplikçiklerdir, sadece 2-10 nanometre çaplı olup uzunlukları birkaç mikrometreyi bulabilir. Hücrenin yüzeyine dağılıdırlar, elektron mikroskobunda ince saçlara benzerler. Fimbriaların, sert yüzeylere veya başka hücrelere bağlanmakla ilişkili oldukları sanılmaktadır, ve bazı bakterilerin virülansı için gereklidirler. Piluslar fimbrialardan biraz daha büyük hücresel uzantılardır, konjügasyon denen bir süreç ile bakteri hücreleri arasında genetik malzeme aktarılmasını sağlarlar (aşağıda bakteri genetiği ile ilgili bölüme bakınız). Çoğu bakteri kapsül veya sümük tabakaları üreterek kendilerini bunlarla çevreler. Bu yapılar farklı derecede karmaşıklık gösterir: hücre dışı bir polimer olan sümük tabakası tamamen düzensizdir, kapsül veya glikokaliks ise çok düzenlidir. Bu yapılar, bakterileri makrofaj gibi ökaryotik hücreler tarafından yutulmaya karşı korur. Bunlar ayrıca antijen olarak etki edip hücre tanınmasında rol oynayabilir, ayrıca yüzeylere bağlanmak ve biyofilm oluşmasına yardımcı olabilir. Bu hücre dışı yapıların biraraya gelmesi salgı sistemlerine dayalıdır. Bunlar proteinleri sitoplazmadan periplazmaya veya hücre dışı ortama aktarırlar. Çeşitli salgı sistemleri bilinmektedir ve bu yapılar virülans için gerekli olduğu için yoğun bir sekilde araştırılmaktdadır.

http://www.biyologlar.com/bakerilerde-hucre-disi-yapilar

Hücre Fizyolojisi

Hücreler yaşayan organizmaların yapısal ve fonksiyonel birimleridir. Hücreler küçük fakat kompleks yapılardır. Yaşamın bu temel birimi hakkında ayrıntılı bilgiler ilk kez 17. Yüzyılda ışık mikroskobunun geliştirilmesi ile edinildi. Bir müze müdürü olan İngiliz Robert Hooke 1663 yılında mantar ve diğer bitki örneklerini bir jiletle keserek mikroskop altında 30 kat büyüterek inceledi. Bu incelemeler sonucunda bitkilerin "hücre" adını verdiği küçük bölmelerle dolu olduğunu buldu. Anton van Leeuwenhoek isimli bir Alman dükkancı ise doku örneklerini 300 kat büyüterek, bakteri, kan hücresi, sperm hücresi gibi tek hücreli organizmaları inceledi. Bu organizmalara hayvancık anlamına gelen "animalcules" adını verdi. Hücrelerin Genel Özellikleri: Hücreler hem morfolojik (şekilsel) hem de metabolik olarak çok büyük farklılıklar gösterirler. E.coli isimli bakteri 1m m (m m=mikrometre= 1 metrenin milyonda biri) uzunluğundayken, aksonları 1 metre uzunluğunda olan sinir hücreleri vardır. Ama yine de hücrelerin çok büyük bir çoğunluğu 1-30 m m arasındadır. Hücreler küçük olmak zorundadırlar, çünkü metabolizmalarında diffüzyon çok önemlidir. Diffüzyon, termal hareketle moleküllerin rasgele hareket etmesidir. Diffüzyon moleküllerin, yüksek konsantrasyon bölgesinden düşük konsantrasyon bölgesine doğru, her yerde eşit dağılıncaya kadar olan, rastgele hareketleridir. Diffüzyon termodinamiğin 2. Kanuna bir örnektir. Bu kanuna göre entropi (düzensizlik ya da rasgelelik) sürekli olarak artar. Evrendeki düzensizliğin derecesi sadece ve sadece artabilir. Hücrelerin çoğu aktivitelerinin büyük bir bölümünü diffüzyon ile düzenlerler. Diffüzyon, molekülün özelliğine (büyüklük gibi) ve çevreye (vizkozite, membran gibi) bağlıdır. Bir partikül (madde parçası) tarafından katedilen mesafe zamanın karekökü ile doğru orantılıdır. Yani bir partikül 1 saniyede 1 m m gidiyorsa, 4 saniyede 2 m m ve 100 saniyede 10 m m ve 3 saatte (10.000 saniye) 100 m m gidecek demektir. Hücrelerin Fonksiyonel Özellikleri: Hücreler ortamdan ham materyali alırlar. Enerji üretirler: Bu enerji iç ortam dengesini sağlamak, ve sentez reaksiyonlarını yürütmek için gereklidir. Termodinamiğin 2. Kanununa karşı koymak ancak enerji ile mümkündür. Kendi moleküllerini sentez ederler. Organize bir şekilde büyürler. Çevreden gelen uyarılara cevap verirler. Çoğalırlar (bazı istisnalar haricinde). Hücrelerin Yapısal Özellikleri: Kalıtsal bilgiler DNA içinde saklanır. Genetik kod temelde aynıdır. Bilgi DNA dan proteinlere RNA aracılığı ile geçer. Proteinler ribozomlar tarafından yapılır. Proteinler hücrenin fonksiyon ve yapısını düzenlerler. Bütün hücreler seçici geçirgen bir zar olan plazma membranı ile çevrilmiştir. HÜCRELERİ BİRBİRİNDEN AYIRAN ÖZELLİKLER Hücreler arasında pek çok benzerlik olmasına rağmen, çok belirgin farklılıklar da vardır. Bu farklılıklar hücreleri çeşitli ana guruplara ayırmamıza yardımcı olur. İki yaygın ana gurup şunlardır. Prokaryotlar Eukaryotlar Prokaryotlarla Eukaryotlar arasındaki en temel farklar prokaryotların bir nükleusa (çekirdek) ve membrana bağlı organellerinin (birkaç istisna haricinde) olmamasıdır. Her ikisinin de DNA sı, hücre zarı, ribozomları vardır. HÜCRE ORGANELLERİNİN YAPI VE FONKSİYONLARI Hücreler ışık mikroskopu ile incelendiği zaman, sitoplazma ve çekirdek adı verilen iki bölümden oluştuğu görülür. Ancak daha büyük büyütme sağlayan elektron mikroskopuyla yapılan incelemeler, hücrenin bir takım alt birimlerden, hücre organellerinden oluştuğunu ortaya koymuştur. Hücre şunlardan oluşmuştur. Hücre zarı Sitozol Organeller Çekirdek Hücre Zarı: Zar ya da membranlar yaşam için çok önemlidir, çünkü bir hücre 2 sebebten dolayı kendisini dışarıdaki ortamdan ayırmak zorundadır. DNA, RNA ve benzeri yaşamsal moleküllerini dağılmaktan korumalıdır. Hücre molekül yada organellerine zarar verebilecek yabancı molekülleri uzak tutmalıdır. Ancak hücre bu iki kurala uyarken bir taraftan da çevreyle haberleşmeli, dış ortamı sürekli olarak izlemeli ve ortam değişikliklerine ayak uydurmak zorundadır. Ayrıca hücre besin maddelerini dışarıdan almalı ve metabolizması sonucunda ürettiği toksik (zehirli) maddeleri dış ortama vermelidir. Biyolojik membranlar Şekil 1 de görüldüğü gibi bilipit katmandan oluşur. Şekildeki her bir fosfolipiti temsil eder. Daire ya da baş negatif yüklü fosfat gurubudur, ve iki kuyruk da çok hidrofobik (hidrofobik=suyu iten) olan hidrokarbon zincirlerini temsil eder. Fosfolipit zincirlerinin Şekil 1. De görüldüğü düzenlenmesi sonucu hidrofobik kısımlar membranın içinde kalır. Membran yaklaşık 5 nanometre (1 nanometre = 1 metrenin milyarda biri) kalınlığındadır. Membran semipermeabledır (yarı geçirgen), yani bazı maddelerin membrandan serbestçe geçmesine (diffüze olmasına) izin verir. Membran büyük moleküllere geçirgen değilken, yüklü iyonları çok az geçirir, ve yağda eriyen küçük moleküllere oldukça geçirgendir. Tüm biyolojik membranlar gibi hücre zarı (membranı) da lipit, protein ve az miktarda karbonhidrattan oluşmuştur. Hücre zarı, hücre içinde ve dışında bazı uzantılarla devam eder. Hücre dışına doğru olan uzantılar hücrenin yüzeyinden interstisiyel mesafeye doğru uzanırlar, bu uzantılara mikrovillus denir. Hücre içine doğru devam eden zar sistemi ise dış ortamın hücre içiyle daha yakın ilişki kurmasını sağlar. Bu sisteme endoplazmik retikulum denir. Endoplazmik Retikulum: Endoplazmik retikulum lipid, protein (ribozomlar aracılığı ile) ve kompleks karbonhidratların yapım yeridir. Endoplazmik retikulum hücredeki toplam membranların yarısından fazlasını oluşturur. Endoplazmik retikulum iki membrandan oluşur, iki membran arasında kalan boşluğa endoplazmik retikulum lümeni denir. İki tip endoplazmik retikulum vardır. Granüllü Endoplazmik Retikulum: Üzerinde ribozomlar vardır. Sisterna denilen yassılaşmış keseler şeklindedir. Golgi Kompleksi: Golgi kompleksi hem yapı hem de fonksiyon yönünden endoplazmik retikulum ile yakından ilişkilidir. Bu organel birbirine paralel bir dizi membranöz kanaldan oluşur ve salgı yapan hücrelerde iyi gelişmiştir. Golgi kompleksinin fonksiyonu endoplazmik retikulumda sentezlenen maddelere son şeklini vermek ve bu maddeleri bir membranla çevrelemektir. Ayrıca hücre zarının yenilenmesi ve yüzeyinin genişletilmesi görevini de üstlenir. Lizozom: Lizozomlar 0,2 ila 2 m m çapında organellerdir. Hücreiçi sindirimi sağlamak üzere yaklaşık 40 civarında enzim içerirler. Lizozom membranı lizozomun hücreyi tümüyle sindirmesini önler. Bu enzimler için optimal pH 5 civarıdır. Lizozomlarda ATP hidrolizi ile çalışan H+ pompası vardır. Bu sayede lizozomun pH I düşük tutularak enzimlerin etkin hale geçmesi önlenir. Peroksizom: Peroksizom membranında spesifik proteinler ve oksidasyon enzimleri vardır. Karaciğerdeki peroksizomların ana görevi detoksifikasyondur (bir maddeyi zararsız hale getirme). Ribozom: Ribozomlar proteinlerin sentez edildikleri yerdir. Protein sentezi için gerekli bilgi DNA dadır, bu bilgi RNA ya transfer edilir, ve ribozomlarda RNA daki bu bilgiyle protein yapılır. Bir hücre için protein sentezi çok önemlidir, bu yüzden de hücrede binlerce ribozom bulunur. Ribozomlar ya sitoplazmada serbestçe yüzerler ya da endoplazmik retikuluma bağlı olarak bulunur. Ribozomların membranı yoktur. Protein sentezlemedikleri zaman 2 alt gurup halinde bulunurlar. Alt guruplar ribozomal RNA (rRNA) ve ribozomal proteinlerden oluşur. Mitokondri: Mitokondriler eukaryotik hücrelerde ana enerji üretim merkezleridir. Biri iç diğeri dış olmak üzere iki membranı vardır. İç membranda çok sayıda katlanmalar vardır, bu membranın yüzey alanını genişleterek, membran bağımlı raksiyonların daha fazla sayıda olamasını sağlar. Mitokondrilerin kendi DNA ve ribozomları vardır. Çekirdek (Nükleus): Nükleus DNA nın bulunduğu ve DNA daki bilginin RNA ya aktarıldığı yerdir. Çift katlı bir membranla sarılmıştır, bu membranda çok sayıda büyük porlar bulunur. Çekirdeğin içini dolduran esas madde DeoksiriboNükleik Asit ve protein molekülleridir. Bu DNA molekülleri nükleus içinde rastgele dağılmış olamayıp kromozom denilen yapılar içinde protein molekülleri ile birlikte organize olmuşlardır. İnsanda 46 adet (23 çift) kromozom bulunur. DNA molekülleri hücrede mevcut bütün proteinlerin nasıl yapılacağının genetik bilgisini içerirler. Bilgi nükleusdadır fakat proteinler sitoplazmada yapılır, bu sebeple bilginin sitoplazmaya aktarılması gereklidir. Bu amaçla DNA kalıp gibi kullanılarak, bu kalıptan RNA yapılır, oluşan RNA sitoplazmaya geçerek, protein yapım yeri olan ribozomlara protein sentezi için gerekli bilgiyi aktarır. Çekirdek hücrenin kontrol merkezidir, buradaki genetik mekanizmalar yoluyla sadece hücre içindeki kimyasal olaylar değil, aynı zamanda hücrenin özelliklerinin yeni hücre nesillerine aktarılması da sağlanır. Hücre İskeleti: Aslında hücre iskeleti terimi yanlış bir deyimdir. Hücre iskeleti transparan olduğu için hem ışık hem de elektron mikroskobu preperatlarında görülmez. Hücre çizimlerinde de gösterilmemesine rağmen önemli bir hücre komponenttidir. Hücre iskeleti hücrenin şeklini, hücre organellerinin yerinde durmasını sağlar, ve hücre hareketinden sorumludur. Hücre iskeleti şunlardan oluşmuştur. Sentriyoller Mikrotübüller Aktin filamentleri Sentriyoller çekirdeğe yakın olarak yer alan bir çift silindirik yapıdır. Her biri üçerli guruplar halinde dokuz tübülden oluşmuştur. Sentriyoller hücre bölünmesi sırasında kromozomların hücre kutuplarına çekilmesini sağlarlar. Mikrutübüller tübülin denilen alt birimlerden oluşmuştur. Görevi hücreyi yerinde tutmaktır, aynı zamanda silya ve flagellanın da ana bileşenidir. Aktin filamentleri ise hücrenin şeklini değiştirmesinde görev alırlar.

http://www.biyologlar.com/hucre-fizyolojisi

Hücre teorisi

1)Bütün canlılar hücrelerden meydana gelmiştir. 2)Hücreler bağımsız hareket ettikleri halde birlikte iş görürler. 3)Hücreler bölünerek çoğalırlar. Bilinen en büyük hücre deve kuşu yumurtasıdır.Bilinen en uzun hücre ise sinir hücresidir. Hücreler ökaryot ve prokaryot olmak üzere iki kısımda incelenir. Prokaryot hücre: Kalıtım maddesi etrafında çekirdek zarı bulunmayan ve ribozom hariç hücre organellerine sahip olmayan ilkel hücre tipidir. Bakteri ve mavi – yeşil alg örnek verilebilir. Ökaryot hücre Kalıtım maddesi etrafında çekirdek zarı bulunan ve hücre organellerine sahip olan gelişmiş hücre tipidir. Ökaryot hücre üç kısımda incelenir. 1) HÜCRE ZARI · Yağ,protein az miktarda karbonhidrattan oluşur.Hücre zarının yapısı akıcı-mozaik zar modeli ile açıklanır.Bu modele göre zar; yağ denizinde yüzen proteinlerden oluşmuştur. · Karbonhidratlar hücre zarındaki yağlarla birleşerek glikolipid, proteinlerle birleşerek glikoprotein şeklinde bulunur.Bunun sağladığı avantaj ise hücrelerin birbirini tanıması ve bağışıklıktır.Hücre zarının özgüllüğünü veren kimyasal madde glikoproteindir. Glikolipidi ve glikoproteini golgi sentezler. · Madde giriş-çıkışı proteinler üzerindeki porlardan olur. · Zarın özellikleri : Canlıdır,saydamdır,esnektir ve seçici geçirgendir. · Zardaki proteinler enzim görevi yapar. · Zarın görevleri : Hücreyi dağılmaktan korur. Hücreye şekil verir. Hücreyi dış etkilerden korur. Madde alışverişini sağlar. Zarın seçici-geçirgen olması onun canlı olduğunu gösterir. Hücre çeperi cansızdır,esnek değildir,tam geçirgendir.Hücrenin dayanıklılığını arttırır, hücreye şekil verir.Üzerindeki deliklere geçit denir. Selülozik yapıdadır. Prokaryot hücrelerde de bulunur ama yapısı selülozik değildir. 2) SİTOPLAZMA Hücre zarı ile çekirdek arasını dolduran, canlı, renksiz, yarısaydam, suda çözünmeyen bir sıvıdır. İki kısımdır. a) Sıvı kısım: Su,protein,yağ,karbonhidrat,mineral,vitamin,RNA çeşitleri,nükleotidler,ATP ve enzimler gibi organik ve inorganik maddelerden oluşmuştur Görevi: 1) Biyokimyasal reaksiyonlar için zemin oluşturmak 2) Organellere yataklık etmek. 3) Rotasyon ve sirkülasyon hareketleri ile organellerin hareketini sağlamak. b) Organeller:Özel yapı ve görevi olan sitoplazmik cisimlerdir. ENDOPLAZMİK RETİKULUM Hücre zarından çekirdek zarına kadar uzanan zarlı kanallar sistemidir. Memeli alyuvarı hariç bütün çekirdekli hücrelerde bulunur. Hücre içine ve dışına madde taşır.Bazı maddeleri depolar.(Ca ve protein). Çekirdek zarı ve golgiyi yapar.Hücreyi bölmelere ayırarak,sitoplazmadaki asidik ve bazik tepkimelerin birbirini etkilemeden yapılabilmesini sağlar. Üzerinde ribozom bulunanlarına granüllü ER; bulundurmayanlara da granülsüz ER denir. Granüllü ER enzim salgılayan hücrelerde, granülsüz ER yağ sentezleyen hücrelerde çoktur. GOLGİ Çekirdeğe yakın bulunur.Hücre zarı yapımına katılır. Salgı maddelerin yapılması,paketlenmesi ve salgılanmasından sorumludur.Onun için süt bezi, tükrük bezi,ter bezi gibi salgı yapan hücrelerdeki sayısı diğer hücrelerdekilere oranla daha fazladır. Enzimleri paketliyerek lizozomu oluşturur.Hücre zarı yapımına katılır. Glikoprotein,lipoprotein,mukus,bağ dokusu ara maddesi ve ayrıca bitkilerde selülozlu maddeler salgılar. Memeli alyuvarı hariç bütün çekirdekli hücrelerde bulunur. LİZOZOM Büyük moleküllü besinleri parçalar.Kurbağa larvalarında kuyruğun kopması,salgılama dönemi biten memelilerde süt bezlerinin körelmesi,pasif kalan kasların küçülmesi,harap olmuş dokuların, yaşlı alyuvarların ve vücuda giren mikropların yok edilmesi lizozom sayesindedir. Fagositoz ve pinositoz yapan hücrelerde çoktur.ÖRNEK:Akyuvar hücresi ve tek hücreliler. Lizozom parçalanırsa hücre kendini sindirir.Buna otoliz denir. Lizozomun etrafındaki zar golgiden oluşur. İçerisindeki enzimler ribozomlarda üretilir. Üretilen enzimler ER ile taşınır. ER ile taşınan enzimler golgide paketlenerek lizozom oluşturulur. · Yani lizozomun oluşmasında ribozom,golgi ve ER etkilidir. NOT 1 : (Bazı kitaplara göre)Hayvanlara özgüdür.Bitkilerde ise lizozom benzeri yapılara fitolizozom denir. RİBOZOM Bütün hücrelerde bulunan en küçük organeldir. Protein ve rRNA’dan oluşur.Çekirdekçikte üretilir. Zarsızdır ve iki birimdir.Üst birim(büyük birim) protein,alt birimse(küçük birim) rRNA’dan oluşur. Protein ve enzim sentezler. Granüllü ER ve çekirdek zarı üzerinde,mitekondri ve kloroplastın sıvısında ve ayrıca sitoplazma da bulunabilir. Yoğun protein sentezi sırasında yan yana gelerek polizomları oluştururlar. Her canlıda ribozomların farklı olmasının sebebi rRNA’ ların farklılığındandır. Bir hücrenin canlılığını sürdürebilmesi için mutlaka ribozoma ihtiyacı vardır.(Enzimlerden dolayı) Enzim salgılayan bez hücrelerinde sayısı daha fazladır. MİTOKONDRİ Çift zarlıdır.İç zar kıvrımlıdır. Kıvrımlara krista,zarların arasını ve içini dolduran sıvıya matriks denir. Oksijenli solunum yaparak enerjinin üretildiği ve depolandığı yerdir. Enerji ihtiyacı fazla olan kas,sinir ve karaciğer gibi hücrelerde sayısı daha fazladır. Bulundukları hücrenin de enerjiye en çok ihtiyaç olan bölümlerinde toplanırlar. ÖRNEK:Sinirlerin sinaps bölgelerinde,spermlerin kuyruklarında ve kasların kasılma bölgelerinde,karaciğer hücrelerinde ve beyin hücrelerinde çok bulunur. Kendine ait DNA,RNA,ribozom ve ETS’si bulunur. Kendi DNA’sı olmasına rağmen hücre DNA’ sına bağımlıdır. Bitkilerde mesozom ve klorofil bulunduğundan dolayı mitokondri miktarı daha azdır. Prokaryotlarda ve memeli alyuvarında bulunmaz. SENTROZOM Bazı su yosunu,mantar,hayvan ve insan hücrelerinde bulunur. Sentriol denilen iki alt birimden oluşur. Hücre bölünmesi sırasında kendini eşleyerek zıt kutuplara çekilir ve iğ ipliklerinin oluşmasını sağlar. Hücre dışına uzanan kirpik,kamçı,sil gibi yapıları oluşturur. Sentrioller dikine duran dokuz çift tüpçükten oluşur. PLASTİDLER Sadece bitki hücrelerinde bulunan renk maddesidir.3 tiptir. a) Kloroplast Bitkiye yeşil rengini verir. Çift zarlıdır.İç zarı katmanlıdır.Bu katmanlara grana,içini dolduran sıvıya ise stroma denir. Fotosentez yaparak besin üretir. Kendine has DNA,RNA,ribozom ve ETS’si bulunur. Granalar içinde bitkiye yeşil rengini veren ve fotosentez için gerekli ışığı absorbe eden klorofil vardır. Bütün bitki hücrelerinde bulunmaz.ÖRNEK:Kökte. b) Kromoplast Bitkilerde meyve ve çiçeklerin rengini verir.Likopin(kırmızı),ksantofil(sarı) ve karoten (turuncu) olmak üzere üç çeşittir. Bitkilerde diğer renkler; koful öz suyunun asit veya baz oluşuna göre renk değiştiren aktokyan denen maddeler ile oluşturulur. c) Lökoplast Renksizdir.Genelde kök,gövde ve tohumda bulunur. Nişasta,yağ ve protein depolar. Işıkla karşılaşınca kloroplastlara dönüşür. KOFUL ER’dan,golgiden,hücre zarından ve lizozomdan oluşabilir. Hayvansal hücrelerde az ve küçük,bitkisel hücrelerde ise gençken küçük,yaşlandıkça büyürler.Çünkü tuzlu artıklar kofullarda biriktirilir. Hücre içi osmatik basınç ve pH’ı ayarlar. Kofulda bulunan su turgor basıncı oluşturarak hücreye diklik ve direnç verir. Metabolizmanın aktiflik derecesini belirler.Eğer koful büyük ve sitoplazmada miktarı çok ise metabolizma yavaşlar. Besin kofulu : Fagositoz ve pinositozla alınan besinlerin bir zarla çevrilmesiyle oluşur.Akyuvarlar mikropları fagositoz ve pinositozla aldığında dolayı,akyuvarlarda daha fazla sayıda besin kofulu bulunur. Kontraktil (vurgan) koful : Tatlı su tek hücrelilerinde bulunan daimi kofuldur.Fazla suyu dışarı atar. Boşaltım kofulu : Artık maddeleri ekzositozla dışarı atar. PEROKSİZOM Bitkisel ve hayvansal hücrelerde bulunan ve içerisinde katalaz enzimi bulunan organeldir. İçerisindeki katalaz enzimi H2O2 ‘yi H2O ve O2′ye parçalar. H2O2 hücre için çok tehlikelidir.Çünkü O2′nin reaksiyona girmesini yani solunumu önler. Sitoplazmanın pH derecesi 8,0′dır. Hücre Çeperi: Hücre zarı üzerinde selüloz birikmesi ile oluşur. Bitki hücresine sertlik ve desteklik verir. Bitki hücrelerinde bulunur.ölüdür.bazen yapısına bağlı olarak kütin, lignin mum gibi maddeler katılır. 3) ÇEKİRDEK Hücre bölünmesini sağlar.Kalıtım bilgisini taşır. Hücresel olayların yönetilmesinde ve karakterlerin sonraki nesillere aktarılmasında görevlidir4 bölümdür. A) ÇEKİRDEK ZARI · Çift katlı bir zardır. · Üzerindeki deliklere por denir.Bunlar hücre zarındaki porlardan daha büyüktür. · Hücre bölünmesi sırasında kaybolan bu zarın bölünmeden sonra yeniden yapılmasında ER ve golgi görevlidir   B) ÇEKİRDEK SIVISI · Homojen görünümlüdür.İçerisinde bol miktarda ATP,nükleotit,ribozom ve protein bulunur. C) ÇEKİRDEKÇİK · Bol miktarda RNA ve protein bulunur.Ribozom sentezi yapılır.Bakterilerde yoktur. D) KROMATİN İPLİK · Hücrede en çok bulunan maddedir. · DNA’nın kendisi olup kromozomları oluşturur.Kromozomlar DNA ve proteinden oluşmuştur. Kalıtsal karakterleri taşır.Üreme ve büyümeyi sağlar.Hücreyi yönetir. Kromozom sayısı, türlere göre değişkenlik gösterir. Örneğin insanda 46, soğanda 16 kromozom bulunur. Homolog Kromozom:Birisi anneden diğeri babadan gelen şekil ve yapısı aynı olan karşılıklı lokuslarında aynı karakter üzerine etkili genleri taşıyan kromozomlara denir. Homolog kromozom taşıyan hücrelere diploid( 2n) hücre denir.Üreme hücreleri gibi (n) kromozom taşıyan hücrelere haploid hücre denir.

http://www.biyologlar.com/hucre-teorisi

Bakterilerde Genetik Yapı

Çoğu bakteride tek bir dairesel kromozom bulunur, bunun büyüklüğü endosimbiyotik bir bakteri olan Candidatus Carsonella ruddii de 160.000 baz çiftinden, bir toprak bakterisi olan Sorangium cellulosumda 12,200,000 baz çiftine kadar uzanır. Borrelia cinsine ait spiroketler bu genel özelliğin bir istisnasıdır, Borrelia burgdorferi (Lyme hastalığı etmeni) gibi türlerde tek bir doğrusal kromozom bulunur. Bakteriyel kromozomlardaki genler genelde tek bir sürekli DNA parçasından oluşur, bazı bakterilerde intronlar bulunmuşsa da bunlar ökaryotlarda olduğundan çok daha enderdir. Bakteriler aynı zamanda plazmidler de bulunabilir, bunlar kromozomdan ayrı DNA parçalarıdır, antibiyotik direnç genleri veya virülans faktörleri içerebilirler. Bir diğer tip bakteriyel DNA, kromozoma entegre olmuş virüslere (bakteriyofajlara) aittir. Çeşitli bakteriyofaj türleri vardır, bazıları sadece konak bakterilerini enfekte edip onu parçalar, diğerleri ise hücre içine girdikten sonra DNA'larını bakteriyel kromozoma dahil ederler. Bir bakteriyofaj konak hücresinini fenotipine katkıda bulunan genler taşıyabilir: örneğin Escherichia coli O157:H7'nin evrimi sırasında entegre olmuş bir fajın toksin genleri, zararsız bir atasal bakteriyi ölümcül bir patojene dönüştürmüştür. Bakteriler, eşeysiz organizmalar olarak, ana hücrelerinin genlerinin kopyalarını devralırlar. Ancak tüm bakteriler, DNA'larındaki değişikliklerin (mutasyon ve genetik rekombinasyonun) seçilimi ile evrimleşir. Mutasyonlar DNA ikileşmesi sırasında meydana gelen hatalar veya mutajenlerden kaynaklanır. Mutasyon hızları farklı bakteri türleri ve hatta aynı bakterinin farklı suşları arasında büyük farklılıklar gösterir. Bazı bakteriler ayrıca genetik malzemelerini hücreler arasında aktarabilirler. Bu üç yolla meydana gelebilir. Birincisi, bakteriler ortamlarıdaki yabancı DNA'yı içlerine alabilirler, buna transformasyon denir. Genler ayrıca transdüksiyon yoluyla, bir bakteriyofajın yabancı bir DNA parçasını kromozomun içine yerleştirmesiyle aktarılabilir. Gen aktarımını üçüncü yolu bakteriyel konjügasyondur, bunda DNA doğrudan hücresel temas yoluyla aktarılır. Başka bakteri veya ortamdan gen edinimine yatay gen transferi denir ve doğal şartlarda bu yaygın olabilir. Gen transferi özellikle antibiyotik direncinin oluşmasında önemlidir, çünkü bu, farklı patojenler arasında direnç genlerinin transferini sağlar

http://www.biyologlar.com/bakterilerde-genetik-yapi

Mikrobiyal Biyoteknoloji Bölüm 4

MİKROBİYAL FİTAZLAR Tahıl ve baklagil tohumlarının olgunlaşması sırasında fitik asitin (myo-inositol-1,2,3,4,5,6-hexakis dihidrojen fosfat) önemli bir miktarı birikmekte olup (Honke ve ark. 1998) bu tohumların çoğunda ve yan ürünlerinde %1-2 fitik asit bulunmaktadır (Reddy ve ark. 1982). Fitik asit; tahıl, baklagil ve yağlı tohumlarda fosforun ana depo formudur. Kimyasal olarak tam tarifi myo-inositol 1,2,3,4,5,6-hekza-dihidrojen fosfat’tır (IUPAC-IUB 1977). Moleküler formülü ise C6H18O24P6’dır. Fitik asitin tuzları fitat olarak tanımlanır. Fitat, fitik asitin potasyum-magnezyum ve kalsiyum tuzlarının karışımıdır (Vohra ve Satyanarayana 2003) Fitaz (myo-inositol hexakisphosphate phosphohydrolase), fitik asiti (myo-inositol hekzafosfat), inorganik monofosfat, myo-inositol fosfat ve serbest myo-inositol’e hidrolize eden enzimdir (Kerovuo 2000). Bitkilerde, hayvansal dokularda ve çeşitli mikroorganizmalarda fitaz aktivitesinin olduğu bildirilmiştir (Miksch ve ark. 2002). Fitatı parçalayan enzimler IUPAC-IUB (International Union of Pure and Applied Chemistry and the International Union of Biochemistry) tarafından iki sınıfa ayrılmıştır: Fitatın D3 pozisyonundaki ortofosfatı uzaklaştıran 3-fitaz (myo-inositol-hekzakisfosfat 3-fosfohidrolaz, EC 3.1.3.8) ve myo-inositol halkasındaki L-6 (D-4) pozisyonundaki defosforilasyonu sağlayan 6-fitaz (myo-inositol-hekzakisfosfat 6-fosfohidrolaz, EC 3.1.3.26). Mikrobiyal fitazlar genellikle 3-fitaz sınıfında yer alırken bitkisel kökenli fitazlar 6-fitaz sınıfında yer almaktadır (Konietzny ve Greiner 2002). Fitaz parçalayan enzimlerle yem hammaddelerinde ve insanlar için hazırlanan gıdalardaki fitat içeriğini azaltmak amacıyla özellikle son yıllarda birçok çalışma yürütülmektedir. Fitatı parçalayan enzimler bitkisel materyalin besleyici değerini artırmak amacı ile tavsiye edilmektedir. Son yıllarda fitaz enzimlerinin özellikle entansif hayvan yetiştiriciliği yapılan alanlarda hayvan gübresiyle ortaya çıkan fosfor kirliliğini azaltmak amacıyla kullanımını da gündeme getirmiştir. Yapılan bir çok çalışmada fitatı parçalayan enzimlerin fitatdan fosfor kullanımını artırmakta olduğu ve çevrede ortofosfat birikimini önemli derecede azalttığı bildirilmiştir (Cromwell ve ark. 1995, Simons ve ark. 1990). Ayrıca bunların yanı sıra myo-inositol fosfatların hazırlanması, kağıt endüstrisi ve toprak iyileştirme alanlarında da fitaz enzimi kullanılmaktadır. Ayrıca son yıllarda biyoteknoloji alanındaki gelişmeler sonucunda heterolog mikrobiyal ekspresyon sistemleriyle büyük miktarlarda ve düşük maliyetli fitaz üretimi de mümkün olabilmektedir. Fitaz enzimi bitkilerde, mikroorganizmalarda ve bazı hayvansal dokularda bulunmasına rağmen yapılan son araştırmalar mikrobiyal fitazların biyoteknolojik uygulamalar için en ümit verici olduğunu göstermiştir (Pandey ve ark. 2001, Vohra ve Satyanarayana 2003). Bakteri, maya ve funguslardan fitaz enzimleri karakterize edilmiş olup, günümüzde ticari olarak üretimde toprak fungusu olan Aspergillus üzerinde durulmaktadır. Ancak substrat spesifitesi, proteolisise karşı direnç göstermesi ve katalitik aktivitesi gibi özelliklerinden dolayı bakteriyel fitazlar, fungal enzimlere alternatif oluşturabilmektedir (Konietzyn ve Greiner 2004). Bakteriyel fitazların ortalama olarak moleküler ağırlığı (40-55 kDa) glukolizasyon farkı olduğu için fungal fitazlardan (80-120 kDa) daha küçüktür (Choi ve ark. 2001, Golovan ve ark. 2000, Han ve Lei 1999, Kerovuo ve ark. 1998, Rodriguez ve ark. 2000a, Van Hartingveldt ve ark.1993). İzole edilen fitazların çoğunun pH optimumu 4.5-6.0 arasında yer almaktadır. Ancak Bacillus sp.’ye ait nötral veya alkali fitazlar da bulunmaktadır (Choi ve ark. 2001, Kim ve ark. 1998). A. niger fitazının (phyA) pH optimumu ise asidik sınırlarda olup 2.5 ve 5.5’dir. Bu iki sınır arasında aktivitede azalma meydana gelmektedir. Mikrobiyal fitazların çoğunun sıcaklık optimumu ise 45-60°C arasında yer almaktadır. Ancak Pasamontes ve ark. (1997a,b) A. fumigatus’a ait sıcaklığa dirençli fitazın 100°C’ye kadar olan sıcaklıklarda 20 dakikalık inkübasyonlarda sadece %10’luk kayıpla aktivitesini koruduğunu bildirmişlerdir. E. coli ve Citrobacter braakii fitazı, ticari olarak kullanılan Aspergillus niger fitazına kıyasla pepsin ve pankreatine daha dirençlidir (Kim ve ark. 2003; Rodriquez ve ark. 1999). Ayrıca C. braakii fitazı tripsine de dirençlidir (Rodriquez ve ark. 1999). E. coli fitazı, Bacillus fitazı ile karşılaştırıldığında, pankreatine benzer hassasiyetlik gösterirken pepsine karşı daha hassastır (Simon ve Igbasan 2002). E. coli ve C. braakii fitazları yem katkısı olarak uygun özelliklere sahiptirler. E. coli fitazı asidik koşullar altında yüksek bir pH stabilitesine sahip olup pH 2.0’de birkaç saat sonunda bile önemli bir aktivite kaybı göstermemektedir (Greiner ve ark. 1993). Fitaz Enziminin Uygulama Alanları 1-) Yem katkısı: Fitat, tohumların çimlenmesi sırasında enerji ve fosfor kaynağı olarak görev alsa da bağlı fosfor tek mideli hayvanlarca çok az miktarda kullanılabilmektedir. Bu nedenle inorganik fosfor yenilenemez ve pahalı bir mineral olup kanatlı, domuz ve balık rasyonlarında fosfor kaynağı olarak ilave edilmektedir (Lei ve Porres 2003). Fitat ve fitata bağlı fosfor tüm kanatlı rasyonlarında bulunmakta ve fitat fosforunun da kısmen kullanıldığı bilinmekteydi (Lowe ve ark. 1939). İlk olarak Warden ve Schaible (1962), broylerde, ekzogen olarak verilen fitazın, fitat fosforunun kullanımını ve kemikteki mineralizasyonu artırdığını bildirmişlerdir. Ancak bundan yaklaşık 30 yıl sonra, yem katkısı olarak, fitata bağlı fosforu serbest bırakacak ve fosfor atığını azaltacak Aspergillus niger fitazının ticari olarak kullanımı başlamıştır. Günümüzde tek mideli hayvanlarda yem katkısı olarak fitaz kullanımı oldukça yaygınlaşmış olup hatta nişasta tabiatında olmayan polisakkaritleri parçalayan enzimlerden daha fazla kullanılmaktadır (Bedford 2003). Geçtiğimiz 10 yıl içerisinde kanatlı ve domuz rasyonlarında mikrobiyal fitaz kullanımı ile bu konudaki bilimsel çalışmalar ve deneyimler artmakta ve yem katkısı yeni fitaz enzimleri araştırılmakta ve kullanılmaktadır. Bazı kanatlı yem maddelerindeki toplam fosfor, fitat fosforu ve toplam fosfordaki fitat fosfor oranları Çizelge 2’de verilmiştir. Ruminantlar ise, rumendeki mikrobiyal flora tarafından üretilen fitaz enzimi ile fitatı parçalayabilmektedirler (Yanke ve ark. 1998). Fitatın parçalanması ile açığa çıkan fosfor hem mikrobiyal flora hem de konakçı ruminant tarafından kullanılmaktadır. Birçok farklı kaynaktan elde edilen mikrobiyal fitaz ürünleri günümüzde ticari olarak kullanılmaktadır. Bunlar arasında yem katkısı olarak en yaygın olarak kullanılanları A. niger (3-fitaz), Peniophora lycii (6-fitaz) ve Escherichia coli (6-fitaz) fitazlarıdır. Kanatlı rasyonlarına fitaz, granül veya sıvı formda veya yüksek peletleme sıcaklığındaki (>80ºC) enzim denatürasyonu probleminden kaçınmak için peletleme sonrasında uygulanabilmektedir (Selle ve Ravindran 2006). Bitkisel fosfor kaynaklarındaki kullanılmayan fitat fosforu zaman içerisinde birikmekte ve entansif olarak hayvan yetiştirciliği yapılan alanlarda çevre kirliliğine neden olmaktadır. Topraktaki aşırı fosfor deniz ve göllere akmakta ve burada yaşayan canlılarda birikerek insanlarda da nerotoksik etki oluşturmaktadır (Lei ve Porres 2003). Su ürünleri üretiminde, soya küspesi ve diğer bitki kökenli küspeler kullanılarak birçok çalışma yürütülmüştür (Mwachireya ve ark. 1999). Pahalı protein kaynakları yerine daha düşük fiyatlı bitkisel protein kaynakları kullanıldığında masraflarda önemli derecelerde azalmaların olabildiği bildirilmektedir. Balık üretim masraflarının %70’ini yem giderleri oluşturmaktadır (Rumsey 1993). Kanatlı ve domuzlarda olduğu gibi balıklarda yem maddeleri içerisindeki fitin fosforundan yararlanacak sindirim enzimine sahip olmadığından suda fosfor birikimi meydana gelmektedir. Bu nedenle fitaz su ürünleri üretmede, hem düşük fiyatlı bitkisel kökenli maddelerin kullanımını artırmak hem de suda fosforu kabul edilebilir seviyede tutabilmek amaçları ile kullanılmaktadır. Balık beslemesinde, yüksek seviyelerde bitkisel kökenli maddeler içeren yemlerde fitaz enziminin kullanılması ile ilgili birçok çalışma yürütülmektedir (Robinson ve ark. 1996, Mwachireya ve ark. 1999). 2-) Gıda sanayi: Fitik asit tuzları olarak tanımlanan fitatlar, bitki tohumları ve danelerde fosfat ve inositolün başlıca depo formudur. Fitat bitki tohumlarının olgunlaşması sırasında oluşur ve olgun tohumlarda toplam fosfatın %60-90’nını oluşturur (Loewus 2002). Fitat bu nedenle bitkisel kökenli gıdaların başlıca bileşenidir. Bazı bitkisel kökenli gıdalardaki kuru maddedeki fitat miktarı Çizelge 3’de verilmiştir. Diyetlerdeki bitki kökenli gıdaların miktarına ve gıdaların işlenme derecelerine bağlı olarak günlük fitat tüketimi en fazla 4500 mg’a kadar yükselmelidir. Ortalama olarak vejetaryen diyetlerinde ve gelişmekte olan ülkelerde kırsal kesimlerde günlük fitat tüketimi yaklaşık 2000-2600 mg olup bu değer karışık diyetlerde 150-1400 mg’dır (Reddy 2002). Diyetlerde fitatın varlığı ile ilgilenilmesinin nedeni mineral alımındaki negatif etkisidir. Bu mineraller çinko, demir, kalsiyum, magnezyum, manganez ve bakırdır (Konietzny ve Greiner 2003, Lopez ve ark. 2002). Fizyolojik pH değerlerinde çözünmez mineral-fitat komplekslerinin oluşumu düşük mineral emiliminin temel nedeni olarak bildirilmektedir. Çünkü bu kompleksler aslında insan sindirim sisteminde absorbe olmamaktadır. Ayrıca sindirim sisteminin üst kısmında sınırlı miktarda mikrobiyal popülasyonun olması ve içsel fitatı hidrolize edici enzimlerin olmaması nedenleri ile ince bağırsakta, fitat çok sınırlı miktarda hidroliz olabilmektedir (Iqbal ve ark. 1994). Fitat, asidik ve alkali pH’da proteinlerle kompleks oluşturmaktadır (Cheryan 1980). Bu interaksiyon proteinin yapısında değişiklikler meydana getirmekte ve bunun sonucunda enzimatik aktivitede, proteinin çözünürlüğünde ve proteolitik parçalanmada azalmalar meydana gelebilmektedir. Fitaz enzimi yem katkısı olarak kullanılmasının yanı sıra gıda sanayinde de büyük bir potansiyele sahiptir. Ancak şimdiye kadar marketlerde fitaz enzimi kullanılmış gıdalar bulunmamaktaydı. Bu alandaki çalışmalar, gıda işlemede teknik geliştirmenin yanı sıra bitki kökenli gıdaların besleyici değerlerinin artırılması üzerine yoğunlaşmıştır. Fitat içeriği yüksek diyetler mineral maddelerin absorbsiyonunu oldukça azaltmakta (Konietzny ve Greiner 2003, Lopez ve ark. 2002) ve gıdaların işlenmeleri sırasında fitatın defosforilasyonu, sadece kısmen fosforile olmuş myo-inositol fosfat esterlerinin oluşmasına neden olmaktadır (Sandberg ve ark. 1999, Sandström ve Sandberg 1992, Han ve ark. 1994). Myo-inositol fosfat esterleri insanlar için önemli fizyolojik özelliklere sahiptir (Shears 1998). Bu nedenle fitaz enziminin gıda üretimi sırasında kullanılması ile fonksiyonel gıdaların üretilmesi mümkün olacak (Greiner ve ark. 2002) ve böylelikle fitaz enzimi ile biyokimyasal olarak aktif myo-inositol fosfat esterleri oluşacak ve insanlarda mineral maddelerin emilmesi de sağlanmış olacaktır. Gıda sanayinde gıdaların işlenmesi sırasında fitaz ilavesi ekmek yapımı (Haros ve ark. 2001), bitkisel protein izolatlarının üretimi (Fredrikson ve ark. 2001, Wang ve ark. 1999) ve tahıl kepeklerini parçalamada kullanılmaktadır (Kvist ve ark. 2005). Gıda işleme ve hazırlama sırasında, fitat genel olarak, bitkilerde ve mikroorganizmalarda doğal olarak bulunan fitazlarla tamamen hidrolize olmamaktadır. Özellikle demir olmak üzere minerallerin yararlanımını artırmak için fitat çok düşük düzeylere indirilmelidir (Hurrell 2003). Myo-İnositol fosfatların hazırlanması: Günümüzde, transmembran sinyalizasyonunda ve intraselülar kaynaklardan kalsiyumun hareketini sağlamada görev alan inositol fosfat ve fosfolipidlere olan ilginin artması, çeşitli inositol fosfatların hazırlanmasını gündeme getirmiştir (Billington 1993). S.cerevisiae fitazı kullanılarak fitik asitin enzimatik hidrolizi ile D-myo-inositol 1,2,6-trifosfat, D-myo-inositol 1,2,5-trifosfat, L-myo-inositol 1,3,4-trifosfat ve myo-inositol 1,2,3-trifosfatların hazırlandığı bildirilmiştir (Siren 1986a). Ayrıca E. coli fitazı kullanılarak inositol 1,2,3,4,5-pentakisfosfat, inositol 2,4,5-trifosfat ve inositol 2,5-bifosfat da hazırlanmaktadır (Greiner ve Konietzny 1996). İnositol fosfat türevleri enzim stabilizatörü (Siren 1986b), enzim inhibitörü, biyokimyasal ve metabolik araştırmalarda enzim substratı ve ilaç olarak da kullanılmaktadır (Laumen ve Ghisalba 1994). İnositol fosfat karışımları eklem iltihabı ve astım gibi solunum hastalıklarına karşı kullanıldığı ve spesifik inositol trifosfatların ağrı kesici olarak önerildiği de bildirilmiştir (Siren 1998). İnositol veya inositol fosfatların endüstriyel üretiminde, fitik asitten myo-inositol fosfat türevleri, serbest myo-inositoller ve inorganik fosfat eldesinde fitaz enzimi kullanımı önerilmektedir (Brocades 1991). Bu enzimatik hidrolizin avantajı fitaz enziminin spesifitesi ve reaksiyon koşullarına uygun olmasıdır. 3-) Kağıt endüstrisi: Kağıt endüstrisinde bitki fitik asitinin uzaklaştırılması oldukça önemlidir. Günümüzde termostabil fitazlar, kağıt hamuru ve kağıt yapma aşamalarında fitik asiti parçalamak amacıyla kullanılan biyolojik maddelerdir. Fitik asitin enzimatik olarak parçalanması sonucunda kanserojen veya toksik maddeler içeren ürünler oluşmaz. Bu nedenle kağıt endüstrisinde fitaz enzimlerinin kullanımı, daha temiz bir teknolojinin kullanılmış olması ve dolayısıyla çevreyi koruma açısından önem taşımaktadır (Liu ve ark. 1998). 4-) Toprak iyileştirme: Bazı alanlarda toprakta, fitik asit ve türevleri toplam organik fosforun %50’sini oluşturabilmektedir (Dalal 1978). Findenegg ve Nelemans (1993), mısır bitkisi için topraktaki fitik asitten fosforun kullanılabilmesinde fitazın etkisini araştırmışlardır. Toprağa fitaz ilave edildiğinde fitinin parçalanma oranının artmasına bağlı olarak büyümeyi uyardığını bildirmişlerdir. Bu çalışma bitkilerin köklerinde fitaz geninin ekspresyonu ile transgenik bitkilerle topraktaki fosforun kullanılabileceği düşüncesini ortaya çıkarmıştır (Day 1996). 5-) Biyoteknoloji : Geçtiğimiz 20 yıl içerisinde fitaz enzimi, besleme, çevre koruma ve biyoteknoloji alanlarındaki bilim adamlarının dikkatini çekmektedir. Fitazlar özellikle biyoteknolojik uygulamalarda (özellikle yem ve gıdalardaki fitat içeriğini azaltmada) büyük bir önem taşımaktadır (Lei ve Stahl 2001, Vohra ve Satyanarayana 2003). ANTİBİYOTİKLER Ticari olarak üretilen mikrobiyal ürünlerin içerisinde en önemlisi antibiyotiklerdir. Antibiyotikler mikroorganizmalar tarafından üretilen, diğer mikroorganizmaları öldüren veya büyümesini inhibe eden kimyasal maddelerdir. Antibiyotikler tipik sekonder metabolitlerdir. Ticari olarak faydalı antibiyotiklerin birçoğu filamentöz funguslar ile Bacteria’nın aktinomiset grubu tarafından üretilmektedir. Endüstriyel fermentasyonla büyük ölçekte üretilen en önemli antibiyotikler Çizelge1’de gösterilmiştir. Çizelge 1. Ticari olarak üretilen bazı antibiyotikler. Antibiyotik Üreten mikroorganizma* Basitrasin Sefalosporin Kloramfenikol Siklohekzimid Sikloserin Eritromisin Griseofulvin Kanamisin Linkomisin Neomisin Nistatin Penisilin Polimikzin B Streptomisin Tetrasiklin Bacillus licheniformis (EOB) Cephalosporium sp.(F) Kimyasal sentez (daha önce Streptomyces venezuela’ (A)dan mikrobiyal yolla üretilmekteydi) Streptomyces griseus (A) Streptomyces orchidaeus (A) Streptomyces erythreus (A) Penicillium griseofulvin (F) Streptomyces kanamyceticus (A) Streptomyces lincolnensis (A) Streptomyces fradiae (A) Streptomyces noursei (A) Penicillium chrysogenum (F) Bacillus polymyxa (EOB) Streptomyces griseus (A) Streptomyces rimosus (A) *EOB, endospor oluşturan bakteri; F, fungus; A, aktinomiset Günümüzde 8000’in üzerinde antibiyotik maddesi bilinmektedir ve her yıl yüzlercesi keşfedilmektedir. Daha fazla antibiyotik keşfedilmesi beklenmektedir mi, buna gerek var mıdır diye bazı sorular akla geldiğinde bunun cevabı evettir. Bu nedenle Streptomyces, Bacillus, Penicillium gibi birkaç genusa ait mikroorganizmaların çoğu antibiyotik üretip üretmedikleri açısından sürekli olarak incelenmektedir. Antibiyotikler konusunda araştırma yapan birçok araştırıcı, diğer mikroorganizma gruplarının da incelenmesi sonucunda birçok yeni antibiyotiğin keşfedileceğine inandıklarını belirtmektedir. Son yıllarda büyük ilerleme gösteren genetik mühendisliği tekniklerinin yeni antibiyotiklerin yapılmasına izin vereceği ve yeni ilaçlar için kompüter modellemesinin klasik eleme (screening) metotlarının er geç yerini alacağı düşünülmektedir. Fakat günümüzde bunlar henüz çok yaygın bir kullanıma sahip olmadığı için yeni antibiyotikler klasik yol olan “screening” yoluyla keşfedilmektedir. Screening yaklaşımında, çok sayıda muhtemelen antibiyotik üreticisi olan mikroorganizma izolatı doğadan saf kültürler halinde izole edilmektedir (Şekil 1-a) daha sonra bu izolatlar Staphylococcus aureus gibi bir test bakterisinin büyümesini inhibe eden diffüzlenebilen maddeler üretip üretmedikleri açısından test edilmektedir. Şekil 1-a’daki fotoğrafta görülen kolonilerin çoğu Streptomyces türlerine aittir ve antibiyotik üreten bazı kolonilerin etrafında indikatör organizmanın (Staphylococcus aureus) büyüyemediği inhibisyon zonları görülmektedir. Bu amaçla kullanılan test bakterileri çok çeşitli ve genellikle bakteriyal patojenlere yakın veya onları temsil eden türler olup çeşitli literatürlerde tip kültür numaralarıyla belirtilmektedir. Antibiyotik üretimi için yeni mikrobiyal izolatların test edilmesinde, “karşıt-çizgi metodu” (Şekil 1-b) yaygın olarak kullanılan bir yöntemdir. Bu yöntemde Streptomyces gibi potansiyel üretici olduğu bilinen bir tür petrinin üçte birlik kısmını kaplayacak şekilde bir köşesine ekilir ve petri uygun sıcaklıkta inkübe edilir. İyi bir büyüme elde edildikten sonra sıvı besi yerinde geliştirilmiş olan test bakterileri Streptomyces hücre kütlesine dikey olacak şekilde çizilerek inkübasyona bırakılır. Şekil 1-b’deki fotoğrafta da görüldüğü gibi bazı test bakterilerinin Streptomyces hücre kütlesine yakın kısımlarda büyüyemediği görülmektedir. Bu Streptomyces’in test bakterilerinin büyümesini inhibe eden bir antibiyotik ürettiğini göstermektedir. Fotoğrafta (Şekil 1-b) görülen test organizmaları (soldan sağa): Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia, Mycobacterium smegmatis’tir. Bu şekilde ekim yapılan izolatlardan antibiyotik üretimi belirlenenler daha sonra daha ileri denemelere alınarak antibiyotiğin yeni olup olmadığı bakımından test edilirler. Çoğu screening (eleme) programlarında elde edilen izolatların çoğu bilinen antibiyotikleri üretmektedir. Bu nedenle endüstriyel mikrobiyologların bilinen antibiyotik üreticilerini çok hızlı belirlemesi gerekmektedir böylece çalışmalarında hem zamanın hem de kaynakların boşa gitmesi önlenecektir. Bir organizmanın yeni bir antibiyotik ürettiği keşfedildiğinde bu antibiyotik yapısal analizler için yeterli miktarlarda üretilmelidir ve daha sonra enfekte olmuş hayvanlarda terapötik aktivite ve toksisite için test edilmelidir. Burada yeni antibiyotiğin selektif toksisiteye sahip olup olmadığı ortaya çıkmaktadır. Maalesef yeni bulunan antibiyotiklerin bir çoğu hayvan testlerini geçemezken sadece birkaç tanesi geçebilmektedir. Bu nedenle her yıl yüzlerce yeni antibiyotik bulunmasına karşılık bunların sadece birkaç tanesinin medikal kullanım için yararlı olduğu kanıtlanabilmekte ve ticari olarak üretilmektedir. VİTAMİNLER VE İLİŞKİLİ BİYOFAKTÖRLER Dengesiz beslenme ve besin işleme alışkanlıkları, gıda kıtlığı, açlıktan dolayı hayvan ve bitki orijinli vitaminlerden başka ekstra vitaminlere ihtiyaç duyulmaktadır. Vitaminlerin kullanım alanları gıda/yem sektörü, sağlık ve tıbbi alanlardır. Ekstra vitaminler günümüzde kimyasal veya biyoteknolojik olarak fermentasyon ya da biyodönüşüm prosesleriyle hazırlanmaktadır. Vitaminler ve diğer biyofaktörlerin çoğu kimyasal olarak veya ekstraksiyon işlemi ile üretilirken bazıları da hem kimyasal hem de mikrobiyal proseslerle üretilmektedir. Bunun yanı sıra vitamin B12 ve B13 gibi vitaminler ise sadece mikrobiyolojik yolla üretilmektedir. Aşırı miktarlarda vitamin üreten mikrobiyal suşların doğadan taranması ve bulunması veya bunların genetik mühendisliği yoluyla yapımı zordur, bunun yerine geliştirilmiş fermentasyon prosesleri ve immobilize biyokatalist biyodönüşümleri önem kazanmıştır. ENZİMLER Bütün organizmalar hücresel faaliyetlerini sürdürebilmek için küçük miktarlarda çok çeşitli enzimleri üretmektedir. Günümüze kadar tanımlanmış olan 3000’den fazla enzimin büyük bir çoğunluğu mezofilik organizmalardan izole edilmektedir. Buna karşılık bazı enzimler bazı organizmalar tarafından çok yüksek miktarlarda üretilmekte ve hücre içinde tutulmayarak hücre dışına salgılanmaktadır. Ekstraselüler enzimler olarak isimlendirilen bu enzimler selüloz, protein, nişasta, vb. gibi suda çözünmeyen polimerleri parçalama yeteneğindedir. Bu ekstraselüler enzimlerin bazıları gıda, tekstil ve ilaç endüstrilerinde kullanılmaktadır ve mikrobiyal sentez yoluyla büyük miktarlarda üretilmektedir. Son yıllarda enzim terminolojisinde ortaya çıkan yeni bir terim olan “ekstremozimler” ise ekstrem çevrelerde yaşayan prokaryotlardan elde edilen enzimleri ifade etmektedir. Ekstremozimler, ekstrem olarak yüksek sıcaklık, düşük sıcaklık, çok yüksek tuz, çok yüksek asit veya alkalin pH’larda yaşayan ve “ekstremofiller” olarak isimlendirilen mikroorganizmalar tarafından üretilmektedir. Bu enzimleri yüksek miktarlarda üreten mikrobiyal kaynakları doğadan izole etmek için çeşitli yöntemler kullanılmaktadır ve yeni mikrobiyal kaynakların araştırılması sürekli olarak devam eden bir iştir. Burada biyoçeşitlilik önemli bir konu olup farklı ve yabancı çevrelerden (ekstrem çevreler) izole edilen mikroorganizmalar önemli enzim kaynakları olarak düşünülmektedir. Ülkemiz en önemli ekstrem çevreler olan sıcak su kaynakları (kaplıcalar) açısından çok zengindir. Ayrıca soda gölleri, tuz gölleri, vb. ekstrem çevrelere de sahip olduğumuz göz önüne alınırsa, buralardaki biyoçeşitliliğin bir an önce belirlenerek ortaya konması ülkemiz açısından çok önemli bir konudur. Lipazlar bakteri, maya ve küfleri içeren mikrobiyal flora tarafından bol miktarda üretilmektedir. Lipazlar gıda endüstrisinde, biyomedikal uygulamalarda, biyosensörler ve pestisidlerin yapımında, deterjan ve deri sanayiinde, çevre yönetiminde, kozmetik ve parfüm sanayiinde uygulama alanları bulmaktadır. Endüstriyel olarak en yaygın kullanılan lipaz üreticisi mikroorganizmalar Candida spp., Pseudomonas spp., Rhizopus spp.’dir. Son yıllarda biyoteknoloji alanında lipazların kullanımında eksponansiyel bir artış gözlenmektedir. Bu nedenle lipazların aşırı üretimini sağlamak amacıyla yönlü mutasyonlar yardımıyla suş geliştirme çalışmalarına ağırlık verilmiştir. Endüstriyel olarak en fazla üretilen enzimlerden biri olan proteazlar ise ekmekçilikte, deterjan ve temizleme sanayiinde, biyomedikal uygulamalarda, gıda sanayiinde etlerin olgunlaştırılmasında, tabaklama sanayiinde, atık arıtımı ve kimyasal endüstride kullanılmaktadır. Son yıllarda alkalofilik mikroorganizmaların ürettiği ve aşırı alkali ortamlarda aktivite gösteren alkalin proteazlar endüstriyel olarak çok önem kazanmıştır.Şu anda alkalin proteazların ticari üretimi Bacillus licheniformis ve diğer alkalofilik Bacillus spp.’den yapılmaktadır. Bu enzimlerin üretimi için öncelikle ümit verici organizmaların seçilmesine olanak sağlayan farklı izolasyon yöntemlerinin belirlenmesi daha sonra endüstriyel suş geliştirilmesi için mutasyon ve/veya rekombinant DNA teknolojisinin kullanımı üzerinde yoğun çalışmalar sürdürülmektedir. α-amilaz, β-amilaz ve glukoamilaz gibi mikrobiyal amilazlar, enzimler arasında en önemlileri olup günümüzde biyoteknolojide oldukça büyük önem kazanmışlardır. Mikrobiyal amilazlar uygun preparasyonlarda hazırlandıktan sonra ilaç sanayiinde analitik kimya alanında, nişastanın sakkarofikasyonu, tekstil ve gıda sanayiinde, bira sanayii ve damıtma endüstrilerinde geniş bir uygulama alanına sahiptir. Hayvanlar ve bitkilerde de bulunmasına karşılık amilazlar en yaygın olarak mikroorganizmalarda bulunmaktadır. Amilazların ticari üretiminde birçok bakteri ve fungus türleri kullanılmaktadır. α-amilazın ticari üretiminde Bacillus türleri çok önemlidir. Ticari amilaz üreticisi suşların geliştirilmesinde gen klonlama yöntemleri kullanılmaktadır. Gen klonlmanın en temel amaçları; termostabil enzimlerin ifade edilmesi, yüksek enzim verimliliği ve iki enzimin aynı organizmada ifade edilmesinin sağlanmasıdır. AMİNOASİTLER Organizmaların primer metabolitleri arasında en önemlileri amino asitlerdir. 1950’lerin sonlarına doğru Corynebacterium glutamicum’un bazı suşlarının doğal olarak önemli miktarlarda L- glutamat sentezlediğinin bulunmasının ardından amino asit üreticisi mikroorganizmaların taranması ve ıslah edilmesi çalışmaları büyük hız kazanmıştır. O zamandan beri amino asit salgılama yeteneğinde olan bir çok organizma belirlenmiş ve bu konu endüstriyel mikrobiyolojinin önemli bir konusu olmuştur. Dünya çapında 1.5x106 ton amino asit üretimi gerçekleşmektedir. Amino asitler tıpta, gıda endüstrisinde katkı maddesi olarak, kimya endüstrisinde başlatıcı maddeler olarak kullanılmaktadır. En önemli ticari amino asit lezzet arttırıcı olarak monosodyum glutamat (MSG) formunda kullanılan Glutamik asittir. Diğer iki önemli amino asit diyet içecekler ve yiyeceklerde tatlandırıcı olarak kullanılan Aspartam’ın bileşenleri olan Aspartik asit ve Fenil alanindir. Bundan başka lisin, glutamin , arjinin, triptofan, treonin, izolösin ve histidin amino asitleri de ticari olarak mikrobiyolojik yolla üretilmektedir.Mikrobiyolojik üretim için Corynebacterium ve Brevibacterium türleri ile Escherichia coli en bilinen ticari türlerdir. Corynebacterium ve Brevibacterium türlerinde metabolizma nispeten basit olduğu için regülasyon sistemlerinin kolaylıkla değiştirilmesiyle, Enterobacteriaceae üyelerinde ise karmaşık rekombinant DNA tekniklerinin kullanımıyla verimli amino asit üreticileri elde edilebilmektedir. Kaynak: Doç. Dr. Rengin ELTEM /Ege Üniversitesi /Mühendislik Fakültesi Biyomühendislik Bölümü POLİMER ÜRETİMİ Modern biyoteknolojiyi komodite amaçlı ürünlerin üretiminde de kullanmak mümkündür. En çarpıcı örneklerden biri, mikroorganizmaları uygun ortamlarda besleyip polimer ürettirmektir. Birçok mikroorganizma besin kısıtlaması koşullarında, tepkisel olarak hücre içinde polimer biriktirir. (Şekil 3’de hücre içindeki beyaz dairesel şekilli olanlar). Bunlar bilimsel adıyla “polialkalonatlar”, “mikrobiyal poliesterler” dir. Polibuturat ve poli(buturat-valarat) teknolojik olarak üretilen mikrobiyal poliesterlerdir. Bunların işlenmesi biraz zor, komodite plastiklere göre biraz pahalı, ancak doğada parçalanabilen türden, dolayısıyla çevre dostu polimerlerdir. Bunlardan üretilen şampuan, parfüm, vb. şişeleri piyasaya sunulmuş durumdadır. Buradaki ilginç gelişme yine genetik modifiye mikroorganizmaların kullanımıdır. Bunlarda hücre içinde polimer birikimi kuru ağırlıkta %99’lara kadar çıkarılmıştır, dolayısıyla verim çok yüksektir. Bu yöntemle üretilen polimerlerin molekül ağırlıkları sentetik yollarla çıkılması çok yüksek değerlerdedir (20 milyon hatta daha fazla). Mikroorganizmalar ile polimer üretimi teknolojisini bitkilere de uygulamak mümkündür. Özellikle mısır’ın çok da değerli olmayan koçanında ve kabuğunda polimerler biriktirilebilir. Faj Yerdeğiştirme “phage display” Teknolojisi Alternatif yöntemlerden biri de genetik modifiye mikroorganizmaları kullanmaktır. Yaygın olarak E.Coli’nin kullanıldığı “faj yerdeğiştirme” (“phage display”) tekniği böyle bir yaklaşımdır. Burada, istenilen üretim bilgisini taşıyan DNA, B lenfositlerinden izole edilir ve bakteriye yerleştirilir. Daha sonra bakteri, filament fajlar (bir çeşit virüs) ile enfekte edilir. Fajlar, bakteri içinde, genellikle çok sayıda antibadi fragmanını da taşıyacak şekilde çoğalır. İstenilen fragmanı taşıyan fajlar, bir biyoafinite sistemi ile ayrılır ve bunlarla yine bakteriyi enfekte edilerek üretimi gerçekleştirilir. Elde edilen monoklonal antibadi fragmanları saflaştırılıp ya doğrudan yada bir antibadi gövdesine takılarak kullanılabilir. Bu teknikte kullanılan reaktörler, hibridoma teknolojisinde kullanılanlardan çok daha düşük fiyatlı ve iyi tanımlanmış klasik fermentörlerdir, dolayısıyla üretim ucuz ve kolaydır. Kaynak: www.biyomedtek.com/bmt-konular-no3.htm Hazırlayanlar: Enver Ersoy ANDEDEN&Ahmet TEZER

http://www.biyologlar.com/mikrobiyal-biyoteknoloji-bolum-4

Bakterilerde Sınıflandırma ve kimlik tespiti

Bakterilerde Sınıflandırma ve kimlik tespiti

Sınıflandırma, bakterileri benzerliklerine göre gruplandırıp adlandırarak onlardaki çeşitliliği betimlemeye yarar.

http://www.biyologlar.com/bakterilerde-siniflandirma-ve-kimlik-tespiti

Mikrobiyal Biyoteknoloji Bölüm 1

Biyoteknoloji Nedir ? - Biyolojik araç, sistem ve süreçlerin üretim ve hizmet endüstrilerine uygulanması - Endüstriyel uygulamalarda başarılı olabilmek için Biyokimya, Mikrobiyoloji ve Mühendislik bilimlerinin ortak kullanımı ile mikroorganizmaların, doku ve hücre kültürlerinin kapasitelerinin artırılması - Çeşitli yararlı maddelerin üretilmesi için biyolojik özellikleri kullanan bir teknoloji olması - Biyolojik araçlar tarafından üretilen materyallerin daha iyi ürün ve hizmet vermek üzere bilim ve mühendislik ilkelerinin uygulanması - Biyoteknoloji sadece teknik ve süreçlerin toplamına verilen bir addır. - Biyoteknoloji canlı organizmaları ve onların yapıtaşlarını tarım, gıda ve diğer endüstrilerde kullanan bir tekniktir. - Biyoteknoloji konu olarak “multidisipliner” yani bağımsız pek çok bilim dalını birarada barındırır. Eğer biyoteknoloji çalışması yapanları bir liste altında toplamak gerekirse Biyokimyacılar, Mikrobiyologlar,Genetikçiler, Moleküler biyologlar, Hücre biyologları, Botanikçiler, Ziraat mühendisleri, Virologlar, Analitik kimyacılar, Biyokimya mühendisleri, Kimya mühendisleri, Kontrol mühendisleri, Elektronik mühendisleri ve Bilgisayar mühendisleri bu liste içerisinde sayılabilir. BİYOTEKNOLOJİDE MİKROBİYAL SİSTEMLER 1-)Bakteriler ve Cyanobacteria (mavi-yeşil bakteriler) A-) Bakteriler: Toprak, hava, su, hayvan ve bitki yüzeylerinde bulunurlar. Bazıları hastalık etkeni olmakla beraber çoğu zararsız ve organik atıkların geri dönüşümü sırasındaki yararlı etkileri ve birçok faydalı ürünü üretmeleri nedeniyle biyoteknolojide oldukça önemli bir yere sahiptirler. Aynı genusa ait bazı türler endüstriyel açıdan faydalı özelliklere sahipken bazıları insanlar için zararlıdır. Örneğin Bacillus türleri toprakta yaşarlar ve aerop veya fakültatif anaerop metabolizmaya sahiptirler. § B. subtilis endüstride kullanılan amilaz enziminin kaynağıdır. § B. thruringiensis ise birçok bitki zararlısı böceğin patojenidir. Ve bu nedenle böceklere dirençli bitkilerin oluşturulmasında genetik mühendisliğinin önemli çalışma konularından birini oluşturur. § B.athracis ise insanlara patojen etkiye sahiptir ve şarbon hastalığının nedenidir. Prokaryotik biyolojik sistemler: § E.coli dışındaki diğer prokaryotlar § Acremonium chrysogenum § Bacillus brevis § Basillus subtilis, Basillus thuringiensis § Corynebacterium glutamicum § Erwinia herbicola § Peudomonas spp § Rhizobium spp § Streptomyces spp § Trichoderma resei § Xanthomonas campestris § Zymomonas mobilis Bu organizmalar iki grup altında toplanabilir. 1-) Özel bir fonksiyona sahip bir gen için konak olma. Ör: termofillerden izole edilen ve PCR teknolojisinde kullanılan ısıya dirençli DNA polimeraz enziminin E.coli’de klonlanması ve üretimin gerçekleşmesi. 2-)Belirli işleri çok daha etkin yapabilmek için genetik mühendisliği ile geliştirilme. Ör: Endüstriyel açıdan önemli amino asitlerin çok fazla üretilmesi için Corynebacterium glutamicum’un çeşitli türlerinin geliştirilmesi. 2-) Cyanobacteria (mavi-yeşil bakteriler): Mavi-yeşil bakteriler prokaryotlar sınıfına dahil olup fotosentez özelliğine sahiptir. Örnek olarak Anabaena cylindris, Nostok muskorum, Spirulina platensis türleri verilebilir. İlk kez varlıkları fosillerde saptanmıştır. Dünya oluşumunda belki de ilk canlı organizmalardır. Tatlı ve tuzlu suların yüzeylerinde bulunurlar. Karada ise ışığın ve nemin olduğu çamur ve kaya, tahta veya bazı canlı organizmaların yüzeylerinde bulunabilirler. Koyu yeşilimsi-mavi pigmentlerinden dolayı bu isimle adlandırılırlar. Sadece birkaç organizma atmosferik azotu amonyağa redüklemek yoluyla a.a. ve proteinleri üretmek üzere organik asitlere dönüştürülebilir. Azot fikse edebilen bakteriler gibi mavi-yeşil bakterilerde böyle bir yeteneğe sahiptir. Hücreler nitrogenaz enzimi ile bu reaksiyonu gerçekleştirirler. Bu enzim oksijen ile inaktive olur. Bu nedenle azot fikse eden hücrelerin içindeki koşullar anaerobik olmalıdır. Anabaena gibi bazı mavi-yeşil bakterler azot fiksasyonundan sorumlu heterosit adı verilen özel kalın duvarlı hücrelere sahiptirler Mavi-yeşil bakterilerin biyoteknolojik önemi: Mavi-yeşil bakteriler fotosentez yetenekleri, yüksek protein içerikleri ve basit besiyerlerinde hızlı çoğalmaları nedeniyle besin kaynağı olarak kullanım alanına sahiptir. Tek hücre proteini (THP) elde edilmesinde en çok denenen günümüzde insan ve hayvanların beslenmesinde geniş uygulama alanı olan mavi-yeşil bakteriler, diğer mikroorganizmalardan farklı olarak yeterli miktarda karbondioksit, belirli derecede aydınlatma, geniş üretim ortamı gibi özel koşullara gereksinim gösterirler. Sprilulina platensis Afrika ve güney Amerika’da ki sığ göllerde doğal olarak bulunur. Binlerce yıldan beri yöredeki insanlar tarafından toplanan bu algler kurutulduktan sonra besin kaynağı olarak çoğunlukla sos şeklinde veya çorba içinde kullanılmaktadır. Nostoc ise Peru ve Güney doğu Asya ‘da besin maddesi olarak kullanılan bir diğer siyanobakteridir. Gübre olarak kullanılmaları: Mavi-yeşil bakterilerin azot fiksasyon özelliği saptandıktan sonra kurutulmuş Tolypthrix tenuis pirinç tarlasına serpildiğinde azot fiksasyonunda ve verimde artış gözlenmiştir. M-Y bakterilerin Hindistan da pirinç tarlalarında gübre olarak kullanımıyla toprağın havalandırılması sonucunda su geçişi ve toprağın sıcaklığının daha homojen olması sağlanmaktadır. Azot fiksasyonu için M-Y bakterilerin Rhizobium’ların yerini almasının bazı avantajları vardır. Mavi-Yeşil bakteriler havadaki azotu amonyuma redüklerken fotosentez metabolik yolunu kullanırlar. Yani bir bitki ile simbiyotik bir yaşam ve enerji kaynağı olarak herhangi bir organik molekül ilavesi gerekmez. Tarımda azot fikse eden mavi-yeşil bakteriler organik gübre olarak kullanılabilir. Çin, Hindistan, Filipinler gibi pirinç tüketimi fazla olan bölgelerde büyük oranlarda ürerler. Pirincin büyüme sezonunun başında eğer suya siyanobakterlerin başlangıç kültürleri ekilirse pirinç veriminde %15-20 oranında artış olduğu bildirilmektedir. Mavi-Yeşil bakteriler antibiyotiklerin ve diğer biyolojik olarak aktif moleküllerin ticari boyutlardaki üretimi için büyük bir potansiyel oluştururlar. Çünkü Mavi-Yeşil bakteriler heterotrofturlar. Bu özellikleri de onların fermentasyon koşullarında üretilmelerine olanak sağlar. Henüz araştırma aşamasında olan Anacystis nidulans ile yapılan rekombinant DNA teknolojisi çalışmalarıyla nadir bileşiklerin üretiminde kullanımları amaçlanmaktadır. Araştırmalar Mavi-Yeşil bakterilerin güneş enerjisi dönüşüm sisteminde yer alması için devam etmektedir. Anabaena cylindrica heterocystleri vejatatif hücrelerde fotosentez yoluyla oluşturdukları oksijeni dışarı verirler. Azot yokluğunda ise heterositlerde nitrogenaz enzimi katalizörlüğünde elektronlar H+ iyonuna transfer edilerek Hidrojen gazı açığa çıkarırlar. Oksijen ve Hidrojen her ikisi de endüstride ihtiyaç duyulan gazlardır. Sonuç olarak; Fermentör koşullarında üreyebilirler, uzun süreli fizyolojik stabiliteye, basit besin gereksinimine, köpük oluşturmama özelliğine sahiptirler. Diğer alglerden farklı olarak azot fiksasyonu yapabilme farklılığına sahiptirler. Optimum sıcaklık 35oC dir. Karanlıkta veya gün ışığında heterotrofik olarak ürerler. 2-) MAYALAR: Tek hücreli tomurcuklanma veya bölünerek eşeysiz çoğalan ökaryotik mikroorganizmalardır. Mayaların tanımlanması maya biyoteknolojisi için oldukça önemlidir. Örneğin endüstriyel süreçlerde yabani ve kültüre edilmiş mayalar arasındaki farkı gösterebilmek esastır. Bira üretiminde üründe istenmeyen aroma oluşumuna neden olan yabani ırkın karışması veya ekmek mayası üretiminde şeker transport yeteneği daha fazla olan Candida utilis mayasının karışması ekmek mayası üretiminde kullanılan Saccharomyces cerevisiae mayasının üremesini engelleyecektir. Maya genuslarının ayrımında fizyolojik testlerle birlikte morfolojik testler de kullanılır. Günümüzde 700 civarında maya türü tanımlanmıştır. Fakat bu sayı maya çeşitliliğinde sadece çok küçük bir bölümü temsil etmektedir. Tanımlanmamış maya genus ve tür sayısı çok daha fazladır. Maya biyologları için maya çeşitliliğini tanımlamak kadar diğer önemli bir nokta özellikle biyoteknolojik öneme sahip türleri belirleyip saklamak ve koruyabilmektir. Moleküler biyoloji tekniklerinin yaklaşımıyla türler daha hızlı ve kolay bir şekilde karakterize edilebilmektedir. Günümüzde 6 mayanın genom projesi tamamlanmış ve işlevsel genomik çalışmaları ile genlerin işlevlerinin belirlenmesine devam edilmektedir. Maya hücreleri klorofil içermez ve zorunlu olarak kemoorganotrofiktirler. Üremek için organik karbona gerek duyarlar. Karbon metabolizmaları çok çeşitlidir. Örneğin basit şekerleri, polioller, organik ve yağ asitleri alifatik alkoller, hidrokarbonlar ve çeşitli heterosiklik ve polimerik bileşikleri karbon kaynağı olarak kullanabilirler. Bu özellikleri nedeniyle farklı habitatlar için özelleşmiş türler kolaylıkla saptanabilir. Mayalar toprak, hava ve sudan izole edilebilirler. Bazı mayalar ekstrem ortamlarda örneğin ozmofilik mayalar şeker bakımından zengin ortamlarda yaşayabilirler. Bu tür mayalar genellikle gıda bozucu olarak bilinir. Bunun dışında fırsatçı patojen olarak bazı maya türleride örneğin Candida albicans pek çok infeksiyondan sorumludur. Mayalar insanlar için; ekonomik, sosyal ve sağlık açısından oldukça önemli en eski evcilleştirilmiş organizmalardır. Alkollü içeçeklerin üretiminde, ekmek yapımında hamurun kabarması için binlerce yıl öncesinden beri kullanılmaktadırlar. Gerçekte bira yapımı belkide dünyanın ilk biyoteknolojisini temsil etmektedir. Günümüzde mayalar geleneksel gıda fermentasyonunun dışında çok çeşitli alanlarda da kullanılmaktadır. Özellikle genetik mühendisliğiyle geliştirilmiş mayalar hastalıkların önlenmesinde ve tedavisinde kullanılan pek çok farmasötik ajanın üretilmesinde yaygın bir şekilde kullanılmaktadır. Biyoteknolojik Öneme Sahip Bazı Mayalar - Axula adeninivorans: Nitrat ve aminleri asimile eder, 45 C üzerinde üreyebilir, pek çok hidrolaz salgılayabilir. - Candida türleri: C.albicans hidrokarbonlardan aminopenisillanik asit ve B6 vitamin üretimi, C.boidinii NAD, FAD metil ketonlar ve sitrik asit üretimi, C.famata riboflavin, C.maltosa biyokütle proteini için yağ asiti ve alkan kullanımı, C.tropicalis triptofan, C.pelliculosa selülozik materyalden biyokütle proteini, C.utilis, pek çok ürün eldesi, ksilozda üreyebilme, klonlama teknolojisinde kullanım, C.shehatae ksiloz fermentasyonu - Hansenula polymorpha: Heterolog gen anlatımı için kullanılabilen metilotrofik maya. - Kluyveromyces marxianus ve K.lactis: Laktoz ve polyfruktosanı fermente eder. Doğal kakao fermentayonu. Pek çok enzim için kaynak olabilir, klonlama teknolojisinde kullanılabilir. - Pachysolen tannophilus: Bitki lignoselülozik hidrolizatlarından kaynaklı pentoz şekerlerinin fermentasyonu. - Phaffia rhodozyma ve Pichia türleri: Gıda boyası olan astaksantin pigment üretimi. P.guilliermondii riboflavin sentezi ve hidrokarbonlardan biomas protein eldesi. P.methanolica etanol biosensörü olarak kullanılan alkol oksidaz üretimi.P.pastoris metanolden biomas protein eldesi, heterolog gen anlatımı ve insan terapötik proteinlerini üretebilen metilotrofik maya. - Rhodosporidium toruloides: Fenilketanüri tedavisinde kullanılan PAL enzim kaynağı. - Saccharomyces türleri: S.cerevisiae klasik gıda fermentasyonu. Bira, şarap, ekmek, rom, cin yapımı. Yakıt, alkol, gliserol, invertaz ve hayvan besini kaynağı.Rekombinant DNA teknolojisiyle sayısız protein üretimi. - Saccharomycopsis türleri: S.fibuligera amilolitik maya - Schizosaccharomyce pombe: Geleneksel Afrika alkollü bira yapımı. Şarapların deasidifikasyonu. Yüksek etanol ozmotik tolerans, biyokütle protein eldesi, heterolog gen anlatımı ve mutagenez testlerinde kullanım - Schwanniomyces türleri: S.castellii ve S.occidentalis amilolitik mayalar. Nişastanın ve inülinin etanole çevrimi ve heterolog gen anlatımında kullanılabilirler. - Trichosporon cutaneum: Fenol varlığına ilişkin bisensor olarak kullanılır. - Yarrowia lipolytica: Lipid ve hidrokarbonlardan biomas protein eldesi. Sitrik asit ve hücredışı enzim üretimi. Ø Zygosaccharomyces rouxii: Japon soya sosu karakteristik aromasını vermede kullanılan halofilik ve ozmotolerant maya türü. Alkollü içeçeklerin üretiminde mayalar Endüstriyel mayaların çoğu, özellikle de fermente içeçeklerin üretiminde kullanılanlar, genetik bakımından karmaşıktırlar ve stabil bir haploidi göstermezler. Örneğin bira yapımında kullanılan Sacchoromyces türleri poliploid veya anöpliod (diploid-heptaploid) ırklardır. Bu nedenle geliştirilmelerinde eşeyli üreme özelliklerinden yararlanılamaz. Bunun yerine klasik bira tadını veren organoleptik özellikleri iyi olan karakteristik fermentasyon yapan ırklardan doğal seçimle en iyi olan şeçilir. Bunun dışında endüstriyel mayaların geliştirilmesinde şüphesiz genetik mühendisliğinin önemi oldukça fazladır. Rekombinant DNA teknolojisi ile geliştirilen rekombinant mayalar tarafından üretilen biyolojik olarak aktif rekombinant proteinlerin veriminin arttırılmasında iki önemli yaklaşım vardır. Bunlar; moleküler genetik tekniklerin kullanımı ve fermentasyon teknolojisidir. Gıda tüzüğüne uygun olarak ekmek mayasının (glikoz baskısından kaçınmak ve hamurlaşmayı önlemek için) maltoz kullanım genleri değiştirilmiştir. Bira mayasında ise Maltodekstrinleri kısmi olarak parçalayan STA2 genini içeren plazmid bulunmaktadır. Genetik mühendisliği ile geliştirilmiş mayaların lignoselülozik (odunsu) atıkları substrat olarak kullanarak etanol üretmeleri yönünde yoğun çalışmalar yapılmaktadır. Etanol dışında mayaların ürettiği diğer biyoalkoller; gliserol ( alkollü içecekler için aroma katıcı, nitrogliserin türevli patlatıcılar yapımında), ksilitol (şeker yerine diyabetik ürünlerin yapımında), sorbitol, arabinitol (düşük şeker içerikli gıdaların yapımında; ilaçların kaplanmasında yenilebilir kaplama maddesi olarak) Etanolün yenilenebilir kaynaklardan mayalar kullanarak üretilmesi tüm dünyanın ilgisini çeken konulardan biridir. İlk üretim 1930’larda başlamıştır fakat petrol fiyatları düşürülünce teknoloji bırakılmıştır. 1970’deki petrol krizi ile birlikte yeniden gündeme gelmiştir. Brezilya, şeker kamışını ve melası substrat olarak kullanarak ürettiği petrolü yakıt amaçlı kullanmaktadır. Brezilya’da otomobillerin çoğu alkol veya alkol+benzin karışımı (gasohol) ile çalışmaktadır. KÜFLER Küfler hifli mantarlardır. Birçok organizma ve gıda maddesi ( ekmek, meyve, sebze.. vb) üzerinde oluşturdukları pamuk görüntüsündeki doku nedeniyle mayalardan çok daha önce keşfedilmişlerdir. Küfler, endüstride birçok ürünün eldesinde, atıklardan değerli ürünlerin oluşturulmasında kullanılan farklılaşma göstermeyen ve klorofil içermeyen mikroorganizmalardır. Doğada ve toprakta yaygın olarak bulunan küflerden endüstriyel mikrobiyoloji alanında önem taşıyanlar mikroskobik olanlardır. Küflerin üredikleri ortama proteaz, lipaz, karbonanhidrazlar gibi litik enzimleri salgılamaları ve küflerin ürettikleri çeşitli metabolitlerin birçok alanda kullanılabilir olması bu organizmaların endüstrideki önemini oldukça artırmaktadır. Ayrıca insan, hayvan ve bitkiler için patojen olan türleride bulunmaktadır. Küflerin Biyolojisi: Bir küf, protoplazma iplikleri veya uzantıları olan hiflerden ve sporlardan oluşur. Hiflerin yaptığı yumağı misel adı verilir. Hifler, bölmeli hifler ve bölmesiz hifler olarak ikiye ayrılır. Bölmeli hifler bölmeler ile hücrelere ayrılırlar ve her hücrede bir veya iki hücre çekirdeği bulunur. • Bölmesiz hiflere sönositik hif adı da verilir. • Bölme içermezler ve çok çekirdeklidirler. • Üreme hifleri genellikle koloninin yüzeyinde bulunan ve üreyen hücreleri veya sporları taşıyan hiflerdir. • Hifsel üreme ortamın besin koşulları ile yakından ilgilidir. • Beslenme hifleri ise koloniye besin sağlayan hiflerdir. Beslenme hifleri sayesinde hücrenin bulunduğu noktadan uzakta olan substratlara ulaşmaları sağlanır. • Küflerin hücre duvarı glukan, kitosan ve kitin gibi farklı glukoz polimerlerinden yapılabilir.

http://www.biyologlar.com/mikrobiyal-biyoteknoloji-bolum-1

Bakterilerin Diğer organizmalarla etkileşimleri

Görünür basitliklerine rağmen, bakteriler diğer canlılarla karmaşık etkileşimler içindedir. Bu simbiyotik ilişkiler parazitizm, mutualizm ve komensalizm olarak üçe ayrılırlar. Komensal bakteriler her yerde bulunur, hayvan ve bitkiler üzerinde büyümeleri başka yüzeyler üzerinde büyümeleri ile aynıdır (ancak sıcaklık ve ter bunların büyümesini hızlandırabilir); insanlarda bu organizmalardan çok sayıda olması vücut kokusunun nedenidir. Mutualistler Bazı bakteriler varlıklarının devamı için gerekli olan, mekânsal olarak yakın ilişkilere girerler. Bu tür mutualist ilişkilerden biri olan türler arası hidrojen transferi olarak adlandırılır, butirik asit veya propiyonik asit tüketip hidrojen tüketen anaerobik bakteriler ile, hidrojen tüketen metanojenik arkeler arasındadır. Bu ilişkide yer alan bakteriler kendi başlarına bu organik asitleri kullanamazlar çünkü bu reaksiyon sonucu aşığa çıkan hidrojen çevrelerinde birikir. Hidrojen tüketici arkelerle yakın ilişkileri sayesinde hidrojen konsantrasyonu yeterince düşük kalır ve bakteriler büyüyebilir. Toprakta, rizosferde (kökün yüzeyi ve kökü bağlı olan topraktan oluşan bölgede) mikroorganizmalar azot fiksasyonu yaparlar, yani azot gazını azotlu bileşiklere dönüştürürler. Bu süreç sonucunda bitkilerin (ki onlar azot fiksasyonu yapamazlar) kolayca absorbe edebildiği bir azot kaynağı meydana gelir. Pekçok başka bakteri, insan ve başka canlılarda simbiont olarak bulunurlar. Örneğin normal insan bağırsağındaki bağırsak florasındaki 1000'den fazla bakteri, bağırsak bağışıklığına, bazı vitaminlerin (folik asit, K vitamini ve biyotin) sentezine, süt proteinlerinin laktik asite dönüştürülmesine (bkz. Laktobasiller) katkıda bulunur, ayrıca sindirilmemiş kompleks karbonhidratların fermantasyonunu sağlar. Bu bağırsak floarası ayrıca potansiyle patojen bakterilerin büyümesini engellediği için (genelde yarışmalı dışlama ile) bu faydalı bakterilerin probiyotik besin katkısı olarak alınmasının olumlu etkileri bulunmuştur. Patojenler Eğer bakteriler başka organizmalarla parazitik ilişkiler kurarlarsa patojen olarak sınıflandırılırlar. Patojen bakteriler insan larda ölüm ve hastalığın başlıca nedenidir; neden oldukları enfeksiyonlar arasında tetanoz, tifo, tifüs, difteri, frengi, kolera, besin kaynaklı hastalıklar, cüzzam ve verem sayılabilir. Bilinen bir hastalığın patojenik kaynağının keşfi yıllar sürebilir, örneğin mide ülseri hastalığı ve Helicobacter pylori durumunda olduğu gibi. Bakteryel hastalıklar tarımda da önemlidir, bakteriler bitkilerde yaprak beneği, ateş yanıklığı ve solmaya, çiftlik hayvanlarında da paratüberküloz, mastit, salmonella ve şarbona neden olur. Her patojen türün insan konağı ile etkileşimlerinin karakteristik bir spektrum oluşturur. Bazı organizmalar, örneğin Stafilokok veya Streptokok, deri enfeksiyonu, pnömoni, menenjit ve hatta sistemik sepsis (şok, masif vazodilasyon ve ölümle sonuşlanan sistemik bir enflamasyon tepkisi) neden olur. Lakin bu oganizmalar aynı zamanda normal insan florasına aittir, genelde insan derisi ve burununda bulur ve hiç bir hastalığa yol açmazlar. Buna karşın bazı başka organizmalar her durumda insanda hastalık yaparlar. Örneği Rickettsia, ancak başka canlıların hücrelerinin içinde büyüyüp çoğlabilen, zorunlu bir hücreiçi parazittir. Rickettsia'nin bir türü tifüse, bir diğeri ise Kayalık Dağlar benekli hummasına neden olur. Klamidya, zorunlu hücre içi paraziti bir diğer takımı içinde bulunan bazı türler pnömoni, veya idrar yolu enfeksiyonuna neden olabilir, ayrıca koroner kalp hastalığı ile de ilişkili olabilirler. Nihayet, bazı bakteri türleri, Pseudomonas aeruginosa, Burkholderia cenocepacia, ve Mycobacterium avium gibi, fırsatçı patojendirler ve sadece immün yetmezlik çeken veya kistik fibrozlu kişilerde hastalık yaparlar. Bakteriyel enfeksiyonlar antibiyotikle tedavi edilebilirler, bu antibiyotikler bakterileri öldürürse bakteriosidal, sadece onların çoğalmasını engelliyorsa bakteriostatik olarak sınıflandırılır. Pekçok antibiyotik vardır ve bunların her sınıfı patojende olup konağında olmayan bir süreci engeller. Antibiyotiklerin nasıl seçici toksiklik gösterdiğine bir örneği kloramfenikol ve puromisindir, bunlar bakteri ribozomlarını engellerler, ama yapısal olarak farklı olan ökaryotik ribozomlara etki etmezler. İnsan hastalıklarını tedavide kullanılan antibiyotiklerin hayvancılıkta da hayvanlarının büyümesini hızlandırmak için kullanılması, bakterilerde antibiyotik direnci gelişmesine neden olabilir. Enfeksiyonları engellemek için antiseptik önlemler alınır, örneğin deri bir iğne ile delinmeden evvel sterilize edilir. Cerrahi ve dişçilik araçları da kontaminasyon ve bakteriyel enfeksiyonu önlemek için sterilize edilir. Çamaşır suyu gibi dezenfektanlar, eşya yüzeylerinde bulunan bakteri ve diğer patojenleri öldürüp kontaminasyonu önlemek ve enfeksiyon riskini daha da azaltmak amacıyla kullanılır.

http://www.biyologlar.com/bakterilerin-diger-organizmalarla-etkilesimleri

Programlı hücre ölümü

Sorunuzun Cevabı burada var. www.biyologlar.com/index.php?option=com_...atid=25&id=1881#2266 Animasyon: Apoptosis: Overview www.promega.com/paguide/animation/selector.htm?coreName=apop01 Apoptosis: Intrinsic Triggers www.promega.com/paguide/animation/selector.htm?coreName=apop02   Apoptozis hakkında bilgiler Programlanmış hücre ölümü Programlanmış hücre ölümü (PHÖ veya PCD), herhangi bir hücrenin, hücre içi bir programla ölmesinin planlaması ve gerçekleştirilmesidir.[1]. Nekrozdan farklı olarak, ölen hücrelerin sonucunda dokuda akut hasarlanma ve enflamasyon yanıt oluşturulmaz. Programlanmış hücre ölümü, genellikle canlının yaşamı boyunca yarar sağlayan düzenli bir süreçtir. PHÖ, bitkiler ve metazoa gruplarının doku gelişimleri sırasında esasi fonksiyonları sergiler. Apoptozis ya da Tip I hücre-ölümü Otofajik ya da Tip II hücre ölümü (sitoplazmik - hücre çekirdeğinin yok edilmesinden önce özel bir sırayla büyük vakuollerin organelleri yemesiyle bilinen süreç.)[2] Programlanmış hücre ölümünün bu iki şeklinden başka yollarda bulunmuştur.[3] apotoptik olmayan programlanmış hücre ölümü olarak bilinen (ya da "kaspas-bağımısz programlanmış hücre ölümü" veya "nekroz benzeri programlanmış hücre ölümü") bu alternatif ölüm yolları apoptozis gibi etkiliidir, arka planda işlem görürler ve PHÖ'nün ana tiplerini oluştururlar. Bitki hücrelerinde kısmen otofajik hücre ölümüne benzer şekilde PHÖ görülür. PHÖ'nün bazı temel özellikleri bitkiler ve metazoada büyük oranda korunmuştur. "Programlanmış hücre ölümü", 1964'de Lockshin ve Williams [4]tarafından böcek dokularının gelişimindeki ilişkilerde kullanılmıştır, ondan sekiz yıl kadar önce de apotozis keşfedilmiştir. O zamandan bu yana "PHÖ", bu iki terimden daha genel bir kullanım haline gelmiştir. PHÖ, son zamanlarda gittkiçe artan ilgi ve araştırmaların konusu olmuştur. Bu eğilim, 2002'de Sydney Brenner (BK), H. Robert Horvitz (USA) ve John E. Sulston (BK)'ın Nobel Fizyoloji ve Tıp Ödülü'nü almasıyla da vurgulanmıştır. Bitki dokularında programlanmış hücre ölümü Arabidopsis türlerinde tanımlanan "APL", düzenler vasküler dokuları düzenler[6] Bonke ve çalışma arkadaşları, vasküler bitkilerin uzun mesafeli taşıma yapan iki sisteminden biri olan ksilemde, çeşitli hücre tiplerinin "hücre duvarları kalınlıklarında ve programlanmış hücre ölümlerinde, döküntülerin dikkatlice bağlanmasının farklılıklar" içeridiğini belirtmişlerdir. Yazarlar, bitkilerdeki PHÖ ürünlerinin yapısal önemli bir rolü olduğunu da vurgulamıştır. PHÖ'nün temel morfolojik ve biyokimyasal özellikleri, bitkiler ve hayvanlar aleminde korunmuştur.[7]. Bitki hücrelerin spesifik çeşitleri eşsiz hücre ölümü programlarını her nasılsa başardıklarını not düşmek gerekir. Hayvan apotozisiyle birlikte bunlar yaygın özelliklerdir -örneğin çekirdek DNA'sı degredasyonu- fakat bitkiler ksilemin trakeid elemanlarındaki vakuolün çökmesiyle tetiklenen hücre çekirdeği degredasyonu gibi kendi özelliklerine sahiplerdir. [8] Oxford Üniversitesinden bitki bilimciler, Janneke Balk ve Christopher J. Leaver, ayçiçeği bitkisinin hücrelerindeki mitokondriyal genomdaki mutasyona ulaşmayı başarmışlardır. Bu araştırmanının sonucu olarak mitokondrinin vasküler bitkilerin ve diğer ökaryotik hücrelerin PHÖ'de temel rol oynadığı ileri sürülmüştür.[9] Mycetozoa'da programlanmış hücre ölümü Sosyal tabaka küfü Dictyostelium discoideum eğer uniselüler formundaysa avcı amipe benzer bir davranış sergilerken, gelecek nesili verecek olan sporlarını dağıtırken hareketli bir sümüklüböceğe benzer bir özellik sergiler.[11] Bitkinin ölü hücrelerden oluşan sapı, bir çeşit PHÖ olan otofajik hücre ölümünün bazı özelliklerini paylaşır: hücrelerin içide oluşan büyük vakuoller, kromatin yoğunlaşmasının bir aşaması fakat DNA'nın hiç parçalanmaması. [12] Ölü hücrelerce bırakılan kalıntıların yapısal rolü bitki dokusundaki PHÖ'nin ürünlerini anımsatır. D. discoideum, günümüzden milyonlarca yıl önce ökaryotik atalarından meydana gelen olası bir dalın parçası olan sıvaşık bir küftür. Görünüşe göre, onlar yeşil bitkilerin, mantarların ve hayvanların atalarından sonra farklılaşmışlardır. Fakat evrim ağacındaki yerlerine göre gerçek şudur; PHÖ basitçe D. discoideumun 6. kromozomumda saklanıp, ona ek bir anlam katar: apoptozisin özelliklerinden olan kaspaslara bağımlı olmayan gelişimsel PHÖ yolunun çalışmasına izin verir. [13] Kaynaklar 1 Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006). "Bacterial Programmed Cell Death and Multicellular Behavior in Bacteria". PLoS Genetics 2 (10). genetics.plosjournals.org/perlserv/?requ...journal.pgen.0020135. 2 Lawrence M. Schwartz et al. (1993). "Do All Programmed Cell Deaths Occur Via Apoptosis?". PNAS 90 (3): 980. www.pnas.org/cgi/content/abstract/90/3/980. ;and, for a more recent view, see W. Bursch et al. (2000). "Programmed Cell Death (PCD): Apoptosis, Autophagic PCD, or Others?". Annals of the New York Academy of Sciences 926: 1. www.ncbi.nlm.nih.gov/entrez/query.fcgi?c...t&list_uids=11193023. 3 Kroemer G, Martin SJ (2005). "Caspase-independent cell death". Nat Med. 11 (7): 725-30. www.ncbi.nlm.nih.gov//entrez/query.fcgi?...n&list_uids=16015365. 4 Richard A. Lockshin, Carroll M. Williams (1964). "Programmed cell death—II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths". Journal of Insect Physiology 10 (4): 643-649. www.sciencedirect.com/science?_ob=Articl...c6e6979401175da87303. 5 2002 Nobel Prize in Medicine or Physiology[1] 6 Martin Bonke et al., published in Nature Vol. 425, Nov. 13, 2003, p. 181. 7 Mazal Solomon, et al.: "The Involvement of Cysteine Proteases and Protease Inhibitor Genes in the Regulation of Programmed Cell Death in Plants", The Plant Cell, Vol. 11, 431-444, March 1999. See also related articles in The Plant Cell Online, [2] 8 See Jun Ito and Hiroo Fukuda: "ZEN1 Is a Key Enzyme in the Degradation of Nuclear DNA during Programmed Cell Death of Tracheary Elements", The Plant Cell, Vol. 14, 3201-3211, December 2002. 9 "The PET1-CMS Mitochondrial Mutation in Sunflower Is Associated with Premature Programmed Cell Death and Cytochrome c Release", The Plant Cell, Vol. 13, 1803-1818, August 2001 10 Thomas, and Franklin-Tong: "Self-incompatibility triggers programmed cell death in Papaver pollen", Nature Vol. 429, 20 May 2004, p. 305. 11 Crespi B, Springer S: "Ecology. Social slime molds meet their match" Science 2003 Jan 3;299(5603):105-6 [3]. 12 See the article by Levraud et al.: "Dictyostelium cell death : early emergence and demise of highly polarized paddle cells", The Journal of Cell Biology Vol. 160, 7, p. 1105 [4]. 13 See also Roisin-Bouffay et al.: "Developmental Cell Death in Dictyostelium Does Not Require Paracaspase", The Journal of Biological Chemistry Vol. 279, 12, p. 11489, 19 March 2004 [5]. 14 see "The Birth of Complex Cells", by Christian de Duve, Scientific American Vol. 274, 4, April, 1996 15 See "Ancient Invasions: From Endosymbionts to Organelle", by Sabrina D. Dyall et al., Science Vol. 304 p. 253, 9 April. 2004[6]. 16 see Chiarugi and Moskowitz, in Science 297, p. 200[7]

http://www.biyologlar.com/programli-hucre-olumu

Mikroorganizmalarda Sınıflandırma ve yapı

Mikroorganizmalar gezegenimiz üzerindeki yaşamın taksonomisine ait herhangi bir yerde bulunabilir. Çoğu protistleri, bazı mantarları, aynı zamanda bazı mikro hayvanları ve bitkileri da içine alan belli sayıda ökaryotlar mikroskobik iken, bakteri ve arkeaların çoğunluğu mikroskobiktir. Virüsler, mikrobiyolojinin çalışma alanında olmasına rağmen, genellikle cansız sayılır ve dolayısıyla mikroorganizma olarak kabul edilmez. Prokaryotlar Prokaryotlar ya da Prokaryota; bakteriler, mavi-yeşil algler, riketsiyalar, aktinomisetler, ve mikoplazmaların gruplarının dahil olduğu; gerçek çekirdek zarları ve membrana bağlı organelleri olmayan, fosfolipid barındıran hücre duvarı ve tek helezonlu DNA molekülü hücre içinde serbest halde bulunan mikroorganizmaları kapsayan canlılar üstalemdir. Halk arasında mikrop diye adlandırılan mikroorganizmalar, hücresel yapılı olanlar ve hücresel yapıda olmayanlar olmak üzere ikiye ayrılır. Hücresel yapıda olanlar Bakteriler, mantarlar, protistlerdir. Hücresel yapıda olmayanlar ise Virüsler, viroidler, prionlardır. Canlıların bilimsel sınıflandırması içinde çok çeşitli grupları içerdiği için genel geçer özellikler belirtmek zordur. Bakteriler Bakteriler tek hücreli mikroorganizma grubudur. Tipik olarak birkaç mikrometre uzunluğunda olan bakterilerin çeşitli şekilleri vardır, kimi küresel, kimi spiral şekilli, kimi çubuksu olabilir. Yeryüzündeki her ortamda bakteriler mevcuttur. Toprakta, deniz suyunda, okyanusun derinliklerinde, yer kabuğunda, deride, hayvanların bağırsaklarında, asitli sıcak su kaynaklarında, radyoaktif atıklarda büyüyebilen tipleri vardır. Tipik olarak bir gram toprakta bulunan bakteri hücrelerinin sayısı 40 milyon, bir mililitre tatlı suda ise bir milyondur; toplu olarak dünyada beş nonilyon (5×1030) bakteri bulunmaktadır, bunlar dünyadan biyokütlenin çoğunu oluşturur. Bakteriler gıdaların geri dönüşümü için hayati bir öneme sahiptirler ve gıda döngülerindeki çoğu önemli adım, atmosferden azot fiksasyonu gibi, bakterilere bağlıdır. Ancak bu bakterilerin çoğu henüz tanımlanmamıştır ve bakteri şubelerinin sadece yaklaşık yarısı laboratuvarda kültürlenebilen türlere sahiptir. Bakterilerin araştırıldığı bilim bakteriyolojidir, bu, mikrobiyolojinin bir dalıdır. Arkea Arkeler, Arkea  veya Arkebakteriler, canlı organizmaların bir ana bölümüdür. Yabancı literatürde bu gruptaki canlılar Archaea veya Archaebacteria, grubun tek bir üyesi ise tekil olarak Archaeum, Archaean, veya Archaeon olarak adlandırılır Arkeler, Ökaryotlar ve Bakteriler, üç-saha sisteminin (İngilizce three domain system) temel gruplarıdır. Bakteriler gibi arkaeler de çekirdeği olmayan tek hücreli canlılardır, yani prokaryotlardır (prokaryotlar altı-alemli sınıflandırmada Monera olarak adlandırılırlar). İlk tanımlanan arkaeler aşırı ortamlarda bulunmuş olmalarına rağmen sonradan hemen her habitatta raslanmışlardır. Bu üst krallığa ait tek bir organizma "arkeli" (Arkea'ye ait anlamında; İngilizce archaean) olarak adlandırılır, bu sözcük sıfat olarak da kullanılır. Ökaryotlar Ökaryotlar (Latince: Eukaryota), hücrelerinin yapısından dolayı beraber gruplandırılmış bir canlılar grubudur. Bilimsel sınıflandırmada Ökaryotlar, Bakteriler ve Arkeler, tüm canlıları kapsayan üç ana gruptur. Ökaryotların tanımlayıcı özelliği genetik malzemelerinin zarla çevrili bir (veya birkaç) çekirdek içinde yer almasıdır. Bu nedenle kelime, Eski Yunanca eu, gerçek ve karyon, çekirdek sözcüklerinden türetilmiştir. Sıfat hali ökaryotiktir. Bakteri ve arkeler çekirdeksiz olduklarından beraberce prokaryot olarak adlandırılırlar (Eski Yunanca pro-, evvel ve karyon çekirdek sözcüklerinden). Çekirdeğin yanı sıra, ökaryotların mitokondri veya kloroplast gibi zarla çevrili çeşitli organelleri vardır, bu tür hücre içi karmaşık yapılar da prokaryotlarda bulunmaz. Ökaryotların ortak bir atası olduğu için bir üst alem (domain) olarak tanımlanmışlardır. Üst alem sisteminde ökaryotların, prokaryotlara kıyasla, arkelerle daha çok ortak özellikleri vardır ve bu yüzden arkelerle beraber Neomura kladı içinde gruplandırılırlar. Protistler Protistler (Protista, bazen Protoctista), ayrışık (heterojen) bir canlı grubudur ve hayvan, bitki ya da mantar olarak değerlendirilemeyen ökaryot canlılardan oluşur. Protistler bilimsel sınıflandırma açısından âlem olarak değerlendirilse de tek soylu (monophyletic) değil, kısmi soylu (paraphyletic) bir gruptur. Protistler içinde değerlendirilen canlıların da görece basit yapılı (tek hücreli ya da ileri düzeyde özelleşmiş dokuları olmayan çok hücreli) olmak dışında ortak özellikleri pek yoktur. Beslenmeleri fotosentez, absorbsiyon ya da fagositoz ile, çoğalmaları ise eşeyli ya da eşeysiz üreme ile gerçekleşen protistlerin hareketsiz olanları olabildiği gibi, kamçı, siller ya da yalancı ayaklarla hareket ederleri de bulunur. Yaklaşık olarak 60.000 yaşayan, 60.000 kadar da soyu tükenmiş fosil türü bilinmektedir. Protistalar canlılar dünyasının ökaryot hücreli en ilkel organizma grubudur. Çoğunlukla tek hücre halinde yaşamakla birlikte koloni halinde yaşayanları da vardır. Protistalar kamçılılar, silliler, kökayaklılar, sporlular, cıvık mantarlar ve algler olmak üzere gruplara ayrılırlar. Mikro Hayvanlar Mantar Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır. Halk arasında küf, pas, rastık, maya, mildiyö, şapkalı mantar, kav mantarı, puf mantarı gibi çeşitli isimlerle anılan bütün mantarlar, mantarlar (Fungi) alemi içersinde incelenirler. Latince Fungi mantarlar, Fungus ise mantar anlamındadır. Dünyanın heryerinde bulunurlar. Fazla nemli yerlerde daha çokturlar. Yeryüzünde 1,5 milyon kadar mantar türü olduğu düşünülmekte ise de günümüzde sadece 69.000 kadar türü tanımlanmıştır. Çoğu insan, mantarların bitki olduğunu düşünmektedir, ancak mantarlar bitki değildir. Çünkü, mantarlar kendi besinlerini üretemezler. Bitkiler Bitkiler (Plantae), fotosentez yapan, ökaryotik, ağaçlar, çiçekler, otlar, eğreltiotları, yosunlar ve benzeri organizmaları içinde bulunduran çok büyük bir canlılar alemidir. Bitkiler, topluluk halinde yaşarlar. Bitkilerin bir bölgede oluşturdukları örtüye bitki örtüsü denir. Flora, bir bölgede yetişen bütün bitki türlerinin hepsine denir. Herhangi bir bölgenin yaşam koşullarında gelişen, benzer ekolojik yapı içeren bitki topluluğuna vejetasyon denir. Bunlar 4 sınıftır: Ormanlar (her zaman yeşil tropikal yağmur, subtropikal, orta kuşak, sert yapraklı, iğne yapraklı, kışın yaprak dökenler, muson ormanları, tropikal kuru, mangrov, galeri, bataklık), Çalılar (maki, garig, psödomaki), otlar (savan, step, çöl), tundra. Bitkilerin yetişmesini etkileyen bir çok faktör vardır. Bunlar; ekvatora uzaklık, denizden yükseklik(rakım), arazi eğimi, ışık, sıcaklık, nem, yıllık yağış miktarı, toprak içeriği, canlı faktörler(insan, hayvan, diğer bitkiler, mikroorganizmalar)'dir Bitkiler, fotosentezle ekolojik dengeyi sağlamada temel rol oynadıklarından, canlılar dünyasında çok önemli yere sahiptirler. Bitkiler aleminin 350.000'e yakın türü mevcuttur. 2004 itibariyle 287.655 bitki türü tanımlanmıştır. Bunlardan 258.650'si çiçekli bitkilerden, 15,000'i de yosunlardan olarak tanımlanmıştır. Bitkiler genelde ototrof (özbeslek) organizmalardır ve enerjilerini güneş ışığından alırlar. Birçok bitki kloroplastları sayesinde fotosentez ile organik bileşiklerini üretir. Bitki hücreleri genellikle kareye benzer şekildedir. Habitat ve Ekoloji [değiştir]Habitat, bir organizmanın yaşadığı ve geliştiği yer. Bu yer, fiziksel bir bölge, yeryüzünün özel bir parçası, hava, toprak ya da su olabilir. Habitat, bir okyanus ya da bir çayırlık kadar büyük olabileceği gibi, çürümüş bir ağaç kütüğünün altı ya da bir böceğin bağırsağı kadar küçük de olabilir. Bununla beraber, her zaman tanımlanabilen ve fiziksel olarak sınırlı bir bölgedir. Birden fazla hayvan ya da bitki özel bir habitatta yaşayabilir. Ekoloji, canlıların birbirleri ve çevreleriyle ilişkilerini inceleyen bilimdir. Ekosistem ise canlı ve cansız çevrenin tamamıdır. Ekosistemi de abiotik faktörler (toprak, su, hava, iklim gibi cansız faktörler) ve biyotik (üreticiler, tüketiciler ve ayrıştırıcılar) faktörler olmak üzere iki faktör oluşturur. Ekstremofil [değiştir]Ekstremofiller çoğunlukla tek hücreli olup ekstrem koşullarda yaşama gereksinim duyan ve bu koşullarda optimum olarak gelişen organizmalara denir.Ekstremofiller karasal mezofilik organizmaların büyümeleri ve üremeleri için gerekli optimal koşullardan çok farklı olan ekstrem çevrelerde gelişirler.Çoğu ekstremofiller(ekstrem koşulları seven) mikroorganizmalardır.Archaea domaini ekstremofillerin geniş dağılımlı olduğu bir domain olarak bilinmesine karşın,ekstremofiller hem bakterilerin hem de archaeaların içinde sayısız ve farklı genetik hatlarda yer almaktadır.Archaea ve ekstremofil terimleri ara sıra kendi içerisinde yer değiştirmesine karşın,pek çok mezofilik archaeaların ve pek çok ekstremofilik bakterilerin olduğu bilinmektedir.Yine,tüm ekstremofiller tek hücreli değildir.Çok hücrelilere örnek olarak ekstremofilik metazoalardan Pompeii kurdu ,psikrofilik(soğukta yaşamı seven) Grylloblattodea(böcek),artartik kabuklular(crustacea)ve Tardigrade(mikroskobik canlı) verilebilir. Mikrop terimi, bilim dünyasına ilk defa 1878'de Fransız cerrahı Charles Sédillot tarafından getirilmiştir. Sédillot, mikropların kendilerine has apayrı bir dünyası olduğunu savunmuştur. Mikrobiyoloji ilim dalı beş ana kısma ayrılmıştır: Viroloji, bakteriyoloji, protozooloji, algoloji ve mikoloji. Bunlara ilaveten moleküler ve hücresel biyoloji, biyokimya, fizyoloji, ekoloji, botanik ve zoolojiyle de yakından ilgilidir.

http://www.biyologlar.com/mikroorganizmalarda-siniflandirma-ve-yapi

Mantarlar

Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır. Halk arasında Küf mantarı, Pas mantarı, Rastık mantarı, Maya mantarı, Mildiyö mantarı, Şapkalı mantar, kav mantarı, Puf mantarı gibi çeşitli isimlerle anılan bütün mantarlar, mantarlar (Fungi) alemi içersinde incelenirler. Latince Fungi mantarlar, Fungus ise mantar anlamındadır. Dünyanın heryerinde bulunurlar. Fazla nemli yerlerde daha çokturlar. Yeryüzünde 1,5 milyon kadar mantar türü olduğu düşünülmekte ise de günümüzde sadece 69.000 kadar türü tanımlanmıştır. Çoğu insan, mantarların bitki olduğunu düşünmektedir, ancak mantarlar bitki değildir. Çünkü, mantarlar kendi besinlerini üretemezler. Bu yüzden mantarlar üretici değil, ayrıştırıcıdırlar. Mantarlar Makroskobik ve mikroskobik mantarlar. Bilimsel sınıflandırma Üst alem: Ökaryot Alem: Fungi(Mantarlar)L., 1753 Bölümler Ascomycota Basidiomycota Chytridiomycota Deuteromycota Glomeromycota Zygomycota Tarihçesi Mantarlarla ilgili sistematik çalışmalar 250 yıllık bir geçmişe dayansa da, bazılarının özellikleri yüzyıllardır bilinmektedir. Ekmek hamurunun kabartılmasında, şarap yapımında insanlık tarihinde hep kullanılmışlardır. Meksika ve Guatemala halkları bazı halüsinojenik mantarları dini ve mitolojik törenlerde kullanmışlardır. Yine bazı mantarlar Kuzey Amerika yerlileri ve Çinliler tarafından tıbbi amaçla kullanılmışlardır. Şapkalı mantarların ilk olarak Proterozoik Çağ’da (4 milyar – 570 milyon yıl önce) ortaya çıktıkları düşünülüyor. İnsanların şapkalı mantarları kullanımıysa paleolitik döneme (yontma taş çağına) değin uzanır. Tarihsel kayıtlar, şapkalı mantarların pek de iyi niyetleri olmayan amaçlar için kullanıldıklarını ortaya koymaktadır. II. Claudius ve Papa VII. Clement’in düşmanları tarafından zehirli bir mantar türü olan Amanita’yla zehirlendiği yazılmıştır. Bir efsaneye göre de Buddha, bir köylünün ona sunduğu, toprak altında yetişen bir mantarı yediği için ölmüştür. Üremeleri Mantarlar eşeyli üreme ve eşeysiz üremeyle çoğalırlar. Her iki durumda da spor oluşturular. Sporlar "humenium" adı verilen yapılarda meydana gelir. Eşeyli üremeleri iki haploid hücrenin birleşmesini içerir. Toprağa dökülen sporlar rüzgarla ya da böceklerle çevreye dağılır ve toprakta yıllarca yaşayabilir. Mantarlar nemli ortamlarda gelişirler, bu nedenle yağmurlardan sonra topraktaki sporlar çimlenerek mantarları oluştururlar. Tek hücreli mantarlar ise tomurcuklanarak çoğalabilirler. Suda yaşayanlarda eşeysiz üreme daha hareket organeli ( yani flagellum) bulunan zoosporlar ile olur. Yaşam döngülerinde iki safha bulunmaktadır. Bunlar: Somatik safha ; mantarın beslenme ve besinsel aktivitelerini yerine getirdiği safha, Üreme safhası ; sporların üretimi, somatik yapıların diğer üreme yapılarında kullanıldığı safha. Üç değişik somatik yapı görülebilir. Bunlar; Plasmodium ya da pseudoplasmodium denilen çok nukleuslu bir yapı, Bir hücereden ibaret bir yapı, hifsi bir yapıdadırlar. Hifler, renksiz,ince,uzun iplikler olup yanyana gelerek miselyum adı verilen dokuyu miselyumlarda tallus adı verilen yapıyı oluşturur... Mantarların yaşam döngüsü her şekilde spor oluşumuyla sonuçlanan eşeyli ve eşeysiz üremeyi kapsamaktadır. Hem eşeyli hem eşeysiz üreme safhalarını içeren tüm yaşam döngüsü "holomorf" diye bilinir. Eşeysiz üreme sporları ve ilgili üreme yapılarının gözlendiği evre "anamorf" (imperfect) evredir. Eşeyli üreme yapılarının gözlendiği evre ise "telemorf" (perfect) evre adını alır. Yenilebilen mantarlar Mantarlar genellikle çayırlarda yetişir ama yenebilen mantarlar olarak Kültür mantarını örnek verebiliriz.Bu mantarlar mantar yatağından satılan yerlere gelir.Doğal mantarların çoğu zehirli olduğundan özel yetiştirilen kültür mantarlarını yiyecek olarak kullanmak daha güvenlidir..Kültür mantarı yenebilen mantardır.Peki neden? Şapkalı Mantarlar grubunda dersek bunun nedeni mantar yataklarında bütün zehirlerinin alınması içindir... Önemleri Mantarlar insanlık tarihi açısından büyük öneme sahiptirler. Ekosistemin önemli parçalarıdır. Son 2 milyar yıldır bitki ve hayvansal yapıları çürüttükleri bilinmektedir. Bu yapılardaki elementlerin serbest bırakılmaları mantarlar tarafından sağlanır. Orman ekosistemlerinde karbondioksit salınımı gerçekleştirmektedirler. Ayrıca toprağın yapısını bitki gelişimi için uygun hale getirirler. "Mikoriza" denilen ortaklıklar oluşturarak bitkilerin köklerine tutunurlar ve bitki köklerinden karbonhidrat alırlar, bu sırada bitkide mantarın hifleri yardımı ile topraktan su ve suda çözünen tuzları absorblar. Bazı eklembacaklı türlerinde "mycangium" denen yapılar olarak bulunurlar ve selüloz sindirimine yardımcı olurlar. Mantarlar nemli olan heryerde yetişebilirler. Alglerle birleşerek ekosistem için çok önemli olan likenleri oluştururlar. Bazı parazitik mantarlardan tarım zararlıları ve hastalıklarıyla biyolojik mücadelede yaralanılmaktadır. Bazı marketlerde "Collego" adıyla satılan ürün, yabancı otlarla mücadelede kullanılan Colletotrichum gloeosporoides türünden elde edilen bir mikoherbisitdir. Gerçek mantarlardan olan mayalar, fırıncılık ve fermantasyon endüstrisinin temelini oluştururlar. Alkollü içki endüstrisinin temelini de mantarlar oluşturmaktadır. Bununla beraber, sitrik asidin endüstriyel olarak üretilmesinde ve bazı peynir tiplerinin hazırlanmasında da (rokufor, gorgonzola, kamembert gibi) kullanılırlar.Penisilin gibi birçok yararlı antibiyotiğin, thiamin, biyotin, riboflavin gibi bazı vitaminlerin; ergotamin, kortizon gibi önemli ilaçların kullanılmasında yine mantarlardan yaralanılmaktadır. Amilaz, pektolaz gibi enzimler; gibberellin gibi bazı hormonlar da mantarlardan yararlanılarak üretilmektedir. Ayrıca genetik çalışmalarda kullanılan Neurospora cinsi yine bir mantardır. Mantarlardan insanların çeşitli amaçlarla yararlandıkları cinslerden bazıları; fermantasyon yaparak alkollü içkilerin hazırlanmasında ve ekmek yapımında kullanılan Saccharomyces türleri, antibiyotik eldesinde kullanılan Penicillium türleri ve ergot alkaloitlerinin elde edildiği Claviceps purpureadır. Yetiştiriciliği Ustilago maydis mantarı Şili gibi bazı ülkelerde mısır bitkisinde yetiştirilir ve gıda olarak kullanılır. Avrupa, Amerika, Çin ve Japonya'da gıda olarak mantar yetiştirme bir endüstri halini almıştır. Çin'de mantar yetiştiriliciği 600 yıl öncesine kadar dayanır. Avrupa'da ise1650'li yıllarda Fransa'da kültür mantarı yetiştiriciliği başlamıştır. Şili gibi bazı Güney Amerika ülkelerinde Aztekler zamanından beri bilinen mısır rastığı (Ustilago maydis), bazı mısır tarlaları özellikle bu mantar ile enfekte edilerek üretimi yapılmakta ve yenilmektedir. Mantarlar gelişmek için; nem, sıcaklık, 4-7 arası pH, oksijen, az miktarda ışığa ihtiyaç duyarlar. Zararları ve zehirlenme Mantarlar bitkilerde çoğunlukla hastalığa neden olurlar. Birçok yabani mantar doğadan toplanıp yenebilir ve çoğunun kültür türlerinden daha lezzetli olduğu söylenir. Fakat doğal yetişmiş mantarları toplayan kişi bu konuda uzman olmadığı takdirde zehirlenme ve ölümlerle karşılaşılabilir. Çünkü bazı mantarların çok küçük bir miktarı bile insanı öldürecek kadar zehirlidir. Zehirli mantarları zehirsizlerden ayırmak için genel bir kural yoktur. Yenebilen ve zehirli, mantarlar yan yana yetişebilirler. Bazı yenebilen ve zehirli türler birbirine o kadar benzer ki bunu ancak bir mantarbilimci ayırt edebilir. Zehirli mantarların tadı yenebilen mantarlarınkinden farklı değildir. Etinin rengi, kokusu ve tadı ile bir mantarın zehirli olup olmadığı anlaşılamaz. Mantarların insan ve hayvanlarda oluşturduğu hastalıklara genel anlamıyla "mikoz" denir. Tropikal ülkelerde mikozlar yaygındır. AIDS, kanser, şeker hastalıkları, organ nakli gibi durumlarda doğal veya yapay olarak bağışıklık sistemi baskılandığı için mantar enfeksiyonları ortaya çıkabilir. Mantar sporları havaya karışarak insanda alerji ve astıma sebep olabilirler. Bitkilerde parazitik mantarlar hastalıklara neden olurlar.Bazı mantar türleri bitkiler üstünde yaşar ve besinini bitkilerden sağlar.Bitki öldüğündeyse kendi besinini üreterek yaşamını sürdürür. Özellikle tek cins ürüne dayalı tarımda (patates, pirinç gibi) büyük kayıplara yol açabilirler. Örneğin 1840'lı yıllarda İrlanda'da baş gösteren kıtlığa patates mildiyösü (Phytophthora infestans) neden olmuştur. Bu felaketten dolayı bir milyondan fazla insan ölmüştür. 1943'de ise Bengaldeş'de Helminthosporium oryzae diye bilinen tür, pirinç ürününü yok ederek kıtlığa neden olmuştur. Ayrıca, mantarlar hakkındaki yanlış inançlar da zehirlenme olaylarını arttırıcı etki yapar. Zehirli mantarları salyangozların yemediği, ağaçlarda yetişen mantarların zehirsiz olduğu, mantarı yoğurtla yemenin zehirlenmeyi önlediği, zehirli mantarların iç kısmının koparılınca mavileştiği ve kurutulmuş mantarların zehirlemediği gibi bilgiler yanlıştır. Bu bilgilere güvenerek mantar yemek kesinlikle doğru değildir. Mantarlar, ılıman iklimlerde elbiselerin, kameraların, teleskopların, mikroskopların ve diğer optik malzemelerin küflenerek zarar görmesine neden olurlar. Petrol ürünleri, deri gibi organik maddeler de mantarların besin olarak kullandığı ürünlerdir. Çürükçül mantarlar aynı zamanda tomruk ve kerestelerin, ağaçtan yapılmış eşyaların çürüyerek kullanılamaz hale gelmesinden de sorumludurlar. Ayrıca evlerde, marketlerde besinleri bozarak milyarlarca dolarlık zarara neden olurlar. Gıdalarda oluşturdukları mikotoksinlerle toksik zehirlenmeler yol açabilirler. Özellikle okratoksinler ve aflatoksinler, böbreklerde ve karaciğerde hasarlara neden olurlar. "Çavdar mahmuzu" diye bilinen mantar, çavdarın ununa karışıp yenmesiyle ergotizm denilen hastalığa neden olmaktadır. Bu hastalık hayvanlarda ve insanlarda yavru düşüklüğüne neden olmakta ve ölümlerede yol açabilmektedir. Bazı mikotoksik mantarlar Vietnam ve Afganistan'da biyolojik silah olarak kullanılmıştır. Sınıflandırmaları Mikroskobik bir mantarın hifleri ve sporları Sınıflandırmada bitkiler alemi içinde ele alınmaları bilim adamları arasında uzun yıllar tartışma konusu olmuştur. Her ne kadar Uluslararası Botanik Nomenklatür Kodunun kurallarına göre adlandırılıp sınıflandırılsa da, bitkilerden farklı bir alem olarak ele alınmışlardır. İlk taksonomik gruplandırılma eşeysel sporlarına göre yapılmıştır. Günümüze kadar mantarlar, gamet, gametangia, sporokarp ve sporlarının özelliklerine, hayat döngülerindeki sitolojik ve morfolojik özelliklerine göre sınıflandırılmıştır. Mantarlara ait ilk sınıflandırma Linnaeus tarafından yapılmıştır. "Species Plantarum" adlı kitabında mantarları Cryptogamia Fungi sınıfında toplamıştır. İlk modern mikolog ve mikolojinin kurucusu olan Antonio Micheli, mantarları 1719'da yayımladığı "Nova Genera Plantarum" adlı eserinden toplamıştır. Carl Woese (1981), sınıflandırmasını filogenetik kurallara göre yapılmıştır. Monofiletik grup olarak düşünülmüş olan mantarlar, artık üç farklı grup olarak düşünülmektedir. Bu sınıflandırma fungi olarak bilinen organizmaların birbirleriyle sıkı bir ilişki içinde olmadıklarını kabul eder. Buna gore mantarlar,; Alem : Fungi Bölüm : Chytridiomycota Bölüm : Zygomycota Bölüm : Ascomycota Bölüm : Basidiomycota Alem : Stramenopila Bölüm : Oomycota Bölüm : Hypochytiridiomycota Bölüm : Labyrinthulomycota Alem : Protista Bölüm : Plasmodiophora Bölüm : Dictyosteliomycota Bölüm : Acrasiomycota Bölüm : Myxomycota Yenilebilen mantar türleri Boletus edulis Coprinus comatus Bir yer yıldızı - Geastrum saccatum Morchella esculenta Agaricus campestris Amanita caesarea Armillaria mellea Boletus badius Boletus bovinus Boletus edulis Boletus elegans Boletus luteus Cantharellus cibarius Chroogomphus rutilus Coprinus comatus Craterellus cornucopioides Fistulina hepatica Hydnum coralloides Hydnum repandum Hygrophorus chrysodon Lactarius deliciosus Lactarius salmonicolor Lactarius volemus Lepiota procera Morchella conica var. deliciosa Morchella esculanta var. rotunda Phlegmacium variecolor Pleurotus cornucopiae Pleurotus ostreatus Polyporus squamosus Polyporus sulphureus Rhizopogon luteolus Russula delica Sparassis crispa Tricholoma terreu Mikoloji Mikoz Aflatoksin Halüsinojen mantarlar Zehirli mantarlar

http://www.biyologlar.com/mantarlar

Mantarların Genel Özellikleri

Mantarlar Mantarlar, sitoplâzmalarında zarla çevrili bir çekirdeğe sahip olan ökaryot hücreli canlılardır. Mantarlar genellikle çok hücrelidir. Klorofil içermeyen, yaşamları için gerekli olan besini hazır olarak sağlayan heterotrof canlılardır. 1. Mantarların Genel Özellikleri Mantarlar, yüksek yapılı bitkilerdeki kök, gövde ve yaprak gibi organlara sahip değillerdir. Fakat hücrelerinin etrafında belirli bir hücre çeperinin olması, sporla çoğalmaları ve genellikle hareketsiz oluşları nedeniyle bitkilere benzer canlılardır. Şapkalı mantarların çeşitli türleri ülkemizde doğal olarak yetişir, bazı türleri zehirlidir. Şapkalı mantarlar besin ve ilâç yapımında kullanılmak üzere özel olarak da yetiştirilmektedir. 2. Mantarların Çeşitleri Mantarlar maya mantarları, küf mantarları, şapkalı mantarlar ve enfeksiyon yapan mantarlar olarak gruplandırılır. Maya mantarları; genellikle tek hücreli organizmalar olup, hücre çeperleri kitinden yapılmıştır. Mayaların en önemli özelliği eşeysiz üremelerinin tomurcuklanma yolu ile olmasıdır. Özellikle şekerli ortamlarda, toprakta, hayvan atıklarında bol miktarda görülür. Hamurun mayalanmasında, bira üretiminde maya mantarlarından yararlanılır. Küf mantarları; çürümekte olan böcek, balık, kuş artıkları üzerinde saprofit olarak yaşarlar. Eşeyli ve eşeysiz ürerler. Besinlerin küflenmesine neden olurlar. Mantarların sporları peynir, salça, ekmek, limon ve yemekler üzerinde çoğalarak besinlerin küflenmesine neden olur. Şapkalı mantarlar; genellikle ağaç altlarında, çayırlarda yetişen tipik şemsiye şeklinde olan mantarlardır. Bu mantarların zehirli ve zehirsiz türleri vardır. Zehirsiz türlerinin kültürü yapılarak kolayca yetiştirilir. Şapkalı mantarlar; demir, bakır, fosfor, vitamin ve protein açısından zengin olduklarından besin olarak tüketilir. Enfeksiyon mantarları; insanda ağız ve boğaz hastalıkları, üreme organları ve deride enfeksiyonlara neden olan mantarlardır. Bebeklerde görülen pamukçuk, saç dökülmesine neden olan saçkıran örnek verilebilir. 3. Mantarların Biyolojik, Ekonomik Önemi ve İnsan Sağlığı ile İlişkisi Mantarların en önemli görevleri yeryüzündeki madde dönüşümünde rol almalarıdır. Mantarlar, ölü bitki ve hayvan kalıntılarının çürüyerek toprağa karışmasında rol oynarlar. Bitkilerin sonbaharda dökülen yaprakları, mantar ve bakteriler tarafından çürütülerek humuslu organik maddelere dönüştürülür. Oluşan fosfat ve nitrat gibi mineraller bitkiler tarafından alınarak yaşam döngüsüne katılır. Mantarlar, gıda ve fermantasyon endüstrisi, ilâç sanayii ve çeşitli ürünlerin elde edilmesinde kullanılmaktadır. Peynir, alkol, ilâç, ekmek yapımında mantarlardan yararlanılır. Ekmek yapımında hamura katılan maya, kimyasal tepkimeler sonucunda karbon dioksit gazının çıkışına yol açar ve hamur kabarır. Bazı maya mantarları da salgıladıkları enzimlerle, glikozu parçalayarak alkole dönüştürürler. Bira ve şarap gibi alkollü içecekler şekerin fermantasyonu sonucu oluşur. Şapkalı mantarlar, eski çağlardan beri tüketilen önemli bir gıdadır. Mantarın besin değeri oldukça yüksektir. Özellikle içerdiği protein, vitamin ve mineral maddeler mantarın beslen­medeki önemini arttırmaktadır. Mantarda, mineral maddelerden kalsiyum, demir, fosfor, potasyum ve bakır bulunmaktadır. Mantarlar, ilâç yapımında da kullanılmaktadır. Çeşitli antibiyotikler, steroit hormonlar, birçok vitamin­ler mantarlardan elde edilen ilâçlardır. Son zamanlarda mantarlar kanser tedavisinde de kullanılmaya başlanmıştır. Penicillium chrysogenum mantarının ürettiği penisilin antibiyotiği, bakteriyel hastalıkların tedavisinde kullanılmaktadır. Doğadaki mantarların zehirli ve zehirsiz cinsleri bulunmaktadır. Bu mantarların ayırt edilememesi sonucu zehirlenmelere çok rastlanmaktadır. Bilinçsizce toplanan zehirli mantarların tüketilmesi insanların ölümüne neden olmaktadır. Bu tehlike kültür mantarlarında görülmez. Bu nedenle kültür mantarlarının tüketilmesi gereklidir. Kültür mantarları lâboratuvar şartlarında kolayca yetiştirilebilir. Nemli ve karanlık ortamlarda, gübre ve saman karışımında kolayca yetiştirilen ve zehirleme tehlikesi olmayan önemli bir besin kaynağıdır.

http://www.biyologlar.com/mantarlarin-genel-ozellikleri

BİTKİLERDE UYGULANAN GENETİK MÜHENDİSLİĞİ YÖNTEMLERİNİN SORUNLARI

1- Bitkilerde uygulanan genetik mühendisliği yöntemlerinin en önemli sorunlarından biri, konak genomuna eklenecek yabancı genin bitki DNA’sının tam olarak neresine yerleştirileceğinin belirlenememesidir. Bu güne kadar gen transferi için hangi yöntem kullanılırsa kullanılsın, transfer edilen yabancı genin bitki DNA’sında tam olarak hangi bölgeye yerleştirildiği bilinmemektedir. Genin bitki DNA’sında yerleşeceği bölge tamamen rastlantısaldır. Bu rastlantısallık bitki hücresine ait yapısal ya da düzenleyici genlerin etkinliklerini değiştirerek bitkide metabolik farklılaşmalara yol açabilir. Yani sonuç, yabancı gen aracılığıyla bitki hücresinde üretilmesi istenen proteinin üretimi ve bitkiye kazandırılmak istenen özelliğin aktarılması ile sınırlı kalmayabilir. Roundup Ready soyalarındaki verim gerilemesinin nedeni büyük olasılıkla bu tür beklenmeyen metabolik değişikliklerdir. Bir diğer örnek, soyaya glifosat dayanıklılık geninin aktarılması sonucu RR soyalarda ortaya çıkan ısıya duyarlılık özelliğidir. Toprak sıcaklığı belli bir derecenin üzerine çıktığında soya gövdesinin neredeyse %100 oranında çatladığı görülmüştür. Bu sorunun altında yatan nedenin, yabancı gen transfer edilen RR soyalarda aşırı lignin üretimi olabileceği düşünülmektedir. Bu durumda RR soyaların sıcak iklimlerde yetiştirilmesi mümkün olmayacaktır. 2-Gen teknolojisinin ikinci büyük sorunu aktarılan nükleotid dizisinin kararsızlığı, değişebilirliği ve yeniden düzenlemelere açık olmasıdır. Bu tür değişiklikler allerjik reaksiyonlara neden olan proteinlerin ve toksik maddelerin üretimine yol açabilir. 13 Mayıs 2000 tarihinde Monsanto firması, RR Soya genomunda, işlemin ABD’de onay aldığı 1992 yılından beri soyaya ekledikleri tek gen olduğu iddia edilen CP4EPSPS geni dışında nereden köken aldığı bilinmeyen iki DNA parçacığı daha saptadıklarını açıklamıştır. Söz konusu DNA parçacıkları Monsanto’nun bugüne kadar dağıtımını yaptığı bütün RR soya soylarında bulunmaktadır. Ancak Monsanto firmasına göre “hiçbir zararlı yan etkisi bildirilmemiştir.” 3-Doğada normal koşullarda gerçekleşmeyen prokaryot ve ökaryot genleri arasındaki rekombinasyon da teknolojiye ilişkin belirsizliklerden biridir. Prokaryotlarla ökaryot organizmaların genetik kod translasyonu (protein sentezi sırasında kullanılan mekanizma) bazı açılar.

http://www.biyologlar.com/bitkilerde-uygulanan-genetik-muhendisligi-yontemlerinin-sorunlari

Mantar Nedir? Mantar Hakkında Bilgi

Bilimsel sınıflandırma Alem: Fungi L., 1753 Bölümler Ascomycota Basidiomycota Chytridiomycota Deuteromycota Glomeromycota Zygomycota Mantar, çok hücreli ve tek hücreli olabilen ökaryotik canlılardır. Hayvanlar gibi aktif hareket edemezler ama bitkiler gibi Klorofil de taşımazlar. Yani heterotrofdurlar. Besinlerini dış ortamdan alırlar. Sınıflandırmada bitkiler alemi içinde ele alınmaları bilim adamları arasında uzun yıllar tartışma konusu olmuştur. Mantarlar parazit olarak, çürükçül (saprofit) veya simbiyotik olarak yaşayabilirler. Makroantarların üremesi sporlar yoluyla gerçekleşir. Toprağa dökülen sporlar rüzgarla ya da böceklerle çevreye dağılır ve toprakta yıllarca yaşayabilir. Mantarlar nemli ortamlarda gelişirler, bu nedenle yağmurlardan sonra topraktaki sporlar çimlenerek mantarları oluştururlar. Tek hücreli mantarlar ise tomurcuklanarak çoğalabilirler. Mantarlar arasında insanların çeşitli amaçlarla yararlandıkları türler vardır. Fermantasyon yaparak alkollü içkilerin hazırlanmasında ve ekmek yapımında kullanılan Saccharomyces türleri, antibiyotik eldesinde kullanılan Penicillium türleri ve ergo alkaloitlerinin elde edildiği Claviceps purpurea mantarı gibi. Mantar cinsleri içinde 60 kadar tür ile temsil edilen Amanita cinsi ayrı bir öneme sahiptir. Amanita türleri içinde yenebilen bir mantar olan Amanita caesarea’nın yanı sıra, zehirli ve halüsinojen etkili Amanita muscaria ve Amanita pantherina ve öldürücü zehirli olan Amanita phalloides, Amanita verna ve Amanita virosa türleri yer alır. Amanita türleri diğer mantarlardan, şapkasının altında beyaz renkte ışınsal perdeler, yani lameller olması, sapın ortaya yakın kısmında sapı saran bir halka taşıması ve sapın alt kısmında yumurta kabuğu biçiminde bir çanakçık bulunması gibi özellikleri ile ayırt edilirler. Yenebilen Amanita caesarea mantarında ise lameller ve sap altın sarısı rengindedir. Türkiye'nin Yenen Mantar Türleri Önemli not Yenebilen ve zehirli mantarlar yan yana yetişebilirler. Bazı yenebilen ve zehirli türler birbirine o kadar benzer ki bunu ancak bir mantarbilimci ayırt edebilir. Zehirli mantarların tadı yenebilen mantarlarınkinden farklı değildir. Etinin rengi, kokusu ve tadı ile bir mantarın zehirli olup olmadığı anlaşılamaz. Agaricus campestris Amanita caesarea Armillaria mellea Boletus badius Boletus bovinus Boletus edulis Boletus elegans Boletus luteus Cantharellus cibarius Chroogomphus rutilus Coprinus comatus Craterellus cornucopioides Fistulina hepatica Hydnum coralloides Hydnum repandum Hygrophorus chrysodon Lactarius deliciosus Lactarius salmonicolor Lactarius volemus Lepiota procera Morchella conica var. deliciosa Morchella esculanta var. rotunda Phlegmacium variecolor Pleurotus cornucopiae Pleurotus ostreatus Polyporus squamosus Polyporus sulphureus Rhizopogon luteolus Russula delica Sparassis crispa Tricholoma terreum

http://www.biyologlar.com/mantar-nedir-mantar-hakkinda-bilgi

Medikal Biyolojiye Giriş

HÜCRE BİLİMİ En ilkel yapılı hücre prokaryotik hücredir.Nukleus zarı bulunmaz. DNA hücre sitoplazmasında bulunur.Organellere sahip değildir. Örnek bakteri hücresi verilebilir. İleri yapı göstaeren hücreler eukaryotik hücrelerdir.DNA materyali nukleus zarı ile çevrelenmiştir.Çok değişik organelleri mevcuttur. Örnek insan hücresi verilebilir. HÜCREYİ İNCELEME YÖNTEMLERİ DOKU KÜLTÜRLERİ VİTAL BOYAMA HÜCRE ORGANELLERİNİN AYRILMASI YÖNTEMİ TESPİT YÖNTEMİ HÜCRENİN GENEL ÖZELLİKLERİ Hücrenin Şekli: Yaptığı işe ve bulunduğu yere göre değişir. Hücrenin Büyüklüğü: Ortalama olarak 10 – 15 mikron arasında değişirler. Hücrenin mikroskobik yapısı: Hücre zarı ve protoplazma olarak iki ana bölümde incelenir. HÜCRE ZARI Hücre zarı hücreyi dış ortamdan ayırır ve hücreye belli bir şekil verir. Ayrıca besin maddelerinin hücre içine girmesini, metabolizma artıkları ve salgı maddelerinin hücre dışına çıkmasını sağlayarak hücre içeriğini düzenler. Biyolojik bütün zarlar ortak temel bir yapıya sahip olup çift katlı lipid yapısındadır. Bu çift katlı lipid tabakasında daima özel zar proteinleri bulunur. Hücre zarının iç yüzeyinde bulunan proteinler daha çok enzim görevi yaparken dış yüzeydekiler reseptör görevi yaparlar.Zarın protein bileşeni hücreye ıslanabilme ve esneme özelliği verir. Yanyana iki hücrenin zarları arasında bir aralık vardır.(100-200 Angstrom ) Hücre zarı permeabl İmpermeabl Semipermeabl olabilir. Hücre zarının rejenerasyon yeteneği vardır. HÜCRE ZARINDA SERBEST YÜZEY FARKLILAŞMALARI MİKROVİLLUSLAR TİTREK TÜYLER (CİLİA ) KAMÇI (FLAGELLUM ) HÜCRE ZARINDA YAN YÜZEY FARKLILAŞMALARI Terminal Tıkaç: Serbest yüzeyin hemen altında bulunur.Zarlar kaynaşır, aralık kalmaz. Desmosom: Zar kalınlaşmaz, sitoplazma yoğunlaşır, bölge disk şeklinde görülür. Sıvı rahat dolaşır. Gap Junction aralır. Fakat kapanmaz, sıvı geçer. PROTOPLAZMA Protoplazma, sitoplazma ve nukleus bölümlerini içeren bir kavramdır. Sitoplazma ve nukleus dış taraflarında bir zar sistemiyle sarılarak çevrelerinden ve birbirlerinden ayrılırlar. Protoplazma ,su, elektrolitler, karbonhidratlar, lipidler ve proteinlerden oluşur. SİTOPLAZMA Hücre zarı ile nukleus arasında yer alan akışkan kısımdır. Membrana yakın kısmına ektoplazma, iç kısmına endoplazma denir. Her hücrenin sitoplazması içinde ondan bir zar birimi ile ayrılmış ve çeşitli görevler yapmak üzere gelişmiş farklılaşmalar (ORGANEL ) vardır. Sitoplazma içindeki yağ damlacıkları, pigment granülleri, vitellus ve salgı damlaları gibi erimiş maddelere paraplazma veya inkluzyon denir. Eukaryotik hücrelerde membranın dış kısmında karbonhidratça zengin olan asimetrik kısma GLİKOKALİKS denir. Glikokaliks, hücreye antijen özelliği verir.Hücrelerin moleküler düzeyde birbirini tanımasını ve etkileşimini sağlar.Doku organ trasplantasyonunda hücreler bu sayede birbirlerini tanıyarak doku reddi olur. SİTOPLAZMADA BULUNAN BAŞLICA ORGANELLER ENDOPLAZMİK RETİCULUM E.R. üzerinde taşıdığı enzim ve ribozomlardan dolayı kimyasal olayların cereyan ettiği, oluşan maddelerin taşındığı ve sentezlenen maddelerin depo edilmesini sağlayan bir sitoplazma iskeletidir. E.R. İki tiptir. Granülsüz E.R.: Karaciğer paranşim hücrelerinde, yağlı maddelerin sentezini yapan yağ bezi hücrelerinde veya steroid hormon sentezleyen bazı endokrin bezlerde fazla bulunur. Granüllü E.R. E.R. Un başlıca görevi protein sentezi yapmak, sentezlenen proteinleri kanalcıkları ile hücrenin gerekli yerlerine veya hücre dışına taşımak veya sentezlenen maddeleri keseciklerinde depo etmektir. RİBOZOMLAR Ribozomlar hemen hemen eşit miktarda RNA ve proteinden oluşmuş, oval granüllerdir. Bakteriden yüksek organizasyonlu hayvan ve bitkilere kadar her tür hücrede bulunur. Görevleri protein sentezi yapmaktır. Memelilerde eritrosit ve trombositler , bitkilerden de bakteriler hariç bütün hayvan ve bitki hücrelerinde hücre membranının sitoplazma içinde devamı olan hücre zarı ile nukleus zarı arasında uzanan ince kanalcık ve keseciklerden yapılmış zar sistemine E.R. denir. GOLGİ CİSİMCİĞİ Işık mikroskobunda ancak özel boyama ile sitoplazma içinde; ağ, granül, iplik veya belirli şekilleri olmayan yapılar halinde görülürler Elektron mikroskobunda sitoplazma içinde, düz veya hafif konveks demetler halinde birbirine paralel sıralanmış, yassı kanal ve kesecikler halindedirler. Golgi elemanları E.R.a benzemekle beraber ribozomların olmayışı, küçük olmaları ve devamlı olmamaları nedeni ile E.R. dan ayrılır. İşlevlerine göre yeri ve morfolojisi değişir. Ör : Pankreasta salgı granülleri oluşmadan ağ şeklinde salgı granülleri oluşunca vakuol şeklinde görülür. KOH, protein ve lipid için geçici depodur İntersellüler salgı teşekkülüne yardım eder.(farede süt bezlerinde süt proteini oluşturur.) Golgide lipoprotein, bağ ve kıkırdak doku yapılır. Yağların sindirilmesinde rol oynar. Spermatidlerin spermatozoa haline geçmesinde rol oynar. Lizozomların teşekkülünde rol oynar. Glucosyl ve galactosyl transferaz enzimlerine sahiptir. Bu enzimler sayesinde kompleks KOH lar sentezlenir, proteinle birleşir ve glikoproteinler oluşur. LİZOZOM Küçük, yuvarlak organellerdir. Yapısı hücre zarı gibidir. Büyüklük bakımından mitokondriuma benzerlerse de sayıca onlardan azdır. Eritrositlerin dışında tüm hayvan hücrelerinde mevcuttur. En çok makrofaj, lökosit, karaciğer hücresi ve böbrek tubulus hücrelerinde bulunur. Bitki hücrelerinde bulunmazlar. Lizozomlar golgi elemanlarından veya E.R. dan meydana gelirler. İçlerinde sindirim enzimleri bulunur. Besin maddelerini, zararlı yabancı maddeleri, bakterileri sindirir. Hücredeki lizozom zarları herhangi bir nedenle parçalanırsa (şok, bakteriyel ve viral enfeksiyonlar, diğer bazı patolojik haller) İçlerindeki hidroliz enzimleri sitoplazmayı sindirerek hücrenin ölümüne sebep olur.Ör. Kronik romatoid artritis’de eklem aralığına boşalan lizozom enzimleri kıkırdağı harap eder. Hücre organellerinin yenilenmesinde rol oynar. Eskiyen organeller otoliz ile sindirilip yenileri yapılır. Lizozomlar fazla miktarda ortaya çıkan salgı granüllerini fagosite ederek salgı bezlerinin salgı çıkarmasında düzenleyici rol oynarlar. PEROKSİZOM Son yıllarda keşfedilen yuvarlak görünüşlü, tek bir zarla çevrili, yoğun matrix ihtiva eden küçücük cisimlerdir. Microbodies de denilen bu cisimcikler lizozomlara benzer enzimleri ve hidrojen peroksit metabolizmasıyla ilgili enzimleri taşırlar. Sayıları lizozomlardan azdır. Karaciğer, böbrek ve kalp hücrelerinde bol bulunurlar. Bazı protozoa ve bitki hücrelerinde de bulunurlar. Ömürleri kısa olup 3 – 4 gün kadardır. VAKUOL (KOFUL) Daha çok bitki hücrelerinde ve tekhücreli hayvanlarda rastlanır. Bazı çok hücreli hayvanlarda da rastlanır. Vakuoller hücre zarından, E.R. dan , golgi elemanlarından veya nukleus zarından meydana gelmiş içi sıvı dolu bir organeldir. Bazı tekhücreli hayvanlarda kofullar, hücrenin daimi organelidir (Paramecium’daki kontraktil kofullar.) Bazı canlılarda ise kofullar gerektiği zaman oluşur ve işi bitince kaybolurlar. (Besin kofulu yada pinositik koful ) Pinositoz ve fagositoz olayları amipten başka lökositlerde, böbrek hücrelerinde, kapiller çeper hücrelerinde, karaciğer hücrelerinde görülür. Besin kofulu sitostom ile alınan besinin etrafında da oluşur. İşi biten koful parçalanır. Kofullar sabit değildir. MİTOKONDRİUM Özel boyalarla boyandıktan sonra ışık mikroskobunda incelenen hücrelerde küreden, çubuğa kadar değişen şekillerde görülen yapılara mitokondrium adı verilir. Genellikle mitokondriumlar, hücrelerin metabolik faaliyetlerinin aktif olduğu kısımlarda toplanır. Elektron mikroskobu ile incelendiğinde mitokondriumların, iç içe iki zarla çevrili olduğu görülür. Mitokondriumun içi matrix adı verilen, küçük granüllü veya homojen bir sıvı ile doludur.Bu maddenin yoğunluğu zarlar arasında ve mitokondriumun içinde birbirinden farklıdır. Mitokondriumun dış zarı esnektir. Bu nedenle gerektiğinde genişleyip büzülerek mitokondriumun içine veya dışarıya bazı maddelerin geçmesine olanak sağlar. Mitokondriumun iç zarı , içeriye doğru krista denilen uzantılar yaparak iç yüzeyin genişlemesini sağlar. Mitokondriumların yapısında protein, yağ, DNA, RNA, solunum enzimleri ve vitaminler (A ,C ) bulunur. İçinde solunum enzimlerinin bulunuşu, bunların hücre solunumu yaptıkları kanısını vermektedir. Solunumda rol oynayan oksidasyon enzimleri mitokondriumun matrixi içinde ve fosfatlaştırıcı enzimler de zarları üzerinde bulunurlar. Mitokondriumları hücrenin solunum merkezi olarak düşünürsek, burada kullanılan yakıt maddeleri , besin olarak dışardan alınan protein, KOH ve yağlardır. Proteinler amino asitlere, KOH lar piruvik asite ve yağlar da yağ asitlerine parçalanarak mitokondrium zarlarından geçerek matrixe girerler. Matrixte , oksidasyon enzimleri bu asitlerin karbon atomlarını parçalayarak daha küçük moleküllere ayırırlar. ( oksidasyon ) Daha sonra bu ürünler, mitokondrinin zarlarına geçerek oradaki fosfatlaştırıcı enzimlerin etkisi ile, son ürün olan karbondioksit, su ve 38 ATP’ lik bir enerji meydana getirirler. Bu enerji , ısı enerjisi halinde olmayıp, kimyasal bağ enerjisi halinde ( ATP ) birikerek, gerektiğinde hücrenin ihtiyacı olan yere taşınır. SENTROZOM Bütün hayvan hücrelerinde ve bazı mantarlarda görülen sentrioller yüksek bitki hücrelerinde yoktur. Işık mikroskobunda çekirdek zarının dış tarafında açık renkli ve yuvarlak olarak görülen sitoplazma alanına sentrozom adı verilir. Sentrozomda iki kısım ayırt edilir.Bunlardan biri, sentrozomun merkezinde bulunan ve bir çift olan sentriol, diğeri sentriolleri çeviren, homojen bir tabaka halindeki sentrosferdir.Daima çift halde bulunan sentriollerden her biri, küçük bir silindir şeklindedir. Sentrioller uzun eksenlerinde birbirleriyle dik açı oluşturacak şekilde bulunurlar. Enine kesitte bir daire üzerinde dizilmiş 9 adet iplikten yapılmış görülür.Bu ipliklerin her biri üçer protein iplikçikten yapılmıştır. Bu iplikçiklerin birer tarafı kapalı olup, içleri sitoplazmik matrix ile doludur. Sentriollerin hücre bölünmesinde rolü vardır. Sperma kuyruklarında, cilium ve kamçıların enine kesitinde, sentriolun yapısına benzer bir yapı görülür, bu benzerlik cilium ve kamçıların sentriolden oluştukları kanısını vermektedir. Yüksek bitki hücresi, çizgili kas hücresi, protozoonların bazılarında, nöron gövdesinde ve olgun yumurta hücresinde bulunmaz. Mikrotübüller Hücrelerin çoğunda yaklaşık 250 Angstrom çapında, birkaç mikron uzunluğunda borucuklar bulunur ki bunlara mikrotübülü denir. İncecik tüp şeklindeki mikrotübüller genellikle demetler halinde bulunurlar. Yapıları sert olduğundan eğildikleri zaman kırılabilirler. Gerçek bir zar taşımazlar. Mikrotübüller spermium kuyruğunda ve ciliumların yapısında aksial filament halinde bulunurlar. Mikrotübüller hücrede sitoplazma iskeleti oluşturma görevi yaparlar.Hücreye veya bulunduğu organa sağlamlık kazandırırlar. Gerçek bir zar taşımazlar. Mikrotübüller spermium kuyruğunda ve ciliumların yapısında aksial filament halinde bulunurlar. Mikrotübüller hücrede sitoplazma iskeleti oluşturma görevi yaparlar.Hücreye veya bulunduğu organa sağlamlık kazandırırlar. Her kromozom bölünme sırasında son gideceği yere mikrotübül kümesine bağlanarak ulaşır. Mikrotübüller sentriollerin, bazal cisimlerin, cilium ve flagellerin yapımlarında kullanılırlar. Sinir hücresi aksonları içinde boylu boyunca uzanırlar ve hücre içi madde iletimini sağlarlar. NUCLEUS Bakteri ve viruslar hariç hemen hemen bütün hayvan ve bitki hücrelerinin birer nukleusu vardır. Memeli karaciğer hücreleri, böceklerin orta bağırsak hücreleri, testisdeki Leydig hücreleri ve bazı tek hücreliler iki nukleuslu, çizgili kas hücreleri ise çok nukleusludur. Çok nukleuslu hücrelere POLİKARYOTİK hücre adı verilir. Nukleus hücrenin morfolojik ve biyolojik yönden kontrol merkezidir.Bütün canlılık olaylarını yönettiği gibi canlının kalıtsal karakterlerinin dölden döle geçmesini de sağlar. Nukleus zarı ( Karyotheca ) Nukleus zarı çift katlıdır ve bu zar büyük bir olasılıkla E. R. dan oluşur. Dış zarın üzerinde ribozomlar vardır. İç zar ise düzdür. İç ve dış zarlar yer yer birleşerek bir açıklık meydana getirir. Bunlara por denir.Sentez olayları çok olan hücrelerin nukleus zarlarında por sayısı fazladır. Porlar nukleus ile sitoplazma arasında gerekli maddelerin geçişine olanak sağlar. Hücre bölünmesinde, patolojik hallerde, X ışınlarına maruz kalınca, uzun süren otoliz sonucu nukleus zarı ortadan kalkar. NUKLEOPLAZMA Nukleus zarı tarafından çevrilmiş olup kromatin ağı ve nukleolus dışında kalan sahayı doldurur. Nukleoplazma; RNA, büyük moleküllü proteinler, lipid ve inorganik tuzlar içerir. Nukleusun morfolojik görünümünde olan değişmeler klinikte önemlidir. Nukleolus Hücre nukleusu içinde belirli bir kromozomun belirli bir bölgesine bağlı olarak bulunan nukleolus yuvarlak ve oval bir yapı gösterir. Nukleolus bir zarla çevrilmiş olmadığından kolayca gözden kaybolabilir ve ayrı bir organel olarak kabul edilmez. Sayısı hücreden hücreye değişir, Nukleolus granüllü ve fibrilli bölgelerden oluşur. Her iki bölge de proteince zengin olup ayrıca nukleotid ve koenzim sentezi yapan enzimlerle RNA bulunur. Fakat DNA bulunmaz. Nukleustaki proteinler ya histon, protamin gibi bazik veya kromozamin gibi asit proteinlerdir. Hücre bölünmesinde önemli bir rolü vardır. Kromatin ağı ve kromozom İnterfazda hücrenin, nukleusu boyandığı zaman, nukleoplazma içinde iyi boyanmış uzun ağ veya yumak halinde iplikler görülür. Bunlara kromatin iplikleri veya kromonema denir. Bu iplikler üzerinde, daha kuvvetle boyanmış tanecikler dizilmiştir. Bunlara da kromatin taneleri veya kromomer denir. İnterfazdaki nukleusun içinde görülen bu iplikçikler, helezonları açılmış, uzamış ve dağınık durumda bulunan kromozomlardır. Hücre bölüneceği zaman bu iplikçikler, helezon yaparak kısalır ve kalınlaşırlar, böylece de kromozomları meydana getirirler. Bölünmekte olan bir hücrenin nukleusu boyandıktan sonra mikroskopta incelenirse belirli şekillerde ve koyu boyanmış yapılar görülür, bunlara kromozom adı verilir. Bir kromozomun şekli, kromozomun kollarını birleştiren boğumun yerine göre isimlendirilir. Bu boğuma sentromer (kinetokor ) veya primer boğum denir. Bu boğum küçük bir granül veya sentromeri kapsayan açık renkli bir alandır. Kromozomlar üzerinde sentromerden başka boğumlarda bulunabilir, bunlara sekonder boğum ve ayrılan kısma uydu veya satellit denir. Kromozom tipleri METASENTRİK KROMOZOM SUBMETASENTRİK KROMOZOM AKROSENTRİK KROMOZOM TELOSENTRİK KROMOZOM Bölünme anında kromozomlar kutuplara doğru çekilirken, sentromerlerinden iğ ipliklerine tutunurlar, Bu nedenle sentromeri herhangi bir nedenle tahrip olan veya bulunmayan bir kromozom bölünme olayına katılamadığından parçalanır. Her kromozomun kendine öz bir şekli vardır. Bu şekil canlının bütün hücrelerinde aynıdır. Bir türün kromozomunun şekli gibi sayısı da sabittir. Bir canlının bütün hücreleri aynı, yani biri anadan, diğeri babadan gelen aynı şekil ve büyüklükte ikişer takım kromozoma sahiptir. Buna diploit kromozom sayısı denir. Anadan ve babadan gelen eş kromozomların her birine de homolog kromozom adı verilir. Olgun üreme hücrelerinde ise kromozom sayısı vücut hücrelerinkinin yarısı kadardır.Burada homolog kromozomlardan her biri, başka hücreye geçtiğinden sayı yarıya inmiştir. Buna da haploit kromozom denir. Kromozomun şekli ve sayısı gibi büyüklüğü de değişmez. Aynı kromozom bir türün farklı bireylerinin vücut hücrelerinde daima aynı büyüklüktedir. Bir kromozomda her biri iki kromonema taşıyan iki kromatid bulunur. Kromonemanın üst üste katlanmasıyla veya nukleoproteinin o bölgede yogunlaşmasıyla kromomerler oluşur. Kromonema üzerinde kromomerlerin bulunduğu yerler genlerin yerleştiği bölgeler olarak kabul edilir. Bazik boyalarla boyanan bir kromozomun her yerinin aynı derecede boyanmadığı görülür. Kuvvetli boyanan bölgelere heterokromatik bölgeler denir.Bu bölgeler interfazda sıkı bir şekilde helezonlaşmış olup, içinde fazla miktarda DNA ve RNA bulunur. Daha az boyanan bölgelere ise ökromatik bölgeler denir. Bu bölgenin yapısında da histonlar ve DNA vardır. Hücrenin kimyasal yapısı İNORGANİK MADDELER 1- SU: Hayatsal faaliyetlerin sürdürülmesinde önemli rolü vardır Canlı türüne, hücrenin görevine, yaşlı ve genç olmasına göre hücrelerde değişik oranlarda bulunmaktadır.Genel olarak sitoplazmanın % 85-95 kadarı sudur. Embriyonal hücrelerde, genç ve aktif hücrelerde su oranı fazla, yaşlı hücrelerde azdır. Hücre protoplazmasında su serbest ve bağlı su olarak bulunur.Serbest su kan ve lenf sıvılarındaki sudur.Bağlı su ise ikiye ayrılır.Anyon ve katyonlara bağlı olarak bulunan su (Hidratasyon Suyu ) ve anyon ve katyonlara bağlı bulunan suyun dışındaki sudur (Moleküller Arası Su ). 2-ELEKTROLİTLER: C,H,O,N,K,Ca, Mg, Fe,S,P sitoplazmanın temel elementleridir. İlk dördü protoplazmada bulunan organik maddeler yönünden daha önemlidir.Mg ve Fe ise klorofil ve hemoglobin gibi yapıları oluşturma yönünden de temel element sayılırlar. Bu elementler hücredeki bileşikleri teşkil ederler.Özellikle temel elementlerin eksikliği halinde hücre fonksiyonlarını tam olarak sürdüremez. Bu elementler ayrıca protoplazmik aktiviteyi artırır, osmotik basıncı sağlar, asit-baz dengesini ayarlar, birçok enzimleri aktifleştirir ve bazı vitaminlerin terkibine girer. Canlı hücredeki inorganik maddeler asit baz ve tuzlardır.Fakat bunlar hücre suyu içinde erimiş yani iyonlaşmış olup elektrolitleri teşkil ederler. Bir solusyonda iyonların bulunuşu, solusyonun elektrik akımını geçirmesini sağlar. Böylece iyonlarına ayrılan ve dolayısıyla elektrik akımını ileten maddelere elektrolit (iletken) denir. ORGANİK MADDELER Hücre yapısında çeşitli organik maddeler mevcuttur. Karbonhidratlar: Enerji kaynağıdır. Bu enerji hücre çoğalması, büyümesi ve hareket yeteneği için gereklidir. Karbonhidratlar üç grupta toplanır. Monosakkaritler: Hidroliz sonucu daha küçük moleküllere ayrılamazlar. Triozlar Pentozlar Heksozlar ( Glukoz,Fruktoz, Galaktoz) Oligosakkaritler: 2,3,4,5,6 monosakkaritin aralarından birer mol su çıkmasıyla diğer bir deyişle glikozit bağları ile birbirine bağlanarak meydana getirdikleri bileşiklere oligosakkaritler denir. Disakkaritler( Sakkaroz, Maltoz, Laktoz) Trisakkaritler Polisakkaritler: Canlıda en önemli polisakkaritler heksozlardan yapılmış olanlar olup bitki hücresi çeperinde sellüloz, bitkide depo edilen nişasta ve hayvan hücrelerinde depo edilen glikojendir. Lipidler: Enerji kaynağı olarak ve hücre membranında yapı taşı olarak önemlidir. Lipidleri şöyle gruplandırabiliriz. Basit lipidler Bileşik lipidler( Fosfolipid, glikolipid) Diğer lipidler ( Steroid, kolesterol) Kolesterol Hayvansal hücre zarlarının yapısında, sinir dokusu ve diğer dokularda yapı maddesi olarak iş görür. Bitkisel dokularda bulunmaz. Kolesterol deri hücrelerinin zarlarında yağlarla birlikte birikerek derinin asitlere ve eritici maddelere karşı direncini arttırır, aynı zamanda derinin su kaybını önler. Omurgalılarda, besinlerle alınan veya organizmada sentez edilen kolesterol diğer steroid gruplarına çevrilmektedir. Bunlardan biri de safra tuzlarıdır. Safra tuzları karaciğerde yapılır ve safra kanalları yoluyla bagırsaklara iletilir, orada yağların sindirim ve absorbsiyonunda rol oynar. Bunun yanında kanda kolesterol oranının yükselmesi, arteriosclerozis denen damar sertliği meydana getirir.Bunda damarların iç yüzünde plaklar oluşarak damar çeperi daralır ve esnekliği kaybolur. PROTEİNLER: Basit proteinler:Bunlar sadece amino asitlerden ibarettir. Albuminler Globulinler Gluteninler Histonlar Protaminler Bileşik proteinler: Fosfoproteinler: (vitellin) Metalloproteinler:Bunlar proteine bağlı olarak Fe,Cu vb. ağır metalleri kapsayan bileşik proteinlerdir. (Hemoglobin , Hemosiyanin) Nukleoproteinler: Hücrede RNA ve DNA proteinle birleşmiş halde bulunur ki bunlara nukleoproteinler adı verilir. NUKLEİK ASİTLER: Nukleotid denen birimlerden oluşur. Baz + Şeker + Fosforik asit = Nukleotid Nukleotidler dehidrasyon senteziyle nukleik asitleri meydana getirirler. Böylece DNA ve RNA molekülleri oluşur. ENZİMLER: Hücrede meydana gelen sayısız biyokimyasal reaksiyonu katalizleyen ve canlı hücrede sentezlenen protein yapısındaki organik moleküllere enzim denir.Enzimler kimyasal katalizörler gibi görev yaparak reaksiyonu başlatır ve sonlandırır. Bazı enzimler sadece saf protein moleküllerinden yapılmıştır.Bunlara basit enzimler denir. (Pepsin, tripsin, kimotripsin) Diğer bazı enzimler ise protein yapılarına ilaveten aktivite gösterebilmek için kofaktör denen inorganik metal iyonları ve koenzim denen kompleks organik moleküllerle birlikte çalışırlar.Bu tip enzimlere de bileşik enzim denir. Enzim koenzim veya faktörü ile birlikte katalitik bakımdan tamamen aktif durumda ise bu haline holoenzim adı verilir.Bir holoenzimin koenzim veya kofaktöre ayrılıp inaktif hale gelen protein kısmına Apoenzim denir. VİTAMİNLER: Hücre metabolizması için gerekli olan, çok az miktarları ile büyüme, gelişme ve sıhhatli yaşama için gerekli organik maddelerdir.Vitaminler aynı zamanda hücrede geçen biyokimyasal olayları katalizleyen çoğu enzimlerin koenzim grubunu teşkil ederler. Bu nedenle avitaminozda reaksiyonlar gerçekleşmez ve canlı bunun eksikliğini duyar. Suda eriyen vitaminler: B ,C Yağda eriyen vitaminler: A,D,E,K HORMONLAR HÜCREDE PROTEİN SENTEZLENMESİ Protein sentezlenmesinde molekül ağırlıkları ve diğer bazı özellikleri farklı üç çeşit RNA görev yapar.Bunlardan biri elçi RNA dır. eRNA nukleusta DNA molekülünden aldığı genetik bilgiyi sitoplazmaya iletir.İkincisi ribozomal RNA dır.Protein sentezi ribozomun büyük bir kısmını oluşturan rRNA üzerinde gerçekleşir. Üçüncüsü taşıyıcı RNA dır. tRNA nın görevi bir polipeptid zinciri oluşurken sitoplazmadaki uygun amino asitleri alarak zincirdeki uygun yerlere yerleştirmektir. Her üç RNA da DNA tarafından sentezlenir. DNA çift dizi olmakla beraber bunlardan sadece biri genetik bilgiyi aktarır ve eRNA yı oluşturur, buna anlamlı dizi denir. Protein sentezi özetlenirse; Önce nukleusta çift diziden oluşan DNA molekülünün dizilerinden biri, sentezlenmesini istediği protein için gerekli nukleotitleri kapsayan kısmının kopyasını çıkararak, özel bir eRNA hazırlar.Hazırlanan bu eRNA nukleus zarının porundan çıkarak sitoplazmaya geçer ve ribozomla birleşir. Böylece ribozomlarda, DNA nın emrettiği proteini sentezlemek üzere özel bir eRNA kalıbı yerleşmiş olur.Daha sonra bu kalıp üzerindeki her kodona uygun antikodonlu tRNA lar sitoplazmadan uygun amino asitleri alarak ribozomdaki eRNA kalıbında yerine koyar. Böylece her ribozomda , DNA dan gelen şifreye uygun amino asitler yan yana peptid bağları ile bağlanarak istenen protein sentezlenmiş olur. Sentezlenen bu protein ribozomlardan ayrılarak gerekli yerlere taşınır, işi biten eRNA lar daha sonra parçalanır. HÜCRE BİLİMİ En ilkel yapılı hücre prokaryotik hücredir.Nukleus zarı bulunmaz. DNA hücre sitoplazmasında bulunur.Organellere sahip değildir. Örnek bakteri hücresi verilebilir. NUCLEUS Bakteri ve viruslar hariç hemen hemen bütün hayvan ve bitki hücrelerinin birer nukleusu vardır. Memeli karaciğer hücreleri, böceklerin orta bağırsak hücreleri, testisdeki Leydig hücreleri ve bazı tek hücreliler iki nukleuslu, çizgili kas hücreleri ise çok nukleusludur. Çok nukleuslu hücrelere POLİKARYOTİK hücre adı verilir. Nukleus hücrenin morfolojik ve biyolojik yönden kontrol merkezidir.Bütün canlılık olaylarını yönettiği gibi canlının kalıtsal karakterlerinin dölden döle geçmesini de sağlar. Nukleus zarı ( Karyotheca ) Nukleus zarı çift katlıdır ve bu zar büyük bir olasılıkla E. R. dan oluşur. Dış zarın üzerinde ribozomlar vardır. İç zar ise düzdür. İç ve dış zarlar yer yer birleşerek bir açıklık meydana getirir. Bunlara por denir.Sentez olayları çok olan hücrelerin nukleus zarlarında por sayısı fazladır. Porlar nukleus ile sitoplazma arasında gerekli maddelerin geçişine olanak sağlar. Hücre bölünmesinde, patolojik hallerde, X ışınlarına maruz kalınca, uzun süren otoliz sonucu nukleus zarı ortadan kalkar. NUKLEOPLAZMA Nukleus zarı tarafından çevrilmiş olup kromatin ağı ve nukleolus dışında kalan sahayı doldurur. Nukleoplazma; RNA, büyük moleküllü proteinler, lipid ve inorganik tuzlar içerir. Nukleusun morfolojik görünümünde olan değişmeler klinikte önemlidir. Nukleolus Hücre nukleusu içinde belirli bir kromozomun belirli bir bölgesine bağlı olarak bulunan nukleolus yuvarlak ve oval bir yapı gösterir. Nukleolus bir zarla çevrilmiş olmadığından kolayca gözden kaybolabilir ve ayrı bir organel olarak kabul edilmez. Sayısı hücreden hücreye değişir, Nukleolus granüllü ve fibrilli bölgelerden oluşur. Her iki bölge de proteince zengin olup ayrıca nukleotid ve koenzim sentezi yapan enzimlerle RNA bulunur. Fakat DNA bulunmaz. Nukleustaki proteinler ya histon, protamin gibi bazik veya kromozamin gibi asit proteinlerdir. Hücre bölünmesinde önemli bir rolü vardır. Kromatin ağı ve kromozom İnterfazda hücrenin, nukleusu boyandığı zaman, nukleoplazma içinde iyi boyanmış uzun ağ veya yumak halinde iplikler görülür. Bunlara kromatin iplikleri veya kromonema denir. Bu iplikler üzerinde, daha kuvvetle boyanmış tanecikler dizilmiştir. Bunlara da kromatin taneleri veya kromomer denir. İnterfazdaki nukleusun içinde görülen bu iplikçikler, helezonları açılmış, uzamış ve dağınık durumda bulunan kromozomlardır. Hücre bölüneceği zaman bu iplikçikler, helezon yaparak kısalır ve kalınlaşırlar, böylece de kromozomları meydana getirirler. Bölünmekte olan bir hücrenin nukleusu boyandıktan sonra mikroskopta incelenirse belirli şekillerde ve koyu boyanmış yapılar görülür, bunlara kromozom adı verilir. Bir kromozomun şekli, kromozomun kollarını birleştiren boğumun yerine göre isimlendirilir. Bu boğuma sentromer (kinetokor ) veya primer boğum denir. Bu boğum küçük bir granül veya sentromeri kapsayan açık renkli bir alandır. Kromozomlar üzerinde sentromerden başka boğumlarda bulunabilir, bunlara sekonder boğum ve ayrılan kısma uydu veya satellit denir. Kromozom tipleri METASENTRİK KROMOZOM SUBMETASENTRİK KROMOZOM AKROSENTRİK KROMOZOM TELOSENTRİK KROMOZOM Bölünme anında kromozomlar kutuplara doğru çekilirken, sentromerlerinden iğ ipliklerine tutunurlar, Bu nedenle sentromeri herhangi bir nedenle tahrip olan veya bulunmayan bir kromozom bölünme olayına katılamadığından parçalanır. Her kromozomun kendine öz bir şekli vardır. Bu şekil canlının bütün hücrelerinde aynıdır. Bir türün kromozomunun şekli gibi sayısı da sabittir. Bir canlının bütün hücreleri aynı, yani biri anadan, diğeri babadan gelen aynı şekil ve büyüklükte ikişer takım kromozoma sahiptir. Buna diploit kromozom sayısı denir. Anadan ve babadan gelen eş kromozomların her birine de homolog kromozom adı verilir. Olgun üreme hücrelerinde ise kromozom sayısı vücut hücrelerinkinin yarısı kadardır.Burada homolog kromozomlardan her biri, başka hücreye geçtiğinden sayı yarıya inmiştir. Buna da haploit kromozom denir. Kromozomun şekli ve sayısı gibi büyüklüğü de değişmez. Aynı kromozom bir türün farklı bireylerinin vücut hücrelerinde daima aynı büyüklüktedir. Bir kromozomda her biri iki kromonema taşıyan iki kromatid bulunur. Kromonemanın üst üste katlanmasıyla veya nukleoproteinin o bölgede yogunlaşmasıyla kromomerler oluşur. Kromonema üzerinde kromomerlerin bulunduğu yerler genlerin yerleştiği bölgeler olarak kabul edilir. Bazik boyalarla boyanan bir kromozomun her yerinin aynı derecede boyanmadığı görülür. Kuvvetli boyanan bölgelere heterokromatik bölgeler denir.Bu bölgeler interfazda sıkı bir şekilde helezonlaşmış olup, içinde fazla miktarda DNA ve RNA bulunur. Daha az boyanan bölgelere ise ökromatik bölgeler denir. Bu bölgenin yapısında da histonlar ve DNA vardır. Hücrenin kimyasal yapısı İNORGANİK MADDELER 1- SU: Hayatsal faaliyetlerin sürdürülmesinde önemli rolü vardır Canlı türüne, hücrenin görevine, yaşlı ve genç olmasına göre hücrelerde değişik oranlarda bulunmaktadır.Genel olarak sitoplazmanın % 85-95 kadarı sudur. Embriyonal hücrelerde, genç ve aktif hücrelerde su oranı fazla, yaşlı hücrelerde azdır. Hücre protoplazmasında su serbest ve bağlı su olarak bulunur.Serbest su kan ve lenf sıvılarındaki sudur.Bağlı su ise ikiye ayrılır.Anyon ve katyonlara bağlı olarak bulunan su (Hidratasyon Suyu ) ve anyon ve katyonlara bağlı bulunan suyun dışındaki sudur (Moleküller Arası Su ). 2-ELEKTROLİTLER: C,H,O,N,K,Ca, Mg, Fe,S,P sitoplazmanın temel elementleridir. İlk dördü protoplazmada bulunan organik maddeler yönünden daha önemlidir.Mg ve Fe ise klorofil ve hemoglobin gibi yapıları oluşturma yönünden de temel element sayılırlar. Bu elementler hücredeki bileşikleri teşkil ederler.Özellikle temel elementlerin eksikliği halinde hücre fonksiyonlarını tam olarak sürdüremez. Bu elementler ayrıca protoplazmik aktiviteyi artırır, osmotik basıncı sağlar, asit-baz dengesini ayarlar, birçok enzimleri aktifleştirir ve bazı vitaminlerin terkibine girer. Canlı hücredeki inorganik maddeler asit baz ve tuzlardır.Fakat bunlar hücre suyu içinde erimiş yani iyonlaşmış olup elektrolitleri teşkil ederler. Bir solusyonda iyonların bulunuşu, solusyonun elektrik akımını geçirmesini sağlar. Böylece iyonlarına ayrılan ve dolayısıyla elektrik akımını ileten maddelere elektrolit (iletken) denir. ORGANİK MADDELER Hücre yapısında çeşitli organik maddeler mevcuttur. Karbonhidratlar: Enerji kaynağıdır. Bu enerji hücre çoğalması, büyümesi ve hareket yeteneği için gereklidir. Karbonhidratlar üç grupta toplanır. Monosakkaritler: Hidroliz sonucu daha küçük moleküllere ayrılamazlar. Triozlar Pentozlar Heksozlar ( Glukoz,Fruktoz, Galaktoz) Oligosakkaritler: 2,3,4,5,6 monosakkaritin aralarından birer mol su çıkmasıyla diğer bir deyişle glikozit bağları ile birbirine bağlanarak meydana getirdikleri bileşiklere oligosakkaritler denir. Disakkaritler( Sakkaroz, Maltoz, Laktoz) Trisakkaritler Polisakkaritler: Canlıda en önemli polisakkaritler heksozlardan yapılmış olanlar olup bitki hücresi çeperinde sellüloz, bitkide depo edilen nişasta ve hayvan hücrelerinde depo edilen glikojendir. Lipidler: Enerji kaynağı olarak ve hücre membranında yapı taşı olarak önemlidir. Lipidleri şöyle gruplandırabiliriz. Basit lipidler Bileşik lipidler( Fosfolipid, glikolipid) Diğer lipidler ( Steroid, kolesterol) Kolesterol Hayvansal hücre zarlarının yapısında, sinir dokusu ve diğer dokularda yapı maddesi olarak iş görür. Bitkisel dokularda bulunmaz. Kolesterol deri hücrelerinin zarlarında yağlarla birlikte birikerek derinin asitlere ve eritici maddelere karşı direncini arttırır, aynı zamanda derinin su kaybını önler. Omurgalılarda, besinlerle alınan veya organizmada sentez edilen kolesterol diğer steroid gruplarına çevrilmektedir. Bunlardan biri de safra tuzlarıdır. Safra tuzları karaciğerde yapılır ve safra kanalları yoluyla bagırsaklara iletilir, orada yağların sindirim ve absorbsiyonunda rol oynar. Bunun yanında kanda kolesterol oranının yükselmesi, arteriosclerozis denen damar sertliği meydana getirir.Bunda damarların iç yüzünde plaklar oluşarak damar çeperi daralır ve esnekliği kaybolur. PROTEİNLER: Basit proteinler:Bunlar sadece amino asitlerden ibarettir. Albuminler Globulinler Gluteninler Histonlar Protaminler Bileşik proteinler: Fosfoproteinler: (vitellin) Metalloproteinler:Bunlar proteine bağlı olarak Fe,Cu vb. ağır metalleri kapsayan bileşik proteinlerdir. (Hemoglobin , Hemosiyanin) Nukleoproteinler: Hücrede RNA ve DNA proteinle birleşmiş halde bulunur ki bunlara nukleoproteinler adı verilir. NUKLEİK ASİTLER: Nukleotid denen birimlerden oluşur. Baz + Şeker + Fosforik asit = Nukleotid Nukleotidler dehidrasyon senteziyle nukleik asitleri meydana getirirler. Böylece DNA ve RNA molekülleri oluşur. ENZİMLER: Hücrede meydana gelen sayısız biyokimyasal reaksiyonu katalizleyen ve canlı hücrede sentezlenen protein yapısındaki organik moleküllere enzim denir.Enzimler kimyasal katalizörler gibi görev yaparak reaksiyonu başlatır ve sonlandırır. Bazı enzimler sadece saf protein moleküllerinden yapılmıştır.Bunlara basit enzimler denir. (Pepsin, tripsin, kimotripsin) Diğer bazı enzimler ise protein yapılarına ilaveten aktivite gösterebilmek için kofaktör denen inorganik metal iyonları ve koenzim denen kompleks organik moleküllerle birlikte çalışırlar.Bu tip enzimlere de bileşik enzim denir. Enzim koenzim veya faktörü ile birlikte katalitik bakımdan tamamen aktif durumda ise bu haline holoenzim adı verilir.Bir holoenzimin koenzim veya kofaktöre ayrılıp inaktif hale gelen protein kısmına Apoenzim denir. VİTAMİNLER: Hücre metabolizması için gerekli olan, çok az miktarları ile büyüme, gelişme ve sıhhatli yaşama için gerekli organik maddelerdir.Vitaminler aynı zamanda hücrede geçen biyokimyasal olayları katalizleyen çoğu enzimlerin koenzim grubunu teşkil ederler. Bu nedenle avitaminozda reaksiyonlar gerçekleşmez ve canlı bunun eksikliğini duyar. Suda eriyen vitaminler: B ,C Yağda eriyen vitaminler: A,D,E,K HORMONLAR HÜCREDE PROTEİN SENTEZLENMESİ Protein sentezlenmesinde molekül ağırlıkları ve diğer bazı özellikleri farklı üç çeşit RNA görev yapar.Bunlardan biri elçi RNA dır. eRNA nukleusta DNA molekülünden aldığı genetik bilgiyi sitoplazmaya iletir.İkincisi ribozomal RNA dır.Protein sentezi ribozomun büyük bir kısmını oluşturan rRNA üzerinde gerçekleşir. Üçüncüsü taşıyıcı RNA dır. tRNA nın görevi bir polipeptid zinciri oluşurken sitoplazmadaki uygun amino asitleri alarak zincirdeki uygun yerlere yerleştirmektir. Her üç RNA da DNA tarafından sentezlenir. DNA çift dizi olmakla beraber bunlardan sadece biri genetik bilgiyi aktarır ve eRNA yı oluşturur, buna anlamlı dizi denir. Protein sentezi özetlenirse; Önce nukleusta çift diziden oluşan DNA molekülünün dizilerinden biri, sentezlenmesini istediği protein için gerekli nukleotitleri kapsayan kısmının kopyasını çıkararak, özel bir eRNA hazırlar.Hazırlanan bu eRNA nukleus zarının porundan çıkarak sitoplazmaya geçer ve ribozomla birleşir. Böylece ribozomlarda, DNA nın emrettiği proteini sentezlemek üzere özel bir eRNA kalıbı yerleşmiş olur.Daha sonra bu kalıp üzerindeki her kodona uygun antikodonlu tRNA lar sitoplazmadan uygun amino asitleri alarak ribozomdaki eRNA kalıbında yerine koyar. Böylece her ribozomda , DNA dan gelen şifreye uygun amino asitler yan yana peptid bağları ile bağlanarak istenen protein sentezlenmiş olur. Sentezlenen bu protein ribozomlardan ayrılarak gerekli yerlere taşınır, işi biten eRNA lar daha sonra parçalanır. HÜCRENİN FİZİKSEL YAPISI DİFFUSİON: Sıvı veya gaz molekülleri taşıdıkları kinetik enerjiden dolayı, moleküllerinin yoğunluğuyla ilgili olarak çok yoğun bir ortamdan az yoğun ortama hareket ederler ki bu olaya diffüzyon denir. Her yöne doğru olan bu hareket iki ortam arasında yoğunluk farkı kalmayıncaya kadar devam eder. SOLUSYON: İki ayrı yapının birbiri içinde eriyerek oluşturdukları karışımlara denir.Solusyonlar birkaç tipte olur. 1- Hakiki veya gerçek solusyon: Suda dağılan partiküller 1 milimikrondan daha küçüktür ve su molekülleri tarafından taşınır. Saydam olan bu solusyonların suyu uçurulursa geride partiküller kristal halde kalır, o nedenle bunlara kristalloid de denir.Tuz gölünde tuzun oluşması gibi. Canlı sistemde çözücü moleküller sudur.Protoplazmada bulunan çözünmüş tuzlar, şekerler ve diğer maddeler hücreye belli bir yoğunluk ve osmotik basınç kazandırır. Bu sayede hücre bulunduğu ortamın yoğunluğuna göre çevresiyle alışveriş yapabilir.Hücre içinde bulunduğu üç solusyon tipine göre durumunu değiştirir. İzotonik solusyon: Hücre içi yoğunluğu ile hücrenin konulduğu ortamın yoğunluğu aynıdır. Bu yüzden hücrede bir değişiklik olmaz.İki tarafa eşit miktarda su molekülü geçer, vücut veya kan hücrelerinde büzülme veya gerginlik olmaz. Normalde vücuttaki hücrelerin hücre sıvısı ile kan plazması ve diğer vücut sıvıları izotoniktir.% 0.9 NaCl çözeltisi insan hücreleri ile izotoniktir. Buna fizyolojik eriyik denir. Hipotonik solusyon: Ortam sıvısı yoğunluğu, hücre sıvısınınkinden daha az olan solusyonlardır. Bu durumda hücre dışarıdan su alır.Eritrositler % 0.6 lık tuz solusyonuna konursa su alır ve sonunda giren suyun basıncına dayanamayan zar patlar(hemoliz). Hemoliz yolu ile içindeki maddeleri atılabilen yegane zar eritrositlerdir. Hipertonik solusyon: Bunda ortam sıvısı yoğunluğu, hücre sıvısından fazladır.Eritrositler böyle bir ortama konursa su kaybedip büzülürler. Aynı şekilde ellerimizi tuzlu suda bir müddet bekletirsek ellerimizin derisi buruşur. 2- Kolloid çözelti: Bunlarda partiküllerin büyüklükleri gerçek çözelti ile süspansiyon partikülleri arasındadır. (1-100 milimikron çaptadır.)Bunlar tabana çökmek için küçük, gerçek çözelti yapmak için büyüktür. Filtre edilemezler . Hakiki çözeltilerdeki gibi kristal teşkil etmezler. 3- Suspension: Eğer su içinde çözünen partiküller 100 milimikrondan büyük olursa bunlara süspansiyon denir.Süspansiyon birçok molekülün yanyana gelmesinden meydana gelir. CANLI SİSTEMDE VE HÜCREDE SIVILAR Semipermeabl olan hücre membranı bulunduğu ortamla veya komşu hücrelerle madde alışverişi yapar.İki komşu hücrenin membranları arasında 80 Angstrom kadar bir aralık bulunur.Bu aralığa hücreler arası alan (intersellüler alan), buradaki sıvıya da hücreler arası sıvı (intersellüler sıvı) ve doku sıvısı anlamında (interstisiel sıvı) denir. Damar içi sıvısına (plazma) intravasküler sıvı denir. İntravasküler sıvı ve intersellüler sıvının ortak adı da hücre dışı sıvıdır(extrasellüler sıvı). Böylece her ribozomda , DNA dan gelen şifreye uygun amino asitler yan yana peptid bağları ile bağlanarak istenen protein sentezlenmiş olur. Sentezlenen bu protein ribozomlardan ayrılarak gerekli yerlere taşınır, işi biten eRNA lar daha sonra parçalanır. HÜCRE BİLİMİ En ilkel yapılı hücre prokaryotik hücredir.Nukleus zarı bulunmaz. DNA hücre sitoplazmasında bulunur.Organellere sahip değildir. Örnek bakteri hücresi verilebilir. NUCLEUS Bakteri ve viruslar hariç hemen hemen bütün hayvan ve bitki hücrelerinin birer nukleusu vardır. Memeli karaciğer hücreleri, böceklerin orta bağırsak hücreleri, testisdeki Leydig hücreleri ve bazı tek hücreliler iki nukleuslu, çizgili kas hücreleri ise çok nukleusludur. Çok nukleuslu hücrelere POLİKARYOTİK hücre adı verilir. Nukleus hücrenin morfolojik ve biyolojik yönden kontrol merkezidir.Bütün canlılık olaylarını yönettiği gibi canlının kalıtsal karakterlerinin dölden döle geçmesini de sağlar. Nukleus zarı ( Karyotheca ) Nukleus zarı çift katlıdır ve bu zar büyük bir olasılıkla E. R. dan oluşur. Dış zarın üzerinde ribozomlar vardır. İç zar ise düzdür. İç ve dış zarlar yer yer birleşerek bir açıklık meydana getirir. Bunlara por denir.Sentez olayları çok olan hücrelerin nukleus zarlarında por sayısı fazladır. Porlar nukleus ile sitoplazma arasında gerekli maddelerin geçişine olanak sağlar. Hücre bölünmesinde, patolojik hallerde, X ışınlarına maruz kalınca, uzun süren otoliz sonucu nukleus zarı ortadan kalkar. NUKLEOPLAZMA Nukleus zarı tarafından çevrilmiş olup kromatin ağı ve nukleolus dışında kalan sahayı doldurur. Nukleoplazma; RNA, büyük moleküllü proteinler, lipid ve inorganik tuzlar içerir. Nukleusun morfolojik görünümünde olan değişmeler klinikte önemlidir. Nukleolus Hücre nukleusu içinde belirli bir kromozomun belirli bir bölgesine bağlı olarak bulunan nukleolus yuvarlak ve oval bir yapı gösterir. Nukleolus bir zarla çevrilmiş olmadığından kolayca gözden kaybolabilir ve ayrı bir organel olarak kabul edilmez. Sayısı hücreden hücreye değişir, Nukleolus granüllü ve fibrilli bölgelerden oluşur. Her iki bölge de proteince zengin olup ayrıca nukleotid ve koenzim sentezi yapan enzimlerle RNA bulunur. Fakat DNA bulunmaz. Nukleustaki proteinler ya histon, protamin gibi bazik veya kromozamin gibi asit proteinlerdir. Hücre bölünmesinde önemli bir rolü vardır. Kromatin ağı ve kromozom İnterfazda hücrenin, nukleusu boyandığı zaman, nukleoplazma içinde iyi boyanmış uzun ağ veya yumak halinde iplikler görülür. Bunlara kromatin iplikleri veya kromonema denir. Bu iplikler üzerinde, daha kuvvetle boyanmış tanecikler dizilmiştir. Bunlara da kromatin taneleri veya kromomer denir. İnterfazdaki nukleusun içinde görülen bu iplikçikler, helezonları açılmış, uzamış ve dağınık durumda bulunan kromozomlardır. Hücre bölüneceği zaman bu iplikçikler, helezon yaparak kısalır ve kalınlaşırlar, böylece de kromozomları meydana getirirler. Bölünmekte olan bir hücrenin nukleusu boyandıktan sonra mikroskopta incelenirse belirli şekillerde ve koyu boyanmış yapılar görülür, bunlara kromozom adı verilir. Bir kromozomun şekli, kromozomun kollarını birleştiren boğumun yerine göre isimlendirilir. Bu boğuma sentromer (kinetokor ) veya primer boğum denir. Bu boğum küçük bir granül veya sentromeri kapsayan açık renkli bir alandır. Kromozomlar üzerinde sentromerden başka boğumlarda bulunabilir, bunlara sekonder boğum ve ayrılan kısma uydu veya satellit denir. Kromozom tipleri METASENTRİK KROMOZOM SUBMETASENTRİK KROMOZOM AKROSENTRİK KROMOZOM TELOSENTRİK KROMOZOM Bölünme anında kromozomlar kutuplara doğru çekilirken, sentromerlerinden iğ ipliklerine tutunurlar, Bu nedenle sentromeri herhangi bir nedenle tahrip olan veya bulunmayan bir kromozom bölünme olayına katılamadığından parçalanır. Her kromozomun kendine öz bir şekli vardır. Bu şekil canlının bütün hücrelerinde aynıdır. Bir türün kromozomunun şekli gibi sayısı da sabittir. Bir canlının bütün hücreleri aynı, yani biri anadan, diğeri babadan gelen aynı şekil ve büyüklükte ikişer takım kromozoma sahiptir. Buna diploit kromozom sayısı denir. Anadan ve babadan gelen eş kromozomların her birine de homolog kromozom adı verilir. Olgun üreme hücrelerinde ise kromozom sayısı vücut hücrelerinkinin yarısı kadardır.Burada homolog kromozomlardan her biri, başka hücreye geçtiğinden sayı yarıya inmiştir. Buna da haploit kromozom denir. Kromozomun şekli ve sayısı gibi büyüklüğü de değişmez. Aynı kromozom bir türün farklı bireylerinin vücut hücrelerinde daima aynı büyüklüktedir. Bir kromozomda her biri iki kromonema taşıyan iki kromatid bulunur. Kromonemanın üst üste katlanmasıyla veya nukleoproteinin o bölgede yogunlaşmasıyla kromomerler oluşur. Kromonema üzerinde kromomerlerin bulunduğu yerler genlerin yerleştiği bölgeler olarak kabul edilir. Bazik boyalarla boyanan bir kromozomun her yerinin aynı derecede boyanmadığı görülür. Kuvvetli boyanan bölgelere heterokromatik bölgeler denir.Bu bölgeler interfazda sıkı bir şekilde helezonlaşmış olup, içinde fazla miktarda DNA ve RNA bulunur. Daha az boyanan bölgelere ise ökromatik bölgeler denir. Bu bölgenin yapısında da histonlar ve DNA vardır. Hücrenin kimyasal yapısı İNORGANİK MADDELER 1- SU: Hayatsal faaliyetlerin sürdürülmesinde önemli rolü vardır Canlı türüne, hücrenin görevine, yaşlı ve genç olmasına göre hücrelerde değişik oranlarda bulunmaktadır.Genel olarak sitoplazmanın % 85-95 kadarı sudur. Embriyonal hücrelerde, genç ve aktif hücrelerde su oranı fazla, yaşlı hücrelerde azdır. Hücre protoplazmasında su serbest ve bağlı su olarak bulunur.Serbest su kan ve lenf sıvılarındaki sudur.Bağlı su ise ikiye ayrılır.Anyon ve katyonlara bağlı olarak bulunan su (Hidratasyon Suyu ) ve anyon ve katyonlara bağlı bulunan suyun dışındaki sudur (Moleküller Arası Su ). 2-ELEKTROLİTLER: C,H,O,N,K,Ca, Mg, Fe,S,P sitoplazmanın temel elementleridir. İlk dördü protoplazmada bulunan organik maddeler yönünden daha önemlidir.Mg ve Fe ise klorofil ve hemoglobin gibi yapıları oluşturma yönünden de temel element sayılırlar. Bu elementler hücredeki bileşikleri teşkil ederler.Özellikle temel elementlerin eksikliği halinde hücre fonksiyonlarını tam olarak sürdüremez. Bu elementler ayrıca protoplazmik aktiviteyi artırır, osmotik basıncı sağlar, asit-baz dengesini ayarlar, birçok enzimleri aktifleştirir ve bazı vitaminlerin terkibine girer. Canlı hücredeki inorganik maddeler asit baz ve tuzlardır.Fakat bunlar hücre suyu içinde erimiş yani iyonlaşmış olup elektrolitleri teşkil ederler. Bir solusyonda iyonların bulunuşu, solusyonun elektrik akımını geçirmesini sağlar. Böylece iyonlarına ayrılan ve dolayısıyla elektrik akımını ileten maddelere elektrolit (iletken) denir. ORGANİK MADDELER Hücre yapısında çeşitli organik maddeler mevcuttur. Karbonhidratlar: Enerji kaynağıdır. Bu enerji hücre çoğalması, büyümesi ve hareket yeteneği için gereklidir. Karbonhidratlar üç grupta toplanır. Monosakkaritler: Hidroliz sonucu daha küçük moleküllere ayrılamazlar. Triozlar Pentozlar Heksozlar ( Glukoz,Fruktoz, Galaktoz) Oligosakkaritler: 2,3,4,5,6 monosakkaritin aralarından birer mol su çıkmasıyla diğer bir deyişle glikozit bağları ile birbirine bağlanarak meydana getirdikleri bileşiklere oligosakkaritler denir. Disakkaritler( Sakkaroz, Maltoz, Laktoz) Trisakkaritler Polisakkaritler: Canlıda en önemli polisakkaritler heksozlardan yapılmış olanlar olup bitki hücresi çeperinde sellüloz, bitkide depo edilen nişasta ve hayvan hücrelerinde depo edilen glikojendir. Lipidler: Enerji kaynağı olarak ve hücre membranında yapı taşı olarak önemlidir. Lipidleri şöyle gruplandırabiliriz. Basit lipidler Bileşik lipidler( Fosfolipid, glikolipid) Diğer lipidler ( Steroid, kolesterol) Kolesterol Hayvansal hücre zarlarının yapısında, sinir dokusu ve diğer dokularda yapı maddesi olarak iş görür. Bitkisel dokularda bulunmaz. Kolesterol deri hücrelerinin zarlarında yağlarla birlikte birikerek derinin asitlere ve eritici maddelere karşı direncini arttırır, aynı zamanda derinin su kaybını önler. Omurgalılarda, besinlerle alınan veya organizmada sentez edilen kolesterol diğer steroid gruplarına çevrilmektedir. Bunlardan biri de safra tuzlarıdır. Safra tuzları karaciğerde yapılır ve safra kanalları yoluyla bagırsaklara iletilir, orada yağların sindirim ve absorbsiyonunda rol oynar. Bunun yanında kanda kolesterol oranının yükselmesi, arteriosclerozis denen damar sertliği meydana getirir.Bunda damarların iç yüzünde plaklar oluşarak damar çeperi daralır ve esnekliği kaybolur. PROTEİNLER: Basit proteinler:Bunlar sadece amino asitlerden ibarettir. Albuminler Globulinler Gluteninler Histonlar Protaminler Bileşik proteinler: Fosfoproteinler: (vitellin) Metalloproteinler:Bunlar proteine bağlı olarak Fe,Cu vb. ağır metalleri kapsayan bileşik proteinlerdir. (Hemoglobin , Hemosiyanin) Nukleoproteinler: Hücrede RNA ve DNA proteinle birleşmiş halde bulunur ki bunlara nukleoproteinler adı verilir. NUKLEİK ASİTLER: Nukleotid denen birimlerden oluşur. Baz + Şeker + Fosforik asit = Nukleotid Nukleotidler dehidrasyon senteziyle nukleik asitleri meydana getirirler. Böylece DNA ve RNA molekülleri oluşur. ENZİMLER: Hücrede meydana gelen sayısız biyokimyasal reaksiyonu katalizleyen ve canlı hücrede sentezlenen protein yapısındaki organik moleküllere enzim denir.Enzimler kimyasal katalizörler gibi görev yaparak reaksiyonu başlatır ve sonlandırır. Bazı enzimler sadece saf protein moleküllerinden yapılmıştır.Bunlara basit enzimler denir. (Pepsin, tripsin, kimotripsin) Diğer bazı enzimler ise protein yapılarına ilaveten aktivite gösterebilmek için kofaktör denen inorganik metal iyonları ve koenzim denen kompleks organik moleküllerle birlikte çalışırlar.Bu tip enzimlere de bileşik enzim denir. Enzim koenzim veya faktörü ile birlikte katalitik bakımdan tamamen aktif durumda ise bu haline holoenzim adı verilir.Bir holoenzimin koenzim veya kofaktöre ayrılıp inaktif hale gelen protein kısmına Apoenzim denir. VİTAMİNLER: Hücre metabolizması için gerekli olan, çok az miktarları ile büyüme, gelişme ve sıhhatli yaşama için gerekli organik maddelerdir.Vitaminler aynı zamanda hücrede geçen biyokimyasal olayları katalizleyen çoğu enzimlerin koenzim grubunu teşkil ederler. Bu nedenle avitaminozda reaksiyonlar gerçekleşmez ve canlı bunun eksikliğini duyar. Suda eriyen vitaminler: B ,C Yağda eriyen vitaminler: A,D,E,K HORMONLAR HÜCREDE PROTEİN SENTEZLENMESİ Protein sentezlenmesinde molekül ağırlıkları ve diğer bazı özellikleri farklı üç çeşit RNA görev yapar.Bunlardan biri elçi RNA dır. eRNA nukleusta DNA molekülünden aldığı genetik bilgiyi sitoplazmaya iletir.İkincisi ribozomal RNA dır.Protein sentezi ribozomun büyük bir kısmını oluşturan rRNA üzerinde gerçekleşir. Üçüncüsü taşıyıcı RNA dır. tRNA nın görevi bir polipeptid zinciri oluşurken sitoplazmadaki uygun amino asitleri alarak zincirdeki uygun yerlere yerleştirmektir. Her üç RNA da DNA tarafından sentezlenir. DNA çift dizi olmakla beraber bunlardan sadece biri genetik bilgiyi aktarır ve eRNA yı oluşturur, buna anlamlı dizi denir. Protein sentezi özetlenirse; Önce nukleusta çift diziden oluşan DNA molekülünün dizilerinden biri, sentezlenmesini istediği protein için gerekli nukleotitleri kapsayan kısmının kopyasını çıkararak, özel bir eRNA hazırlar.Hazırlanan bu eRNA nukleus zarının porundan çıkarak sitoplazmaya geçer ve ribozomla birleşir. Böylece ribozomlarda, DNA nın emrettiği proteini sentezlemek üzere özel bir eRNA kalıbı yerleşmiş olur.Daha sonra bu kalıp üzerindeki her kodona uygun antikodonlu tRNA lar sitoplazmadan uygun amino asitleri alarak ribozomdaki eRNA kalıbında yerine koyar. Böylece her ribozomda , DNA dan gelen şifreye uygun amino asitler yan yana peptid bağları ile bağlanarak istenen protein sentezlenmiş olur. Sentezlenen bu protein ribozomlardan ayrılarak gerekli yerlere taşınır, işi biten eRNA lar daha sonra parçalanır. HÜCRENİN FİZİKSEL YAPISI DİFFUSİON: Sıvı veya gaz molekülleri taşıdıkları kinetik enerjiden dolayı, moleküllerinin yoğunluğuyla ilgili olarak çok yoğun bir ortamdan az yoğun ortama hareket ederler ki bu olaya diffüzyon denir. Her yöne doğru olan bu hareket iki ortam arasında yoğunluk farkı kalmayıncaya kadar devam eder. SOLUSYON: İki ayrı yapının birbiri içinde eriyerek oluşturdukları karışımlara denir.Solusyonlar birkaç tipte olur. 1- Hakiki veya gerçek solusyon: Suda dağılan partiküller 1 milimikrondan daha küçüktür ve su molekülleri tarafından taşınır. Saydam olan bu solusyonların suyu uçurulursa geride partiküller kristal halde kalır, o nedenle bunlara kristalloid de denir.Tuz gölünde tuzun oluşması gibi. Canlı sistemde çözücü moleküller sudur.Protoplazmada bulunan çözünmüş tuzlar, şekerler ve diğer maddeler hücreye belli bir yoğunluk ve osmotik basınç kazandırır. Bu sayede hücre bulunduğu ortamın yoğunluğuna göre çevresiyle alışveriş yapabilir.Hücre içinde bulunduğu üç solusyon tipine göre durumunu değiştirir. İzotonik solusyon: Hücre içi yoğunluğu ile hücrenin konulduğu ortamın yoğunluğu aynıdır. Bu yüzden hücrede bir değişiklik olmaz.İki tarafa eşit miktarda su molekülü geçer, vücut veya kan hücrelerinde büzülme veya gerginlik olmaz. Normalde vücuttaki hücrelerin hücre sıvısı ile kan plazması ve diğer vücut sıvıları izotoniktir.% 0.9 NaCl çözeltisi insan hücreleri ile izotoniktir. Buna fizyolojik eriyik denir. Hipotonik solusyon: Ortam sıvısı yoğunluğu, hücre sıvısınınkinden daha az olan solusyonlardır. Bu durumda hücre dışarıdan su alır.Eritrositler % 0.6 lık tuz solusyonuna konursa su alır ve sonunda giren suyun basıncına dayanamayan zar patlar(hemoliz). Hemoliz yolu ile içindeki maddeleri atılabilen yegane zar eritrositlerdir. Hipertonik solusyon: Bunda ortam sıvısı yoğunluğu, hücre sıvısından fazladır.Eritrositler böyle bir ortama konursa su kaybedip büzülürler. Aynı şekilde ellerimizi tuzlu suda bir müddet bekletirsek ellerimizin derisi buruşur. 2- Kolloid çözelti: Bunlarda partiküllerin büyüklükleri gerçek çözelti ile süspansiyon partikülleri arasındadır. (1-100 milimikron çaptadır.)Bunlar tabana çökmek için küçük, gerçek çözelti yapmak için büyüktür. Filtre edilemezler . Hakiki çözeltilerdeki gibi kristal teşkil etmezler. 3- Suspension: Eğer su içinde çözünen partiküller 100 milimikrondan büyük olursa bunlara süspansiyon denir.Süspansiyon birçok molekülün yanyana gelmesinden meydana gelir. CANLI SİSTEMDE VE HÜCREDE SIVILAR Semipermeabl olan hücre membranı bulunduğu ortamla veya komşu hücrelerle madde alışverişi yapar.İki komşu hücrenin membranları arasında 80 Angstrom kadar bir aralık bulunur.Bu aralığa hücreler arası alan (intersellüler alan), buradaki sıvıya da hücreler arası sıvı (intersellüler sıvı) ve doku sıvısı anlamında (interstisiel sıvı) denir. Damar içi sıvısına (plazma) intravasküler sıvı denir. İntravasküler sıvı ve intersellüler sıvının ortak adı da hücre dışı sıvıdır(extrasellüler sıvı). Hücre içi ve dışı sıvı bileşimlerinin organizma tarafından sabit tutulmasına HOMEOSTASİS denir.Homeostasisin aşırı değişimi hücreyi ölüme kadar götürebilir.Ör: kolerada barsaklardan çok aşırı su kaybı, suyla birlikte birçok elektrolitin de atılmasına neden olur.Eğer bunlar kısa sürede yerine konamazsa hasta ölür. HÜCRE BÖLÜNMESİ Amitosis Mitosis Meiosis AMİTOSİS BÖLÜNME Bu tip bölünme; açlık esnasında dejenere olan hücrelerde, yaşlı hücrelerde, süratle büyüyen hücrelerde ve memelilerin döl yatağı (uterus) epitel hücrelerinde görülür. Eşey hücrelerinde amitoza hiçbir zaman rastlanmaz. MİTOSİS BÖLÜNME HAZIRLIK EVRESİ (Metabolik faz) Kromozomların kendini eşlemesi Sentriollerin kendini eşlemesi İğ ve aster iplikleri için gerekli proteinlerin sentezlenmesi Enerji sağlanması DAĞILMA EVRESİ Profaz: Dağınık ve kromatit halindeki kromozomlar helezon yaparak kısalır ve kalınlaşır. Tomurcuklu sentrioller kutuplara itilirken iğ ve aster iplikleri oluşur. Nukleolus küçülerek kaybolur. Nukleus zarı erir. Kısalıp kalınlaşan kromozomlar hücrenin merkezinde toplanır. SOLUSYON: İki ayrı yapının birbiri içinde eriyerek oluşturdukları karışımlara denir.Solusyonlar birkaç tipte olur. 1- Hakiki veya gerçek solusyon: Suda dağılan partiküller 1 milimikrondan daha küçüktür ve su molekülleri tarafından taşınır. Saydam olan bu solusyonların suyu uçurulursa geride partiküller kristal halde kalır, o nedenle bunlara kristalloid de denir.Tuz gölünde tuzun oluşması gibi. Canlı sistemde çözücü moleküller sudur.Protoplazmada bulunan çözünmüş tuzlar, şekerler ve diğer maddeler hücreye belli bir yoğunluk ve osmotik basınç kazandırır. Bu sayede hücre bulunduğu ortamın yoğunluğuna göre çevresiyle alışveriş yapabilir.Hücre içinde bulunduğu üç solusyon tipine göre durumunu değiştirir. İzotonik solusyon: Hücre içi yoğunluğu ile hücrenin konulduğu ortamın yoğunluğu aynıdır. Bu yüzden hücrede bir değişiklik olmaz.İki tarafa eşit miktarda su molekülü geçer, vücut veya kan hücrelerinde büzülme veya gerginlik olmaz. Normalde vücuttaki hücrelerin hücre sıvısı ile kan plazması ve diğer vücut sıvıları izotoniktir.% 0.9 NaCl çözeltisi insan hücreleri ile izotoniktir. Buna fizyolojik eriyik denir. Hipotonik solusyon: Ortam sıvısı yoğunluğu, hücre sıvısınınkinden daha az olan solusyonlardır. Bu durumda hücre dışarıdan su alır.Eritrositler % 0.6 lık tuz solusyonuna konursa su alır ve sonunda giren suyun basıncına dayanamayan zar patlar(hemoliz). Hemoliz yolu ile içindeki maddeleri atılabilen yegane zar eritrositlerdir. Hipertonik solusyon: Bunda ortam sıvısı yoğunluğu, hücre sıvısından fazladır.Eritrositler böyle bir ortama konursa su kaybedip büzülürler. Aynı şekilde ellerimizi tuzlu suda bir müddet bekletirsek ellerimizin derisi buruşur. 2- Kolloid çözelti: Bunlarda partiküllerin büyüklükleri gerçek çözelti ile süspansiyon partikülleri arasındadır. (1-100 milimikron çaptadır.)Bunlar tabana çökmek için küçük, gerçek çözelti yapmak için büyüktür. Filtre edilemezler . Hakiki çözeltilerdeki gibi kristal teşkil etmezler. 3- Suspension: Eğer su içinde çözünen partiküller 100 milimikrondan büyük olursa bunlara süspansiyon denir.Süspansiyon birçok molekülün yanyana gelmesinden meydana gelir. CANLI SİSTEMDE VE HÜCREDE SIVILAR Semipermeabl olan hücre membranı bulunduğu ortamla veya komşu hücrelerle madde alışverişi yapar.İki komşu hücrenin membranları arasında 80 Angstrom kadar bir aralık bulunur.Bu aralığa hücreler arası alan (intersellüler alan), buradaki sıvıya da hücreler arası sıvı (intersellüler sıvı) ve doku sıvısı anlamında (interstisiel sıvı) denir. Damar içi sıvısına (plazma) intravasküler sıvı denir. İntravasküler sıvı ve intersellüler sıvının ortak adı da hücre dışı sıvıdır(extrasellüler sıvı). Hücre içi ve dışı sıvı bileşimlerinin organizma tarafından sabit tutulmasına HOMEOSTASİS denir.Homeostasisin aşırı değişimi hücreyi ölüme kadar götürebilir.Ör: kolerada barsaklardan çok aşırı su kaybı, suyla birlikte birçok elektrolitin de atılmasına neden olur.Eğer bunlar kısa sürede yerine konamazsa hasta ölür. MİTOSİS BÖLÜNME HAZIRLIK EVRESİ (Metabolik faz) Kromozomların kendini eşlemesi Sentriollerin kendini eşlemesi İğ ve aster iplikleri için gerekli proteinlerin sentezlenmesi Enerji sağlanması DAĞILMA EVRESİ Profaz: Dağınık ve kromatit halindeki kromozomlar helezon yaparak kısalır ve kalınlaşır. Tomurcuklu sentrioller kutuplara itilirken iğ ve aster iplikleri oluşur. Nukleolus küçülerek kaybolur. Nukleus zarı erir. Kısalıp kalınlaşan kromozomlar hücrenin merkezinde toplanır. Metafaz: Kromozomlar iğ ipliklerine dik olan metafaz düzleminde toplanırlar.Sentromerlerinden bükülürler. İki eş kromatitden oluşan her kromozomun sentromeri birbirinden ayrılır. İğ iplikleri sentromerlere bağlanır.Profazın 30-60 dakika sürmesine karşılık metafaz ancak 2-6 dakikadır. Anafaz: İğ ipliklerinin kasılması sonucu eş kromatitler bir sıçrama hareketiyle birbirlerinden uzaklaşmaya başlar. Ve artık kardeş kromozomlar olarak adlandırılırlar. 3-15 dakika süren anafaz kardeş kromozomlar kutuplara ulaşınca son bulur. Telofaz: Bu fazda profazın tamamen aksi yönde olaylar gelişir. Ayrı kutuplardaki kromatitler, sentriollerin etrafında toplanır. Helezonları çözülür. Sitoplazma tarafından kromozomların etrafında nukleus zarı oluşturulur. Nukleolus oluşur. Ve meydana gelen iki yavru nukleusta metabolik evre başlar. SİTOKİNEZ Sitoplazma hücre zarından içeriye doğru ve iğ ipliklerine dik bir yönde girinti yapmaya başlar.Karşılıklı gelişen bu girintiler, gittikçe derinleşerek sonuçta sitoplazmanın iki ayrı parçaya bölünmesini sağlar. Böylece tamamlanmış olan mitoz bölünme ile bir hücreden, ana hücre ile aynı sayıda kromozoma sahip iki yavru hücre meydana gelir. Bazen nukleus bölündüğü halde sitoplazma bölünmez ve iki nukleuslu bir hücre oluşur. (Sinsisyum) Çizgili kas dokusunda bu durum görülür. MEİOSİS BÖLÜNME Mayoza hazırlık evresi: Dağılma evresi: Birinci meiosis (Redüksiyon bölünme): - Birinci profaz : - Leptoten: Kromonema ipleri kısalıp kalınlaşmaya başlar. Nukleus zarı henüz mevcuttur. Kromozomlar belirir. -Zigoten: Homolog kromozomlar birbirlerini bularak birleşirler bu birleşme noktalarına sinapsis , görüntüye de bivalent denir. - Pakiten: 4 kromatitli görünen homolog kromozom çiftine tetrad adı verilir. - Diploten: Sinapsis yapan homolog kromozomlar birbirlerinden ayrılırken birkaç noktada birbirlerine dokunurlar ve bu değme noktaları yüzünden X haline benzer bir durum alırlar (Kiazma) . Bağlandıkları yerden kopan homolog kromozomların parçalarının yer değiştirmesine Crossing-over denir. - Diakinez: Parça değişen fakat materyali azalmayan kromozomlar birbirinden ayrılır, spiralleşip kalınlaşır,boyları kısalır ve koyu olarak boyanır.Çekirdekçik kaybolur, çekirdek zarı dağılır ve profaz sona erer. Birinci metafaz: Nukleus zarı erimiştir. Sentriol çiftleri kutuplara gider, iğ iplikleri meydana gelir. Tetratlar ekvatorial düzlemde sıralanır. Birinci anafaz: Homolog kromozomlar bölünmeden sentromerlerinden yakalanarak kutuplara çekilmeye başlarlar. Bu kromozom sayısını haploid duruma düşürür. Birinci telofaz:Kromozomlar interfazdaki durumlarına geçmeye başlar, çekirdek zarı belirginleşir fakat çekirdekçik oluşmaz. Hücre ikiye bölünerek erkekte secunder spermatosit, dişide secunder oosit ve primer kutup hücresi meydana gelir.Böylece haploid kromozomlu olarak birinci mayoz sona erer. İkinci meiosis: Arada bir interfaz evresi yoktur. Mitozun bütün safhaları yeniden tekrarlanır. İkinci profaz:Birinci bölünme sonucunda kendini eşlemiş olan sentrioller, kutuplara doğru giderken aralarında iğ ve hücre zarına doğru aster iplikleri

http://www.biyologlar.com/medikal-biyolojiye-giris

Mantarların beslenmesi, fizyolojisi ve metabolizması

Mantarların kendilerine özgü bir beslenme tarzları bulunmaktadır. Enerji kaynağı için organik bileşiklere ve biyosentez için de karbonlu kaynaklara gereksinim duyarlar. Mantarlar, genel olarak, heterotrofik organizmalar olarak kabul edilirler. Basit organik moleküller (monosakkaridler, amino asitler, organik asitler, vs.) hücre membranlarından kolayca içeri girebilirler. Buna karşın, makromoleküller ise (disakkaridler, polisakkaridler, polipeptid ve proteinler, vs.) dışarıda enzimatik olarak ayrıştırıldıktan ve membrandan geçebilecek bir düzeye indikten sonra içeri girebilirler. Bazı mantarlar da (Myxomycestes) gıdalarını fagositozis veya endositozis ile alabilirler. Mantarlar gıdalarının bir kısmını kendileri sentez edebilirler. Ancak, büyük bir bölümünü de dışardan sağlarlar. Dışarıda bulunan makromoleküllerin veya polimerlerin membrandan girebilmesi ekstrasellüler enzimlerin aktiviteleri ile mümkündür. Bu hidrolitik enzimler, hücre içinde sentezlendikten sonra, bir kısmı (yeteri kadarı) hücre içinde kalır ve diğer bir kısmı da dışarıya bırakılırlar. Bu enzimler polimerleri monomer haline getirirler. Bu monomerler de aktif ve/veya pasif transportla hücre içine girerler. Hücre içine ulaşan bu maddeler burada daha küçük birimlerine ve yapı taşlarına kadar ayrıştırıldıkları gibi bir kısmı da olduğu gibi sentez olaylarında kullanılırlar. Ekstrasellüler enzimlerin dışarı çıkmasında ve hücre duvarına kadar taşınmalarında vesiküllerin büyük rolleri olduğu bildirilmektedir. Vesiküller, sitoplasmik membrana kadar gelerek içindeki enzimleri buraya bırakır ve buradan da enzimler dışarı çıkarlar. Enzimlerin ve hücre içindeki metabolitlerin dışa çıkmasında ve dışardan içeri monomerlerin girişinde suyun rolü büyüktür. Enzimlerin bir kısmı, aynen bakterilerde olduğu gibi, yapısal ve bir bölümü de indüklenebilen bir karaktere sahiptir. Mantarlar karbon ve enerji kaynaklarını bir çok substratlardan temin edebilirler. Doğada serbest olarak yaşayan mantarların bir çoğu enerji için bitkisel orijinli kaynaklardan yararlanırlar. Mantarların büyük bir ekseriyeti de glikoz, sakkaroz, nişasta, maltozu ayrıştırabilir ve bunlardan yararlanabilir. Bazıları da yağ asitlerini, organik asitleri ve gliserolu da enerji kaynağı olarak ve ayrıca, hekzos ve pentoz şekerlerinin derivatlarını da (uronik asit ve şeker alkollerini) kullanabilirler. Bunların hücre membranlarından geçişinde permease enzimlerinin rolü fazladır. Bir polisakkarid (birbirine beta 1 - 4 bağlarıyla birleşmiş glikoz monomerlerinden oluşmuş düz zincirli homopolimer) olan nişasta hücre duvarı yapısında bulunması bakımından önemlidir. Sellüloz da mantar hücrelerin sentezledikleri sellülase enzimleri tarafından ayrıştırılır. İki enzim (endo - beta - glukonase ve beta - glukosidase) tarafından ayrıştırılan selüloz küçük moleküllere kadar indirilir. endo-beta beta-glukosidase Sellüloz ¾———® Sellobiose ¾¾¾—¾——®glikoz glukonase Bu enzimlere topluca sellülase kompleksi adı verilmektedir. Bunlar indüklenebilen enzimlerdendir. Ancak, sellülazın sentezi, ortamda glikoz veya çabuk ayrışabilen diğer şekerler varsa suprese olabilir (katabolik baskılama). Enzimlerden endo glukonazın M.A. 11000 - 65000 ve beta glukosidase de 50000 ile 65000 molekül ağırlığı civarındadır. Bazı mantarlar üremeleri için basit inorganik bileşiklerden de yararlanabilir, eğer bunlar karbon kaynakları bulabilirse. Bir kısmı da tiamin, biotin, vs. gibi vitaminlere gereksinim duyarlar. Mantarların Fizyolojisi Mantarların hücre duvarlarında kitin ve selüloz karakterinde substansların bulunması, bunların devamlı değişen ve çok değişik olan çevre koşullarına uymalarında büyük yardımcı olurlar. Örn. mantarlar, bakterilerin dayanamayacakları kadar yüksek konsantrasyondaki şeker(%50) solüsyonuna direnç gösterirler. Çünkü, yüksek ozmotik basınca karşı, bakteriler kadar duyarlı değillerdir ve bunu hücre duvarının yapısındaki maddeler sağlarlar. Bu nedenle, reçel ve jöleler mantarlar tarafından kolayca kontamine edilebilirler. Ancak, bazı mantar türlerinin de %15 şeker yoğunluğunda üremelerinde sınırlanma oluşmaktadır. Mantarlar genellikle düşük pH derecelerinde bile kolayca üreyebilir ve böyle ortamlara adapte olabilirler. Bu sebeple, mantarların minimal ve maksimal pH-limitleri 2-11 arasında değişebilir. Asit karakterdeki meyveler veya suları (özellikle, domates, portakal, limon, greyfurt, mandalina, vs.) buz dolabı ısısında olsalar bile mantarların üremeleri için iyi bir ortam oluştururlar. Hatta, bazı türler, 1 N asetik asit ve 2 N sülfürik asite dirençlidirler. Bunlara karşın, mantarların türlerine göre değişmek üzere, optimal pH'ları, üreme ve çeşitli metabolit sentezi ile paralellik göstermeyebilir. Buna, diğer çevresel koşulların ve üreme ortamının yapısının da büyük etkisi bulunmaktadır. İnsan ve hayvanlarda hastalık oluşturan mantarlar (patojenik mantarlar), üredikleri bölgelere ait pH limitleri, genellikle, kendileri için optimal bulunmaktadır. Rutubet, mantarların üremelerinde çok önemli faktörlerden birini oluşturmaktadır. Yüksek orandaki rutubet, genellikle, üreme üzerine olumlu etkide bulunur. Rutubet azaldıkça, mantarların çoğalmaları da sınırlanmaya başlar. Mantarların rutubete olan gereksinmeleri, türler arasında değişiklik gösterir. Bazı mantar türleri relatif rutubeti %10-15 arasında bulunan ortamlarda veya suyu çok azalmış olan kuru danelerde üreme yeteneğine sahiptirler. Patojenik mantarların, özellikle, dermatofitlerin insan veya hayvan vücutlarında yerleşebilmesi ve hatta hastalık oluşturabilmesi için rutubet yine önemli bir faktördür.Eğer deri, su ile ıslanmış ise, mantarların yerleşmesi ve üremesi daha kolay olmaktadır. Mantarların üreme ısısı limitleri oldukça geniştir ve türler arasında farklar gösterir. Bu sınırlar, 0° ile 60°C arasında değişebilmektedir. Hifalar maksimal ısı limitinin dışında kolayca ölmelerine karşılık, sporları yüksek ısıya ve değişik çevre koşullarına çok fazla dayanıklılık gösterirler. Buz dolabı ısısında üreyebilen ve gıdaların bozulmasına neden olan mantarlara her zaman rastlamak mümkündür. Termofilik olanlar ise 60°C nin üstünde gelişebilirler. Ancak optimal ısı, üreme için en uygun olanıdır. Patojenik mantarlar için optimal ısı, üzerinde veya içinde üredikleri canlının ısı derecesi olarak kabul edilmektedir. Ancak, deride lokalize olan mantarlar dış ortamla da temasta bulunduklarından optimal ısı, çevrenin ısısı ile bir yakınlık göstermektedir. Bu nedenle, dermatofitler için optimal üreme ısısı 20-25° C'ler arasındadır. Mantarlar, aynı bakterilerde olduğu gibi, üreme ısısı derecelerine göre başlıca 3 kısma ayrılırlar. Soğuk sevenler (psikrofilikler), genellikle 0° ile 15°C'ler; Ilık sevenler (mesofilikler), 15° ile 40°C'ler arasında ve sıcak sevenler (termofilikler) ise 40°C'den yukarıda üreyebilme kabiliyetine sahiptirler. Çok fazla soğuk, mantarların muhafazasında kullanılmaktadır. Sıfırın altında 195°C'de mantarlar uzun süre canlı kalabilirler. Mantarlar, genellikle, aerobik karakter taşırlar ve oksijenin bulunduğu ortamlarda gelişirler ve ürerler. Bu nedenle, havada bulunduğu miktar (veya oran) kadar oksijen, üreme için gereklidir. Patojenik mantarlardan, Actinomyces bazı türleri hariç olmak üzere, diğerleri aerobik koşullarda ürerler. Oksijenin azlığı veya mikroaerofilik koşullar üremeyi ve gelişmeyi sınırlar. Mantarların üremeleri için ışık, gereksinme duyulan önemli bir faktör değildir. Işık olmadan da kolayca gelişebilirler. Patojenik mantarlar da direkt ışık olmadan üreyebilme yeteneğine sahiptirler. Direkt güneş ışınları, üremeyi ve gelişmeyi sınırlar. Ultraviolet ışınları fungistatik bir etkiye sahip olmasına karşın iyonizan ışınlar öldürebilirler (fungisid). Mantarların klorofilleri olmadığı için fotosentez yapamazlar. Bu nedenle gıda gereksinimlerini (beslenme) dışardan karşılamak zorundadırlar. Bazı mantarlar basit yapıdaki ortamlarda (minimal ortam) gelişebildikleri halde, diğerlerinin ise üremeleri ve gelişmeleri için inorganik (C ,H, O, K, P, N, S, Fe, Mn, Mo, Cu, Zn, Ca, vs.) maddelere ve özel üretme faktörlerine (tiamin, biotin, Vit. B6, pantotenik asit, inositol, riboflavin, vs.) ihtiyaçları vardır. Mantarların karbon kaynaklarını, daha ziyade karbonhidratlar, alkol, organik asitler ve proteinler oluşturmaktadır. Nitrogen kaynağı için amonyum tuzları, sitratlar, proteinler, pepton, peptid, amino asit, üre, vs. den yararlanırlar. Bazı türler de amonyak ve nitratı bu amaç için kullanırlar. Mantarların bazıları kendilerine lüzumlu olan vitamin veya diğer gerekli maddeleri sentez edebilme kabiliyetine sahiptirler. Patojenik mantarlardan bir kısmı için tiamin, inositol veya biotin üremeyi artırıcı veya üretme faktörü olarak önemlidir. Örn. T. equinum üremesi için nikotinik asit, T. megnii için de L-histidine gereksinim duyulur. Tiamin, T. tonsurans 'ın üremesini artırır. Patojenik mantarları üretmek ve izole etmek için, laboratuvarlarda, bileşiminde çeşitli inorganik ve organik maddeler bulunan besi yerleri kullanılmaktadır. Bunlar arasında en fazla Sabouraud dekstroz agar, Brain-heart infusion kanlı agar, Czapek agar, Patates dekstroz agar, vs. sayılabilir. Mantarların bazıları kuvvetli enzimler sentezleyerek bunların aracılığı ile çevredeki gıda maddelerini ayrıştırır ve bunlardan yararlanırlar. Bu enzimler, daha ziyade protease, karbonhidrase, nuklease ve lipase karakterindedirler. Bazı mantarlar da birden fazla enzim sentez edebilmektedirler. Örn. Aspergillus niger (amilase, sellobiase, katalase, lipase, protease, maltase, vs.) ve A.oryzae (amidase, amilase, katalase, lipase, protease, maltase, vs.) ve P. camamberti (amidase, laktase, lipase, maltase, protese, nuklease, vs.) gibi. Mantarlar toprak fertilitesinin sağlanmasında, peynirlerin olgunlaşmasında ve bazı önemli endüstri ürünleri elde edilmesinde çok büyük yararlar sağlarlar. Organik asitler (asetik, formik,fumarik, gallik, glukonik, laktik, malonik, sitrik, oksaIik asitIer ve diğerleri), alkoller (alkol, gliserol, eritritol, mannitol, vs.), enzimler (amidase, amilase, invertase, lipase, protease, maltase, vs.), pigmentler (aleoamodin, auratin, beta karoten, aspergillin, vs.), polisakkaridler (glikojen, reguloz, nişasta, vs.), steroller (kolesterol, ergosterol, fungisterol, fitosterol, vs.), antifungal maddeler (griseofulvin, mikostatin, nistatin, vs.), antibiyotikler ( penisilin, eritromisin, sikloserin, sefalosporin, kanamisin, streptomisin, vs.) ve diğer bir çok önemli maddeler ( vitaminler, proteinler, ergot alkaloidleri, lipidler, toksin ve diğer toksik substanslar) bu ürünlerin arasında yer alırlar. Mantarlar insan ve hayvanlarda, gerek kutan ve subkutan ve gerekse sistemik infeksiyonlar oluşturması bakımından da medikal önemleri fazladır. Bu hastalıkların bazıları da zoonotik bir karaktere sahiptir. Mantarlar insan gıdası olarak da kullanıldıklarından, beslenmede özel bir yerleri vardır. Bu amaçla, zehirsiz türde mantarlar üretilmekte ve yemek olarak kullanılmaktadırlar. Mayalardan ekmek yapımına ve içkilerin fermentasyonunda (bira, şarap, viski, vs.) da büyük yararlar elde edildiği gibi bazı peynirlerin (Roquefort, Camemberti, Gorgonzola, Stilton, vs.) olgunlaşmasında da önemli görevler yaparlar. Ayrıca, maya hücrelerinin sentezlediği vitaminler (tiamin, riboflavin nikotinik asit, pentotenik asit, biotin, pridoksin, vs) de insan ve hayvanlarda kullanılan medikal önemleri olan maddeler arasındadır. Mantarların sentezledikleri ve sekonder metabolitlerden olan toksinler (mikotoksinler) insan ve hayvan sağlığı için büyük tehlike göstermektedirler. Bunlar arasında A. flavus 'un ve diğer mantarların sentezledikleri Aflatoksin karaciğerde kanser oluşturacak nitelikte etkiye sahiptir. Ayrıca, Rubratoksin, Okratoksin, Fusariotoksin ve diğer toksik substanslar da çeşitli mantarlar tarafından oluşturulurlar. Mantarlar, meyve, sebze, ağaç gövdeleri, depolardaki çeşitli dane ve diğer gıdalarda da üzerinde veya içinde üreyerek bozulmalarına, değerinin ve kalitesinin düşmesine neden olurlar. Mantarların Metabolizması Mantarların metabolik aktiviteleri alg ve yüksek bitkilerden biraz farklılık gösterir. Fotosentez yetenekleri olmadığından, enerjice zengin karbon kaynaklarına ihtiyaçları vardır. Heterotrofik bir beslenme özelliği gösteren mantarların metabolizmaları oldukça fazladır. Bunu gerçekleştirmek için fazla enerjiye ve dolayısıyla da enerji üretimine gereksinimleri vardır. Mantarlarda da, diğer ökaryotik ve prokaryotiklerde olduğu gibi, adenozin trifosfat ( ATP) merkezi bir role sahiptir. Enerji üretiminde şekerler ve şeker derivatlarının ayrıştırılması (glikolizis) önemli olup başlıca 3 yolla sağlanmaktadır. 1) Embden - Meyerhof - Parnas (EMP), 2) Hekzos monofosfat yolu (HMP) ve 3) Entner - Deudoroff (ED) biyokimyasal yollarıdır. Mantar türlerine göre değişmek üzere, bunlardan birinci veya ikinciler en fazla tercih edilen metabolik yollardandır ve bu sayede enerji üretimi gerçekleştirilir. Her üç metabolik yolla da pürivik asit merkezi role ve basamağa sahiptir. Şekerlerin veya derivatlarının oksidatif ayrışmasında (aerobik) daha fazla enerji açığa çıkar. Çünkü, son ürün olarak karbondioksit ve su meydana gelir. Halbuki, fermentatif ayrışmada (anaerobik) organik asitler daha fazla teşekkül eder ve oluşan enerjinin büyük bir kısmı bu asitlerin atomları arasında saklı kaldığından daha az oranda enerji üretilir (daha az ATP meydana gelir). EMP metabolik yolundan bir molekül glikozdan 2 molekül ATP oluşmasına karşın, HMP yolundan ise 1 M glikozdan ancak 1 molekül ATP üretilir. Fermantasyonda, elektron alıcısı olarak organik moleküller ve respirasyonda ise inorganik moleküller görev yaparlar. Metabolik aktivite sonunda mantar hücreleri içinde birçok depo maddeleri birikebilir. Bunlar arasında lipidler ve karbonhidratlar vardır. Mantar hücre duvarında kitin (N-acetyl glucose amine monomerlerinin birbirlerine beta 1-4 bağları ile birleşmesinden oluşan düz bir zincir halinde polimerdir) de bulunmaktadır. Kitinin sentezinde görev alan chitin synthase enzimi birçok mantarda zymogen (inaktif formda) halinde sentezlenir. Sonradan, proteolitik enzimlerin (kısmi proteolitik) etkileri ile aktif enzim haline dönüştürülür. Son yıllarda, elektron mikroskopla yapılan çalışmalarda chitin synthase enziminin hücre içinde partiküller halinde (chitosome) bulunduğu gösterilmiştir. Bunların yuvarlak (40-70 nm çapında) ve etrafında 7 nm kalınlıkta bir membranla çevrili oldukları ortaya konulmuştur. Eğer, kitosomlar, enzim, aktivatör (proteolitik enzim ve substrat) N-acetyl glucose amine ile birlikte inkube edilirse, bir süre sonra tipik kitin mikrofibrillerinin oluştuğu gözlenebilir. Mantar hücrelerinde, birçok amino asit, organik asitlere amonyağın ilavesiyle (aminasyon) veya transaminasyon ile (amino asit ile organik asit inkorporasyonu) elde edilmektedir. Mantarlarda sekonder metabolizma olarak tanımlanan ve ancak, normal metabolizmanın sınırlandığı durumlarda aktif hale gelen diğer bir metabolizma olayı da bulunmaktadır. Şimdiye dek 1000 den fazla sekonder metabolit bildirilmiştir. Bu metabolitlerin kimyasal yapıları farklı olup türlere özgü bir karakter taşımaktadırlar. Bazı metabolitlerin ticari değerleri çok fazladır (antibiyotikler, hormonlar, vs.) bazıları da insan ve hayvan için oldukça toksiktirler (mikotoksinler gibi). Üremeleri kısıtlanan ve durma dönemine giren mantarlar tarafından sentezlenen bu sekonder metabolitler, bir mantar için hayati önemde olmayıp normal üreme döneminde sentezlenen primer metabolitlerden oldukça farklıdırlar. Primer metabolizma ürünleri arasında bazı hidrolitik enzimler (protease, karbohidrase, lipase, organik asitler, pigmentler, polisakkaridler, steroller, vs. metabolitler) bulunmaktadır. Bunların da ticari önemleri oldukça fazladır. Mantarların hücre yapısında makromoleküller ve mikromoleküller bulunmaktadır. Makromoleküllerden, nukleik asitler, DNA ve RNA ( tRNA, mRNA, rRNA) lar bulunur. Ribosomal RNA 80 S (60 S + 40 S) karakterinde olup, prokaryotiklerden (70 S) farklıdır. Mantar türlerine göre % G + C oranı da değişiklik gösterir. Proteinlerin büyük bir çoğunluğunu enzimler teşkil ederler. Polisakkaridler ise hücre duvarında ve hücre içi depo maddelerinde bulunurlar. Mikromoleküller arasında çeşitli inorganik elementler (minareller, vs.) vardır. Mantar hücrelerinde ayrıca, lipidler, pigment maddeleri, tuzlar, vs. vardır. [1] Kaynak : Temel Mikrobiyoloji Prof. Dr. Mustafa Arda

http://www.biyologlar.com/mantarlarin-beslenmesi-fizyolojisi-ve-metabolizmasi

Ortak atadan türeyiş

Geçiş fosilleri ve geçişi kanıtlayan diğer göstergeler Ortak atadan türeme düşüncesi ilk olarak sıralı bir biçimde tabakalaşmış kayalarda bulunana fosillerdeki sistematik değişikliklerin gözlenmesiyle oluştu. Bugün bu gibi tabakaların bazılarının birkaç kilometre kalınlıkta olabildiği ve 2.7 milyar yıllık bir birikime karşılık geldiğini biliyoruz. Zaman içinde geriye doğru gidildikçe fosiller günümüzdeki türlere daha az benziyor ve pek çok farklı tür tek bir türe indirgenebiliyordu. Ancak Darwin zamanında paleontoloji bilimi daha emekleme dönemindeydi ve tabakalaşmış kayaların çoğu ya hiç çalışılmamış, ya da yetersiz çalışılmıştı. Bu yüzden geçiş türü fosilleri eksikti ve bu Darwin’in endişelendiriyordu. Yaratılışçılar daha o zamandan beri evrim teorisindeki bu noktayı yakalayıp , teoriyi buradan vurmaya çalıştılar. Gerçekte bugün fosil belgelerinde aradaki boşlukların çoğu doldurulmuşsa da yine de boşluklar vardır. Gözlenen yaşam biçimlerinin ortaya çıkış sırası ve prokaryotlar (çekirdeksiz hücreler) dışında hepsinin aynı tür hücrelerden oluşmuş olması, bütün ana yaşam biçimi sınıflarının ilk ökaryotik (çekirdekli hücreler) hücreler düzeyinde aynı atayı paylaştıklarını göstermektedir. Ayrıca balıklarla amfibiler, amfibilerle sürüngenler, sürüngenlerle memeliler arasındaki geçişleri belgeleyen çok sayıda fosil bulunmuştur. Yaratılışçıların bahsettiği gibi bir tufan olayına ait hiçbir ize rastlanmamıştır. Ancak zaman zaman olağandışı çok yağışın olduğu dönemlerin olduğuna kuşku yoktur ama bütün dünya üzerinde dağları bile aşan bir su baskınını destekleyen tek bir bilimsel kanıt yoktur. Tüm canlıların geçmişi hakkında her basamaktaki canlının fosiline rastlamak mümkün değildir. Hiçbir fosile rastlanmayabilirdi de. Fosil elde etmenin ne kadar zor, şans eseri olabilecek bir olay olduğunu anlamak için fosillerle ilgili kısma bakınız.Ama eldeki fosillerden edinilen kanıtlar, bilmeceyi birleştirmek için önemli ipuçları sağlamaktadırlar. Şimdi bu geçiş fosillerine biraz değinelim, hani şu yaratılışçıların hiç bulamadığımız söyledikleri geçiş fosilleri. Eustropnepteron isimli balık, Labyrşndthodont adlı bir amfibiana evrimleşmiştir. Amfiabianlardan sürüngenlere evrimleşen canlılar bugün bile mevcuttur. Seymouria bu geçişe bir örnek teşkil eder. Ve her iki sınıfa ait özellikler taşır. Sürüngenlerden kuşlara evrimleşen canlılardan birkaçı ise Archaeptoryx, confuciusornis, Sinornis, Eoaluavis v.b. dir. Bunlardan Archaeptoryx , dincilerin en çok saldırıda bulunduğu bir türdür ve ona kesinlikle bir kuş gözüyle bakarlar. Ancak onun yarı kuş-yarı sürüngen olduğu kesinlikle ispatlanmıştır. Sadece bu canlı üzerine yazılmış bir makale Bilim Ve Ütopya dergisinin Kasım 98 sayısında mevcuttur. Sürüngenlerden memelilere geçişin bir örneği olan Monotreme’lerden Echidna yumurta ile üreyen bir memelidir, ancak memelilerden bir farkı REM uykusunun olmamasıdır. Yine aynı şekilde Cynognatus hem memeli hem sürüngen özelliklerini taşıyan kurt büyüklüğünde bir canlıdır. Burada yazmaya gerek duymadığım daha bir sürü geçiş fosili bulunmaktadır. Embriyolojik kanıtlar Embriyoloji, ortak ata düşüncesine başka bir koldan destek sağlayan bir bilim dalıdır. Bir midye türü ile karides, istakoz gibi deniz kabuklularınnın pek bir benzer tarafı yoktur. Ancak embriyolojik açıdan incelendiğinde bu midyenin gelişimi sırasında bir larva döneminden geçtiği ve bu sırada bu deniz kabuklularından hiçbir farkı olmadığı anlaşılmıştır. Bu da ikinsin ortak atadan geldiğini gösterir. Benzer biçime insan ve diğer memeli embriyonları gelişmeleri sırasında hiçbir yanılgıya olanak bırakmayacak şekilde balıklarda bulunan solungaç oyukları taşıyan ancak bunların kullanılmadığı bir durumdan geçerler ki bu da insanların ve diğer memelilerin solungaçlar yardımıyla solunum yapan uzak ataları paylaştıklarını gösterir. Hatta Bilim Ve Ütopya dergisinin Ekim 98 sayısının 27. sayfasına bakacak olursanız çeşitli hayvanların erken embriyon dönemlerinde birbirlerine ne kadar benzediklerini görürüsünüz. Bu da hepsinin ortak geçmişi yani ortak atayı paylaştıklarını gösterir. Moleküler biyoloji kanıtları Her şeyden önce kalıtımın kimyasal temelinin evrenselliği; yani tüm canlılar için aynı kalıtsal mekanizmanın geçerli olması ortak atadan türeyişin karşı konulmaz derece güçlü bir kanıtıdır. Bakteriler, bitikler, ve insanlar da dahil olmak üzere bütün hayvanlarda kalıtsal bilgi DNA içinde kodlanmıştır. Hücre çekirdeğinde bulunana DNA’da depolanmış bilgiyle protein sentezlenmesini mümkün kılan genetik şifre bütün canlılarda küçük farklılıklar dışında aynıdır. Ayrıca bugün bütün canlılarda protein sentezinde 20 çeşit aa’nın kullanıldığı bilinmektedir. Ancak moleküler biyolojide elde edilen kanıtlar daha da ileri gider. DNA’yı oluşturan nükleotidlerin ve proteinlerdeki aa’ların dizilişindeki benzerlik derecesi artık sayısallaştırılabiliyor. Mesela insanla şempanzenin bir protein çeşidini oluşturan aa’ların 104’ü de aynıdır. Başka bir tür maymunda ise 1 aa fark eder. Atta bu fark 11, bir balık türünde ise 23tür. Görüldüğü gibi aa farkı arttıkça canlının bize benzerliği de azalmaktadır.

http://www.biyologlar.com/ortak-atadan-tureyis

Eukaryotes: A new timetable of evolution

Eukaryotes: A new timetable of evolution

Contaminated samples have evidently created some confusion in the timetable of life. On the basis of ultra-clean analyses, an international team, including scientists from the Max Planck Institute for Biogeochemistry, has disproved supposed evidence that eukaryotes originated 2.5 to 2.8 billion years ago. In contrast to prokaryotes such as bacteria, eukaryotes have a nucleus. Some researchers thought they had discovered molecular remnants of living organisms in rock samples up to 2.8 billion years old. However, as the current study shows, these molecular traces were introduced by contamination. The oldest evidence for the existence of eukaryotes is now provided by microfossils that are ca. 1.5 billion years old. Amoeba are more closely related to humans than to bacteria, at least in the tree of life. Like mammals, they belong to the realm of the eukaryotes, while bacteria are prokaryotes. The first eukaryotes are thus indeed the primeval ancestors of all higher life forms including humans. To this extent, evolution made a big leap towards complex life forms when eukaryotic cells appeared. The so-called symbiogenesis, which caused two or more single-celled bacteria to merge into a new organism with a nucleus and organelles, was the essential prerequisite that allowed most living creatures that surround us today to evolve. To understand how higher life forms developed, evolutionary biologists want to know when and under what conditions the first eukaryotes entered the scene. An international team, in which researchers from Christian Hallmann's Group at the Max Planck Institute for Biogeochemistry were involved, is now supplying crucial arguments to the scientific debate surrounding these questions. A gap between fossils and chemical traces The oldest microfossils that are widely acknowledged as the remains of eukaryotes were found in ca. 1.5 billion-year-old rocks in northern Australia. Researchers have analyzed these fossils morphologically in micropaleontogical studies and identified them as the remains of microalgae. In alternative attempts to trace the origin of higher life forms, scientists analyzed certain lipid molecules (steroids) contained in the cell walls of eukaryotic organisms. Not only can they serve as highly specific markers for certain groups of organisms, they can also survive in sediments for extremely long periods of time given the right conditions. "By analyzing such molecules, so-called biomarkers, we can reconstruct early life on Earth on a molecular level", says Christian Hallmann, Leader of the Max Planck Research Group 'Organic Paleobiogeochemistry'. Since 2012 Hallmann's team has been working on increasing our understanding of how environmental conditions developed and the diversity of life appeared in the period from when the Earth was created until animal life first appeared (i.e. during the Precambrian). "Our understanding of this period, which is of great evolutionary interest, is benefiting enormously from this molecular approach", Hallmann explains. The paleontologist and his staff have now analyzed rock samples up to 2.7 billion years old for traces of molecules. Steroid molecules can be preserved as steranes in old sediments, in other words the petrified beds of prehistoric seas and lakes. And since during the last 15 years an increasing number of scientists had repeatedly identified such molecular traces in samples of sediments from 2.5 to 2.8 billion years old, they concluded that eukaryotic algae already existed in this period, i.e. during the Late Archean. Thus, a gap of more than a billion years appeared between the earliest deposits of these biomarkers and the oldest fossilized microalgae. Ultra-clean sampling aimed at clarifying the question of contamination In addition, the discovery of a large variety of steroids pointed to a seemingly-modern pattern representing various algae species. "At first there was speculation that it might suggest that algae had split into different species at a very early date", says Christian Hallmann. "But suspicion mounted that the samples in these studies might have become contaminated in spite of extensive precautionary measures." The problem was that the Archean sample material either had not been taken under special conditions or had been stored for several years under conditions that were not ideal. "The question of contamination gradually split our fellow scientists into two conflicting camps", Hallmann continues. Working with Katherine French from the Massachusetts Institute of Technology (MIT), Hallmann therefore developed a method for taking ultra-clean samples from the oldest rocks that had been classified as containing steroids. Together with Roger Buick from the University of Washington, the scientists drilled and collected rock samples over the course of several weeks in the remote Australian outback during the "Agouron Institute Drilling Projects (AIDP)" in 2012, and in the process took unprecedented precautionary measures to prevent contamination. Not even a picogram of eukaryotic steroids French, Hallmann and other colleagues split open these drill cores and analyzed them in several independent laboratories - with astonishingly uniform results. "My biggest fear was having to discover in the laboratory that the samples had become contaminated despite our excessive endeavours", Hallmann continues. "Then the whole effort would have been useless." However, the samples were extremely clean - so clean in fact that the highly sensitive mass spectrometers in the various labs were unable to detect even picogram quantities of indigenous eukaryotic steroids. The suspicion that earlier samples might have been contaminated was confirmed. At the same time, the researchers found relatively large amounts of so-called diamondoids and polyaromatic hydrocarbons in the rock. Hallmann calls this the 'exhaust signature' as these molecules also occur in the exhaust gases of combustion engines and they point to organic material that has been modified at high temperatures. "The entire organic material in these samples was modified by pressure and temperature during the course of billions of years, and no biomarker molecules could have survived. We are thus unable to draw any conclusions on the original biological signature of the material", says Hallmann. At any rate, the steroid molecules, which were supposedly 2.7 billion years old, can no longer serve as evidence that eukaryotes originated much earlier than indicated by the fossil record. The microfossils, which are about 1.5 billion years old, must therefore currently be deemed the oldest evidence of eukaryotic life on Earth - an insight that is expected to have major consequences, not only in the geosciences. Biomarkers remain an important tool in Precambrian paleontology French and Hallmann's results not only help to clarify when eukaryotes originated, they also aid in the solution of a further puzzle: since all eukaryotes require oxygen, the development of oxygen-producing (oxygenic) photosynthesis must have preceded the evolutionary transition to the eukaryotes. The consequences of this biochemical innovation, known as the "great oxidation event", changed the entire planet as the atmosphere became gradually enriched with oxygen. This event is clearly dated to between 2.5 and 2.4 billion years ago. Until now, it had been hard to explain how the eukaryotes could have originated several 100 million years earlier given that they were inherently dependent on access to molecular oxygen. "Using a well-designed technique and a large-scale international collaborative process, we were able to answer one of the major questions in molecular geobiology", says Hallmann. In spite of these new insights, biomarkers in old rocks remain an important tool for paleontological investigations of the Precambrian, not least because sedimentary steroids and other biomarkers can be much more specific than microfossils. In contrast to the studied Archean rocks, late-Precambrian sedimentary basins on Earth contain a wide variety of rocks whose organic material is relatively well preserved and can be examined for biomarkers. "With the gained knowledge that eukaryotes appeared later, we can now work on the true early evolution of algae in a new context and with greatly enhanced prospects of achieving success". Source: Max-Planck-Gesellschaft http://www.biologynews.net

http://www.biyologlar.com/eukaryotes-a-new-timetable-of-evolution

Mantarların Sınıflandırılmaları ve İsimlendirilmeleri

Mantarlar kök, gövde, yaprak, çiçek ve klorofile sahip olmayan ökaryotik, heterotrofik çok hücreli organizmalardır. Klorofilin bulunmaması nedeniyle fotosentez olayına rastlanamaz. Çok hücreli ve büyük olmaları, üreme tarzları, yaşam siklusları, çekirdek etrafında bir zarın bulunması, çok kromozoma sahip olması, nukleolus içermeleri ve hücre içi organellerin (mitokondrium, golgi aparatı, endoplasmik retikulum, vesikül, vakuol, vs) bulunmaları gibi nedenlerle prokaryotiklerden ayrılırlar. Mantarlar doğada (kara ve sularda) çok yaygın bir yaşam spektrumu gösterirler. Büyük bir çoğunluğu saprofitik bir yaşantıya sahip olup kendilerine gerekli gıda maddelerini cansız materyallerden ve basit organiklerden temin ederler. Bir kısım mantarlar da, insan ve hayvanların yanı sıra, bitki, balık, kerevit, algler, insektler vs. canlılar üzerinde parazitik, sembiyotik veya komensal bir yaşam içinde bulunurlar. Şimdiye dek 110000' den fazla mantar türü (bunun 30000' den fazlası Basidiomycetes, 30000 den fazlası Deuteromycetes, 30000 den fazlası Ascomycetes sınıflarına aittir) saptanmış olup bazılarının da karakterleri henüz tam olarak aydınlatılamamıştır. Çok doğaldır ki bu kadar fazla ve aynı zamanda çeşitlilik gösteren türlerin bütün özelliklerini ayrıntıları ile saptamak, açıklamak oldukça güçtür ve ayrıca zaman alıcıdır da. Hatta, bazılarının biyokimyasal, sitolojik, fizyolojik ve genetik özellikleri de hala tam bir açıklığa kavuşturulamamıştır. Mantarları klasifiye etmede, bunların başlıca, makroskobik ve mikroskobik morfolojileri, miselyal özellikleri, spor, sporulasyon ve sporangium şekilleri, yaşam siklusları, üreme tarzları ve diğer önemli karakterleri dikkate alınmaktadır. Ancak, bakterilerde olduğu gibi, mantarlarda da henüz kesinleşmiş ve yerleşmiş bir sistematik bulunmamaktadır. Patojenik mantarlar, yukarıda açıklanan kriterler dikkate alınarak bazı sınıflandırmalara tabi tutulmuşlardır. Bunlar da özetle şöyledir: I) Mikroskobik Morfolojilerine Göre Sınıflama Bu sınıflamaya göre, mantarların hifa yapısı (septumlu, septumsuz, branşlı, spiral, makro ve mikro konidiumlar, artrospor, klamidospor, blastospor, vs.), konidiumlar (basit, kompleks, vs.) ve sporangioforların özellikleri dikkate alınır. II) Üreme Özelliklerine Göre Sınıflama 1) Perfekt mantarlar: Seksüel veya hem seksüel ve hem de aseksüel üreme yeteneğine sahip olan mantarlar. 2) İmperfekt mantarlar: Sadece aseksüel üreme sistemine sahip olan mantarlar için kullanılan bir terimdir. Çünkü, böyle mantarların seksüel durumları henüz bilinmemektedir. III)Yerleştikleri Bölgelere Göre Sınıflama 1) Kutan mikozeslere neden olanlar: Bunlar derinin kutan tabakasında yerleşerek hastalıklara neden olurlar. Epidermofiton, Mikrosporum, Trikofiton cinslerine ve diğer cinslere ait mantar türleri gibi. 2) Subkutan mikozeslere neden olanlar: Sporotrichum schenkii, Rhinosporidiumseeberi, vs. mantarlar subkutan dokulara yerleşerek bozukluklara yol açarlar. 3) Sistemik mikozeslere neden olanlar: Bazı mantarlar da çeşitli iç organlara yerleşerek hastalık meydana getirirler. Bunlar arasında, A. fumigatus, C. albicans, B. dermatitidis, C. immitis, C. neoformans, H. capsulatum, N. asteroides, N. brasiliensis vs. vardır. IV) Makroskobik Morfolojilerine Göre Sınıflama Bu tür sınıflamada koloni morfolojisi esas alınmaktadır. Miselyal ve maya benzeri koloniler, difazik ve monofazik mantarlar, yuvarlak, oval, vs. durumlar dikkate alınır. V) Toksin Sentezlemelerine Göre Sınıflama Mikotoksin sentezleyenler ve sentezlemeyenler olarak başlıca iki grup mantar oluşturulabilmektedir. Doğadaki tüm mantarlar Alexopulos (1979'da) tarafından yapılan sınıflamada Mycetae 'ye konulmaktadır. Bu da aşağıda belirtilen tarzda bir taksimata tabi tutulmaktadır. Alem (Kingdom):Mycetae (mantarlar) Divizyon:Mycota Altdivizyon-1 :Myxomycota (hücre duvarı olmayan mantarlar) Altdivizyon-2:Eumycota (hücre duvarı olan mantarlar) Sınıf-1 :Mastigomycotina (zoosporlu mantarlar) Sınıf-2 :Zygomycotina (Zygomycetes) Sınıf-3 :Ascomycotina (Ascomycetes) Sınıf-4 :Basidiomycotina (Basidiomycetes) Sınıf-5 :Deuteromycotina (Deuteromycetes, fungi imperfecti) Mantarlar da aynen bakterilerde olduğu gibi, binomial sisteme göre iki kelime ile adlandırılırlar. Bunlardan ilki cins (genus) adı olup büyük harfle başlar. Diğeri ise tür (species) ismi olup küçük harfle başlar ve yazılır. Bu isimler de italik olarak yazılır. Mantarların alt bölümlerinin belirlenmesinde de, genellikle, bitkilere uyulmaktadır. Bu sıralama şöyledir. Alem, divizyon, alt divizyon, sınıf, altsınıf, order, familya, seksiyon, kabile, cins ve tür. Bu düzenlemeye göre, patojenik bir mantar olan Histoplasma capsulatum'un durumu aşağıdaki gibidir. Alem:Mycetae Divizyon:Mycota Altdivizyon:Eumycota Sınıf:Deuteromycetes Order:Moniliales Familya:Moniliaceae Seksiyon:Amerosporeae Kabile :Eleuriosporeae Cins:Histoplasma Tür:Histoplasma capsulatum Yukarıda açıklanan mantar bölümlerini ifade etmede mantarların sonlarına bazı ekler konulmaktadır. Örneğin, divizyon ...mycota ; sınıf ..mycetes ; alt sınıf ...mycetidae ; order ....ales ; familya ...aceae gibi eklerle ifade edilirler.  

http://www.biyologlar.com/mantarlarin-siniflandirilmalari-ve-isimlendirilmeleri

MANTARLAR HAKKINDA BİLGİ

Mantarlar genellikle belirgin 4 özelliği ile tanımlanır. a- Besinlerini emerek alan heterotrof ökaryotlardır. b- Hücre çeperleri kitinden (azotlu polisakkarit) yapılmıştır. c- Belirgin ipliksi yapıya sahiptirler. d- Sporla üreyen organizmalardır. Mantarlar aynen hayvanlarda olduğu gibi, besinlerini hücre içerisinde glikojen (hayvansal nişasta) olarak depo ederler. Hayvanlar alemine daha yakın olan mantarların milyonlarca türü vardır. Son çalışmalar, mantarların DNA ve hücre özellikleriyle altın sarısı alglere ve kahverengi alglere daha yakın olduklarını göstermiştir. SINIFLANDIRILMALARI Mantarlar iki alt bölüme ayrılır. Birincisi cıvık mantarları içine alan MYXOMYCOTİNA alt bölümü diğeri alçak mantarların bir kısmı yüksek mantarları da içine alan EUMYCOTİNA’dır. EUMYCOTİNA alt bölümü şu sınıfları içerir. Sınıf: CYHTRİDİOMYCETES Ordo: CYHTRİDİALES Genus: OLPİDİUM Genus: SYNCHYTRİUM Ordo: MONOBLEPHARİDALES Genus: MONOBLEPHARİS Sınıf: HYPOCHYTRİDİOMYCETES Ordo: HYPOCHYTRİDİALES Sınıf: OOMYCETES Ordo: SAPROLEGNİALES Genus: SAPROLEGNİA Ordo: PERONOSPORALES Genus: PYTHİUM Genus: PHYTOPHTHORA Genus: PHASMOPORA Genus: ALBUGO Genus: BREMİA Genus: PERONOSPORA Sınıf: ZYGOMYCETECES Ordo: MUCORALES Genus: RHİZOPUS Sınıf: ASCOMYCETES Sınıf: BASİDİOMYCETES Subdivisio: MYXOMYCOTİNA (CIVIK MANTARLAR) 300 kadar türü bulunan cıvık mantarlar hem bitki hem hayvan karakterlerini birlikte taşıdıklarından bilimsel açıdan ilginçtir. Vejetatif yapıları çeperlerle ayrılmamış pek çok çekirdek içeren çıplak protoplazma kütlesi halindedir. Bu vejetatif kısma PLASMODİUM denir ve özel bir şekli yoktur. Cıvık mantarların çoğu saprofittirler. Hücre çeperinin bulunmayışı, amoeboid hareket ve katı besin parçacıklarını alabilmeleri gibi hayvanlarda görülen özelliklere sahiptir, üremelerinde selülöz çeperli sporlar meydana getirirler ki buda bitkilere has üreme karakteridir. Subdivisio: EUMYCOTİNA OOMYCETES ve ZYGOMYCETES olmak üzere iki ilkel sınıf ile iki de yüksek mantarları içeren sınıfı vardır. Her iki ilkel sınıfın önemli özellikleri: A- VEJETATİF MİSEL SAPROLEGNİALES, PERONOSPORALES, MUCORALES: Sönositik (çok çekirdekli) bir misel; saprofit, parazit ve ara tipler, parazit özellikle bitki patojenleri. B- ÜREME a- EŞEYSİZ SAPROLEGNİALES: Zoosporlar uzamış sporangiumlarda oluşur. PERONOSPORALES: Zoosporlar sporangium ve konidiosporangium’larda oluşur; konidiumların çimlenmesi çimlenme tübüyle olur. MUCORALES: Aerial sporangiumlar b- EŞEYLİ SAPROLEGNİALES: Heterogomi her oogoniumda bir ya da çok yumurta mevcut. PERONOSPORALES: Heterogami, her oogonium içinde bir yumurta bulunur. MUCORALES: Sönogametlerin oluştuğu izogami; heterotallik. OOMYCETES ordoları SAPROLEGNİALES PERONOSPORALES ZOOMYCETES ordoları MUCORALES YÜKSEK MANTARLAR Bu grup mantarlar 3 sınıfta toplanır; ASCOMYCETES, BASİDİOMYCETES ve FUNGİ İMPERFECTİ. Buğday, mısır gibi hububatlar ve orman ağaçlarında parazit oldukları için son derece önemlidirler. Bazı türler ekmeklerin kabartılmasında, mayalanmada ve antibiyotik üretiminde kullanılırlar. ASCOMYCETES hifleri bölmelidir ve hücreler tek çekirdeklidir. Bölmeler protoplazmanın hücreden hücreye geçişini sağlayan deliklere sahiptir. BASİDİOMYCETES hifleri, ASCOMYCETES’lerde olduğu gibi porlu bölmelere sahiptir. Sınıf: ASCOMYCETES Bazı peynirlerin özel kokuları ASCOMYCETES’lerden dolayıdır ve bazı yenilebilir mantarlar bu sınıfın üyeleridir. Bazıları da drogların elde edilmesinde kullanılır. Alkol ve maya yapımında önemli olan ve pek çok vitamin içeren bira mayası da bu sınıfın üyesidir. ÜREME A- EŞEYSİZ Eşeysiz üreme çeşitli tipte eşeysiz sporlarla sağlanır. Ilıman iklimlerde eşeysiz sporlar uygun olmayan şartlarda uzun süre yaşayabilirlerse de soğuk veya çok sıcak ve kuru hava ölmelerine neden olur. Birçok ASCOMYCETES’lerde sporlar özelleşmiş hiflerin ucundaki hücrelerden meydana gelir. Böyle oluşan sporlara KONİDİOSPOR denir. Özelleşmiş hiflerde KONİDİOFOR adını alır. Ekseriya konidiosporlar bir süre birbirlerine yapışık kalır ve uzun zincirler oluştururlar. Birçok türde konidioforlarda karakteristik bir şekilde bir arada toplanmış olabilir. Bazıları da tomurcaklanma ile eşeysiz ürer. B- EŞEYLİ Çoğu ASCOMYCETES’te mitozu takiben meydana gelen mayoz uç hücreye 8 adet meiosporun oluşmasını sağlar. Bu sporların görünümleri bir naylon torbadaki fasulye veya misketleri andırır ve dolayısıyla KESE MANTARLARI adı verilir. Sınıfa adını veren ASKUS kelimesi de kese anlamına gelmektedir. Meiosporlarada genellikle ASKOSPOR denir. Askuslar (askospor meydana getiren keseler) daima özelleşmiş hiflerin uç hücreleridir. Askokarp adı verilen bu yapı içine yerleşmişlerdir ve bu sınıfta ASKOGONİUM adını alan dişi gametangium’dan meydana gelirler. Erkek gametangium ANTHERİDİUM adını alır. Hem vejetatif ve hem de askus taşıyan hiflerden oluşan askokarp türler için karakteristiktir. 3 tip askokarp mevcuttur. 1- CLEİSTOTHECİUM: İçi oyuk tamamen kapalı küre şeklinde 2- PERİTHECİUM: İçi oyuk, dar bir açıklığı bulunan matara şeklinde 3- APOTHECİUM: Açık, kadeh şeklinde Askus taşıyan hiflerin ucundaki hücreler (askuslar) birçok formlarda askokarpın iç yüzeyinde sıralanır. Bu yüzey tabakaya HYMENİUM ya da verimli tabaka denir. PARAFİZ denilen kısır hücreler aynı zamanda hymeniumda meydana gelir ve çok sayıda olup genellikle askuslardan uzundur. Birçok ASCOMYCETES’lerde askokarplar doğrudan doğruya hücrelerin kaynaşmasıyla oluşur. Gametangiumlar konak üzerinde büyüyen haploid miselden meydana gelir. Dişi gametangium veya oogonium çok çekirdekli tek bir hücredir. Anteridiumlar diğer ipliklerin kısa yan çıkıntılarında oluşan uzamış hücrelerdir. Her iki gametangiumda özel ek hücrelere sahip olabilir. Bu anteridium oogoniuma temas ettikten sonra çekirdekler çiftleşir fakat birleşmezler. Bu işlem oogonium ve çevredeki haploid misellerdeki liflerin büyümesini uyarır. Oogonyumdan oluşan hücreler biri erkek diğeri dişi olmak üzere iki çekirdeklidir. Bu gerçek bir diploid durum değildir; 2n’den çok n+n şeklinde düşünülmelidir ve bu çift haldeki çekirdeklere ekseriya DİKARYON denir. Askuslar bu hiflerden meydana geldiği için bunlara ASKOJEN HİFLER denir. Haploid ve askojen hiflerin birlikte gelişmeleri sonuçta ASKOSPOR oluşumuna neden olur. Çok dallanmış askojen hiflerin uç hücreleri ve bazı haploid hiflerin uçları birlikte hymenial tabakayı oluştururlar. Bu tabaka dışarıdan PERİDİUM denilen vejetatif haploiid hiflerin oluşturduğu bir tabakayla korunur. Gene askusta dikaryonun çekirdekleri artık gerçek diploit hücre oluşturmak üzere birleşirler. Çekirdeklerin birleşmesini takiben hemen mayoz meydana gelir ve birçok türde bunu 8 askospor meydana getiren mitotik bir bölünme izler. ASCOMYCETES’lerin gametangiumları yapı ve gelişme bakımından farklılık gösterir. Örneğin en basit tip ve gelişme tek hücreli mantar olan bira mayasıdır. Bazı bira mayasında 2 hücre birleşir, ardından hemen mayoz meydana gelir ve askosporlar oluşur. SINIFLANDIRILMALARI Pek çoğu patojen olan 25000 kadar ASCOMYCETES türü pek zor taksonomik problemler göstermektedir. Ekseriya 2 alt sınıf ve 7 ordoya ayrılırlar. Alt sınıf: HEMİASCOMYCETİDAE 1. ordo: ENDOMYCETALES Örnek: SACCHAROMYCES (bira mayası) 2. ordo: TAPHRİNALES Örnek: TAPHRİNA Alt sınıf: EUASCOMYCETİDAE 3. ordo: EUROTİALES Örnek: ASPERGİLLUS, PENİCİLLUM 4. ordo: ERYSİPHALES Örnek: ERYSİPHE 5. ordo: CLAVİCİPİTALES Örnek: CLAVİCEPS 6. ordo: HELOTİALES Örnek: MONOLİNİA 7. ordo: PEZİZALES Örnek: PEZİZA Sınıf: BASİDİOMYCETES Birçoğu özellikle ölü orman ağaçlarının çürümekte olan kısımlarında saprofittirler. Bazıları parazittirler, orman ve meyve ağaçlarına, buğday, mısır, soğan ve diğer bazı bitkilerde önemle hasarlara neden olurlar. ÜREME Özel eşey organları yoktur. Buna rağmen hemen hemen hepsi eşeyli çoğalırlar. Birleşme a) basit hif hücreleri arasında b) iki özel hücre arasında veya c) özel sperm benzeri yapılarla alıcı hifler arasında olur. Bazı türler HETEROTALLİKTİR. Yani dişi ve erkek farklı hifler birleşir. Bazıları HOMOTALLİKTİR. Yani herhangi iki hifin iki hücresi hatta aynı hifin iki hücresi birleşir. Her iki tipte de birleşmeden önce vejetatif misel hücreleri tek çekirdeklidir. Birleşmeden sonra oluşan hücre 2 haploid çekirdeklidir (n+n). Her hücredeki bu 2 çekirdek mayoz’a kadar birleşmez. İki çekirdeğin birleşmesi ve sonuçta mayoz, BASİDUM denilen özel hücrelerde olur. Bu basidiumlarda meydana gelen meiosporlara BASİDİOSPOR denir. Basidiumlar ya çubuk şeklinde tek bir hücre veya kısa ipliksi tek bir hücre ya da kısa bir 4 hücreli iplik şeklindedir. Çubuk şeklindeki basidiumlar şapkalı mantarlarda özel spor taşıyan yapılarda bulunur. Bu tip basidium HOMOBASİDİOMYCETİDAE alt sınıfı oluşur. Her iki tiptede basidiosporlar basidiumlara STERİGMA denilen kısa bir sapla bağlanmıştır. SINIFLANDIRILMALARI Alt sınıf: HOMOBASİDİOMYCETİDAE Agaricus campestris Amanita phalloides (zehirli) Fomes appanatus Alt sınıf: HETEROBASİDİOMYCETİDAE Puccinia graminis Ustilago Tilletia tritici İKİ SINIFIN KARŞILAŞTIRILMASI ASCOMYCETES GENEL KARAKTERLERİ 1- Misel bölmeli, ana vejetatif hifin hücreleri tek haploid çekirdekli, askojen hifler her bir hücresinde 2 haploid çekirdekli (n+n). 2- Birçoğu meyve, ağaç ve tanelerin hastalığına neden olan patojenlerdir. 3- Bira mayası gibi bazı saprofit formların ekonomik önemi vardır. 4- Bira mayası tek hücreden ibaret bir ASCOMYCETES’dir. ÜREME EŞEYSİZ - Ekseriya konidiosorla - Tomurcuklanma ile EŞEYLİ - İlkel formlarda belirgin gametangiumlar gelişmez. Tipik askogonium ve anteridium daha gelişmiş tipte görülür. - Döllenme Çekirdekler birleşmeden iki protoplastın birleşmesiyle Askojen hiflerin (n+n) ve haploid vejetatif hiflerin uyarılması Askustaki 2 haploid çekirdeğin birleşmesi şeklinde olur. - Askokarp askojen ve haploid vejetatif hiflerin büyümesi sonucu gelişir. Askokarpın iç tabakası (himenium) askusları oluşturur. Dış tabaka (peridium) haploid vejetatif ipliklerden oluşmuştur. - Üç tip askospor vardır CLEİSTOTHECİA PERİTHECİA APOTHECİA - Mayoz askusta, askosporların teşekkülünde meydana gelen her bir askusta genellikle 8 askospor meydana gelir. BASİDİOMYCETES GENEL KARAKTERLERİ 1- Hif bölmeleri, yaygın haploid misel, her bir hücrede tek haploid çekirdek; gelişmiş n+n misel, her hücrede iki haploid çekirdek. 2- HOMOBASİDİOMYCETİDAE: çoğu saprofitik formlar, birkaç tür ağaçlarda parazit. 3- HETEROBASİDİOMYCETİDAE: Bitkilerde parazit, bazıları karışık bir hayat devresine sahip, birkaç türde gerçek bazidiosporlar oluşmaz. ÜREME EŞEYSİZ: HOMOBASİDİ’lerde eşeysiz sporlar oluşmaz. HETEROBASİDİ’lerde çeşitli tipte sporlar oluşur. UREDOSPOR, ASCOSPOR EŞEYLİ: Hareketli eşey hücreleri ve gametangiumlar yok. HOMOBASİDİ’lerde; - İki haploid hif hücresi birleşir; - Her bir hücrede iki haploid çekirdekli n+n misel iki haploid hif hücresinin birleşmesiyle gelişir; - Bazidiokarp n+n miselden meydana gelir; - Çubuk şeklinde bazidiumu olan himenium bazidokarpta meydana gelir; - İki haploid çekirdek bazidiumarda birleşir; - Mayoz sonucu dört bazidiospor oluşur. HETEROBASİDİ’lerde; - Basidiumlar dayanıklı teliosporlardan meydana gelir ya da kısa ipliksi hücrelerden veya kısa dört hücreli ipliklerden. Mayoz basidiospor oluşumunda meydana gelir. - İki haploid çekirdeğin birleşmesiyle olan döllenme türden türe son derece değişir. Sınıf: Fungi imperfecti ( Eşeyli üremeleri kesin olarak bilinmeyen mantarlar) Eşeysiz devreleriyle tanınan 1200 cins 24000 türü olan bir sınıftır. Mantarlarda eşeyli devre perfect, eşeysiz devre imperfect olarak adlandırılır. Bu büyük grupta sadece imperfect devre bilindiğinden Fungi imperfecti adı verilmiştir. Genel olarak bölmeli hiflerin ve sporların yapısı ve bu gruba ait birçok üyenin ASCOMYCETES olabileceği fikrini doğurur, diğerleri ise BASİDİOMYCETES. Tabii sınıflandırma eşeyli safhalara dayandığından eşeyli ve eşeysiz safhaların morfolojileri birbirine uygun olmadığından bu büyük grup mantarların sınıflandırılması oldukça güçtür. Örneğin, çok benzer konidial safhaya sahip olan iki form çok farklı eşeyli devrelere sahip olabilir. PENİCİLLUM ve ASPERGİLLUS ekseriya bu grup içinde incelenir, çünkü bu iki cinsin eşeyli safhaları bilinmeyen pek çok türleri vardır.

http://www.biyologlar.com/mantarlar-hakkinda-bilgi

Canlılar Aleminin Sınıflandırılması

1. Monera (Bakteriler-Eski bakteriler, Archaea-Gayserlerde yaşayan hipertermofilik canlılar) Zarla çevrilmiş gerçek organelleri bulunmayan hücre yapısına sahip canlılardır. 2. Protista (Chromista ve Protozoa) Zarla çevrilmiş gerçek organellere sahip hücre yapısına canlılardır. 3. Fungi (Şapkalı ve Cıvık mantarları içerirler) İletim dokusu bulunmayan ve bu nedenle heterotrofik, parazitik ya da saprofit (çürükçül) beslenen, fotosentez yapmamaları nedeniyle ışığa bağımlı olmayan ökaryotik canlılardır. Bazı mantarlar, alglerle bir araya gelerek liken adı verilen toplulukları oluştururlar. Bazı türler de, bitkilerin köklerinde simbiyont olarak yaşarlar. 4. Plantae (Bitkiler) Birincil olarak karada yaşamaya uyum sağlamış, hücrelerinde kloroplast bulunan, fotosentez yapabilen, ototrof (kendibeslek) canlılardır. Bu canlıların kloroplastları, ökaryot kökenlidir. Hücre duvarı sellüloz içerir. Organ ve doku sistemlerinde belirgin farklılaşmalar vardır. Bitkiler dünyasının tarihi 4 devire ayrılır: a. Siluriyen'e kadar Thallofitlerin çağı; b. Geç Siluriyen'den Permiyen'e kadar damarlı Kriptogamların ve onlardan daha sonra ortaya çıkan Prephanerogamların çağı; c. Permiyen'den Geç Jura'ya kadar Gymnospermlerin çağı; d. Geç Jura'dan günümüze değin Angiospermlerin çağı. Günümüzde bitkiler 360 bin türe sahiptir. Bunların yaklaşık 2/3'ü tohumlu (600'ü açık tohumlular; 200 bini çift çenekli ve 50 bini de tek çenekli olmak üzere kapalı tohumlular), 1/3'ü tohumsuz bitkilerdir. 4. Animalia (Hayvanlar) Gelişmiş bir sinir sistemine ve hareket yeteneğine sahip olan, hücrelerinde kloroplast taşımamaları nedeniyle kendi besinlerini kendileri üretemeyen, bu sebeple de dışarıdan organik besin almak zorunda olan canlılardır. Besin, sindirildikten sonra hücre içerisinde alınır. Heterotrof (ardıbeslek) olan bu canlılar, beslenme şekillerine göre ayrıca otçul (herbivor), etçil (karnivor), hepçil (omnivor), böcekçil (insektivor), vb. olarak gruplandırılırlar. Hayvanlar alemi; a. Omurgasızlar b. Omurgalılar gruplarından meydana gelirler.

http://www.biyologlar.com/canlilar-aleminin-siniflandirilmasi

Günlük hayatımızda mayalardan nasıl yararlanırız?

Mayalar bitki ve hayvanlarda parazit olarak zararlı etkiler yapsa da, alkolün fermentasyonunda, ekmek yapımında, yağların, proteinlerin ve B kompleks vitaminlerin hazırlanmasında ve çok kısa sürede çoğalabilen en basit ökaryot olduklarından moleküler biyolojide önemli role sahiptirler. Etrafımızda en çok karşılaştığımız ve en çok çalışılmış maya türü Saccharomyces cerevisiae (ekmek mayası) dir. İnsan deri hastalıklarına yol açan, bitkisel ve hayvansal atıklar üzerinde gelişen ve bozunmaya neden olan mavi ve siyah küfler örneğin Aspergillus ve Penicillum türleri, bitkilerde parazit külleme mantarları ve kadeh biçimli mantarlar da bu altbölümdedir. Örneğin; Claviceps purpurea çavdar bitkisinde çavdar mahmuzu hastalığı etmenidir. Morchella vulgaris halk arasında kuzu göbeği mantarı olarak bilinmektedir.

http://www.biyologlar.com/gunluk-hayatimizda-mayalardan-nasil-yararlaniriz

PARAZİTLERDE ÜREME VE ÇOĞALMA

A. Protozoonlar: Ökaryot hücreye sahip yüksek protistlerdir. 1-Aksüel üreme: a) İkiye bölünme : Ana hücrenin 2 ye ayrılması ve 2 yavru hücre oluşturmasıdır b) Tomurcuklanma : Ana hücrede olan küçük bir çıkıntıdan yeni bir yavru oluşmasıdır. c) Şizogoni : Bir çok bölümlere ayrılan çekirdeğin etrafına protoplazma çevrilerekyeni bireyler oluşmasıdır. 2-Seksüel üreme: a) Sporogoni : Erkek ve dişi bireyin (mikro ve makrogametosit, mikro ve makrogamet) birleşmesiyle zigot oluşması ve daha sonra bunun bölünmesidir. b) Konjugasyon : İki bireyin genetik materyel alışverişidir. B. Helmintler: Helmintler vücut yapılarına göre 4 gruba ayrılırlar: 1-Trematodlar: Tek halkadan oluşan yassı helmintlerdir. Şistozomalar dışındaki bütün türler hermafrodittirAyrıca trematodların larva şekillerinde pedogenesis adı verilen tomurcuklanma ile üreme şekli de vardır. Yumurtadan çıkan parazite miracidium adı verilir. Bu mirasidyum ara konağa girer ve orada Sporokist haline döner. Bu kistin içindeki tomurcuklanma işlevi sonucu bir tek yumurtadan çok sayıda larva oluşur. 2- Cestodlar: Vücutları enaz 3 segmentten oluşan yassı helmintler olan sestodlar, seksüel sıralı hermafroditizmle çoğalırlar. Ayrıca tomurcuklanma ile boyun bölgesinden yeni halkalar oluşur 3- Nematodlar: Eşeyli üremedir. Erkek ve dişi ayrı bireylerdir ve yaşamları boyunca aynı cinsiyette kalırlar. Hepsinin evriminde 3 şekildedir. a-Yumurta b- Larva c- Erişkin şekildir. 4- Annelidalar: Sülük adıyla tanınan parazitlerdir. Gerçek hermafrodittirler. C. Arthropodlar: Eklem bacaklılar adıyla tanımlanan hayvanlardır. Erkek ve dişileri ayrı bireylerdir.

http://www.biyologlar.com/parazitlerde-ureme-ve-cogalma

 
3WTURK CMS v6.03WTURK CMS v6.0